Type.h revision 5c7e326585f3a543388ba871c3425f7664cd9143
1//===-- llvm/Type.h - Classes for handling data types -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10
11#ifndef LLVM_TYPE_H
12#define LLVM_TYPE_H
13
14#include "llvm/AbstractTypeUser.h"
15#include "llvm/Support/Casting.h"
16#include "llvm/Support/DataTypes.h"
17#include "llvm/Support/Streams.h"
18#include "llvm/ADT/GraphTraits.h"
19#include "llvm/ADT/iterator"
20#include <string>
21#include <vector>
22
23namespace llvm {
24
25class ArrayType;
26class DerivedType;
27class FunctionType;
28class OpaqueType;
29class PointerType;
30class StructType;
31class PackedType;
32class TypeMapBase;
33
34/// This file contains the declaration of the Type class.  For more "Type" type
35/// stuff, look in DerivedTypes.h.
36///
37/// The instances of the Type class are immutable: once they are created,
38/// they are never changed.  Also note that only one instance of a particular
39/// type is ever created.  Thus seeing if two types are equal is a matter of
40/// doing a trivial pointer comparison. To enforce that no two equal instances
41/// are created, Type instances can only be created via static factory methods
42/// in class Type and in derived classes.
43///
44/// Once allocated, Types are never free'd, unless they are an abstract type
45/// that is resolved to a more concrete type.
46///
47/// Types themself don't have a name, and can be named either by:
48/// - using SymbolTable instance, typically from some Module,
49/// - using convenience methods in the Module class (which uses module's
50///    SymbolTable too).
51///
52/// Opaque types are simple derived types with no state.  There may be many
53/// different Opaque type objects floating around, but two are only considered
54/// identical if they are pointer equals of each other.  This allows us to have
55/// two opaque types that end up resolving to different concrete types later.
56///
57/// Opaque types are also kinda weird and scary and different because they have
58/// to keep a list of uses of the type.  When, through linking, parsing, or
59/// bytecode reading, they become resolved, they need to find and update all
60/// users of the unknown type, causing them to reference a new, more concrete
61/// type.  Opaque types are deleted when their use list dwindles to zero users.
62///
63/// @brief Root of type hierarchy
64class Type : public AbstractTypeUser {
65public:
66  ///===-------------------------------------------------------------------===//
67  /// Definitions of all of the base types for the Type system.  Based on this
68  /// value, you can cast to a "DerivedType" subclass (see DerivedTypes.h)
69  /// Note: If you add an element to this, you need to add an element to the
70  /// Type::getPrimitiveType function, or else things will break!
71  ///
72  enum TypeID {
73    // PrimitiveTypes .. make sure LastPrimitiveTyID stays up to date
74    VoidTyID = 0  , BoolTyID,           //  0, 1: Basics...
75    UByteTyID     , SByteTyID,          //  2, 3: 8 bit types...
76    UShortTyID    , ShortTyID,          //  4, 5: 16 bit types...
77    UIntTyID      , IntTyID,            //  6, 7: 32 bit types...
78    ULongTyID     , LongTyID,           //  8, 9: 64 bit types...
79    FloatTyID     , DoubleTyID,         // 10,11: Floating point types...
80    LabelTyID     ,                     // 12   : Labels...
81
82    // Derived types... see DerivedTypes.h file...
83    // Make sure FirstDerivedTyID stays up to date!!!
84    FunctionTyID  , StructTyID,         // Functions... Structs...
85    ArrayTyID     , PointerTyID,        // Array... pointer...
86    OpaqueTyID,                         // Opaque type instances...
87    PackedTyID,                         // SIMD 'packed' format...
88    BC_ONLY_PackedStructTyID,           // packed struct, for BC rep only
89    //...
90
91    NumTypeIDs,                         // Must remain as last defined ID
92    LastPrimitiveTyID = LabelTyID,
93    FirstDerivedTyID = FunctionTyID
94  };
95
96private:
97  TypeID   ID : 8;    // The current base type of this type.
98  bool     Abstract : 1;  // True if type contains an OpaqueType
99  bool     SubclassData : 1; //Space for subclasses to store a flag
100
101  /// RefCount - This counts the number of PATypeHolders that are pointing to
102  /// this type.  When this number falls to zero, if the type is abstract and
103  /// has no AbstractTypeUsers, the type is deleted.  This is only sensical for
104  /// derived types.
105  ///
106  mutable unsigned RefCount;
107
108  const Type *getForwardedTypeInternal() const;
109protected:
110  Type(const char *Name, TypeID id);
111  Type(TypeID id) : ID(id), Abstract(false), RefCount(0), ForwardType(0) {}
112  virtual ~Type() {
113    assert(AbstractTypeUsers.empty());
114  }
115
116  /// Types can become nonabstract later, if they are refined.
117  ///
118  inline void setAbstract(bool Val) { Abstract = Val; }
119
120  unsigned getRefCount() const { return RefCount; }
121
122  bool getSubclassData() const { return SubclassData; }
123  void setSubclassData(bool b) { SubclassData = b; }
124
125  /// ForwardType - This field is used to implement the union find scheme for
126  /// abstract types.  When types are refined to other types, this field is set
127  /// to the more refined type.  Only abstract types can be forwarded.
128  mutable const Type *ForwardType;
129
130  /// ContainedTys - The list of types contained by this one.  For example, this
131  /// includes the arguments of a function type, the elements of the structure,
132  /// the pointee of a pointer, etc.  Note that keeping this vector in the Type
133  /// class wastes some space for types that do not contain anything (such as
134  /// primitive types).  However, keeping it here allows the subtype_* members
135  /// to be implemented MUCH more efficiently, and dynamically very few types do
136  /// not contain any elements (most are derived).
137  std::vector<PATypeHandle> ContainedTys;
138
139  /// AbstractTypeUsers - Implement a list of the users that need to be notified
140  /// if I am a type, and I get resolved into a more concrete type.
141  ///
142  mutable std::vector<AbstractTypeUser *> AbstractTypeUsers;
143public:
144  void print(std::ostream &O) const;
145  void print(std::ostream *O) const { if (O) print(*O); }
146
147  /// @brief Debugging support: print to stderr
148  void dump() const;
149
150  //===--------------------------------------------------------------------===//
151  // Property accessors for dealing with types... Some of these virtual methods
152  // are defined in private classes defined in Type.cpp for primitive types.
153  //
154
155  /// getTypeID - Return the type id for the type.  This will return one
156  /// of the TypeID enum elements defined above.
157  ///
158  inline TypeID getTypeID() const { return ID; }
159
160  /// getDescription - Return the string representation of the type...
161  const std::string &getDescription() const;
162
163  /// isSigned - Return whether an integral numeric type is signed.  This is
164  /// true for SByteTy, ShortTy, IntTy, LongTy.  Note that this is not true for
165  /// Float and Double.
166  ///
167  bool isSigned() const {
168    return ID == SByteTyID || ID == ShortTyID ||
169           ID == IntTyID || ID == LongTyID;
170  }
171
172  /// isUnsigned - Return whether a numeric type is unsigned.  This is not quite
173  /// the complement of isSigned... nonnumeric types return false as they do
174  /// with isSigned.  This returns true for UByteTy, UShortTy, UIntTy, and
175  /// ULongTy
176  ///
177  bool isUnsigned() const {
178    return ID == UByteTyID || ID == UShortTyID ||
179           ID == UIntTyID || ID == ULongTyID;
180  }
181
182  /// isInteger - Equivalent to isSigned() || isUnsigned()
183  ///
184  bool isInteger() const { return ID >= UByteTyID && ID <= LongTyID; }
185
186  /// isIntegral - Returns true if this is an integral type, which is either
187  /// BoolTy or one of the Integer types.
188  ///
189  bool isIntegral() const { return isInteger() || this == BoolTy; }
190
191  /// isFloatingPoint - Return true if this is one of the two floating point
192  /// types
193  bool isFloatingPoint() const { return ID == FloatTyID || ID == DoubleTyID; }
194
195  /// isFPOrFPVector - Return true if this is a FP type or a vector of FP types.
196  ///
197  bool isFPOrFPVector() const;
198
199  /// isAbstract - True if the type is either an Opaque type, or is a derived
200  /// type that includes an opaque type somewhere in it.
201  ///
202  inline bool isAbstract() const { return Abstract; }
203
204  /// canLosslesslyBitCastTo - Return true if this type could be converted
205  /// with a lossless BitCast to type 'Ty'. For example, uint to int. BitCasts
206  /// are valid for types of the same size only where no re-interpretation of
207  /// the bits is done.
208  /// @brief Determine if this type could be losslessly bitcast to Ty
209  bool canLosslesslyBitCastTo(const Type *Ty) const;
210
211
212  /// Here are some useful little methods to query what type derived types are
213  /// Note that all other types can just compare to see if this == Type::xxxTy;
214  ///
215  inline bool isPrimitiveType() const { return ID <= LastPrimitiveTyID; }
216  inline bool isDerivedType()   const { return ID >= FirstDerivedTyID; }
217
218  /// isFirstClassType - Return true if the value is holdable in a register.
219  ///
220  inline bool isFirstClassType() const {
221    return (ID != VoidTyID && ID <= LastPrimitiveTyID) ||
222            ID == PointerTyID || ID == PackedTyID;
223  }
224
225  /// isSized - Return true if it makes sense to take the size of this type.  To
226  /// get the actual size for a particular target, it is reasonable to use the
227  /// TargetData subsystem to do this.
228  ///
229  bool isSized() const {
230    // If it's a primitive, it is always sized.
231    if (ID >= BoolTyID && ID <= DoubleTyID || ID == PointerTyID)
232      return true;
233    // If it is not something that can have a size (e.g. a function or label),
234    // it doesn't have a size.
235    if (ID != StructTyID && ID != ArrayTyID && ID != PackedTyID)
236      return false;
237    // If it is something that can have a size and it's concrete, it definitely
238    // has a size, otherwise we have to try harder to decide.
239    return !isAbstract() || isSizedDerivedType();
240  }
241
242  /// getPrimitiveSize - Return the basic size of this type if it is a primitive
243  /// type.  These are fixed by LLVM and are not target dependent.  This will
244  /// return zero if the type does not have a size or is not a primitive type.
245  ///
246  unsigned getPrimitiveSize() const;
247  unsigned getPrimitiveSizeInBits() const;
248
249  /// getUnsignedVersion - If this is an integer type, return the unsigned
250  /// variant of this type.  For example int -> uint.
251  const Type *getUnsignedVersion() const;
252
253  /// getSignedVersion - If this is an integer type, return the signed variant
254  /// of this type.  For example uint -> int.
255  const Type *getSignedVersion() const;
256
257  /// getIntegralTypeMask - Return a bitmask with ones set for all of the bits
258  /// that can be set by an unsigned version of this type.  This is 0xFF for
259  /// sbyte/ubyte, 0xFFFF for shorts, etc.
260  uint64_t getIntegralTypeMask() const {
261    assert(isIntegral() && "This only works for integral types!");
262    return ~uint64_t(0UL) >> (64-getPrimitiveSizeInBits());
263  }
264
265  /// getForwaredType - Return the type that this type has been resolved to if
266  /// it has been resolved to anything.  This is used to implement the
267  /// union-find algorithm for type resolution, and shouldn't be used by general
268  /// purpose clients.
269  const Type *getForwardedType() const {
270    if (!ForwardType) return 0;
271    return getForwardedTypeInternal();
272  }
273
274  /// getVAArgsPromotedType - Return the type an argument of this type
275  /// will be promoted to if passed through a variable argument
276  /// function.
277  const Type *getVAArgsPromotedType() const {
278    if (ID == BoolTyID || ID == UByteTyID || ID == UShortTyID)
279      return Type::UIntTy;
280    else if (ID == SByteTyID || ID == ShortTyID)
281      return Type::IntTy;
282    else if (ID == FloatTyID)
283      return Type::DoubleTy;
284    else
285      return this;
286  }
287
288  //===--------------------------------------------------------------------===//
289  // Type Iteration support
290  //
291  typedef std::vector<PATypeHandle>::const_iterator subtype_iterator;
292  subtype_iterator subtype_begin() const { return ContainedTys.begin(); }
293  subtype_iterator subtype_end() const { return ContainedTys.end(); }
294
295  /// getContainedType - This method is used to implement the type iterator
296  /// (defined a the end of the file).  For derived types, this returns the
297  /// types 'contained' in the derived type.
298  ///
299  const Type *getContainedType(unsigned i) const {
300    assert(i < ContainedTys.size() && "Index out of range!");
301    return ContainedTys[i];
302  }
303
304  /// getNumContainedTypes - Return the number of types in the derived type.
305  ///
306  typedef std::vector<PATypeHandle>::size_type size_type;
307  size_type getNumContainedTypes() const { return ContainedTys.size(); }
308
309  //===--------------------------------------------------------------------===//
310  // Static members exported by the Type class itself.  Useful for getting
311  // instances of Type.
312  //
313
314  /// getPrimitiveType - Return a type based on an identifier.
315  static const Type *getPrimitiveType(TypeID IDNumber);
316
317  //===--------------------------------------------------------------------===//
318  // These are the builtin types that are always available...
319  //
320  static Type *VoidTy , *BoolTy;
321  static Type *SByteTy, *UByteTy,
322              *ShortTy, *UShortTy,
323              *IntTy  , *UIntTy,
324              *LongTy , *ULongTy;
325  static Type *FloatTy, *DoubleTy;
326
327  static Type* LabelTy;
328
329  /// Methods for support type inquiry through isa, cast, and dyn_cast:
330  static inline bool classof(const Type *T) { return true; }
331
332  void addRef() const {
333    assert(isAbstract() && "Cannot add a reference to a non-abstract type!");
334    ++RefCount;
335  }
336
337  void dropRef() const {
338    assert(isAbstract() && "Cannot drop a reference to a non-abstract type!");
339    assert(RefCount && "No objects are currently referencing this object!");
340
341    // If this is the last PATypeHolder using this object, and there are no
342    // PATypeHandles using it, the type is dead, delete it now.
343    if (--RefCount == 0 && AbstractTypeUsers.empty())
344      delete this;
345  }
346
347  /// addAbstractTypeUser - Notify an abstract type that there is a new user of
348  /// it.  This function is called primarily by the PATypeHandle class.
349  ///
350  void addAbstractTypeUser(AbstractTypeUser *U) const {
351    assert(isAbstract() && "addAbstractTypeUser: Current type not abstract!");
352    AbstractTypeUsers.push_back(U);
353  }
354
355  /// removeAbstractTypeUser - Notify an abstract type that a user of the class
356  /// no longer has a handle to the type.  This function is called primarily by
357  /// the PATypeHandle class.  When there are no users of the abstract type, it
358  /// is annihilated, because there is no way to get a reference to it ever
359  /// again.
360  ///
361  void removeAbstractTypeUser(AbstractTypeUser *U) const;
362
363private:
364  /// isSizedDerivedType - Derived types like structures and arrays are sized
365  /// iff all of the members of the type are sized as well.  Since asking for
366  /// their size is relatively uncommon, move this operation out of line.
367  bool isSizedDerivedType() const;
368
369  virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
370  virtual void typeBecameConcrete(const DerivedType *AbsTy);
371
372protected:
373  // PromoteAbstractToConcrete - This is an internal method used to calculate
374  // change "Abstract" from true to false when types are refined.
375  void PromoteAbstractToConcrete();
376  friend class TypeMapBase;
377};
378
379//===----------------------------------------------------------------------===//
380// Define some inline methods for the AbstractTypeUser.h:PATypeHandle class.
381// These are defined here because they MUST be inlined, yet are dependent on
382// the definition of the Type class.
383//
384inline void PATypeHandle::addUser() {
385  assert(Ty && "Type Handle has a null type!");
386  if (Ty->isAbstract())
387    Ty->addAbstractTypeUser(User);
388}
389inline void PATypeHandle::removeUser() {
390  if (Ty->isAbstract())
391    Ty->removeAbstractTypeUser(User);
392}
393
394// Define inline methods for PATypeHolder...
395
396inline void PATypeHolder::addRef() {
397  if (Ty->isAbstract())
398    Ty->addRef();
399}
400
401inline void PATypeHolder::dropRef() {
402  if (Ty->isAbstract())
403    Ty->dropRef();
404}
405
406
407//===----------------------------------------------------------------------===//
408// Provide specializations of GraphTraits to be able to treat a type as a
409// graph of sub types...
410
411template <> struct GraphTraits<Type*> {
412  typedef Type NodeType;
413  typedef Type::subtype_iterator ChildIteratorType;
414
415  static inline NodeType *getEntryNode(Type *T) { return T; }
416  static inline ChildIteratorType child_begin(NodeType *N) {
417    return N->subtype_begin();
418  }
419  static inline ChildIteratorType child_end(NodeType *N) {
420    return N->subtype_end();
421  }
422};
423
424template <> struct GraphTraits<const Type*> {
425  typedef const Type NodeType;
426  typedef Type::subtype_iterator ChildIteratorType;
427
428  static inline NodeType *getEntryNode(const Type *T) { return T; }
429  static inline ChildIteratorType child_begin(NodeType *N) {
430    return N->subtype_begin();
431  }
432  static inline ChildIteratorType child_end(NodeType *N) {
433    return N->subtype_end();
434  }
435};
436
437template <> inline bool isa_impl<PointerType, Type>(const Type &Ty) {
438  return Ty.getTypeID() == Type::PointerTyID;
439}
440
441std::ostream &operator<<(std::ostream &OS, const Type &T);
442
443} // End llvm namespace
444
445#endif
446