Type.h revision 61c70e98ac3c7504d31dd9bc81c4e9cb998e9984
1//===-- llvm/Type.h - Classes for handling data types -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#ifndef LLVM_TYPE_H
11#define LLVM_TYPE_H
12
13#include "llvm/AbstractTypeUser.h"
14#include "llvm/Support/Casting.h"
15#include "llvm/System/DataTypes.h"
16#include "llvm/ADT/GraphTraits.h"
17#include <string>
18#include <vector>
19
20namespace llvm {
21
22class DerivedType;
23class PointerType;
24class IntegerType;
25class TypeMapBase;
26class raw_ostream;
27class Module;
28class LLVMContext;
29
30/// This file contains the declaration of the Type class.  For more "Type" type
31/// stuff, look in DerivedTypes.h.
32///
33/// The instances of the Type class are immutable: once they are created,
34/// they are never changed.  Also note that only one instance of a particular
35/// type is ever created.  Thus seeing if two types are equal is a matter of
36/// doing a trivial pointer comparison. To enforce that no two equal instances
37/// are created, Type instances can only be created via static factory methods
38/// in class Type and in derived classes.
39///
40/// Once allocated, Types are never free'd, unless they are an abstract type
41/// that is resolved to a more concrete type.
42///
43/// Types themself don't have a name, and can be named either by:
44/// - using SymbolTable instance, typically from some Module,
45/// - using convenience methods in the Module class (which uses module's
46///    SymbolTable too).
47///
48/// Opaque types are simple derived types with no state.  There may be many
49/// different Opaque type objects floating around, but two are only considered
50/// identical if they are pointer equals of each other.  This allows us to have
51/// two opaque types that end up resolving to different concrete types later.
52///
53/// Opaque types are also kinda weird and scary and different because they have
54/// to keep a list of uses of the type.  When, through linking, parsing, or
55/// bitcode reading, they become resolved, they need to find and update all
56/// users of the unknown type, causing them to reference a new, more concrete
57/// type.  Opaque types are deleted when their use list dwindles to zero users.
58///
59/// @brief Root of type hierarchy
60class Type : public AbstractTypeUser {
61public:
62  //===-------------------------------------------------------------------===//
63  /// Definitions of all of the base types for the Type system.  Based on this
64  /// value, you can cast to a "DerivedType" subclass (see DerivedTypes.h)
65  /// Note: If you add an element to this, you need to add an element to the
66  /// Type::getPrimitiveType function, or else things will break!
67  /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding.
68  ///
69  enum TypeID {
70    // PrimitiveTypes .. make sure LastPrimitiveTyID stays up to date
71    VoidTyID = 0,    ///<  0: type with no size
72    FloatTyID,       ///<  1: 32 bit floating point type
73    DoubleTyID,      ///<  2: 64 bit floating point type
74    X86_FP80TyID,    ///<  3: 80 bit floating point type (X87)
75    FP128TyID,       ///<  4: 128 bit floating point type (112-bit mantissa)
76    PPC_FP128TyID,   ///<  5: 128 bit floating point type (two 64-bits)
77    LabelTyID,       ///<  6: Labels
78    MetadataTyID,    ///<  7: Metadata
79
80    // Derived types... see DerivedTypes.h file...
81    // Make sure FirstDerivedTyID stays up to date!!!
82    IntegerTyID,     ///<  8: Arbitrary bit width integers
83    FunctionTyID,    ///<  9: Functions
84    StructTyID,      ///< 10: Structures
85    ArrayTyID,       ///< 11: Arrays
86    PointerTyID,     ///< 12: Pointers
87    OpaqueTyID,      ///< 13: Opaque: type with unknown structure
88    VectorTyID,      ///< 14: SIMD 'packed' format, or other vector type
89
90    NumTypeIDs,                         // Must remain as last defined ID
91    LastPrimitiveTyID = MetadataTyID,
92    FirstDerivedTyID = IntegerTyID
93  };
94
95private:
96  TypeID   ID : 8;    // The current base type of this type.
97  bool     Abstract : 1;  // True if type contains an OpaqueType
98  unsigned SubclassData : 23; //Space for subclasses to store data
99
100  /// RefCount - This counts the number of PATypeHolders that are pointing to
101  /// this type.  When this number falls to zero, if the type is abstract and
102  /// has no AbstractTypeUsers, the type is deleted.  This is only sensical for
103  /// derived types.
104  ///
105  mutable unsigned RefCount;
106
107  /// Context - This refers to the LLVMContext in which this type was uniqued.
108  LLVMContext &Context;
109  friend class LLVMContextImpl;
110
111  const Type *getForwardedTypeInternal() const;
112
113  // Some Type instances are allocated as arrays, some aren't. So we provide
114  // this method to get the right kind of destruction for the type of Type.
115  void destroy() const; // const is a lie, this does "delete this"!
116
117protected:
118  explicit Type(LLVMContext &C, TypeID id) :
119                             ID(id), Abstract(false), SubclassData(0),
120                             RefCount(0), Context(C),
121                             ForwardType(0), NumContainedTys(0),
122                             ContainedTys(0) {}
123  virtual ~Type() {
124    assert(AbstractTypeUsers.empty() && "Abstract types remain");
125  }
126
127  /// Types can become nonabstract later, if they are refined.
128  ///
129  inline void setAbstract(bool Val) { Abstract = Val; }
130
131  unsigned getRefCount() const { return RefCount; }
132
133  unsigned getSubclassData() const { return SubclassData; }
134  void setSubclassData(unsigned val) { SubclassData = val; }
135
136  /// ForwardType - This field is used to implement the union find scheme for
137  /// abstract types.  When types are refined to other types, this field is set
138  /// to the more refined type.  Only abstract types can be forwarded.
139  mutable const Type *ForwardType;
140
141
142  /// AbstractTypeUsers - Implement a list of the users that need to be notified
143  /// if I am a type, and I get resolved into a more concrete type.
144  ///
145  mutable std::vector<AbstractTypeUser *> AbstractTypeUsers;
146
147  /// NumContainedTys - Keeps track of how many PATypeHandle instances there
148  /// are at the end of this type instance for the list of contained types. It
149  /// is the subclasses responsibility to set this up. Set to 0 if there are no
150  /// contained types in this type.
151  unsigned NumContainedTys;
152
153  /// ContainedTys - A pointer to the array of Types (PATypeHandle) contained
154  /// by this Type.  For example, this includes the arguments of a function
155  /// type, the elements of a structure, the pointee of a pointer, the element
156  /// type of an array, etc.  This pointer may be 0 for types that don't
157  /// contain other types (Integer, Double, Float).  In general, the subclass
158  /// should arrange for space for the PATypeHandles to be included in the
159  /// allocation of the type object and set this pointer to the address of the
160  /// first element. This allows the Type class to manipulate the ContainedTys
161  /// without understanding the subclass's placement for this array.  keeping
162  /// it here also allows the subtype_* members to be implemented MUCH more
163  /// efficiently, and dynamically very few types do not contain any elements.
164  PATypeHandle *ContainedTys;
165
166public:
167  void print(raw_ostream &O) const;
168
169  /// @brief Debugging support: print to stderr
170  void dump() const;
171
172  /// @brief Debugging support: print to stderr (use type names from context
173  /// module).
174  void dump(const Module *Context) const;
175
176  /// getContext - Fetch the LLVMContext in which this type was uniqued.
177  LLVMContext &getContext() const { return Context; }
178
179  //===--------------------------------------------------------------------===//
180  // Property accessors for dealing with types... Some of these virtual methods
181  // are defined in private classes defined in Type.cpp for primitive types.
182  //
183
184  /// getDescription - Return the string representation of the type.
185  std::string getDescription() const;
186
187  /// getTypeID - Return the type id for the type.  This will return one
188  /// of the TypeID enum elements defined above.
189  ///
190  inline TypeID getTypeID() const { return ID; }
191
192  /// isVoidTy - Return true if this is 'void'.
193  bool isVoidTy() const { return ID == VoidTyID; }
194
195  /// isFloatTy - Return true if this is 'float', a 32-bit IEEE fp type.
196  bool isFloatTy() const { return ID == FloatTyID; }
197
198  /// isDoubleTy - Return true if this is 'double', a 64-bit IEEE fp type.
199  bool isDoubleTy() const { return ID == DoubleTyID; }
200
201  /// isX86_FP80Ty - Return true if this is x86 long double.
202  bool isX86_FP80Ty() const { return ID == X86_FP80TyID; }
203
204  /// isFP128Ty - Return true if this is 'fp128'.
205  bool isFP128Ty() const { return ID == FP128TyID; }
206
207  /// isPPC_FP128Ty - Return true if this is powerpc long double.
208  bool isPPC_FP128Ty() const { return ID == PPC_FP128TyID; }
209
210  /// isFloatingPointTy - Return true if this is one of the five floating point
211  /// types
212  bool isFloatingPointTy() const { return ID == FloatTyID || ID == DoubleTyID ||
213      ID == X86_FP80TyID || ID == FP128TyID || ID == PPC_FP128TyID; }
214
215  /// isFPOrFPVectorTy - Return true if this is a FP type or a vector of FP.
216  ///
217  bool isFPOrFPVectorTy() const;
218
219  /// isLabelTy - Return true if this is 'label'.
220  bool isLabelTy() const { return ID == LabelTyID; }
221
222  /// isMetadataTy - Return true if this is 'metadata'.
223  bool isMetadataTy() const { return ID == MetadataTyID; }
224
225  /// isIntegerTy - True if this is an instance of IntegerType.
226  ///
227  bool isIntegerTy() const { return ID == IntegerTyID; }
228
229  /// isIntegerTy - Return true if this is an IntegerType of the given width.
230  bool isIntegerTy(unsigned Bitwidth) const;
231
232  /// isIntOrIntVectorTy - Return true if this is an integer type or a vector of
233  /// integer types.
234  ///
235  bool isIntOrIntVectorTy() const;
236
237  /// isFunctionTy - True if this is an instance of FunctionType.
238  ///
239  bool isFunctionTy() const { return ID == FunctionTyID; }
240
241  /// isStructTy - True if this is an instance of StructType.
242  ///
243  bool isStructTy() const { return ID == StructTyID; }
244
245  /// isArrayTy - True if this is an instance of ArrayType.
246  ///
247  bool isArrayTy() const { return ID == ArrayTyID; }
248
249  /// isPointerTy - True if this is an instance of PointerType.
250  ///
251  bool isPointerTy() const { return ID == PointerTyID; }
252
253  /// isOpaqueTy - True if this is an instance of OpaqueType.
254  ///
255  bool isOpaqueTy() const { return ID == OpaqueTyID; }
256
257  /// isVectorTy - True if this is an instance of VectorType.
258  ///
259  bool isVectorTy() const { return ID == VectorTyID; }
260
261  /// isAbstract - True if the type is either an Opaque type, or is a derived
262  /// type that includes an opaque type somewhere in it.
263  ///
264  inline bool isAbstract() const { return Abstract; }
265
266  /// canLosslesslyBitCastTo - Return true if this type could be converted
267  /// with a lossless BitCast to type 'Ty'. For example, i8* to i32*. BitCasts
268  /// are valid for types of the same size only where no re-interpretation of
269  /// the bits is done.
270  /// @brief Determine if this type could be losslessly bitcast to Ty
271  bool canLosslesslyBitCastTo(const Type *Ty) const;
272
273
274  /// Here are some useful little methods to query what type derived types are
275  /// Note that all other types can just compare to see if this == Type::xxxTy;
276  ///
277  inline bool isPrimitiveType() const { return ID <= LastPrimitiveTyID; }
278  inline bool isDerivedType()   const { return ID >= FirstDerivedTyID; }
279
280  /// isFirstClassType - Return true if the type is "first class", meaning it
281  /// is a valid type for a Value.
282  ///
283  inline bool isFirstClassType() const {
284    // There are more first-class kinds than non-first-class kinds, so a
285    // negative test is simpler than a positive one.
286    return ID != FunctionTyID && ID != VoidTyID && ID != OpaqueTyID;
287  }
288
289  /// isSingleValueType - Return true if the type is a valid type for a
290  /// virtual register in codegen.  This includes all first-class types
291  /// except struct and array types.
292  ///
293  inline bool isSingleValueType() const {
294    return (ID != VoidTyID && ID <= LastPrimitiveTyID) ||
295            ID == IntegerTyID || ID == PointerTyID || ID == VectorTyID;
296  }
297
298  /// isAggregateType - Return true if the type is an aggregate type. This
299  /// means it is valid as the first operand of an insertvalue or
300  /// extractvalue instruction. This includes struct and array types, but
301  /// does not include vector types.
302  ///
303  inline bool isAggregateType() const {
304    return ID == StructTyID || ID == ArrayTyID;
305  }
306
307  /// isSized - Return true if it makes sense to take the size of this type.  To
308  /// get the actual size for a particular target, it is reasonable to use the
309  /// TargetData subsystem to do this.
310  ///
311  bool isSized() const {
312    // If it's a primitive, it is always sized.
313    if (ID == IntegerTyID || isFloatingPointTy() || ID == PointerTyID)
314      return true;
315    // If it is not something that can have a size (e.g. a function or label),
316    // it doesn't have a size.
317    if (ID != StructTyID && ID != ArrayTyID && ID != VectorTyID)
318      return false;
319    // If it is something that can have a size and it's concrete, it definitely
320    // has a size, otherwise we have to try harder to decide.
321    return !isAbstract() || isSizedDerivedType();
322  }
323
324  /// getPrimitiveSizeInBits - Return the basic size of this type if it is a
325  /// primitive type.  These are fixed by LLVM and are not target dependent.
326  /// This will return zero if the type does not have a size or is not a
327  /// primitive type.
328  ///
329  /// Note that this may not reflect the size of memory allocated for an
330  /// instance of the type or the number of bytes that are written when an
331  /// instance of the type is stored to memory. The TargetData class provides
332  /// additional query functions to provide this information.
333  ///
334  unsigned getPrimitiveSizeInBits() const;
335
336  /// getScalarSizeInBits - If this is a vector type, return the
337  /// getPrimitiveSizeInBits value for the element type. Otherwise return the
338  /// getPrimitiveSizeInBits value for this type.
339  unsigned getScalarSizeInBits() const;
340
341  /// getFPMantissaWidth - Return the width of the mantissa of this type.  This
342  /// is only valid on floating point types.  If the FP type does not
343  /// have a stable mantissa (e.g. ppc long double), this method returns -1.
344  int getFPMantissaWidth() const;
345
346  /// getForwardedType - Return the type that this type has been resolved to if
347  /// it has been resolved to anything.  This is used to implement the
348  /// union-find algorithm for type resolution, and shouldn't be used by general
349  /// purpose clients.
350  const Type *getForwardedType() const {
351    if (!ForwardType) return 0;
352    return getForwardedTypeInternal();
353  }
354
355  /// getVAArgsPromotedType - Return the type an argument of this type
356  /// will be promoted to if passed through a variable argument
357  /// function.
358  const Type *getVAArgsPromotedType(LLVMContext &C) const;
359
360  /// getScalarType - If this is a vector type, return the element type,
361  /// otherwise return this.
362  const Type *getScalarType() const;
363
364  //===--------------------------------------------------------------------===//
365  // Type Iteration support
366  //
367  typedef PATypeHandle *subtype_iterator;
368  subtype_iterator subtype_begin() const { return ContainedTys; }
369  subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];}
370
371  /// getContainedType - This method is used to implement the type iterator
372  /// (defined a the end of the file).  For derived types, this returns the
373  /// types 'contained' in the derived type.
374  ///
375  const Type *getContainedType(unsigned i) const {
376    assert(i < NumContainedTys && "Index out of range!");
377    return ContainedTys[i].get();
378  }
379
380  /// getNumContainedTypes - Return the number of types in the derived type.
381  ///
382  unsigned getNumContainedTypes() const { return NumContainedTys; }
383
384  //===--------------------------------------------------------------------===//
385  // Static members exported by the Type class itself.  Useful for getting
386  // instances of Type.
387  //
388
389  /// getPrimitiveType - Return a type based on an identifier.
390  static const Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber);
391
392  //===--------------------------------------------------------------------===//
393  // These are the builtin types that are always available...
394  //
395  static const Type *getVoidTy(LLVMContext &C);
396  static const Type *getLabelTy(LLVMContext &C);
397  static const Type *getFloatTy(LLVMContext &C);
398  static const Type *getDoubleTy(LLVMContext &C);
399  static const Type *getMetadataTy(LLVMContext &C);
400  static const Type *getX86_FP80Ty(LLVMContext &C);
401  static const Type *getFP128Ty(LLVMContext &C);
402  static const Type *getPPC_FP128Ty(LLVMContext &C);
403  static const IntegerType *getIntNTy(LLVMContext &C, unsigned N);
404  static const IntegerType *getInt1Ty(LLVMContext &C);
405  static const IntegerType *getInt8Ty(LLVMContext &C);
406  static const IntegerType *getInt16Ty(LLVMContext &C);
407  static const IntegerType *getInt32Ty(LLVMContext &C);
408  static const IntegerType *getInt64Ty(LLVMContext &C);
409
410  //===--------------------------------------------------------------------===//
411  // Convenience methods for getting pointer types with one of the above builtin
412  // types as pointee.
413  //
414  static const PointerType *getFloatPtrTy(LLVMContext &C, unsigned AS = 0);
415  static const PointerType *getDoublePtrTy(LLVMContext &C, unsigned AS = 0);
416  static const PointerType *getX86_FP80PtrTy(LLVMContext &C, unsigned AS = 0);
417  static const PointerType *getFP128PtrTy(LLVMContext &C, unsigned AS = 0);
418  static const PointerType *getPPC_FP128PtrTy(LLVMContext &C, unsigned AS = 0);
419  static const PointerType *getIntNPtrTy(LLVMContext &C, unsigned N,
420                                         unsigned AS = 0);
421  static const PointerType *getInt1PtrTy(LLVMContext &C, unsigned AS = 0);
422  static const PointerType *getInt8PtrTy(LLVMContext &C, unsigned AS = 0);
423  static const PointerType *getInt16PtrTy(LLVMContext &C, unsigned AS = 0);
424  static const PointerType *getInt32PtrTy(LLVMContext &C, unsigned AS = 0);
425  static const PointerType *getInt64PtrTy(LLVMContext &C, unsigned AS = 0);
426
427  /// Methods for support type inquiry through isa, cast, and dyn_cast:
428  static inline bool classof(const Type *) { return true; }
429
430  void addRef() const {
431    assert(isAbstract() && "Cannot add a reference to a non-abstract type!");
432    ++RefCount;
433  }
434
435  void dropRef() const {
436    assert(isAbstract() && "Cannot drop a reference to a non-abstract type!");
437    assert(RefCount && "No objects are currently referencing this object!");
438
439    // If this is the last PATypeHolder using this object, and there are no
440    // PATypeHandles using it, the type is dead, delete it now.
441    if (--RefCount == 0 && AbstractTypeUsers.empty())
442      this->destroy();
443  }
444
445  /// addAbstractTypeUser - Notify an abstract type that there is a new user of
446  /// it.  This function is called primarily by the PATypeHandle class.
447  ///
448  void addAbstractTypeUser(AbstractTypeUser *U) const;
449
450  /// removeAbstractTypeUser - Notify an abstract type that a user of the class
451  /// no longer has a handle to the type.  This function is called primarily by
452  /// the PATypeHandle class.  When there are no users of the abstract type, it
453  /// is annihilated, because there is no way to get a reference to it ever
454  /// again.
455  ///
456  void removeAbstractTypeUser(AbstractTypeUser *U) const;
457
458  /// getPointerTo - Return a pointer to the current type.  This is equivalent
459  /// to PointerType::get(Foo, AddrSpace).
460  const PointerType *getPointerTo(unsigned AddrSpace = 0) const;
461
462private:
463  /// isSizedDerivedType - Derived types like structures and arrays are sized
464  /// iff all of the members of the type are sized as well.  Since asking for
465  /// their size is relatively uncommon, move this operation out of line.
466  bool isSizedDerivedType() const;
467
468  virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
469  virtual void typeBecameConcrete(const DerivedType *AbsTy);
470
471protected:
472  // PromoteAbstractToConcrete - This is an internal method used to calculate
473  // change "Abstract" from true to false when types are refined.
474  void PromoteAbstractToConcrete();
475  friend class TypeMapBase;
476};
477
478//===----------------------------------------------------------------------===//
479// Define some inline methods for the AbstractTypeUser.h:PATypeHandle class.
480// These are defined here because they MUST be inlined, yet are dependent on
481// the definition of the Type class.
482//
483inline void PATypeHandle::addUser() {
484  assert(Ty && "Type Handle has a null type!");
485  if (Ty->isAbstract())
486    Ty->addAbstractTypeUser(User);
487}
488inline void PATypeHandle::removeUser() {
489  if (Ty->isAbstract())
490    Ty->removeAbstractTypeUser(User);
491}
492
493// Define inline methods for PATypeHolder.
494
495/// get - This implements the forwarding part of the union-find algorithm for
496/// abstract types.  Before every access to the Type*, we check to see if the
497/// type we are pointing to is forwarding to a new type.  If so, we drop our
498/// reference to the type.
499///
500inline Type* PATypeHolder::get() const {
501  if (Ty == 0) return 0;
502  const Type *NewTy = Ty->getForwardedType();
503  if (!NewTy) return const_cast<Type*>(Ty);
504  return *const_cast<PATypeHolder*>(this) = NewTy;
505}
506
507inline void PATypeHolder::addRef() {
508  if (Ty && Ty->isAbstract())
509    Ty->addRef();
510}
511
512inline void PATypeHolder::dropRef() {
513  if (Ty && Ty->isAbstract())
514    Ty->dropRef();
515}
516
517
518//===----------------------------------------------------------------------===//
519// Provide specializations of GraphTraits to be able to treat a type as a
520// graph of sub types...
521
522template <> struct GraphTraits<Type*> {
523  typedef Type NodeType;
524  typedef Type::subtype_iterator ChildIteratorType;
525
526  static inline NodeType *getEntryNode(Type *T) { return T; }
527  static inline ChildIteratorType child_begin(NodeType *N) {
528    return N->subtype_begin();
529  }
530  static inline ChildIteratorType child_end(NodeType *N) {
531    return N->subtype_end();
532  }
533};
534
535template <> struct GraphTraits<const Type*> {
536  typedef const Type NodeType;
537  typedef Type::subtype_iterator ChildIteratorType;
538
539  static inline NodeType *getEntryNode(const Type *T) { return T; }
540  static inline ChildIteratorType child_begin(NodeType *N) {
541    return N->subtype_begin();
542  }
543  static inline ChildIteratorType child_end(NodeType *N) {
544    return N->subtype_end();
545  }
546};
547
548template <> struct isa_impl<PointerType, Type> {
549  static inline bool doit(const Type &Ty) {
550    return Ty.getTypeID() == Type::PointerTyID;
551  }
552};
553
554raw_ostream &operator<<(raw_ostream &OS, const Type &T);
555
556} // End llvm namespace
557
558#endif
559