Type.h revision 6f2c64d70aad5328a843a6f6a6547ada69ead33b
1//===-- llvm/Type.h - Classes for handling data types -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10
11#ifndef LLVM_TYPE_H
12#define LLVM_TYPE_H
13
14#include "llvm/AbstractTypeUser.h"
15#include "llvm/Support/Casting.h"
16#include "llvm/Support/DataTypes.h"
17#include "llvm/System/Atomic.h"
18#include "llvm/ADT/GraphTraits.h"
19#include "llvm/ADT/iterator.h"
20#include <string>
21#include <vector>
22
23namespace llvm {
24
25class DerivedType;
26class PointerType;
27class IntegerType;
28class TypeMapBase;
29class raw_ostream;
30class Module;
31
32/// This file contains the declaration of the Type class.  For more "Type" type
33/// stuff, look in DerivedTypes.h.
34///
35/// The instances of the Type class are immutable: once they are created,
36/// they are never changed.  Also note that only one instance of a particular
37/// type is ever created.  Thus seeing if two types are equal is a matter of
38/// doing a trivial pointer comparison. To enforce that no two equal instances
39/// are created, Type instances can only be created via static factory methods
40/// in class Type and in derived classes.
41///
42/// Once allocated, Types are never free'd, unless they are an abstract type
43/// that is resolved to a more concrete type.
44///
45/// Types themself don't have a name, and can be named either by:
46/// - using SymbolTable instance, typically from some Module,
47/// - using convenience methods in the Module class (which uses module's
48///    SymbolTable too).
49///
50/// Opaque types are simple derived types with no state.  There may be many
51/// different Opaque type objects floating around, but two are only considered
52/// identical if they are pointer equals of each other.  This allows us to have
53/// two opaque types that end up resolving to different concrete types later.
54///
55/// Opaque types are also kinda weird and scary and different because they have
56/// to keep a list of uses of the type.  When, through linking, parsing, or
57/// bitcode reading, they become resolved, they need to find and update all
58/// users of the unknown type, causing them to reference a new, more concrete
59/// type.  Opaque types are deleted when their use list dwindles to zero users.
60///
61/// @brief Root of type hierarchy
62class Type : public AbstractTypeUser {
63public:
64  //===-------------------------------------------------------------------===//
65  /// Definitions of all of the base types for the Type system.  Based on this
66  /// value, you can cast to a "DerivedType" subclass (see DerivedTypes.h)
67  /// Note: If you add an element to this, you need to add an element to the
68  /// Type::getPrimitiveType function, or else things will break!
69  ///
70  enum TypeID {
71    // PrimitiveTypes .. make sure LastPrimitiveTyID stays up to date
72    VoidTyID = 0,    ///<  0: type with no size
73    FloatTyID,       ///<  1: 32 bit floating point type
74    DoubleTyID,      ///<  2: 64 bit floating point type
75    X86_FP80TyID,    ///<  3: 80 bit floating point type (X87)
76    FP128TyID,       ///<  4: 128 bit floating point type (112-bit mantissa)
77    PPC_FP128TyID,   ///<  5: 128 bit floating point type (two 64-bits)
78    LabelTyID,       ///<  6: Labels
79    MetadataTyID,    ///<  7: Metadata
80
81    // Derived types... see DerivedTypes.h file...
82    // Make sure FirstDerivedTyID stays up to date!!!
83    IntegerTyID,     ///<  8: Arbitrary bit width integers
84    FunctionTyID,    ///<  9: Functions
85    StructTyID,      ///< 10: Structures
86    ArrayTyID,       ///< 11: Arrays
87    PointerTyID,     ///< 12: Pointers
88    OpaqueTyID,      ///< 13: Opaque: type with unknown structure
89    VectorTyID,      ///< 14: SIMD 'packed' format, or other vector type
90
91    NumTypeIDs,                         // Must remain as last defined ID
92    LastPrimitiveTyID = LabelTyID,
93    FirstDerivedTyID = IntegerTyID
94  };
95
96private:
97  TypeID   ID : 8;    // The current base type of this type.
98  bool     Abstract : 1;  // True if type contains an OpaqueType
99  unsigned SubclassData : 23; //Space for subclasses to store data
100
101  /// RefCount - This counts the number of PATypeHolders that are pointing to
102  /// this type.  When this number falls to zero, if the type is abstract and
103  /// has no AbstractTypeUsers, the type is deleted.  This is only sensical for
104  /// derived types.
105  ///
106  mutable sys::cas_flag RefCount;
107
108  const Type *getForwardedTypeInternal() const;
109
110  // Some Type instances are allocated as arrays, some aren't. So we provide
111  // this method to get the right kind of destruction for the type of Type.
112  void destroy() const; // const is a lie, this does "delete this"!
113
114protected:
115  explicit Type(TypeID id) : ID(id), Abstract(false), SubclassData(0),
116                             RefCount(0), ForwardType(0), NumContainedTys(0),
117                             ContainedTys(0) {}
118  virtual ~Type() {
119    assert(AbstractTypeUsers.empty() && "Abstract types remain");
120  }
121
122  /// Types can become nonabstract later, if they are refined.
123  ///
124  inline void setAbstract(bool Val) { Abstract = Val; }
125
126  unsigned getRefCount() const { return RefCount; }
127
128  unsigned getSubclassData() const { return SubclassData; }
129  void setSubclassData(unsigned val) { SubclassData = val; }
130
131  /// ForwardType - This field is used to implement the union find scheme for
132  /// abstract types.  When types are refined to other types, this field is set
133  /// to the more refined type.  Only abstract types can be forwarded.
134  mutable const Type *ForwardType;
135
136
137  /// AbstractTypeUsers - Implement a list of the users that need to be notified
138  /// if I am a type, and I get resolved into a more concrete type.
139  ///
140  mutable std::vector<AbstractTypeUser *> AbstractTypeUsers;
141
142  /// NumContainedTys - Keeps track of how many PATypeHandle instances there
143  /// are at the end of this type instance for the list of contained types. It
144  /// is the subclasses responsibility to set this up. Set to 0 if there are no
145  /// contained types in this type.
146  unsigned NumContainedTys;
147
148  /// ContainedTys - A pointer to the array of Types (PATypeHandle) contained
149  /// by this Type.  For example, this includes the arguments of a function
150  /// type, the elements of a structure, the pointee of a pointer, the element
151  /// type of an array, etc.  This pointer may be 0 for types that don't
152  /// contain other types (Integer, Double, Float).  In general, the subclass
153  /// should arrange for space for the PATypeHandles to be included in the
154  /// allocation of the type object and set this pointer to the address of the
155  /// first element. This allows the Type class to manipulate the ContainedTys
156  /// without understanding the subclass's placement for this array.  keeping
157  /// it here also allows the subtype_* members to be implemented MUCH more
158  /// efficiently, and dynamically very few types do not contain any elements.
159  PATypeHandle *ContainedTys;
160
161public:
162  void print(raw_ostream &O) const;
163  void print(std::ostream &O) const;
164
165  /// @brief Debugging support: print to stderr
166  void dump() const;
167
168  /// @brief Debugging support: print to stderr (use type names from context
169  /// module).
170  void dump(const Module *Context) const;
171
172  //===--------------------------------------------------------------------===//
173  // Property accessors for dealing with types... Some of these virtual methods
174  // are defined in private classes defined in Type.cpp for primitive types.
175  //
176
177  /// getTypeID - Return the type id for the type.  This will return one
178  /// of the TypeID enum elements defined above.
179  ///
180  inline TypeID getTypeID() const { return ID; }
181
182  /// getDescription - Return the string representation of the type.
183  std::string getDescription() const;
184
185  /// isInteger - True if this is an instance of IntegerType.
186  ///
187  bool isInteger() const { return ID == IntegerTyID; }
188
189  /// isIntOrIntVector - Return true if this is an integer type or a vector of
190  /// integer types.
191  ///
192  bool isIntOrIntVector() const;
193
194  /// isFloatingPoint - Return true if this is one of the two floating point
195  /// types
196  bool isFloatingPoint() const { return ID == FloatTyID || ID == DoubleTyID ||
197      ID == X86_FP80TyID || ID == FP128TyID || ID == PPC_FP128TyID; }
198
199  /// isFPOrFPVector - Return true if this is a FP type or a vector of FP types.
200  ///
201  bool isFPOrFPVector() const;
202
203  /// isAbstract - True if the type is either an Opaque type, or is a derived
204  /// type that includes an opaque type somewhere in it.
205  ///
206  inline bool isAbstract() const { return Abstract; }
207
208  /// canLosslesslyBitCastTo - Return true if this type could be converted
209  /// with a lossless BitCast to type 'Ty'. For example, i8* to i32*. BitCasts
210  /// are valid for types of the same size only where no re-interpretation of
211  /// the bits is done.
212  /// @brief Determine if this type could be losslessly bitcast to Ty
213  bool canLosslesslyBitCastTo(const Type *Ty) const;
214
215
216  /// Here are some useful little methods to query what type derived types are
217  /// Note that all other types can just compare to see if this == Type::xxxTy;
218  ///
219  inline bool isPrimitiveType() const { return ID <= LastPrimitiveTyID; }
220  inline bool isDerivedType()   const { return ID >= FirstDerivedTyID; }
221
222  /// isFirstClassType - Return true if the type is "first class", meaning it
223  /// is a valid type for a Value.
224  ///
225  inline bool isFirstClassType() const {
226    // There are more first-class kinds than non-first-class kinds, so a
227    // negative test is simpler than a positive one.
228    return ID != FunctionTyID && ID != VoidTyID && ID != OpaqueTyID;
229  }
230
231  /// isSingleValueType - Return true if the type is a valid type for a
232  /// virtual register in codegen.  This includes all first-class types
233  /// except struct and array types.
234  ///
235  inline bool isSingleValueType() const {
236    return (ID != VoidTyID && ID <= LastPrimitiveTyID) ||
237            ID == IntegerTyID || ID == PointerTyID || ID == VectorTyID;
238  }
239
240  /// isAggregateType - Return true if the type is an aggregate type. This
241  /// means it is valid as the first operand of an insertvalue or
242  /// extractvalue instruction. This includes struct and array types, but
243  /// does not include vector types.
244  ///
245  inline bool isAggregateType() const {
246    return ID == StructTyID || ID == ArrayTyID;
247  }
248
249  /// isSized - Return true if it makes sense to take the size of this type.  To
250  /// get the actual size for a particular target, it is reasonable to use the
251  /// TargetData subsystem to do this.
252  ///
253  bool isSized() const {
254    // If it's a primitive, it is always sized.
255    if (ID == IntegerTyID || isFloatingPoint() || ID == PointerTyID)
256      return true;
257    // If it is not something that can have a size (e.g. a function or label),
258    // it doesn't have a size.
259    if (ID != StructTyID && ID != ArrayTyID && ID != VectorTyID)
260      return false;
261    // If it is something that can have a size and it's concrete, it definitely
262    // has a size, otherwise we have to try harder to decide.
263    return !isAbstract() || isSizedDerivedType();
264  }
265
266  /// getPrimitiveSizeInBits - Return the basic size of this type if it is a
267  /// primitive type.  These are fixed by LLVM and are not target dependent.
268  /// This will return zero if the type does not have a size or is not a
269  /// primitive type.
270  ///
271  unsigned getPrimitiveSizeInBits() const;
272
273  /// getScalarSizeInBits - If this is a vector type, return the
274  /// getPrimitiveSizeInBits value for the element type. Otherwise return the
275  /// getPrimitiveSizeInBits value for this type.
276  unsigned getScalarSizeInBits() const;
277
278  /// getFPMantissaWidth - Return the width of the mantissa of this type.  This
279  /// is only valid on floating point types.  If the FP type does not
280  /// have a stable mantissa (e.g. ppc long double), this method returns -1.
281  int getFPMantissaWidth() const;
282
283  /// getForwardedType - Return the type that this type has been resolved to if
284  /// it has been resolved to anything.  This is used to implement the
285  /// union-find algorithm for type resolution, and shouldn't be used by general
286  /// purpose clients.
287  const Type *getForwardedType() const {
288    if (!ForwardType) return 0;
289    return getForwardedTypeInternal();
290  }
291
292  /// getVAArgsPromotedType - Return the type an argument of this type
293  /// will be promoted to if passed through a variable argument
294  /// function.
295  const Type *getVAArgsPromotedType() const;
296
297  /// getScalarType - If this is a vector type, return the element type,
298  /// otherwise return this.
299  const Type *getScalarType() const;
300
301  //===--------------------------------------------------------------------===//
302  // Type Iteration support
303  //
304  typedef PATypeHandle *subtype_iterator;
305  subtype_iterator subtype_begin() const { return ContainedTys; }
306  subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];}
307
308  /// getContainedType - This method is used to implement the type iterator
309  /// (defined a the end of the file).  For derived types, this returns the
310  /// types 'contained' in the derived type.
311  ///
312  const Type *getContainedType(unsigned i) const {
313    assert(i < NumContainedTys && "Index out of range!");
314    return ContainedTys[i].get();
315  }
316
317  /// getNumContainedTypes - Return the number of types in the derived type.
318  ///
319  unsigned getNumContainedTypes() const { return NumContainedTys; }
320
321  //===--------------------------------------------------------------------===//
322  // Static members exported by the Type class itself.  Useful for getting
323  // instances of Type.
324  //
325
326  /// getPrimitiveType - Return a type based on an identifier.
327  static const Type *getPrimitiveType(TypeID IDNumber);
328
329  //===--------------------------------------------------------------------===//
330  // These are the builtin types that are always available...
331  //
332  static const Type *VoidTy, *LabelTy, *FloatTy, *DoubleTy, *MetadataTy;
333  static const Type *X86_FP80Ty, *FP128Ty, *PPC_FP128Ty;
334  static const IntegerType *Int1Ty, *Int8Ty, *Int16Ty, *Int32Ty, *Int64Ty;
335
336  /// Methods for support type inquiry through isa, cast, and dyn_cast:
337  static inline bool classof(const Type *) { return true; }
338
339  void addRef() const {
340    assert(isAbstract() && "Cannot add a reference to a non-abstract type!");
341    sys::AtomicIncrement(&RefCount);
342  }
343
344  void dropRef() const {
345    assert(isAbstract() && "Cannot drop a reference to a non-abstract type!");
346    assert(RefCount && "No objects are currently referencing this object!");
347
348    // If this is the last PATypeHolder using this object, and there are no
349    // PATypeHandles using it, the type is dead, delete it now.
350    sys::cas_flag OldCount = sys::AtomicDecrement(&RefCount);
351    if (OldCount == 0 && AbstractTypeUsers.empty())
352      this->destroy();
353  }
354
355  /// addAbstractTypeUser - Notify an abstract type that there is a new user of
356  /// it.  This function is called primarily by the PATypeHandle class.
357  ///
358  void addAbstractTypeUser(AbstractTypeUser *U) const;
359
360  /// removeAbstractTypeUser - Notify an abstract type that a user of the class
361  /// no longer has a handle to the type.  This function is called primarily by
362  /// the PATypeHandle class.  When there are no users of the abstract type, it
363  /// is annihilated, because there is no way to get a reference to it ever
364  /// again.
365  ///
366  void removeAbstractTypeUser(AbstractTypeUser *U) const;
367
368  /// getPointerTo - Return a pointer to the current type.  This is equivalent
369  /// to PointerType::get(Foo, AddrSpace).
370  PointerType *getPointerTo(unsigned AddrSpace = 0) const;
371
372private:
373  /// isSizedDerivedType - Derived types like structures and arrays are sized
374  /// iff all of the members of the type are sized as well.  Since asking for
375  /// their size is relatively uncommon, move this operation out of line.
376  bool isSizedDerivedType() const;
377
378  virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
379  virtual void typeBecameConcrete(const DerivedType *AbsTy);
380
381protected:
382  // PromoteAbstractToConcrete - This is an internal method used to calculate
383  // change "Abstract" from true to false when types are refined.
384  void PromoteAbstractToConcrete();
385  friend class TypeMapBase;
386};
387
388//===----------------------------------------------------------------------===//
389// Define some inline methods for the AbstractTypeUser.h:PATypeHandle class.
390// These are defined here because they MUST be inlined, yet are dependent on
391// the definition of the Type class.
392//
393inline void PATypeHandle::addUser() {
394  assert(Ty && "Type Handle has a null type!");
395  if (Ty->isAbstract())
396    Ty->addAbstractTypeUser(User);
397}
398inline void PATypeHandle::removeUser() {
399  if (Ty->isAbstract())
400    Ty->removeAbstractTypeUser(User);
401}
402
403// Define inline methods for PATypeHolder.
404
405/// get - This implements the forwarding part of the union-find algorithm for
406/// abstract types.  Before every access to the Type*, we check to see if the
407/// type we are pointing to is forwarding to a new type.  If so, we drop our
408/// reference to the type.
409///
410inline Type* PATypeHolder::get() const {
411  const Type *NewTy = Ty->getForwardedType();
412  if (!NewTy) return const_cast<Type*>(Ty);
413  return *const_cast<PATypeHolder*>(this) = NewTy;
414}
415
416inline void PATypeHolder::addRef() {
417  assert(Ty && "Type Holder has a null type!");
418  if (Ty->isAbstract())
419    Ty->addRef();
420}
421
422inline void PATypeHolder::dropRef() {
423  if (Ty->isAbstract())
424    Ty->dropRef();
425}
426
427
428//===----------------------------------------------------------------------===//
429// Provide specializations of GraphTraits to be able to treat a type as a
430// graph of sub types...
431
432template <> struct GraphTraits<Type*> {
433  typedef Type NodeType;
434  typedef Type::subtype_iterator ChildIteratorType;
435
436  static inline NodeType *getEntryNode(Type *T) { return T; }
437  static inline ChildIteratorType child_begin(NodeType *N) {
438    return N->subtype_begin();
439  }
440  static inline ChildIteratorType child_end(NodeType *N) {
441    return N->subtype_end();
442  }
443};
444
445template <> struct GraphTraits<const Type*> {
446  typedef const Type NodeType;
447  typedef Type::subtype_iterator ChildIteratorType;
448
449  static inline NodeType *getEntryNode(const Type *T) { return T; }
450  static inline ChildIteratorType child_begin(NodeType *N) {
451    return N->subtype_begin();
452  }
453  static inline ChildIteratorType child_end(NodeType *N) {
454    return N->subtype_end();
455  }
456};
457
458template <> inline bool isa_impl<PointerType, Type>(const Type &Ty) {
459  return Ty.getTypeID() == Type::PointerTyID;
460}
461
462std::ostream &operator<<(std::ostream &OS, const Type &T);
463raw_ostream &operator<<(raw_ostream &OS, const Type &T);
464
465} // End llvm namespace
466
467#endif
468