Type.h revision ec55b08fd0dbe3191507ad81b93ab446254ee611
1//===-- llvm/Type.h - Classes for handling data types -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the declaration of the Type class.  For more "Type" type
11// stuff, look in DerivedTypes.h.
12//
13// Note that instances of the Type class are immutable: once they are created,
14// they are never changed.  Also note that only one instance of a particular
15// type is ever created.  Thus seeing if two types are equal is a matter of
16// doing a trivial pointer comparison.
17//
18// Types, once allocated, are never free'd.
19//
20// Opaque types are simple derived types with no state.  There may be many
21// different Opaque type objects floating around, but two are only considered
22// identical if they are pointer equals of each other.  This allows us to have
23// two opaque types that end up resolving to different concrete types later.
24//
25// Opaque types are also kinda wierd and scary and different because they have
26// to keep a list of uses of the type.  When, through linking, parsing, or
27// bytecode reading, they become resolved, they need to find and update all
28// users of the unknown type, causing them to reference a new, more concrete
29// type.  Opaque types are deleted when their use list dwindles to zero users.
30//
31//===----------------------------------------------------------------------===//
32
33#ifndef LLVM_TYPE_H
34#define LLVM_TYPE_H
35
36#include "llvm/Value.h"
37#include "Support/GraphTraits.h"
38#include "Support/iterator"
39#include <vector>
40
41namespace llvm {
42
43class DerivedType;
44class FunctionType;
45class ArrayType;
46class PointerType;
47class StructType;
48class OpaqueType;
49
50struct Type : public Value {
51  ///===-------------------------------------------------------------------===//
52  /// Definitions of all of the base types for the Type system.  Based on this
53  /// value, you can cast to a "DerivedType" subclass (see DerivedTypes.h)
54  /// Note: If you add an element to this, you need to add an element to the
55  /// Type::getPrimitiveType function, or else things will break!
56  ///
57  enum PrimitiveID {
58    VoidTyID = 0  , BoolTyID,           //  0, 1: Basics...
59    UByteTyID     , SByteTyID,          //  2, 3: 8 bit types...
60    UShortTyID    , ShortTyID,          //  4, 5: 16 bit types...
61    UIntTyID      , IntTyID,            //  6, 7: 32 bit types...
62    ULongTyID     , LongTyID,           //  8, 9: 64 bit types...
63
64    FloatTyID     , DoubleTyID,         // 10,11: Floating point types...
65
66    TypeTyID,                           // 12   : Type definitions
67    LabelTyID     ,                     // 13   : Labels...
68
69    // Derived types... see DerivedTypes.h file...
70    // Make sure FirstDerivedTyID stays up to date!!!
71    FunctionTyID  , StructTyID,         // Functions... Structs...
72    ArrayTyID     , PointerTyID,        // Array... pointer...
73    OpaqueTyID,                         // Opaque type instances...
74    //PackedTyID  ,                     // SIMD 'packed' format... TODO
75    //...
76
77    NumPrimitiveIDs,                    // Must remain as last defined ID
78    FirstDerivedTyID = FunctionTyID,
79  };
80
81private:
82  PrimitiveID ID;        // The current base type of this type...
83  unsigned    UID;       // The unique ID number for this class
84  bool        Abstract;  // True if type contains an OpaqueType
85
86  /// RefCount - This counts the number of PATypeHolders that are pointing to
87  /// this type.  When this number falls to zero, if the type is abstract and
88  /// has no AbstractTypeUsers, the type is deleted.  This is only sensical for
89  /// derived types.
90  ///
91  mutable unsigned RefCount;
92
93  const Type *getForwardedTypeInternal() const;
94protected:
95  /// ctor is protected, so only subclasses can create Type objects...
96  Type(const std::string &Name, PrimitiveID id);
97  virtual ~Type() {}
98
99  /// setName - Associate the name with this type in the symbol table, but don't
100  /// set the local name to be equal specified name.
101  ///
102  virtual void setName(const std::string &Name, SymbolTable *ST = 0);
103
104  /// Types can become nonabstract later, if they are refined.
105  ///
106  inline void setAbstract(bool Val) { Abstract = Val; }
107
108  /// isTypeAbstract - This method is used to calculate the Abstract bit.
109  ///
110  bool isTypeAbstract();
111
112  unsigned getRefCount() const { return RefCount; }
113
114  /// ForwardType - This field is used to implement the union find scheme for
115  /// abstract types.  When types are refined to other types, this field is set
116  /// to the more refined type.  Only abstract types can be forwarded.
117  mutable const Type *ForwardType;
118
119  /// ContainedTys - The list of types contained by this one.  For example, this
120  /// includes the arguments of a function type, the elements of the structure,
121  /// the pointee of a pointer, etc.  Note that keeping this vector in the Type
122  /// class wastes some space for types that do not contain anything (such as
123  /// primitive types).  However, keeping it here allows the subtype_* members
124  /// to be implemented MUCH more efficiently, and dynamically very few types do
125  /// not contain any elements (most are derived).
126  std::vector<PATypeHandle> ContainedTys;
127
128public:
129  virtual void print(std::ostream &O) const;
130
131  /// @brief Debugging support: print to stderr
132  virtual void dump() const;
133
134  //===--------------------------------------------------------------------===//
135  // Property accessors for dealing with types... Some of these virtual methods
136  // are defined in private classes defined in Type.cpp for primitive types.
137  //
138
139  /// getPrimitiveID - Return the base type of the type.  This will return one
140  /// of the PrimitiveID enum elements defined above.
141  ///
142  inline PrimitiveID getPrimitiveID() const { return ID; }
143
144  /// getUniqueID - Returns the UID of the type.  This can be thought of as a
145  /// small integer version of the pointer to the type class.  Two types that
146  /// are structurally different have different UIDs.  This can be used for
147  /// indexing types into an array.
148  ///
149  inline unsigned getUniqueID() const { return UID; }
150
151  /// getDescription - Return the string representation of the type...
152  const std::string &getDescription() const;
153
154  /// isSigned - Return whether an integral numeric type is signed.  This is
155  /// true for SByteTy, ShortTy, IntTy, LongTy.  Note that this is not true for
156  /// Float and Double.
157  ///
158  virtual bool isSigned() const { return 0; }
159
160  /// isUnsigned - Return whether a numeric type is unsigned.  This is not quite
161  /// the complement of isSigned... nonnumeric types return false as they do
162  /// with isSigned.  This returns true for UByteTy, UShortTy, UIntTy, and
163  /// ULongTy
164  ///
165  virtual bool isUnsigned() const { return 0; }
166
167  /// isInteger - Equilivent to isSigned() || isUnsigned(), but with only a
168  /// single virtual function invocation.
169  ///
170  virtual bool isInteger() const { return 0; }
171
172  /// isIntegral - Returns true if this is an integral type, which is either
173  /// BoolTy or one of the Integer types.
174  ///
175  bool isIntegral() const { return isInteger() || this == BoolTy; }
176
177  /// isFloatingPoint - Return true if this is one of the two floating point
178  /// types
179  bool isFloatingPoint() const { return ID == FloatTyID || ID == DoubleTyID; }
180
181  /// isAbstract - True if the type is either an Opaque type, or is a derived
182  /// type that includes an opaque type somewhere in it.
183  ///
184  inline bool isAbstract() const { return Abstract; }
185
186  /// isLosslesslyConvertibleTo - Return true if this type can be converted to
187  /// 'Ty' without any reinterpretation of bits.  For example, uint to int.
188  ///
189  bool isLosslesslyConvertibleTo(const Type *Ty) const;
190
191
192  /// Here are some useful little methods to query what type derived types are
193  /// Note that all other types can just compare to see if this == Type::xxxTy;
194  ///
195  inline bool isPrimitiveType() const { return ID < FirstDerivedTyID;  }
196  inline bool isDerivedType()   const { return ID >= FirstDerivedTyID; }
197
198  /// isFirstClassType - Return true if the value is holdable in a register.
199  inline bool isFirstClassType() const {
200    return (ID != VoidTyID && ID < TypeTyID) || ID == PointerTyID;
201  }
202
203  /// isSized - Return true if it makes sense to take the size of this type.  To
204  /// get the actual size for a particular target, it is reasonable to use the
205  /// TargetData subsystem to do this.
206  ///
207  bool isSized() const {
208    return ID != VoidTyID && ID != TypeTyID &&
209           ID != FunctionTyID && ID != LabelTyID && ID != OpaqueTyID;
210  }
211
212  /// getPrimitiveSize - Return the basic size of this type if it is a primative
213  /// type.  These are fixed by LLVM and are not target dependent.  This will
214  /// return zero if the type does not have a size or is not a primitive type.
215  ///
216  unsigned getPrimitiveSize() const;
217
218  /// getUnsignedVersion - If this is an integer type, return the unsigned
219  /// variant of this type.  For example int -> uint.
220  const Type *getUnsignedVersion() const;
221
222  /// getSignedVersion - If this is an integer type, return the signed variant
223  /// of this type.  For example uint -> int.
224  const Type *getSignedVersion() const;
225
226  /// getForwaredType - Return the type that this type has been resolved to if
227  /// it has been resolved to anything.  This is used to implement the
228  /// union-find algorithm for type resolution, and shouldn't be used by general
229  /// purpose clients.
230  const Type *getForwardedType() const {
231    if (!ForwardType) return 0;
232    return getForwardedTypeInternal();
233  }
234
235  //===--------------------------------------------------------------------===//
236  // Type Iteration support
237  //
238  typedef std::vector<PATypeHandle>::const_iterator subtype_iterator;
239  subtype_iterator subtype_begin() const { return ContainedTys.begin(); }
240  subtype_iterator subtype_end() const { return ContainedTys.end(); }
241
242  /// getContainedType - This method is used to implement the type iterator
243  /// (defined a the end of the file).  For derived types, this returns the
244  /// types 'contained' in the derived type.
245  ///
246  const Type *getContainedType(unsigned i) const {
247    assert(i < ContainedTys.size() && "Index out of range!");
248    return ContainedTys[i];
249  }
250
251  /// getNumContainedTypes - Return the number of types in the derived type.
252  ///
253  unsigned getNumContainedTypes() const { return ContainedTys.size(); }
254
255  //===--------------------------------------------------------------------===//
256  // Static members exported by the Type class itself.  Useful for getting
257  // instances of Type.
258  //
259
260  /// getPrimitiveType/getUniqueIDType - Return a type based on an identifier.
261  static const Type *getPrimitiveType(PrimitiveID IDNumber);
262  static const Type *getUniqueIDType(unsigned UID);
263
264  //===--------------------------------------------------------------------===//
265  // These are the builtin types that are always available...
266  //
267  static Type *VoidTy , *BoolTy;
268  static Type *SByteTy, *UByteTy,
269              *ShortTy, *UShortTy,
270              *IntTy  , *UIntTy,
271              *LongTy , *ULongTy;
272  static Type *FloatTy, *DoubleTy;
273
274  static Type *TypeTy , *LabelTy;
275
276  /// Methods for support type inquiry through isa, cast, and dyn_cast:
277  static inline bool classof(const Type *T) { return true; }
278  static inline bool classof(const Value *V) {
279    return V->getValueType() == Value::TypeVal;
280  }
281
282#include "llvm/Type.def"
283
284  // Virtual methods used by callbacks below.  These should only be implemented
285  // in the DerivedType class.
286  virtual void addAbstractTypeUser(AbstractTypeUser *U) const {
287    abort(); // Only on derived types!
288  }
289  virtual void removeAbstractTypeUser(AbstractTypeUser *U) const {
290    abort(); // Only on derived types!
291  }
292
293  void addRef() const {
294    assert(isAbstract() && "Cannot add a reference to a non-abstract type!");
295    ++RefCount;
296  }
297
298  void dropRef() const {
299    assert(isAbstract() && "Cannot drop a refernce to a non-abstract type!");
300    assert(RefCount && "No objects are currently referencing this object!");
301
302    // If this is the last PATypeHolder using this object, and there are no
303    // PATypeHandles using it, the type is dead, delete it now.
304    if (--RefCount == 0)
305      RefCountIsZero();
306  }
307private:
308  virtual void RefCountIsZero() const {
309    abort(); // only on derived types!
310  }
311
312};
313
314//===----------------------------------------------------------------------===//
315// Define some inline methods for the AbstractTypeUser.h:PATypeHandle class.
316// These are defined here because they MUST be inlined, yet are dependent on
317// the definition of the Type class.  Of course Type derives from Value, which
318// contains an AbstractTypeUser instance, so there is no good way to factor out
319// the code.  Hence this bit of uglyness.
320//
321// In the long term, Type should not derive from Value, allowing
322// AbstractTypeUser.h to #include Type.h, allowing us to eliminate this
323// nastyness entirely.
324//
325inline void PATypeHandle::addUser() {
326  assert(Ty && "Type Handle has a null type!");
327  if (Ty->isAbstract())
328    Ty->addAbstractTypeUser(User);
329}
330inline void PATypeHandle::removeUser() {
331  if (Ty->isAbstract())
332    Ty->removeAbstractTypeUser(User);
333}
334
335inline void PATypeHandle::removeUserFromConcrete() {
336  if (!Ty->isAbstract())
337    Ty->removeAbstractTypeUser(User);
338}
339
340// Define inline methods for PATypeHolder...
341
342inline void PATypeHolder::addRef() {
343  if (Ty->isAbstract())
344    Ty->addRef();
345}
346
347inline void PATypeHolder::dropRef() {
348  if (Ty->isAbstract())
349    Ty->dropRef();
350}
351
352/// get - This implements the forwarding part of the union-find algorithm for
353/// abstract types.  Before every access to the Type*, we check to see if the
354/// type we are pointing to is forwarding to a new type.  If so, we drop our
355/// reference to the type.
356///
357inline const Type* PATypeHolder::get() const {
358  const Type *NewTy = Ty->getForwardedType();
359  if (!NewTy) return Ty;
360  return *const_cast<PATypeHolder*>(this) = NewTy;
361}
362
363
364
365//===----------------------------------------------------------------------===//
366// Provide specializations of GraphTraits to be able to treat a type as a
367// graph of sub types...
368
369template <> struct GraphTraits<Type*> {
370  typedef Type NodeType;
371  typedef Type::subtype_iterator ChildIteratorType;
372
373  static inline NodeType *getEntryNode(Type *T) { return T; }
374  static inline ChildIteratorType child_begin(NodeType *N) {
375    return N->subtype_begin();
376  }
377  static inline ChildIteratorType child_end(NodeType *N) {
378    return N->subtype_end();
379  }
380};
381
382template <> struct GraphTraits<const Type*> {
383  typedef const Type NodeType;
384  typedef Type::subtype_iterator ChildIteratorType;
385
386  static inline NodeType *getEntryNode(const Type *T) { return T; }
387  static inline ChildIteratorType child_begin(NodeType *N) {
388    return N->subtype_begin();
389  }
390  static inline ChildIteratorType child_end(NodeType *N) {
391    return N->subtype_end();
392  }
393};
394
395template <> inline bool isa_impl<PointerType, Type>(const Type &Ty) {
396  return Ty.getPrimitiveID() == Type::PointerTyID;
397}
398
399} // End llvm namespace
400
401#endif
402