Type.h revision f70c22b019494723d0e706f93d6542dfaa6e73a5
1//===-- llvm/Type.h - Classes for handling data types -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the declaration of the Type class.  For more "Type" type
11// stuff, look in DerivedTypes.h.
12//
13// Note that instances of the Type class are immutable: once they are created,
14// they are never changed.  Also note that only one instance of a particular
15// type is ever created.  Thus seeing if two types are equal is a matter of
16// doing a trivial pointer comparison.
17//
18// Types, once allocated, are never free'd.
19//
20// Opaque types are simple derived types with no state.  There may be many
21// different Opaque type objects floating around, but two are only considered
22// identical if they are pointer equals of each other.  This allows us to have
23// two opaque types that end up resolving to different concrete types later.
24//
25// Opaque types are also kinda wierd and scary and different because they have
26// to keep a list of uses of the type.  When, through linking, parsing, or
27// bytecode reading, they become resolved, they need to find and update all
28// users of the unknown type, causing them to reference a new, more concrete
29// type.  Opaque types are deleted when their use list dwindles to zero users.
30//
31//===----------------------------------------------------------------------===//
32
33#ifndef LLVM_TYPE_H
34#define LLVM_TYPE_H
35
36#include "llvm/Value.h"
37#include "Support/GraphTraits.h"
38#include "Support/iterator"
39#include <vector>
40
41namespace llvm {
42
43class DerivedType;
44class FunctionType;
45class ArrayType;
46class PointerType;
47class StructType;
48class OpaqueType;
49
50struct Type : public Value {
51  ///===-------------------------------------------------------------------===//
52  /// Definitions of all of the base types for the Type system.  Based on this
53  /// value, you can cast to a "DerivedType" subclass (see DerivedTypes.h)
54  /// Note: If you add an element to this, you need to add an element to the
55  /// Type::getPrimitiveType function, or else things will break!
56  ///
57  enum TypeID {
58    VoidTyID = 0  , BoolTyID,           //  0, 1: Basics...
59    UByteTyID     , SByteTyID,          //  2, 3: 8 bit types...
60    UShortTyID    , ShortTyID,          //  4, 5: 16 bit types...
61    UIntTyID      , IntTyID,            //  6, 7: 32 bit types...
62    ULongTyID     , LongTyID,           //  8, 9: 64 bit types...
63
64    FloatTyID     , DoubleTyID,         // 10,11: Floating point types...
65
66    TypeTyID,                           // 12   : Type definitions
67    LabelTyID     ,                     // 13   : Labels...
68
69    // Derived types... see DerivedTypes.h file...
70    // Make sure FirstDerivedTyID stays up to date!!!
71    FunctionTyID  , StructTyID,         // Functions... Structs...
72    ArrayTyID     , PointerTyID,        // Array... pointer...
73    OpaqueTyID,                         // Opaque type instances...
74    //PackedTyID  ,                     // SIMD 'packed' format... TODO
75    //...
76
77    NumTypeIDs,                         // Must remain as last defined ID
78    FirstDerivedTyID = FunctionTyID,
79  };
80
81private:
82  TypeID   ID;        // The current base type of this type...
83  unsigned UID;       // The unique ID number for this class
84  bool     Abstract;  // True if type contains an OpaqueType
85
86  /// RefCount - This counts the number of PATypeHolders that are pointing to
87  /// this type.  When this number falls to zero, if the type is abstract and
88  /// has no AbstractTypeUsers, the type is deleted.  This is only sensical for
89  /// derived types.
90  ///
91  mutable unsigned RefCount;
92
93  const Type *getForwardedTypeInternal() const;
94protected:
95  /// ctor is protected, so only subclasses can create Type objects...
96  Type(const std::string &Name, TypeID id);
97  virtual ~Type() {}
98
99
100  /// Types can become nonabstract later, if they are refined.
101  ///
102  inline void setAbstract(bool Val) { Abstract = Val; }
103
104  /// isTypeAbstract - This method is used to calculate the Abstract bit.
105  ///
106  bool isTypeAbstract();
107
108  unsigned getRefCount() const { return RefCount; }
109
110  /// ForwardType - This field is used to implement the union find scheme for
111  /// abstract types.  When types are refined to other types, this field is set
112  /// to the more refined type.  Only abstract types can be forwarded.
113  mutable const Type *ForwardType;
114
115  /// ContainedTys - The list of types contained by this one.  For example, this
116  /// includes the arguments of a function type, the elements of the structure,
117  /// the pointee of a pointer, etc.  Note that keeping this vector in the Type
118  /// class wastes some space for types that do not contain anything (such as
119  /// primitive types).  However, keeping it here allows the subtype_* members
120  /// to be implemented MUCH more efficiently, and dynamically very few types do
121  /// not contain any elements (most are derived).
122  std::vector<PATypeHandle> ContainedTys;
123
124public:
125  virtual void print(std::ostream &O) const;
126
127  /// @brief Debugging support: print to stderr
128  virtual void dump() const;
129
130  /// setName - Associate the name with this type in the symbol table, but don't
131  /// set the local name to be equal specified name.
132  ///
133  virtual void setName(const std::string &Name, SymbolTable *ST = 0);
134
135  //===--------------------------------------------------------------------===//
136  // Property accessors for dealing with types... Some of these virtual methods
137  // are defined in private classes defined in Type.cpp for primitive types.
138  //
139
140  /// getTypeID - Return the type id for the type.  This will return one
141  /// of the TypeID enum elements defined above.
142  ///
143  inline TypeID getTypeID() const { return ID; }
144
145  /// getUniqueID - Returns the UID of the type.  This can be thought of as a
146  /// small integer version of the pointer to the type class.  Two types that
147  /// are structurally different have different UIDs.  This can be used for
148  /// indexing types into an array.
149  ///
150  inline unsigned getUniqueID() const { return UID; }
151
152  /// getDescription - Return the string representation of the type...
153  const std::string &getDescription() const;
154
155  /// isSigned - Return whether an integral numeric type is signed.  This is
156  /// true for SByteTy, ShortTy, IntTy, LongTy.  Note that this is not true for
157  /// Float and Double.
158  ///
159  virtual bool isSigned() const { return 0; }
160
161  /// isUnsigned - Return whether a numeric type is unsigned.  This is not quite
162  /// the complement of isSigned... nonnumeric types return false as they do
163  /// with isSigned.  This returns true for UByteTy, UShortTy, UIntTy, and
164  /// ULongTy
165  ///
166  virtual bool isUnsigned() const { return 0; }
167
168  /// isInteger - Equilivent to isSigned() || isUnsigned(), but with only a
169  /// single virtual function invocation.
170  ///
171  virtual bool isInteger() const { return 0; }
172
173  /// isIntegral - Returns true if this is an integral type, which is either
174  /// BoolTy or one of the Integer types.
175  ///
176  bool isIntegral() const { return isInteger() || this == BoolTy; }
177
178  /// isFloatingPoint - Return true if this is one of the two floating point
179  /// types
180  bool isFloatingPoint() const { return ID == FloatTyID || ID == DoubleTyID; }
181
182  /// isAbstract - True if the type is either an Opaque type, or is a derived
183  /// type that includes an opaque type somewhere in it.
184  ///
185  inline bool isAbstract() const { return Abstract; }
186
187  /// isLosslesslyConvertibleTo - Return true if this type can be converted to
188  /// 'Ty' without any reinterpretation of bits.  For example, uint to int.
189  ///
190  bool isLosslesslyConvertibleTo(const Type *Ty) const;
191
192
193  /// Here are some useful little methods to query what type derived types are
194  /// Note that all other types can just compare to see if this == Type::xxxTy;
195  ///
196  inline bool isPrimitiveType() const { return ID < FirstDerivedTyID;  }
197  inline bool isDerivedType()   const { return ID >= FirstDerivedTyID; }
198
199  /// isFirstClassType - Return true if the value is holdable in a register.
200  inline bool isFirstClassType() const {
201    return (ID != VoidTyID && ID < TypeTyID) || ID == PointerTyID;
202  }
203
204  /// isSized - Return true if it makes sense to take the size of this type.  To
205  /// get the actual size for a particular target, it is reasonable to use the
206  /// TargetData subsystem to do this.
207  ///
208  bool isSized() const {
209    return ID != VoidTyID && ID != TypeTyID &&
210           ID != FunctionTyID && ID != LabelTyID && ID != OpaqueTyID;
211  }
212
213  /// getPrimitiveSize - Return the basic size of this type if it is a primative
214  /// type.  These are fixed by LLVM and are not target dependent.  This will
215  /// return zero if the type does not have a size or is not a primitive type.
216  ///
217  unsigned getPrimitiveSize() const;
218
219  /// getUnsignedVersion - If this is an integer type, return the unsigned
220  /// variant of this type.  For example int -> uint.
221  const Type *getUnsignedVersion() const;
222
223  /// getSignedVersion - If this is an integer type, return the signed variant
224  /// of this type.  For example uint -> int.
225  const Type *getSignedVersion() const;
226
227  /// getForwaredType - Return the type that this type has been resolved to if
228  /// it has been resolved to anything.  This is used to implement the
229  /// union-find algorithm for type resolution, and shouldn't be used by general
230  /// purpose clients.
231  const Type *getForwardedType() const {
232    if (!ForwardType) return 0;
233    return getForwardedTypeInternal();
234  }
235
236  //===--------------------------------------------------------------------===//
237  // Type Iteration support
238  //
239  typedef std::vector<PATypeHandle>::const_iterator subtype_iterator;
240  subtype_iterator subtype_begin() const { return ContainedTys.begin(); }
241  subtype_iterator subtype_end() const { return ContainedTys.end(); }
242
243  /// getContainedType - This method is used to implement the type iterator
244  /// (defined a the end of the file).  For derived types, this returns the
245  /// types 'contained' in the derived type.
246  ///
247  const Type *getContainedType(unsigned i) const {
248    assert(i < ContainedTys.size() && "Index out of range!");
249    return ContainedTys[i];
250  }
251
252  /// getNumContainedTypes - Return the number of types in the derived type.
253  ///
254  unsigned getNumContainedTypes() const { return ContainedTys.size(); }
255
256  //===--------------------------------------------------------------------===//
257  // Static members exported by the Type class itself.  Useful for getting
258  // instances of Type.
259  //
260
261  /// getPrimitiveType/getUniqueIDType - Return a type based on an identifier.
262  static const Type *getPrimitiveType(TypeID IDNumber);
263  static const Type *getUniqueIDType(unsigned UID);
264
265  //===--------------------------------------------------------------------===//
266  // These are the builtin types that are always available...
267  //
268  static Type *VoidTy , *BoolTy;
269  static Type *SByteTy, *UByteTy,
270              *ShortTy, *UShortTy,
271              *IntTy  , *UIntTy,
272              *LongTy , *ULongTy;
273  static Type *FloatTy, *DoubleTy;
274
275  static Type *TypeTy , *LabelTy;
276
277  /// Methods for support type inquiry through isa, cast, and dyn_cast:
278  static inline bool classof(const Type *T) { return true; }
279  static inline bool classof(const Value *V) {
280    return V->getValueType() == Value::TypeVal;
281  }
282
283#include "llvm/Type.def"
284
285  // Virtual methods used by callbacks below.  These should only be implemented
286  // in the DerivedType class.
287  virtual void addAbstractTypeUser(AbstractTypeUser *U) const {
288    abort(); // Only on derived types!
289  }
290  virtual void removeAbstractTypeUser(AbstractTypeUser *U) const {
291    abort(); // Only on derived types!
292  }
293
294  void addRef() const {
295    assert(isAbstract() && "Cannot add a reference to a non-abstract type!");
296    ++RefCount;
297  }
298
299  void dropRef() const {
300    assert(isAbstract() && "Cannot drop a refernce to a non-abstract type!");
301    assert(RefCount && "No objects are currently referencing this object!");
302
303    // If this is the last PATypeHolder using this object, and there are no
304    // PATypeHandles using it, the type is dead, delete it now.
305    if (--RefCount == 0)
306      RefCountIsZero();
307  }
308private:
309  virtual void RefCountIsZero() const {
310    abort(); // only on derived types!
311  }
312
313};
314
315//===----------------------------------------------------------------------===//
316// Define some inline methods for the AbstractTypeUser.h:PATypeHandle class.
317// These are defined here because they MUST be inlined, yet are dependent on
318// the definition of the Type class.  Of course Type derives from Value, which
319// contains an AbstractTypeUser instance, so there is no good way to factor out
320// the code.  Hence this bit of uglyness.
321//
322// In the long term, Type should not derive from Value, allowing
323// AbstractTypeUser.h to #include Type.h, allowing us to eliminate this
324// nastyness entirely.
325//
326inline void PATypeHandle::addUser() {
327  assert(Ty && "Type Handle has a null type!");
328  if (Ty->isAbstract())
329    Ty->addAbstractTypeUser(User);
330}
331inline void PATypeHandle::removeUser() {
332  if (Ty->isAbstract())
333    Ty->removeAbstractTypeUser(User);
334}
335
336inline void PATypeHandle::removeUserFromConcrete() {
337  if (!Ty->isAbstract())
338    Ty->removeAbstractTypeUser(User);
339}
340
341// Define inline methods for PATypeHolder...
342
343inline void PATypeHolder::addRef() {
344  if (Ty->isAbstract())
345    Ty->addRef();
346}
347
348inline void PATypeHolder::dropRef() {
349  if (Ty->isAbstract())
350    Ty->dropRef();
351}
352
353/// get - This implements the forwarding part of the union-find algorithm for
354/// abstract types.  Before every access to the Type*, we check to see if the
355/// type we are pointing to is forwarding to a new type.  If so, we drop our
356/// reference to the type.
357///
358inline const Type* PATypeHolder::get() const {
359  const Type *NewTy = Ty->getForwardedType();
360  if (!NewTy) return Ty;
361  return *const_cast<PATypeHolder*>(this) = NewTy;
362}
363
364
365
366//===----------------------------------------------------------------------===//
367// Provide specializations of GraphTraits to be able to treat a type as a
368// graph of sub types...
369
370template <> struct GraphTraits<Type*> {
371  typedef Type NodeType;
372  typedef Type::subtype_iterator ChildIteratorType;
373
374  static inline NodeType *getEntryNode(Type *T) { return T; }
375  static inline ChildIteratorType child_begin(NodeType *N) {
376    return N->subtype_begin();
377  }
378  static inline ChildIteratorType child_end(NodeType *N) {
379    return N->subtype_end();
380  }
381};
382
383template <> struct GraphTraits<const Type*> {
384  typedef const Type NodeType;
385  typedef Type::subtype_iterator ChildIteratorType;
386
387  static inline NodeType *getEntryNode(const Type *T) { return T; }
388  static inline ChildIteratorType child_begin(NodeType *N) {
389    return N->subtype_begin();
390  }
391  static inline ChildIteratorType child_end(NodeType *N) {
392    return N->subtype_end();
393  }
394};
395
396template <> inline bool isa_impl<PointerType, Type>(const Type &Ty) {
397  return Ty.getTypeID() == Type::PointerTyID;
398}
399
400} // End llvm namespace
401
402#endif
403