Type.h revision fdfeb6976f07ad10d809b922ed7376ba2a3539be
1//===-- llvm/Type.h - Classes for handling data types -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#ifndef LLVM_TYPE_H
11#define LLVM_TYPE_H
12
13#include "llvm/AbstractTypeUser.h"
14#include "llvm/Support/Casting.h"
15#include "llvm/System/DataTypes.h"
16#include "llvm/ADT/GraphTraits.h"
17#include <string>
18#include <vector>
19
20namespace llvm {
21
22class DerivedType;
23class PointerType;
24class IntegerType;
25class TypeMapBase;
26class raw_ostream;
27class Module;
28class LLVMContext;
29
30/// This file contains the declaration of the Type class.  For more "Type" type
31/// stuff, look in DerivedTypes.h.
32///
33/// The instances of the Type class are immutable: once they are created,
34/// they are never changed.  Also note that only one instance of a particular
35/// type is ever created.  Thus seeing if two types are equal is a matter of
36/// doing a trivial pointer comparison. To enforce that no two equal instances
37/// are created, Type instances can only be created via static factory methods
38/// in class Type and in derived classes.
39///
40/// Once allocated, Types are never free'd, unless they are an abstract type
41/// that is resolved to a more concrete type.
42///
43/// Types themself don't have a name, and can be named either by:
44/// - using SymbolTable instance, typically from some Module,
45/// - using convenience methods in the Module class (which uses module's
46///    SymbolTable too).
47///
48/// Opaque types are simple derived types with no state.  There may be many
49/// different Opaque type objects floating around, but two are only considered
50/// identical if they are pointer equals of each other.  This allows us to have
51/// two opaque types that end up resolving to different concrete types later.
52///
53/// Opaque types are also kinda weird and scary and different because they have
54/// to keep a list of uses of the type.  When, through linking, parsing, or
55/// bitcode reading, they become resolved, they need to find and update all
56/// users of the unknown type, causing them to reference a new, more concrete
57/// type.  Opaque types are deleted when their use list dwindles to zero users.
58///
59/// @brief Root of type hierarchy
60class Type : public AbstractTypeUser {
61public:
62  //===-------------------------------------------------------------------===//
63  /// Definitions of all of the base types for the Type system.  Based on this
64  /// value, you can cast to a "DerivedType" subclass (see DerivedTypes.h)
65  /// Note: If you add an element to this, you need to add an element to the
66  /// Type::getPrimitiveType function, or else things will break!
67  /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding.
68  ///
69  enum TypeID {
70    // PrimitiveTypes .. make sure LastPrimitiveTyID stays up to date
71    VoidTyID = 0,    ///<  0: type with no size
72    FloatTyID,       ///<  1: 32 bit floating point type
73    DoubleTyID,      ///<  2: 64 bit floating point type
74    X86_FP80TyID,    ///<  3: 80 bit floating point type (X87)
75    FP128TyID,       ///<  4: 128 bit floating point type (112-bit mantissa)
76    PPC_FP128TyID,   ///<  5: 128 bit floating point type (two 64-bits)
77    LabelTyID,       ///<  6: Labels
78    MetadataTyID,    ///<  7: Metadata
79
80    // Derived types... see DerivedTypes.h file...
81    // Make sure FirstDerivedTyID stays up to date!!!
82    IntegerTyID,     ///<  8: Arbitrary bit width integers
83    FunctionTyID,    ///<  9: Functions
84    StructTyID,      ///< 10: Structures
85    UnionTyID,       ///< 11: Unions
86    ArrayTyID,       ///< 12: Arrays
87    PointerTyID,     ///< 13: Pointers
88    OpaqueTyID,      ///< 14: Opaque: type with unknown structure
89    VectorTyID,      ///< 15: SIMD 'packed' format, or other vector type
90
91    NumTypeIDs,                         // Must remain as last defined ID
92    LastPrimitiveTyID = LabelTyID,
93    FirstDerivedTyID = IntegerTyID
94  };
95
96private:
97  TypeID   ID : 8;    // The current base type of this type.
98  bool     Abstract : 1;  // True if type contains an OpaqueType
99  unsigned SubclassData : 23; //Space for subclasses to store data
100
101  /// RefCount - This counts the number of PATypeHolders that are pointing to
102  /// this type.  When this number falls to zero, if the type is abstract and
103  /// has no AbstractTypeUsers, the type is deleted.  This is only sensical for
104  /// derived types.
105  ///
106  mutable unsigned RefCount;
107
108  /// Context - This refers to the LLVMContext in which this type was uniqued.
109  LLVMContext &Context;
110  friend class LLVMContextImpl;
111
112  const Type *getForwardedTypeInternal() const;
113
114  // Some Type instances are allocated as arrays, some aren't. So we provide
115  // this method to get the right kind of destruction for the type of Type.
116  void destroy() const; // const is a lie, this does "delete this"!
117
118protected:
119  explicit Type(LLVMContext &C, TypeID id) :
120                             ID(id), Abstract(false), SubclassData(0),
121                             RefCount(0), Context(C),
122                             ForwardType(0), NumContainedTys(0),
123                             ContainedTys(0) {}
124  virtual ~Type() {
125    assert(AbstractTypeUsers.empty() && "Abstract types remain");
126  }
127
128  /// Types can become nonabstract later, if they are refined.
129  ///
130  inline void setAbstract(bool Val) { Abstract = Val; }
131
132  unsigned getRefCount() const { return RefCount; }
133
134  unsigned getSubclassData() const { return SubclassData; }
135  void setSubclassData(unsigned val) { SubclassData = val; }
136
137  /// ForwardType - This field is used to implement the union find scheme for
138  /// abstract types.  When types are refined to other types, this field is set
139  /// to the more refined type.  Only abstract types can be forwarded.
140  mutable const Type *ForwardType;
141
142
143  /// AbstractTypeUsers - Implement a list of the users that need to be notified
144  /// if I am a type, and I get resolved into a more concrete type.
145  ///
146  mutable std::vector<AbstractTypeUser *> AbstractTypeUsers;
147
148  /// NumContainedTys - Keeps track of how many PATypeHandle instances there
149  /// are at the end of this type instance for the list of contained types. It
150  /// is the subclasses responsibility to set this up. Set to 0 if there are no
151  /// contained types in this type.
152  unsigned NumContainedTys;
153
154  /// ContainedTys - A pointer to the array of Types (PATypeHandle) contained
155  /// by this Type.  For example, this includes the arguments of a function
156  /// type, the elements of a structure, the pointee of a pointer, the element
157  /// type of an array, etc.  This pointer may be 0 for types that don't
158  /// contain other types (Integer, Double, Float).  In general, the subclass
159  /// should arrange for space for the PATypeHandles to be included in the
160  /// allocation of the type object and set this pointer to the address of the
161  /// first element. This allows the Type class to manipulate the ContainedTys
162  /// without understanding the subclass's placement for this array.  keeping
163  /// it here also allows the subtype_* members to be implemented MUCH more
164  /// efficiently, and dynamically very few types do not contain any elements.
165  PATypeHandle *ContainedTys;
166
167public:
168  void print(raw_ostream &O) const;
169
170  /// @brief Debugging support: print to stderr
171  void dump() const;
172
173  /// @brief Debugging support: print to stderr (use type names from context
174  /// module).
175  void dump(const Module *Context) const;
176
177  /// getContext - Fetch the LLVMContext in which this type was uniqued.
178  LLVMContext &getContext() const { return Context; }
179
180  //===--------------------------------------------------------------------===//
181  // Property accessors for dealing with types... Some of these virtual methods
182  // are defined in private classes defined in Type.cpp for primitive types.
183  //
184
185  /// getTypeID - Return the type id for the type.  This will return one
186  /// of the TypeID enum elements defined above.
187  ///
188  inline TypeID getTypeID() const { return ID; }
189
190  /// isVoidTy - Return true if this is 'void'.
191  bool isVoidTy() const { return ID == VoidTyID; }
192
193  /// isFloatTy - Return true if this is 'float', a 32-bit IEEE fp type.
194  bool isFloatTy() const { return ID == FloatTyID; }
195
196  /// isDoubleTy - Return true if this is 'double', a 64-bit IEEE fp type.
197  bool isDoubleTy() const { return ID == DoubleTyID; }
198
199  /// isX86_FP80Ty - Return true if this is x86 long double.
200  bool isX86_FP80Ty() const { return ID == X86_FP80TyID; }
201
202  /// isFP128Ty - Return true if this is 'fp128'.
203  bool isFP128Ty() const { return ID == FP128TyID; }
204
205  /// isPPC_FP128Ty - Return true if this is powerpc long double.
206  bool isPPC_FP128Ty() const { return ID == PPC_FP128TyID; }
207
208  /// isLabelTy - Return true if this is 'label'.
209  bool isLabelTy() const { return ID == LabelTyID; }
210
211  /// isMetadataTy - Return true if this is 'metadata'.
212  bool isMetadataTy() const { return ID == MetadataTyID; }
213
214  /// getDescription - Return the string representation of the type.
215  std::string getDescription() const;
216
217  /// isInteger - True if this is an instance of IntegerType.
218  ///
219  bool isInteger() const { return ID == IntegerTyID; }
220
221  /// isInteger - Return true if this is an IntegerType of the specified width.
222  bool isInteger(unsigned Bitwidth) const;
223
224  /// isIntOrIntVector - Return true if this is an integer type or a vector of
225  /// integer types.
226  ///
227  bool isIntOrIntVector() const;
228
229  /// isFloatingPoint - Return true if this is one of the five floating point
230  /// types
231  bool isFloatingPoint() const { return ID == FloatTyID || ID == DoubleTyID ||
232      ID == X86_FP80TyID || ID == FP128TyID || ID == PPC_FP128TyID; }
233
234  /// isFPOrFPVector - Return true if this is a FP type or a vector of FP types.
235  ///
236  bool isFPOrFPVector() const;
237
238  /// isFunction - True if this is an instance of FunctionType.
239  ///
240  bool isFunction() const { return ID == FunctionTyID; }
241
242  /// isStruct - True if this is an instance of StructType.
243  ///
244  bool isStruct() const { return ID == StructTyID; }
245
246  /// isArray - True if this is an instance of ArrayType.
247  ///
248  bool isArray() const { return ID == ArrayTyID; }
249
250  /// isPointer - True if this is an instance of PointerType.
251  ///
252  bool isPointer() const { return ID == PointerTyID; }
253
254  /// isVector - True if this is an instance of VectorType.
255  ///
256  bool isVector() const { return ID == VectorTyID; }
257
258  /// isAbstract - True if the type is either an Opaque type, or is a derived
259  /// type that includes an opaque type somewhere in it.
260  ///
261  inline bool isAbstract() const { return Abstract; }
262
263  /// canLosslesslyBitCastTo - Return true if this type could be converted
264  /// with a lossless BitCast to type 'Ty'. For example, i8* to i32*. BitCasts
265  /// are valid for types of the same size only where no re-interpretation of
266  /// the bits is done.
267  /// @brief Determine if this type could be losslessly bitcast to Ty
268  bool canLosslesslyBitCastTo(const Type *Ty) const;
269
270
271  /// Here are some useful little methods to query what type derived types are
272  /// Note that all other types can just compare to see if this == Type::xxxTy;
273  ///
274  inline bool isPrimitiveType() const { return ID <= LastPrimitiveTyID; }
275  inline bool isDerivedType()   const { return ID >= FirstDerivedTyID; }
276
277  /// isFirstClassType - Return true if the type is "first class", meaning it
278  /// is a valid type for a Value.
279  ///
280  inline bool isFirstClassType() const {
281    // There are more first-class kinds than non-first-class kinds, so a
282    // negative test is simpler than a positive one.
283    return ID != FunctionTyID && ID != VoidTyID && ID != OpaqueTyID;
284  }
285
286  /// isSingleValueType - Return true if the type is a valid type for a
287  /// virtual register in codegen.  This includes all first-class types
288  /// except struct and array types.
289  ///
290  inline bool isSingleValueType() const {
291    return (ID != VoidTyID && ID <= LastPrimitiveTyID) ||
292            ID == IntegerTyID || ID == PointerTyID || ID == VectorTyID;
293  }
294
295  /// isAggregateType - Return true if the type is an aggregate type. This
296  /// means it is valid as the first operand of an insertvalue or
297  /// extractvalue instruction. This includes struct and array types, but
298  /// does not include vector types.
299  ///
300  inline bool isAggregateType() const {
301    return ID == StructTyID || ID == ArrayTyID || ID == UnionTyID;
302  }
303
304  /// isSized - Return true if it makes sense to take the size of this type.  To
305  /// get the actual size for a particular target, it is reasonable to use the
306  /// TargetData subsystem to do this.
307  ///
308  bool isSized() const {
309    // If it's a primitive, it is always sized.
310    if (ID == IntegerTyID || isFloatingPoint() || ID == PointerTyID)
311      return true;
312    // If it is not something that can have a size (e.g. a function or label),
313    // it doesn't have a size.
314    if (ID != StructTyID && ID != ArrayTyID && ID != VectorTyID &&
315        ID != UnionTyID)
316      return false;
317    // If it is something that can have a size and it's concrete, it definitely
318    // has a size, otherwise we have to try harder to decide.
319    return !isAbstract() || isSizedDerivedType();
320  }
321
322  /// getPrimitiveSizeInBits - Return the basic size of this type if it is a
323  /// primitive type.  These are fixed by LLVM and are not target dependent.
324  /// This will return zero if the type does not have a size or is not a
325  /// primitive type.
326  ///
327  /// Note that this may not reflect the size of memory allocated for an
328  /// instance of the type or the number of bytes that are written when an
329  /// instance of the type is stored to memory. The TargetData class provides
330  /// additional query functions to provide this information.
331  ///
332  unsigned getPrimitiveSizeInBits() const;
333
334  /// getScalarSizeInBits - If this is a vector type, return the
335  /// getPrimitiveSizeInBits value for the element type. Otherwise return the
336  /// getPrimitiveSizeInBits value for this type.
337  unsigned getScalarSizeInBits() const;
338
339  /// getFPMantissaWidth - Return the width of the mantissa of this type.  This
340  /// is only valid on floating point types.  If the FP type does not
341  /// have a stable mantissa (e.g. ppc long double), this method returns -1.
342  int getFPMantissaWidth() const;
343
344  /// getForwardedType - Return the type that this type has been resolved to if
345  /// it has been resolved to anything.  This is used to implement the
346  /// union-find algorithm for type resolution, and shouldn't be used by general
347  /// purpose clients.
348  const Type *getForwardedType() const {
349    if (!ForwardType) return 0;
350    return getForwardedTypeInternal();
351  }
352
353  /// getVAArgsPromotedType - Return the type an argument of this type
354  /// will be promoted to if passed through a variable argument
355  /// function.
356  const Type *getVAArgsPromotedType(LLVMContext &C) const;
357
358  /// getScalarType - If this is a vector type, return the element type,
359  /// otherwise return this.
360  const Type *getScalarType() const;
361
362  //===--------------------------------------------------------------------===//
363  // Type Iteration support
364  //
365  typedef PATypeHandle *subtype_iterator;
366  subtype_iterator subtype_begin() const { return ContainedTys; }
367  subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];}
368
369  /// getContainedType - This method is used to implement the type iterator
370  /// (defined a the end of the file).  For derived types, this returns the
371  /// types 'contained' in the derived type.
372  ///
373  const Type *getContainedType(unsigned i) const {
374    assert(i < NumContainedTys && "Index out of range!");
375    return ContainedTys[i].get();
376  }
377
378  /// getNumContainedTypes - Return the number of types in the derived type.
379  ///
380  unsigned getNumContainedTypes() const { return NumContainedTys; }
381
382  //===--------------------------------------------------------------------===//
383  // Static members exported by the Type class itself.  Useful for getting
384  // instances of Type.
385  //
386
387  /// getPrimitiveType - Return a type based on an identifier.
388  static const Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber);
389
390  //===--------------------------------------------------------------------===//
391  // These are the builtin types that are always available...
392  //
393  static const Type *getVoidTy(LLVMContext &C);
394  static const Type *getLabelTy(LLVMContext &C);
395  static const Type *getFloatTy(LLVMContext &C);
396  static const Type *getDoubleTy(LLVMContext &C);
397  static const Type *getMetadataTy(LLVMContext &C);
398  static const Type *getX86_FP80Ty(LLVMContext &C);
399  static const Type *getFP128Ty(LLVMContext &C);
400  static const Type *getPPC_FP128Ty(LLVMContext &C);
401  static const IntegerType *getInt1Ty(LLVMContext &C);
402  static const IntegerType *getInt8Ty(LLVMContext &C);
403  static const IntegerType *getInt16Ty(LLVMContext &C);
404  static const IntegerType *getInt32Ty(LLVMContext &C);
405  static const IntegerType *getInt64Ty(LLVMContext &C);
406
407  //===--------------------------------------------------------------------===//
408  // Convenience methods for getting pointer types with one of the above builtin
409  // types as pointee.
410  //
411  static const PointerType *getFloatPtrTy(LLVMContext &C, unsigned AS = 0);
412  static const PointerType *getDoublePtrTy(LLVMContext &C, unsigned AS = 0);
413  static const PointerType *getX86_FP80PtrTy(LLVMContext &C, unsigned AS = 0);
414  static const PointerType *getFP128PtrTy(LLVMContext &C, unsigned AS = 0);
415  static const PointerType *getPPC_FP128PtrTy(LLVMContext &C, unsigned AS = 0);
416  static const PointerType *getInt1PtrTy(LLVMContext &C, unsigned AS = 0);
417  static const PointerType *getInt8PtrTy(LLVMContext &C, unsigned AS = 0);
418  static const PointerType *getInt16PtrTy(LLVMContext &C, unsigned AS = 0);
419  static const PointerType *getInt32PtrTy(LLVMContext &C, unsigned AS = 0);
420  static const PointerType *getInt64PtrTy(LLVMContext &C, unsigned AS = 0);
421
422  /// Methods for support type inquiry through isa, cast, and dyn_cast:
423  static inline bool classof(const Type *) { return true; }
424
425  void addRef() const {
426    assert(isAbstract() && "Cannot add a reference to a non-abstract type!");
427    ++RefCount;
428  }
429
430  void dropRef() const {
431    assert(isAbstract() && "Cannot drop a reference to a non-abstract type!");
432    assert(RefCount && "No objects are currently referencing this object!");
433
434    // If this is the last PATypeHolder using this object, and there are no
435    // PATypeHandles using it, the type is dead, delete it now.
436    if (--RefCount == 0 && AbstractTypeUsers.empty())
437      this->destroy();
438  }
439
440  /// addAbstractTypeUser - Notify an abstract type that there is a new user of
441  /// it.  This function is called primarily by the PATypeHandle class.
442  ///
443  void addAbstractTypeUser(AbstractTypeUser *U) const;
444
445  /// removeAbstractTypeUser - Notify an abstract type that a user of the class
446  /// no longer has a handle to the type.  This function is called primarily by
447  /// the PATypeHandle class.  When there are no users of the abstract type, it
448  /// is annihilated, because there is no way to get a reference to it ever
449  /// again.
450  ///
451  void removeAbstractTypeUser(AbstractTypeUser *U) const;
452
453  /// getPointerTo - Return a pointer to the current type.  This is equivalent
454  /// to PointerType::get(Foo, AddrSpace).
455  const PointerType *getPointerTo(unsigned AddrSpace = 0) const;
456
457private:
458  /// isSizedDerivedType - Derived types like structures and arrays are sized
459  /// iff all of the members of the type are sized as well.  Since asking for
460  /// their size is relatively uncommon, move this operation out of line.
461  bool isSizedDerivedType() const;
462
463  virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
464  virtual void typeBecameConcrete(const DerivedType *AbsTy);
465
466protected:
467  // PromoteAbstractToConcrete - This is an internal method used to calculate
468  // change "Abstract" from true to false when types are refined.
469  void PromoteAbstractToConcrete();
470  friend class TypeMapBase;
471};
472
473//===----------------------------------------------------------------------===//
474// Define some inline methods for the AbstractTypeUser.h:PATypeHandle class.
475// These are defined here because they MUST be inlined, yet are dependent on
476// the definition of the Type class.
477//
478inline void PATypeHandle::addUser() {
479  assert(Ty && "Type Handle has a null type!");
480  if (Ty->isAbstract())
481    Ty->addAbstractTypeUser(User);
482}
483inline void PATypeHandle::removeUser() {
484  if (Ty->isAbstract())
485    Ty->removeAbstractTypeUser(User);
486}
487
488// Define inline methods for PATypeHolder.
489
490/// get - This implements the forwarding part of the union-find algorithm for
491/// abstract types.  Before every access to the Type*, we check to see if the
492/// type we are pointing to is forwarding to a new type.  If so, we drop our
493/// reference to the type.
494///
495inline Type* PATypeHolder::get() const {
496  const Type *NewTy = Ty->getForwardedType();
497  if (!NewTy) return const_cast<Type*>(Ty);
498  return *const_cast<PATypeHolder*>(this) = NewTy;
499}
500
501inline void PATypeHolder::addRef() {
502  assert(Ty && "Type Holder has a null type!");
503  if (Ty->isAbstract())
504    Ty->addRef();
505}
506
507inline void PATypeHolder::dropRef() {
508  if (Ty->isAbstract())
509    Ty->dropRef();
510}
511
512
513//===----------------------------------------------------------------------===//
514// Provide specializations of GraphTraits to be able to treat a type as a
515// graph of sub types...
516
517template <> struct GraphTraits<Type*> {
518  typedef Type NodeType;
519  typedef Type::subtype_iterator ChildIteratorType;
520
521  static inline NodeType *getEntryNode(Type *T) { return T; }
522  static inline ChildIteratorType child_begin(NodeType *N) {
523    return N->subtype_begin();
524  }
525  static inline ChildIteratorType child_end(NodeType *N) {
526    return N->subtype_end();
527  }
528};
529
530template <> struct GraphTraits<const Type*> {
531  typedef const Type NodeType;
532  typedef Type::subtype_iterator ChildIteratorType;
533
534  static inline NodeType *getEntryNode(const Type *T) { return T; }
535  static inline ChildIteratorType child_begin(NodeType *N) {
536    return N->subtype_begin();
537  }
538  static inline ChildIteratorType child_end(NodeType *N) {
539    return N->subtype_end();
540  }
541};
542
543template <> inline bool isa_impl<PointerType, Type>(const Type &Ty) {
544  return Ty.getTypeID() == Type::PointerTyID;
545}
546
547raw_ostream &operator<<(raw_ostream &OS, const Type &T);
548
549} // End llvm namespace
550
551#endif
552