Value.h revision 5034dd318a9dfa0dc45a3ac01e58e60f2aa2498d
1//===-- llvm/Value.h - Definition of the Value class ------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the Value class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_VALUE_H
15#define LLVM_VALUE_H
16
17#include "llvm/AbstractTypeUser.h"
18#include "llvm/Use.h"
19#include "llvm/ADT/StringRef.h"
20#include "llvm/Support/Casting.h"
21#include <string>
22
23namespace llvm {
24
25class Constant;
26class Argument;
27class Instruction;
28class BasicBlock;
29class GlobalValue;
30class Function;
31class GlobalVariable;
32class GlobalAlias;
33class InlineAsm;
34class ValueSymbolTable;
35class TypeSymbolTable;
36template<typename ValueTy> class StringMapEntry;
37template <typename ValueTy = Value>
38class AssertingVH;
39typedef StringMapEntry<Value*> ValueName;
40class raw_ostream;
41class AssemblyAnnotationWriter;
42class ValueHandleBase;
43class LLVMContext;
44class Twine;
45class MDNode;
46
47//===----------------------------------------------------------------------===//
48//                                 Value Class
49//===----------------------------------------------------------------------===//
50
51/// This is a very important LLVM class. It is the base class of all values
52/// computed by a program that may be used as operands to other values. Value is
53/// the super class of other important classes such as Instruction and Function.
54/// All Values have a Type. Type is not a subclass of Value. All types can have
55/// a name and they should belong to some Module. Setting the name on the Value
56/// automatically updates the module's symbol table.
57///
58/// Every value has a "use list" that keeps track of which other Values are
59/// using this Value.  A Value can also have an arbitrary number of ValueHandle
60/// objects that watch it and listen to RAUW and Destroy events.  See
61/// llvm/Support/ValueHandle.h for details.
62///
63/// @brief LLVM Value Representation
64class Value {
65  const unsigned char SubclassID;   // Subclass identifier (for isa/dyn_cast)
66  unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this?
67protected:
68  /// SubclassOptionalData - This member is similar to SubclassData, however it
69  /// is for holding information which may be used to aid optimization, but
70  /// which may be cleared to zero without affecting conservative
71  /// interpretation.
72  unsigned char SubclassOptionalData : 7;
73
74private:
75  /// SubclassData - This member is defined by this class, but is not used for
76  /// anything.  Subclasses can use it to hold whatever state they find useful.
77  /// This field is initialized to zero by the ctor.
78  unsigned short SubclassData;
79
80  PATypeHolder VTy;
81  Use *UseList;
82
83  friend class ValueSymbolTable; // Allow ValueSymbolTable to directly mod Name.
84  friend class ValueHandleBase;
85  friend class AbstractTypeUser;
86  ValueName *Name;
87
88  void operator=(const Value &);     // Do not implement
89  Value(const Value &);              // Do not implement
90
91protected:
92  /// printCustom - Value subclasses can override this to implement custom
93  /// printing behavior.
94  virtual void printCustom(raw_ostream &O) const;
95
96  Value(const Type *Ty, unsigned scid);
97public:
98  virtual ~Value();
99
100  /// dump - Support for debugging, callable in GDB: V->dump()
101  //
102  void dump() const;
103
104  /// print - Implement operator<< on Value.
105  ///
106  void print(raw_ostream &O, AssemblyAnnotationWriter *AAW = 0) const;
107
108  /// All values are typed, get the type of this value.
109  ///
110  inline const Type *getType() const { return VTy; }
111
112  /// All values hold a context through their type.
113  LLVMContext &getContext() const;
114
115  // All values can potentially be named...
116  inline bool hasName() const { return Name != 0; }
117  ValueName *getValueName() const { return Name; }
118
119  /// getName() - Return a constant reference to the value's name. This is cheap
120  /// and guaranteed to return the same reference as long as the value is not
121  /// modified.
122  ///
123  /// This is currently guaranteed to return a StringRef for which data() points
124  /// to a valid null terminated string. The use of StringRef.data() is
125  /// deprecated here, however, and clients should not rely on it. If such
126  /// behavior is needed, clients should use expensive getNameStr(), or switch
127  /// to an interface that does not depend on null termination.
128  StringRef getName() const;
129
130  /// getNameStr() - Return the name of the specified value, *constructing a
131  /// string* to hold it.  This is guaranteed to construct a string and is very
132  /// expensive, clients should use getName() unless necessary.
133  std::string getNameStr() const;
134
135  /// setName() - Change the name of the value, choosing a new unique name if
136  /// the provided name is taken.
137  ///
138  /// \arg Name - The new name; or "" if the value's name should be removed.
139  void setName(const Twine &Name);
140
141
142  /// takeName - transfer the name from V to this value, setting V's name to
143  /// empty.  It is an error to call V->takeName(V).
144  void takeName(Value *V);
145
146  /// replaceAllUsesWith - Go through the uses list for this definition and make
147  /// each use point to "V" instead of "this".  After this completes, 'this's
148  /// use list is guaranteed to be empty.
149  ///
150  void replaceAllUsesWith(Value *V);
151
152  // uncheckedReplaceAllUsesWith - Just like replaceAllUsesWith but dangerous.
153  // Only use when in type resolution situations!
154  void uncheckedReplaceAllUsesWith(Value *V);
155
156  //----------------------------------------------------------------------
157  // Methods for handling the chain of uses of this Value.
158  //
159  typedef value_use_iterator<User>       use_iterator;
160  typedef value_use_iterator<const User> const_use_iterator;
161
162  bool               use_empty() const { return UseList == 0; }
163  use_iterator       use_begin()       { return use_iterator(UseList); }
164  const_use_iterator use_begin() const { return const_use_iterator(UseList); }
165  use_iterator       use_end()         { return use_iterator(0);   }
166  const_use_iterator use_end()   const { return const_use_iterator(0);   }
167  User              *use_back()        { return *use_begin(); }
168  const User        *use_back()  const { return *use_begin(); }
169
170  /// hasOneUse - Return true if there is exactly one user of this value.  This
171  /// is specialized because it is a common request and does not require
172  /// traversing the whole use list.
173  ///
174  bool hasOneUse() const {
175    const_use_iterator I = use_begin(), E = use_end();
176    if (I == E) return false;
177    return ++I == E;
178  }
179
180  /// hasNUses - Return true if this Value has exactly N users.
181  ///
182  bool hasNUses(unsigned N) const;
183
184  /// hasNUsesOrMore - Return true if this value has N users or more.  This is
185  /// logically equivalent to getNumUses() >= N.
186  ///
187  bool hasNUsesOrMore(unsigned N) const;
188
189  bool isUsedInBasicBlock(const BasicBlock *BB) const;
190
191  /// getNumUses - This method computes the number of uses of this Value.  This
192  /// is a linear time operation.  Use hasOneUse, hasNUses, or hasMoreThanNUses
193  /// to check for specific values.
194  unsigned getNumUses() const;
195
196  /// addUse - This method should only be used by the Use class.
197  ///
198  void addUse(Use &U) { U.addToList(&UseList); }
199
200  /// An enumeration for keeping track of the concrete subclass of Value that
201  /// is actually instantiated. Values of this enumeration are kept in the
202  /// Value classes SubclassID field. They are used for concrete type
203  /// identification.
204  enum ValueTy {
205    ArgumentVal,              // This is an instance of Argument
206    BasicBlockVal,            // This is an instance of BasicBlock
207    FunctionVal,              // This is an instance of Function
208    GlobalAliasVal,           // This is an instance of GlobalAlias
209    GlobalVariableVal,        // This is an instance of GlobalVariable
210    UndefValueVal,            // This is an instance of UndefValue
211    BlockAddressVal,          // This is an instance of BlockAddress
212    ConstantExprVal,          // This is an instance of ConstantExpr
213    ConstantAggregateZeroVal, // This is an instance of ConstantAggregateZero
214    ConstantIntVal,           // This is an instance of ConstantInt
215    ConstantFPVal,            // This is an instance of ConstantFP
216    ConstantArrayVal,         // This is an instance of ConstantArray
217    ConstantStructVal,        // This is an instance of ConstantStruct
218    ConstantVectorVal,        // This is an instance of ConstantVector
219    ConstantPointerNullVal,   // This is an instance of ConstantPointerNull
220    MDNodeVal,                // This is an instance of MDNode
221    MDStringVal,              // This is an instance of MDString
222    InlineAsmVal,             // This is an instance of InlineAsm
223    PseudoSourceValueVal,     // This is an instance of PseudoSourceValue
224    FixedStackPseudoSourceValueVal, // This is an instance of
225                                    // FixedStackPseudoSourceValue
226    InstructionVal,           // This is an instance of Instruction
227    // Enum values starting at InstructionVal are used for Instructions;
228    // don't add new values here!
229
230    // Markers:
231    ConstantFirstVal = FunctionVal,
232    ConstantLastVal  = ConstantPointerNullVal
233  };
234
235  /// getValueID - Return an ID for the concrete type of this object.  This is
236  /// used to implement the classof checks.  This should not be used for any
237  /// other purpose, as the values may change as LLVM evolves.  Also, note that
238  /// for instructions, the Instruction's opcode is added to InstructionVal. So
239  /// this means three things:
240  /// # there is no value with code InstructionVal (no opcode==0).
241  /// # there are more possible values for the value type than in ValueTy enum.
242  /// # the InstructionVal enumerator must be the highest valued enumerator in
243  ///   the ValueTy enum.
244  unsigned getValueID() const {
245    return SubclassID;
246  }
247
248  /// getRawSubclassOptionalData - Return the raw optional flags value
249  /// contained in this value. This should only be used when testing two
250  /// Values for equivalence.
251  unsigned getRawSubclassOptionalData() const {
252    return SubclassOptionalData;
253  }
254
255  /// hasSameSubclassOptionalData - Test whether the optional flags contained
256  /// in this value are equal to the optional flags in the given value.
257  bool hasSameSubclassOptionalData(const Value *V) const {
258    return SubclassOptionalData == V->SubclassOptionalData;
259  }
260
261  /// intersectOptionalDataWith - Clear any optional flags in this value
262  /// that are not also set in the given value.
263  void intersectOptionalDataWith(const Value *V) {
264    SubclassOptionalData &= V->SubclassOptionalData;
265  }
266
267  /// hasValueHandle - Return true if there is a value handle associated with
268  /// this value.
269  bool hasValueHandle() const { return HasValueHandle; }
270
271  // Methods for support type inquiry through isa, cast, and dyn_cast:
272  static inline bool classof(const Value *) {
273    return true; // Values are always values.
274  }
275
276  /// getRawType - This should only be used to implement the vmcore library.
277  ///
278  const Type *getRawType() const { return VTy.getRawType(); }
279
280  /// stripPointerCasts - This method strips off any unneeded pointer
281  /// casts from the specified value, returning the original uncasted value.
282  /// Note that the returned value has pointer type if the specified value does.
283  Value *stripPointerCasts();
284  const Value *stripPointerCasts() const {
285    return const_cast<Value*>(this)->stripPointerCasts();
286  }
287
288  /// isDereferenceablePointer - Test if this value is always a pointer to
289  /// allocated and suitably aligned memory for a simple load or store.
290  bool isDereferenceablePointer() const;
291
292  /// DoPHITranslation - If this value is a PHI node with CurBB as its parent,
293  /// return the value in the PHI node corresponding to PredBB.  If not, return
294  /// ourself.  This is useful if you want to know the value something has in a
295  /// predecessor block.
296  Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB);
297
298  const Value *DoPHITranslation(const BasicBlock *CurBB,
299                                const BasicBlock *PredBB) const{
300    return const_cast<Value*>(this)->DoPHITranslation(CurBB, PredBB);
301  }
302
303  /// MaximumAlignment - This is the greatest alignment value supported by
304  /// load, store, and alloca instructions, and global values.
305  static const unsigned MaximumAlignment = 1u << 29;
306
307protected:
308  unsigned short getSubclassDataFromValue() const { return SubclassData; }
309  void setValueSubclassData(unsigned short D) { SubclassData = D; }
310};
311
312inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) {
313  V.print(OS);
314  return OS;
315}
316
317void Use::set(Value *V) {
318  if (Val) removeFromList();
319  Val = V;
320  if (V) V->addUse(*this);
321}
322
323
324// isa - Provide some specializations of isa so that we don't have to include
325// the subtype header files to test to see if the value is a subclass...
326//
327template <> struct isa_impl<Constant, Value> {
328  static inline bool doit(const Value &Val) {
329    return Val.getValueID() >= Value::ConstantFirstVal &&
330      Val.getValueID() <= Value::ConstantLastVal;
331  }
332};
333
334template <> struct isa_impl<Argument, Value> {
335  static inline bool doit (const Value &Val) {
336    return Val.getValueID() == Value::ArgumentVal;
337  }
338};
339
340template <> struct isa_impl<InlineAsm, Value> {
341  static inline bool doit(const Value &Val) {
342    return Val.getValueID() == Value::InlineAsmVal;
343  }
344};
345
346template <> struct isa_impl<Instruction, Value> {
347  static inline bool doit(const Value &Val) {
348    return Val.getValueID() >= Value::InstructionVal;
349  }
350};
351
352template <> struct isa_impl<BasicBlock, Value> {
353  static inline bool doit(const Value &Val) {
354    return Val.getValueID() == Value::BasicBlockVal;
355  }
356};
357
358template <> struct isa_impl<Function, Value> {
359  static inline bool doit(const Value &Val) {
360    return Val.getValueID() == Value::FunctionVal;
361  }
362};
363
364template <> struct isa_impl<GlobalVariable, Value> {
365  static inline bool doit(const Value &Val) {
366    return Val.getValueID() == Value::GlobalVariableVal;
367  }
368};
369
370template <> struct isa_impl<GlobalAlias, Value> {
371  static inline bool doit(const Value &Val) {
372    return Val.getValueID() == Value::GlobalAliasVal;
373  }
374};
375
376template <> struct isa_impl<GlobalValue, Value> {
377  static inline bool doit(const Value &Val) {
378    return isa<GlobalVariable>(Val) || isa<Function>(Val) ||
379      isa<GlobalAlias>(Val);
380  }
381};
382
383template <> struct isa_impl<MDNode, Value> {
384  static inline bool doit(const Value &Val) {
385    return Val.getValueID() == Value::MDNodeVal;
386  }
387};
388
389// Value* is only 4-byte aligned.
390template<>
391class PointerLikeTypeTraits<Value*> {
392  typedef Value* PT;
393public:
394  static inline void *getAsVoidPointer(PT P) { return P; }
395  static inline PT getFromVoidPointer(void *P) {
396    return static_cast<PT>(P);
397  }
398  enum { NumLowBitsAvailable = 2 };
399};
400
401} // End llvm namespace
402
403#endif
404