Value.h revision 6c6c016b1b9711bc8968b51746d4b867e17905f4
1//===-- llvm/Value.h - Definition of the Value class ------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the Value class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_VALUE_H
15#define LLVM_VALUE_H
16
17#include "llvm/AbstractTypeUser.h"
18#include "llvm/Use.h"
19#include "llvm/ADT/StringRef.h"
20#include "llvm/ADT/Twine.h"
21#include "llvm/Support/Casting.h"
22#include <string>
23
24namespace llvm {
25
26class Constant;
27class Argument;
28class Instruction;
29class BasicBlock;
30class GlobalValue;
31class Function;
32class GlobalVariable;
33class GlobalAlias;
34class InlineAsm;
35class ValueSymbolTable;
36class TypeSymbolTable;
37template<typename ValueTy> class StringMapEntry;
38template <typename ValueTy = Value>
39class AssertingVH;
40typedef StringMapEntry<Value*> ValueName;
41class raw_ostream;
42class AssemblyAnnotationWriter;
43class ValueHandleBase;
44class LLVMContext;
45class Metadata;
46
47//===----------------------------------------------------------------------===//
48//                                 Value Class
49//===----------------------------------------------------------------------===//
50
51/// This is a very important LLVM class. It is the base class of all values
52/// computed by a program that may be used as operands to other values. Value is
53/// the super class of other important classes such as Instruction and Function.
54/// All Values have a Type. Type is not a subclass of Value. All types can have
55/// a name and they should belong to some Module. Setting the name on the Value
56/// automatically updates the module's symbol table.
57///
58/// Every value has a "use list" that keeps track of which other Values are
59/// using this Value.  A Value can also have an arbitrary number of ValueHandle
60/// objects that watch it and listen to RAUW and Destroy events see
61/// llvm/Support/ValueHandle.h for details.
62///
63/// @brief LLVM Value Representation
64class Value {
65  const unsigned char SubclassID;   // Subclass identifier (for isa/dyn_cast)
66  unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this?
67  unsigned char HasMetadata : 1;    // Has a metadata attached to this ?
68protected:
69  /// SubclassOptionalData - This member is similar to SubclassData, however it
70  /// is for holding information which may be used to aid optimization, but
71  /// which may be cleared to zero without affecting conservative
72  /// interpretation.
73  unsigned char SubclassOptionalData : 7;
74
75  /// SubclassData - This member is defined by this class, but is not used for
76  /// anything.  Subclasses can use it to hold whatever state they find useful.
77  /// This field is initialized to zero by the ctor.
78  unsigned short SubclassData;
79private:
80  PATypeHolder VTy;
81  Use *UseList;
82
83  friend class ValueSymbolTable; // Allow ValueSymbolTable to directly mod Name.
84  friend class SymbolTable;      // Allow SymbolTable to directly poke Name.
85  friend class ValueHandleBase;
86  friend class Metadata;
87  friend class AbstractTypeUser;
88  ValueName *Name;
89
90  void operator=(const Value &);     // Do not implement
91  Value(const Value &);              // Do not implement
92
93protected:
94  /// printCustom - Value subclasses can override this to implement custom
95  /// printing behavior.
96  virtual void printCustom(raw_ostream &O) const;
97
98public:
99  Value(const Type *Ty, unsigned scid);
100  virtual ~Value();
101
102  /// dump - Support for debugging, callable in GDB: V->dump()
103  //
104  void dump() const;
105
106  /// print - Implement operator<< on Value.
107  ///
108  void print(raw_ostream &O, AssemblyAnnotationWriter *AAW = 0) const;
109
110  /// All values are typed, get the type of this value.
111  ///
112  inline const Type *getType() const { return VTy; }
113
114  /// All values hold a context through their type.
115  LLVMContext &getContext() const;
116
117  // All values can potentially be named...
118  inline bool hasName() const { return Name != 0; }
119  ValueName *getValueName() const { return Name; }
120
121  /// getName() - Return a constant reference to the value's name. This is cheap
122  /// and guaranteed to return the same reference as long as the value is not
123  /// modified.
124  ///
125  /// This is currently guaranteed to return a StringRef for which data() points
126  /// to a valid null terminated string. The use of StringRef.data() is
127  /// deprecated here, however, and clients should not rely on it. If such
128  /// behavior is needed, clients should use expensive getNameStr(), or switch
129  /// to an interface that does not depend on null termination.
130  StringRef getName() const;
131
132  /// getNameStr() - Return the name of the specified value, *constructing a
133  /// string* to hold it.  This is guaranteed to construct a string and is very
134  /// expensive, clients should use getName() unless necessary.
135  std::string getNameStr() const;
136
137  /// setName() - Change the name of the value, choosing a new unique name if
138  /// the provided name is taken.
139  ///
140  /// \arg Name - The new name; or "" if the value's name should be removed.
141  void setName(const Twine &Name);
142
143
144  /// takeName - transfer the name from V to this value, setting V's name to
145  /// empty.  It is an error to call V->takeName(V).
146  void takeName(Value *V);
147
148  /// replaceAllUsesWith - Go through the uses list for this definition and make
149  /// each use point to "V" instead of "this".  After this completes, 'this's
150  /// use list is guaranteed to be empty.
151  ///
152  void replaceAllUsesWith(Value *V);
153
154  // uncheckedReplaceAllUsesWith - Just like replaceAllUsesWith but dangerous.
155  // Only use when in type resolution situations!
156  void uncheckedReplaceAllUsesWith(Value *V);
157
158  //----------------------------------------------------------------------
159  // Methods for handling the chain of uses of this Value.
160  //
161  typedef value_use_iterator<User>       use_iterator;
162  typedef value_use_iterator<const User> use_const_iterator;
163
164  bool               use_empty() const { return UseList == 0; }
165  use_iterator       use_begin()       { return use_iterator(UseList); }
166  use_const_iterator use_begin() const { return use_const_iterator(UseList); }
167  use_iterator       use_end()         { return use_iterator(0);   }
168  use_const_iterator use_end()   const { return use_const_iterator(0);   }
169  User              *use_back()        { return *use_begin(); }
170  const User        *use_back()  const { return *use_begin(); }
171
172  /// hasOneUse - Return true if there is exactly one user of this value.  This
173  /// is specialized because it is a common request and does not require
174  /// traversing the whole use list.
175  ///
176  bool hasOneUse() const {
177    use_const_iterator I = use_begin(), E = use_end();
178    if (I == E) return false;
179    return ++I == E;
180  }
181
182  /// hasNUses - Return true if this Value has exactly N users.
183  ///
184  bool hasNUses(unsigned N) const;
185
186  /// hasNUsesOrMore - Return true if this value has N users or more.  This is
187  /// logically equivalent to getNumUses() >= N.
188  ///
189  bool hasNUsesOrMore(unsigned N) const;
190
191  bool isUsedInBasicBlock(const BasicBlock *BB) const;
192
193  /// getNumUses - This method computes the number of uses of this Value.  This
194  /// is a linear time operation.  Use hasOneUse, hasNUses, or hasMoreThanNUses
195  /// to check for specific values.
196  unsigned getNumUses() const;
197
198  /// addUse - This method should only be used by the Use class.
199  ///
200  void addUse(Use &U) { U.addToList(&UseList); }
201
202  /// An enumeration for keeping track of the concrete subclass of Value that
203  /// is actually instantiated. Values of this enumeration are kept in the
204  /// Value classes SubclassID field. They are used for concrete type
205  /// identification.
206  enum ValueTy {
207    ArgumentVal,              // This is an instance of Argument
208    BasicBlockVal,            // This is an instance of BasicBlock
209    FunctionVal,              // This is an instance of Function
210    GlobalAliasVal,           // This is an instance of GlobalAlias
211    GlobalVariableVal,        // This is an instance of GlobalVariable
212    UndefValueVal,            // This is an instance of UndefValue
213    ConstantExprVal,          // This is an instance of ConstantExpr
214    ConstantAggregateZeroVal, // This is an instance of ConstantAggregateNull
215    ConstantIntVal,           // This is an instance of ConstantInt
216    ConstantFPVal,            // This is an instance of ConstantFP
217    ConstantArrayVal,         // This is an instance of ConstantArray
218    ConstantStructVal,        // This is an instance of ConstantStruct
219    ConstantVectorVal,        // This is an instance of ConstantVector
220    ConstantPointerNullVal,   // This is an instance of ConstantPointerNull
221    MDNodeVal,                // This is an instance of MDNode
222    MDStringVal,              // This is an instance of MDString
223    NamedMDNodeVal,           // This is an instance of NamedMDNode
224    InlineAsmVal,             // This is an instance of InlineAsm
225    PseudoSourceValueVal,     // This is an instance of PseudoSourceValue
226    InstructionVal,           // This is an instance of Instruction
227
228    // Markers:
229    ConstantFirstVal = FunctionVal,
230    ConstantLastVal  = ConstantPointerNullVal
231  };
232
233  /// getValueID - Return an ID for the concrete type of this object.  This is
234  /// used to implement the classof checks.  This should not be used for any
235  /// other purpose, as the values may change as LLVM evolves.  Also, note that
236  /// for instructions, the Instruction's opcode is added to InstructionVal. So
237  /// this means three things:
238  /// # there is no value with code InstructionVal (no opcode==0).
239  /// # there are more possible values for the value type than in ValueTy enum.
240  /// # the InstructionVal enumerator must be the highest valued enumerator in
241  ///   the ValueTy enum.
242  unsigned getValueID() const {
243    return SubclassID;
244  }
245
246  /// getRawSubclassOptionalData - Return the raw optional flags value
247  /// contained in this value. This should only be used when testing two
248  /// Values for equivalence.
249  unsigned getRawSubclassOptionalData() const {
250    return SubclassOptionalData;
251  }
252
253  /// hasSameSubclassOptionalData - Test whether the optional flags contained
254  /// in this value are equal to the optional flags in the given value.
255  bool hasSameSubclassOptionalData(const Value *V) const {
256    return SubclassOptionalData == V->SubclassOptionalData;
257  }
258
259  /// intersectOptionalDataWith - Clear any optional flags in this value
260  /// that are not also set in the given value.
261  void intersectOptionalDataWith(const Value *V) {
262    SubclassOptionalData &= V->SubclassOptionalData;
263  }
264
265  // Methods for support type inquiry through isa, cast, and dyn_cast:
266  static inline bool classof(const Value *) {
267    return true; // Values are always values.
268  }
269
270  /// getRawType - This should only be used to implement the vmcore library.
271  ///
272  const Type *getRawType() const { return VTy.getRawType(); }
273
274  /// stripPointerCasts - This method strips off any unneeded pointer
275  /// casts from the specified value, returning the original uncasted value.
276  /// Note that the returned value has pointer type if the specified value does.
277  Value *stripPointerCasts();
278  const Value *stripPointerCasts() const {
279    return const_cast<Value*>(this)->stripPointerCasts();
280  }
281
282  /// getUnderlyingObject - This method strips off any GEP address adjustments
283  /// and pointer casts from the specified value, returning the original object
284  /// being addressed.  Note that the returned value has pointer type if the
285  /// specified value does.
286  Value *getUnderlyingObject();
287  const Value *getUnderlyingObject() const {
288    return const_cast<Value*>(this)->getUnderlyingObject();
289  }
290
291  /// DoPHITranslation - If this value is a PHI node with CurBB as its parent,
292  /// return the value in the PHI node corresponding to PredBB.  If not, return
293  /// ourself.  This is useful if you want to know the value something has in a
294  /// predecessor block.
295  Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB);
296
297  const Value *DoPHITranslation(const BasicBlock *CurBB,
298                                const BasicBlock *PredBB) const{
299    return const_cast<Value*>(this)->DoPHITranslation(CurBB, PredBB);
300  }
301
302  /// hasMetadata - Return true if metadata is attached with this value.
303  bool hasMetadata() const { return HasMetadata; }
304};
305
306inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) {
307  V.print(OS);
308  return OS;
309}
310
311void Use::set(Value *V) {
312  if (Val) removeFromList();
313  Val = V;
314  if (V) V->addUse(*this);
315}
316
317
318// isa - Provide some specializations of isa so that we don't have to include
319// the subtype header files to test to see if the value is a subclass...
320//
321template <> inline bool isa_impl<Constant, Value>(const Value &Val) {
322  return Val.getValueID() >= Value::ConstantFirstVal &&
323         Val.getValueID() <= Value::ConstantLastVal;
324}
325template <> inline bool isa_impl<Argument, Value>(const Value &Val) {
326  return Val.getValueID() == Value::ArgumentVal;
327}
328template <> inline bool isa_impl<InlineAsm, Value>(const Value &Val) {
329  return Val.getValueID() == Value::InlineAsmVal;
330}
331template <> inline bool isa_impl<Instruction, Value>(const Value &Val) {
332  return Val.getValueID() >= Value::InstructionVal;
333}
334template <> inline bool isa_impl<BasicBlock, Value>(const Value &Val) {
335  return Val.getValueID() == Value::BasicBlockVal;
336}
337template <> inline bool isa_impl<Function, Value>(const Value &Val) {
338  return Val.getValueID() == Value::FunctionVal;
339}
340template <> inline bool isa_impl<GlobalVariable, Value>(const Value &Val) {
341  return Val.getValueID() == Value::GlobalVariableVal;
342}
343template <> inline bool isa_impl<GlobalAlias, Value>(const Value &Val) {
344  return Val.getValueID() == Value::GlobalAliasVal;
345}
346template <> inline bool isa_impl<GlobalValue, Value>(const Value &Val) {
347  return isa<GlobalVariable>(Val) || isa<Function>(Val) ||
348         isa<GlobalAlias>(Val);
349}
350
351
352// Value* is only 4-byte aligned.
353template<>
354class PointerLikeTypeTraits<Value*> {
355  typedef Value* PT;
356public:
357  static inline void *getAsVoidPointer(PT P) { return P; }
358  static inline PT getFromVoidPointer(void *P) {
359    return static_cast<PT>(P);
360  }
361  enum { NumLowBitsAvailable = 2 };
362};
363
364} // End llvm namespace
365
366#endif
367