BasicAliasAnalysis.cpp revision 04b75935462642641469fb264aab9f1110ce2666
1//===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the default implementation of the Alias Analysis interface
11// that simply implements a few identities (two different globals cannot alias,
12// etc), but otherwise does no analysis.
13//
14// FIXME: This could be extended for a very simple form of mod/ref information.
15// If a pointer is locally allocated (either malloc or alloca) and never passed
16// into a call or stored to memory, then we know that calls will not mod/ref the
17// memory.  This can be important for tailcallelim, and can support CSE of loads
18// and dead store elimination across calls.  This is particularly important for
19// stack allocated arrays.
20//
21//===----------------------------------------------------------------------===//
22
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/Pass.h"
25#include "llvm/Argument.h"
26#include "llvm/iOther.h"
27#include "llvm/iMemory.h"
28#include "llvm/Constants.h"
29#include "llvm/GlobalVariable.h"
30#include "llvm/DerivedTypes.h"
31#include "llvm/Target/TargetData.h"
32#include "llvm/Support/GetElementPtrTypeIterator.h"
33using namespace llvm;
34
35// Make sure that anything that uses AliasAnalysis pulls in this file...
36void llvm::BasicAAStub() {}
37
38namespace {
39  struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis {
40
41    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
42      AliasAnalysis::getAnalysisUsage(AU);
43    }
44
45    virtual void initializePass();
46
47    AliasResult alias(const Value *V1, unsigned V1Size,
48                      const Value *V2, unsigned V2Size);
49
50    ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
51
52    /// pointsToConstantMemory - Chase pointers until we find a (constant
53    /// global) or not.
54    bool pointsToConstantMemory(const Value *P);
55
56  private:
57    // CheckGEPInstructions - Check two GEP instructions with known
58    // must-aliasing base pointers.  This checks to see if the index expressions
59    // preclude the pointers from aliasing...
60    AliasResult
61    CheckGEPInstructions(const Type* BasePtr1Ty, std::vector<Value*> &GEP1Ops,
62                         unsigned G1Size,
63                         const Type *BasePtr2Ty, std::vector<Value*> &GEP2Ops,
64                         unsigned G2Size);
65  };
66
67  // Register this pass...
68  RegisterOpt<BasicAliasAnalysis>
69  X("basicaa", "Basic Alias Analysis (default AA impl)");
70
71  // Declare that we implement the AliasAnalysis interface
72  RegisterAnalysisGroup<AliasAnalysis, BasicAliasAnalysis, true> Y;
73}  // End of anonymous namespace
74
75void BasicAliasAnalysis::initializePass() {
76  InitializeAliasAnalysis(this);
77}
78
79// hasUniqueAddress - Return true if the specified value points to something
80// with a unique, discernable, address.
81static inline bool hasUniqueAddress(const Value *V) {
82  return isa<GlobalValue>(V) || isa<AllocationInst>(V);
83}
84
85// getUnderlyingObject - This traverses the use chain to figure out what object
86// the specified value points to.  If the value points to, or is derived from, a
87// unique object or an argument, return it.
88static const Value *getUnderlyingObject(const Value *V) {
89  if (!isa<PointerType>(V->getType())) return 0;
90
91  // If we are at some type of object... return it.
92  if (hasUniqueAddress(V) || isa<Argument>(V)) return V;
93
94  // Traverse through different addressing mechanisms...
95  if (const Instruction *I = dyn_cast<Instruction>(V)) {
96    if (isa<CastInst>(I) || isa<GetElementPtrInst>(I))
97      return getUnderlyingObject(I->getOperand(0));
98  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
99    if (CE->getOpcode() == Instruction::Cast ||
100        CE->getOpcode() == Instruction::GetElementPtr)
101      return getUnderlyingObject(CE->getOperand(0));
102  } else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V)) {
103    return CPR->getValue();
104  }
105  return 0;
106}
107
108static const User *isGEP(const Value *V) {
109  if (isa<GetElementPtrInst>(V) ||
110      (isa<ConstantExpr>(V) &&
111       cast<ConstantExpr>(V)->getOpcode() == Instruction::GetElementPtr))
112    return cast<User>(V);
113  return 0;
114}
115
116static const Value *GetGEPOperands(const Value *V, std::vector<Value*> &GEPOps){
117  assert(GEPOps.empty() && "Expect empty list to populate!");
118  GEPOps.insert(GEPOps.end(), cast<User>(V)->op_begin()+1,
119                cast<User>(V)->op_end());
120
121  // Accumulate all of the chained indexes into the operand array
122  V = cast<User>(V)->getOperand(0);
123
124  while (const User *G = isGEP(V)) {
125    if (!isa<Constant>(GEPOps[0]) ||
126        !cast<Constant>(GEPOps[0])->isNullValue())
127      break;  // Don't handle folding arbitrary pointer offsets yet...
128    GEPOps.erase(GEPOps.begin());   // Drop the zero index
129    GEPOps.insert(GEPOps.begin(), G->op_begin()+1, G->op_end());
130    V = G->getOperand(0);
131  }
132  return V;
133}
134
135/// pointsToConstantMemory - Chase pointers until we find a (constant
136/// global) or not.
137bool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) {
138  if (const Value *V = getUnderlyingObject(P))
139    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
140      return GV->isConstant();
141  return false;
142}
143
144static bool AddressMightEscape(const Value *V) {
145  for (Value::use_const_iterator UI = V->use_begin(), E = V->use_end();
146       UI != E; ++UI) {
147    const Instruction *I = cast<Instruction>(*UI);
148    switch (I->getOpcode()) {
149    case Instruction::Load: break;
150    case Instruction::Store:
151      if (I->getOperand(0) == V)
152        return true; // Escapes if the pointer is stored.
153      break;
154    case Instruction::GetElementPtr:
155      if (AddressMightEscape(I)) return true;
156      break;
157    case Instruction::Cast:
158      if (!isa<PointerType>(I->getType()))
159        return true;
160      if (AddressMightEscape(I)) return true;
161      break;
162    case Instruction::PHI:
163      if (AddressMightEscape(I)) return true;
164      break;
165    default:
166      return true;
167    }
168  }
169  return false;
170}
171
172// getModRefInfo - Check to see if the specified callsite can clobber the
173// specified memory object.  Since we only look at local properties of this
174// function, we really can't say much about this query.  We do, however, use
175// simple "address taken" analysis on local objects.
176//
177AliasAnalysis::ModRefResult
178BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
179  if (!isa<Constant>(P) && !isa<GlobalValue>(P))
180    if (const AllocationInst *AI =
181                  dyn_cast<AllocationInst>(getUnderlyingObject(P))) {
182      // Okay, the pointer is to a stack allocated object.  If we can prove that
183      // the pointer never "escapes", then we know the call cannot clobber it,
184      // because it simply can't get its address.
185      if (!AddressMightEscape(AI))
186        return NoModRef;
187    }
188
189  // If P points to a constant memory location, the call definitely could not
190  // modify the memory location.
191  return pointsToConstantMemory(P) ? Ref : ModRef;
192}
193
194// alias - Provide a bunch of ad-hoc rules to disambiguate in common cases, such
195// as array references.  Note that this function is heavily tail recursive.
196// Hopefully we have a smart C++ compiler.  :)
197//
198AliasAnalysis::AliasResult
199BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
200                          const Value *V2, unsigned V2Size) {
201  // Strip off any constant expression casts if they exist
202  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V1))
203    if (CE->getOpcode() == Instruction::Cast)
204      V1 = CE->getOperand(0);
205  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V2))
206    if (CE->getOpcode() == Instruction::Cast)
207      V2 = CE->getOperand(0);
208
209  // Strip off constant pointer refs if they exist
210  if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V1))
211    V1 = CPR->getValue();
212  if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V2))
213    V2 = CPR->getValue();
214
215  // Are we checking for alias of the same value?
216  if (V1 == V2) return MustAlias;
217
218  if ((!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType())) &&
219      V1->getType() != Type::LongTy && V2->getType() != Type::LongTy)
220    return NoAlias;  // Scalars cannot alias each other
221
222  // Strip off cast instructions...
223  if (const Instruction *I = dyn_cast<CastInst>(V1))
224    return alias(I->getOperand(0), V1Size, V2, V2Size);
225  if (const Instruction *I = dyn_cast<CastInst>(V2))
226    return alias(V1, V1Size, I->getOperand(0), V2Size);
227
228  // Figure out what objects these things are pointing to if we can...
229  const Value *O1 = getUnderlyingObject(V1);
230  const Value *O2 = getUnderlyingObject(V2);
231
232  // Pointing at a discernible object?
233  if (O1 && O2) {
234    if (isa<Argument>(O1)) {
235      // Incoming argument cannot alias locally allocated object!
236      if (isa<AllocationInst>(O2)) return NoAlias;
237      // Otherwise, nothing is known...
238    } else if (isa<Argument>(O2)) {
239      // Incoming argument cannot alias locally allocated object!
240      if (isa<AllocationInst>(O1)) return NoAlias;
241      // Otherwise, nothing is known...
242    } else {
243      // If they are two different objects, we know that we have no alias...
244      if (O1 != O2) return NoAlias;
245    }
246
247    // If they are the same object, they we can look at the indexes.  If they
248    // index off of the object is the same for both pointers, they must alias.
249    // If they are provably different, they must not alias.  Otherwise, we can't
250    // tell anything.
251  } else if (O1 && !isa<Argument>(O1) && isa<ConstantPointerNull>(V2)) {
252    return NoAlias;                    // Unique values don't alias null
253  } else if (O2 && !isa<Argument>(O2) && isa<ConstantPointerNull>(V1)) {
254    return NoAlias;                    // Unique values don't alias null
255  }
256
257  // If we have two gep instructions with must-alias'ing base pointers, figure
258  // out if the indexes to the GEP tell us anything about the derived pointer.
259  // Note that we also handle chains of getelementptr instructions as well as
260  // constant expression getelementptrs here.
261  //
262  if (isGEP(V1) && isGEP(V2)) {
263    // Drill down into the first non-gep value, to test for must-aliasing of
264    // the base pointers.
265    const Value *BasePtr1 = V1, *BasePtr2 = V2;
266    do {
267      BasePtr1 = cast<User>(BasePtr1)->getOperand(0);
268    } while (isGEP(BasePtr1) &&
269             cast<User>(BasePtr1)->getOperand(1) ==
270       Constant::getNullValue(cast<User>(BasePtr1)->getOperand(1)->getType()));
271    do {
272      BasePtr2 = cast<User>(BasePtr2)->getOperand(0);
273    } while (isGEP(BasePtr2) &&
274             cast<User>(BasePtr2)->getOperand(1) ==
275       Constant::getNullValue(cast<User>(BasePtr2)->getOperand(1)->getType()));
276
277    // Do the base pointers alias?
278    AliasResult BaseAlias = alias(BasePtr1, V1Size, BasePtr2, V2Size);
279    if (BaseAlias == NoAlias) return NoAlias;
280    if (BaseAlias == MustAlias) {
281      // If the base pointers alias each other exactly, check to see if we can
282      // figure out anything about the resultant pointers, to try to prove
283      // non-aliasing.
284
285      // Collect all of the chained GEP operands together into one simple place
286      std::vector<Value*> GEP1Ops, GEP2Ops;
287      BasePtr1 = GetGEPOperands(V1, GEP1Ops);
288      BasePtr2 = GetGEPOperands(V2, GEP2Ops);
289
290      AliasResult GAlias =
291        CheckGEPInstructions(BasePtr1->getType(), GEP1Ops, V1Size,
292                             BasePtr2->getType(), GEP2Ops, V2Size);
293      if (GAlias != MayAlias)
294        return GAlias;
295    }
296  }
297
298  // Check to see if these two pointers are related by a getelementptr
299  // instruction.  If one pointer is a GEP with a non-zero index of the other
300  // pointer, we know they cannot alias.
301  //
302  if (isGEP(V2)) {
303    std::swap(V1, V2);
304    std::swap(V1Size, V2Size);
305  }
306
307  if (V1Size != ~0U && V2Size != ~0U)
308    if (const User *GEP = isGEP(V1)) {
309      std::vector<Value*> GEPOperands;
310      const Value *BasePtr = GetGEPOperands(V1, GEPOperands);
311
312      AliasResult R = alias(BasePtr, V1Size, V2, V2Size);
313      if (R == MustAlias) {
314        // If there is at least one non-zero constant index, we know they cannot
315        // alias.
316        bool ConstantFound = false;
317        bool AllZerosFound = true;
318        for (unsigned i = 0, e = GEPOperands.size(); i != e; ++i)
319          if (const Constant *C = dyn_cast<Constant>(GEPOperands[i])) {
320            if (!C->isNullValue()) {
321              ConstantFound = true;
322              AllZerosFound = false;
323              break;
324            }
325          } else {
326            AllZerosFound = false;
327          }
328
329        // If we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 must aliases
330        // the ptr, the end result is a must alias also.
331        if (AllZerosFound)
332          return MustAlias;
333
334        if (ConstantFound) {
335          if (V2Size <= 1 && V1Size <= 1)  // Just pointer check?
336            return NoAlias;
337
338          // Otherwise we have to check to see that the distance is more than
339          // the size of the argument... build an index vector that is equal to
340          // the arguments provided, except substitute 0's for any variable
341          // indexes we find...
342          for (unsigned i = 0; i != GEPOperands.size(); ++i)
343            if (!isa<Constant>(GEPOperands[i]) ||
344                isa<ConstantExpr>(GEPOperands[i]))
345              GEPOperands[i] =Constant::getNullValue(GEPOperands[i]->getType());
346          int64_t Offset = getTargetData().getIndexedOffset(BasePtr->getType(),
347                                                            GEPOperands);
348          if (Offset >= (int64_t)V2Size || Offset <= -(int64_t)V1Size)
349            return NoAlias;
350        }
351      }
352    }
353
354  return MayAlias;
355}
356
357/// CheckGEPInstructions - Check two GEP instructions with known must-aliasing
358/// base pointers.  This checks to see if the index expressions preclude the
359/// pointers from aliasing...
360AliasAnalysis::AliasResult BasicAliasAnalysis::
361CheckGEPInstructions(const Type* BasePtr1Ty, std::vector<Value*> &GEP1Ops,
362                     unsigned G1S,
363                     const Type *BasePtr2Ty, std::vector<Value*> &GEP2Ops,
364                     unsigned G2S) {
365  // We currently can't handle the case when the base pointers have different
366  // primitive types.  Since this is uncommon anyway, we are happy being
367  // extremely conservative.
368  if (BasePtr1Ty != BasePtr2Ty)
369    return MayAlias;
370
371  const Type *GEPPointerTy = BasePtr1Ty;
372
373  // Find the (possibly empty) initial sequence of equal values... which are not
374  // necessarily constants.
375  unsigned NumGEP1Operands = GEP1Ops.size(), NumGEP2Operands = GEP2Ops.size();
376  unsigned MinOperands = std::min(NumGEP1Operands, NumGEP2Operands);
377  unsigned MaxOperands = std::max(NumGEP1Operands, NumGEP2Operands);
378  unsigned UnequalOper = 0;
379  while (UnequalOper != MinOperands &&
380         GEP1Ops[UnequalOper] == GEP2Ops[UnequalOper]) {
381    // Advance through the type as we go...
382    ++UnequalOper;
383    if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
384      BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[UnequalOper-1]);
385    else {
386      // If all operands equal each other, then the derived pointers must
387      // alias each other...
388      BasePtr1Ty = 0;
389      assert(UnequalOper == NumGEP1Operands && UnequalOper == NumGEP2Operands &&
390             "Ran out of type nesting, but not out of operands?");
391      return MustAlias;
392    }
393  }
394
395  // If we have seen all constant operands, and run out of indexes on one of the
396  // getelementptrs, check to see if the tail of the leftover one is all zeros.
397  // If so, return mustalias.
398  if (UnequalOper == MinOperands) {
399    if (GEP1Ops.size() < GEP2Ops.size()) std::swap(GEP1Ops, GEP2Ops);
400
401    bool AllAreZeros = true;
402    for (unsigned i = UnequalOper; i != MaxOperands; ++i)
403      if (!isa<Constant>(GEP1Ops[i]) ||
404          !cast<Constant>(GEP1Ops[i])->isNullValue()) {
405        AllAreZeros = false;
406        break;
407      }
408    if (AllAreZeros) return MustAlias;
409  }
410
411
412  // So now we know that the indexes derived from the base pointers,
413  // which are known to alias, are different.  We can still determine a
414  // no-alias result if there are differing constant pairs in the index
415  // chain.  For example:
416  //        A[i][0] != A[j][1] iff (&A[0][1]-&A[0][0] >= std::max(G1S, G2S))
417  //
418  unsigned SizeMax = std::max(G1S, G2S);
419  if (SizeMax == ~0U) return MayAlias; // Avoid frivolous work...
420
421  // Scan for the first operand that is constant and unequal in the
422  // two getelemenptrs...
423  unsigned FirstConstantOper = UnequalOper;
424  for (; FirstConstantOper != MinOperands; ++FirstConstantOper) {
425    const Value *G1Oper = GEP1Ops[FirstConstantOper];
426    const Value *G2Oper = GEP2Ops[FirstConstantOper];
427
428    if (G1Oper != G2Oper)   // Found non-equal constant indexes...
429      if (Constant *G1OC = dyn_cast<Constant>(const_cast<Value*>(G1Oper)))
430        if (Constant *G2OC = dyn_cast<Constant>(const_cast<Value*>(G2Oper))) {
431          // Make sure they are comparable (ie, not constant expressions)...
432          // and make sure the GEP with the smaller leading constant is GEP1.
433          Constant *Compare = ConstantExpr::get(Instruction::SetGT, G1OC, G2OC);
434          if (ConstantBool *CV = dyn_cast<ConstantBool>(Compare)) {
435            if (CV->getValue())   // If they are comparable and G2 > G1
436              std::swap(GEP1Ops, GEP2Ops);  // Make GEP1 < GEP2
437            break;
438          }
439        }
440    BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(G1Oper);
441  }
442
443  // No shared constant operands, and we ran out of common operands.  At this
444  // point, the GEP instructions have run through all of their operands, and we
445  // haven't found evidence that there are any deltas between the GEP's.
446  // However, one GEP may have more operands than the other.  If this is the
447  // case, there may still be hope.  This this now.
448  if (FirstConstantOper == MinOperands) {
449    // Make GEP1Ops be the longer one if there is a longer one.
450    if (GEP1Ops.size() < GEP2Ops.size())
451      std::swap(GEP1Ops, GEP2Ops);
452
453    // Is there anything to check?
454    if (GEP1Ops.size() > MinOperands) {
455      for (unsigned i = FirstConstantOper; i != MaxOperands; ++i)
456        if (isa<Constant>(GEP1Ops[i]) && !isa<ConstantExpr>(GEP1Ops[i]) &&
457            !cast<Constant>(GEP1Ops[i])->isNullValue()) {
458          // Yup, there's a constant in the tail.  Set all variables to
459          // constants in the GEP instruction to make it suiteable for
460          // TargetData::getIndexedOffset.
461          for (i = 0; i != MaxOperands; ++i)
462            if (!isa<Constant>(GEP1Ops[i]) || isa<ConstantExpr>(GEP1Ops[i]))
463              GEP1Ops[i] = Constant::getNullValue(GEP1Ops[i]->getType());
464          // Okay, now get the offset.  This is the relative offset for the full
465          // instruction.
466          const TargetData &TD = getTargetData();
467          int64_t Offset1 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops);
468
469          // Now crop off any constants from the end...
470          GEP1Ops.resize(MinOperands);
471          int64_t Offset2 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops);
472
473          // If the tail provided a bit enough offset, return noalias!
474          if ((uint64_t)(Offset2-Offset1) >= SizeMax)
475            return NoAlias;
476        }
477    }
478
479    // Couldn't find anything useful.
480    return MayAlias;
481  }
482
483  // If there are non-equal constants arguments, then we can figure
484  // out a minimum known delta between the two index expressions... at
485  // this point we know that the first constant index of GEP1 is less
486  // than the first constant index of GEP2.
487
488  // Advance BasePtr[12]Ty over this first differing constant operand.
489  BasePtr2Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(GEP2Ops[FirstConstantOper]);
490  BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(GEP1Ops[FirstConstantOper]);
491
492  // We are going to be using TargetData::getIndexedOffset to determine the
493  // offset that each of the GEP's is reaching.  To do this, we have to convert
494  // all variable references to constant references.  To do this, we convert the
495  // initial equal sequence of variables into constant zeros to start with.
496  for (unsigned i = 0; i != FirstConstantOper; ++i) {
497    if (!isa<Constant>(GEP1Ops[i]) || isa<ConstantExpr>(GEP1Ops[i]) ||
498        !isa<Constant>(GEP2Ops[i]) || isa<ConstantExpr>(GEP2Ops[i])) {
499      GEP1Ops[i] = Constant::getNullValue(GEP1Ops[i]->getType());
500      GEP2Ops[i] = Constant::getNullValue(GEP2Ops[i]->getType());
501    }
502  }
503
504  // We know that GEP1Ops[FirstConstantOper] & GEP2Ops[FirstConstantOper] are ok
505
506  // Loop over the rest of the operands...
507  for (unsigned i = FirstConstantOper+1; i != MaxOperands; ++i) {
508    const Value *Op1 = i < GEP1Ops.size() ? GEP1Ops[i] : 0;
509    const Value *Op2 = i < GEP2Ops.size() ? GEP2Ops[i] : 0;
510    // If they are equal, use a zero index...
511    if (Op1 == Op2 && BasePtr1Ty == BasePtr2Ty) {
512      if (!isa<Constant>(Op1) || isa<ConstantExpr>(Op1))
513        GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Op1->getType());
514      // Otherwise, just keep the constants we have.
515    } else {
516      if (Op1) {
517        if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
518          // If this is an array index, make sure the array element is in range.
519          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
520            if (Op1C->getRawValue() >= AT->getNumElements())
521              return MayAlias;  // Be conservative with out-of-range accesses
522
523        } else {
524          // GEP1 is known to produce a value less than GEP2.  To be
525          // conservatively correct, we must assume the largest possible
526          // constant is used in this position.  This cannot be the initial
527          // index to the GEP instructions (because we know we have at least one
528          // element before this one with the different constant arguments), so
529          // we know that the current index must be into either a struct or
530          // array.  Because we know it's not constant, this cannot be a
531          // structure index.  Because of this, we can calculate the maximum
532          // value possible.
533          //
534          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
535            GEP1Ops[i] = ConstantSInt::get(Type::LongTy,AT->getNumElements()-1);
536        }
537      }
538
539      if (Op2) {
540        if (const ConstantInt *Op2C = dyn_cast<ConstantInt>(Op2)) {
541          // If this is an array index, make sure the array element is in range.
542          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
543            if (Op2C->getRawValue() >= AT->getNumElements())
544              return MayAlias;  // Be conservative with out-of-range accesses
545        } else {  // Conservatively assume the minimum value for this index
546          GEP2Ops[i] = Constant::getNullValue(Op2->getType());
547        }
548      }
549    }
550
551    if (BasePtr1Ty && Op1) {
552      if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
553        BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[i]);
554      else
555        BasePtr1Ty = 0;
556    }
557
558    if (BasePtr2Ty && Op2) {
559      if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr2Ty))
560        BasePtr2Ty = CT->getTypeAtIndex(GEP2Ops[i]);
561      else
562        BasePtr2Ty = 0;
563    }
564  }
565
566  int64_t Offset1 = getTargetData().getIndexedOffset(GEPPointerTy, GEP1Ops);
567  int64_t Offset2 = getTargetData().getIndexedOffset(GEPPointerTy, GEP2Ops);
568  assert(Offset1 < Offset2 &&"There is at least one different constant here!");
569
570  if ((uint64_t)(Offset2-Offset1) >= SizeMax) {
571    //std::cerr << "Determined that these two GEP's don't alias ["
572    //          << SizeMax << " bytes]: \n" << *GEP1 << *GEP2;
573    return NoAlias;
574  }
575  return MayAlias;
576}
577
578