BasicAliasAnalysis.cpp revision 388f669d956c08571108f26a5371e02269e662f5
1//===- llvm/Analysis/BasicAliasAnalysis.h - Alias Analysis Impl -*- C++ -*-===//
2//
3// This file defines the default implementation of the Alias Analysis interface
4// that simply implements a few identities (two different globals cannot alias,
5// etc), but otherwise does no analysis.
6//
7//===----------------------------------------------------------------------===//
8
9#include "llvm/Analysis/AliasAnalysis.h"
10#include "llvm/Pass.h"
11#include "llvm/iMemory.h"
12#include "llvm/iOther.h"
13#include "llvm/ConstantHandling.h"
14#include "llvm/GlobalValue.h"
15#include "llvm/DerivedTypes.h"
16#include "llvm/Target/TargetData.h"
17
18// Make sure that anything that uses AliasAnalysis pulls in this file...
19void BasicAAStub() {}
20
21
22namespace {
23  struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis {
24
25    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
26      AliasAnalysis::getAnalysisUsage(AU);
27    }
28
29    virtual void initializePass();
30
31    // alias - This is the only method here that does anything interesting...
32    //
33    AliasResult alias(const Value *V1, unsigned V1Size,
34                      const Value *V2, unsigned V2Size);
35  private:
36    // CheckGEPInstructions - Check two GEP instructions of compatible types and
37    // equal number of arguments.  This checks to see if the index expressions
38    // preclude the pointers from aliasing...
39    AliasResult CheckGEPInstructions(GetElementPtrInst *GEP1, unsigned G1Size,
40                                     GetElementPtrInst *GEP2, unsigned G2Size);
41  };
42
43  // Register this pass...
44  RegisterOpt<BasicAliasAnalysis>
45  X("basicaa", "Basic Alias Analysis (default AA impl)");
46
47  // Declare that we implement the AliasAnalysis interface
48  RegisterAnalysisGroup<AliasAnalysis, BasicAliasAnalysis, true> Y;
49}  // End of anonymous namespace
50
51void BasicAliasAnalysis::initializePass() {
52  InitializeAliasAnalysis(this);
53}
54
55
56
57// hasUniqueAddress - Return true if the
58static inline bool hasUniqueAddress(const Value *V) {
59  return isa<GlobalValue>(V) || isa<MallocInst>(V) || isa<AllocaInst>(V);
60}
61
62static const Value *getUnderlyingObject(const Value *V) {
63  if (!isa<PointerType>(V->getType())) return 0;
64
65  // If we are at some type of object... return it.
66  if (hasUniqueAddress(V)) return V;
67
68  // Traverse through different addressing mechanisms...
69  if (const Instruction *I = dyn_cast<Instruction>(V)) {
70    if (isa<CastInst>(I) || isa<GetElementPtrInst>(I))
71      return getUnderlyingObject(I->getOperand(0));
72  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
73    if (CE->getOpcode() == Instruction::Cast ||
74        CE->getOpcode() == Instruction::GetElementPtr)
75      return getUnderlyingObject(CE->getOperand(0));
76  } else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V)) {
77    return CPR->getValue();
78  }
79  return 0;
80}
81
82
83// alias - Provide a bunch of ad-hoc rules to disambiguate in common cases, such
84// as array references.  Note that this function is heavily tail recursive.
85// Hopefully we have a smart C++ compiler.  :)
86//
87AliasAnalysis::AliasResult
88BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
89                          const Value *V2, unsigned V2Size) {
90  // Strip off constant pointer refs if they exist
91  if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V1))
92    V1 = CPR->getValue();
93  if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V2))
94    V2 = CPR->getValue();
95
96  // Are we checking for alias of the same value?
97  if (V1 == V2) return MustAlias;
98
99  if ((!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType())) &&
100      V1->getType() != Type::LongTy && V2->getType() != Type::LongTy)
101    return NoAlias;  // Scalars cannot alias each other
102
103  // Strip off cast instructions...
104  if (const Instruction *I = dyn_cast<CastInst>(V1))
105    return alias(I->getOperand(0), V1Size, V2, V2Size);
106  if (const Instruction *I = dyn_cast<CastInst>(V2))
107    return alias(V1, V1Size, I->getOperand(0), V2Size);
108
109  // Figure out what objects these things are pointing to if we can...
110  const Value *O1 = getUnderlyingObject(V1);
111  const Value *O2 = getUnderlyingObject(V2);
112
113  // Pointing at a discernable object?
114  if (O1 && O2) {
115    // If they are two different objects, we know that we have no alias...
116    if (O1 != O2) return NoAlias;
117
118    // If they are the same object, they we can look at the indexes.  If they
119    // index off of the object is the same for both pointers, they must alias.
120    // If they are provably different, they must not alias.  Otherwise, we can't
121    // tell anything.
122  } else if (O1 && isa<ConstantPointerNull>(V2)) {
123    return NoAlias;                    // Unique values don't alias null
124  } else if (O2 && isa<ConstantPointerNull>(V1)) {
125    return NoAlias;                    // Unique values don't alias null
126  }
127
128  // If we have two gep instructions with identical indices, return an alias
129  // result equal to the alias result of the original pointer...
130  //
131  if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(V1))
132    if (const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(V2))
133      if (GEP1->getNumOperands() == GEP2->getNumOperands() &&
134          GEP1->getOperand(0)->getType() == GEP2->getOperand(0)->getType()) {
135        AliasResult GAlias =
136          CheckGEPInstructions((GetElementPtrInst*)GEP1, V1Size,
137                               (GetElementPtrInst*)GEP2, V2Size);
138        if (GAlias != MayAlias)
139          return GAlias;
140      }
141
142  // Check to see if these two pointers are related by a getelementptr
143  // instruction.  If one pointer is a GEP with a non-zero index of the other
144  // pointer, we know they cannot alias.
145  //
146  if (isa<GetElementPtrInst>(V2)) {
147    std::swap(V1, V2);
148    std::swap(V1Size, V2Size);
149  }
150
151  if (V1Size != ~0U && V2Size != ~0U)
152    if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V1)) {
153      AliasResult R = alias(GEP->getOperand(0), V1Size, V2, V2Size);
154      if (R == MustAlias) {
155        // If there is at least one non-zero constant index, we know they cannot
156        // alias.
157        bool ConstantFound = false;
158        for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i)
159          if (const Constant *C = dyn_cast<Constant>(GEP->getOperand(i)))
160            if (!C->isNullValue()) {
161              ConstantFound = true;
162              break;
163          }
164        if (ConstantFound) {
165          if (V2Size <= 1 && V1Size <= 1)  // Just pointer check?
166            return NoAlias;
167
168          // Otherwise we have to check to see that the distance is more than
169          // the size of the argument... build an index vector that is equal to
170          // the arguments provided, except substitute 0's for any variable
171          // indexes we find...
172
173          std::vector<Value*> Indices;
174          Indices.reserve(GEP->getNumOperands()-1);
175          for (unsigned i = 1; i != GEP->getNumOperands(); ++i)
176            if (const Constant *C = dyn_cast<Constant>(GEP->getOperand(i)))
177              Indices.push_back((Value*)C);
178            else
179              Indices.push_back(Constant::getNullValue(Type::LongTy));
180          const Type *Ty = GEP->getOperand(0)->getType();
181          int Offset = getTargetData().getIndexedOffset(Ty, Indices);
182          if (Offset >= (int)V2Size || Offset <= -(int)V1Size)
183            return NoAlias;
184        }
185      }
186    }
187
188  return MayAlias;
189}
190
191static Value *CheckArrayIndicesForOverflow(const Type *PtrTy,
192                                           const std::vector<Value*> &Indices,
193                                           const ConstantInt *Idx) {
194  if (const ConstantSInt *IdxS = dyn_cast<ConstantSInt>(Idx)) {
195    if (IdxS->getValue() < 0)   // Underflow on the array subscript?
196      return Constant::getNullValue(Type::LongTy);
197    else {                       // Check for overflow
198      const ArrayType *ATy =
199        cast<ArrayType>(GetElementPtrInst::getIndexedType(PtrTy, Indices,true));
200      if (IdxS->getValue() >= (int64_t)ATy->getNumElements())
201        return ConstantSInt::get(Type::LongTy, ATy->getNumElements()-1);
202    }
203  }
204  return (Value*)Idx;  // Everything is acceptable.
205}
206
207// CheckGEPInstructions - Check two GEP instructions of compatible types and
208// equal number of arguments.  This checks to see if the index expressions
209// preclude the pointers from aliasing...
210//
211AliasAnalysis::AliasResult
212BasicAliasAnalysis::CheckGEPInstructions(GetElementPtrInst *GEP1, unsigned G1S,
213                                         GetElementPtrInst *GEP2, unsigned G2S){
214  // Do the base pointers alias?
215  AliasResult BaseAlias = alias(GEP1->getOperand(0), G1S,
216                                GEP2->getOperand(0), G2S);
217  if (BaseAlias != MustAlias)   // No or May alias: We cannot add anything...
218    return BaseAlias;
219
220  // Find the (possibly empty) initial sequence of equal values...
221  unsigned NumGEPOperands = GEP1->getNumOperands();
222  unsigned UnequalOper = 1;
223  while (UnequalOper != NumGEPOperands &&
224         GEP1->getOperand(UnequalOper) == GEP2->getOperand(UnequalOper))
225    ++UnequalOper;
226
227  // If all operands equal each other, then the derived pointers must
228  // alias each other...
229  if (UnequalOper == NumGEPOperands) return MustAlias;
230
231  // So now we know that the indexes derived from the base pointers,
232  // which are known to alias, are different.  We can still determine a
233  // no-alias result if there are differing constant pairs in the index
234  // chain.  For example:
235  //        A[i][0] != A[j][1] iff (&A[0][1]-&A[0][0] >= std::max(G1S, G2S))
236  //
237  unsigned SizeMax = std::max(G1S, G2S);
238  if (SizeMax == ~0U) return MayAlias; // Avoid frivolous work...
239
240  // Scan for the first operand that is constant and unequal in the
241  // two getelemenptrs...
242  unsigned FirstConstantOper = UnequalOper;
243  for (; FirstConstantOper != NumGEPOperands; ++FirstConstantOper) {
244    const Value *G1Oper = GEP1->getOperand(FirstConstantOper);
245    const Value *G2Oper = GEP2->getOperand(FirstConstantOper);
246    if (G1Oper != G2Oper &&   // Found non-equal constant indexes...
247        isa<Constant>(G1Oper) && isa<Constant>(G2Oper)) {
248      // Make sure they are comparable...  and make sure the GEP with
249      // the smaller leading constant is GEP1.
250      ConstantBool *Compare =
251        *cast<Constant>(GEP1->getOperand(FirstConstantOper)) >
252        *cast<Constant>(GEP2->getOperand(FirstConstantOper));
253      if (Compare) {  // If they are comparable...
254        if (Compare->getValue())
255          std::swap(GEP1, GEP2);  // Make GEP1 < GEP2
256        break;
257      }
258    }
259  }
260
261  // No constant operands, we cannot tell anything...
262  if (FirstConstantOper == NumGEPOperands) return MayAlias;
263
264  // If there are non-equal constants arguments, then we can figure
265  // out a minimum known delta between the two index expressions... at
266  // this point we know that the first constant index of GEP1 is less
267  // than the first constant index of GEP2.
268  //
269  std::vector<Value*> Indices1;
270  Indices1.reserve(NumGEPOperands-1);
271  for (unsigned i = 1; i != FirstConstantOper; ++i)
272    if (GEP1->getOperand(i)->getType() == Type::UByteTy)
273      Indices1.push_back(GEP1->getOperand(i));
274    else
275      Indices1.push_back(Constant::getNullValue(Type::LongTy));
276  std::vector<Value*> Indices2;
277  Indices2.reserve(NumGEPOperands-1);
278  Indices2 = Indices1;           // Copy the zeros prefix...
279
280  // Add the two known constant operands...
281  Indices1.push_back((Value*)GEP1->getOperand(FirstConstantOper));
282  Indices2.push_back((Value*)GEP2->getOperand(FirstConstantOper));
283
284  const Type *GEPPointerTy = GEP1->getOperand(0)->getType();
285
286  // Loop over the rest of the operands...
287  for (unsigned i = FirstConstantOper+1; i != NumGEPOperands; ++i) {
288    const Value *Op1 = GEP1->getOperand(i);
289    const Value *Op2 = GEP2->getOperand(i);
290    if (Op1 == Op2) {   // If they are equal, use a zero index...
291      Indices1.push_back(Constant::getNullValue(Op1->getType()));
292      Indices2.push_back(Indices1.back());
293    } else {
294      if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
295        // If this is an array index, make sure the array element is in range...
296        if (i != 1)   // The pointer index can be "out of range"
297          Op1 = CheckArrayIndicesForOverflow(GEPPointerTy, Indices1, Op1C);
298
299        Indices1.push_back((Value*)Op1);
300      } else {
301        // GEP1 is known to produce a value less than GEP2.  To be
302        // conservatively correct, we must assume the largest possible constant
303        // is used in this position.  This cannot be the initial index to the
304        // GEP instructions (because we know we have at least one element before
305        // this one with the different constant arguments), so we know that the
306        // current index must be into either a struct or array.  Because we know
307        // it's not constant, this cannot be a structure index.  Because of
308        // this, we can calculate the maximum value possible.
309        //
310        const ArrayType *ElTy =
311          cast<ArrayType>(GEP1->getIndexedType(GEPPointerTy, Indices1, true));
312        Indices1.push_back(ConstantSInt::get(Type::LongTy,
313                                             ElTy->getNumElements()-1));
314      }
315
316      if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op2)) {
317        // If this is an array index, make sure the array element is in range...
318        if (i != 1)   // The pointer index can be "out of range"
319          Op1 = CheckArrayIndicesForOverflow(GEPPointerTy, Indices2, Op1C);
320
321        Indices2.push_back((Value*)Op2);
322      }
323      else // Conservatively assume the minimum value for this index
324        Indices2.push_back(Constant::getNullValue(Op2->getType()));
325    }
326  }
327
328  int64_t Offset1 = getTargetData().getIndexedOffset(GEPPointerTy, Indices1);
329  int64_t Offset2 = getTargetData().getIndexedOffset(GEPPointerTy, Indices2);
330  assert(Offset1 < Offset2 &&"There is at least one different constant here!");
331
332  if ((uint64_t)(Offset2-Offset1) >= SizeMax) {
333    //std::cerr << "Determined that these two GEP's don't alias ["
334    //          << SizeMax << " bytes]: \n" << *GEP1 << *GEP2;
335    return NoAlias;
336  }
337  return MayAlias;
338}
339
340