BasicAliasAnalysis.cpp revision 845f0d2f0fd4a268ca1b3df9afb3de523f6dfa9d
1//===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the default implementation of the Alias Analysis interface
11// that simply implements a few identities (two different globals cannot alias,
12// etc), but otherwise does no analysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/Analysis/Passes.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
21#include "llvm/ParameterAttributes.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Instructions.h"
24#include "llvm/IntrinsicInst.h"
25#include "llvm/Pass.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/Support/Compiler.h"
30#include "llvm/Support/GetElementPtrTypeIterator.h"
31#include "llvm/Support/ManagedStatic.h"
32#include <algorithm>
33using namespace llvm;
34
35namespace {
36  /// NoAA - This class implements the -no-aa pass, which always returns "I
37  /// don't know" for alias queries.  NoAA is unlike other alias analysis
38  /// implementations, in that it does not chain to a previous analysis.  As
39  /// such it doesn't follow many of the rules that other alias analyses must.
40  ///
41  struct VISIBILITY_HIDDEN NoAA : public ImmutablePass, public AliasAnalysis {
42    static char ID; // Class identification, replacement for typeinfo
43    NoAA() : ImmutablePass((intptr_t)&ID) {}
44    explicit NoAA(intptr_t PID) : ImmutablePass(PID) { }
45
46    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
47      AU.addRequired<TargetData>();
48    }
49
50    virtual void initializePass() {
51      TD = &getAnalysis<TargetData>();
52    }
53
54    virtual AliasResult alias(const Value *V1, unsigned V1Size,
55                              const Value *V2, unsigned V2Size) {
56      return MayAlias;
57    }
58
59    virtual ModRefBehavior getModRefBehavior(Function *F, CallSite CS,
60                                         std::vector<PointerAccessInfo> *Info) {
61      return UnknownModRefBehavior;
62    }
63
64    virtual void getArgumentAccesses(Function *F, CallSite CS,
65                                     std::vector<PointerAccessInfo> &Info) {
66      assert(0 && "This method may not be called on this function!");
67    }
68
69    virtual void getMustAliases(Value *P, std::vector<Value*> &RetVals) { }
70    virtual bool pointsToConstantMemory(const Value *P) { return false; }
71    virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size) {
72      return ModRef;
73    }
74    virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
75      return ModRef;
76    }
77    virtual bool hasNoModRefInfoForCalls() const { return true; }
78
79    virtual void deleteValue(Value *V) {}
80    virtual void copyValue(Value *From, Value *To) {}
81  };
82}  // End of anonymous namespace
83
84// Register this pass...
85char NoAA::ID = 0;
86static RegisterPass<NoAA>
87U("no-aa", "No Alias Analysis (always returns 'may' alias)", true, true);
88
89// Declare that we implement the AliasAnalysis interface
90static RegisterAnalysisGroup<AliasAnalysis> V(U);
91
92ImmutablePass *llvm::createNoAAPass() { return new NoAA(); }
93
94namespace {
95  /// BasicAliasAnalysis - This is the default alias analysis implementation.
96  /// Because it doesn't chain to a previous alias analysis (like -no-aa), it
97  /// derives from the NoAA class.
98  struct VISIBILITY_HIDDEN BasicAliasAnalysis : public NoAA {
99    static char ID; // Class identification, replacement for typeinfo
100    BasicAliasAnalysis() : NoAA((intptr_t)&ID) { }
101    AliasResult alias(const Value *V1, unsigned V1Size,
102                      const Value *V2, unsigned V2Size);
103
104    ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
105    ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
106      return NoAA::getModRefInfo(CS1,CS2);
107    }
108
109    /// hasNoModRefInfoForCalls - We can provide mod/ref information against
110    /// non-escaping allocations.
111    virtual bool hasNoModRefInfoForCalls() const { return false; }
112
113    /// pointsToConstantMemory - Chase pointers until we find a (constant
114    /// global) or not.
115    bool pointsToConstantMemory(const Value *P);
116
117  private:
118    // CheckGEPInstructions - Check two GEP instructions with known
119    // must-aliasing base pointers.  This checks to see if the index expressions
120    // preclude the pointers from aliasing...
121    AliasResult
122    CheckGEPInstructions(const Type* BasePtr1Ty,
123                         Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1Size,
124                         const Type *BasePtr2Ty,
125                         Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2Size);
126  };
127}  // End of anonymous namespace
128
129// Register this pass...
130char BasicAliasAnalysis::ID = 0;
131static RegisterPass<BasicAliasAnalysis>
132X("basicaa", "Basic Alias Analysis (default AA impl)", false, true);
133
134// Declare that we implement the AliasAnalysis interface
135static RegisterAnalysisGroup<AliasAnalysis, true> Y(X);
136
137ImmutablePass *llvm::createBasicAliasAnalysisPass() {
138  return new BasicAliasAnalysis();
139}
140
141/// getUnderlyingObject - This traverses the use chain to figure out what object
142/// the specified value points to.  If the value points to, or is derived from,
143/// a unique object or an argument, return it.  This returns:
144///    Arguments, GlobalVariables, Functions, Allocas, Mallocs.
145static const Value *getUnderlyingObject(const Value *V) {
146  if (!isa<PointerType>(V->getType())) return V;
147
148  // If we are at some type of object, return it. GlobalValues and Allocations
149  // have unique addresses.
150  if (isa<GlobalValue>(V) || isa<AllocationInst>(V) || isa<Argument>(V))
151    return V;
152
153  // Traverse through different addressing mechanisms...
154  if (const Instruction *I = dyn_cast<Instruction>(V)) {
155    if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I))
156      return getUnderlyingObject(I->getOperand(0));
157  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
158    if (CE->getOpcode() == Instruction::BitCast ||
159        CE->getOpcode() == Instruction::GetElementPtr)
160      return getUnderlyingObject(CE->getOperand(0));
161  }
162  return V;
163}
164
165static const User *isGEP(const Value *V) {
166  if (isa<GetElementPtrInst>(V) ||
167      (isa<ConstantExpr>(V) &&
168       cast<ConstantExpr>(V)->getOpcode() == Instruction::GetElementPtr))
169    return cast<User>(V);
170  return 0;
171}
172
173static const Value *GetGEPOperands(const Value *V,
174                                   SmallVector<Value*, 16> &GEPOps){
175  assert(GEPOps.empty() && "Expect empty list to populate!");
176  GEPOps.insert(GEPOps.end(), cast<User>(V)->op_begin()+1,
177                cast<User>(V)->op_end());
178
179  // Accumulate all of the chained indexes into the operand array
180  V = cast<User>(V)->getOperand(0);
181
182  while (const User *G = isGEP(V)) {
183    if (!isa<Constant>(GEPOps[0]) || isa<GlobalValue>(GEPOps[0]) ||
184        !cast<Constant>(GEPOps[0])->isNullValue())
185      break;  // Don't handle folding arbitrary pointer offsets yet...
186    GEPOps.erase(GEPOps.begin());   // Drop the zero index
187    GEPOps.insert(GEPOps.begin(), G->op_begin()+1, G->op_end());
188    V = G->getOperand(0);
189  }
190  return V;
191}
192
193/// pointsToConstantMemory - Chase pointers until we find a (constant
194/// global) or not.
195bool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) {
196  if (const GlobalVariable *GV =
197        dyn_cast<GlobalVariable>(getUnderlyingObject(P)))
198    return GV->isConstant();
199  return false;
200}
201
202// Determine if an AllocationInst instruction escapes from the function it is
203// contained in. If it does not escape, there is no way for another function to
204// mod/ref it.  We do this by looking at its uses and determining if the uses
205// can escape (recursively).
206static bool AddressMightEscape(const Value *V) {
207  for (Value::use_const_iterator UI = V->use_begin(), E = V->use_end();
208       UI != E; ++UI) {
209    const Instruction *I = cast<Instruction>(*UI);
210    switch (I->getOpcode()) {
211    case Instruction::Load:
212      break; //next use.
213    case Instruction::Store:
214      if (I->getOperand(0) == V)
215        return true; // Escapes if the pointer is stored.
216      break; // next use.
217    case Instruction::GetElementPtr:
218      if (AddressMightEscape(I))
219        return true;
220      break; // next use.
221    case Instruction::BitCast:
222      if (AddressMightEscape(I))
223        return true;
224      break; // next use
225    case Instruction::Ret:
226      // If returned, the address will escape to calling functions, but no
227      // callees could modify it.
228      break; // next use
229    case Instruction::Call:
230      // If the call is to a few known safe intrinsics, we know that it does
231      // not escape
232      if (!isa<MemIntrinsic>(I))
233        return true;
234      break;  // next use
235    default:
236      return true;
237    }
238  }
239  return false;
240}
241
242// getModRefInfo - Check to see if the specified callsite can clobber the
243// specified memory object.  Since we only look at local properties of this
244// function, we really can't say much about this query.  We do, however, use
245// simple "address taken" analysis on local objects.
246//
247AliasAnalysis::ModRefResult
248BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
249  if (!isa<Constant>(P)) {
250    const Value *Object = getUnderlyingObject(P);
251
252    // If this is a tail call and P points to a stack location, we know that
253    // the tail call cannot access or modify the local stack.
254    // We cannot exclude byval arguments here; these belong to the caller of
255    // the current function not to the current function, and a tail callee
256    // may reference them.
257    if (isa<AllocaInst>(Object))
258      if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
259        if (CI->isTailCall())
260          return NoModRef;
261
262    // Allocations and byval arguments are "new" objects.
263    if (isa<AllocationInst>(Object) || isa<Argument>(Object)) {
264      // Okay, the pointer is to a stack allocated (or effectively so, for
265      // for noalias parameters) object.  If the address of this object doesn't
266      // escape from this function body to a callee, then we know that no
267      // callees can mod/ref it unless they are actually passed it.
268      if (isa<AllocationInst>(Object) ||
269          cast<Argument>(Object)->hasByValAttr() ||
270          cast<Argument>(Object)->hasNoAliasAttr())
271        if (!AddressMightEscape(Object)) {
272          bool passedAsArg = false;
273          for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
274              CI != CE; ++CI)
275            if (isa<PointerType>((*CI)->getType()) &&
276                (getUnderlyingObject(*CI) == P ||
277                 alias(cast<Value>(CI), ~0U, P, ~0U) != NoAlias))
278              passedAsArg = true;
279
280          if (!passedAsArg)
281            return NoModRef;
282        }
283    }
284  }
285
286  // The AliasAnalysis base class has some smarts, lets use them.
287  return AliasAnalysis::getModRefInfo(CS, P, Size);
288}
289
290/// isIdentifiedObject - Return true if this pointer refers to a distinct and
291/// identifiable object.  This returns true for:
292///    Global Variables and Functions
293///    Allocas and Mallocs
294///    ByVal and NoAlias Arguments
295///
296static bool isIdentifiedObject(const Value *V) {
297  if (isa<GlobalValue>(V) || isa<AllocationInst>(V))
298    return true;
299  if (const Argument *A = dyn_cast<Argument>(V))
300    return A->hasNoAliasAttr() || A->hasByValAttr();
301  return false;
302}
303
304/// isKnownNonNull - Return true if we know that the specified value is never
305/// null.
306static bool isKnownNonNull(const Value *V) {
307  // Alloca never returns null, malloc might.
308  if (isa<AllocaInst>(V)) return true;
309
310  // A byval argument is never null.
311  if (const Argument *A = dyn_cast<Argument>(V))
312    return A->hasByValAttr();
313
314  // Global values are not null unless extern weak.
315  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
316    return !GV->hasExternalWeakLinkage();
317  return false;
318}
319
320/// isNonEscapingLocalObject - Return true if the pointer is to a function-local
321/// object that never escapes from the function.
322static bool isNonEscapingLocalObject(const Value *V) {
323  // If this is a local allocation or byval argument, check to see if it
324  // escapes.
325  if (isa<AllocationInst>(V) ||
326      (isa<Argument>(V) && cast<Argument>(V)->hasByValAttr()))
327    return !AddressMightEscape(V);
328  return false;
329}
330
331
332/// isObjectSmallerThan - Return true if we can prove that the object specified
333/// by V is smaller than Size.
334static bool isObjectSmallerThan(const Value *V, unsigned Size,
335                                const TargetData &TD) {
336  const Type *AccessTy = 0;
337  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
338    AccessTy = GV->getType()->getElementType();
339
340  if (const AllocationInst *AI = dyn_cast<AllocationInst>(V))
341    if (!AI->isArrayAllocation())
342      AccessTy = AI->getType()->getElementType();
343
344  if (const Argument *A = dyn_cast<Argument>(V))
345    if (A->hasByValAttr())
346      AccessTy = cast<PointerType>(A->getType())->getElementType();
347
348  if (AccessTy && AccessTy->isSized())
349    return TD.getABITypeSize(AccessTy) < Size;
350  return false;
351}
352
353// alias - Provide a bunch of ad-hoc rules to disambiguate in common cases, such
354// as array references.  Note that this function is heavily tail recursive.
355// Hopefully we have a smart C++ compiler.  :)
356//
357AliasAnalysis::AliasResult
358BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
359                          const Value *V2, unsigned V2Size) {
360  // Strip off any constant expression casts if they exist
361  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V1))
362    if (CE->isCast() && isa<PointerType>(CE->getOperand(0)->getType()))
363      V1 = CE->getOperand(0);
364  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V2))
365    if (CE->isCast() && isa<PointerType>(CE->getOperand(0)->getType()))
366      V2 = CE->getOperand(0);
367
368  // Are we checking for alias of the same value?
369  if (V1 == V2) return MustAlias;
370
371  if ((!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType())) &&
372      V1->getType() != Type::Int64Ty && V2->getType() != Type::Int64Ty)
373    return NoAlias;  // Scalars cannot alias each other
374
375  // Strip off cast instructions...
376  if (const BitCastInst *I = dyn_cast<BitCastInst>(V1))
377    return alias(I->getOperand(0), V1Size, V2, V2Size);
378  if (const BitCastInst *I = dyn_cast<BitCastInst>(V2))
379    return alias(V1, V1Size, I->getOperand(0), V2Size);
380
381  // Figure out what objects these things are pointing to if we can...
382  const Value *O1 = getUnderlyingObject(V1);
383  const Value *O2 = getUnderlyingObject(V2);
384
385  if (O1 != O2) {
386    // If V1/V2 point to two different objects we know that we have no alias.
387    if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
388      return NoAlias;
389
390    // Incoming argument cannot alias locally allocated object!
391    if ((isa<Argument>(O1) && isa<AllocationInst>(O2)) ||
392        (isa<Argument>(O2) && isa<AllocationInst>(O1)))
393      return NoAlias;
394
395    // Most objects can't alias null.
396    if ((isa<ConstantPointerNull>(V2) && isKnownNonNull(O1)) ||
397        (isa<ConstantPointerNull>(V1) && isKnownNonNull(O2)))
398      return NoAlias;
399  }
400
401  // If the size of one access is larger than the entire object on the other
402  // side, then we know such behavior is undefined and can assume no alias.
403  const TargetData &TD = getTargetData();
404  if ((V1Size != ~0U && isObjectSmallerThan(O2, V1Size, TD)) ||
405      (V2Size != ~0U && isObjectSmallerThan(O1, V2Size, TD)))
406    return NoAlias;
407
408  // If one pointer is the result of a call/invoke and the other is a
409  // non-escaping local object, then we know the object couldn't escape to a
410  // point where the call could return it.
411  if ((isa<CallInst>(O1) || isa<InvokeInst>(O1)) &&
412      isNonEscapingLocalObject(O2))
413    return NoAlias;
414  if ((isa<CallInst>(O2) || isa<InvokeInst>(O2)) &&
415      isNonEscapingLocalObject(O1))
416    return NoAlias;
417
418  // If we have two gep instructions with must-alias'ing base pointers, figure
419  // out if the indexes to the GEP tell us anything about the derived pointer.
420  // Note that we also handle chains of getelementptr instructions as well as
421  // constant expression getelementptrs here.
422  //
423  if (isGEP(V1) && isGEP(V2)) {
424    // Drill down into the first non-gep value, to test for must-aliasing of
425    // the base pointers.
426    const User *G = cast<User>(V1);
427    while (isGEP(G->getOperand(0)) &&
428           G->getOperand(1) ==
429           Constant::getNullValue(G->getOperand(1)->getType()))
430      G = cast<User>(G->getOperand(0));
431    const Value *BasePtr1 = G->getOperand(0);
432
433    G = cast<User>(V2);
434    while (isGEP(G->getOperand(0)) &&
435           G->getOperand(1) ==
436           Constant::getNullValue(G->getOperand(1)->getType()))
437      G = cast<User>(G->getOperand(0));
438    const Value *BasePtr2 = G->getOperand(0);
439
440    // Do the base pointers alias?
441    AliasResult BaseAlias = alias(BasePtr1, ~0U, BasePtr2, ~0U);
442    if (BaseAlias == NoAlias) return NoAlias;
443    if (BaseAlias == MustAlias) {
444      // If the base pointers alias each other exactly, check to see if we can
445      // figure out anything about the resultant pointers, to try to prove
446      // non-aliasing.
447
448      // Collect all of the chained GEP operands together into one simple place
449      SmallVector<Value*, 16> GEP1Ops, GEP2Ops;
450      BasePtr1 = GetGEPOperands(V1, GEP1Ops);
451      BasePtr2 = GetGEPOperands(V2, GEP2Ops);
452
453      // If GetGEPOperands were able to fold to the same must-aliased pointer,
454      // do the comparison.
455      if (BasePtr1 == BasePtr2) {
456        AliasResult GAlias =
457          CheckGEPInstructions(BasePtr1->getType(),
458                               &GEP1Ops[0], GEP1Ops.size(), V1Size,
459                               BasePtr2->getType(),
460                               &GEP2Ops[0], GEP2Ops.size(), V2Size);
461        if (GAlias != MayAlias)
462          return GAlias;
463      }
464    }
465  }
466
467  // Check to see if these two pointers are related by a getelementptr
468  // instruction.  If one pointer is a GEP with a non-zero index of the other
469  // pointer, we know they cannot alias.
470  //
471  if (isGEP(V2)) {
472    std::swap(V1, V2);
473    std::swap(V1Size, V2Size);
474  }
475
476  if (V1Size != ~0U && V2Size != ~0U)
477    if (isGEP(V1)) {
478      SmallVector<Value*, 16> GEPOperands;
479      const Value *BasePtr = GetGEPOperands(V1, GEPOperands);
480
481      AliasResult R = alias(BasePtr, V1Size, V2, V2Size);
482      if (R == MustAlias) {
483        // If there is at least one non-zero constant index, we know they cannot
484        // alias.
485        bool ConstantFound = false;
486        bool AllZerosFound = true;
487        for (unsigned i = 0, e = GEPOperands.size(); i != e; ++i)
488          if (const Constant *C = dyn_cast<Constant>(GEPOperands[i])) {
489            if (!C->isNullValue()) {
490              ConstantFound = true;
491              AllZerosFound = false;
492              break;
493            }
494          } else {
495            AllZerosFound = false;
496          }
497
498        // If we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 must aliases
499        // the ptr, the end result is a must alias also.
500        if (AllZerosFound)
501          return MustAlias;
502
503        if (ConstantFound) {
504          if (V2Size <= 1 && V1Size <= 1)  // Just pointer check?
505            return NoAlias;
506
507          // Otherwise we have to check to see that the distance is more than
508          // the size of the argument... build an index vector that is equal to
509          // the arguments provided, except substitute 0's for any variable
510          // indexes we find...
511          if (cast<PointerType>(
512                BasePtr->getType())->getElementType()->isSized()) {
513            for (unsigned i = 0; i != GEPOperands.size(); ++i)
514              if (!isa<ConstantInt>(GEPOperands[i]))
515                GEPOperands[i] =
516                  Constant::getNullValue(GEPOperands[i]->getType());
517            int64_t Offset =
518              getTargetData().getIndexedOffset(BasePtr->getType(),
519                                               &GEPOperands[0],
520                                               GEPOperands.size());
521
522            if (Offset >= (int64_t)V2Size || Offset <= -(int64_t)V1Size)
523              return NoAlias;
524          }
525        }
526      }
527    }
528
529  return MayAlias;
530}
531
532// This function is used to determin if the indices of two GEP instructions are
533// equal. V1 and V2 are the indices.
534static bool IndexOperandsEqual(Value *V1, Value *V2) {
535  if (V1->getType() == V2->getType())
536    return V1 == V2;
537  if (Constant *C1 = dyn_cast<Constant>(V1))
538    if (Constant *C2 = dyn_cast<Constant>(V2)) {
539      // Sign extend the constants to long types, if necessary
540      if (C1->getType() != Type::Int64Ty)
541        C1 = ConstantExpr::getSExt(C1, Type::Int64Ty);
542      if (C2->getType() != Type::Int64Ty)
543        C2 = ConstantExpr::getSExt(C2, Type::Int64Ty);
544      return C1 == C2;
545    }
546  return false;
547}
548
549/// CheckGEPInstructions - Check two GEP instructions with known must-aliasing
550/// base pointers.  This checks to see if the index expressions preclude the
551/// pointers from aliasing...
552AliasAnalysis::AliasResult
553BasicAliasAnalysis::CheckGEPInstructions(
554  const Type* BasePtr1Ty, Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1S,
555  const Type *BasePtr2Ty, Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2S) {
556  // We currently can't handle the case when the base pointers have different
557  // primitive types.  Since this is uncommon anyway, we are happy being
558  // extremely conservative.
559  if (BasePtr1Ty != BasePtr2Ty)
560    return MayAlias;
561
562  const PointerType *GEPPointerTy = cast<PointerType>(BasePtr1Ty);
563
564  // Find the (possibly empty) initial sequence of equal values... which are not
565  // necessarily constants.
566  unsigned NumGEP1Operands = NumGEP1Ops, NumGEP2Operands = NumGEP2Ops;
567  unsigned MinOperands = std::min(NumGEP1Operands, NumGEP2Operands);
568  unsigned MaxOperands = std::max(NumGEP1Operands, NumGEP2Operands);
569  unsigned UnequalOper = 0;
570  while (UnequalOper != MinOperands &&
571         IndexOperandsEqual(GEP1Ops[UnequalOper], GEP2Ops[UnequalOper])) {
572    // Advance through the type as we go...
573    ++UnequalOper;
574    if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
575      BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[UnequalOper-1]);
576    else {
577      // If all operands equal each other, then the derived pointers must
578      // alias each other...
579      BasePtr1Ty = 0;
580      assert(UnequalOper == NumGEP1Operands && UnequalOper == NumGEP2Operands &&
581             "Ran out of type nesting, but not out of operands?");
582      return MustAlias;
583    }
584  }
585
586  // If we have seen all constant operands, and run out of indexes on one of the
587  // getelementptrs, check to see if the tail of the leftover one is all zeros.
588  // If so, return mustalias.
589  if (UnequalOper == MinOperands) {
590    if (NumGEP1Ops < NumGEP2Ops) {
591      std::swap(GEP1Ops, GEP2Ops);
592      std::swap(NumGEP1Ops, NumGEP2Ops);
593    }
594
595    bool AllAreZeros = true;
596    for (unsigned i = UnequalOper; i != MaxOperands; ++i)
597      if (!isa<Constant>(GEP1Ops[i]) ||
598          !cast<Constant>(GEP1Ops[i])->isNullValue()) {
599        AllAreZeros = false;
600        break;
601      }
602    if (AllAreZeros) return MustAlias;
603  }
604
605
606  // So now we know that the indexes derived from the base pointers,
607  // which are known to alias, are different.  We can still determine a
608  // no-alias result if there are differing constant pairs in the index
609  // chain.  For example:
610  //        A[i][0] != A[j][1] iff (&A[0][1]-&A[0][0] >= std::max(G1S, G2S))
611  //
612  // We have to be careful here about array accesses.  In particular, consider:
613  //        A[1][0] vs A[0][i]
614  // In this case, we don't *know* that the array will be accessed in bounds:
615  // the index could even be negative.  Because of this, we have to
616  // conservatively *give up* and return may alias.  We disregard differing
617  // array subscripts that are followed by a variable index without going
618  // through a struct.
619  //
620  unsigned SizeMax = std::max(G1S, G2S);
621  if (SizeMax == ~0U) return MayAlias; // Avoid frivolous work.
622
623  // Scan for the first operand that is constant and unequal in the
624  // two getelementptrs...
625  unsigned FirstConstantOper = UnequalOper;
626  for (; FirstConstantOper != MinOperands; ++FirstConstantOper) {
627    const Value *G1Oper = GEP1Ops[FirstConstantOper];
628    const Value *G2Oper = GEP2Ops[FirstConstantOper];
629
630    if (G1Oper != G2Oper)   // Found non-equal constant indexes...
631      if (Constant *G1OC = dyn_cast<ConstantInt>(const_cast<Value*>(G1Oper)))
632        if (Constant *G2OC = dyn_cast<ConstantInt>(const_cast<Value*>(G2Oper))){
633          if (G1OC->getType() != G2OC->getType()) {
634            // Sign extend both operands to long.
635            if (G1OC->getType() != Type::Int64Ty)
636              G1OC = ConstantExpr::getSExt(G1OC, Type::Int64Ty);
637            if (G2OC->getType() != Type::Int64Ty)
638              G2OC = ConstantExpr::getSExt(G2OC, Type::Int64Ty);
639            GEP1Ops[FirstConstantOper] = G1OC;
640            GEP2Ops[FirstConstantOper] = G2OC;
641          }
642
643          if (G1OC != G2OC) {
644            // Handle the "be careful" case above: if this is an array/vector
645            // subscript, scan for a subsequent variable array index.
646            if (isa<SequentialType>(BasePtr1Ty))  {
647              const Type *NextTy =
648                cast<SequentialType>(BasePtr1Ty)->getElementType();
649              bool isBadCase = false;
650
651              for (unsigned Idx = FirstConstantOper+1;
652                   Idx != MinOperands && isa<SequentialType>(NextTy); ++Idx) {
653                const Value *V1 = GEP1Ops[Idx], *V2 = GEP2Ops[Idx];
654                if (!isa<Constant>(V1) || !isa<Constant>(V2)) {
655                  isBadCase = true;
656                  break;
657                }
658                NextTy = cast<SequentialType>(NextTy)->getElementType();
659              }
660
661              if (isBadCase) G1OC = 0;
662            }
663
664            // Make sure they are comparable (ie, not constant expressions), and
665            // make sure the GEP with the smaller leading constant is GEP1.
666            if (G1OC) {
667              Constant *Compare = ConstantExpr::getICmp(ICmpInst::ICMP_SGT,
668                                                        G1OC, G2OC);
669              if (ConstantInt *CV = dyn_cast<ConstantInt>(Compare)) {
670                if (CV->getZExtValue()) {  // If they are comparable and G2 > G1
671                  std::swap(GEP1Ops, GEP2Ops);  // Make GEP1 < GEP2
672                  std::swap(NumGEP1Ops, NumGEP2Ops);
673                }
674                break;
675              }
676            }
677          }
678        }
679    BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(G1Oper);
680  }
681
682  // No shared constant operands, and we ran out of common operands.  At this
683  // point, the GEP instructions have run through all of their operands, and we
684  // haven't found evidence that there are any deltas between the GEP's.
685  // However, one GEP may have more operands than the other.  If this is the
686  // case, there may still be hope.  Check this now.
687  if (FirstConstantOper == MinOperands) {
688    // Make GEP1Ops be the longer one if there is a longer one.
689    if (NumGEP1Ops < NumGEP2Ops) {
690      std::swap(GEP1Ops, GEP2Ops);
691      std::swap(NumGEP1Ops, NumGEP2Ops);
692    }
693
694    // Is there anything to check?
695    if (NumGEP1Ops > MinOperands) {
696      for (unsigned i = FirstConstantOper; i != MaxOperands; ++i)
697        if (isa<ConstantInt>(GEP1Ops[i]) &&
698            !cast<ConstantInt>(GEP1Ops[i])->isZero()) {
699          // Yup, there's a constant in the tail.  Set all variables to
700          // constants in the GEP instruction to make it suitable for
701          // TargetData::getIndexedOffset.
702          for (i = 0; i != MaxOperands; ++i)
703            if (!isa<ConstantInt>(GEP1Ops[i]))
704              GEP1Ops[i] = Constant::getNullValue(GEP1Ops[i]->getType());
705          // Okay, now get the offset.  This is the relative offset for the full
706          // instruction.
707          const TargetData &TD = getTargetData();
708          int64_t Offset1 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops,
709                                                NumGEP1Ops);
710
711          // Now check without any constants at the end.
712          int64_t Offset2 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops,
713                                                MinOperands);
714
715          // Make sure we compare the absolute difference.
716          if (Offset1 > Offset2)
717            std::swap(Offset1, Offset2);
718
719          // If the tail provided a bit enough offset, return noalias!
720          if ((uint64_t)(Offset2-Offset1) >= SizeMax)
721            return NoAlias;
722          // Otherwise break - we don't look for another constant in the tail.
723          break;
724        }
725    }
726
727    // Couldn't find anything useful.
728    return MayAlias;
729  }
730
731  // If there are non-equal constants arguments, then we can figure
732  // out a minimum known delta between the two index expressions... at
733  // this point we know that the first constant index of GEP1 is less
734  // than the first constant index of GEP2.
735
736  // Advance BasePtr[12]Ty over this first differing constant operand.
737  BasePtr2Ty = cast<CompositeType>(BasePtr1Ty)->
738      getTypeAtIndex(GEP2Ops[FirstConstantOper]);
739  BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->
740      getTypeAtIndex(GEP1Ops[FirstConstantOper]);
741
742  // We are going to be using TargetData::getIndexedOffset to determine the
743  // offset that each of the GEP's is reaching.  To do this, we have to convert
744  // all variable references to constant references.  To do this, we convert the
745  // initial sequence of array subscripts into constant zeros to start with.
746  const Type *ZeroIdxTy = GEPPointerTy;
747  for (unsigned i = 0; i != FirstConstantOper; ++i) {
748    if (!isa<StructType>(ZeroIdxTy))
749      GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Type::Int32Ty);
750
751    if (const CompositeType *CT = dyn_cast<CompositeType>(ZeroIdxTy))
752      ZeroIdxTy = CT->getTypeAtIndex(GEP1Ops[i]);
753  }
754
755  // We know that GEP1Ops[FirstConstantOper] & GEP2Ops[FirstConstantOper] are ok
756
757  // Loop over the rest of the operands...
758  for (unsigned i = FirstConstantOper+1; i != MaxOperands; ++i) {
759    const Value *Op1 = i < NumGEP1Ops ? GEP1Ops[i] : 0;
760    const Value *Op2 = i < NumGEP2Ops ? GEP2Ops[i] : 0;
761    // If they are equal, use a zero index...
762    if (Op1 == Op2 && BasePtr1Ty == BasePtr2Ty) {
763      if (!isa<ConstantInt>(Op1))
764        GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Op1->getType());
765      // Otherwise, just keep the constants we have.
766    } else {
767      if (Op1) {
768        if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
769          // If this is an array index, make sure the array element is in range.
770          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty)) {
771            if (Op1C->getZExtValue() >= AT->getNumElements())
772              return MayAlias;  // Be conservative with out-of-range accesses
773          } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty)) {
774            if (Op1C->getZExtValue() >= VT->getNumElements())
775              return MayAlias;  // Be conservative with out-of-range accesses
776          }
777
778        } else {
779          // GEP1 is known to produce a value less than GEP2.  To be
780          // conservatively correct, we must assume the largest possible
781          // constant is used in this position.  This cannot be the initial
782          // index to the GEP instructions (because we know we have at least one
783          // element before this one with the different constant arguments), so
784          // we know that the current index must be into either a struct or
785          // array.  Because we know it's not constant, this cannot be a
786          // structure index.  Because of this, we can calculate the maximum
787          // value possible.
788          //
789          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
790            GEP1Ops[i] = ConstantInt::get(Type::Int64Ty,AT->getNumElements()-1);
791          else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty))
792            GEP1Ops[i] = ConstantInt::get(Type::Int64Ty,VT->getNumElements()-1);
793        }
794      }
795
796      if (Op2) {
797        if (const ConstantInt *Op2C = dyn_cast<ConstantInt>(Op2)) {
798          // If this is an array index, make sure the array element is in range.
799          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr2Ty)) {
800            if (Op2C->getZExtValue() >= AT->getNumElements())
801              return MayAlias;  // Be conservative with out-of-range accesses
802          } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr2Ty)) {
803            if (Op2C->getZExtValue() >= VT->getNumElements())
804              return MayAlias;  // Be conservative with out-of-range accesses
805          }
806        } else {  // Conservatively assume the minimum value for this index
807          GEP2Ops[i] = Constant::getNullValue(Op2->getType());
808        }
809      }
810    }
811
812    if (BasePtr1Ty && Op1) {
813      if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
814        BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[i]);
815      else
816        BasePtr1Ty = 0;
817    }
818
819    if (BasePtr2Ty && Op2) {
820      if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr2Ty))
821        BasePtr2Ty = CT->getTypeAtIndex(GEP2Ops[i]);
822      else
823        BasePtr2Ty = 0;
824    }
825  }
826
827  if (GEPPointerTy->getElementType()->isSized()) {
828    int64_t Offset1 =
829      getTargetData().getIndexedOffset(GEPPointerTy, GEP1Ops, NumGEP1Ops);
830    int64_t Offset2 =
831      getTargetData().getIndexedOffset(GEPPointerTy, GEP2Ops, NumGEP2Ops);
832    assert(Offset1 != Offset2 &&
833           "There is at least one different constant here!");
834
835    // Make sure we compare the absolute difference.
836    if (Offset1 > Offset2)
837      std::swap(Offset1, Offset2);
838
839    if ((uint64_t)(Offset2-Offset1) >= SizeMax) {
840      //cerr << "Determined that these two GEP's don't alias ["
841      //     << SizeMax << " bytes]: \n" << *GEP1 << *GEP2;
842      return NoAlias;
843    }
844  }
845  return MayAlias;
846}
847
848// Make sure that anything that uses AliasAnalysis pulls in this file...
849DEFINING_FILE_FOR(BasicAliasAnalysis)
850