BasicAliasAnalysis.cpp revision d087480166d8f0ec2a44732c7ec087f4eb1ba527
1//===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the default implementation of the Alias Analysis interface
11// that simply implements a few identities (two different globals cannot alias,
12// etc), but otherwise does no analysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/Analysis/Passes.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
21#include "llvm/ParameterAttributes.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Instructions.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/Pass.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/Support/Compiler.h"
30#include "llvm/Support/GetElementPtrTypeIterator.h"
31#include "llvm/Support/ManagedStatic.h"
32#include <algorithm>
33using namespace llvm;
34
35namespace {
36  /// NoAA - This class implements the -no-aa pass, which always returns "I
37  /// don't know" for alias queries.  NoAA is unlike other alias analysis
38  /// implementations, in that it does not chain to a previous analysis.  As
39  /// such it doesn't follow many of the rules that other alias analyses must.
40  ///
41  struct VISIBILITY_HIDDEN NoAA : public ImmutablePass, public AliasAnalysis {
42    static char ID; // Class identification, replacement for typeinfo
43    NoAA() : ImmutablePass((intptr_t)&ID) {}
44    explicit NoAA(intptr_t PID) : ImmutablePass(PID) { }
45
46    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
47      AU.addRequired<TargetData>();
48    }
49
50    virtual void initializePass() {
51      TD = &getAnalysis<TargetData>();
52    }
53
54    virtual AliasResult alias(const Value *V1, unsigned V1Size,
55                              const Value *V2, unsigned V2Size) {
56      return MayAlias;
57    }
58
59    virtual ModRefBehavior getModRefBehavior(Function *F, CallSite CS,
60                                         std::vector<PointerAccessInfo> *Info) {
61      return UnknownModRefBehavior;
62    }
63
64    virtual void getArgumentAccesses(Function *F, CallSite CS,
65                                     std::vector<PointerAccessInfo> &Info) {
66      assert(0 && "This method may not be called on this function!");
67    }
68
69    virtual void getMustAliases(Value *P, std::vector<Value*> &RetVals) { }
70    virtual bool pointsToConstantMemory(const Value *P) { return false; }
71    virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size) {
72      return ModRef;
73    }
74    virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
75      return ModRef;
76    }
77    virtual bool hasNoModRefInfoForCalls() const { return true; }
78
79    virtual void deleteValue(Value *V) {}
80    virtual void copyValue(Value *From, Value *To) {}
81  };
82
83  // Register this pass...
84  char NoAA::ID = 0;
85  RegisterPass<NoAA>
86  U("no-aa", "No Alias Analysis (always returns 'may' alias)");
87
88  // Declare that we implement the AliasAnalysis interface
89  RegisterAnalysisGroup<AliasAnalysis> V(U);
90}  // End of anonymous namespace
91
92ImmutablePass *llvm::createNoAAPass() { return new NoAA(); }
93
94namespace {
95  /// BasicAliasAnalysis - This is the default alias analysis implementation.
96  /// Because it doesn't chain to a previous alias analysis (like -no-aa), it
97  /// derives from the NoAA class.
98  struct VISIBILITY_HIDDEN BasicAliasAnalysis : public NoAA {
99    static char ID; // Class identification, replacement for typeinfo
100    BasicAliasAnalysis() : NoAA((intptr_t)&ID) { }
101    AliasResult alias(const Value *V1, unsigned V1Size,
102                      const Value *V2, unsigned V2Size);
103
104    ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
105    ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
106      return NoAA::getModRefInfo(CS1,CS2);
107    }
108
109    /// hasNoModRefInfoForCalls - We can provide mod/ref information against
110    /// non-escaping allocations.
111    virtual bool hasNoModRefInfoForCalls() const { return false; }
112
113    /// pointsToConstantMemory - Chase pointers until we find a (constant
114    /// global) or not.
115    bool pointsToConstantMemory(const Value *P);
116
117  private:
118    // CheckGEPInstructions - Check two GEP instructions with known
119    // must-aliasing base pointers.  This checks to see if the index expressions
120    // preclude the pointers from aliasing...
121    AliasResult
122    CheckGEPInstructions(const Type* BasePtr1Ty,
123                         Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1Size,
124                         const Type *BasePtr2Ty,
125                         Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2Size);
126  };
127
128  // Register this pass...
129  char BasicAliasAnalysis::ID = 0;
130  RegisterPass<BasicAliasAnalysis>
131  X("basicaa", "Basic Alias Analysis (default AA impl)");
132
133  // Declare that we implement the AliasAnalysis interface
134  RegisterAnalysisGroup<AliasAnalysis, true> Y(X);
135}  // End of anonymous namespace
136
137ImmutablePass *llvm::createBasicAliasAnalysisPass() {
138  return new BasicAliasAnalysis();
139}
140
141/// getUnderlyingObject - This traverses the use chain to figure out what object
142/// the specified value points to.  If the value points to, or is derived from,
143/// a unique object or an argument, return it.  This returns:
144///    Arguments, GlobalVariables, Functions, Allocas, Mallocs.
145static const Value *getUnderlyingObject(const Value *V) {
146  if (!isa<PointerType>(V->getType())) return 0;
147
148  // If we are at some type of object, return it. GlobalValues and Allocations
149  // have unique addresses.
150  if (isa<GlobalValue>(V) || isa<AllocationInst>(V) || isa<Argument>(V))
151    return V;
152
153  // Traverse through different addressing mechanisms...
154  if (const Instruction *I = dyn_cast<Instruction>(V)) {
155    if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I))
156      return getUnderlyingObject(I->getOperand(0));
157  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
158    if (CE->getOpcode() == Instruction::BitCast ||
159        CE->getOpcode() == Instruction::GetElementPtr)
160      return getUnderlyingObject(CE->getOperand(0));
161  }
162  return 0;
163}
164
165static const User *isGEP(const Value *V) {
166  if (isa<GetElementPtrInst>(V) ||
167      (isa<ConstantExpr>(V) &&
168       cast<ConstantExpr>(V)->getOpcode() == Instruction::GetElementPtr))
169    return cast<User>(V);
170  return 0;
171}
172
173static const Value *GetGEPOperands(const Value *V,
174                                   SmallVector<Value*, 16> &GEPOps){
175  assert(GEPOps.empty() && "Expect empty list to populate!");
176  GEPOps.insert(GEPOps.end(), cast<User>(V)->op_begin()+1,
177                cast<User>(V)->op_end());
178
179  // Accumulate all of the chained indexes into the operand array
180  V = cast<User>(V)->getOperand(0);
181
182  while (const User *G = isGEP(V)) {
183    if (!isa<Constant>(GEPOps[0]) || isa<GlobalValue>(GEPOps[0]) ||
184        !cast<Constant>(GEPOps[0])->isNullValue())
185      break;  // Don't handle folding arbitrary pointer offsets yet...
186    GEPOps.erase(GEPOps.begin());   // Drop the zero index
187    GEPOps.insert(GEPOps.begin(), G->op_begin()+1, G->op_end());
188    V = G->getOperand(0);
189  }
190  return V;
191}
192
193/// pointsToConstantMemory - Chase pointers until we find a (constant
194/// global) or not.
195bool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) {
196  if (const Value *V = getUnderlyingObject(P))
197    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
198      return GV->isConstant();
199  return false;
200}
201
202// Determine if an AllocationInst instruction escapes from the function it is
203// contained in. If it does not escape, there is no way for another function to
204// mod/ref it.  We do this by looking at its uses and determining if the uses
205// can escape (recursively).
206static bool AddressMightEscape(const Value *V) {
207  for (Value::use_const_iterator UI = V->use_begin(), E = V->use_end();
208       UI != E; ++UI) {
209    const Instruction *I = cast<Instruction>(*UI);
210    switch (I->getOpcode()) {
211    case Instruction::Load:
212      break; //next use.
213    case Instruction::Store:
214      if (I->getOperand(0) == V)
215        return true; // Escapes if the pointer is stored.
216      break; // next use.
217    case Instruction::GetElementPtr:
218      if (AddressMightEscape(I))
219        return true;
220      break; // next use.
221    case Instruction::BitCast:
222      if (!isa<PointerType>(I->getType()))
223        return true;
224      if (AddressMightEscape(I))
225        return true;
226      break; // next use
227    case Instruction::Ret:
228      // If returned, the address will escape to calling functions, but no
229      // callees could modify it.
230      break; // next use
231    default:
232      return true;
233    }
234  }
235  return false;
236}
237
238// getModRefInfo - Check to see if the specified callsite can clobber the
239// specified memory object.  Since we only look at local properties of this
240// function, we really can't say much about this query.  We do, however, use
241// simple "address taken" analysis on local objects.
242//
243AliasAnalysis::ModRefResult
244BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
245  if (!isa<Constant>(P)) {
246    const Value *Object = getUnderlyingObject(P);
247    // Allocations and byval arguments are "new" objects.
248    if (Object &&
249        (isa<AllocationInst>(Object) ||
250         (isa<Argument>(Object) && cast<Argument>(Object)->hasByValAttr()))) {
251      // Okay, the pointer is to a stack allocated object.  If we can prove that
252      // the pointer never "escapes", then we know the call cannot clobber it,
253      // because it simply can't get its address.
254      if (!AddressMightEscape(Object))
255        return NoModRef;
256
257      // If this is a tail call and P points to a stack location, we know that
258      // the tail call cannot access or modify the local stack.
259      if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
260        if (CI->isTailCall() && !isa<MallocInst>(Object))
261          return NoModRef;
262    }
263  }
264
265  // The AliasAnalysis base class has some smarts, lets use them.
266  return AliasAnalysis::getModRefInfo(CS, P, Size);
267}
268
269// alias - Provide a bunch of ad-hoc rules to disambiguate in common cases, such
270// as array references.  Note that this function is heavily tail recursive.
271// Hopefully we have a smart C++ compiler.  :)
272//
273AliasAnalysis::AliasResult
274BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
275                          const Value *V2, unsigned V2Size) {
276  // Strip off any constant expression casts if they exist
277  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V1))
278    if (CE->isCast() && isa<PointerType>(CE->getOperand(0)->getType()))
279      V1 = CE->getOperand(0);
280  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V2))
281    if (CE->isCast() && isa<PointerType>(CE->getOperand(0)->getType()))
282      V2 = CE->getOperand(0);
283
284  // Are we checking for alias of the same value?
285  if (V1 == V2) return MustAlias;
286
287  if ((!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType())) &&
288      V1->getType() != Type::Int64Ty && V2->getType() != Type::Int64Ty)
289    return NoAlias;  // Scalars cannot alias each other
290
291  // Strip off cast instructions...
292  if (const BitCastInst *I = dyn_cast<BitCastInst>(V1))
293    return alias(I->getOperand(0), V1Size, V2, V2Size);
294  if (const BitCastInst *I = dyn_cast<BitCastInst>(V2))
295    return alias(V1, V1Size, I->getOperand(0), V2Size);
296
297  // Figure out what objects these things are pointing to if we can...
298  const Value *O1 = getUnderlyingObject(V1);
299  const Value *O2 = getUnderlyingObject(V2);
300
301  // Pointing at a discernible object?
302  if (O1) {
303    if (O2) {
304      if (const Argument *O1Arg = dyn_cast<Argument>(O1)) {
305        // Incoming argument cannot alias locally allocated object!
306        if (isa<AllocationInst>(O2)) return NoAlias;
307
308        // If they are two different objects, and one is a noalias argument
309        // then they do not alias.
310        if (O1 != O2 && O1Arg->hasNoAliasAttr())
311          return NoAlias;
312
313        // Byval arguments can't alias globals or other arguments.
314        if (O1 != O2 && O1Arg->hasByValAttr()) return NoAlias;
315
316        // Otherwise, nothing is known...
317      }
318
319      if (const Argument *O2Arg = dyn_cast<Argument>(O2)) {
320        // Incoming argument cannot alias locally allocated object!
321        if (isa<AllocationInst>(O1)) return NoAlias;
322
323        // If they are two different objects, and one is a noalias argument
324        // then they do not alias.
325        if (O1 != O2 && O2Arg->hasNoAliasAttr())
326          return NoAlias;
327
328        // Byval arguments can't alias globals or other arguments.
329        if (O1 != O2 && O2Arg->hasByValAttr()) return NoAlias;
330
331        // Otherwise, nothing is known...
332
333      } else if (O1 != O2 && !isa<Argument>(O1)) {
334        // If they are two different objects, and neither is an argument,
335        // we know that we have no alias.
336        return NoAlias;
337      }
338
339      // If they are the same object, they we can look at the indexes.  If they
340      // index off of the object is the same for both pointers, they must alias.
341      // If they are provably different, they must not alias.  Otherwise, we
342      // can't tell anything.
343    }
344
345    // Unique values don't alias null, except non-byval arguments.
346    if (isa<ConstantPointerNull>(V2)) {
347      if (const Argument *O1Arg = dyn_cast<Argument>(O1)) {
348        if (O1Arg->hasByValAttr())
349          return NoAlias;
350      } else {
351        return NoAlias;
352      }
353    }
354
355    if (isa<GlobalVariable>(O1) ||
356        (isa<AllocationInst>(O1) &&
357         !cast<AllocationInst>(O1)->isArrayAllocation()))
358      if (cast<PointerType>(O1->getType())->getElementType()->isSized()) {
359        // If the size of the other access is larger than the total size of the
360        // global/alloca/malloc, it cannot be accessing the global (it's
361        // undefined to load or store bytes before or after an object).
362        const Type *ElTy = cast<PointerType>(O1->getType())->getElementType();
363        unsigned GlobalSize = getTargetData().getABITypeSize(ElTy);
364        if (GlobalSize < V2Size && V2Size != ~0U)
365          return NoAlias;
366      }
367  }
368
369  if (O2) {
370    if (!isa<Argument>(O2) && isa<ConstantPointerNull>(V1))
371      return NoAlias;                    // Unique values don't alias null
372
373    if (isa<GlobalVariable>(O2) ||
374        (isa<AllocationInst>(O2) &&
375         !cast<AllocationInst>(O2)->isArrayAllocation()))
376      if (cast<PointerType>(O2->getType())->getElementType()->isSized()) {
377        // If the size of the other access is larger than the total size of the
378        // global/alloca/malloc, it cannot be accessing the object (it's
379        // undefined to load or store bytes before or after an object).
380        const Type *ElTy = cast<PointerType>(O2->getType())->getElementType();
381        unsigned GlobalSize = getTargetData().getABITypeSize(ElTy);
382        if (GlobalSize < V1Size && V1Size != ~0U)
383          return NoAlias;
384      }
385  }
386
387  // If we have two gep instructions with must-alias'ing base pointers, figure
388  // out if the indexes to the GEP tell us anything about the derived pointer.
389  // Note that we also handle chains of getelementptr instructions as well as
390  // constant expression getelementptrs here.
391  //
392  if (isGEP(V1) && isGEP(V2)) {
393    // Drill down into the first non-gep value, to test for must-aliasing of
394    // the base pointers.
395    const User *G = cast<User>(V1);
396    while (isGEP(G->getOperand(0)) &&
397           G->getOperand(1) ==
398           Constant::getNullValue(G->getOperand(1)->getType()))
399      G = cast<User>(G->getOperand(0));
400    const Value *BasePtr1 = G->getOperand(0);
401
402    G = cast<User>(V2);
403    while (isGEP(G->getOperand(0)) &&
404           G->getOperand(1) ==
405           Constant::getNullValue(G->getOperand(1)->getType()))
406      G = cast<User>(G->getOperand(0));
407    const Value *BasePtr2 = G->getOperand(0);
408
409    // Do the base pointers alias?
410    AliasResult BaseAlias = alias(BasePtr1, ~0U, BasePtr2, ~0U);
411    if (BaseAlias == NoAlias) return NoAlias;
412    if (BaseAlias == MustAlias) {
413      // If the base pointers alias each other exactly, check to see if we can
414      // figure out anything about the resultant pointers, to try to prove
415      // non-aliasing.
416
417      // Collect all of the chained GEP operands together into one simple place
418      SmallVector<Value*, 16> GEP1Ops, GEP2Ops;
419      BasePtr1 = GetGEPOperands(V1, GEP1Ops);
420      BasePtr2 = GetGEPOperands(V2, GEP2Ops);
421
422      // If GetGEPOperands were able to fold to the same must-aliased pointer,
423      // do the comparison.
424      if (BasePtr1 == BasePtr2) {
425        AliasResult GAlias =
426          CheckGEPInstructions(BasePtr1->getType(),
427                               &GEP1Ops[0], GEP1Ops.size(), V1Size,
428                               BasePtr2->getType(),
429                               &GEP2Ops[0], GEP2Ops.size(), V2Size);
430        if (GAlias != MayAlias)
431          return GAlias;
432      }
433    }
434  }
435
436  // Check to see if these two pointers are related by a getelementptr
437  // instruction.  If one pointer is a GEP with a non-zero index of the other
438  // pointer, we know they cannot alias.
439  //
440  if (isGEP(V2)) {
441    std::swap(V1, V2);
442    std::swap(V1Size, V2Size);
443  }
444
445  if (V1Size != ~0U && V2Size != ~0U)
446    if (isGEP(V1)) {
447      SmallVector<Value*, 16> GEPOperands;
448      const Value *BasePtr = GetGEPOperands(V1, GEPOperands);
449
450      AliasResult R = alias(BasePtr, V1Size, V2, V2Size);
451      if (R == MustAlias) {
452        // If there is at least one non-zero constant index, we know they cannot
453        // alias.
454        bool ConstantFound = false;
455        bool AllZerosFound = true;
456        for (unsigned i = 0, e = GEPOperands.size(); i != e; ++i)
457          if (const Constant *C = dyn_cast<Constant>(GEPOperands[i])) {
458            if (!C->isNullValue()) {
459              ConstantFound = true;
460              AllZerosFound = false;
461              break;
462            }
463          } else {
464            AllZerosFound = false;
465          }
466
467        // If we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 must aliases
468        // the ptr, the end result is a must alias also.
469        if (AllZerosFound)
470          return MustAlias;
471
472        if (ConstantFound) {
473          if (V2Size <= 1 && V1Size <= 1)  // Just pointer check?
474            return NoAlias;
475
476          // Otherwise we have to check to see that the distance is more than
477          // the size of the argument... build an index vector that is equal to
478          // the arguments provided, except substitute 0's for any variable
479          // indexes we find...
480          if (cast<PointerType>(
481                BasePtr->getType())->getElementType()->isSized()) {
482            for (unsigned i = 0; i != GEPOperands.size(); ++i)
483              if (!isa<ConstantInt>(GEPOperands[i]))
484                GEPOperands[i] =
485                  Constant::getNullValue(GEPOperands[i]->getType());
486            int64_t Offset =
487              getTargetData().getIndexedOffset(BasePtr->getType(),
488                                               &GEPOperands[0],
489                                               GEPOperands.size());
490
491            if (Offset >= (int64_t)V2Size || Offset <= -(int64_t)V1Size)
492              return NoAlias;
493          }
494        }
495      }
496    }
497
498  return MayAlias;
499}
500
501// This function is used to determin if the indices of two GEP instructions are
502// equal. V1 and V2 are the indices.
503static bool IndexOperandsEqual(Value *V1, Value *V2) {
504  if (V1->getType() == V2->getType())
505    return V1 == V2;
506  if (Constant *C1 = dyn_cast<Constant>(V1))
507    if (Constant *C2 = dyn_cast<Constant>(V2)) {
508      // Sign extend the constants to long types, if necessary
509      if (C1->getType() != Type::Int64Ty)
510        C1 = ConstantExpr::getSExt(C1, Type::Int64Ty);
511      if (C2->getType() != Type::Int64Ty)
512        C2 = ConstantExpr::getSExt(C2, Type::Int64Ty);
513      return C1 == C2;
514    }
515  return false;
516}
517
518/// CheckGEPInstructions - Check two GEP instructions with known must-aliasing
519/// base pointers.  This checks to see if the index expressions preclude the
520/// pointers from aliasing...
521AliasAnalysis::AliasResult
522BasicAliasAnalysis::CheckGEPInstructions(
523  const Type* BasePtr1Ty, Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1S,
524  const Type *BasePtr2Ty, Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2S) {
525  // We currently can't handle the case when the base pointers have different
526  // primitive types.  Since this is uncommon anyway, we are happy being
527  // extremely conservative.
528  if (BasePtr1Ty != BasePtr2Ty)
529    return MayAlias;
530
531  const PointerType *GEPPointerTy = cast<PointerType>(BasePtr1Ty);
532
533  // Find the (possibly empty) initial sequence of equal values... which are not
534  // necessarily constants.
535  unsigned NumGEP1Operands = NumGEP1Ops, NumGEP2Operands = NumGEP2Ops;
536  unsigned MinOperands = std::min(NumGEP1Operands, NumGEP2Operands);
537  unsigned MaxOperands = std::max(NumGEP1Operands, NumGEP2Operands);
538  unsigned UnequalOper = 0;
539  while (UnequalOper != MinOperands &&
540         IndexOperandsEqual(GEP1Ops[UnequalOper], GEP2Ops[UnequalOper])) {
541    // Advance through the type as we go...
542    ++UnequalOper;
543    if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
544      BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[UnequalOper-1]);
545    else {
546      // If all operands equal each other, then the derived pointers must
547      // alias each other...
548      BasePtr1Ty = 0;
549      assert(UnequalOper == NumGEP1Operands && UnequalOper == NumGEP2Operands &&
550             "Ran out of type nesting, but not out of operands?");
551      return MustAlias;
552    }
553  }
554
555  // If we have seen all constant operands, and run out of indexes on one of the
556  // getelementptrs, check to see if the tail of the leftover one is all zeros.
557  // If so, return mustalias.
558  if (UnequalOper == MinOperands) {
559    if (NumGEP1Ops < NumGEP2Ops) {
560      std::swap(GEP1Ops, GEP2Ops);
561      std::swap(NumGEP1Ops, NumGEP2Ops);
562    }
563
564    bool AllAreZeros = true;
565    for (unsigned i = UnequalOper; i != MaxOperands; ++i)
566      if (!isa<Constant>(GEP1Ops[i]) ||
567          !cast<Constant>(GEP1Ops[i])->isNullValue()) {
568        AllAreZeros = false;
569        break;
570      }
571    if (AllAreZeros) return MustAlias;
572  }
573
574
575  // So now we know that the indexes derived from the base pointers,
576  // which are known to alias, are different.  We can still determine a
577  // no-alias result if there are differing constant pairs in the index
578  // chain.  For example:
579  //        A[i][0] != A[j][1] iff (&A[0][1]-&A[0][0] >= std::max(G1S, G2S))
580  //
581  // We have to be careful here about array accesses.  In particular, consider:
582  //        A[1][0] vs A[0][i]
583  // In this case, we don't *know* that the array will be accessed in bounds:
584  // the index could even be negative.  Because of this, we have to
585  // conservatively *give up* and return may alias.  We disregard differing
586  // array subscripts that are followed by a variable index without going
587  // through a struct.
588  //
589  unsigned SizeMax = std::max(G1S, G2S);
590  if (SizeMax == ~0U) return MayAlias; // Avoid frivolous work.
591
592  // Scan for the first operand that is constant and unequal in the
593  // two getelementptrs...
594  unsigned FirstConstantOper = UnequalOper;
595  for (; FirstConstantOper != MinOperands; ++FirstConstantOper) {
596    const Value *G1Oper = GEP1Ops[FirstConstantOper];
597    const Value *G2Oper = GEP2Ops[FirstConstantOper];
598
599    if (G1Oper != G2Oper)   // Found non-equal constant indexes...
600      if (Constant *G1OC = dyn_cast<ConstantInt>(const_cast<Value*>(G1Oper)))
601        if (Constant *G2OC = dyn_cast<ConstantInt>(const_cast<Value*>(G2Oper))){
602          if (G1OC->getType() != G2OC->getType()) {
603            // Sign extend both operands to long.
604            if (G1OC->getType() != Type::Int64Ty)
605              G1OC = ConstantExpr::getSExt(G1OC, Type::Int64Ty);
606            if (G2OC->getType() != Type::Int64Ty)
607              G2OC = ConstantExpr::getSExt(G2OC, Type::Int64Ty);
608            GEP1Ops[FirstConstantOper] = G1OC;
609            GEP2Ops[FirstConstantOper] = G2OC;
610          }
611
612          if (G1OC != G2OC) {
613            // Handle the "be careful" case above: if this is an array/vector
614            // subscript, scan for a subsequent variable array index.
615            if (isa<SequentialType>(BasePtr1Ty))  {
616              const Type *NextTy =
617                cast<SequentialType>(BasePtr1Ty)->getElementType();
618              bool isBadCase = false;
619
620              for (unsigned Idx = FirstConstantOper+1;
621                   Idx != MinOperands && isa<SequentialType>(NextTy); ++Idx) {
622                const Value *V1 = GEP1Ops[Idx], *V2 = GEP2Ops[Idx];
623                if (!isa<Constant>(V1) || !isa<Constant>(V2)) {
624                  isBadCase = true;
625                  break;
626                }
627                NextTy = cast<SequentialType>(NextTy)->getElementType();
628              }
629
630              if (isBadCase) G1OC = 0;
631            }
632
633            // Make sure they are comparable (ie, not constant expressions), and
634            // make sure the GEP with the smaller leading constant is GEP1.
635            if (G1OC) {
636              Constant *Compare = ConstantExpr::getICmp(ICmpInst::ICMP_SGT,
637                                                        G1OC, G2OC);
638              if (ConstantInt *CV = dyn_cast<ConstantInt>(Compare)) {
639                if (CV->getZExtValue()) {  // If they are comparable and G2 > G1
640                  std::swap(GEP1Ops, GEP2Ops);  // Make GEP1 < GEP2
641                  std::swap(NumGEP1Ops, NumGEP2Ops);
642                }
643                break;
644              }
645            }
646          }
647        }
648    BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(G1Oper);
649  }
650
651  // No shared constant operands, and we ran out of common operands.  At this
652  // point, the GEP instructions have run through all of their operands, and we
653  // haven't found evidence that there are any deltas between the GEP's.
654  // However, one GEP may have more operands than the other.  If this is the
655  // case, there may still be hope.  Check this now.
656  if (FirstConstantOper == MinOperands) {
657    // Make GEP1Ops be the longer one if there is a longer one.
658    if (NumGEP1Ops < NumGEP2Ops) {
659      std::swap(GEP1Ops, GEP2Ops);
660      std::swap(NumGEP1Ops, NumGEP2Ops);
661    }
662
663    // Is there anything to check?
664    if (NumGEP1Ops > MinOperands) {
665      for (unsigned i = FirstConstantOper; i != MaxOperands; ++i)
666        if (isa<ConstantInt>(GEP1Ops[i]) &&
667            !cast<ConstantInt>(GEP1Ops[i])->isZero()) {
668          // Yup, there's a constant in the tail.  Set all variables to
669          // constants in the GEP instruction to make it suiteable for
670          // TargetData::getIndexedOffset.
671          for (i = 0; i != MaxOperands; ++i)
672            if (!isa<ConstantInt>(GEP1Ops[i]))
673              GEP1Ops[i] = Constant::getNullValue(GEP1Ops[i]->getType());
674          // Okay, now get the offset.  This is the relative offset for the full
675          // instruction.
676          const TargetData &TD = getTargetData();
677          int64_t Offset1 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops,
678                                                NumGEP1Ops);
679
680          // Now check without any constants at the end.
681          int64_t Offset2 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops,
682                                                MinOperands);
683
684          // If the tail provided a bit enough offset, return noalias!
685          if ((uint64_t)(Offset2-Offset1) >= SizeMax)
686            return NoAlias;
687        }
688    }
689
690    // Couldn't find anything useful.
691    return MayAlias;
692  }
693
694  // If there are non-equal constants arguments, then we can figure
695  // out a minimum known delta between the two index expressions... at
696  // this point we know that the first constant index of GEP1 is less
697  // than the first constant index of GEP2.
698
699  // Advance BasePtr[12]Ty over this first differing constant operand.
700  BasePtr2Ty = cast<CompositeType>(BasePtr1Ty)->
701      getTypeAtIndex(GEP2Ops[FirstConstantOper]);
702  BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->
703      getTypeAtIndex(GEP1Ops[FirstConstantOper]);
704
705  // We are going to be using TargetData::getIndexedOffset to determine the
706  // offset that each of the GEP's is reaching.  To do this, we have to convert
707  // all variable references to constant references.  To do this, we convert the
708  // initial sequence of array subscripts into constant zeros to start with.
709  const Type *ZeroIdxTy = GEPPointerTy;
710  for (unsigned i = 0; i != FirstConstantOper; ++i) {
711    if (!isa<StructType>(ZeroIdxTy))
712      GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Type::Int32Ty);
713
714    if (const CompositeType *CT = dyn_cast<CompositeType>(ZeroIdxTy))
715      ZeroIdxTy = CT->getTypeAtIndex(GEP1Ops[i]);
716  }
717
718  // We know that GEP1Ops[FirstConstantOper] & GEP2Ops[FirstConstantOper] are ok
719
720  // Loop over the rest of the operands...
721  for (unsigned i = FirstConstantOper+1; i != MaxOperands; ++i) {
722    const Value *Op1 = i < NumGEP1Ops ? GEP1Ops[i] : 0;
723    const Value *Op2 = i < NumGEP2Ops ? GEP2Ops[i] : 0;
724    // If they are equal, use a zero index...
725    if (Op1 == Op2 && BasePtr1Ty == BasePtr2Ty) {
726      if (!isa<ConstantInt>(Op1))
727        GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Op1->getType());
728      // Otherwise, just keep the constants we have.
729    } else {
730      if (Op1) {
731        if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
732          // If this is an array index, make sure the array element is in range.
733          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty)) {
734            if (Op1C->getZExtValue() >= AT->getNumElements())
735              return MayAlias;  // Be conservative with out-of-range accesses
736          } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty)) {
737            if (Op1C->getZExtValue() >= VT->getNumElements())
738              return MayAlias;  // Be conservative with out-of-range accesses
739          }
740
741        } else {
742          // GEP1 is known to produce a value less than GEP2.  To be
743          // conservatively correct, we must assume the largest possible
744          // constant is used in this position.  This cannot be the initial
745          // index to the GEP instructions (because we know we have at least one
746          // element before this one with the different constant arguments), so
747          // we know that the current index must be into either a struct or
748          // array.  Because we know it's not constant, this cannot be a
749          // structure index.  Because of this, we can calculate the maximum
750          // value possible.
751          //
752          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
753            GEP1Ops[i] = ConstantInt::get(Type::Int64Ty,AT->getNumElements()-1);
754          else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty))
755            GEP1Ops[i] = ConstantInt::get(Type::Int64Ty,VT->getNumElements()-1);
756        }
757      }
758
759      if (Op2) {
760        if (const ConstantInt *Op2C = dyn_cast<ConstantInt>(Op2)) {
761          // If this is an array index, make sure the array element is in range.
762          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr2Ty)) {
763            if (Op2C->getZExtValue() >= AT->getNumElements())
764              return MayAlias;  // Be conservative with out-of-range accesses
765          } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr2Ty)) {
766            if (Op2C->getZExtValue() >= VT->getNumElements())
767              return MayAlias;  // Be conservative with out-of-range accesses
768          }
769        } else {  // Conservatively assume the minimum value for this index
770          GEP2Ops[i] = Constant::getNullValue(Op2->getType());
771        }
772      }
773    }
774
775    if (BasePtr1Ty && Op1) {
776      if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
777        BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[i]);
778      else
779        BasePtr1Ty = 0;
780    }
781
782    if (BasePtr2Ty && Op2) {
783      if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr2Ty))
784        BasePtr2Ty = CT->getTypeAtIndex(GEP2Ops[i]);
785      else
786        BasePtr2Ty = 0;
787    }
788  }
789
790  if (GEPPointerTy->getElementType()->isSized()) {
791    int64_t Offset1 =
792      getTargetData().getIndexedOffset(GEPPointerTy, GEP1Ops, NumGEP1Ops);
793    int64_t Offset2 =
794      getTargetData().getIndexedOffset(GEPPointerTy, GEP2Ops, NumGEP2Ops);
795    assert(Offset1 != Offset2 &&
796           "There is at least one different constant here!");
797
798    // Make sure we compare the absolute difference.
799    if (Offset1 > Offset2)
800      std::swap(Offset1, Offset2);
801
802    if ((uint64_t)(Offset2-Offset1) >= SizeMax) {
803      //cerr << "Determined that these two GEP's don't alias ["
804      //     << SizeMax << " bytes]: \n" << *GEP1 << *GEP2;
805      return NoAlias;
806    }
807  }
808  return MayAlias;
809}
810
811// Make sure that anything that uses AliasAnalysis pulls in this file...
812DEFINING_FILE_FOR(BasicAliasAnalysis)
813