BasicAliasAnalysis.cpp revision f2becca90b832cc02345fba063b9b439b2be33ad
1//===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the default implementation of the Alias Analysis interface
11// that simply implements a few identities (two different globals cannot alias,
12// etc), but otherwise does no analysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/Analysis/CaptureTracking.h"
18#include "llvm/Analysis/MallocFreeHelper.h"
19#include "llvm/Analysis/Passes.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Instructions.h"
25#include "llvm/IntrinsicInst.h"
26#include "llvm/LLVMContext.h"
27#include "llvm/Operator.h"
28#include "llvm/Pass.h"
29#include "llvm/Target/TargetData.h"
30#include "llvm/ADT/SmallSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/GetElementPtrTypeIterator.h"
35#include <algorithm>
36using namespace llvm;
37
38//===----------------------------------------------------------------------===//
39// Useful predicates
40//===----------------------------------------------------------------------===//
41
42static const Value *GetGEPOperands(const Value *V,
43                                   SmallVector<Value*, 16> &GEPOps) {
44  assert(GEPOps.empty() && "Expect empty list to populate!");
45  GEPOps.insert(GEPOps.end(), cast<User>(V)->op_begin()+1,
46                cast<User>(V)->op_end());
47
48  // Accumulate all of the chained indexes into the operand array
49  V = cast<User>(V)->getOperand(0);
50
51  while (const GEPOperator *G = dyn_cast<GEPOperator>(V)) {
52    if (!isa<Constant>(GEPOps[0]) || isa<GlobalValue>(GEPOps[0]) ||
53        !cast<Constant>(GEPOps[0])->isNullValue())
54      break;  // Don't handle folding arbitrary pointer offsets yet...
55    GEPOps.erase(GEPOps.begin());   // Drop the zero index
56    GEPOps.insert(GEPOps.begin(), G->op_begin()+1, G->op_end());
57    V = G->getOperand(0);
58  }
59  return V;
60}
61
62/// isKnownNonNull - Return true if we know that the specified value is never
63/// null.
64static bool isKnownNonNull(const Value *V) {
65  // Alloca never returns null, malloc might.
66  if (isa<AllocaInst>(V)) return true;
67
68  // A byval argument is never null.
69  if (const Argument *A = dyn_cast<Argument>(V))
70    return A->hasByValAttr();
71
72  // Global values are not null unless extern weak.
73  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
74    return !GV->hasExternalWeakLinkage();
75  return false;
76}
77
78/// isNonEscapingLocalObject - Return true if the pointer is to a function-local
79/// object that never escapes from the function.
80static bool isNonEscapingLocalObject(const Value *V) {
81  // If this is a local allocation, check to see if it escapes.
82  if (isa<AllocaInst>(V) || isNoAliasCall(V))
83    return !PointerMayBeCaptured(V, false);
84
85  // If this is an argument that corresponds to a byval or noalias argument,
86  // then it has not escaped before entering the function.  Check if it escapes
87  // inside the function.
88  if (const Argument *A = dyn_cast<Argument>(V))
89    if (A->hasByValAttr() || A->hasNoAliasAttr()) {
90      // Don't bother analyzing arguments already known not to escape.
91      if (A->hasNoCaptureAttr())
92        return true;
93      return !PointerMayBeCaptured(V, false);
94    }
95  return false;
96}
97
98
99/// isObjectSmallerThan - Return true if we can prove that the object specified
100/// by V is smaller than Size.
101static bool isObjectSmallerThan(const Value *V, unsigned Size,
102                                LLVMContext &Context, const TargetData &TD) {
103  const Type *AccessTy;
104  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
105    AccessTy = GV->getType()->getElementType();
106  } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
107    if (!AI->isArrayAllocation())
108      AccessTy = AI->getType()->getElementType();
109    else
110      return false;
111  } else if (const CallInst* CI = extractMallocCall(V)) {
112    if (!isArrayMalloc(V, Context, &TD))
113      // The size is the argument to the malloc call.
114      if (const ConstantInt* C = dyn_cast<ConstantInt>(CI->getOperand(1)))
115        return (C->getZExtValue() < Size);
116    return false;
117  } else if (const Argument *A = dyn_cast<Argument>(V)) {
118    if (A->hasByValAttr())
119      AccessTy = cast<PointerType>(A->getType())->getElementType();
120    else
121      return false;
122  } else {
123    return false;
124  }
125
126  if (AccessTy->isSized())
127    return TD.getTypeAllocSize(AccessTy) < Size;
128  return false;
129}
130
131//===----------------------------------------------------------------------===//
132// NoAA Pass
133//===----------------------------------------------------------------------===//
134
135namespace {
136  /// NoAA - This class implements the -no-aa pass, which always returns "I
137  /// don't know" for alias queries.  NoAA is unlike other alias analysis
138  /// implementations, in that it does not chain to a previous analysis.  As
139  /// such it doesn't follow many of the rules that other alias analyses must.
140  ///
141  struct NoAA : public ImmutablePass, public AliasAnalysis {
142    static char ID; // Class identification, replacement for typeinfo
143    NoAA() : ImmutablePass(&ID) {}
144    explicit NoAA(void *PID) : ImmutablePass(PID) { }
145
146    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
147    }
148
149    virtual void initializePass() {
150      TD = getAnalysisIfAvailable<TargetData>();
151    }
152
153    virtual AliasResult alias(const Value *V1, unsigned V1Size,
154                              const Value *V2, unsigned V2Size) {
155      return MayAlias;
156    }
157
158    virtual void getArgumentAccesses(Function *F, CallSite CS,
159                                     std::vector<PointerAccessInfo> &Info) {
160      llvm_unreachable("This method may not be called on this function!");
161    }
162
163    virtual void getMustAliases(Value *P, std::vector<Value*> &RetVals) { }
164    virtual bool pointsToConstantMemory(const Value *P) { return false; }
165    virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size) {
166      return ModRef;
167    }
168    virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
169      return ModRef;
170    }
171    virtual bool hasNoModRefInfoForCalls() const { return true; }
172
173    virtual void deleteValue(Value *V) {}
174    virtual void copyValue(Value *From, Value *To) {}
175  };
176}  // End of anonymous namespace
177
178// Register this pass...
179char NoAA::ID = 0;
180static RegisterPass<NoAA>
181U("no-aa", "No Alias Analysis (always returns 'may' alias)", true, true);
182
183// Declare that we implement the AliasAnalysis interface
184static RegisterAnalysisGroup<AliasAnalysis> V(U);
185
186ImmutablePass *llvm::createNoAAPass() { return new NoAA(); }
187
188//===----------------------------------------------------------------------===//
189// BasicAA Pass
190//===----------------------------------------------------------------------===//
191
192namespace {
193  /// BasicAliasAnalysis - This is the default alias analysis implementation.
194  /// Because it doesn't chain to a previous alias analysis (like -no-aa), it
195  /// derives from the NoAA class.
196  struct BasicAliasAnalysis : public NoAA {
197    static char ID; // Class identification, replacement for typeinfo
198    BasicAliasAnalysis() : NoAA(&ID) {}
199    AliasResult alias(const Value *V1, unsigned V1Size,
200                      const Value *V2, unsigned V2Size) {
201      assert(VisitedPHIs.empty() && "VisitedPHIs must be cleared after use!");
202      AliasResult Alias = aliasCheck(V1, V1Size, V2, V2Size);
203      VisitedPHIs.clear();
204      return Alias;
205    }
206
207    ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
208    ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
209
210    /// hasNoModRefInfoForCalls - We can provide mod/ref information against
211    /// non-escaping allocations.
212    virtual bool hasNoModRefInfoForCalls() const { return false; }
213
214    /// pointsToConstantMemory - Chase pointers until we find a (constant
215    /// global) or not.
216    bool pointsToConstantMemory(const Value *P);
217
218  private:
219    // VisitedPHIs - Track PHI nodes visited by a aliasCheck() call.
220    SmallPtrSet<const Value*, 16> VisitedPHIs;
221
222    // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
223    // against another.
224    AliasResult aliasGEP(const Value *V1, unsigned V1Size,
225                         const Value *V2, unsigned V2Size);
226
227    // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
228    // against another.
229    AliasResult aliasPHI(const PHINode *PN, unsigned PNSize,
230                         const Value *V2, unsigned V2Size);
231
232    /// aliasSelect - Disambiguate a Select instruction against another value.
233    AliasResult aliasSelect(const SelectInst *SI, unsigned SISize,
234                            const Value *V2, unsigned V2Size);
235
236    AliasResult aliasCheck(const Value *V1, unsigned V1Size,
237                           const Value *V2, unsigned V2Size);
238
239    // CheckGEPInstructions - Check two GEP instructions with known
240    // must-aliasing base pointers.  This checks to see if the index expressions
241    // preclude the pointers from aliasing...
242    AliasResult
243    CheckGEPInstructions(const Type* BasePtr1Ty,
244                         Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1Size,
245                         const Type *BasePtr2Ty,
246                         Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2Size);
247  };
248}  // End of anonymous namespace
249
250// Register this pass...
251char BasicAliasAnalysis::ID = 0;
252static RegisterPass<BasicAliasAnalysis>
253X("basicaa", "Basic Alias Analysis (default AA impl)", false, true);
254
255// Declare that we implement the AliasAnalysis interface
256static RegisterAnalysisGroup<AliasAnalysis, true> Y(X);
257
258ImmutablePass *llvm::createBasicAliasAnalysisPass() {
259  return new BasicAliasAnalysis();
260}
261
262
263/// pointsToConstantMemory - Chase pointers until we find a (constant
264/// global) or not.
265bool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) {
266  if (const GlobalVariable *GV =
267        dyn_cast<GlobalVariable>(P->getUnderlyingObject()))
268    return GV->isConstant();
269  return false;
270}
271
272
273// getModRefInfo - Check to see if the specified callsite can clobber the
274// specified memory object.  Since we only look at local properties of this
275// function, we really can't say much about this query.  We do, however, use
276// simple "address taken" analysis on local objects.
277//
278AliasAnalysis::ModRefResult
279BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
280  if (!isa<Constant>(P)) {
281    const Value *Object = P->getUnderlyingObject();
282
283    // If this is a tail call and P points to a stack location, we know that
284    // the tail call cannot access or modify the local stack.
285    // We cannot exclude byval arguments here; these belong to the caller of
286    // the current function not to the current function, and a tail callee
287    // may reference them.
288    if (isa<AllocaInst>(Object))
289      if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
290        if (CI->isTailCall())
291          return NoModRef;
292
293    // If the pointer is to a locally allocated object that does not escape,
294    // then the call can not mod/ref the pointer unless the call takes the
295    // argument without capturing it.
296    if (isNonEscapingLocalObject(Object) && CS.getInstruction() != Object) {
297      bool passedAsArg = false;
298      // TODO: Eventually only check 'nocapture' arguments.
299      for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
300           CI != CE; ++CI)
301        if (isa<PointerType>((*CI)->getType()) &&
302            alias(cast<Value>(CI), ~0U, P, ~0U) != NoAlias)
303          passedAsArg = true;
304
305      if (!passedAsArg)
306        return NoModRef;
307    }
308
309    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
310      switch (II->getIntrinsicID()) {
311      default: break;
312      case Intrinsic::memcpy:
313      case Intrinsic::memmove: {
314        unsigned Len = ~0U;
315        if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getOperand(3)))
316          Len = LenCI->getZExtValue();
317        Value *Dest = II->getOperand(1);
318        Value *Src = II->getOperand(2);
319        if (alias(Dest, Len, P, Size) == NoAlias) {
320          if (alias(Src, Len, P, Size) == NoAlias)
321            return NoModRef;
322          return Ref;
323        }
324        }
325        break;
326      case Intrinsic::memset:
327        if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getOperand(3))) {
328          unsigned Len = LenCI->getZExtValue();
329          Value *Dest = II->getOperand(1);
330          if (alias(Dest, Len, P, Size) == NoAlias)
331            return NoModRef;
332        }
333        break;
334      case Intrinsic::atomic_cmp_swap:
335      case Intrinsic::atomic_swap:
336      case Intrinsic::atomic_load_add:
337      case Intrinsic::atomic_load_sub:
338      case Intrinsic::atomic_load_and:
339      case Intrinsic::atomic_load_nand:
340      case Intrinsic::atomic_load_or:
341      case Intrinsic::atomic_load_xor:
342      case Intrinsic::atomic_load_max:
343      case Intrinsic::atomic_load_min:
344      case Intrinsic::atomic_load_umax:
345      case Intrinsic::atomic_load_umin:
346        if (TD) {
347          Value *Op1 = II->getOperand(1);
348          unsigned Op1Size = TD->getTypeStoreSize(Op1->getType());
349          if (alias(Op1, Op1Size, P, Size) == NoAlias)
350            return NoModRef;
351        }
352        break;
353      case Intrinsic::lifetime_start:
354      case Intrinsic::lifetime_end:
355      case Intrinsic::invariant_start: {
356        unsigned PtrSize = cast<ConstantInt>(II->getOperand(1))->getZExtValue();
357        if (alias(II->getOperand(2), PtrSize, P, Size) == NoAlias)
358          return NoModRef;
359      }
360      break;
361      case Intrinsic::invariant_end: {
362        unsigned PtrSize = cast<ConstantInt>(II->getOperand(2))->getZExtValue();
363        if (alias(II->getOperand(3), PtrSize, P, Size) == NoAlias)
364          return NoModRef;
365      }
366      break;
367      }
368    }
369  }
370
371  // The AliasAnalysis base class has some smarts, lets use them.
372  return AliasAnalysis::getModRefInfo(CS, P, Size);
373}
374
375
376AliasAnalysis::ModRefResult
377BasicAliasAnalysis::getModRefInfo(CallSite CS1, CallSite CS2) {
378  // If CS1 or CS2 are readnone, they don't interact.
379  ModRefBehavior CS1B = AliasAnalysis::getModRefBehavior(CS1);
380  if (CS1B == DoesNotAccessMemory) return NoModRef;
381
382  ModRefBehavior CS2B = AliasAnalysis::getModRefBehavior(CS2);
383  if (CS2B == DoesNotAccessMemory) return NoModRef;
384
385  // If they both only read from memory, just return ref.
386  if (CS1B == OnlyReadsMemory && CS2B == OnlyReadsMemory)
387    return Ref;
388
389  // Otherwise, fall back to NoAA (mod+ref).
390  return NoAA::getModRefInfo(CS1, CS2);
391}
392
393// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
394// against another.
395//
396AliasAnalysis::AliasResult
397BasicAliasAnalysis::aliasGEP(const Value *V1, unsigned V1Size,
398                             const Value *V2, unsigned V2Size) {
399  // If we have two gep instructions with must-alias'ing base pointers, figure
400  // out if the indexes to the GEP tell us anything about the derived pointer.
401  // Note that we also handle chains of getelementptr instructions as well as
402  // constant expression getelementptrs here.
403  //
404  if (isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
405    const User *GEP1 = cast<User>(V1);
406    const User *GEP2 = cast<User>(V2);
407
408    // If V1 and V2 are identical GEPs, just recurse down on both of them.
409    // This allows us to analyze things like:
410    //   P = gep A, 0, i, 1
411    //   Q = gep B, 0, i, 1
412    // by just analyzing A and B.  This is even safe for variable indices.
413    if (GEP1->getType() == GEP2->getType() &&
414        GEP1->getNumOperands() == GEP2->getNumOperands() &&
415        GEP1->getOperand(0)->getType() == GEP2->getOperand(0)->getType() &&
416        // All operands are the same, ignoring the base.
417        std::equal(GEP1->op_begin()+1, GEP1->op_end(), GEP2->op_begin()+1))
418      return aliasCheck(GEP1->getOperand(0), V1Size,
419                        GEP2->getOperand(0), V2Size);
420
421    // Drill down into the first non-gep value, to test for must-aliasing of
422    // the base pointers.
423    while (isa<GEPOperator>(GEP1->getOperand(0)) &&
424           GEP1->getOperand(1) ==
425           Constant::getNullValue(GEP1->getOperand(1)->getType()))
426      GEP1 = cast<User>(GEP1->getOperand(0));
427    const Value *BasePtr1 = GEP1->getOperand(0);
428
429    while (isa<GEPOperator>(GEP2->getOperand(0)) &&
430           GEP2->getOperand(1) ==
431           Constant::getNullValue(GEP2->getOperand(1)->getType()))
432      GEP2 = cast<User>(GEP2->getOperand(0));
433    const Value *BasePtr2 = GEP2->getOperand(0);
434
435    // Do the base pointers alias?
436    AliasResult BaseAlias = aliasCheck(BasePtr1, ~0U, BasePtr2, ~0U);
437    if (BaseAlias == NoAlias) return NoAlias;
438    if (BaseAlias == MustAlias) {
439      // If the base pointers alias each other exactly, check to see if we can
440      // figure out anything about the resultant pointers, to try to prove
441      // non-aliasing.
442
443      // Collect all of the chained GEP operands together into one simple place
444      SmallVector<Value*, 16> GEP1Ops, GEP2Ops;
445      BasePtr1 = GetGEPOperands(V1, GEP1Ops);
446      BasePtr2 = GetGEPOperands(V2, GEP2Ops);
447
448      // If GetGEPOperands were able to fold to the same must-aliased pointer,
449      // do the comparison.
450      if (BasePtr1 == BasePtr2) {
451        AliasResult GAlias =
452          CheckGEPInstructions(BasePtr1->getType(),
453                               &GEP1Ops[0], GEP1Ops.size(), V1Size,
454                               BasePtr2->getType(),
455                               &GEP2Ops[0], GEP2Ops.size(), V2Size);
456        if (GAlias != MayAlias)
457          return GAlias;
458      }
459    }
460  }
461
462  // Check to see if these two pointers are related by a getelementptr
463  // instruction.  If one pointer is a GEP with a non-zero index of the other
464  // pointer, we know they cannot alias.
465  //
466  if (V1Size == ~0U || V2Size == ~0U)
467    return MayAlias;
468
469  SmallVector<Value*, 16> GEPOperands;
470  const Value *BasePtr = GetGEPOperands(V1, GEPOperands);
471
472  AliasResult R = aliasCheck(BasePtr, ~0U, V2, V2Size);
473  if (R != MustAlias)
474    // If V2 may alias GEP base pointer, conservatively returns MayAlias.
475    // If V2 is known not to alias GEP base pointer, then the two values
476    // cannot alias per GEP semantics: "A pointer value formed from a
477    // getelementptr instruction is associated with the addresses associated
478    // with the first operand of the getelementptr".
479    return R;
480
481  // If there is at least one non-zero constant index, we know they cannot
482  // alias.
483  bool ConstantFound = false;
484  bool AllZerosFound = true;
485  for (unsigned i = 0, e = GEPOperands.size(); i != e; ++i)
486    if (const Constant *C = dyn_cast<Constant>(GEPOperands[i])) {
487      if (!C->isNullValue()) {
488        ConstantFound = true;
489        AllZerosFound = false;
490        break;
491      }
492    } else {
493      AllZerosFound = false;
494    }
495
496  // If we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 must aliases
497  // the ptr, the end result is a must alias also.
498  if (AllZerosFound)
499    return MustAlias;
500
501  if (ConstantFound) {
502    if (V2Size <= 1 && V1Size <= 1)  // Just pointer check?
503      return NoAlias;
504
505    // Otherwise we have to check to see that the distance is more than
506    // the size of the argument... build an index vector that is equal to
507    // the arguments provided, except substitute 0's for any variable
508    // indexes we find...
509    if (TD &&
510        cast<PointerType>(BasePtr->getType())->getElementType()->isSized()) {
511      for (unsigned i = 0; i != GEPOperands.size(); ++i)
512        if (!isa<ConstantInt>(GEPOperands[i]))
513          GEPOperands[i] = Constant::getNullValue(GEPOperands[i]->getType());
514      int64_t Offset = TD->getIndexedOffset(BasePtr->getType(),
515                                            &GEPOperands[0],
516                                            GEPOperands.size());
517
518      if (Offset >= (int64_t)V2Size || Offset <= -(int64_t)V1Size)
519        return NoAlias;
520    }
521  }
522
523  return MayAlias;
524}
525
526// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select instruction
527// against another.
528AliasAnalysis::AliasResult
529BasicAliasAnalysis::aliasSelect(const SelectInst *SI, unsigned SISize,
530                                const Value *V2, unsigned V2Size) {
531  // If the values are Selects with the same condition, we can do a more precise
532  // check: just check for aliases between the values on corresponding arms.
533  if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
534    if (SI->getCondition() == SI2->getCondition()) {
535      AliasResult Alias =
536        aliasCheck(SI->getTrueValue(), SISize,
537                   SI2->getTrueValue(), V2Size);
538      if (Alias == MayAlias)
539        return MayAlias;
540      AliasResult ThisAlias =
541        aliasCheck(SI->getFalseValue(), SISize,
542                   SI2->getFalseValue(), V2Size);
543      if (ThisAlias != Alias)
544        return MayAlias;
545      return Alias;
546    }
547
548  // If both arms of the Select node NoAlias or MustAlias V2, then returns
549  // NoAlias / MustAlias. Otherwise, returns MayAlias.
550  AliasResult Alias =
551    aliasCheck(SI->getTrueValue(), SISize, V2, V2Size);
552  if (Alias == MayAlias)
553    return MayAlias;
554  AliasResult ThisAlias =
555    aliasCheck(SI->getFalseValue(), SISize, V2, V2Size);
556  if (ThisAlias != Alias)
557    return MayAlias;
558  return Alias;
559}
560
561// aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
562// against another.
563AliasAnalysis::AliasResult
564BasicAliasAnalysis::aliasPHI(const PHINode *PN, unsigned PNSize,
565                             const Value *V2, unsigned V2Size) {
566  // The PHI node has already been visited, avoid recursion any further.
567  if (!VisitedPHIs.insert(PN))
568    return MayAlias;
569
570  // If the values are PHIs in the same block, we can do a more precise
571  // as well as efficient check: just check for aliases between the values
572  // on corresponding edges.
573  if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
574    if (PN2->getParent() == PN->getParent()) {
575      AliasResult Alias =
576        aliasCheck(PN->getIncomingValue(0), PNSize,
577                   PN2->getIncomingValueForBlock(PN->getIncomingBlock(0)),
578                   V2Size);
579      if (Alias == MayAlias)
580        return MayAlias;
581      for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
582        AliasResult ThisAlias =
583          aliasCheck(PN->getIncomingValue(i), PNSize,
584                     PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
585                     V2Size);
586        if (ThisAlias != Alias)
587          return MayAlias;
588      }
589      return Alias;
590    }
591
592  SmallPtrSet<Value*, 4> UniqueSrc;
593  SmallVector<Value*, 4> V1Srcs;
594  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
595    Value *PV1 = PN->getIncomingValue(i);
596    if (isa<PHINode>(PV1))
597      // If any of the source itself is a PHI, return MayAlias conservatively
598      // to avoid compile time explosion. The worst possible case is if both
599      // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
600      // and 'n' are the number of PHI sources.
601      return MayAlias;
602    if (UniqueSrc.insert(PV1))
603      V1Srcs.push_back(PV1);
604  }
605
606  AliasResult Alias = aliasCheck(V2, V2Size, V1Srcs[0], PNSize);
607  // Early exit if the check of the first PHI source against V2 is MayAlias.
608  // Other results are not possible.
609  if (Alias == MayAlias)
610    return MayAlias;
611
612  // If all sources of the PHI node NoAlias or MustAlias V2, then returns
613  // NoAlias / MustAlias. Otherwise, returns MayAlias.
614  for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
615    Value *V = V1Srcs[i];
616
617    // If V2 is a PHI, the recursive case will have been caught in the
618    // above aliasCheck call, so these subsequent calls to aliasCheck
619    // don't need to assume that V2 is being visited recursively.
620    VisitedPHIs.erase(V2);
621
622    AliasResult ThisAlias = aliasCheck(V2, V2Size, V, PNSize);
623    if (ThisAlias != Alias || ThisAlias == MayAlias)
624      return MayAlias;
625  }
626
627  return Alias;
628}
629
630// aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases,
631// such as array references.
632//
633AliasAnalysis::AliasResult
634BasicAliasAnalysis::aliasCheck(const Value *V1, unsigned V1Size,
635                               const Value *V2, unsigned V2Size) {
636  // Strip off any casts if they exist.
637  V1 = V1->stripPointerCasts();
638  V2 = V2->stripPointerCasts();
639
640  // Are we checking for alias of the same value?
641  if (V1 == V2) return MustAlias;
642
643  if (!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType()))
644    return NoAlias;  // Scalars cannot alias each other
645
646  // Figure out what objects these things are pointing to if we can.
647  const Value *O1 = V1->getUnderlyingObject();
648  const Value *O2 = V2->getUnderlyingObject();
649
650  if (O1 != O2) {
651    // If V1/V2 point to two different objects we know that we have no alias.
652    if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
653      return NoAlias;
654
655    // Arguments can't alias with local allocations or noalias calls.
656    if ((isa<Argument>(O1) && (isa<AllocaInst>(O2) || isNoAliasCall(O2))) ||
657        (isa<Argument>(O2) && (isa<AllocaInst>(O1) || isNoAliasCall(O1))))
658      return NoAlias;
659
660    // Most objects can't alias null.
661    if ((isa<ConstantPointerNull>(V2) && isKnownNonNull(O1)) ||
662        (isa<ConstantPointerNull>(V1) && isKnownNonNull(O2)))
663      return NoAlias;
664  }
665
666  // If the size of one access is larger than the entire object on the other
667  // side, then we know such behavior is undefined and can assume no alias.
668  LLVMContext &Context = V1->getContext();
669  if (TD)
670    if ((V1Size != ~0U && isObjectSmallerThan(O2, V1Size, Context, *TD)) ||
671        (V2Size != ~0U && isObjectSmallerThan(O1, V2Size, Context, *TD)))
672      return NoAlias;
673
674  // If one pointer is the result of a call/invoke and the other is a
675  // non-escaping local object, then we know the object couldn't escape to a
676  // point where the call could return it.
677  if ((isa<CallInst>(O1) || isa<InvokeInst>(O1)) &&
678      isNonEscapingLocalObject(O2) && O1 != O2)
679    return NoAlias;
680  if ((isa<CallInst>(O2) || isa<InvokeInst>(O2)) &&
681      isNonEscapingLocalObject(O1) && O1 != O2)
682    return NoAlias;
683
684  if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
685    std::swap(V1, V2);
686    std::swap(V1Size, V2Size);
687  }
688  if (isa<GEPOperator>(V1))
689    return aliasGEP(V1, V1Size, V2, V2Size);
690
691  if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
692    std::swap(V1, V2);
693    std::swap(V1Size, V2Size);
694  }
695  if (const PHINode *PN = dyn_cast<PHINode>(V1))
696    return aliasPHI(PN, V1Size, V2, V2Size);
697
698  if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
699    std::swap(V1, V2);
700    std::swap(V1Size, V2Size);
701  }
702  if (const SelectInst *S1 = dyn_cast<SelectInst>(V1))
703    return aliasSelect(S1, V1Size, V2, V2Size);
704
705  return MayAlias;
706}
707
708// This function is used to determine if the indices of two GEP instructions are
709// equal. V1 and V2 are the indices.
710static bool IndexOperandsEqual(Value *V1, Value *V2, LLVMContext &Context) {
711  if (V1->getType() == V2->getType())
712    return V1 == V2;
713  if (Constant *C1 = dyn_cast<Constant>(V1))
714    if (Constant *C2 = dyn_cast<Constant>(V2)) {
715      // Sign extend the constants to long types, if necessary
716      if (C1->getType() != Type::getInt64Ty(Context))
717        C1 = ConstantExpr::getSExt(C1, Type::getInt64Ty(Context));
718      if (C2->getType() != Type::getInt64Ty(Context))
719        C2 = ConstantExpr::getSExt(C2, Type::getInt64Ty(Context));
720      return C1 == C2;
721    }
722  return false;
723}
724
725/// CheckGEPInstructions - Check two GEP instructions with known must-aliasing
726/// base pointers.  This checks to see if the index expressions preclude the
727/// pointers from aliasing...
728AliasAnalysis::AliasResult
729BasicAliasAnalysis::CheckGEPInstructions(
730  const Type* BasePtr1Ty, Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1S,
731  const Type *BasePtr2Ty, Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2S) {
732  // We currently can't handle the case when the base pointers have different
733  // primitive types.  Since this is uncommon anyway, we are happy being
734  // extremely conservative.
735  if (BasePtr1Ty != BasePtr2Ty)
736    return MayAlias;
737
738  const PointerType *GEPPointerTy = cast<PointerType>(BasePtr1Ty);
739
740  LLVMContext &Context = GEPPointerTy->getContext();
741
742  // Find the (possibly empty) initial sequence of equal values... which are not
743  // necessarily constants.
744  unsigned NumGEP1Operands = NumGEP1Ops, NumGEP2Operands = NumGEP2Ops;
745  unsigned MinOperands = std::min(NumGEP1Operands, NumGEP2Operands);
746  unsigned MaxOperands = std::max(NumGEP1Operands, NumGEP2Operands);
747  unsigned UnequalOper = 0;
748  while (UnequalOper != MinOperands &&
749         IndexOperandsEqual(GEP1Ops[UnequalOper], GEP2Ops[UnequalOper],
750         Context)) {
751    // Advance through the type as we go...
752    ++UnequalOper;
753    if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
754      BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[UnequalOper-1]);
755    else {
756      // If all operands equal each other, then the derived pointers must
757      // alias each other...
758      BasePtr1Ty = 0;
759      assert(UnequalOper == NumGEP1Operands && UnequalOper == NumGEP2Operands &&
760             "Ran out of type nesting, but not out of operands?");
761      return MustAlias;
762    }
763  }
764
765  // If we have seen all constant operands, and run out of indexes on one of the
766  // getelementptrs, check to see if the tail of the leftover one is all zeros.
767  // If so, return mustalias.
768  if (UnequalOper == MinOperands) {
769    if (NumGEP1Ops < NumGEP2Ops) {
770      std::swap(GEP1Ops, GEP2Ops);
771      std::swap(NumGEP1Ops, NumGEP2Ops);
772    }
773
774    bool AllAreZeros = true;
775    for (unsigned i = UnequalOper; i != MaxOperands; ++i)
776      if (!isa<Constant>(GEP1Ops[i]) ||
777          !cast<Constant>(GEP1Ops[i])->isNullValue()) {
778        AllAreZeros = false;
779        break;
780      }
781    if (AllAreZeros) return MustAlias;
782  }
783
784
785  // So now we know that the indexes derived from the base pointers,
786  // which are known to alias, are different.  We can still determine a
787  // no-alias result if there are differing constant pairs in the index
788  // chain.  For example:
789  //        A[i][0] != A[j][1] iff (&A[0][1]-&A[0][0] >= std::max(G1S, G2S))
790  //
791  // We have to be careful here about array accesses.  In particular, consider:
792  //        A[1][0] vs A[0][i]
793  // In this case, we don't *know* that the array will be accessed in bounds:
794  // the index could even be negative.  Because of this, we have to
795  // conservatively *give up* and return may alias.  We disregard differing
796  // array subscripts that are followed by a variable index without going
797  // through a struct.
798  //
799  unsigned SizeMax = std::max(G1S, G2S);
800  if (SizeMax == ~0U) return MayAlias; // Avoid frivolous work.
801
802  // Scan for the first operand that is constant and unequal in the
803  // two getelementptrs...
804  unsigned FirstConstantOper = UnequalOper;
805  for (; FirstConstantOper != MinOperands; ++FirstConstantOper) {
806    const Value *G1Oper = GEP1Ops[FirstConstantOper];
807    const Value *G2Oper = GEP2Ops[FirstConstantOper];
808
809    if (G1Oper != G2Oper)   // Found non-equal constant indexes...
810      if (Constant *G1OC = dyn_cast<ConstantInt>(const_cast<Value*>(G1Oper)))
811        if (Constant *G2OC = dyn_cast<ConstantInt>(const_cast<Value*>(G2Oper))){
812          if (G1OC->getType() != G2OC->getType()) {
813            // Sign extend both operands to long.
814            if (G1OC->getType() != Type::getInt64Ty(Context))
815              G1OC = ConstantExpr::getSExt(G1OC, Type::getInt64Ty(Context));
816            if (G2OC->getType() != Type::getInt64Ty(Context))
817              G2OC = ConstantExpr::getSExt(G2OC, Type::getInt64Ty(Context));
818            GEP1Ops[FirstConstantOper] = G1OC;
819            GEP2Ops[FirstConstantOper] = G2OC;
820          }
821
822          if (G1OC != G2OC) {
823            // Handle the "be careful" case above: if this is an array/vector
824            // subscript, scan for a subsequent variable array index.
825            if (const SequentialType *STy =
826                  dyn_cast<SequentialType>(BasePtr1Ty)) {
827              const Type *NextTy = STy;
828              bool isBadCase = false;
829
830              for (unsigned Idx = FirstConstantOper;
831                   Idx != MinOperands && isa<SequentialType>(NextTy); ++Idx) {
832                const Value *V1 = GEP1Ops[Idx], *V2 = GEP2Ops[Idx];
833                if (!isa<Constant>(V1) || !isa<Constant>(V2)) {
834                  isBadCase = true;
835                  break;
836                }
837                // If the array is indexed beyond the bounds of the static type
838                // at this level, it will also fall into the "be careful" case.
839                // It would theoretically be possible to analyze these cases,
840                // but for now just be conservatively correct.
841                if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
842                  if (cast<ConstantInt>(G1OC)->getZExtValue() >=
843                        ATy->getNumElements() ||
844                      cast<ConstantInt>(G2OC)->getZExtValue() >=
845                        ATy->getNumElements()) {
846                    isBadCase = true;
847                    break;
848                  }
849                if (const VectorType *VTy = dyn_cast<VectorType>(STy))
850                  if (cast<ConstantInt>(G1OC)->getZExtValue() >=
851                        VTy->getNumElements() ||
852                      cast<ConstantInt>(G2OC)->getZExtValue() >=
853                        VTy->getNumElements()) {
854                    isBadCase = true;
855                    break;
856                  }
857                STy = cast<SequentialType>(NextTy);
858                NextTy = cast<SequentialType>(NextTy)->getElementType();
859              }
860
861              if (isBadCase) G1OC = 0;
862            }
863
864            // Make sure they are comparable (ie, not constant expressions), and
865            // make sure the GEP with the smaller leading constant is GEP1.
866            if (G1OC) {
867              Constant *Compare = ConstantExpr::getICmp(ICmpInst::ICMP_SGT,
868                                                        G1OC, G2OC);
869              if (ConstantInt *CV = dyn_cast<ConstantInt>(Compare)) {
870                if (CV->getZExtValue()) {  // If they are comparable and G2 > G1
871                  std::swap(GEP1Ops, GEP2Ops);  // Make GEP1 < GEP2
872                  std::swap(NumGEP1Ops, NumGEP2Ops);
873                }
874                break;
875              }
876            }
877          }
878        }
879    BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(G1Oper);
880  }
881
882  // No shared constant operands, and we ran out of common operands.  At this
883  // point, the GEP instructions have run through all of their operands, and we
884  // haven't found evidence that there are any deltas between the GEP's.
885  // However, one GEP may have more operands than the other.  If this is the
886  // case, there may still be hope.  Check this now.
887  if (FirstConstantOper == MinOperands) {
888    // Without TargetData, we won't know what the offsets are.
889    if (!TD)
890      return MayAlias;
891
892    // Make GEP1Ops be the longer one if there is a longer one.
893    if (NumGEP1Ops < NumGEP2Ops) {
894      std::swap(GEP1Ops, GEP2Ops);
895      std::swap(NumGEP1Ops, NumGEP2Ops);
896    }
897
898    // Is there anything to check?
899    if (NumGEP1Ops > MinOperands) {
900      for (unsigned i = FirstConstantOper; i != MaxOperands; ++i)
901        if (isa<ConstantInt>(GEP1Ops[i]) &&
902            !cast<ConstantInt>(GEP1Ops[i])->isZero()) {
903          // Yup, there's a constant in the tail.  Set all variables to
904          // constants in the GEP instruction to make it suitable for
905          // TargetData::getIndexedOffset.
906          for (i = 0; i != MaxOperands; ++i)
907            if (!isa<ConstantInt>(GEP1Ops[i]))
908              GEP1Ops[i] = Constant::getNullValue(GEP1Ops[i]->getType());
909          // Okay, now get the offset.  This is the relative offset for the full
910          // instruction.
911          int64_t Offset1 = TD->getIndexedOffset(GEPPointerTy, GEP1Ops,
912                                                 NumGEP1Ops);
913
914          // Now check without any constants at the end.
915          int64_t Offset2 = TD->getIndexedOffset(GEPPointerTy, GEP1Ops,
916                                                 MinOperands);
917
918          // Make sure we compare the absolute difference.
919          if (Offset1 > Offset2)
920            std::swap(Offset1, Offset2);
921
922          // If the tail provided a bit enough offset, return noalias!
923          if ((uint64_t)(Offset2-Offset1) >= SizeMax)
924            return NoAlias;
925          // Otherwise break - we don't look for another constant in the tail.
926          break;
927        }
928    }
929
930    // Couldn't find anything useful.
931    return MayAlias;
932  }
933
934  // If there are non-equal constants arguments, then we can figure
935  // out a minimum known delta between the two index expressions... at
936  // this point we know that the first constant index of GEP1 is less
937  // than the first constant index of GEP2.
938
939  // Advance BasePtr[12]Ty over this first differing constant operand.
940  BasePtr2Ty = cast<CompositeType>(BasePtr1Ty)->
941      getTypeAtIndex(GEP2Ops[FirstConstantOper]);
942  BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->
943      getTypeAtIndex(GEP1Ops[FirstConstantOper]);
944
945  // We are going to be using TargetData::getIndexedOffset to determine the
946  // offset that each of the GEP's is reaching.  To do this, we have to convert
947  // all variable references to constant references.  To do this, we convert the
948  // initial sequence of array subscripts into constant zeros to start with.
949  const Type *ZeroIdxTy = GEPPointerTy;
950  for (unsigned i = 0; i != FirstConstantOper; ++i) {
951    if (!isa<StructType>(ZeroIdxTy))
952      GEP1Ops[i] = GEP2Ops[i] =
953                              Constant::getNullValue(Type::getInt32Ty(Context));
954
955    if (const CompositeType *CT = dyn_cast<CompositeType>(ZeroIdxTy))
956      ZeroIdxTy = CT->getTypeAtIndex(GEP1Ops[i]);
957  }
958
959  // We know that GEP1Ops[FirstConstantOper] & GEP2Ops[FirstConstantOper] are ok
960
961  // Loop over the rest of the operands...
962  for (unsigned i = FirstConstantOper+1; i != MaxOperands; ++i) {
963    const Value *Op1 = i < NumGEP1Ops ? GEP1Ops[i] : 0;
964    const Value *Op2 = i < NumGEP2Ops ? GEP2Ops[i] : 0;
965    // If they are equal, use a zero index...
966    if (Op1 == Op2 && BasePtr1Ty == BasePtr2Ty) {
967      if (!isa<ConstantInt>(Op1))
968        GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Op1->getType());
969      // Otherwise, just keep the constants we have.
970    } else {
971      if (Op1) {
972        if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
973          // If this is an array index, make sure the array element is in range.
974          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty)) {
975            if (Op1C->getZExtValue() >= AT->getNumElements())
976              return MayAlias;  // Be conservative with out-of-range accesses
977          } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty)) {
978            if (Op1C->getZExtValue() >= VT->getNumElements())
979              return MayAlias;  // Be conservative with out-of-range accesses
980          }
981
982        } else {
983          // GEP1 is known to produce a value less than GEP2.  To be
984          // conservatively correct, we must assume the largest possible
985          // constant is used in this position.  This cannot be the initial
986          // index to the GEP instructions (because we know we have at least one
987          // element before this one with the different constant arguments), so
988          // we know that the current index must be into either a struct or
989          // array.  Because we know it's not constant, this cannot be a
990          // structure index.  Because of this, we can calculate the maximum
991          // value possible.
992          //
993          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
994            GEP1Ops[i] =
995                  ConstantInt::get(Type::getInt64Ty(Context),
996                                   AT->getNumElements()-1);
997          else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty))
998            GEP1Ops[i] =
999                  ConstantInt::get(Type::getInt64Ty(Context),
1000                                   VT->getNumElements()-1);
1001        }
1002      }
1003
1004      if (Op2) {
1005        if (const ConstantInt *Op2C = dyn_cast<ConstantInt>(Op2)) {
1006          // If this is an array index, make sure the array element is in range.
1007          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr2Ty)) {
1008            if (Op2C->getZExtValue() >= AT->getNumElements())
1009              return MayAlias;  // Be conservative with out-of-range accesses
1010          } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr2Ty)) {
1011            if (Op2C->getZExtValue() >= VT->getNumElements())
1012              return MayAlias;  // Be conservative with out-of-range accesses
1013          }
1014        } else {  // Conservatively assume the minimum value for this index
1015          GEP2Ops[i] = Constant::getNullValue(Op2->getType());
1016        }
1017      }
1018    }
1019
1020    if (BasePtr1Ty && Op1) {
1021      if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
1022        BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[i]);
1023      else
1024        BasePtr1Ty = 0;
1025    }
1026
1027    if (BasePtr2Ty && Op2) {
1028      if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr2Ty))
1029        BasePtr2Ty = CT->getTypeAtIndex(GEP2Ops[i]);
1030      else
1031        BasePtr2Ty = 0;
1032    }
1033  }
1034
1035  if (TD && GEPPointerTy->getElementType()->isSized()) {
1036    int64_t Offset1 =
1037      TD->getIndexedOffset(GEPPointerTy, GEP1Ops, NumGEP1Ops);
1038    int64_t Offset2 =
1039      TD->getIndexedOffset(GEPPointerTy, GEP2Ops, NumGEP2Ops);
1040    assert(Offset1 != Offset2 &&
1041           "There is at least one different constant here!");
1042
1043    // Make sure we compare the absolute difference.
1044    if (Offset1 > Offset2)
1045      std::swap(Offset1, Offset2);
1046
1047    if ((uint64_t)(Offset2-Offset1) >= SizeMax) {
1048      //cerr << "Determined that these two GEP's don't alias ["
1049      //     << SizeMax << " bytes]: \n" << *GEP1 << *GEP2;
1050      return NoAlias;
1051    }
1052  }
1053  return MayAlias;
1054}
1055
1056// Make sure that anything that uses AliasAnalysis pulls in this file...
1057DEFINING_FILE_FOR(BasicAliasAnalysis)
1058