BasicAliasAnalysis.cpp revision fc2a3ed0c9e32cf7edaf5030fa0972b916cc5f0b
1//===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the default implementation of the Alias Analysis interface
11// that simply implements a few identities (two different globals cannot alias,
12// etc), but otherwise does no analysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/Analysis/CaptureTracking.h"
18#include "llvm/Analysis/Passes.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Function.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Instructions.h"
24#include "llvm/IntrinsicInst.h"
25#include "llvm/LLVMContext.h"
26#include "llvm/Operator.h"
27#include "llvm/Pass.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/ADT/SmallVector.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/Support/Compiler.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/GetElementPtrTypeIterator.h"
34#include <algorithm>
35using namespace llvm;
36
37//===----------------------------------------------------------------------===//
38// Useful predicates
39//===----------------------------------------------------------------------===//
40
41static const GEPOperator *isGEP(const Value *V) {
42  return dyn_cast<GEPOperator>(V);
43}
44
45static const Value *GetGEPOperands(const Value *V,
46                                   SmallVector<Value*, 16> &GEPOps) {
47  assert(GEPOps.empty() && "Expect empty list to populate!");
48  GEPOps.insert(GEPOps.end(), cast<User>(V)->op_begin()+1,
49                cast<User>(V)->op_end());
50
51  // Accumulate all of the chained indexes into the operand array
52  V = cast<User>(V)->getOperand(0);
53
54  while (const User *G = isGEP(V)) {
55    if (!isa<Constant>(GEPOps[0]) || isa<GlobalValue>(GEPOps[0]) ||
56        !cast<Constant>(GEPOps[0])->isNullValue())
57      break;  // Don't handle folding arbitrary pointer offsets yet...
58    GEPOps.erase(GEPOps.begin());   // Drop the zero index
59    GEPOps.insert(GEPOps.begin(), G->op_begin()+1, G->op_end());
60    V = G->getOperand(0);
61  }
62  return V;
63}
64
65/// isKnownNonNull - Return true if we know that the specified value is never
66/// null.
67static bool isKnownNonNull(const Value *V) {
68  // Alloca never returns null, malloc might.
69  if (isa<AllocaInst>(V)) return true;
70
71  // A byval argument is never null.
72  if (const Argument *A = dyn_cast<Argument>(V))
73    return A->hasByValAttr();
74
75  // Global values are not null unless extern weak.
76  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
77    return !GV->hasExternalWeakLinkage();
78  return false;
79}
80
81/// isNonEscapingLocalObject - Return true if the pointer is to a function-local
82/// object that never escapes from the function.
83static bool isNonEscapingLocalObject(const Value *V) {
84  // If this is a local allocation, check to see if it escapes.
85  if (isa<AllocationInst>(V) || isNoAliasCall(V))
86    return !PointerMayBeCaptured(V, false);
87
88  // If this is an argument that corresponds to a byval or noalias argument,
89  // then it has not escaped before entering the function.  Check if it escapes
90  // inside the function.
91  if (const Argument *A = dyn_cast<Argument>(V))
92    if (A->hasByValAttr() || A->hasNoAliasAttr()) {
93      // Don't bother analyzing arguments already known not to escape.
94      if (A->hasNoCaptureAttr())
95        return true;
96      return !PointerMayBeCaptured(V, false);
97    }
98  return false;
99}
100
101
102/// isObjectSmallerThan - Return true if we can prove that the object specified
103/// by V is smaller than Size.
104static bool isObjectSmallerThan(const Value *V, unsigned Size,
105                                const TargetData &TD) {
106  const Type *AccessTy;
107  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
108    AccessTy = GV->getType()->getElementType();
109  } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
110    if (!AI->isArrayAllocation())
111      AccessTy = AI->getType()->getElementType();
112    else
113      return false;
114  } else if (const Argument *A = dyn_cast<Argument>(V)) {
115    if (A->hasByValAttr())
116      AccessTy = cast<PointerType>(A->getType())->getElementType();
117    else
118      return false;
119  } else {
120    return false;
121  }
122
123  if (AccessTy->isSized())
124    return TD.getTypeAllocSize(AccessTy) < Size;
125  return false;
126}
127
128//===----------------------------------------------------------------------===//
129// NoAA Pass
130//===----------------------------------------------------------------------===//
131
132namespace {
133  /// NoAA - This class implements the -no-aa pass, which always returns "I
134  /// don't know" for alias queries.  NoAA is unlike other alias analysis
135  /// implementations, in that it does not chain to a previous analysis.  As
136  /// such it doesn't follow many of the rules that other alias analyses must.
137  ///
138  struct VISIBILITY_HIDDEN NoAA : public ImmutablePass, public AliasAnalysis {
139    static char ID; // Class identification, replacement for typeinfo
140    NoAA() : ImmutablePass(&ID) {}
141    explicit NoAA(void *PID) : ImmutablePass(PID) { }
142
143    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
144    }
145
146    virtual void initializePass() {
147      TD = getAnalysisIfAvailable<TargetData>();
148    }
149
150    virtual AliasResult alias(const Value *V1, unsigned V1Size,
151                              const Value *V2, unsigned V2Size) {
152      return MayAlias;
153    }
154
155    virtual void getArgumentAccesses(Function *F, CallSite CS,
156                                     std::vector<PointerAccessInfo> &Info) {
157      llvm_unreachable("This method may not be called on this function!");
158    }
159
160    virtual void getMustAliases(Value *P, std::vector<Value*> &RetVals) { }
161    virtual bool pointsToConstantMemory(const Value *P) { return false; }
162    virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size) {
163      return ModRef;
164    }
165    virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
166      return ModRef;
167    }
168    virtual bool hasNoModRefInfoForCalls() const { return true; }
169
170    virtual void deleteValue(Value *V) {}
171    virtual void copyValue(Value *From, Value *To) {}
172  };
173}  // End of anonymous namespace
174
175// Register this pass...
176char NoAA::ID = 0;
177static RegisterPass<NoAA>
178U("no-aa", "No Alias Analysis (always returns 'may' alias)", true, true);
179
180// Declare that we implement the AliasAnalysis interface
181static RegisterAnalysisGroup<AliasAnalysis> V(U);
182
183ImmutablePass *llvm::createNoAAPass() { return new NoAA(); }
184
185//===----------------------------------------------------------------------===//
186// BasicAA Pass
187//===----------------------------------------------------------------------===//
188
189namespace {
190  /// BasicAliasAnalysis - This is the default alias analysis implementation.
191  /// Because it doesn't chain to a previous alias analysis (like -no-aa), it
192  /// derives from the NoAA class.
193  struct VISIBILITY_HIDDEN BasicAliasAnalysis : public NoAA {
194    static char ID; // Class identification, replacement for typeinfo
195    BasicAliasAnalysis() : NoAA(&ID) {}
196    AliasResult alias(const Value *V1, unsigned V1Size,
197                      const Value *V2, unsigned V2Size);
198
199    ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
200    ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
201
202    /// hasNoModRefInfoForCalls - We can provide mod/ref information against
203    /// non-escaping allocations.
204    virtual bool hasNoModRefInfoForCalls() const { return false; }
205
206    /// pointsToConstantMemory - Chase pointers until we find a (constant
207    /// global) or not.
208    bool pointsToConstantMemory(const Value *P);
209
210  private:
211    // CheckGEPInstructions - Check two GEP instructions with known
212    // must-aliasing base pointers.  This checks to see if the index expressions
213    // preclude the pointers from aliasing...
214    AliasResult
215    CheckGEPInstructions(const Type* BasePtr1Ty,
216                         Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1Size,
217                         const Type *BasePtr2Ty,
218                         Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2Size);
219  };
220}  // End of anonymous namespace
221
222// Register this pass...
223char BasicAliasAnalysis::ID = 0;
224static RegisterPass<BasicAliasAnalysis>
225X("basicaa", "Basic Alias Analysis (default AA impl)", false, true);
226
227// Declare that we implement the AliasAnalysis interface
228static RegisterAnalysisGroup<AliasAnalysis, true> Y(X);
229
230ImmutablePass *llvm::createBasicAliasAnalysisPass() {
231  return new BasicAliasAnalysis();
232}
233
234
235/// pointsToConstantMemory - Chase pointers until we find a (constant
236/// global) or not.
237bool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) {
238  if (const GlobalVariable *GV =
239        dyn_cast<GlobalVariable>(P->getUnderlyingObject()))
240    return GV->isConstant();
241  return false;
242}
243
244
245// getModRefInfo - Check to see if the specified callsite can clobber the
246// specified memory object.  Since we only look at local properties of this
247// function, we really can't say much about this query.  We do, however, use
248// simple "address taken" analysis on local objects.
249//
250AliasAnalysis::ModRefResult
251BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
252  if (!isa<Constant>(P)) {
253    const Value *Object = P->getUnderlyingObject();
254
255    // If this is a tail call and P points to a stack location, we know that
256    // the tail call cannot access or modify the local stack.
257    // We cannot exclude byval arguments here; these belong to the caller of
258    // the current function not to the current function, and a tail callee
259    // may reference them.
260    if (isa<AllocaInst>(Object))
261      if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
262        if (CI->isTailCall())
263          return NoModRef;
264
265    // If the pointer is to a locally allocated object that does not escape,
266    // then the call can not mod/ref the pointer unless the call takes the
267    // argument without capturing it.
268    if (isNonEscapingLocalObject(Object) && CS.getInstruction() != Object) {
269      bool passedAsArg = false;
270      // TODO: Eventually only check 'nocapture' arguments.
271      for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
272           CI != CE; ++CI)
273        if (isa<PointerType>((*CI)->getType()) &&
274            alias(cast<Value>(CI), ~0U, P, ~0U) != NoAlias)
275          passedAsArg = true;
276
277      if (!passedAsArg)
278        return NoModRef;
279    }
280  }
281
282  // The AliasAnalysis base class has some smarts, lets use them.
283  return AliasAnalysis::getModRefInfo(CS, P, Size);
284}
285
286
287AliasAnalysis::ModRefResult
288BasicAliasAnalysis::getModRefInfo(CallSite CS1, CallSite CS2) {
289  // If CS1 or CS2 are readnone, they don't interact.
290  ModRefBehavior CS1B = AliasAnalysis::getModRefBehavior(CS1);
291  if (CS1B == DoesNotAccessMemory) return NoModRef;
292
293  ModRefBehavior CS2B = AliasAnalysis::getModRefBehavior(CS2);
294  if (CS2B == DoesNotAccessMemory) return NoModRef;
295
296  // If they both only read from memory, just return ref.
297  if (CS1B == OnlyReadsMemory && CS2B == OnlyReadsMemory)
298    return Ref;
299
300  // Otherwise, fall back to NoAA (mod+ref).
301  return NoAA::getModRefInfo(CS1, CS2);
302}
303
304
305// alias - Provide a bunch of ad-hoc rules to disambiguate in common cases, such
306// as array references.
307//
308AliasAnalysis::AliasResult
309BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
310                          const Value *V2, unsigned V2Size) {
311  LLVMContext &Context = V1->getType()->getContext();
312
313  // Strip off any constant expression casts if they exist
314  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V1))
315    if (CE->isCast() && isa<PointerType>(CE->getOperand(0)->getType()))
316      V1 = CE->getOperand(0);
317  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V2))
318    if (CE->isCast() && isa<PointerType>(CE->getOperand(0)->getType()))
319      V2 = CE->getOperand(0);
320
321  // Are we checking for alias of the same value?
322  if (V1 == V2) return MustAlias;
323
324  if (!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType()))
325    return NoAlias;  // Scalars cannot alias each other
326
327  // Strip off cast instructions.   Since V1 and V2 are pointers, they must be
328  // pointer<->pointer bitcasts.
329  if (const BitCastInst *I = dyn_cast<BitCastInst>(V1))
330    return alias(I->getOperand(0), V1Size, V2, V2Size);
331  if (const BitCastInst *I = dyn_cast<BitCastInst>(V2))
332    return alias(V1, V1Size, I->getOperand(0), V2Size);
333
334  // Figure out what objects these things are pointing to if we can.
335  const Value *O1 = V1->getUnderlyingObject();
336  const Value *O2 = V2->getUnderlyingObject();
337
338  if (O1 != O2) {
339    // If V1/V2 point to two different objects we know that we have no alias.
340    if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
341      return NoAlias;
342
343    // Arguments can't alias with local allocations or noalias calls.
344    if ((isa<Argument>(O1) && (isa<AllocationInst>(O2) || isNoAliasCall(O2))) ||
345        (isa<Argument>(O2) && (isa<AllocationInst>(O1) || isNoAliasCall(O1))))
346      return NoAlias;
347
348    // Most objects can't alias null.
349    if ((isa<ConstantPointerNull>(V2) && isKnownNonNull(O1)) ||
350        (isa<ConstantPointerNull>(V1) && isKnownNonNull(O2)))
351      return NoAlias;
352  }
353
354  // If the size of one access is larger than the entire object on the other
355  // side, then we know such behavior is undefined and can assume no alias.
356  if (TD)
357    if ((V1Size != ~0U && isObjectSmallerThan(O2, V1Size, *TD)) ||
358        (V2Size != ~0U && isObjectSmallerThan(O1, V2Size, *TD)))
359      return NoAlias;
360
361  // If one pointer is the result of a call/invoke and the other is a
362  // non-escaping local object, then we know the object couldn't escape to a
363  // point where the call could return it.
364  if ((isa<CallInst>(O1) || isa<InvokeInst>(O1)) &&
365      isNonEscapingLocalObject(O2) && O1 != O2)
366    return NoAlias;
367  if ((isa<CallInst>(O2) || isa<InvokeInst>(O2)) &&
368      isNonEscapingLocalObject(O1) && O1 != O2)
369    return NoAlias;
370
371  // If we have two gep instructions with must-alias'ing base pointers, figure
372  // out if the indexes to the GEP tell us anything about the derived pointer.
373  // Note that we also handle chains of getelementptr instructions as well as
374  // constant expression getelementptrs here.
375  //
376  if (isGEP(V1) && isGEP(V2)) {
377    const User *GEP1 = cast<User>(V1);
378    const User *GEP2 = cast<User>(V2);
379
380    // If V1 and V2 are identical GEPs, just recurse down on both of them.
381    // This allows us to analyze things like:
382    //   P = gep A, 0, i, 1
383    //   Q = gep B, 0, i, 1
384    // by just analyzing A and B.  This is even safe for variable indices.
385    if (GEP1->getType() == GEP2->getType() &&
386        GEP1->getNumOperands() == GEP2->getNumOperands() &&
387        GEP1->getOperand(0)->getType() == GEP2->getOperand(0)->getType() &&
388        // All operands are the same, ignoring the base.
389        std::equal(GEP1->op_begin()+1, GEP1->op_end(), GEP2->op_begin()+1))
390      return alias(GEP1->getOperand(0), V1Size, GEP2->getOperand(0), V2Size);
391
392
393    // Drill down into the first non-gep value, to test for must-aliasing of
394    // the base pointers.
395    while (isGEP(GEP1->getOperand(0)) &&
396           GEP1->getOperand(1) ==
397           Context.getNullValue(GEP1->getOperand(1)->getType()))
398      GEP1 = cast<User>(GEP1->getOperand(0));
399    const Value *BasePtr1 = GEP1->getOperand(0);
400
401    while (isGEP(GEP2->getOperand(0)) &&
402           GEP2->getOperand(1) ==
403           Context.getNullValue(GEP2->getOperand(1)->getType()))
404      GEP2 = cast<User>(GEP2->getOperand(0));
405    const Value *BasePtr2 = GEP2->getOperand(0);
406
407    // Do the base pointers alias?
408    AliasResult BaseAlias = alias(BasePtr1, ~0U, BasePtr2, ~0U);
409    if (BaseAlias == NoAlias) return NoAlias;
410    if (BaseAlias == MustAlias) {
411      // If the base pointers alias each other exactly, check to see if we can
412      // figure out anything about the resultant pointers, to try to prove
413      // non-aliasing.
414
415      // Collect all of the chained GEP operands together into one simple place
416      SmallVector<Value*, 16> GEP1Ops, GEP2Ops;
417      BasePtr1 = GetGEPOperands(V1, GEP1Ops);
418      BasePtr2 = GetGEPOperands(V2, GEP2Ops);
419
420      // If GetGEPOperands were able to fold to the same must-aliased pointer,
421      // do the comparison.
422      if (BasePtr1 == BasePtr2) {
423        AliasResult GAlias =
424          CheckGEPInstructions(BasePtr1->getType(),
425                               &GEP1Ops[0], GEP1Ops.size(), V1Size,
426                               BasePtr2->getType(),
427                               &GEP2Ops[0], GEP2Ops.size(), V2Size);
428        if (GAlias != MayAlias)
429          return GAlias;
430      }
431    }
432  }
433
434  // Check to see if these two pointers are related by a getelementptr
435  // instruction.  If one pointer is a GEP with a non-zero index of the other
436  // pointer, we know they cannot alias.
437  //
438  if (isGEP(V2)) {
439    std::swap(V1, V2);
440    std::swap(V1Size, V2Size);
441  }
442
443  if (V1Size != ~0U && V2Size != ~0U)
444    if (isGEP(V1)) {
445      SmallVector<Value*, 16> GEPOperands;
446      const Value *BasePtr = GetGEPOperands(V1, GEPOperands);
447
448      AliasResult R = alias(BasePtr, V1Size, V2, V2Size);
449      if (R == MustAlias) {
450        // If there is at least one non-zero constant index, we know they cannot
451        // alias.
452        bool ConstantFound = false;
453        bool AllZerosFound = true;
454        for (unsigned i = 0, e = GEPOperands.size(); i != e; ++i)
455          if (const Constant *C = dyn_cast<Constant>(GEPOperands[i])) {
456            if (!C->isNullValue()) {
457              ConstantFound = true;
458              AllZerosFound = false;
459              break;
460            }
461          } else {
462            AllZerosFound = false;
463          }
464
465        // If we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 must aliases
466        // the ptr, the end result is a must alias also.
467        if (AllZerosFound)
468          return MustAlias;
469
470        if (ConstantFound) {
471          if (V2Size <= 1 && V1Size <= 1)  // Just pointer check?
472            return NoAlias;
473
474          // Otherwise we have to check to see that the distance is more than
475          // the size of the argument... build an index vector that is equal to
476          // the arguments provided, except substitute 0's for any variable
477          // indexes we find...
478          if (TD && cast<PointerType>(
479                BasePtr->getType())->getElementType()->isSized()) {
480            for (unsigned i = 0; i != GEPOperands.size(); ++i)
481              if (!isa<ConstantInt>(GEPOperands[i]))
482                GEPOperands[i] =
483                  Context.getNullValue(GEPOperands[i]->getType());
484            int64_t Offset =
485              TD->getIndexedOffset(BasePtr->getType(),
486                                   &GEPOperands[0],
487                                   GEPOperands.size());
488
489            if (Offset >= (int64_t)V2Size || Offset <= -(int64_t)V1Size)
490              return NoAlias;
491          }
492        }
493      }
494    }
495
496  return MayAlias;
497}
498
499// This function is used to determine if the indices of two GEP instructions are
500// equal. V1 and V2 are the indices.
501static bool IndexOperandsEqual(Value *V1, Value *V2, LLVMContext &Context) {
502  if (V1->getType() == V2->getType())
503    return V1 == V2;
504  if (Constant *C1 = dyn_cast<Constant>(V1))
505    if (Constant *C2 = dyn_cast<Constant>(V2)) {
506      // Sign extend the constants to long types, if necessary
507      if (C1->getType() != Type::Int64Ty)
508        C1 = Context.getConstantExprSExt(C1, Type::Int64Ty);
509      if (C2->getType() != Type::Int64Ty)
510        C2 = Context.getConstantExprSExt(C2, Type::Int64Ty);
511      return C1 == C2;
512    }
513  return false;
514}
515
516/// CheckGEPInstructions - Check two GEP instructions with known must-aliasing
517/// base pointers.  This checks to see if the index expressions preclude the
518/// pointers from aliasing...
519AliasAnalysis::AliasResult
520BasicAliasAnalysis::CheckGEPInstructions(
521  const Type* BasePtr1Ty, Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1S,
522  const Type *BasePtr2Ty, Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2S) {
523  // We currently can't handle the case when the base pointers have different
524  // primitive types.  Since this is uncommon anyway, we are happy being
525  // extremely conservative.
526  if (BasePtr1Ty != BasePtr2Ty)
527    return MayAlias;
528
529  const PointerType *GEPPointerTy = cast<PointerType>(BasePtr1Ty);
530
531  LLVMContext &Context = GEPPointerTy->getContext();
532
533  // Find the (possibly empty) initial sequence of equal values... which are not
534  // necessarily constants.
535  unsigned NumGEP1Operands = NumGEP1Ops, NumGEP2Operands = NumGEP2Ops;
536  unsigned MinOperands = std::min(NumGEP1Operands, NumGEP2Operands);
537  unsigned MaxOperands = std::max(NumGEP1Operands, NumGEP2Operands);
538  unsigned UnequalOper = 0;
539  while (UnequalOper != MinOperands &&
540         IndexOperandsEqual(GEP1Ops[UnequalOper], GEP2Ops[UnequalOper],
541         Context)) {
542    // Advance through the type as we go...
543    ++UnequalOper;
544    if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
545      BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[UnequalOper-1]);
546    else {
547      // If all operands equal each other, then the derived pointers must
548      // alias each other...
549      BasePtr1Ty = 0;
550      assert(UnequalOper == NumGEP1Operands && UnequalOper == NumGEP2Operands &&
551             "Ran out of type nesting, but not out of operands?");
552      return MustAlias;
553    }
554  }
555
556  // If we have seen all constant operands, and run out of indexes on one of the
557  // getelementptrs, check to see if the tail of the leftover one is all zeros.
558  // If so, return mustalias.
559  if (UnequalOper == MinOperands) {
560    if (NumGEP1Ops < NumGEP2Ops) {
561      std::swap(GEP1Ops, GEP2Ops);
562      std::swap(NumGEP1Ops, NumGEP2Ops);
563    }
564
565    bool AllAreZeros = true;
566    for (unsigned i = UnequalOper; i != MaxOperands; ++i)
567      if (!isa<Constant>(GEP1Ops[i]) ||
568          !cast<Constant>(GEP1Ops[i])->isNullValue()) {
569        AllAreZeros = false;
570        break;
571      }
572    if (AllAreZeros) return MustAlias;
573  }
574
575
576  // So now we know that the indexes derived from the base pointers,
577  // which are known to alias, are different.  We can still determine a
578  // no-alias result if there are differing constant pairs in the index
579  // chain.  For example:
580  //        A[i][0] != A[j][1] iff (&A[0][1]-&A[0][0] >= std::max(G1S, G2S))
581  //
582  // We have to be careful here about array accesses.  In particular, consider:
583  //        A[1][0] vs A[0][i]
584  // In this case, we don't *know* that the array will be accessed in bounds:
585  // the index could even be negative.  Because of this, we have to
586  // conservatively *give up* and return may alias.  We disregard differing
587  // array subscripts that are followed by a variable index without going
588  // through a struct.
589  //
590  unsigned SizeMax = std::max(G1S, G2S);
591  if (SizeMax == ~0U) return MayAlias; // Avoid frivolous work.
592
593  // Scan for the first operand that is constant and unequal in the
594  // two getelementptrs...
595  unsigned FirstConstantOper = UnequalOper;
596  for (; FirstConstantOper != MinOperands; ++FirstConstantOper) {
597    const Value *G1Oper = GEP1Ops[FirstConstantOper];
598    const Value *G2Oper = GEP2Ops[FirstConstantOper];
599
600    if (G1Oper != G2Oper)   // Found non-equal constant indexes...
601      if (Constant *G1OC = dyn_cast<ConstantInt>(const_cast<Value*>(G1Oper)))
602        if (Constant *G2OC = dyn_cast<ConstantInt>(const_cast<Value*>(G2Oper))){
603          if (G1OC->getType() != G2OC->getType()) {
604            // Sign extend both operands to long.
605            if (G1OC->getType() != Type::Int64Ty)
606              G1OC = Context.getConstantExprSExt(G1OC, Type::Int64Ty);
607            if (G2OC->getType() != Type::Int64Ty)
608              G2OC = Context.getConstantExprSExt(G2OC, Type::Int64Ty);
609            GEP1Ops[FirstConstantOper] = G1OC;
610            GEP2Ops[FirstConstantOper] = G2OC;
611          }
612
613          if (G1OC != G2OC) {
614            // Handle the "be careful" case above: if this is an array/vector
615            // subscript, scan for a subsequent variable array index.
616            if (const SequentialType *STy =
617                  dyn_cast<SequentialType>(BasePtr1Ty)) {
618              const Type *NextTy = STy;
619              bool isBadCase = false;
620
621              for (unsigned Idx = FirstConstantOper;
622                   Idx != MinOperands && isa<SequentialType>(NextTy); ++Idx) {
623                const Value *V1 = GEP1Ops[Idx], *V2 = GEP2Ops[Idx];
624                if (!isa<Constant>(V1) || !isa<Constant>(V2)) {
625                  isBadCase = true;
626                  break;
627                }
628                // If the array is indexed beyond the bounds of the static type
629                // at this level, it will also fall into the "be careful" case.
630                // It would theoretically be possible to analyze these cases,
631                // but for now just be conservatively correct.
632                if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
633                  if (cast<ConstantInt>(G1OC)->getZExtValue() >=
634                        ATy->getNumElements() ||
635                      cast<ConstantInt>(G2OC)->getZExtValue() >=
636                        ATy->getNumElements()) {
637                    isBadCase = true;
638                    break;
639                  }
640                if (const VectorType *VTy = dyn_cast<VectorType>(STy))
641                  if (cast<ConstantInt>(G1OC)->getZExtValue() >=
642                        VTy->getNumElements() ||
643                      cast<ConstantInt>(G2OC)->getZExtValue() >=
644                        VTy->getNumElements()) {
645                    isBadCase = true;
646                    break;
647                  }
648                STy = cast<SequentialType>(NextTy);
649                NextTy = cast<SequentialType>(NextTy)->getElementType();
650              }
651
652              if (isBadCase) G1OC = 0;
653            }
654
655            // Make sure they are comparable (ie, not constant expressions), and
656            // make sure the GEP with the smaller leading constant is GEP1.
657            if (G1OC) {
658              Constant *Compare = ConstantExpr::getICmp(ICmpInst::ICMP_SGT,
659                                                        G1OC, G2OC);
660              if (ConstantInt *CV = dyn_cast<ConstantInt>(Compare)) {
661                if (CV->getZExtValue()) {  // If they are comparable and G2 > G1
662                  std::swap(GEP1Ops, GEP2Ops);  // Make GEP1 < GEP2
663                  std::swap(NumGEP1Ops, NumGEP2Ops);
664                }
665                break;
666              }
667            }
668          }
669        }
670    BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(G1Oper);
671  }
672
673  // No shared constant operands, and we ran out of common operands.  At this
674  // point, the GEP instructions have run through all of their operands, and we
675  // haven't found evidence that there are any deltas between the GEP's.
676  // However, one GEP may have more operands than the other.  If this is the
677  // case, there may still be hope.  Check this now.
678  if (FirstConstantOper == MinOperands) {
679    // Without TargetData, we won't know what the offsets are.
680    if (!TD)
681      return MayAlias;
682
683    // Make GEP1Ops be the longer one if there is a longer one.
684    if (NumGEP1Ops < NumGEP2Ops) {
685      std::swap(GEP1Ops, GEP2Ops);
686      std::swap(NumGEP1Ops, NumGEP2Ops);
687    }
688
689    // Is there anything to check?
690    if (NumGEP1Ops > MinOperands) {
691      for (unsigned i = FirstConstantOper; i != MaxOperands; ++i)
692        if (isa<ConstantInt>(GEP1Ops[i]) &&
693            !cast<ConstantInt>(GEP1Ops[i])->isZero()) {
694          // Yup, there's a constant in the tail.  Set all variables to
695          // constants in the GEP instruction to make it suitable for
696          // TargetData::getIndexedOffset.
697          for (i = 0; i != MaxOperands; ++i)
698            if (!isa<ConstantInt>(GEP1Ops[i]))
699              GEP1Ops[i] = Context.getNullValue(GEP1Ops[i]->getType());
700          // Okay, now get the offset.  This is the relative offset for the full
701          // instruction.
702          int64_t Offset1 = TD->getIndexedOffset(GEPPointerTy, GEP1Ops,
703                                                 NumGEP1Ops);
704
705          // Now check without any constants at the end.
706          int64_t Offset2 = TD->getIndexedOffset(GEPPointerTy, GEP1Ops,
707                                                 MinOperands);
708
709          // Make sure we compare the absolute difference.
710          if (Offset1 > Offset2)
711            std::swap(Offset1, Offset2);
712
713          // If the tail provided a bit enough offset, return noalias!
714          if ((uint64_t)(Offset2-Offset1) >= SizeMax)
715            return NoAlias;
716          // Otherwise break - we don't look for another constant in the tail.
717          break;
718        }
719    }
720
721    // Couldn't find anything useful.
722    return MayAlias;
723  }
724
725  // If there are non-equal constants arguments, then we can figure
726  // out a minimum known delta between the two index expressions... at
727  // this point we know that the first constant index of GEP1 is less
728  // than the first constant index of GEP2.
729
730  // Advance BasePtr[12]Ty over this first differing constant operand.
731  BasePtr2Ty = cast<CompositeType>(BasePtr1Ty)->
732      getTypeAtIndex(GEP2Ops[FirstConstantOper]);
733  BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->
734      getTypeAtIndex(GEP1Ops[FirstConstantOper]);
735
736  // We are going to be using TargetData::getIndexedOffset to determine the
737  // offset that each of the GEP's is reaching.  To do this, we have to convert
738  // all variable references to constant references.  To do this, we convert the
739  // initial sequence of array subscripts into constant zeros to start with.
740  const Type *ZeroIdxTy = GEPPointerTy;
741  for (unsigned i = 0; i != FirstConstantOper; ++i) {
742    if (!isa<StructType>(ZeroIdxTy))
743      GEP1Ops[i] = GEP2Ops[i] = Context.getNullValue(Type::Int32Ty);
744
745    if (const CompositeType *CT = dyn_cast<CompositeType>(ZeroIdxTy))
746      ZeroIdxTy = CT->getTypeAtIndex(GEP1Ops[i]);
747  }
748
749  // We know that GEP1Ops[FirstConstantOper] & GEP2Ops[FirstConstantOper] are ok
750
751  // Loop over the rest of the operands...
752  for (unsigned i = FirstConstantOper+1; i != MaxOperands; ++i) {
753    const Value *Op1 = i < NumGEP1Ops ? GEP1Ops[i] : 0;
754    const Value *Op2 = i < NumGEP2Ops ? GEP2Ops[i] : 0;
755    // If they are equal, use a zero index...
756    if (Op1 == Op2 && BasePtr1Ty == BasePtr2Ty) {
757      if (!isa<ConstantInt>(Op1))
758        GEP1Ops[i] = GEP2Ops[i] = Context.getNullValue(Op1->getType());
759      // Otherwise, just keep the constants we have.
760    } else {
761      if (Op1) {
762        if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
763          // If this is an array index, make sure the array element is in range.
764          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty)) {
765            if (Op1C->getZExtValue() >= AT->getNumElements())
766              return MayAlias;  // Be conservative with out-of-range accesses
767          } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty)) {
768            if (Op1C->getZExtValue() >= VT->getNumElements())
769              return MayAlias;  // Be conservative with out-of-range accesses
770          }
771
772        } else {
773          // GEP1 is known to produce a value less than GEP2.  To be
774          // conservatively correct, we must assume the largest possible
775          // constant is used in this position.  This cannot be the initial
776          // index to the GEP instructions (because we know we have at least one
777          // element before this one with the different constant arguments), so
778          // we know that the current index must be into either a struct or
779          // array.  Because we know it's not constant, this cannot be a
780          // structure index.  Because of this, we can calculate the maximum
781          // value possible.
782          //
783          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
784            GEP1Ops[i] =
785                  ConstantInt::get(Type::Int64Ty,AT->getNumElements()-1);
786          else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty))
787            GEP1Ops[i] =
788                  ConstantInt::get(Type::Int64Ty,VT->getNumElements()-1);
789        }
790      }
791
792      if (Op2) {
793        if (const ConstantInt *Op2C = dyn_cast<ConstantInt>(Op2)) {
794          // If this is an array index, make sure the array element is in range.
795          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr2Ty)) {
796            if (Op2C->getZExtValue() >= AT->getNumElements())
797              return MayAlias;  // Be conservative with out-of-range accesses
798          } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr2Ty)) {
799            if (Op2C->getZExtValue() >= VT->getNumElements())
800              return MayAlias;  // Be conservative with out-of-range accesses
801          }
802        } else {  // Conservatively assume the minimum value for this index
803          GEP2Ops[i] = Context.getNullValue(Op2->getType());
804        }
805      }
806    }
807
808    if (BasePtr1Ty && Op1) {
809      if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
810        BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[i]);
811      else
812        BasePtr1Ty = 0;
813    }
814
815    if (BasePtr2Ty && Op2) {
816      if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr2Ty))
817        BasePtr2Ty = CT->getTypeAtIndex(GEP2Ops[i]);
818      else
819        BasePtr2Ty = 0;
820    }
821  }
822
823  if (TD && GEPPointerTy->getElementType()->isSized()) {
824    int64_t Offset1 =
825      TD->getIndexedOffset(GEPPointerTy, GEP1Ops, NumGEP1Ops);
826    int64_t Offset2 =
827      TD->getIndexedOffset(GEPPointerTy, GEP2Ops, NumGEP2Ops);
828    assert(Offset1 != Offset2 &&
829           "There is at least one different constant here!");
830
831    // Make sure we compare the absolute difference.
832    if (Offset1 > Offset2)
833      std::swap(Offset1, Offset2);
834
835    if ((uint64_t)(Offset2-Offset1) >= SizeMax) {
836      //cerr << "Determined that these two GEP's don't alias ["
837      //     << SizeMax << " bytes]: \n" << *GEP1 << *GEP2;
838      return NoAlias;
839    }
840  }
841  return MayAlias;
842}
843
844// Make sure that anything that uses AliasAnalysis pulls in this file...
845DEFINING_FILE_FOR(BasicAliasAnalysis)
846