ScalarEvolution.cpp revision 0bac95e2e2044b574f3aea14a3fdb31c1b95240f
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle.  These classes are reference counted, managed by the SCEVHandle
18// class.  We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression.  These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
36// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43//  Chains of recurrences -- a method to expedite the evaluation
44//  of closed-form functions
45//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47//  On computational properties of chains of recurrences
48//  Eugene V. Zima
49//
50//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51//  Robert A. van Engelen
52//
53//  Efficient Symbolic Analysis for Optimizing Compilers
54//  Robert A. van Engelen
55//
56//  Using the chains of recurrences algebra for data dependence testing and
57//  induction variable substitution
58//  MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
62#define DEBUG_TYPE "scalar-evolution"
63#include "llvm/Analysis/ScalarEvolutionExpressions.h"
64#include "llvm/Constants.h"
65#include "llvm/DerivedTypes.h"
66#include "llvm/GlobalVariable.h"
67#include "llvm/Instructions.h"
68#include "llvm/Analysis/ConstantFolding.h"
69#include "llvm/Analysis/Dominators.h"
70#include "llvm/Analysis/LoopInfo.h"
71#include "llvm/Assembly/Writer.h"
72#include "llvm/Target/TargetData.h"
73#include "llvm/Support/CommandLine.h"
74#include "llvm/Support/Compiler.h"
75#include "llvm/Support/ConstantRange.h"
76#include "llvm/Support/GetElementPtrTypeIterator.h"
77#include "llvm/Support/InstIterator.h"
78#include "llvm/Support/ManagedStatic.h"
79#include "llvm/Support/MathExtras.h"
80#include "llvm/Support/raw_ostream.h"
81#include "llvm/ADT/Statistic.h"
82#include "llvm/ADT/STLExtras.h"
83#include <ostream>
84#include <algorithm>
85using namespace llvm;
86
87STATISTIC(NumArrayLenItCounts,
88          "Number of trip counts computed with array length");
89STATISTIC(NumTripCountsComputed,
90          "Number of loops with predictable loop counts");
91STATISTIC(NumTripCountsNotComputed,
92          "Number of loops without predictable loop counts");
93STATISTIC(NumBruteForceTripCountsComputed,
94          "Number of loops with trip counts computed by force");
95
96static cl::opt<unsigned>
97MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
98                        cl::desc("Maximum number of iterations SCEV will "
99                                 "symbolically execute a constant derived loop"),
100                        cl::init(100));
101
102static RegisterPass<ScalarEvolution>
103R("scalar-evolution", "Scalar Evolution Analysis", false, true);
104char ScalarEvolution::ID = 0;
105
106//===----------------------------------------------------------------------===//
107//                           SCEV class definitions
108//===----------------------------------------------------------------------===//
109
110//===----------------------------------------------------------------------===//
111// Implementation of the SCEV class.
112//
113SCEV::~SCEV() {}
114void SCEV::dump() const {
115  print(errs());
116  errs() << '\n';
117}
118
119void SCEV::print(std::ostream &o) const {
120  raw_os_ostream OS(o);
121  print(OS);
122}
123
124bool SCEV::isZero() const {
125  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
126    return SC->getValue()->isZero();
127  return false;
128}
129
130bool SCEV::isOne() const {
131  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
132    return SC->getValue()->isOne();
133  return false;
134}
135
136SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
137SCEVCouldNotCompute::~SCEVCouldNotCompute() {}
138
139bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
140  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
141  return false;
142}
143
144const Type *SCEVCouldNotCompute::getType() const {
145  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
146  return 0;
147}
148
149bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
150  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
151  return false;
152}
153
154SCEVHandle SCEVCouldNotCompute::
155replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
156                                  const SCEVHandle &Conc,
157                                  ScalarEvolution &SE) const {
158  return this;
159}
160
161void SCEVCouldNotCompute::print(raw_ostream &OS) const {
162  OS << "***COULDNOTCOMPUTE***";
163}
164
165bool SCEVCouldNotCompute::classof(const SCEV *S) {
166  return S->getSCEVType() == scCouldNotCompute;
167}
168
169
170// SCEVConstants - Only allow the creation of one SCEVConstant for any
171// particular value.  Don't use a SCEVHandle here, or else the object will
172// never be deleted!
173static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
174
175
176SCEVConstant::~SCEVConstant() {
177  SCEVConstants->erase(V);
178}
179
180SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) {
181  SCEVConstant *&R = (*SCEVConstants)[V];
182  if (R == 0) R = new SCEVConstant(V);
183  return R;
184}
185
186SCEVHandle ScalarEvolution::getConstant(const APInt& Val) {
187  return getConstant(ConstantInt::get(Val));
188}
189
190const Type *SCEVConstant::getType() const { return V->getType(); }
191
192void SCEVConstant::print(raw_ostream &OS) const {
193  WriteAsOperand(OS, V, false);
194}
195
196SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy,
197                           const SCEVHandle &op, const Type *ty)
198  : SCEV(SCEVTy), Op(op), Ty(ty) {}
199
200SCEVCastExpr::~SCEVCastExpr() {}
201
202bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
203  return Op->dominates(BB, DT);
204}
205
206// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
207// particular input.  Don't use a SCEVHandle here, or else the object will
208// never be deleted!
209static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
210                     SCEVTruncateExpr*> > SCEVTruncates;
211
212SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
213  : SCEVCastExpr(scTruncate, op, ty) {
214  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
215         (Ty->isInteger() || isa<PointerType>(Ty)) &&
216         "Cannot truncate non-integer value!");
217}
218
219SCEVTruncateExpr::~SCEVTruncateExpr() {
220  SCEVTruncates->erase(std::make_pair(Op, Ty));
221}
222
223void SCEVTruncateExpr::print(raw_ostream &OS) const {
224  OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
225}
226
227// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
228// particular input.  Don't use a SCEVHandle here, or else the object will never
229// be deleted!
230static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
231                     SCEVZeroExtendExpr*> > SCEVZeroExtends;
232
233SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
234  : SCEVCastExpr(scZeroExtend, op, ty) {
235  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
236         (Ty->isInteger() || isa<PointerType>(Ty)) &&
237         "Cannot zero extend non-integer value!");
238}
239
240SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
241  SCEVZeroExtends->erase(std::make_pair(Op, Ty));
242}
243
244void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
245  OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
246}
247
248// SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any
249// particular input.  Don't use a SCEVHandle here, or else the object will never
250// be deleted!
251static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
252                     SCEVSignExtendExpr*> > SCEVSignExtends;
253
254SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty)
255  : SCEVCastExpr(scSignExtend, op, ty) {
256  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
257         (Ty->isInteger() || isa<PointerType>(Ty)) &&
258         "Cannot sign extend non-integer value!");
259}
260
261SCEVSignExtendExpr::~SCEVSignExtendExpr() {
262  SCEVSignExtends->erase(std::make_pair(Op, Ty));
263}
264
265void SCEVSignExtendExpr::print(raw_ostream &OS) const {
266  OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
267}
268
269// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
270// particular input.  Don't use a SCEVHandle here, or else the object will never
271// be deleted!
272static ManagedStatic<std::map<std::pair<unsigned, std::vector<const SCEV*> >,
273                     SCEVCommutativeExpr*> > SCEVCommExprs;
274
275SCEVCommutativeExpr::~SCEVCommutativeExpr() {
276  std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
277  SCEVCommExprs->erase(std::make_pair(getSCEVType(), SCEVOps));
278}
279
280void SCEVCommutativeExpr::print(raw_ostream &OS) const {
281  assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
282  const char *OpStr = getOperationStr();
283  OS << "(" << *Operands[0];
284  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
285    OS << OpStr << *Operands[i];
286  OS << ")";
287}
288
289SCEVHandle SCEVCommutativeExpr::
290replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
291                                  const SCEVHandle &Conc,
292                                  ScalarEvolution &SE) const {
293  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
294    SCEVHandle H =
295      getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
296    if (H != getOperand(i)) {
297      std::vector<SCEVHandle> NewOps;
298      NewOps.reserve(getNumOperands());
299      for (unsigned j = 0; j != i; ++j)
300        NewOps.push_back(getOperand(j));
301      NewOps.push_back(H);
302      for (++i; i != e; ++i)
303        NewOps.push_back(getOperand(i)->
304                         replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
305
306      if (isa<SCEVAddExpr>(this))
307        return SE.getAddExpr(NewOps);
308      else if (isa<SCEVMulExpr>(this))
309        return SE.getMulExpr(NewOps);
310      else if (isa<SCEVSMaxExpr>(this))
311        return SE.getSMaxExpr(NewOps);
312      else if (isa<SCEVUMaxExpr>(this))
313        return SE.getUMaxExpr(NewOps);
314      else
315        assert(0 && "Unknown commutative expr!");
316    }
317  }
318  return this;
319}
320
321bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
322  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
323    if (!getOperand(i)->dominates(BB, DT))
324      return false;
325  }
326  return true;
327}
328
329
330// SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
331// input.  Don't use a SCEVHandle here, or else the object will never be
332// deleted!
333static ManagedStatic<std::map<std::pair<const SCEV*, const SCEV*>,
334                     SCEVUDivExpr*> > SCEVUDivs;
335
336SCEVUDivExpr::~SCEVUDivExpr() {
337  SCEVUDivs->erase(std::make_pair(LHS, RHS));
338}
339
340bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
341  return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
342}
343
344void SCEVUDivExpr::print(raw_ostream &OS) const {
345  OS << "(" << *LHS << " /u " << *RHS << ")";
346}
347
348const Type *SCEVUDivExpr::getType() const {
349  return LHS->getType();
350}
351
352// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
353// particular input.  Don't use a SCEVHandle here, or else the object will never
354// be deleted!
355static ManagedStatic<std::map<std::pair<const Loop *,
356                                        std::vector<const SCEV*> >,
357                     SCEVAddRecExpr*> > SCEVAddRecExprs;
358
359SCEVAddRecExpr::~SCEVAddRecExpr() {
360  std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
361  SCEVAddRecExprs->erase(std::make_pair(L, SCEVOps));
362}
363
364SCEVHandle SCEVAddRecExpr::
365replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
366                                  const SCEVHandle &Conc,
367                                  ScalarEvolution &SE) const {
368  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
369    SCEVHandle H =
370      getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
371    if (H != getOperand(i)) {
372      std::vector<SCEVHandle> NewOps;
373      NewOps.reserve(getNumOperands());
374      for (unsigned j = 0; j != i; ++j)
375        NewOps.push_back(getOperand(j));
376      NewOps.push_back(H);
377      for (++i; i != e; ++i)
378        NewOps.push_back(getOperand(i)->
379                         replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
380
381      return SE.getAddRecExpr(NewOps, L);
382    }
383  }
384  return this;
385}
386
387
388bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
389  // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
390  // contain L and if the start is invariant.
391  return !QueryLoop->contains(L->getHeader()) &&
392         getOperand(0)->isLoopInvariant(QueryLoop);
393}
394
395
396void SCEVAddRecExpr::print(raw_ostream &OS) const {
397  OS << "{" << *Operands[0];
398  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
399    OS << ",+," << *Operands[i];
400  OS << "}<" << L->getHeader()->getName() + ">";
401}
402
403// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
404// value.  Don't use a SCEVHandle here, or else the object will never be
405// deleted!
406static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
407
408SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
409
410bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
411  // All non-instruction values are loop invariant.  All instructions are loop
412  // invariant if they are not contained in the specified loop.
413  if (Instruction *I = dyn_cast<Instruction>(V))
414    return !L->contains(I->getParent());
415  return true;
416}
417
418bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
419  if (Instruction *I = dyn_cast<Instruction>(getValue()))
420    return DT->dominates(I->getParent(), BB);
421  return true;
422}
423
424const Type *SCEVUnknown::getType() const {
425  return V->getType();
426}
427
428void SCEVUnknown::print(raw_ostream &OS) const {
429  WriteAsOperand(OS, V, false);
430}
431
432//===----------------------------------------------------------------------===//
433//                               SCEV Utilities
434//===----------------------------------------------------------------------===//
435
436namespace {
437  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
438  /// than the complexity of the RHS.  This comparator is used to canonicalize
439  /// expressions.
440  class VISIBILITY_HIDDEN SCEVComplexityCompare {
441    LoopInfo *LI;
442  public:
443    explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
444
445    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
446      // Primarily, sort the SCEVs by their getSCEVType().
447      if (LHS->getSCEVType() != RHS->getSCEVType())
448        return LHS->getSCEVType() < RHS->getSCEVType();
449
450      // Aside from the getSCEVType() ordering, the particular ordering
451      // isn't very important except that it's beneficial to be consistent,
452      // so that (a + b) and (b + a) don't end up as different expressions.
453
454      // Sort SCEVUnknown values with some loose heuristics. TODO: This is
455      // not as complete as it could be.
456      if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
457        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
458
459        // Compare getValueID values.
460        if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
461          return LU->getValue()->getValueID() < RU->getValue()->getValueID();
462
463        // Sort arguments by their position.
464        if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
465          const Argument *RA = cast<Argument>(RU->getValue());
466          return LA->getArgNo() < RA->getArgNo();
467        }
468
469        // For instructions, compare their loop depth, and their opcode.
470        // This is pretty loose.
471        if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
472          Instruction *RV = cast<Instruction>(RU->getValue());
473
474          // Compare loop depths.
475          if (LI->getLoopDepth(LV->getParent()) !=
476              LI->getLoopDepth(RV->getParent()))
477            return LI->getLoopDepth(LV->getParent()) <
478                   LI->getLoopDepth(RV->getParent());
479
480          // Compare opcodes.
481          if (LV->getOpcode() != RV->getOpcode())
482            return LV->getOpcode() < RV->getOpcode();
483
484          // Compare the number of operands.
485          if (LV->getNumOperands() != RV->getNumOperands())
486            return LV->getNumOperands() < RV->getNumOperands();
487        }
488
489        return false;
490      }
491
492      // Constant sorting doesn't matter since they'll be folded.
493      if (isa<SCEVConstant>(LHS))
494        return false;
495
496      // Lexicographically compare n-ary expressions.
497      if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
498        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
499        for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
500          if (i >= RC->getNumOperands())
501            return false;
502          if (operator()(LC->getOperand(i), RC->getOperand(i)))
503            return true;
504          if (operator()(RC->getOperand(i), LC->getOperand(i)))
505            return false;
506        }
507        return LC->getNumOperands() < RC->getNumOperands();
508      }
509
510      // Lexicographically compare udiv expressions.
511      if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
512        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
513        if (operator()(LC->getLHS(), RC->getLHS()))
514          return true;
515        if (operator()(RC->getLHS(), LC->getLHS()))
516          return false;
517        if (operator()(LC->getRHS(), RC->getRHS()))
518          return true;
519        if (operator()(RC->getRHS(), LC->getRHS()))
520          return false;
521        return false;
522      }
523
524      // Compare cast expressions by operand.
525      if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
526        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
527        return operator()(LC->getOperand(), RC->getOperand());
528      }
529
530      assert(0 && "Unknown SCEV kind!");
531      return false;
532    }
533  };
534}
535
536/// GroupByComplexity - Given a list of SCEV objects, order them by their
537/// complexity, and group objects of the same complexity together by value.
538/// When this routine is finished, we know that any duplicates in the vector are
539/// consecutive and that complexity is monotonically increasing.
540///
541/// Note that we go take special precautions to ensure that we get determinstic
542/// results from this routine.  In other words, we don't want the results of
543/// this to depend on where the addresses of various SCEV objects happened to
544/// land in memory.
545///
546static void GroupByComplexity(std::vector<SCEVHandle> &Ops,
547                              LoopInfo *LI) {
548  if (Ops.size() < 2) return;  // Noop
549  if (Ops.size() == 2) {
550    // This is the common case, which also happens to be trivially simple.
551    // Special case it.
552    if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
553      std::swap(Ops[0], Ops[1]);
554    return;
555  }
556
557  // Do the rough sort by complexity.
558  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
559
560  // Now that we are sorted by complexity, group elements of the same
561  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
562  // be extremely short in practice.  Note that we take this approach because we
563  // do not want to depend on the addresses of the objects we are grouping.
564  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
565    const SCEV *S = Ops[i];
566    unsigned Complexity = S->getSCEVType();
567
568    // If there are any objects of the same complexity and same value as this
569    // one, group them.
570    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
571      if (Ops[j] == S) { // Found a duplicate.
572        // Move it to immediately after i'th element.
573        std::swap(Ops[i+1], Ops[j]);
574        ++i;   // no need to rescan it.
575        if (i == e-2) return;  // Done!
576      }
577    }
578  }
579}
580
581
582
583//===----------------------------------------------------------------------===//
584//                      Simple SCEV method implementations
585//===----------------------------------------------------------------------===//
586
587/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
588// Assume, K > 0.
589static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K,
590                                      ScalarEvolution &SE,
591                                      const Type* ResultTy) {
592  // Handle the simplest case efficiently.
593  if (K == 1)
594    return SE.getTruncateOrZeroExtend(It, ResultTy);
595
596  // We are using the following formula for BC(It, K):
597  //
598  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
599  //
600  // Suppose, W is the bitwidth of the return value.  We must be prepared for
601  // overflow.  Hence, we must assure that the result of our computation is
602  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
603  // safe in modular arithmetic.
604  //
605  // However, this code doesn't use exactly that formula; the formula it uses
606  // is something like the following, where T is the number of factors of 2 in
607  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
608  // exponentiation:
609  //
610  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
611  //
612  // This formula is trivially equivalent to the previous formula.  However,
613  // this formula can be implemented much more efficiently.  The trick is that
614  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
615  // arithmetic.  To do exact division in modular arithmetic, all we have
616  // to do is multiply by the inverse.  Therefore, this step can be done at
617  // width W.
618  //
619  // The next issue is how to safely do the division by 2^T.  The way this
620  // is done is by doing the multiplication step at a width of at least W + T
621  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
622  // when we perform the division by 2^T (which is equivalent to a right shift
623  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
624  // truncated out after the division by 2^T.
625  //
626  // In comparison to just directly using the first formula, this technique
627  // is much more efficient; using the first formula requires W * K bits,
628  // but this formula less than W + K bits. Also, the first formula requires
629  // a division step, whereas this formula only requires multiplies and shifts.
630  //
631  // It doesn't matter whether the subtraction step is done in the calculation
632  // width or the input iteration count's width; if the subtraction overflows,
633  // the result must be zero anyway.  We prefer here to do it in the width of
634  // the induction variable because it helps a lot for certain cases; CodeGen
635  // isn't smart enough to ignore the overflow, which leads to much less
636  // efficient code if the width of the subtraction is wider than the native
637  // register width.
638  //
639  // (It's possible to not widen at all by pulling out factors of 2 before
640  // the multiplication; for example, K=2 can be calculated as
641  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
642  // extra arithmetic, so it's not an obvious win, and it gets
643  // much more complicated for K > 3.)
644
645  // Protection from insane SCEVs; this bound is conservative,
646  // but it probably doesn't matter.
647  if (K > 1000)
648    return SE.getCouldNotCompute();
649
650  unsigned W = SE.getTypeSizeInBits(ResultTy);
651
652  // Calculate K! / 2^T and T; we divide out the factors of two before
653  // multiplying for calculating K! / 2^T to avoid overflow.
654  // Other overflow doesn't matter because we only care about the bottom
655  // W bits of the result.
656  APInt OddFactorial(W, 1);
657  unsigned T = 1;
658  for (unsigned i = 3; i <= K; ++i) {
659    APInt Mult(W, i);
660    unsigned TwoFactors = Mult.countTrailingZeros();
661    T += TwoFactors;
662    Mult = Mult.lshr(TwoFactors);
663    OddFactorial *= Mult;
664  }
665
666  // We need at least W + T bits for the multiplication step
667  unsigned CalculationBits = W + T;
668
669  // Calcuate 2^T, at width T+W.
670  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
671
672  // Calculate the multiplicative inverse of K! / 2^T;
673  // this multiplication factor will perform the exact division by
674  // K! / 2^T.
675  APInt Mod = APInt::getSignedMinValue(W+1);
676  APInt MultiplyFactor = OddFactorial.zext(W+1);
677  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
678  MultiplyFactor = MultiplyFactor.trunc(W);
679
680  // Calculate the product, at width T+W
681  const IntegerType *CalculationTy = IntegerType::get(CalculationBits);
682  SCEVHandle Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
683  for (unsigned i = 1; i != K; ++i) {
684    SCEVHandle S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
685    Dividend = SE.getMulExpr(Dividend,
686                             SE.getTruncateOrZeroExtend(S, CalculationTy));
687  }
688
689  // Divide by 2^T
690  SCEVHandle DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
691
692  // Truncate the result, and divide by K! / 2^T.
693
694  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
695                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
696}
697
698/// evaluateAtIteration - Return the value of this chain of recurrences at
699/// the specified iteration number.  We can evaluate this recurrence by
700/// multiplying each element in the chain by the binomial coefficient
701/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
702///
703///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
704///
705/// where BC(It, k) stands for binomial coefficient.
706///
707SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It,
708                                               ScalarEvolution &SE) const {
709  SCEVHandle Result = getStart();
710  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
711    // The computation is correct in the face of overflow provided that the
712    // multiplication is performed _after_ the evaluation of the binomial
713    // coefficient.
714    SCEVHandle Coeff = BinomialCoefficient(It, i, SE, getType());
715    if (isa<SCEVCouldNotCompute>(Coeff))
716      return Coeff;
717
718    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
719  }
720  return Result;
721}
722
723//===----------------------------------------------------------------------===//
724//                    SCEV Expression folder implementations
725//===----------------------------------------------------------------------===//
726
727SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op,
728                                            const Type *Ty) {
729  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
730         "This is not a truncating conversion!");
731  assert(isSCEVable(Ty) &&
732         "This is not a conversion to a SCEVable type!");
733  Ty = getEffectiveSCEVType(Ty);
734
735  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
736    return getUnknown(
737        ConstantExpr::getTrunc(SC->getValue(), Ty));
738
739  // trunc(trunc(x)) --> trunc(x)
740  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
741    return getTruncateExpr(ST->getOperand(), Ty);
742
743  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
744  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
745    return getTruncateOrSignExtend(SS->getOperand(), Ty);
746
747  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
748  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
749    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
750
751  // If the input value is a chrec scev made out of constants, truncate
752  // all of the constants.
753  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
754    std::vector<SCEVHandle> Operands;
755    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
756      Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
757    return getAddRecExpr(Operands, AddRec->getLoop());
758  }
759
760  SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
761  if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
762  return Result;
763}
764
765SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op,
766                                              const Type *Ty) {
767  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
768         "This is not an extending conversion!");
769  assert(isSCEVable(Ty) &&
770         "This is not a conversion to a SCEVable type!");
771  Ty = getEffectiveSCEVType(Ty);
772
773  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
774    const Type *IntTy = getEffectiveSCEVType(Ty);
775    Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
776    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
777    return getUnknown(C);
778  }
779
780  // zext(zext(x)) --> zext(x)
781  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
782    return getZeroExtendExpr(SZ->getOperand(), Ty);
783
784  // If the input value is a chrec scev, and we can prove that the value
785  // did not overflow the old, smaller, value, we can zero extend all of the
786  // operands (often constants).  This allows analysis of something like
787  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
788  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
789    if (AR->isAffine()) {
790      // Check whether the backedge-taken count is SCEVCouldNotCompute.
791      // Note that this serves two purposes: It filters out loops that are
792      // simply not analyzable, and it covers the case where this code is
793      // being called from within backedge-taken count analysis, such that
794      // attempting to ask for the backedge-taken count would likely result
795      // in infinite recursion. In the later case, the analysis code will
796      // cope with a conservative value, and it will take care to purge
797      // that value once it has finished.
798      SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
799      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
800        // Manually compute the final value for AR, checking for
801        // overflow.
802        SCEVHandle Start = AR->getStart();
803        SCEVHandle Step = AR->getStepRecurrence(*this);
804
805        // Check whether the backedge-taken count can be losslessly casted to
806        // the addrec's type. The count is always unsigned.
807        SCEVHandle CastedMaxBECount =
808          getTruncateOrZeroExtend(MaxBECount, Start->getType());
809        SCEVHandle RecastedMaxBECount =
810          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
811        if (MaxBECount == RecastedMaxBECount) {
812          const Type *WideTy =
813            IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
814          // Check whether Start+Step*MaxBECount has no unsigned overflow.
815          SCEVHandle ZMul =
816            getMulExpr(CastedMaxBECount,
817                       getTruncateOrZeroExtend(Step, Start->getType()));
818          SCEVHandle Add = getAddExpr(Start, ZMul);
819          SCEVHandle OperandExtendedAdd =
820            getAddExpr(getZeroExtendExpr(Start, WideTy),
821                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
822                                  getZeroExtendExpr(Step, WideTy)));
823          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
824            // Return the expression with the addrec on the outside.
825            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
826                                 getZeroExtendExpr(Step, Ty),
827                                 AR->getLoop());
828
829          // Similar to above, only this time treat the step value as signed.
830          // This covers loops that count down.
831          SCEVHandle SMul =
832            getMulExpr(CastedMaxBECount,
833                       getTruncateOrSignExtend(Step, Start->getType()));
834          Add = getAddExpr(Start, SMul);
835          OperandExtendedAdd =
836            getAddExpr(getZeroExtendExpr(Start, WideTy),
837                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
838                                  getSignExtendExpr(Step, WideTy)));
839          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
840            // Return the expression with the addrec on the outside.
841            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
842                                 getSignExtendExpr(Step, Ty),
843                                 AR->getLoop());
844        }
845      }
846    }
847
848  SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
849  if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
850  return Result;
851}
852
853SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op,
854                                              const Type *Ty) {
855  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
856         "This is not an extending conversion!");
857  assert(isSCEVable(Ty) &&
858         "This is not a conversion to a SCEVable type!");
859  Ty = getEffectiveSCEVType(Ty);
860
861  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
862    const Type *IntTy = getEffectiveSCEVType(Ty);
863    Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
864    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
865    return getUnknown(C);
866  }
867
868  // sext(sext(x)) --> sext(x)
869  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
870    return getSignExtendExpr(SS->getOperand(), Ty);
871
872  // If the input value is a chrec scev, and we can prove that the value
873  // did not overflow the old, smaller, value, we can sign extend all of the
874  // operands (often constants).  This allows analysis of something like
875  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
876  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
877    if (AR->isAffine()) {
878      // Check whether the backedge-taken count is SCEVCouldNotCompute.
879      // Note that this serves two purposes: It filters out loops that are
880      // simply not analyzable, and it covers the case where this code is
881      // being called from within backedge-taken count analysis, such that
882      // attempting to ask for the backedge-taken count would likely result
883      // in infinite recursion. In the later case, the analysis code will
884      // cope with a conservative value, and it will take care to purge
885      // that value once it has finished.
886      SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
887      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
888        // Manually compute the final value for AR, checking for
889        // overflow.
890        SCEVHandle Start = AR->getStart();
891        SCEVHandle Step = AR->getStepRecurrence(*this);
892
893        // Check whether the backedge-taken count can be losslessly casted to
894        // the addrec's type. The count is always unsigned.
895        SCEVHandle CastedMaxBECount =
896          getTruncateOrZeroExtend(MaxBECount, Start->getType());
897        SCEVHandle RecastedMaxBECount =
898          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
899        if (MaxBECount == RecastedMaxBECount) {
900          const Type *WideTy =
901            IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
902          // Check whether Start+Step*MaxBECount has no signed overflow.
903          SCEVHandle SMul =
904            getMulExpr(CastedMaxBECount,
905                       getTruncateOrSignExtend(Step, Start->getType()));
906          SCEVHandle Add = getAddExpr(Start, SMul);
907          SCEVHandle OperandExtendedAdd =
908            getAddExpr(getSignExtendExpr(Start, WideTy),
909                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
910                                  getSignExtendExpr(Step, WideTy)));
911          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
912            // Return the expression with the addrec on the outside.
913            return getAddRecExpr(getSignExtendExpr(Start, Ty),
914                                 getSignExtendExpr(Step, Ty),
915                                 AR->getLoop());
916        }
917      }
918    }
919
920  SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)];
921  if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty);
922  return Result;
923}
924
925// get - Get a canonical add expression, or something simpler if possible.
926SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) {
927  assert(!Ops.empty() && "Cannot get empty add!");
928  if (Ops.size() == 1) return Ops[0];
929#ifndef NDEBUG
930  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
931    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
932           getEffectiveSCEVType(Ops[0]->getType()) &&
933           "SCEVAddExpr operand types don't match!");
934#endif
935
936  // Sort by complexity, this groups all similar expression types together.
937  GroupByComplexity(Ops, LI);
938
939  // If there are any constants, fold them together.
940  unsigned Idx = 0;
941  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
942    ++Idx;
943    assert(Idx < Ops.size());
944    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
945      // We found two constants, fold them together!
946      ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() +
947                                           RHSC->getValue()->getValue());
948      Ops[0] = getConstant(Fold);
949      Ops.erase(Ops.begin()+1);  // Erase the folded element
950      if (Ops.size() == 1) return Ops[0];
951      LHSC = cast<SCEVConstant>(Ops[0]);
952    }
953
954    // If we are left with a constant zero being added, strip it off.
955    if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
956      Ops.erase(Ops.begin());
957      --Idx;
958    }
959  }
960
961  if (Ops.size() == 1) return Ops[0];
962
963  // Okay, check to see if the same value occurs in the operand list twice.  If
964  // so, merge them together into an multiply expression.  Since we sorted the
965  // list, these values are required to be adjacent.
966  const Type *Ty = Ops[0]->getType();
967  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
968    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
969      // Found a match, merge the two values into a multiply, and add any
970      // remaining values to the result.
971      SCEVHandle Two = getIntegerSCEV(2, Ty);
972      SCEVHandle Mul = getMulExpr(Ops[i], Two);
973      if (Ops.size() == 2)
974        return Mul;
975      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
976      Ops.push_back(Mul);
977      return getAddExpr(Ops);
978    }
979
980  // Check for truncates. If all the operands are truncated from the same
981  // type, see if factoring out the truncate would permit the result to be
982  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
983  // if the contents of the resulting outer trunc fold to something simple.
984  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
985    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
986    const Type *DstType = Trunc->getType();
987    const Type *SrcType = Trunc->getOperand()->getType();
988    std::vector<SCEVHandle> LargeOps;
989    bool Ok = true;
990    // Check all the operands to see if they can be represented in the
991    // source type of the truncate.
992    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
993      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
994        if (T->getOperand()->getType() != SrcType) {
995          Ok = false;
996          break;
997        }
998        LargeOps.push_back(T->getOperand());
999      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1000        // This could be either sign or zero extension, but sign extension
1001        // is much more likely to be foldable here.
1002        LargeOps.push_back(getSignExtendExpr(C, SrcType));
1003      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1004        std::vector<SCEVHandle> LargeMulOps;
1005        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1006          if (const SCEVTruncateExpr *T =
1007                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1008            if (T->getOperand()->getType() != SrcType) {
1009              Ok = false;
1010              break;
1011            }
1012            LargeMulOps.push_back(T->getOperand());
1013          } else if (const SCEVConstant *C =
1014                       dyn_cast<SCEVConstant>(M->getOperand(j))) {
1015            // This could be either sign or zero extension, but sign extension
1016            // is much more likely to be foldable here.
1017            LargeMulOps.push_back(getSignExtendExpr(C, SrcType));
1018          } else {
1019            Ok = false;
1020            break;
1021          }
1022        }
1023        if (Ok)
1024          LargeOps.push_back(getMulExpr(LargeMulOps));
1025      } else {
1026        Ok = false;
1027        break;
1028      }
1029    }
1030    if (Ok) {
1031      // Evaluate the expression in the larger type.
1032      SCEVHandle Fold = getAddExpr(LargeOps);
1033      // If it folds to something simple, use it. Otherwise, don't.
1034      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1035        return getTruncateExpr(Fold, DstType);
1036    }
1037  }
1038
1039  // Skip past any other cast SCEVs.
1040  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1041    ++Idx;
1042
1043  // If there are add operands they would be next.
1044  if (Idx < Ops.size()) {
1045    bool DeletedAdd = false;
1046    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1047      // If we have an add, expand the add operands onto the end of the operands
1048      // list.
1049      Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1050      Ops.erase(Ops.begin()+Idx);
1051      DeletedAdd = true;
1052    }
1053
1054    // If we deleted at least one add, we added operands to the end of the list,
1055    // and they are not necessarily sorted.  Recurse to resort and resimplify
1056    // any operands we just aquired.
1057    if (DeletedAdd)
1058      return getAddExpr(Ops);
1059  }
1060
1061  // Skip over the add expression until we get to a multiply.
1062  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1063    ++Idx;
1064
1065  // If we are adding something to a multiply expression, make sure the
1066  // something is not already an operand of the multiply.  If so, merge it into
1067  // the multiply.
1068  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1069    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1070    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1071      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1072      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1073        if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
1074          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1075          SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
1076          if (Mul->getNumOperands() != 2) {
1077            // If the multiply has more than two operands, we must get the
1078            // Y*Z term.
1079            std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
1080            MulOps.erase(MulOps.begin()+MulOp);
1081            InnerMul = getMulExpr(MulOps);
1082          }
1083          SCEVHandle One = getIntegerSCEV(1, Ty);
1084          SCEVHandle AddOne = getAddExpr(InnerMul, One);
1085          SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]);
1086          if (Ops.size() == 2) return OuterMul;
1087          if (AddOp < Idx) {
1088            Ops.erase(Ops.begin()+AddOp);
1089            Ops.erase(Ops.begin()+Idx-1);
1090          } else {
1091            Ops.erase(Ops.begin()+Idx);
1092            Ops.erase(Ops.begin()+AddOp-1);
1093          }
1094          Ops.push_back(OuterMul);
1095          return getAddExpr(Ops);
1096        }
1097
1098      // Check this multiply against other multiplies being added together.
1099      for (unsigned OtherMulIdx = Idx+1;
1100           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1101           ++OtherMulIdx) {
1102        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1103        // If MulOp occurs in OtherMul, we can fold the two multiplies
1104        // together.
1105        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1106             OMulOp != e; ++OMulOp)
1107          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1108            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1109            SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
1110            if (Mul->getNumOperands() != 2) {
1111              std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
1112              MulOps.erase(MulOps.begin()+MulOp);
1113              InnerMul1 = getMulExpr(MulOps);
1114            }
1115            SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1116            if (OtherMul->getNumOperands() != 2) {
1117              std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
1118                                             OtherMul->op_end());
1119              MulOps.erase(MulOps.begin()+OMulOp);
1120              InnerMul2 = getMulExpr(MulOps);
1121            }
1122            SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1123            SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1124            if (Ops.size() == 2) return OuterMul;
1125            Ops.erase(Ops.begin()+Idx);
1126            Ops.erase(Ops.begin()+OtherMulIdx-1);
1127            Ops.push_back(OuterMul);
1128            return getAddExpr(Ops);
1129          }
1130      }
1131    }
1132  }
1133
1134  // If there are any add recurrences in the operands list, see if any other
1135  // added values are loop invariant.  If so, we can fold them into the
1136  // recurrence.
1137  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1138    ++Idx;
1139
1140  // Scan over all recurrences, trying to fold loop invariants into them.
1141  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1142    // Scan all of the other operands to this add and add them to the vector if
1143    // they are loop invariant w.r.t. the recurrence.
1144    std::vector<SCEVHandle> LIOps;
1145    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1146    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1147      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1148        LIOps.push_back(Ops[i]);
1149        Ops.erase(Ops.begin()+i);
1150        --i; --e;
1151      }
1152
1153    // If we found some loop invariants, fold them into the recurrence.
1154    if (!LIOps.empty()) {
1155      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1156      LIOps.push_back(AddRec->getStart());
1157
1158      std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
1159      AddRecOps[0] = getAddExpr(LIOps);
1160
1161      SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
1162      // If all of the other operands were loop invariant, we are done.
1163      if (Ops.size() == 1) return NewRec;
1164
1165      // Otherwise, add the folded AddRec by the non-liv parts.
1166      for (unsigned i = 0;; ++i)
1167        if (Ops[i] == AddRec) {
1168          Ops[i] = NewRec;
1169          break;
1170        }
1171      return getAddExpr(Ops);
1172    }
1173
1174    // Okay, if there weren't any loop invariants to be folded, check to see if
1175    // there are multiple AddRec's with the same loop induction variable being
1176    // added together.  If so, we can fold them.
1177    for (unsigned OtherIdx = Idx+1;
1178         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1179      if (OtherIdx != Idx) {
1180        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1181        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1182          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
1183          std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
1184          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1185            if (i >= NewOps.size()) {
1186              NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1187                            OtherAddRec->op_end());
1188              break;
1189            }
1190            NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
1191          }
1192          SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
1193
1194          if (Ops.size() == 2) return NewAddRec;
1195
1196          Ops.erase(Ops.begin()+Idx);
1197          Ops.erase(Ops.begin()+OtherIdx-1);
1198          Ops.push_back(NewAddRec);
1199          return getAddExpr(Ops);
1200        }
1201      }
1202
1203    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1204    // next one.
1205  }
1206
1207  // Okay, it looks like we really DO need an add expr.  Check to see if we
1208  // already have one, otherwise create a new one.
1209  std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1210  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
1211                                                                 SCEVOps)];
1212  if (Result == 0) Result = new SCEVAddExpr(Ops);
1213  return Result;
1214}
1215
1216
1217SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) {
1218  assert(!Ops.empty() && "Cannot get empty mul!");
1219#ifndef NDEBUG
1220  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1221    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1222           getEffectiveSCEVType(Ops[0]->getType()) &&
1223           "SCEVMulExpr operand types don't match!");
1224#endif
1225
1226  // Sort by complexity, this groups all similar expression types together.
1227  GroupByComplexity(Ops, LI);
1228
1229  // If there are any constants, fold them together.
1230  unsigned Idx = 0;
1231  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1232
1233    // C1*(C2+V) -> C1*C2 + C1*V
1234    if (Ops.size() == 2)
1235      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1236        if (Add->getNumOperands() == 2 &&
1237            isa<SCEVConstant>(Add->getOperand(0)))
1238          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1239                            getMulExpr(LHSC, Add->getOperand(1)));
1240
1241
1242    ++Idx;
1243    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1244      // We found two constants, fold them together!
1245      ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() *
1246                                           RHSC->getValue()->getValue());
1247      Ops[0] = getConstant(Fold);
1248      Ops.erase(Ops.begin()+1);  // Erase the folded element
1249      if (Ops.size() == 1) return Ops[0];
1250      LHSC = cast<SCEVConstant>(Ops[0]);
1251    }
1252
1253    // If we are left with a constant one being multiplied, strip it off.
1254    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1255      Ops.erase(Ops.begin());
1256      --Idx;
1257    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1258      // If we have a multiply of zero, it will always be zero.
1259      return Ops[0];
1260    }
1261  }
1262
1263  // Skip over the add expression until we get to a multiply.
1264  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1265    ++Idx;
1266
1267  if (Ops.size() == 1)
1268    return Ops[0];
1269
1270  // If there are mul operands inline them all into this expression.
1271  if (Idx < Ops.size()) {
1272    bool DeletedMul = false;
1273    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1274      // If we have an mul, expand the mul operands onto the end of the operands
1275      // list.
1276      Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1277      Ops.erase(Ops.begin()+Idx);
1278      DeletedMul = true;
1279    }
1280
1281    // If we deleted at least one mul, we added operands to the end of the list,
1282    // and they are not necessarily sorted.  Recurse to resort and resimplify
1283    // any operands we just aquired.
1284    if (DeletedMul)
1285      return getMulExpr(Ops);
1286  }
1287
1288  // If there are any add recurrences in the operands list, see if any other
1289  // added values are loop invariant.  If so, we can fold them into the
1290  // recurrence.
1291  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1292    ++Idx;
1293
1294  // Scan over all recurrences, trying to fold loop invariants into them.
1295  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1296    // Scan all of the other operands to this mul and add them to the vector if
1297    // they are loop invariant w.r.t. the recurrence.
1298    std::vector<SCEVHandle> LIOps;
1299    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1300    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1301      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1302        LIOps.push_back(Ops[i]);
1303        Ops.erase(Ops.begin()+i);
1304        --i; --e;
1305      }
1306
1307    // If we found some loop invariants, fold them into the recurrence.
1308    if (!LIOps.empty()) {
1309      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1310      std::vector<SCEVHandle> NewOps;
1311      NewOps.reserve(AddRec->getNumOperands());
1312      if (LIOps.size() == 1) {
1313        const SCEV *Scale = LIOps[0];
1314        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1315          NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1316      } else {
1317        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
1318          std::vector<SCEVHandle> MulOps(LIOps);
1319          MulOps.push_back(AddRec->getOperand(i));
1320          NewOps.push_back(getMulExpr(MulOps));
1321        }
1322      }
1323
1324      SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
1325
1326      // If all of the other operands were loop invariant, we are done.
1327      if (Ops.size() == 1) return NewRec;
1328
1329      // Otherwise, multiply the folded AddRec by the non-liv parts.
1330      for (unsigned i = 0;; ++i)
1331        if (Ops[i] == AddRec) {
1332          Ops[i] = NewRec;
1333          break;
1334        }
1335      return getMulExpr(Ops);
1336    }
1337
1338    // Okay, if there weren't any loop invariants to be folded, check to see if
1339    // there are multiple AddRec's with the same loop induction variable being
1340    // multiplied together.  If so, we can fold them.
1341    for (unsigned OtherIdx = Idx+1;
1342         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1343      if (OtherIdx != Idx) {
1344        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1345        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1346          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
1347          const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1348          SCEVHandle NewStart = getMulExpr(F->getStart(),
1349                                                 G->getStart());
1350          SCEVHandle B = F->getStepRecurrence(*this);
1351          SCEVHandle D = G->getStepRecurrence(*this);
1352          SCEVHandle NewStep = getAddExpr(getMulExpr(F, D),
1353                                          getMulExpr(G, B),
1354                                          getMulExpr(B, D));
1355          SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep,
1356                                               F->getLoop());
1357          if (Ops.size() == 2) return NewAddRec;
1358
1359          Ops.erase(Ops.begin()+Idx);
1360          Ops.erase(Ops.begin()+OtherIdx-1);
1361          Ops.push_back(NewAddRec);
1362          return getMulExpr(Ops);
1363        }
1364      }
1365
1366    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1367    // next one.
1368  }
1369
1370  // Okay, it looks like we really DO need an mul expr.  Check to see if we
1371  // already have one, otherwise create a new one.
1372  std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1373  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
1374                                                                 SCEVOps)];
1375  if (Result == 0)
1376    Result = new SCEVMulExpr(Ops);
1377  return Result;
1378}
1379
1380SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS,
1381                                        const SCEVHandle &RHS) {
1382  assert(getEffectiveSCEVType(LHS->getType()) ==
1383         getEffectiveSCEVType(RHS->getType()) &&
1384         "SCEVUDivExpr operand types don't match!");
1385
1386  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1387    if (RHSC->getValue()->equalsInt(1))
1388      return LHS;                            // X udiv 1 --> x
1389    if (RHSC->isZero())
1390      return getIntegerSCEV(0, LHS->getType()); // value is undefined
1391
1392    // Determine if the division can be folded into the operands of
1393    // its operands.
1394    // TODO: Generalize this to non-constants by using known-bits information.
1395    const Type *Ty = LHS->getType();
1396    unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1397    unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1398    // For non-power-of-two values, effectively round the value up to the
1399    // nearest power of two.
1400    if (!RHSC->getValue()->getValue().isPowerOf2())
1401      ++MaxShiftAmt;
1402    const IntegerType *ExtTy =
1403      IntegerType::get(getTypeSizeInBits(Ty) + MaxShiftAmt);
1404    // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1405    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1406      if (const SCEVConstant *Step =
1407            dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1408        if (!Step->getValue()->getValue()
1409              .urem(RHSC->getValue()->getValue()) &&
1410            getZeroExtendExpr(AR, ExtTy) ==
1411            getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1412                          getZeroExtendExpr(Step, ExtTy),
1413                          AR->getLoop())) {
1414          std::vector<SCEVHandle> Operands;
1415          for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1416            Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1417          return getAddRecExpr(Operands, AR->getLoop());
1418        }
1419    // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1420    if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1421      std::vector<SCEVHandle> Operands;
1422      for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1423        Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1424      if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1425        // Find an operand that's safely divisible.
1426        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1427          SCEVHandle Op = M->getOperand(i);
1428          SCEVHandle Div = getUDivExpr(Op, RHSC);
1429          if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1430            Operands = M->getOperands();
1431            Operands[i] = Div;
1432            return getMulExpr(Operands);
1433          }
1434        }
1435    }
1436    // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1437    if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1438      std::vector<SCEVHandle> Operands;
1439      for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1440        Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1441      if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1442        Operands.clear();
1443        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1444          SCEVHandle Op = getUDivExpr(A->getOperand(i), RHS);
1445          if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i))
1446            break;
1447          Operands.push_back(Op);
1448        }
1449        if (Operands.size() == A->getNumOperands())
1450          return getAddExpr(Operands);
1451      }
1452    }
1453
1454    // Fold if both operands are constant.
1455    if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1456      Constant *LHSCV = LHSC->getValue();
1457      Constant *RHSCV = RHSC->getValue();
1458      return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV));
1459    }
1460  }
1461
1462  SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)];
1463  if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
1464  return Result;
1465}
1466
1467
1468/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1469/// specified loop.  Simplify the expression as much as possible.
1470SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start,
1471                               const SCEVHandle &Step, const Loop *L) {
1472  std::vector<SCEVHandle> Operands;
1473  Operands.push_back(Start);
1474  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1475    if (StepChrec->getLoop() == L) {
1476      Operands.insert(Operands.end(), StepChrec->op_begin(),
1477                      StepChrec->op_end());
1478      return getAddRecExpr(Operands, L);
1479    }
1480
1481  Operands.push_back(Step);
1482  return getAddRecExpr(Operands, L);
1483}
1484
1485/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1486/// specified loop.  Simplify the expression as much as possible.
1487SCEVHandle ScalarEvolution::getAddRecExpr(std::vector<SCEVHandle> &Operands,
1488                                          const Loop *L) {
1489  if (Operands.size() == 1) return Operands[0];
1490#ifndef NDEBUG
1491  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1492    assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1493           getEffectiveSCEVType(Operands[0]->getType()) &&
1494           "SCEVAddRecExpr operand types don't match!");
1495#endif
1496
1497  if (Operands.back()->isZero()) {
1498    Operands.pop_back();
1499    return getAddRecExpr(Operands, L);             // {X,+,0}  -->  X
1500  }
1501
1502  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
1503  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
1504    const Loop* NestedLoop = NestedAR->getLoop();
1505    if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
1506      std::vector<SCEVHandle> NestedOperands(NestedAR->op_begin(),
1507                                             NestedAR->op_end());
1508      SCEVHandle NestedARHandle(NestedAR);
1509      Operands[0] = NestedAR->getStart();
1510      NestedOperands[0] = getAddRecExpr(Operands, L);
1511      return getAddRecExpr(NestedOperands, NestedLoop);
1512    }
1513  }
1514
1515  std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
1516  SCEVAddRecExpr *&Result = (*SCEVAddRecExprs)[std::make_pair(L, SCEVOps)];
1517  if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1518  return Result;
1519}
1520
1521SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS,
1522                                        const SCEVHandle &RHS) {
1523  std::vector<SCEVHandle> Ops;
1524  Ops.push_back(LHS);
1525  Ops.push_back(RHS);
1526  return getSMaxExpr(Ops);
1527}
1528
1529SCEVHandle ScalarEvolution::getSMaxExpr(std::vector<SCEVHandle> Ops) {
1530  assert(!Ops.empty() && "Cannot get empty smax!");
1531  if (Ops.size() == 1) return Ops[0];
1532#ifndef NDEBUG
1533  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1534    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1535           getEffectiveSCEVType(Ops[0]->getType()) &&
1536           "SCEVSMaxExpr operand types don't match!");
1537#endif
1538
1539  // Sort by complexity, this groups all similar expression types together.
1540  GroupByComplexity(Ops, LI);
1541
1542  // If there are any constants, fold them together.
1543  unsigned Idx = 0;
1544  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1545    ++Idx;
1546    assert(Idx < Ops.size());
1547    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1548      // We found two constants, fold them together!
1549      ConstantInt *Fold = ConstantInt::get(
1550                              APIntOps::smax(LHSC->getValue()->getValue(),
1551                                             RHSC->getValue()->getValue()));
1552      Ops[0] = getConstant(Fold);
1553      Ops.erase(Ops.begin()+1);  // Erase the folded element
1554      if (Ops.size() == 1) return Ops[0];
1555      LHSC = cast<SCEVConstant>(Ops[0]);
1556    }
1557
1558    // If we are left with a constant -inf, strip it off.
1559    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1560      Ops.erase(Ops.begin());
1561      --Idx;
1562    }
1563  }
1564
1565  if (Ops.size() == 1) return Ops[0];
1566
1567  // Find the first SMax
1568  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1569    ++Idx;
1570
1571  // Check to see if one of the operands is an SMax. If so, expand its operands
1572  // onto our operand list, and recurse to simplify.
1573  if (Idx < Ops.size()) {
1574    bool DeletedSMax = false;
1575    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
1576      Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1577      Ops.erase(Ops.begin()+Idx);
1578      DeletedSMax = true;
1579    }
1580
1581    if (DeletedSMax)
1582      return getSMaxExpr(Ops);
1583  }
1584
1585  // Okay, check to see if the same value occurs in the operand list twice.  If
1586  // so, delete one.  Since we sorted the list, these values are required to
1587  // be adjacent.
1588  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1589    if (Ops[i] == Ops[i+1]) {      //  X smax Y smax Y  -->  X smax Y
1590      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1591      --i; --e;
1592    }
1593
1594  if (Ops.size() == 1) return Ops[0];
1595
1596  assert(!Ops.empty() && "Reduced smax down to nothing!");
1597
1598  // Okay, it looks like we really DO need an smax expr.  Check to see if we
1599  // already have one, otherwise create a new one.
1600  std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1601  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr,
1602                                                                 SCEVOps)];
1603  if (Result == 0) Result = new SCEVSMaxExpr(Ops);
1604  return Result;
1605}
1606
1607SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS,
1608                                        const SCEVHandle &RHS) {
1609  std::vector<SCEVHandle> Ops;
1610  Ops.push_back(LHS);
1611  Ops.push_back(RHS);
1612  return getUMaxExpr(Ops);
1613}
1614
1615SCEVHandle ScalarEvolution::getUMaxExpr(std::vector<SCEVHandle> Ops) {
1616  assert(!Ops.empty() && "Cannot get empty umax!");
1617  if (Ops.size() == 1) return Ops[0];
1618#ifndef NDEBUG
1619  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1620    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1621           getEffectiveSCEVType(Ops[0]->getType()) &&
1622           "SCEVUMaxExpr operand types don't match!");
1623#endif
1624
1625  // Sort by complexity, this groups all similar expression types together.
1626  GroupByComplexity(Ops, LI);
1627
1628  // If there are any constants, fold them together.
1629  unsigned Idx = 0;
1630  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1631    ++Idx;
1632    assert(Idx < Ops.size());
1633    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1634      // We found two constants, fold them together!
1635      ConstantInt *Fold = ConstantInt::get(
1636                              APIntOps::umax(LHSC->getValue()->getValue(),
1637                                             RHSC->getValue()->getValue()));
1638      Ops[0] = getConstant(Fold);
1639      Ops.erase(Ops.begin()+1);  // Erase the folded element
1640      if (Ops.size() == 1) return Ops[0];
1641      LHSC = cast<SCEVConstant>(Ops[0]);
1642    }
1643
1644    // If we are left with a constant zero, strip it off.
1645    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
1646      Ops.erase(Ops.begin());
1647      --Idx;
1648    }
1649  }
1650
1651  if (Ops.size() == 1) return Ops[0];
1652
1653  // Find the first UMax
1654  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
1655    ++Idx;
1656
1657  // Check to see if one of the operands is a UMax. If so, expand its operands
1658  // onto our operand list, and recurse to simplify.
1659  if (Idx < Ops.size()) {
1660    bool DeletedUMax = false;
1661    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
1662      Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
1663      Ops.erase(Ops.begin()+Idx);
1664      DeletedUMax = true;
1665    }
1666
1667    if (DeletedUMax)
1668      return getUMaxExpr(Ops);
1669  }
1670
1671  // Okay, check to see if the same value occurs in the operand list twice.  If
1672  // so, delete one.  Since we sorted the list, these values are required to
1673  // be adjacent.
1674  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1675    if (Ops[i] == Ops[i+1]) {      //  X umax Y umax Y  -->  X umax Y
1676      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1677      --i; --e;
1678    }
1679
1680  if (Ops.size() == 1) return Ops[0];
1681
1682  assert(!Ops.empty() && "Reduced umax down to nothing!");
1683
1684  // Okay, it looks like we really DO need a umax expr.  Check to see if we
1685  // already have one, otherwise create a new one.
1686  std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1687  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr,
1688                                                                 SCEVOps)];
1689  if (Result == 0) Result = new SCEVUMaxExpr(Ops);
1690  return Result;
1691}
1692
1693SCEVHandle ScalarEvolution::getUnknown(Value *V) {
1694  if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
1695    return getConstant(CI);
1696  if (isa<ConstantPointerNull>(V))
1697    return getIntegerSCEV(0, V->getType());
1698  SCEVUnknown *&Result = (*SCEVUnknowns)[V];
1699  if (Result == 0) Result = new SCEVUnknown(V);
1700  return Result;
1701}
1702
1703//===----------------------------------------------------------------------===//
1704//            Basic SCEV Analysis and PHI Idiom Recognition Code
1705//
1706
1707/// isSCEVable - Test if values of the given type are analyzable within
1708/// the SCEV framework. This primarily includes integer types, and it
1709/// can optionally include pointer types if the ScalarEvolution class
1710/// has access to target-specific information.
1711bool ScalarEvolution::isSCEVable(const Type *Ty) const {
1712  // Integers are always SCEVable.
1713  if (Ty->isInteger())
1714    return true;
1715
1716  // Pointers are SCEVable if TargetData information is available
1717  // to provide pointer size information.
1718  if (isa<PointerType>(Ty))
1719    return TD != NULL;
1720
1721  // Otherwise it's not SCEVable.
1722  return false;
1723}
1724
1725/// getTypeSizeInBits - Return the size in bits of the specified type,
1726/// for which isSCEVable must return true.
1727uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
1728  assert(isSCEVable(Ty) && "Type is not SCEVable!");
1729
1730  // If we have a TargetData, use it!
1731  if (TD)
1732    return TD->getTypeSizeInBits(Ty);
1733
1734  // Otherwise, we support only integer types.
1735  assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!");
1736  return Ty->getPrimitiveSizeInBits();
1737}
1738
1739/// getEffectiveSCEVType - Return a type with the same bitwidth as
1740/// the given type and which represents how SCEV will treat the given
1741/// type, for which isSCEVable must return true. For pointer types,
1742/// this is the pointer-sized integer type.
1743const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
1744  assert(isSCEVable(Ty) && "Type is not SCEVable!");
1745
1746  if (Ty->isInteger())
1747    return Ty;
1748
1749  assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
1750  return TD->getIntPtrType();
1751}
1752
1753SCEVHandle ScalarEvolution::getCouldNotCompute() {
1754  return UnknownValue;
1755}
1756
1757/// hasSCEV - Return true if the SCEV for this value has already been
1758/// computed.
1759bool ScalarEvolution::hasSCEV(Value *V) const {
1760  return Scalars.count(V);
1761}
1762
1763/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1764/// expression and create a new one.
1765SCEVHandle ScalarEvolution::getSCEV(Value *V) {
1766  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
1767
1768  std::map<SCEVCallbackVH, SCEVHandle>::iterator I = Scalars.find(V);
1769  if (I != Scalars.end()) return I->second;
1770  SCEVHandle S = createSCEV(V);
1771  Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
1772  return S;
1773}
1774
1775/// getIntegerSCEV - Given an integer or FP type, create a constant for the
1776/// specified signed integer value and return a SCEV for the constant.
1777SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
1778  Ty = getEffectiveSCEVType(Ty);
1779  Constant *C;
1780  if (Val == 0)
1781    C = Constant::getNullValue(Ty);
1782  else if (Ty->isFloatingPoint())
1783    C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle :
1784                                APFloat::IEEEdouble, Val));
1785  else
1786    C = ConstantInt::get(Ty, Val);
1787  return getUnknown(C);
1788}
1789
1790/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
1791///
1792SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) {
1793  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
1794    return getUnknown(ConstantExpr::getNeg(VC->getValue()));
1795
1796  const Type *Ty = V->getType();
1797  Ty = getEffectiveSCEVType(Ty);
1798  return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(Ty)));
1799}
1800
1801/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
1802SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) {
1803  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
1804    return getUnknown(ConstantExpr::getNot(VC->getValue()));
1805
1806  const Type *Ty = V->getType();
1807  Ty = getEffectiveSCEVType(Ty);
1808  SCEVHandle AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty));
1809  return getMinusSCEV(AllOnes, V);
1810}
1811
1812/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
1813///
1814SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS,
1815                                         const SCEVHandle &RHS) {
1816  // X - Y --> X + -Y
1817  return getAddExpr(LHS, getNegativeSCEV(RHS));
1818}
1819
1820/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
1821/// input value to the specified type.  If the type must be extended, it is zero
1822/// extended.
1823SCEVHandle
1824ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V,
1825                                         const Type *Ty) {
1826  const Type *SrcTy = V->getType();
1827  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1828         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1829         "Cannot truncate or zero extend with non-integer arguments!");
1830  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1831    return V;  // No conversion
1832  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
1833    return getTruncateExpr(V, Ty);
1834  return getZeroExtendExpr(V, Ty);
1835}
1836
1837/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
1838/// input value to the specified type.  If the type must be extended, it is sign
1839/// extended.
1840SCEVHandle
1841ScalarEvolution::getTruncateOrSignExtend(const SCEVHandle &V,
1842                                         const Type *Ty) {
1843  const Type *SrcTy = V->getType();
1844  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1845         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1846         "Cannot truncate or zero extend with non-integer arguments!");
1847  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1848    return V;  // No conversion
1849  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
1850    return getTruncateExpr(V, Ty);
1851  return getSignExtendExpr(V, Ty);
1852}
1853
1854/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
1855/// input value to the specified type.  If the type must be extended, it is zero
1856/// extended.  The conversion must not be narrowing.
1857SCEVHandle
1858ScalarEvolution::getNoopOrZeroExtend(const SCEVHandle &V, const Type *Ty) {
1859  const Type *SrcTy = V->getType();
1860  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1861         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1862         "Cannot noop or zero extend with non-integer arguments!");
1863  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
1864         "getNoopOrZeroExtend cannot truncate!");
1865  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1866    return V;  // No conversion
1867  return getZeroExtendExpr(V, Ty);
1868}
1869
1870/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
1871/// input value to the specified type.  If the type must be extended, it is sign
1872/// extended.  The conversion must not be narrowing.
1873SCEVHandle
1874ScalarEvolution::getNoopOrSignExtend(const SCEVHandle &V, const Type *Ty) {
1875  const Type *SrcTy = V->getType();
1876  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1877         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1878         "Cannot noop or sign extend with non-integer arguments!");
1879  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
1880         "getNoopOrSignExtend cannot truncate!");
1881  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1882    return V;  // No conversion
1883  return getSignExtendExpr(V, Ty);
1884}
1885
1886/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
1887/// input value to the specified type.  The conversion must not be widening.
1888SCEVHandle
1889ScalarEvolution::getTruncateOrNoop(const SCEVHandle &V, const Type *Ty) {
1890  const Type *SrcTy = V->getType();
1891  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1892         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1893         "Cannot truncate or noop with non-integer arguments!");
1894  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
1895         "getTruncateOrNoop cannot extend!");
1896  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1897    return V;  // No conversion
1898  return getTruncateExpr(V, Ty);
1899}
1900
1901/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1902/// the specified instruction and replaces any references to the symbolic value
1903/// SymName with the specified value.  This is used during PHI resolution.
1904void ScalarEvolution::
1905ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1906                                 const SCEVHandle &NewVal) {
1907  std::map<SCEVCallbackVH, SCEVHandle>::iterator SI =
1908    Scalars.find(SCEVCallbackVH(I, this));
1909  if (SI == Scalars.end()) return;
1910
1911  SCEVHandle NV =
1912    SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this);
1913  if (NV == SI->second) return;  // No change.
1914
1915  SI->second = NV;       // Update the scalars map!
1916
1917  // Any instruction values that use this instruction might also need to be
1918  // updated!
1919  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1920       UI != E; ++UI)
1921    ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1922}
1923
1924/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
1925/// a loop header, making it a potential recurrence, or it doesn't.
1926///
1927SCEVHandle ScalarEvolution::createNodeForPHI(PHINode *PN) {
1928  if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
1929    if (const Loop *L = LI->getLoopFor(PN->getParent()))
1930      if (L->getHeader() == PN->getParent()) {
1931        // If it lives in the loop header, it has two incoming values, one
1932        // from outside the loop, and one from inside.
1933        unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1934        unsigned BackEdge     = IncomingEdge^1;
1935
1936        // While we are analyzing this PHI node, handle its value symbolically.
1937        SCEVHandle SymbolicName = getUnknown(PN);
1938        assert(Scalars.find(PN) == Scalars.end() &&
1939               "PHI node already processed?");
1940        Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
1941
1942        // Using this symbolic name for the PHI, analyze the value coming around
1943        // the back-edge.
1944        SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1945
1946        // NOTE: If BEValue is loop invariant, we know that the PHI node just
1947        // has a special value for the first iteration of the loop.
1948
1949        // If the value coming around the backedge is an add with the symbolic
1950        // value we just inserted, then we found a simple induction variable!
1951        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
1952          // If there is a single occurrence of the symbolic value, replace it
1953          // with a recurrence.
1954          unsigned FoundIndex = Add->getNumOperands();
1955          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1956            if (Add->getOperand(i) == SymbolicName)
1957              if (FoundIndex == e) {
1958                FoundIndex = i;
1959                break;
1960              }
1961
1962          if (FoundIndex != Add->getNumOperands()) {
1963            // Create an add with everything but the specified operand.
1964            std::vector<SCEVHandle> Ops;
1965            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1966              if (i != FoundIndex)
1967                Ops.push_back(Add->getOperand(i));
1968            SCEVHandle Accum = getAddExpr(Ops);
1969
1970            // This is not a valid addrec if the step amount is varying each
1971            // loop iteration, but is not itself an addrec in this loop.
1972            if (Accum->isLoopInvariant(L) ||
1973                (isa<SCEVAddRecExpr>(Accum) &&
1974                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1975              SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1976              SCEVHandle PHISCEV  = getAddRecExpr(StartVal, Accum, L);
1977
1978              // Okay, for the entire analysis of this edge we assumed the PHI
1979              // to be symbolic.  We now need to go back and update all of the
1980              // entries for the scalars that use the PHI (except for the PHI
1981              // itself) to use the new analyzed value instead of the "symbolic"
1982              // value.
1983              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1984              return PHISCEV;
1985            }
1986          }
1987        } else if (const SCEVAddRecExpr *AddRec =
1988                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
1989          // Otherwise, this could be a loop like this:
1990          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
1991          // In this case, j = {1,+,1}  and BEValue is j.
1992          // Because the other in-value of i (0) fits the evolution of BEValue
1993          // i really is an addrec evolution.
1994          if (AddRec->getLoop() == L && AddRec->isAffine()) {
1995            SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1996
1997            // If StartVal = j.start - j.stride, we can use StartVal as the
1998            // initial step of the addrec evolution.
1999            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
2000                                            AddRec->getOperand(1))) {
2001              SCEVHandle PHISCEV =
2002                 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
2003
2004              // Okay, for the entire analysis of this edge we assumed the PHI
2005              // to be symbolic.  We now need to go back and update all of the
2006              // entries for the scalars that use the PHI (except for the PHI
2007              // itself) to use the new analyzed value instead of the "symbolic"
2008              // value.
2009              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
2010              return PHISCEV;
2011            }
2012          }
2013        }
2014
2015        return SymbolicName;
2016      }
2017
2018  // If it's not a loop phi, we can't handle it yet.
2019  return getUnknown(PN);
2020}
2021
2022/// createNodeForGEP - Expand GEP instructions into add and multiply
2023/// operations. This allows them to be analyzed by regular SCEV code.
2024///
2025SCEVHandle ScalarEvolution::createNodeForGEP(User *GEP) {
2026
2027  const Type *IntPtrTy = TD->getIntPtrType();
2028  Value *Base = GEP->getOperand(0);
2029  // Don't attempt to analyze GEPs over unsized objects.
2030  if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2031    return getUnknown(GEP);
2032  SCEVHandle TotalOffset = getIntegerSCEV(0, IntPtrTy);
2033  gep_type_iterator GTI = gep_type_begin(GEP);
2034  for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2035                                      E = GEP->op_end();
2036       I != E; ++I) {
2037    Value *Index = *I;
2038    // Compute the (potentially symbolic) offset in bytes for this index.
2039    if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2040      // For a struct, add the member offset.
2041      const StructLayout &SL = *TD->getStructLayout(STy);
2042      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2043      uint64_t Offset = SL.getElementOffset(FieldNo);
2044      TotalOffset = getAddExpr(TotalOffset,
2045                                  getIntegerSCEV(Offset, IntPtrTy));
2046    } else {
2047      // For an array, add the element offset, explicitly scaled.
2048      SCEVHandle LocalOffset = getSCEV(Index);
2049      if (!isa<PointerType>(LocalOffset->getType()))
2050        // Getelementptr indicies are signed.
2051        LocalOffset = getTruncateOrSignExtend(LocalOffset,
2052                                              IntPtrTy);
2053      LocalOffset =
2054        getMulExpr(LocalOffset,
2055                   getIntegerSCEV(TD->getTypeAllocSize(*GTI),
2056                                  IntPtrTy));
2057      TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2058    }
2059  }
2060  return getAddExpr(getSCEV(Base), TotalOffset);
2061}
2062
2063/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2064/// guaranteed to end in (at every loop iteration).  It is, at the same time,
2065/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
2066/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
2067static uint32_t GetMinTrailingZeros(SCEVHandle S, const ScalarEvolution &SE) {
2068  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2069    return C->getValue()->getValue().countTrailingZeros();
2070
2071  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
2072    return std::min(GetMinTrailingZeros(T->getOperand(), SE),
2073                    (uint32_t)SE.getTypeSizeInBits(T->getType()));
2074
2075  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
2076    uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE);
2077    return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ?
2078             SE.getTypeSizeInBits(E->getType()) : OpRes;
2079  }
2080
2081  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
2082    uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE);
2083    return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ?
2084             SE.getTypeSizeInBits(E->getType()) : OpRes;
2085  }
2086
2087  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
2088    // The result is the min of all operands results.
2089    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE);
2090    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2091      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE));
2092    return MinOpRes;
2093  }
2094
2095  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
2096    // The result is the sum of all operands results.
2097    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
2098    uint32_t BitWidth = SE.getTypeSizeInBits(M->getType());
2099    for (unsigned i = 1, e = M->getNumOperands();
2100         SumOpRes != BitWidth && i != e; ++i)
2101      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i), SE),
2102                          BitWidth);
2103    return SumOpRes;
2104  }
2105
2106  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
2107    // The result is the min of all operands results.
2108    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE);
2109    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2110      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE));
2111    return MinOpRes;
2112  }
2113
2114  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
2115    // The result is the min of all operands results.
2116    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
2117    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2118      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE));
2119    return MinOpRes;
2120  }
2121
2122  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
2123    // The result is the min of all operands results.
2124    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
2125    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2126      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE));
2127    return MinOpRes;
2128  }
2129
2130  // SCEVUDivExpr, SCEVUnknown
2131  return 0;
2132}
2133
2134/// createSCEV - We know that there is no SCEV for the specified value.
2135/// Analyze the expression.
2136///
2137SCEVHandle ScalarEvolution::createSCEV(Value *V) {
2138  if (!isSCEVable(V->getType()))
2139    return getUnknown(V);
2140
2141  unsigned Opcode = Instruction::UserOp1;
2142  if (Instruction *I = dyn_cast<Instruction>(V))
2143    Opcode = I->getOpcode();
2144  else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2145    Opcode = CE->getOpcode();
2146  else
2147    return getUnknown(V);
2148
2149  User *U = cast<User>(V);
2150  switch (Opcode) {
2151  case Instruction::Add:
2152    return getAddExpr(getSCEV(U->getOperand(0)),
2153                      getSCEV(U->getOperand(1)));
2154  case Instruction::Mul:
2155    return getMulExpr(getSCEV(U->getOperand(0)),
2156                      getSCEV(U->getOperand(1)));
2157  case Instruction::UDiv:
2158    return getUDivExpr(getSCEV(U->getOperand(0)),
2159                       getSCEV(U->getOperand(1)));
2160  case Instruction::Sub:
2161    return getMinusSCEV(getSCEV(U->getOperand(0)),
2162                        getSCEV(U->getOperand(1)));
2163  case Instruction::And:
2164    // For an expression like x&255 that merely masks off the high bits,
2165    // use zext(trunc(x)) as the SCEV expression.
2166    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2167      if (CI->isNullValue())
2168        return getSCEV(U->getOperand(1));
2169      if (CI->isAllOnesValue())
2170        return getSCEV(U->getOperand(0));
2171      const APInt &A = CI->getValue();
2172      unsigned Ones = A.countTrailingOnes();
2173      if (APIntOps::isMask(Ones, A))
2174        return
2175          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
2176                                            IntegerType::get(Ones)),
2177                            U->getType());
2178    }
2179    break;
2180  case Instruction::Or:
2181    // If the RHS of the Or is a constant, we may have something like:
2182    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
2183    // optimizations will transparently handle this case.
2184    //
2185    // In order for this transformation to be safe, the LHS must be of the
2186    // form X*(2^n) and the Or constant must be less than 2^n.
2187    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2188      SCEVHandle LHS = getSCEV(U->getOperand(0));
2189      const APInt &CIVal = CI->getValue();
2190      if (GetMinTrailingZeros(LHS, *this) >=
2191          (CIVal.getBitWidth() - CIVal.countLeadingZeros()))
2192        return getAddExpr(LHS, getSCEV(U->getOperand(1)));
2193    }
2194    break;
2195  case Instruction::Xor:
2196    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2197      // If the RHS of the xor is a signbit, then this is just an add.
2198      // Instcombine turns add of signbit into xor as a strength reduction step.
2199      if (CI->getValue().isSignBit())
2200        return getAddExpr(getSCEV(U->getOperand(0)),
2201                          getSCEV(U->getOperand(1)));
2202
2203      // If the RHS of xor is -1, then this is a not operation.
2204      if (CI->isAllOnesValue())
2205        return getNotSCEV(getSCEV(U->getOperand(0)));
2206    }
2207    break;
2208
2209  case Instruction::Shl:
2210    // Turn shift left of a constant amount into a multiply.
2211    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2212      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2213      Constant *X = ConstantInt::get(
2214        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
2215      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
2216    }
2217    break;
2218
2219  case Instruction::LShr:
2220    // Turn logical shift right of a constant into a unsigned divide.
2221    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2222      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2223      Constant *X = ConstantInt::get(
2224        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
2225      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
2226    }
2227    break;
2228
2229  case Instruction::AShr:
2230    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
2231    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
2232      if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
2233        if (L->getOpcode() == Instruction::Shl &&
2234            L->getOperand(1) == U->getOperand(1)) {
2235          unsigned BitWidth = getTypeSizeInBits(U->getType());
2236          uint64_t Amt = BitWidth - CI->getZExtValue();
2237          if (Amt == BitWidth)
2238            return getSCEV(L->getOperand(0));       // shift by zero --> noop
2239          if (Amt > BitWidth)
2240            return getIntegerSCEV(0, U->getType()); // value is undefined
2241          return
2242            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
2243                                                      IntegerType::get(Amt)),
2244                                 U->getType());
2245        }
2246    break;
2247
2248  case Instruction::Trunc:
2249    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
2250
2251  case Instruction::ZExt:
2252    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
2253
2254  case Instruction::SExt:
2255    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
2256
2257  case Instruction::BitCast:
2258    // BitCasts are no-op casts so we just eliminate the cast.
2259    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
2260      return getSCEV(U->getOperand(0));
2261    break;
2262
2263  case Instruction::IntToPtr:
2264    if (!TD) break; // Without TD we can't analyze pointers.
2265    return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
2266                                   TD->getIntPtrType());
2267
2268  case Instruction::PtrToInt:
2269    if (!TD) break; // Without TD we can't analyze pointers.
2270    return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
2271                                   U->getType());
2272
2273  case Instruction::GetElementPtr:
2274    if (!TD) break; // Without TD we can't analyze pointers.
2275    return createNodeForGEP(U);
2276
2277  case Instruction::PHI:
2278    return createNodeForPHI(cast<PHINode>(U));
2279
2280  case Instruction::Select:
2281    // This could be a smax or umax that was lowered earlier.
2282    // Try to recover it.
2283    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
2284      Value *LHS = ICI->getOperand(0);
2285      Value *RHS = ICI->getOperand(1);
2286      switch (ICI->getPredicate()) {
2287      case ICmpInst::ICMP_SLT:
2288      case ICmpInst::ICMP_SLE:
2289        std::swap(LHS, RHS);
2290        // fall through
2291      case ICmpInst::ICMP_SGT:
2292      case ICmpInst::ICMP_SGE:
2293        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2294          return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
2295        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2296          // ~smax(~x, ~y) == smin(x, y).
2297          return getNotSCEV(getSMaxExpr(
2298                                   getNotSCEV(getSCEV(LHS)),
2299                                   getNotSCEV(getSCEV(RHS))));
2300        break;
2301      case ICmpInst::ICMP_ULT:
2302      case ICmpInst::ICMP_ULE:
2303        std::swap(LHS, RHS);
2304        // fall through
2305      case ICmpInst::ICMP_UGT:
2306      case ICmpInst::ICMP_UGE:
2307        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2308          return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
2309        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2310          // ~umax(~x, ~y) == umin(x, y)
2311          return getNotSCEV(getUMaxExpr(getNotSCEV(getSCEV(LHS)),
2312                                        getNotSCEV(getSCEV(RHS))));
2313        break;
2314      default:
2315        break;
2316      }
2317    }
2318
2319  default: // We cannot analyze this expression.
2320    break;
2321  }
2322
2323  return getUnknown(V);
2324}
2325
2326
2327
2328//===----------------------------------------------------------------------===//
2329//                   Iteration Count Computation Code
2330//
2331
2332/// getBackedgeTakenCount - If the specified loop has a predictable
2333/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
2334/// object. The backedge-taken count is the number of times the loop header
2335/// will be branched to from within the loop. This is one less than the
2336/// trip count of the loop, since it doesn't count the first iteration,
2337/// when the header is branched to from outside the loop.
2338///
2339/// Note that it is not valid to call this method on a loop without a
2340/// loop-invariant backedge-taken count (see
2341/// hasLoopInvariantBackedgeTakenCount).
2342///
2343SCEVHandle ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
2344  return getBackedgeTakenInfo(L).Exact;
2345}
2346
2347/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
2348/// return the least SCEV value that is known never to be less than the
2349/// actual backedge taken count.
2350SCEVHandle ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
2351  return getBackedgeTakenInfo(L).Max;
2352}
2353
2354const ScalarEvolution::BackedgeTakenInfo &
2355ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
2356  // Initially insert a CouldNotCompute for this loop. If the insertion
2357  // succeeds, procede to actually compute a backedge-taken count and
2358  // update the value. The temporary CouldNotCompute value tells SCEV
2359  // code elsewhere that it shouldn't attempt to request a new
2360  // backedge-taken count, which could result in infinite recursion.
2361  std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair =
2362    BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
2363  if (Pair.second) {
2364    BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
2365    if (ItCount.Exact != UnknownValue) {
2366      assert(ItCount.Exact->isLoopInvariant(L) &&
2367             ItCount.Max->isLoopInvariant(L) &&
2368             "Computed trip count isn't loop invariant for loop!");
2369      ++NumTripCountsComputed;
2370
2371      // Update the value in the map.
2372      Pair.first->second = ItCount;
2373    } else if (isa<PHINode>(L->getHeader()->begin())) {
2374      // Only count loops that have phi nodes as not being computable.
2375      ++NumTripCountsNotComputed;
2376    }
2377
2378    // Now that we know more about the trip count for this loop, forget any
2379    // existing SCEV values for PHI nodes in this loop since they are only
2380    // conservative estimates made without the benefit
2381    // of trip count information.
2382    if (ItCount.hasAnyInfo())
2383      forgetLoopPHIs(L);
2384  }
2385  return Pair.first->second;
2386}
2387
2388/// forgetLoopBackedgeTakenCount - This method should be called by the
2389/// client when it has changed a loop in a way that may effect
2390/// ScalarEvolution's ability to compute a trip count, or if the loop
2391/// is deleted.
2392void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) {
2393  BackedgeTakenCounts.erase(L);
2394  forgetLoopPHIs(L);
2395}
2396
2397/// forgetLoopPHIs - Delete the memoized SCEVs associated with the
2398/// PHI nodes in the given loop. This is used when the trip count of
2399/// the loop may have changed.
2400void ScalarEvolution::forgetLoopPHIs(const Loop *L) {
2401  BasicBlock *Header = L->getHeader();
2402
2403  // Push all Loop-header PHIs onto the Worklist stack, except those
2404  // that are presently represented via a SCEVUnknown. SCEVUnknown for
2405  // a PHI either means that it has an unrecognized structure, or it's
2406  // a PHI that's in the progress of being computed by createNodeForPHI.
2407  // In the former case, additional loop trip count information isn't
2408  // going to change anything. In the later case, createNodeForPHI will
2409  // perform the necessary updates on its own when it gets to that point.
2410  SmallVector<Instruction *, 16> Worklist;
2411  for (BasicBlock::iterator I = Header->begin();
2412       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2413    std::map<SCEVCallbackVH, SCEVHandle>::iterator It = Scalars.find((Value*)I);
2414    if (It != Scalars.end() && !isa<SCEVUnknown>(It->second))
2415      Worklist.push_back(PN);
2416  }
2417
2418  while (!Worklist.empty()) {
2419    Instruction *I = Worklist.pop_back_val();
2420    if (Scalars.erase(I))
2421      for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2422           UI != UE; ++UI)
2423        Worklist.push_back(cast<Instruction>(UI));
2424  }
2425}
2426
2427/// ComputeBackedgeTakenCount - Compute the number of times the backedge
2428/// of the specified loop will execute.
2429ScalarEvolution::BackedgeTakenInfo
2430ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
2431  // If the loop has a non-one exit block count, we can't analyze it.
2432  SmallVector<BasicBlock*, 8> ExitBlocks;
2433  L->getExitBlocks(ExitBlocks);
2434  if (ExitBlocks.size() != 1) return UnknownValue;
2435
2436  // Okay, there is one exit block.  Try to find the condition that causes the
2437  // loop to be exited.
2438  BasicBlock *ExitBlock = ExitBlocks[0];
2439
2440  BasicBlock *ExitingBlock = 0;
2441  for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
2442       PI != E; ++PI)
2443    if (L->contains(*PI)) {
2444      if (ExitingBlock == 0)
2445        ExitingBlock = *PI;
2446      else
2447        return UnknownValue;   // More than one block exiting!
2448    }
2449  assert(ExitingBlock && "No exits from loop, something is broken!");
2450
2451  // Okay, we've computed the exiting block.  See what condition causes us to
2452  // exit.
2453  //
2454  // FIXME: we should be able to handle switch instructions (with a single exit)
2455  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2456  if (ExitBr == 0) return UnknownValue;
2457  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
2458
2459  // At this point, we know we have a conditional branch that determines whether
2460  // the loop is exited.  However, we don't know if the branch is executed each
2461  // time through the loop.  If not, then the execution count of the branch will
2462  // not be equal to the trip count of the loop.
2463  //
2464  // Currently we check for this by checking to see if the Exit branch goes to
2465  // the loop header.  If so, we know it will always execute the same number of
2466  // times as the loop.  We also handle the case where the exit block *is* the
2467  // loop header.  This is common for un-rotated loops.  More extensive analysis
2468  // could be done to handle more cases here.
2469  if (ExitBr->getSuccessor(0) != L->getHeader() &&
2470      ExitBr->getSuccessor(1) != L->getHeader() &&
2471      ExitBr->getParent() != L->getHeader())
2472    return UnknownValue;
2473
2474  ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition());
2475
2476  // If it's not an integer or pointer comparison then compute it the hard way.
2477  if (ExitCond == 0)
2478    return ComputeBackedgeTakenCountExhaustively(L, ExitBr->getCondition(),
2479                                          ExitBr->getSuccessor(0) == ExitBlock);
2480
2481  // If the condition was exit on true, convert the condition to exit on false
2482  ICmpInst::Predicate Cond;
2483  if (ExitBr->getSuccessor(1) == ExitBlock)
2484    Cond = ExitCond->getPredicate();
2485  else
2486    Cond = ExitCond->getInversePredicate();
2487
2488  // Handle common loops like: for (X = "string"; *X; ++X)
2489  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
2490    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
2491      SCEVHandle ItCnt =
2492        ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
2493      if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
2494    }
2495
2496  SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
2497  SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
2498
2499  // Try to evaluate any dependencies out of the loop.
2500  SCEVHandle Tmp = getSCEVAtScope(LHS, L);
2501  if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
2502  Tmp = getSCEVAtScope(RHS, L);
2503  if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
2504
2505  // At this point, we would like to compute how many iterations of the
2506  // loop the predicate will return true for these inputs.
2507  if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
2508    // If there is a loop-invariant, force it into the RHS.
2509    std::swap(LHS, RHS);
2510    Cond = ICmpInst::getSwappedPredicate(Cond);
2511  }
2512
2513  // If we have a comparison of a chrec against a constant, try to use value
2514  // ranges to answer this query.
2515  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
2516    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
2517      if (AddRec->getLoop() == L) {
2518        // Form the constant range.
2519        ConstantRange CompRange(
2520            ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
2521
2522        SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, *this);
2523        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
2524      }
2525
2526  switch (Cond) {
2527  case ICmpInst::ICMP_NE: {                     // while (X != Y)
2528    // Convert to: while (X-Y != 0)
2529    SCEVHandle TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
2530    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2531    break;
2532  }
2533  case ICmpInst::ICMP_EQ: {
2534    // Convert to: while (X-Y == 0)           // while (X == Y)
2535    SCEVHandle TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
2536    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2537    break;
2538  }
2539  case ICmpInst::ICMP_SLT: {
2540    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
2541    if (BTI.hasAnyInfo()) return BTI;
2542    break;
2543  }
2544  case ICmpInst::ICMP_SGT: {
2545    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
2546                                             getNotSCEV(RHS), L, true);
2547    if (BTI.hasAnyInfo()) return BTI;
2548    break;
2549  }
2550  case ICmpInst::ICMP_ULT: {
2551    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
2552    if (BTI.hasAnyInfo()) return BTI;
2553    break;
2554  }
2555  case ICmpInst::ICMP_UGT: {
2556    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
2557                                             getNotSCEV(RHS), L, false);
2558    if (BTI.hasAnyInfo()) return BTI;
2559    break;
2560  }
2561  default:
2562#if 0
2563    errs() << "ComputeBackedgeTakenCount ";
2564    if (ExitCond->getOperand(0)->getType()->isUnsigned())
2565      errs() << "[unsigned] ";
2566    errs() << *LHS << "   "
2567         << Instruction::getOpcodeName(Instruction::ICmp)
2568         << "   " << *RHS << "\n";
2569#endif
2570    break;
2571  }
2572  return
2573    ComputeBackedgeTakenCountExhaustively(L, ExitCond,
2574                                          ExitBr->getSuccessor(0) == ExitBlock);
2575}
2576
2577static ConstantInt *
2578EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
2579                                ScalarEvolution &SE) {
2580  SCEVHandle InVal = SE.getConstant(C);
2581  SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE);
2582  assert(isa<SCEVConstant>(Val) &&
2583         "Evaluation of SCEV at constant didn't fold correctly?");
2584  return cast<SCEVConstant>(Val)->getValue();
2585}
2586
2587/// GetAddressedElementFromGlobal - Given a global variable with an initializer
2588/// and a GEP expression (missing the pointer index) indexing into it, return
2589/// the addressed element of the initializer or null if the index expression is
2590/// invalid.
2591static Constant *
2592GetAddressedElementFromGlobal(GlobalVariable *GV,
2593                              const std::vector<ConstantInt*> &Indices) {
2594  Constant *Init = GV->getInitializer();
2595  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
2596    uint64_t Idx = Indices[i]->getZExtValue();
2597    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
2598      assert(Idx < CS->getNumOperands() && "Bad struct index!");
2599      Init = cast<Constant>(CS->getOperand(Idx));
2600    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
2601      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
2602      Init = cast<Constant>(CA->getOperand(Idx));
2603    } else if (isa<ConstantAggregateZero>(Init)) {
2604      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
2605        assert(Idx < STy->getNumElements() && "Bad struct index!");
2606        Init = Constant::getNullValue(STy->getElementType(Idx));
2607      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
2608        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
2609        Init = Constant::getNullValue(ATy->getElementType());
2610      } else {
2611        assert(0 && "Unknown constant aggregate type!");
2612      }
2613      return 0;
2614    } else {
2615      return 0; // Unknown initializer type
2616    }
2617  }
2618  return Init;
2619}
2620
2621/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
2622/// 'icmp op load X, cst', try to see if we can compute the backedge
2623/// execution count.
2624SCEVHandle ScalarEvolution::
2625ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS,
2626                                             const Loop *L,
2627                                             ICmpInst::Predicate predicate) {
2628  if (LI->isVolatile()) return UnknownValue;
2629
2630  // Check to see if the loaded pointer is a getelementptr of a global.
2631  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
2632  if (!GEP) return UnknownValue;
2633
2634  // Make sure that it is really a constant global we are gepping, with an
2635  // initializer, and make sure the first IDX is really 0.
2636  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
2637  if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
2638      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
2639      !cast<Constant>(GEP->getOperand(1))->isNullValue())
2640    return UnknownValue;
2641
2642  // Okay, we allow one non-constant index into the GEP instruction.
2643  Value *VarIdx = 0;
2644  std::vector<ConstantInt*> Indexes;
2645  unsigned VarIdxNum = 0;
2646  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
2647    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
2648      Indexes.push_back(CI);
2649    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
2650      if (VarIdx) return UnknownValue;  // Multiple non-constant idx's.
2651      VarIdx = GEP->getOperand(i);
2652      VarIdxNum = i-2;
2653      Indexes.push_back(0);
2654    }
2655
2656  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
2657  // Check to see if X is a loop variant variable value now.
2658  SCEVHandle Idx = getSCEV(VarIdx);
2659  SCEVHandle Tmp = getSCEVAtScope(Idx, L);
2660  if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
2661
2662  // We can only recognize very limited forms of loop index expressions, in
2663  // particular, only affine AddRec's like {C1,+,C2}.
2664  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
2665  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
2666      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
2667      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
2668    return UnknownValue;
2669
2670  unsigned MaxSteps = MaxBruteForceIterations;
2671  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
2672    ConstantInt *ItCst =
2673      ConstantInt::get(IdxExpr->getType(), IterationNum);
2674    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
2675
2676    // Form the GEP offset.
2677    Indexes[VarIdxNum] = Val;
2678
2679    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
2680    if (Result == 0) break;  // Cannot compute!
2681
2682    // Evaluate the condition for this iteration.
2683    Result = ConstantExpr::getICmp(predicate, Result, RHS);
2684    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
2685    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
2686#if 0
2687      errs() << "\n***\n*** Computed loop count " << *ItCst
2688             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
2689             << "***\n";
2690#endif
2691      ++NumArrayLenItCounts;
2692      return getConstant(ItCst);   // Found terminating iteration!
2693    }
2694  }
2695  return UnknownValue;
2696}
2697
2698
2699/// CanConstantFold - Return true if we can constant fold an instruction of the
2700/// specified type, assuming that all operands were constants.
2701static bool CanConstantFold(const Instruction *I) {
2702  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
2703      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
2704    return true;
2705
2706  if (const CallInst *CI = dyn_cast<CallInst>(I))
2707    if (const Function *F = CI->getCalledFunction())
2708      return canConstantFoldCallTo(F);
2709  return false;
2710}
2711
2712/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
2713/// in the loop that V is derived from.  We allow arbitrary operations along the
2714/// way, but the operands of an operation must either be constants or a value
2715/// derived from a constant PHI.  If this expression does not fit with these
2716/// constraints, return null.
2717static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
2718  // If this is not an instruction, or if this is an instruction outside of the
2719  // loop, it can't be derived from a loop PHI.
2720  Instruction *I = dyn_cast<Instruction>(V);
2721  if (I == 0 || !L->contains(I->getParent())) return 0;
2722
2723  if (PHINode *PN = dyn_cast<PHINode>(I)) {
2724    if (L->getHeader() == I->getParent())
2725      return PN;
2726    else
2727      // We don't currently keep track of the control flow needed to evaluate
2728      // PHIs, so we cannot handle PHIs inside of loops.
2729      return 0;
2730  }
2731
2732  // If we won't be able to constant fold this expression even if the operands
2733  // are constants, return early.
2734  if (!CanConstantFold(I)) return 0;
2735
2736  // Otherwise, we can evaluate this instruction if all of its operands are
2737  // constant or derived from a PHI node themselves.
2738  PHINode *PHI = 0;
2739  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
2740    if (!(isa<Constant>(I->getOperand(Op)) ||
2741          isa<GlobalValue>(I->getOperand(Op)))) {
2742      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
2743      if (P == 0) return 0;  // Not evolving from PHI
2744      if (PHI == 0)
2745        PHI = P;
2746      else if (PHI != P)
2747        return 0;  // Evolving from multiple different PHIs.
2748    }
2749
2750  // This is a expression evolving from a constant PHI!
2751  return PHI;
2752}
2753
2754/// EvaluateExpression - Given an expression that passes the
2755/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
2756/// in the loop has the value PHIVal.  If we can't fold this expression for some
2757/// reason, return null.
2758static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
2759  if (isa<PHINode>(V)) return PHIVal;
2760  if (Constant *C = dyn_cast<Constant>(V)) return C;
2761  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
2762  Instruction *I = cast<Instruction>(V);
2763
2764  std::vector<Constant*> Operands;
2765  Operands.resize(I->getNumOperands());
2766
2767  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2768    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
2769    if (Operands[i] == 0) return 0;
2770  }
2771
2772  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2773    return ConstantFoldCompareInstOperands(CI->getPredicate(),
2774                                           &Operands[0], Operands.size());
2775  else
2776    return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2777                                    &Operands[0], Operands.size());
2778}
2779
2780/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
2781/// in the header of its containing loop, we know the loop executes a
2782/// constant number of times, and the PHI node is just a recurrence
2783/// involving constants, fold it.
2784Constant *ScalarEvolution::
2785getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L){
2786  std::map<PHINode*, Constant*>::iterator I =
2787    ConstantEvolutionLoopExitValue.find(PN);
2788  if (I != ConstantEvolutionLoopExitValue.end())
2789    return I->second;
2790
2791  if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
2792    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
2793
2794  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
2795
2796  // Since the loop is canonicalized, the PHI node must have two entries.  One
2797  // entry must be a constant (coming in from outside of the loop), and the
2798  // second must be derived from the same PHI.
2799  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2800  Constant *StartCST =
2801    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2802  if (StartCST == 0)
2803    return RetVal = 0;  // Must be a constant.
2804
2805  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2806  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2807  if (PN2 != PN)
2808    return RetVal = 0;  // Not derived from same PHI.
2809
2810  // Execute the loop symbolically to determine the exit value.
2811  if (BEs.getActiveBits() >= 32)
2812    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
2813
2814  unsigned NumIterations = BEs.getZExtValue(); // must be in range
2815  unsigned IterationNum = 0;
2816  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
2817    if (IterationNum == NumIterations)
2818      return RetVal = PHIVal;  // Got exit value!
2819
2820    // Compute the value of the PHI node for the next iteration.
2821    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2822    if (NextPHI == PHIVal)
2823      return RetVal = NextPHI;  // Stopped evolving!
2824    if (NextPHI == 0)
2825      return 0;        // Couldn't evaluate!
2826    PHIVal = NextPHI;
2827  }
2828}
2829
2830/// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a
2831/// constant number of times (the condition evolves only from constants),
2832/// try to evaluate a few iterations of the loop until we get the exit
2833/// condition gets a value of ExitWhen (true or false).  If we cannot
2834/// evaluate the trip count of the loop, return UnknownValue.
2835SCEVHandle ScalarEvolution::
2836ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
2837  PHINode *PN = getConstantEvolvingPHI(Cond, L);
2838  if (PN == 0) return UnknownValue;
2839
2840  // Since the loop is canonicalized, the PHI node must have two entries.  One
2841  // entry must be a constant (coming in from outside of the loop), and the
2842  // second must be derived from the same PHI.
2843  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2844  Constant *StartCST =
2845    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2846  if (StartCST == 0) return UnknownValue;  // Must be a constant.
2847
2848  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2849  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2850  if (PN2 != PN) return UnknownValue;  // Not derived from same PHI.
2851
2852  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
2853  // the loop symbolically to determine when the condition gets a value of
2854  // "ExitWhen".
2855  unsigned IterationNum = 0;
2856  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
2857  for (Constant *PHIVal = StartCST;
2858       IterationNum != MaxIterations; ++IterationNum) {
2859    ConstantInt *CondVal =
2860      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
2861
2862    // Couldn't symbolically evaluate.
2863    if (!CondVal) return UnknownValue;
2864
2865    if (CondVal->getValue() == uint64_t(ExitWhen)) {
2866      ConstantEvolutionLoopExitValue[PN] = PHIVal;
2867      ++NumBruteForceTripCountsComputed;
2868      return getConstant(ConstantInt::get(Type::Int32Ty, IterationNum));
2869    }
2870
2871    // Compute the value of the PHI node for the next iteration.
2872    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2873    if (NextPHI == 0 || NextPHI == PHIVal)
2874      return UnknownValue;  // Couldn't evaluate or not making progress...
2875    PHIVal = NextPHI;
2876  }
2877
2878  // Too many iterations were needed to evaluate.
2879  return UnknownValue;
2880}
2881
2882/// getSCEVAtScope - Return a SCEV expression handle for the specified value
2883/// at the specified scope in the program.  The L value specifies a loop
2884/// nest to evaluate the expression at, where null is the top-level or a
2885/// specified loop is immediately inside of the loop.
2886///
2887/// This method can be used to compute the exit value for a variable defined
2888/// in a loop by querying what the value will hold in the parent loop.
2889///
2890/// If this value is not computable at this scope, a SCEVCouldNotCompute
2891/// object is returned.
2892SCEVHandle ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
2893  // FIXME: this should be turned into a virtual method on SCEV!
2894
2895  if (isa<SCEVConstant>(V)) return V;
2896
2897  // If this instruction is evolved from a constant-evolving PHI, compute the
2898  // exit value from the loop without using SCEVs.
2899  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
2900    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
2901      const Loop *LI = (*this->LI)[I->getParent()];
2902      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
2903        if (PHINode *PN = dyn_cast<PHINode>(I))
2904          if (PN->getParent() == LI->getHeader()) {
2905            // Okay, there is no closed form solution for the PHI node.  Check
2906            // to see if the loop that contains it has a known backedge-taken
2907            // count.  If so, we may be able to force computation of the exit
2908            // value.
2909            SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(LI);
2910            if (const SCEVConstant *BTCC =
2911                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
2912              // Okay, we know how many times the containing loop executes.  If
2913              // this is a constant evolving PHI node, get the final value at
2914              // the specified iteration number.
2915              Constant *RV = getConstantEvolutionLoopExitValue(PN,
2916                                                   BTCC->getValue()->getValue(),
2917                                                               LI);
2918              if (RV) return getUnknown(RV);
2919            }
2920          }
2921
2922      // Okay, this is an expression that we cannot symbolically evaluate
2923      // into a SCEV.  Check to see if it's possible to symbolically evaluate
2924      // the arguments into constants, and if so, try to constant propagate the
2925      // result.  This is particularly useful for computing loop exit values.
2926      if (CanConstantFold(I)) {
2927        // Check to see if we've folded this instruction at this loop before.
2928        std::map<const Loop *, Constant *> &Values = ValuesAtScopes[I];
2929        std::pair<std::map<const Loop *, Constant *>::iterator, bool> Pair =
2930          Values.insert(std::make_pair(L, static_cast<Constant *>(0)));
2931        if (!Pair.second)
2932          return Pair.first->second ? &*getUnknown(Pair.first->second) : V;
2933
2934        std::vector<Constant*> Operands;
2935        Operands.reserve(I->getNumOperands());
2936        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2937          Value *Op = I->getOperand(i);
2938          if (Constant *C = dyn_cast<Constant>(Op)) {
2939            Operands.push_back(C);
2940          } else {
2941            // If any of the operands is non-constant and if they are
2942            // non-integer and non-pointer, don't even try to analyze them
2943            // with scev techniques.
2944            if (!isSCEVable(Op->getType()))
2945              return V;
2946
2947            SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
2948            if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
2949              Constant *C = SC->getValue();
2950              if (C->getType() != Op->getType())
2951                C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
2952                                                                  Op->getType(),
2953                                                                  false),
2954                                          C, Op->getType());
2955              Operands.push_back(C);
2956            } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
2957              if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
2958                if (C->getType() != Op->getType())
2959                  C =
2960                    ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
2961                                                                  Op->getType(),
2962                                                                  false),
2963                                          C, Op->getType());
2964                Operands.push_back(C);
2965              } else
2966                return V;
2967            } else {
2968              return V;
2969            }
2970          }
2971        }
2972
2973        Constant *C;
2974        if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2975          C = ConstantFoldCompareInstOperands(CI->getPredicate(),
2976                                              &Operands[0], Operands.size());
2977        else
2978          C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2979                                       &Operands[0], Operands.size());
2980        Pair.first->second = C;
2981        return getUnknown(C);
2982      }
2983    }
2984
2985    // This is some other type of SCEVUnknown, just return it.
2986    return V;
2987  }
2988
2989  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
2990    // Avoid performing the look-up in the common case where the specified
2991    // expression has no loop-variant portions.
2992    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
2993      SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2994      if (OpAtScope != Comm->getOperand(i)) {
2995        if (OpAtScope == UnknownValue) return UnknownValue;
2996        // Okay, at least one of these operands is loop variant but might be
2997        // foldable.  Build a new instance of the folded commutative expression.
2998        std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
2999        NewOps.push_back(OpAtScope);
3000
3001        for (++i; i != e; ++i) {
3002          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
3003          if (OpAtScope == UnknownValue) return UnknownValue;
3004          NewOps.push_back(OpAtScope);
3005        }
3006        if (isa<SCEVAddExpr>(Comm))
3007          return getAddExpr(NewOps);
3008        if (isa<SCEVMulExpr>(Comm))
3009          return getMulExpr(NewOps);
3010        if (isa<SCEVSMaxExpr>(Comm))
3011          return getSMaxExpr(NewOps);
3012        if (isa<SCEVUMaxExpr>(Comm))
3013          return getUMaxExpr(NewOps);
3014        assert(0 && "Unknown commutative SCEV type!");
3015      }
3016    }
3017    // If we got here, all operands are loop invariant.
3018    return Comm;
3019  }
3020
3021  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
3022    SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
3023    if (LHS == UnknownValue) return LHS;
3024    SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
3025    if (RHS == UnknownValue) return RHS;
3026    if (LHS == Div->getLHS() && RHS == Div->getRHS())
3027      return Div;   // must be loop invariant
3028    return getUDivExpr(LHS, RHS);
3029  }
3030
3031  // If this is a loop recurrence for a loop that does not contain L, then we
3032  // are dealing with the final value computed by the loop.
3033  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
3034    if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
3035      // To evaluate this recurrence, we need to know how many times the AddRec
3036      // loop iterates.  Compute this now.
3037      SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
3038      if (BackedgeTakenCount == UnknownValue) return UnknownValue;
3039
3040      // Then, evaluate the AddRec.
3041      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
3042    }
3043    return UnknownValue;
3044  }
3045
3046  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
3047    SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
3048    if (Op == UnknownValue) return Op;
3049    if (Op == Cast->getOperand())
3050      return Cast;  // must be loop invariant
3051    return getZeroExtendExpr(Op, Cast->getType());
3052  }
3053
3054  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
3055    SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
3056    if (Op == UnknownValue) return Op;
3057    if (Op == Cast->getOperand())
3058      return Cast;  // must be loop invariant
3059    return getSignExtendExpr(Op, Cast->getType());
3060  }
3061
3062  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
3063    SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
3064    if (Op == UnknownValue) return Op;
3065    if (Op == Cast->getOperand())
3066      return Cast;  // must be loop invariant
3067    return getTruncateExpr(Op, Cast->getType());
3068  }
3069
3070  assert(0 && "Unknown SCEV type!");
3071}
3072
3073/// getSCEVAtScope - This is a convenience function which does
3074/// getSCEVAtScope(getSCEV(V), L).
3075SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
3076  return getSCEVAtScope(getSCEV(V), L);
3077}
3078
3079/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
3080/// following equation:
3081///
3082///     A * X = B (mod N)
3083///
3084/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
3085/// A and B isn't important.
3086///
3087/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
3088static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
3089                                               ScalarEvolution &SE) {
3090  uint32_t BW = A.getBitWidth();
3091  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
3092  assert(A != 0 && "A must be non-zero.");
3093
3094  // 1. D = gcd(A, N)
3095  //
3096  // The gcd of A and N may have only one prime factor: 2. The number of
3097  // trailing zeros in A is its multiplicity
3098  uint32_t Mult2 = A.countTrailingZeros();
3099  // D = 2^Mult2
3100
3101  // 2. Check if B is divisible by D.
3102  //
3103  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
3104  // is not less than multiplicity of this prime factor for D.
3105  if (B.countTrailingZeros() < Mult2)
3106    return SE.getCouldNotCompute();
3107
3108  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
3109  // modulo (N / D).
3110  //
3111  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
3112  // bit width during computations.
3113  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
3114  APInt Mod(BW + 1, 0);
3115  Mod.set(BW - Mult2);  // Mod = N / D
3116  APInt I = AD.multiplicativeInverse(Mod);
3117
3118  // 4. Compute the minimum unsigned root of the equation:
3119  // I * (B / D) mod (N / D)
3120  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
3121
3122  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
3123  // bits.
3124  return SE.getConstant(Result.trunc(BW));
3125}
3126
3127/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
3128/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
3129/// might be the same) or two SCEVCouldNotCompute objects.
3130///
3131static std::pair<SCEVHandle,SCEVHandle>
3132SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
3133  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
3134  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
3135  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
3136  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
3137
3138  // We currently can only solve this if the coefficients are constants.
3139  if (!LC || !MC || !NC) {
3140    const SCEV *CNC = SE.getCouldNotCompute();
3141    return std::make_pair(CNC, CNC);
3142  }
3143
3144  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
3145  const APInt &L = LC->getValue()->getValue();
3146  const APInt &M = MC->getValue()->getValue();
3147  const APInt &N = NC->getValue()->getValue();
3148  APInt Two(BitWidth, 2);
3149  APInt Four(BitWidth, 4);
3150
3151  {
3152    using namespace APIntOps;
3153    const APInt& C = L;
3154    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
3155    // The B coefficient is M-N/2
3156    APInt B(M);
3157    B -= sdiv(N,Two);
3158
3159    // The A coefficient is N/2
3160    APInt A(N.sdiv(Two));
3161
3162    // Compute the B^2-4ac term.
3163    APInt SqrtTerm(B);
3164    SqrtTerm *= B;
3165    SqrtTerm -= Four * (A * C);
3166
3167    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
3168    // integer value or else APInt::sqrt() will assert.
3169    APInt SqrtVal(SqrtTerm.sqrt());
3170
3171    // Compute the two solutions for the quadratic formula.
3172    // The divisions must be performed as signed divisions.
3173    APInt NegB(-B);
3174    APInt TwoA( A << 1 );
3175    if (TwoA.isMinValue()) {
3176      const SCEV *CNC = SE.getCouldNotCompute();
3177      return std::make_pair(CNC, CNC);
3178    }
3179
3180    ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA));
3181    ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA));
3182
3183    return std::make_pair(SE.getConstant(Solution1),
3184                          SE.getConstant(Solution2));
3185    } // end APIntOps namespace
3186}
3187
3188/// HowFarToZero - Return the number of times a backedge comparing the specified
3189/// value to zero will execute.  If not computable, return UnknownValue
3190SCEVHandle ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
3191  // If the value is a constant
3192  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
3193    // If the value is already zero, the branch will execute zero times.
3194    if (C->getValue()->isZero()) return C;
3195    return UnknownValue;  // Otherwise it will loop infinitely.
3196  }
3197
3198  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
3199  if (!AddRec || AddRec->getLoop() != L)
3200    return UnknownValue;
3201
3202  if (AddRec->isAffine()) {
3203    // If this is an affine expression, the execution count of this branch is
3204    // the minimum unsigned root of the following equation:
3205    //
3206    //     Start + Step*N = 0 (mod 2^BW)
3207    //
3208    // equivalent to:
3209    //
3210    //             Step*N = -Start (mod 2^BW)
3211    //
3212    // where BW is the common bit width of Start and Step.
3213
3214    // Get the initial value for the loop.
3215    SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
3216    if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
3217
3218    SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
3219
3220    if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
3221      // For now we handle only constant steps.
3222
3223      // First, handle unitary steps.
3224      if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so:
3225        return getNegativeSCEV(Start);       //   N = -Start (as unsigned)
3226      if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so:
3227        return Start;                           //    N = Start (as unsigned)
3228
3229      // Then, try to solve the above equation provided that Start is constant.
3230      if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
3231        return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
3232                                            -StartC->getValue()->getValue(),
3233                                            *this);
3234    }
3235  } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
3236    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
3237    // the quadratic equation to solve it.
3238    std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec,
3239                                                                    *this);
3240    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
3241    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
3242    if (R1) {
3243#if 0
3244      errs() << "HFTZ: " << *V << " - sol#1: " << *R1
3245             << "  sol#2: " << *R2 << "\n";
3246#endif
3247      // Pick the smallest positive root value.
3248      if (ConstantInt *CB =
3249          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
3250                                   R1->getValue(), R2->getValue()))) {
3251        if (CB->getZExtValue() == false)
3252          std::swap(R1, R2);   // R1 is the minimum root now.
3253
3254        // We can only use this value if the chrec ends up with an exact zero
3255        // value at this index.  When solving for "X*X != 5", for example, we
3256        // should not accept a root of 2.
3257        SCEVHandle Val = AddRec->evaluateAtIteration(R1, *this);
3258        if (Val->isZero())
3259          return R1;  // We found a quadratic root!
3260      }
3261    }
3262  }
3263
3264  return UnknownValue;
3265}
3266
3267/// HowFarToNonZero - Return the number of times a backedge checking the
3268/// specified value for nonzero will execute.  If not computable, return
3269/// UnknownValue
3270SCEVHandle ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
3271  // Loops that look like: while (X == 0) are very strange indeed.  We don't
3272  // handle them yet except for the trivial case.  This could be expanded in the
3273  // future as needed.
3274
3275  // If the value is a constant, check to see if it is known to be non-zero
3276  // already.  If so, the backedge will execute zero times.
3277  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
3278    if (!C->getValue()->isNullValue())
3279      return getIntegerSCEV(0, C->getType());
3280    return UnknownValue;  // Otherwise it will loop infinitely.
3281  }
3282
3283  // We could implement others, but I really doubt anyone writes loops like
3284  // this, and if they did, they would already be constant folded.
3285  return UnknownValue;
3286}
3287
3288/// getLoopPredecessor - If the given loop's header has exactly one unique
3289/// predecessor outside the loop, return it. Otherwise return null.
3290///
3291BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
3292  BasicBlock *Header = L->getHeader();
3293  BasicBlock *Pred = 0;
3294  for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
3295       PI != E; ++PI)
3296    if (!L->contains(*PI)) {
3297      if (Pred && Pred != *PI) return 0; // Multiple predecessors.
3298      Pred = *PI;
3299    }
3300  return Pred;
3301}
3302
3303/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
3304/// (which may not be an immediate predecessor) which has exactly one
3305/// successor from which BB is reachable, or null if no such block is
3306/// found.
3307///
3308BasicBlock *
3309ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
3310  // If the block has a unique predecessor, then there is no path from the
3311  // predecessor to the block that does not go through the direct edge
3312  // from the predecessor to the block.
3313  if (BasicBlock *Pred = BB->getSinglePredecessor())
3314    return Pred;
3315
3316  // A loop's header is defined to be a block that dominates the loop.
3317  // If the header has a unique predecessor outside the loop, it must be
3318  // a block that has exactly one successor that can reach the loop.
3319  if (Loop *L = LI->getLoopFor(BB))
3320    return getLoopPredecessor(L);
3321
3322  return 0;
3323}
3324
3325/// isLoopGuardedByCond - Test whether entry to the loop is protected by
3326/// a conditional between LHS and RHS.  This is used to help avoid max
3327/// expressions in loop trip counts.
3328bool ScalarEvolution::isLoopGuardedByCond(const Loop *L,
3329                                          ICmpInst::Predicate Pred,
3330                                          const SCEV *LHS, const SCEV *RHS) {
3331  // Interpret a null as meaning no loop, where there is obviously no guard
3332  // (interprocedural conditions notwithstanding).
3333  if (!L) return false;
3334
3335  BasicBlock *Predecessor = getLoopPredecessor(L);
3336  BasicBlock *PredecessorDest = L->getHeader();
3337
3338  // Starting at the loop predecessor, climb up the predecessor chain, as long
3339  // as there are predecessors that can be found that have unique successors
3340  // leading to the original header.
3341  for (; Predecessor;
3342       PredecessorDest = Predecessor,
3343       Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) {
3344
3345    BranchInst *LoopEntryPredicate =
3346      dyn_cast<BranchInst>(Predecessor->getTerminator());
3347    if (!LoopEntryPredicate ||
3348        LoopEntryPredicate->isUnconditional())
3349      continue;
3350
3351    ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition());
3352    if (!ICI) continue;
3353
3354    // Now that we found a conditional branch that dominates the loop, check to
3355    // see if it is the comparison we are looking for.
3356    Value *PreCondLHS = ICI->getOperand(0);
3357    Value *PreCondRHS = ICI->getOperand(1);
3358    ICmpInst::Predicate Cond;
3359    if (LoopEntryPredicate->getSuccessor(0) == PredecessorDest)
3360      Cond = ICI->getPredicate();
3361    else
3362      Cond = ICI->getInversePredicate();
3363
3364    if (Cond == Pred)
3365      ; // An exact match.
3366    else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE)
3367      ; // The actual condition is beyond sufficient.
3368    else
3369      // Check a few special cases.
3370      switch (Cond) {
3371      case ICmpInst::ICMP_UGT:
3372        if (Pred == ICmpInst::ICMP_ULT) {
3373          std::swap(PreCondLHS, PreCondRHS);
3374          Cond = ICmpInst::ICMP_ULT;
3375          break;
3376        }
3377        continue;
3378      case ICmpInst::ICMP_SGT:
3379        if (Pred == ICmpInst::ICMP_SLT) {
3380          std::swap(PreCondLHS, PreCondRHS);
3381          Cond = ICmpInst::ICMP_SLT;
3382          break;
3383        }
3384        continue;
3385      case ICmpInst::ICMP_NE:
3386        // Expressions like (x >u 0) are often canonicalized to (x != 0),
3387        // so check for this case by checking if the NE is comparing against
3388        // a minimum or maximum constant.
3389        if (!ICmpInst::isTrueWhenEqual(Pred))
3390          if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) {
3391            const APInt &A = CI->getValue();
3392            switch (Pred) {
3393            case ICmpInst::ICMP_SLT:
3394              if (A.isMaxSignedValue()) break;
3395              continue;
3396            case ICmpInst::ICMP_SGT:
3397              if (A.isMinSignedValue()) break;
3398              continue;
3399            case ICmpInst::ICMP_ULT:
3400              if (A.isMaxValue()) break;
3401              continue;
3402            case ICmpInst::ICMP_UGT:
3403              if (A.isMinValue()) break;
3404              continue;
3405            default:
3406              continue;
3407            }
3408            Cond = ICmpInst::ICMP_NE;
3409            // NE is symmetric but the original comparison may not be. Swap
3410            // the operands if necessary so that they match below.
3411            if (isa<SCEVConstant>(LHS))
3412              std::swap(PreCondLHS, PreCondRHS);
3413            break;
3414          }
3415        continue;
3416      default:
3417        // We weren't able to reconcile the condition.
3418        continue;
3419      }
3420
3421    if (!PreCondLHS->getType()->isInteger()) continue;
3422
3423    SCEVHandle PreCondLHSSCEV = getSCEV(PreCondLHS);
3424    SCEVHandle PreCondRHSSCEV = getSCEV(PreCondRHS);
3425    if ((LHS == PreCondLHSSCEV && RHS == PreCondRHSSCEV) ||
3426        (LHS == getNotSCEV(PreCondRHSSCEV) &&
3427         RHS == getNotSCEV(PreCondLHSSCEV)))
3428      return true;
3429  }
3430
3431  return false;
3432}
3433
3434/// HowManyLessThans - Return the number of times a backedge containing the
3435/// specified less-than comparison will execute.  If not computable, return
3436/// UnknownValue.
3437ScalarEvolution::BackedgeTakenInfo ScalarEvolution::
3438HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
3439                 const Loop *L, bool isSigned) {
3440  // Only handle:  "ADDREC < LoopInvariant".
3441  if (!RHS->isLoopInvariant(L)) return UnknownValue;
3442
3443  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
3444  if (!AddRec || AddRec->getLoop() != L)
3445    return UnknownValue;
3446
3447  if (AddRec->isAffine()) {
3448    // FORNOW: We only support unit strides.
3449    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
3450    SCEVHandle Step = AddRec->getStepRecurrence(*this);
3451    SCEVHandle NegOne = getIntegerSCEV(-1, AddRec->getType());
3452
3453    // TODO: handle non-constant strides.
3454    const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
3455    if (!CStep || CStep->isZero())
3456      return UnknownValue;
3457    if (CStep->isOne()) {
3458      // With unit stride, the iteration never steps past the limit value.
3459    } else if (CStep->getValue()->getValue().isStrictlyPositive()) {
3460      if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) {
3461        // Test whether a positive iteration iteration can step past the limit
3462        // value and past the maximum value for its type in a single step.
3463        if (isSigned) {
3464          APInt Max = APInt::getSignedMaxValue(BitWidth);
3465          if ((Max - CStep->getValue()->getValue())
3466                .slt(CLimit->getValue()->getValue()))
3467            return UnknownValue;
3468        } else {
3469          APInt Max = APInt::getMaxValue(BitWidth);
3470          if ((Max - CStep->getValue()->getValue())
3471                .ult(CLimit->getValue()->getValue()))
3472            return UnknownValue;
3473        }
3474      } else
3475        // TODO: handle non-constant limit values below.
3476        return UnknownValue;
3477    } else
3478      // TODO: handle negative strides below.
3479      return UnknownValue;
3480
3481    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
3482    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
3483    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
3484    // treat m-n as signed nor unsigned due to overflow possibility.
3485
3486    // First, we get the value of the LHS in the first iteration: n
3487    SCEVHandle Start = AddRec->getOperand(0);
3488
3489    // Determine the minimum constant start value.
3490    SCEVHandle MinStart = isa<SCEVConstant>(Start) ? Start :
3491      getConstant(isSigned ? APInt::getSignedMinValue(BitWidth) :
3492                             APInt::getMinValue(BitWidth));
3493
3494    // If we know that the condition is true in order to enter the loop,
3495    // then we know that it will run exactly (m-n)/s times. Otherwise, we
3496    // only know if will execute (max(m,n)-n)/s times. In both cases, the
3497    // division must round up.
3498    SCEVHandle End = RHS;
3499    if (!isLoopGuardedByCond(L,
3500                             isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
3501                             getMinusSCEV(Start, Step), RHS))
3502      End = isSigned ? getSMaxExpr(RHS, Start)
3503                     : getUMaxExpr(RHS, Start);
3504
3505    // Determine the maximum constant end value.
3506    SCEVHandle MaxEnd = isa<SCEVConstant>(End) ? End :
3507      getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth) :
3508                             APInt::getMaxValue(BitWidth));
3509
3510    // Finally, we subtract these two values and divide, rounding up, to get
3511    // the number of times the backedge is executed.
3512    SCEVHandle BECount = getUDivExpr(getAddExpr(getMinusSCEV(End, Start),
3513                                                getAddExpr(Step, NegOne)),
3514                                     Step);
3515
3516    // The maximum backedge count is similar, except using the minimum start
3517    // value and the maximum end value.
3518    SCEVHandle MaxBECount = getUDivExpr(getAddExpr(getMinusSCEV(MaxEnd,
3519                                                                MinStart),
3520                                                   getAddExpr(Step, NegOne)),
3521                                        Step);
3522
3523    return BackedgeTakenInfo(BECount, MaxBECount);
3524  }
3525
3526  return UnknownValue;
3527}
3528
3529/// getNumIterationsInRange - Return the number of iterations of this loop that
3530/// produce values in the specified constant range.  Another way of looking at
3531/// this is that it returns the first iteration number where the value is not in
3532/// the condition, thus computing the exit count. If the iteration count can't
3533/// be computed, an instance of SCEVCouldNotCompute is returned.
3534SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
3535                                                   ScalarEvolution &SE) const {
3536  if (Range.isFullSet())  // Infinite loop.
3537    return SE.getCouldNotCompute();
3538
3539  // If the start is a non-zero constant, shift the range to simplify things.
3540  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
3541    if (!SC->getValue()->isZero()) {
3542      std::vector<SCEVHandle> Operands(op_begin(), op_end());
3543      Operands[0] = SE.getIntegerSCEV(0, SC->getType());
3544      SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop());
3545      if (const SCEVAddRecExpr *ShiftedAddRec =
3546            dyn_cast<SCEVAddRecExpr>(Shifted))
3547        return ShiftedAddRec->getNumIterationsInRange(
3548                           Range.subtract(SC->getValue()->getValue()), SE);
3549      // This is strange and shouldn't happen.
3550      return SE.getCouldNotCompute();
3551    }
3552
3553  // The only time we can solve this is when we have all constant indices.
3554  // Otherwise, we cannot determine the overflow conditions.
3555  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
3556    if (!isa<SCEVConstant>(getOperand(i)))
3557      return SE.getCouldNotCompute();
3558
3559
3560  // Okay at this point we know that all elements of the chrec are constants and
3561  // that the start element is zero.
3562
3563  // First check to see if the range contains zero.  If not, the first
3564  // iteration exits.
3565  unsigned BitWidth = SE.getTypeSizeInBits(getType());
3566  if (!Range.contains(APInt(BitWidth, 0)))
3567    return SE.getConstant(ConstantInt::get(getType(),0));
3568
3569  if (isAffine()) {
3570    // If this is an affine expression then we have this situation:
3571    //   Solve {0,+,A} in Range  ===  Ax in Range
3572
3573    // We know that zero is in the range.  If A is positive then we know that
3574    // the upper value of the range must be the first possible exit value.
3575    // If A is negative then the lower of the range is the last possible loop
3576    // value.  Also note that we already checked for a full range.
3577    APInt One(BitWidth,1);
3578    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
3579    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
3580
3581    // The exit value should be (End+A)/A.
3582    APInt ExitVal = (End + A).udiv(A);
3583    ConstantInt *ExitValue = ConstantInt::get(ExitVal);
3584
3585    // Evaluate at the exit value.  If we really did fall out of the valid
3586    // range, then we computed our trip count, otherwise wrap around or other
3587    // things must have happened.
3588    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
3589    if (Range.contains(Val->getValue()))
3590      return SE.getCouldNotCompute();  // Something strange happened
3591
3592    // Ensure that the previous value is in the range.  This is a sanity check.
3593    assert(Range.contains(
3594           EvaluateConstantChrecAtConstant(this,
3595           ConstantInt::get(ExitVal - One), SE)->getValue()) &&
3596           "Linear scev computation is off in a bad way!");
3597    return SE.getConstant(ExitValue);
3598  } else if (isQuadratic()) {
3599    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
3600    // quadratic equation to solve it.  To do this, we must frame our problem in
3601    // terms of figuring out when zero is crossed, instead of when
3602    // Range.getUpper() is crossed.
3603    std::vector<SCEVHandle> NewOps(op_begin(), op_end());
3604    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
3605    SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
3606
3607    // Next, solve the constructed addrec
3608    std::pair<SCEVHandle,SCEVHandle> Roots =
3609      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
3610    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
3611    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
3612    if (R1) {
3613      // Pick the smallest positive root value.
3614      if (ConstantInt *CB =
3615          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
3616                                   R1->getValue(), R2->getValue()))) {
3617        if (CB->getZExtValue() == false)
3618          std::swap(R1, R2);   // R1 is the minimum root now.
3619
3620        // Make sure the root is not off by one.  The returned iteration should
3621        // not be in the range, but the previous one should be.  When solving
3622        // for "X*X < 5", for example, we should not return a root of 2.
3623        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
3624                                                             R1->getValue(),
3625                                                             SE);
3626        if (Range.contains(R1Val->getValue())) {
3627          // The next iteration must be out of the range...
3628          ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1);
3629
3630          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
3631          if (!Range.contains(R1Val->getValue()))
3632            return SE.getConstant(NextVal);
3633          return SE.getCouldNotCompute();  // Something strange happened
3634        }
3635
3636        // If R1 was not in the range, then it is a good return value.  Make
3637        // sure that R1-1 WAS in the range though, just in case.
3638        ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1);
3639        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
3640        if (Range.contains(R1Val->getValue()))
3641          return R1;
3642        return SE.getCouldNotCompute();  // Something strange happened
3643      }
3644    }
3645  }
3646
3647  return SE.getCouldNotCompute();
3648}
3649
3650
3651
3652//===----------------------------------------------------------------------===//
3653//                   SCEVCallbackVH Class Implementation
3654//===----------------------------------------------------------------------===//
3655
3656void SCEVCallbackVH::deleted() {
3657  assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
3658  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
3659    SE->ConstantEvolutionLoopExitValue.erase(PN);
3660  if (Instruction *I = dyn_cast<Instruction>(getValPtr()))
3661    SE->ValuesAtScopes.erase(I);
3662  SE->Scalars.erase(getValPtr());
3663  // this now dangles!
3664}
3665
3666void SCEVCallbackVH::allUsesReplacedWith(Value *) {
3667  assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
3668
3669  // Forget all the expressions associated with users of the old value,
3670  // so that future queries will recompute the expressions using the new
3671  // value.
3672  SmallVector<User *, 16> Worklist;
3673  Value *Old = getValPtr();
3674  bool DeleteOld = false;
3675  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
3676       UI != UE; ++UI)
3677    Worklist.push_back(*UI);
3678  while (!Worklist.empty()) {
3679    User *U = Worklist.pop_back_val();
3680    // Deleting the Old value will cause this to dangle. Postpone
3681    // that until everything else is done.
3682    if (U == Old) {
3683      DeleteOld = true;
3684      continue;
3685    }
3686    if (PHINode *PN = dyn_cast<PHINode>(U))
3687      SE->ConstantEvolutionLoopExitValue.erase(PN);
3688    if (Instruction *I = dyn_cast<Instruction>(U))
3689      SE->ValuesAtScopes.erase(I);
3690    if (SE->Scalars.erase(U))
3691      for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
3692           UI != UE; ++UI)
3693        Worklist.push_back(*UI);
3694  }
3695  if (DeleteOld) {
3696    if (PHINode *PN = dyn_cast<PHINode>(Old))
3697      SE->ConstantEvolutionLoopExitValue.erase(PN);
3698    if (Instruction *I = dyn_cast<Instruction>(Old))
3699      SE->ValuesAtScopes.erase(I);
3700    SE->Scalars.erase(Old);
3701    // this now dangles!
3702  }
3703  // this may dangle!
3704}
3705
3706SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
3707  : CallbackVH(V), SE(se) {}
3708
3709//===----------------------------------------------------------------------===//
3710//                   ScalarEvolution Class Implementation
3711//===----------------------------------------------------------------------===//
3712
3713ScalarEvolution::ScalarEvolution()
3714  : FunctionPass(&ID), UnknownValue(new SCEVCouldNotCompute()) {
3715}
3716
3717bool ScalarEvolution::runOnFunction(Function &F) {
3718  this->F = &F;
3719  LI = &getAnalysis<LoopInfo>();
3720  TD = getAnalysisIfAvailable<TargetData>();
3721  return false;
3722}
3723
3724void ScalarEvolution::releaseMemory() {
3725  Scalars.clear();
3726  BackedgeTakenCounts.clear();
3727  ConstantEvolutionLoopExitValue.clear();
3728  ValuesAtScopes.clear();
3729}
3730
3731void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
3732  AU.setPreservesAll();
3733  AU.addRequiredTransitive<LoopInfo>();
3734}
3735
3736bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
3737  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
3738}
3739
3740static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
3741                          const Loop *L) {
3742  // Print all inner loops first
3743  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3744    PrintLoopInfo(OS, SE, *I);
3745
3746  OS << "Loop " << L->getHeader()->getName() << ": ";
3747
3748  SmallVector<BasicBlock*, 8> ExitBlocks;
3749  L->getExitBlocks(ExitBlocks);
3750  if (ExitBlocks.size() != 1)
3751    OS << "<multiple exits> ";
3752
3753  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
3754    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
3755  } else {
3756    OS << "Unpredictable backedge-taken count. ";
3757  }
3758
3759  OS << "\n";
3760}
3761
3762void ScalarEvolution::print(raw_ostream &OS, const Module* ) const {
3763  // ScalarEvolution's implementaiton of the print method is to print
3764  // out SCEV values of all instructions that are interesting. Doing
3765  // this potentially causes it to create new SCEV objects though,
3766  // which technically conflicts with the const qualifier. This isn't
3767  // observable from outside the class though (the hasSCEV function
3768  // notwithstanding), so casting away the const isn't dangerous.
3769  ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this);
3770
3771  OS << "Classifying expressions for: " << F->getName() << "\n";
3772  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
3773    if (isSCEVable(I->getType())) {
3774      OS << *I;
3775      OS << "  -->  ";
3776      SCEVHandle SV = SE.getSCEV(&*I);
3777      SV->print(OS);
3778      OS << "\t\t";
3779
3780      if (const Loop *L = LI->getLoopFor((*I).getParent())) {
3781        OS << "Exits: ";
3782        SCEVHandle ExitValue = SE.getSCEVAtScope(&*I, L->getParentLoop());
3783        if (isa<SCEVCouldNotCompute>(ExitValue)) {
3784          OS << "<<Unknown>>";
3785        } else {
3786          OS << *ExitValue;
3787        }
3788      }
3789
3790
3791      OS << "\n";
3792    }
3793
3794  OS << "Determining loop execution counts for: " << F->getName() << "\n";
3795  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
3796    PrintLoopInfo(OS, &SE, *I);
3797}
3798
3799void ScalarEvolution::print(std::ostream &o, const Module *M) const {
3800  raw_os_ostream OS(o);
3801  print(OS, M);
3802}
3803