ScalarEvolution.cpp revision 16011e6201a11ec16968c27a6f62ebf32537969f
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle.  These classes are reference counted, managed by the SCEVHandle
18// class.  We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression.  These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
36// Orthogonal to the analysis of code above, this file also implements the
37// ScalarEvolutionRewriter class, which is used to emit code that represents the
38// various recurrences present in a loop, in canonical forms.
39//
40// TODO: We should use these routines and value representations to implement
41// dependence analysis!
42//
43//===----------------------------------------------------------------------===//
44//
45// There are several good references for the techniques used in this analysis.
46//
47//  Chains of recurrences -- a method to expedite the evaluation
48//  of closed-form functions
49//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
50//
51//  On computational properties of chains of recurrences
52//  Eugene V. Zima
53//
54//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
55//  Robert A. van Engelen
56//
57//  Efficient Symbolic Analysis for Optimizing Compilers
58//  Robert A. van Engelen
59//
60//  Using the chains of recurrences algebra for data dependence testing and
61//  induction variable substitution
62//  MS Thesis, Johnie Birch
63//
64//===----------------------------------------------------------------------===//
65
66#include "llvm/Analysis/ScalarEvolution.h"
67#include "llvm/Constants.h"
68#include "llvm/DerivedTypes.h"
69#include "llvm/Instructions.h"
70#include "llvm/Type.h"
71#include "llvm/Value.h"
72#include "llvm/Analysis/LoopInfo.h"
73#include "llvm/Assembly/Writer.h"
74#include "llvm/Transforms/Scalar.h"
75#include "llvm/Support/CFG.h"
76#include "llvm/Support/ConstantRange.h"
77#include "llvm/Support/InstIterator.h"
78#include "Support/Statistic.h"
79using namespace llvm;
80
81namespace {
82  RegisterAnalysis<ScalarEvolution>
83  R("scalar-evolution", "Scalar Evolution Analysis Printer");
84
85  Statistic<>
86  NumBruteForceEvaluations("scalar-evolution",
87                           "Number of brute force evaluations needed to calculate high-order polynomial exit values");
88  Statistic<>
89  NumTripCountsComputed("scalar-evolution",
90                        "Number of loops with predictable loop counts");
91  Statistic<>
92  NumTripCountsNotComputed("scalar-evolution",
93                           "Number of loops without predictable loop counts");
94}
95
96//===----------------------------------------------------------------------===//
97//                           SCEV class definitions
98//===----------------------------------------------------------------------===//
99
100//===----------------------------------------------------------------------===//
101// Implementation of the SCEV class.
102//
103namespace {
104  enum SCEVTypes {
105    // These should be ordered in terms of increasing complexity to make the
106    // folders simpler.
107    scConstant, scTruncate, scZeroExtend, scAddExpr, scMulExpr, scUDivExpr,
108    scAddRecExpr, scUnknown, scCouldNotCompute
109  };
110
111  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
112  /// than the complexity of the RHS.  If the SCEVs have identical complexity,
113  /// order them by their addresses.  This comparator is used to canonicalize
114  /// expressions.
115  struct SCEVComplexityCompare {
116    bool operator()(SCEV *LHS, SCEV *RHS) {
117      if (LHS->getSCEVType() < RHS->getSCEVType())
118        return true;
119      if (LHS->getSCEVType() == RHS->getSCEVType())
120        return LHS < RHS;
121      return false;
122    }
123  };
124}
125
126SCEV::~SCEV() {}
127void SCEV::dump() const {
128  print(std::cerr);
129}
130
131/// getValueRange - Return the tightest constant bounds that this value is
132/// known to have.  This method is only valid on integer SCEV objects.
133ConstantRange SCEV::getValueRange() const {
134  const Type *Ty = getType();
135  assert(Ty->isInteger() && "Can't get range for a non-integer SCEV!");
136  Ty = Ty->getUnsignedVersion();
137  // Default to a full range if no better information is available.
138  return ConstantRange(getType());
139}
140
141
142SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
143
144bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
145  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
146  return false;
147}
148
149const Type *SCEVCouldNotCompute::getType() const {
150  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
151  return 0;
152}
153
154bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
155  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
156  return false;
157}
158
159Value *SCEVCouldNotCompute::expandCodeFor(ScalarEvolutionRewriter &SER,
160                                          Instruction *InsertPt) {
161  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
162  return 0;
163}
164
165
166void SCEVCouldNotCompute::print(std::ostream &OS) const {
167  OS << "***COULDNOTCOMPUTE***";
168}
169
170bool SCEVCouldNotCompute::classof(const SCEV *S) {
171  return S->getSCEVType() == scCouldNotCompute;
172}
173
174
175//===----------------------------------------------------------------------===//
176// SCEVConstant - This class represents a constant integer value.
177//
178namespace {
179  class SCEVConstant;
180  // SCEVConstants - Only allow the creation of one SCEVConstant for any
181  // particular value.  Don't use a SCEVHandle here, or else the object will
182  // never be deleted!
183  std::map<ConstantInt*, SCEVConstant*> SCEVConstants;
184
185  class SCEVConstant : public SCEV {
186    ConstantInt *V;
187    SCEVConstant(ConstantInt *v) : SCEV(scConstant), V(v) {}
188
189    virtual ~SCEVConstant() {
190      SCEVConstants.erase(V);
191    }
192  public:
193    /// get method - This just gets and returns a new SCEVConstant object.
194    ///
195    static SCEVHandle get(ConstantInt *V) {
196      // Make sure that SCEVConstant instances are all unsigned.
197      if (V->getType()->isSigned()) {
198        const Type *NewTy = V->getType()->getUnsignedVersion();
199        V = cast<ConstantUInt>(ConstantExpr::getCast(V, NewTy));
200      }
201
202      SCEVConstant *&R = SCEVConstants[V];
203      if (R == 0) R = new SCEVConstant(V);
204      return R;
205    }
206
207    ConstantInt *getValue() const { return V; }
208
209    /// getValueRange - Return the tightest constant bounds that this value is
210    /// known to have.  This method is only valid on integer SCEV objects.
211    virtual ConstantRange getValueRange() const {
212      return ConstantRange(V);
213    }
214
215    virtual bool isLoopInvariant(const Loop *L) const {
216      return true;
217    }
218
219    virtual bool hasComputableLoopEvolution(const Loop *L) const {
220      return false;  // Not loop variant
221    }
222
223    virtual const Type *getType() const { return V->getType(); }
224
225    Value *expandCodeFor(ScalarEvolutionRewriter &SER,
226                         Instruction *InsertPt) {
227      return getValue();
228    }
229
230    virtual void print(std::ostream &OS) const {
231      WriteAsOperand(OS, V, false);
232    }
233
234    /// Methods for support type inquiry through isa, cast, and dyn_cast:
235    static inline bool classof(const SCEVConstant *S) { return true; }
236    static inline bool classof(const SCEV *S) {
237      return S->getSCEVType() == scConstant;
238    }
239  };
240}
241
242
243//===----------------------------------------------------------------------===//
244// SCEVTruncateExpr - This class represents a truncation of an integer value to
245// a smaller integer value.
246//
247namespace {
248  class SCEVTruncateExpr;
249  // SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
250  // particular input.  Don't use a SCEVHandle here, or else the object will
251  // never be deleted!
252  std::map<std::pair<SCEV*, const Type*>, SCEVTruncateExpr*> SCEVTruncates;
253
254  class SCEVTruncateExpr : public SCEV {
255    SCEVHandle Op;
256    const Type *Ty;
257    SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
258      : SCEV(scTruncate), Op(op), Ty(ty) {
259      assert(Op->getType()->isInteger() && Ty->isInteger() &&
260             Ty->isUnsigned() &&
261             "Cannot truncate non-integer value!");
262      assert(Op->getType()->getPrimitiveSize() > Ty->getPrimitiveSize() &&
263             "This is not a truncating conversion!");
264    }
265
266    virtual ~SCEVTruncateExpr() {
267      SCEVTruncates.erase(std::make_pair(Op, Ty));
268    }
269  public:
270    /// get method - This just gets and returns a new SCEVTruncate object
271    ///
272    static SCEVHandle get(const SCEVHandle &Op, const Type *Ty);
273
274    const SCEVHandle &getOperand() const { return Op; }
275    virtual const Type *getType() const { return Ty; }
276
277    virtual bool isLoopInvariant(const Loop *L) const {
278      return Op->isLoopInvariant(L);
279    }
280
281    virtual bool hasComputableLoopEvolution(const Loop *L) const {
282      return Op->hasComputableLoopEvolution(L);
283    }
284
285    /// getValueRange - Return the tightest constant bounds that this value is
286    /// known to have.  This method is only valid on integer SCEV objects.
287    virtual ConstantRange getValueRange() const {
288      return getOperand()->getValueRange().truncate(getType());
289    }
290
291    Value *expandCodeFor(ScalarEvolutionRewriter &SER,
292                         Instruction *InsertPt);
293
294    virtual void print(std::ostream &OS) const {
295      OS << "(truncate " << *Op << " to " << *Ty << ")";
296    }
297
298    /// Methods for support type inquiry through isa, cast, and dyn_cast:
299    static inline bool classof(const SCEVTruncateExpr *S) { return true; }
300    static inline bool classof(const SCEV *S) {
301      return S->getSCEVType() == scTruncate;
302    }
303  };
304}
305
306
307//===----------------------------------------------------------------------===//
308// SCEVZeroExtendExpr - This class represents a zero extension of a small
309// integer value to a larger integer value.
310//
311namespace {
312  class SCEVZeroExtendExpr;
313  // SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
314  // particular input.  Don't use a SCEVHandle here, or else the object will
315  // never be deleted!
316  std::map<std::pair<SCEV*, const Type*>, SCEVZeroExtendExpr*> SCEVZeroExtends;
317
318  class SCEVZeroExtendExpr : public SCEV {
319    SCEVHandle Op;
320    const Type *Ty;
321    SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
322      : SCEV(scTruncate), Op(Op), Ty(ty) {
323      assert(Op->getType()->isInteger() && Ty->isInteger() &&
324             Ty->isUnsigned() &&
325             "Cannot zero extend non-integer value!");
326      assert(Op->getType()->getPrimitiveSize() < Ty->getPrimitiveSize() &&
327             "This is not an extending conversion!");
328    }
329
330    virtual ~SCEVZeroExtendExpr() {
331      SCEVZeroExtends.erase(std::make_pair(Op, Ty));
332    }
333  public:
334    /// get method - This just gets and returns a new SCEVZeroExtend object
335    ///
336    static SCEVHandle get(const SCEVHandle &Op, const Type *Ty);
337
338    const SCEVHandle &getOperand() const { return Op; }
339    virtual const Type *getType() const { return Ty; }
340
341    virtual bool isLoopInvariant(const Loop *L) const {
342      return Op->isLoopInvariant(L);
343    }
344
345    virtual bool hasComputableLoopEvolution(const Loop *L) const {
346      return Op->hasComputableLoopEvolution(L);
347    }
348
349    /// getValueRange - Return the tightest constant bounds that this value is
350    /// known to have.  This method is only valid on integer SCEV objects.
351    virtual ConstantRange getValueRange() const {
352      return getOperand()->getValueRange().zeroExtend(getType());
353    }
354
355    Value *expandCodeFor(ScalarEvolutionRewriter &SER,
356                         Instruction *InsertPt);
357
358    virtual void print(std::ostream &OS) const {
359      OS << "(zeroextend " << *Op << " to " << *Ty << ")";
360    }
361
362    /// Methods for support type inquiry through isa, cast, and dyn_cast:
363    static inline bool classof(const SCEVZeroExtendExpr *S) { return true; }
364    static inline bool classof(const SCEV *S) {
365      return S->getSCEVType() == scZeroExtend;
366    }
367  };
368}
369
370
371//===----------------------------------------------------------------------===//
372// SCEVCommutativeExpr - This node is the base class for n'ary commutative
373// operators.
374
375namespace {
376  class SCEVCommutativeExpr;
377  // SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
378  // particular input.  Don't use a SCEVHandle here, or else the object will
379  // never be deleted!
380  std::map<std::pair<unsigned, std::vector<SCEV*> >,
381           SCEVCommutativeExpr*> SCEVCommExprs;
382
383  class SCEVCommutativeExpr : public SCEV {
384    std::vector<SCEVHandle> Operands;
385
386  protected:
387    SCEVCommutativeExpr(enum SCEVTypes T, const std::vector<SCEVHandle> &ops)
388      : SCEV(T) {
389      Operands.reserve(ops.size());
390      Operands.insert(Operands.end(), ops.begin(), ops.end());
391    }
392
393    ~SCEVCommutativeExpr() {
394      SCEVCommExprs.erase(std::make_pair(getSCEVType(),
395                                         std::vector<SCEV*>(Operands.begin(),
396                                                            Operands.end())));
397    }
398
399  public:
400    unsigned getNumOperands() const { return Operands.size(); }
401    const SCEVHandle &getOperand(unsigned i) const {
402      assert(i < Operands.size() && "Operand index out of range!");
403      return Operands[i];
404    }
405
406    const std::vector<SCEVHandle> &getOperands() const { return Operands; }
407    typedef std::vector<SCEVHandle>::const_iterator op_iterator;
408    op_iterator op_begin() const { return Operands.begin(); }
409    op_iterator op_end() const { return Operands.end(); }
410
411
412    virtual bool isLoopInvariant(const Loop *L) const {
413      for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
414        if (!getOperand(i)->isLoopInvariant(L)) return false;
415      return true;
416    }
417
418    virtual bool hasComputableLoopEvolution(const Loop *L) const {
419      for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
420        if (getOperand(i)->hasComputableLoopEvolution(L)) return true;
421      return false;
422    }
423
424    virtual const Type *getType() const { return getOperand(0)->getType(); }
425
426    virtual const char *getOperationStr() const = 0;
427
428    virtual void print(std::ostream &OS) const {
429      assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
430      const char *OpStr = getOperationStr();
431      OS << "(" << *Operands[0];
432      for (unsigned i = 1, e = Operands.size(); i != e; ++i)
433        OS << OpStr << *Operands[i];
434      OS << ")";
435    }
436
437    /// Methods for support type inquiry through isa, cast, and dyn_cast:
438    static inline bool classof(const SCEVCommutativeExpr *S) { return true; }
439    static inline bool classof(const SCEV *S) {
440      return S->getSCEVType() == scAddExpr ||
441             S->getSCEVType() == scMulExpr;
442    }
443  };
444}
445
446//===----------------------------------------------------------------------===//
447// SCEVAddExpr - This node represents an addition of some number of SCEV's.
448//
449namespace {
450  class SCEVAddExpr : public SCEVCommutativeExpr {
451    SCEVAddExpr(const std::vector<SCEVHandle> &ops)
452      : SCEVCommutativeExpr(scAddExpr, ops) {
453    }
454
455  public:
456    static SCEVHandle get(std::vector<SCEVHandle> &Ops);
457
458    static SCEVHandle get(const SCEVHandle &LHS, const SCEVHandle &RHS) {
459      std::vector<SCEVHandle> Ops;
460      Ops.push_back(LHS);
461      Ops.push_back(RHS);
462      return get(Ops);
463    }
464
465    static SCEVHandle get(const SCEVHandle &Op0, const SCEVHandle &Op1,
466                          const SCEVHandle &Op2) {
467      std::vector<SCEVHandle> Ops;
468      Ops.push_back(Op0);
469      Ops.push_back(Op1);
470      Ops.push_back(Op2);
471      return get(Ops);
472    }
473
474    virtual const char *getOperationStr() const { return " + "; }
475
476    Value *expandCodeFor(ScalarEvolutionRewriter &SER,
477                         Instruction *InsertPt);
478
479    /// Methods for support type inquiry through isa, cast, and dyn_cast:
480    static inline bool classof(const SCEVAddExpr *S) { return true; }
481    static inline bool classof(const SCEV *S) {
482      return S->getSCEVType() == scAddExpr;
483    }
484  };
485}
486
487//===----------------------------------------------------------------------===//
488// SCEVMulExpr - This node represents multiplication of some number of SCEV's.
489//
490namespace {
491  class SCEVMulExpr : public SCEVCommutativeExpr {
492    SCEVMulExpr(const std::vector<SCEVHandle> &ops)
493      : SCEVCommutativeExpr(scMulExpr, ops) {
494    }
495
496  public:
497    static SCEVHandle get(std::vector<SCEVHandle> &Ops);
498
499    static SCEVHandle get(const SCEVHandle &LHS, const SCEVHandle &RHS) {
500      std::vector<SCEVHandle> Ops;
501      Ops.push_back(LHS);
502      Ops.push_back(RHS);
503      return get(Ops);
504    }
505
506    virtual const char *getOperationStr() const { return " * "; }
507
508    Value *expandCodeFor(ScalarEvolutionRewriter &SER,
509                         Instruction *InsertPt);
510
511    /// Methods for support type inquiry through isa, cast, and dyn_cast:
512    static inline bool classof(const SCEVMulExpr *S) { return true; }
513    static inline bool classof(const SCEV *S) {
514      return S->getSCEVType() == scMulExpr;
515    }
516  };
517}
518
519
520//===----------------------------------------------------------------------===//
521// SCEVUDivExpr - This class represents a binary unsigned division operation.
522//
523namespace {
524  class SCEVUDivExpr;
525  // SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
526  // input.  Don't use a SCEVHandle here, or else the object will never be
527  // deleted!
528  std::map<std::pair<SCEV*, SCEV*>, SCEVUDivExpr*> SCEVUDivs;
529
530  class SCEVUDivExpr : public SCEV {
531    SCEVHandle LHS, RHS;
532    SCEVUDivExpr(const SCEVHandle &lhs, const SCEVHandle &rhs)
533      : SCEV(scUDivExpr), LHS(lhs), RHS(rhs) {}
534
535    virtual ~SCEVUDivExpr() {
536      SCEVUDivs.erase(std::make_pair(LHS, RHS));
537    }
538  public:
539    /// get method - This just gets and returns a new SCEVUDiv object.
540    ///
541    static SCEVHandle get(const SCEVHandle &LHS, const SCEVHandle &RHS);
542
543    const SCEVHandle &getLHS() const { return LHS; }
544    const SCEVHandle &getRHS() const { return RHS; }
545
546    virtual bool isLoopInvariant(const Loop *L) const {
547      return LHS->isLoopInvariant(L) && RHS->isLoopInvariant(L);
548    }
549
550    virtual bool hasComputableLoopEvolution(const Loop *L) const {
551      return LHS->hasComputableLoopEvolution(L) &&
552             RHS->hasComputableLoopEvolution(L);
553    }
554
555    virtual const Type *getType() const {
556      const Type *Ty = LHS->getType();
557      if (Ty->isSigned()) Ty = Ty->getUnsignedVersion();
558      return Ty;
559    }
560
561    Value *expandCodeFor(ScalarEvolutionRewriter &SER,
562                         Instruction *InsertPt);
563
564    virtual void print(std::ostream &OS) const {
565      OS << "(" << *LHS << " /u " << *RHS << ")";
566    }
567
568    /// Methods for support type inquiry through isa, cast, and dyn_cast:
569    static inline bool classof(const SCEVUDivExpr *S) { return true; }
570    static inline bool classof(const SCEV *S) {
571      return S->getSCEVType() == scUDivExpr;
572    }
573  };
574}
575
576
577//===----------------------------------------------------------------------===//
578
579// SCEVAddRecExpr - This node represents a polynomial recurrence on the trip
580// count of the specified loop.
581//
582// All operands of an AddRec are required to be loop invariant.
583//
584namespace {
585  class SCEVAddRecExpr;
586  // SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
587  // particular input.  Don't use a SCEVHandle here, or else the object will
588  // never be deleted!
589  std::map<std::pair<const Loop *, std::vector<SCEV*> >,
590           SCEVAddRecExpr*> SCEVAddRecExprs;
591
592  class SCEVAddRecExpr : public SCEV {
593    std::vector<SCEVHandle> Operands;
594    const Loop *L;
595
596    SCEVAddRecExpr(const std::vector<SCEVHandle> &ops, const Loop *l)
597      : SCEV(scAddRecExpr), Operands(ops), L(l) {
598      for (unsigned i = 0, e = Operands.size(); i != e; ++i)
599        assert(Operands[i]->isLoopInvariant(l) &&
600               "Operands of AddRec must be loop-invariant!");
601    }
602    ~SCEVAddRecExpr() {
603      SCEVAddRecExprs.erase(std::make_pair(L,
604                                           std::vector<SCEV*>(Operands.begin(),
605                                                              Operands.end())));
606    }
607  public:
608    static SCEVHandle get(const SCEVHandle &Start, const SCEVHandle &Step,
609                          const Loop *);
610    static SCEVHandle get(std::vector<SCEVHandle> &Operands,
611                          const Loop *);
612    static SCEVHandle get(const std::vector<SCEVHandle> &Operands,
613                          const Loop *L) {
614      std::vector<SCEVHandle> NewOp(Operands);
615      return get(NewOp, L);
616    }
617
618    typedef std::vector<SCEVHandle>::const_iterator op_iterator;
619    op_iterator op_begin() const { return Operands.begin(); }
620    op_iterator op_end() const { return Operands.end(); }
621
622    unsigned getNumOperands() const { return Operands.size(); }
623    const SCEVHandle &getOperand(unsigned i) const { return Operands[i]; }
624    const SCEVHandle &getStart() const { return Operands[0]; }
625    const Loop *getLoop() const { return L; }
626
627
628    /// getStepRecurrence - This method constructs and returns the recurrence
629    /// indicating how much this expression steps by.  If this is a polynomial
630    /// of degree N, it returns a chrec of degree N-1.
631    SCEVHandle getStepRecurrence() const {
632      if (getNumOperands() == 2) return getOperand(1);
633      return SCEVAddRecExpr::get(std::vector<SCEVHandle>(op_begin()+1,op_end()),
634                                 getLoop());
635    }
636
637    virtual bool hasComputableLoopEvolution(const Loop *QL) const {
638      if (L == QL) return true;
639      /// FIXME: What if the start or step value a recurrence for the specified
640      /// loop?
641      return false;
642    }
643
644
645    virtual bool isLoopInvariant(const Loop *QueryLoop) const {
646      // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
647      // contain L.
648      return !QueryLoop->contains(L->getHeader());
649    }
650
651    virtual const Type *getType() const { return Operands[0]->getType(); }
652
653    Value *expandCodeFor(ScalarEvolutionRewriter &SER,
654                         Instruction *InsertPt);
655
656
657    /// isAffine - Return true if this is an affine AddRec (i.e., it represents
658    /// an expressions A+B*x where A and B are loop invariant values.
659    bool isAffine() const {
660      // We know that the start value is invariant.  This expression is thus
661      // affine iff the step is also invariant.
662      return getNumOperands() == 2;
663    }
664
665    /// isQuadratic - Return true if this is an quadratic AddRec (i.e., it
666    /// represents an expressions A+B*x+C*x^2 where A, B and C are loop
667    /// invariant values.  This corresponds to an addrec of the form {L,+,M,+,N}
668    bool isQuadratic() const {
669      return getNumOperands() == 3;
670    }
671
672    /// evaluateAtIteration - Return the value of this chain of recurrences at
673    /// the specified iteration number.
674    SCEVHandle evaluateAtIteration(SCEVHandle It) const;
675
676    /// getNumIterationsInRange - Return the number of iterations of this loop
677    /// that produce values in the specified constant range.  Another way of
678    /// looking at this is that it returns the first iteration number where the
679    /// value is not in the condition, thus computing the exit count.  If the
680    /// iteration count can't be computed, an instance of SCEVCouldNotCompute is
681    /// returned.
682    SCEVHandle getNumIterationsInRange(ConstantRange Range) const;
683
684
685    virtual void print(std::ostream &OS) const {
686      OS << "{" << *Operands[0];
687      for (unsigned i = 1, e = Operands.size(); i != e; ++i)
688        OS << ",+," << *Operands[i];
689      OS << "}<" << L->getHeader()->getName() + ">";
690    }
691
692    /// Methods for support type inquiry through isa, cast, and dyn_cast:
693    static inline bool classof(const SCEVAddRecExpr *S) { return true; }
694    static inline bool classof(const SCEV *S) {
695      return S->getSCEVType() == scAddRecExpr;
696    }
697  };
698}
699
700
701//===----------------------------------------------------------------------===//
702// SCEVUnknown - This means that we are dealing with an entirely unknown SCEV
703// value, and only represent it as it's LLVM Value.  This is the "bottom" value
704// for the analysis.
705//
706namespace {
707  class SCEVUnknown;
708  // SCEVUnknowns - Only allow the creation of one SCEVUnknown for any
709  // particular value.  Don't use a SCEVHandle here, or else the object will
710  // never be deleted!
711  std::map<Value*, SCEVUnknown*> SCEVUnknowns;
712
713  class SCEVUnknown : public SCEV {
714    Value *V;
715    SCEVUnknown(Value *v) : SCEV(scUnknown), V(v) {}
716
717  protected:
718    ~SCEVUnknown() { SCEVUnknowns.erase(V); }
719  public:
720    /// get method - For SCEVUnknown, this just gets and returns a new
721    /// SCEVUnknown.
722    static SCEVHandle get(Value *V) {
723      if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
724        return SCEVConstant::get(CI);
725      SCEVUnknown *&Result = SCEVUnknowns[V];
726      if (Result == 0) Result = new SCEVUnknown(V);
727      return Result;
728    }
729
730    Value *getValue() const { return V; }
731
732    Value *expandCodeFor(ScalarEvolutionRewriter &SER,
733                         Instruction *InsertPt) {
734      return V;
735    }
736
737    virtual bool isLoopInvariant(const Loop *L) const {
738      // All non-instruction values are loop invariant.  All instructions are
739      // loop invariant if they are not contained in the specified loop.
740      if (Instruction *I = dyn_cast<Instruction>(V))
741        return !L->contains(I->getParent());
742      return true;
743    }
744
745    virtual bool hasComputableLoopEvolution(const Loop *QL) const {
746      return false; // not computable
747    }
748
749    virtual const Type *getType() const { return V->getType(); }
750
751    virtual void print(std::ostream &OS) const {
752      WriteAsOperand(OS, V, false);
753    }
754
755    /// Methods for support type inquiry through isa, cast, and dyn_cast:
756    static inline bool classof(const SCEVUnknown *S) { return true; }
757    static inline bool classof(const SCEV *S) {
758      return S->getSCEVType() == scUnknown;
759    }
760  };
761}
762
763//===----------------------------------------------------------------------===//
764//                      Simple SCEV method implementations
765//===----------------------------------------------------------------------===//
766
767/// getIntegerSCEV - Given an integer or FP type, create a constant for the
768/// specified signed integer value and return a SCEV for the constant.
769static SCEVHandle getIntegerSCEV(int Val, const Type *Ty) {
770  Constant *C;
771  if (Val == 0)
772    C = Constant::getNullValue(Ty);
773  else if (Ty->isFloatingPoint())
774    C = ConstantFP::get(Ty, Val);
775  else if (Ty->isSigned())
776    C = ConstantSInt::get(Ty, Val);
777  else {
778    C = ConstantSInt::get(Ty->getSignedVersion(), Val);
779    C = ConstantExpr::getCast(C, Ty);
780  }
781  return SCEVUnknown::get(C);
782}
783
784/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
785/// input value to the specified type.  If the type must be extended, it is zero
786/// extended.
787static SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty) {
788  const Type *SrcTy = V->getType();
789  assert(SrcTy->isInteger() && Ty->isInteger() &&
790         "Cannot truncate or zero extend with non-integer arguments!");
791  if (SrcTy->getPrimitiveSize() == Ty->getPrimitiveSize())
792    return V;  // No conversion
793  if (SrcTy->getPrimitiveSize() > Ty->getPrimitiveSize())
794    return SCEVTruncateExpr::get(V, Ty);
795  return SCEVZeroExtendExpr::get(V, Ty);
796}
797
798/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
799///
800static SCEVHandle getNegativeSCEV(const SCEVHandle &V) {
801  if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
802    return SCEVUnknown::get(ConstantExpr::getNeg(VC->getValue()));
803
804  return SCEVMulExpr::get(V, getIntegerSCEV(-1, V->getType()));
805}
806
807/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
808///
809static SCEVHandle getMinusSCEV(const SCEVHandle &LHS, const SCEVHandle &RHS) {
810  // X - Y --> X + -Y
811  return SCEVAddExpr::get(LHS, getNegativeSCEV(RHS));
812}
813
814
815/// Binomial - Evaluate N!/((N-M)!*M!)  .  Note that N is often large and M is
816/// often very small, so we try to reduce the number of N! terms we need to
817/// evaluate by evaluating this as  (N!/(N-M)!)/M!
818static ConstantInt *Binomial(ConstantInt *N, unsigned M) {
819  uint64_t NVal = N->getRawValue();
820  uint64_t FirstTerm = 1;
821  for (unsigned i = 0; i != M; ++i)
822    FirstTerm *= NVal-i;
823
824  unsigned MFactorial = 1;
825  for (; M; --M)
826    MFactorial *= M;
827
828  Constant *Result = ConstantUInt::get(Type::ULongTy, FirstTerm/MFactorial);
829  Result = ConstantExpr::getCast(Result, N->getType());
830  assert(isa<ConstantInt>(Result) && "Cast of integer not folded??");
831  return cast<ConstantInt>(Result);
832}
833
834/// PartialFact - Compute V!/(V-NumSteps)!
835static SCEVHandle PartialFact(SCEVHandle V, unsigned NumSteps) {
836  // Handle this case efficiently, it is common to have constant iteration
837  // counts while computing loop exit values.
838  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
839    uint64_t Val = SC->getValue()->getRawValue();
840    uint64_t Result = 1;
841    for (; NumSteps; --NumSteps)
842      Result *= Val-(NumSteps-1);
843    Constant *Res = ConstantUInt::get(Type::ULongTy, Result);
844    return SCEVUnknown::get(ConstantExpr::getCast(Res, V->getType()));
845  }
846
847  const Type *Ty = V->getType();
848  if (NumSteps == 0)
849    return getIntegerSCEV(1, Ty);
850
851  SCEVHandle Result = V;
852  for (unsigned i = 1; i != NumSteps; ++i)
853    Result = SCEVMulExpr::get(Result, getMinusSCEV(V, getIntegerSCEV(i, Ty)));
854  return Result;
855}
856
857
858/// evaluateAtIteration - Return the value of this chain of recurrences at
859/// the specified iteration number.  We can evaluate this recurrence by
860/// multiplying each element in the chain by the binomial coefficient
861/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
862///
863///   A*choose(It, 0) + B*choose(It, 1) + C*choose(It, 2) + D*choose(It, 3)
864///
865/// FIXME/VERIFY: I don't trust that this is correct in the face of overflow.
866/// Is the binomial equation safe using modular arithmetic??
867///
868SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It) const {
869  SCEVHandle Result = getStart();
870  int Divisor = 1;
871  const Type *Ty = It->getType();
872  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
873    SCEVHandle BC = PartialFact(It, i);
874    Divisor *= i;
875    SCEVHandle Val = SCEVUDivExpr::get(SCEVMulExpr::get(BC, getOperand(i)),
876                                       getIntegerSCEV(Divisor, Ty));
877    Result = SCEVAddExpr::get(Result, Val);
878  }
879  return Result;
880}
881
882
883//===----------------------------------------------------------------------===//
884//                    SCEV Expression folder implementations
885//===----------------------------------------------------------------------===//
886
887SCEVHandle SCEVTruncateExpr::get(const SCEVHandle &Op, const Type *Ty) {
888  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
889    return SCEVUnknown::get(ConstantExpr::getCast(SC->getValue(), Ty));
890
891  // If the input value is a chrec scev made out of constants, truncate
892  // all of the constants.
893  if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
894    std::vector<SCEVHandle> Operands;
895    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
896      // FIXME: This should allow truncation of other expression types!
897      if (isa<SCEVConstant>(AddRec->getOperand(i)))
898        Operands.push_back(get(AddRec->getOperand(i), Ty));
899      else
900        break;
901    if (Operands.size() == AddRec->getNumOperands())
902      return SCEVAddRecExpr::get(Operands, AddRec->getLoop());
903  }
904
905  SCEVTruncateExpr *&Result = SCEVTruncates[std::make_pair(Op, Ty)];
906  if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
907  return Result;
908}
909
910SCEVHandle SCEVZeroExtendExpr::get(const SCEVHandle &Op, const Type *Ty) {
911  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
912    return SCEVUnknown::get(ConstantExpr::getCast(SC->getValue(), Ty));
913
914  // FIXME: If the input value is a chrec scev, and we can prove that the value
915  // did not overflow the old, smaller, value, we can zero extend all of the
916  // operands (often constants).  This would allow analysis of something like
917  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
918
919  SCEVZeroExtendExpr *&Result = SCEVZeroExtends[std::make_pair(Op, Ty)];
920  if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
921  return Result;
922}
923
924// get - Get a canonical add expression, or something simpler if possible.
925SCEVHandle SCEVAddExpr::get(std::vector<SCEVHandle> &Ops) {
926  assert(!Ops.empty() && "Cannot get empty add!");
927  if (Ops.size() == 1) return Ops[0];
928
929  // Sort by complexity, this groups all similar expression types together.
930  std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());
931
932  // If there are any constants, fold them together.
933  unsigned Idx = 0;
934  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
935    ++Idx;
936    assert(Idx < Ops.size());
937    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
938      // We found two constants, fold them together!
939      Constant *Fold = ConstantExpr::getAdd(LHSC->getValue(), RHSC->getValue());
940      if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
941        Ops[0] = SCEVConstant::get(CI);
942        Ops.erase(Ops.begin()+1);  // Erase the folded element
943        if (Ops.size() == 1) return Ops[0];
944      } else {
945        // If we couldn't fold the expression, move to the next constant.  Note
946        // that this is impossible to happen in practice because we always
947        // constant fold constant ints to constant ints.
948        ++Idx;
949      }
950    }
951
952    // If we are left with a constant zero being added, strip it off.
953    if (cast<SCEVConstant>(Ops[0])->getValue()->isNullValue()) {
954      Ops.erase(Ops.begin());
955      --Idx;
956    }
957  }
958
959  if (Ops.size() == 1) return Ops[0];
960
961  // Okay, check to see if the same value occurs in the operand list twice.  If
962  // so, merge them together into an multiply expression.  Since we sorted the
963  // list, these values are required to be adjacent.
964  const Type *Ty = Ops[0]->getType();
965  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
966    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
967      // Found a match, merge the two values into a multiply, and add any
968      // remaining values to the result.
969      SCEVHandle Two = getIntegerSCEV(2, Ty);
970      SCEVHandle Mul = SCEVMulExpr::get(Ops[i], Two);
971      if (Ops.size() == 2)
972        return Mul;
973      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
974      Ops.push_back(Mul);
975      return SCEVAddExpr::get(Ops);
976    }
977
978  // Okay, now we know the first non-constant operand.  If there are add
979  // operands they would be next.
980  if (Idx < Ops.size()) {
981    bool DeletedAdd = false;
982    while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
983      // If we have an add, expand the add operands onto the end of the operands
984      // list.
985      Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
986      Ops.erase(Ops.begin()+Idx);
987      DeletedAdd = true;
988    }
989
990    // If we deleted at least one add, we added operands to the end of the list,
991    // and they are not necessarily sorted.  Recurse to resort and resimplify
992    // any operands we just aquired.
993    if (DeletedAdd)
994      return get(Ops);
995  }
996
997  // Skip over the add expression until we get to a multiply.
998  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
999    ++Idx;
1000
1001  // If we are adding something to a multiply expression, make sure the
1002  // something is not already an operand of the multiply.  If so, merge it into
1003  // the multiply.
1004  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1005    SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1006    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1007      SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1008      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1009        if (MulOpSCEV == Ops[AddOp] &&
1010            (Mul->getNumOperands() != 2 || !isa<SCEVConstant>(MulOpSCEV))) {
1011          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1012          SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
1013          if (Mul->getNumOperands() != 2) {
1014            // If the multiply has more than two operands, we must get the
1015            // Y*Z term.
1016            std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
1017            MulOps.erase(MulOps.begin()+MulOp);
1018            InnerMul = SCEVMulExpr::get(MulOps);
1019          }
1020          SCEVHandle One = getIntegerSCEV(1, Ty);
1021          SCEVHandle AddOne = SCEVAddExpr::get(InnerMul, One);
1022          SCEVHandle OuterMul = SCEVMulExpr::get(AddOne, Ops[AddOp]);
1023          if (Ops.size() == 2) return OuterMul;
1024          if (AddOp < Idx) {
1025            Ops.erase(Ops.begin()+AddOp);
1026            Ops.erase(Ops.begin()+Idx-1);
1027          } else {
1028            Ops.erase(Ops.begin()+Idx);
1029            Ops.erase(Ops.begin()+AddOp-1);
1030          }
1031          Ops.push_back(OuterMul);
1032          return SCEVAddExpr::get(Ops);
1033        }
1034
1035      // Check this multiply against other multiplies being added together.
1036      for (unsigned OtherMulIdx = Idx+1;
1037           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1038           ++OtherMulIdx) {
1039        SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1040        // If MulOp occurs in OtherMul, we can fold the two multiplies
1041        // together.
1042        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1043             OMulOp != e; ++OMulOp)
1044          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1045            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1046            SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
1047            if (Mul->getNumOperands() != 2) {
1048              std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
1049              MulOps.erase(MulOps.begin()+MulOp);
1050              InnerMul1 = SCEVMulExpr::get(MulOps);
1051            }
1052            SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1053            if (OtherMul->getNumOperands() != 2) {
1054              std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
1055                                             OtherMul->op_end());
1056              MulOps.erase(MulOps.begin()+OMulOp);
1057              InnerMul2 = SCEVMulExpr::get(MulOps);
1058            }
1059            SCEVHandle InnerMulSum = SCEVAddExpr::get(InnerMul1,InnerMul2);
1060            SCEVHandle OuterMul = SCEVMulExpr::get(MulOpSCEV, InnerMulSum);
1061            if (Ops.size() == 2) return OuterMul;
1062            Ops.erase(Ops.begin()+Idx);
1063            Ops.erase(Ops.begin()+OtherMulIdx-1);
1064            Ops.push_back(OuterMul);
1065            return SCEVAddExpr::get(Ops);
1066          }
1067      }
1068    }
1069  }
1070
1071  // If there are any add recurrences in the operands list, see if any other
1072  // added values are loop invariant.  If so, we can fold them into the
1073  // recurrence.
1074  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1075    ++Idx;
1076
1077  // Scan over all recurrences, trying to fold loop invariants into them.
1078  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1079    // Scan all of the other operands to this add and add them to the vector if
1080    // they are loop invariant w.r.t. the recurrence.
1081    std::vector<SCEVHandle> LIOps;
1082    SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1083    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1084      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1085        LIOps.push_back(Ops[i]);
1086        Ops.erase(Ops.begin()+i);
1087        --i; --e;
1088      }
1089
1090    // If we found some loop invariants, fold them into the recurrence.
1091    if (!LIOps.empty()) {
1092      //  NLI + LI + { Start,+,Step}  -->  NLI + { LI+Start,+,Step }
1093      LIOps.push_back(AddRec->getStart());
1094
1095      std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
1096      AddRecOps[0] = SCEVAddExpr::get(LIOps);
1097
1098      SCEVHandle NewRec = SCEVAddRecExpr::get(AddRecOps, AddRec->getLoop());
1099      // If all of the other operands were loop invariant, we are done.
1100      if (Ops.size() == 1) return NewRec;
1101
1102      // Otherwise, add the folded AddRec by the non-liv parts.
1103      for (unsigned i = 0;; ++i)
1104        if (Ops[i] == AddRec) {
1105          Ops[i] = NewRec;
1106          break;
1107        }
1108      return SCEVAddExpr::get(Ops);
1109    }
1110
1111    // Okay, if there weren't any loop invariants to be folded, check to see if
1112    // there are multiple AddRec's with the same loop induction variable being
1113    // added together.  If so, we can fold them.
1114    for (unsigned OtherIdx = Idx+1;
1115         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1116      if (OtherIdx != Idx) {
1117        SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1118        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1119          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
1120          std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
1121          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1122            if (i >= NewOps.size()) {
1123              NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1124                            OtherAddRec->op_end());
1125              break;
1126            }
1127            NewOps[i] = SCEVAddExpr::get(NewOps[i], OtherAddRec->getOperand(i));
1128          }
1129          SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
1130
1131          if (Ops.size() == 2) return NewAddRec;
1132
1133          Ops.erase(Ops.begin()+Idx);
1134          Ops.erase(Ops.begin()+OtherIdx-1);
1135          Ops.push_back(NewAddRec);
1136          return SCEVAddExpr::get(Ops);
1137        }
1138      }
1139
1140    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1141    // next one.
1142  }
1143
1144  // Okay, it looks like we really DO need an add expr.  Check to see if we
1145  // already have one, otherwise create a new one.
1146  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
1147  SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scAddExpr,
1148                                                              SCEVOps)];
1149  if (Result == 0) Result = new SCEVAddExpr(Ops);
1150  return Result;
1151}
1152
1153
1154SCEVHandle SCEVMulExpr::get(std::vector<SCEVHandle> &Ops) {
1155  assert(!Ops.empty() && "Cannot get empty mul!");
1156
1157  // Sort by complexity, this groups all similar expression types together.
1158  std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());
1159
1160  // If there are any constants, fold them together.
1161  unsigned Idx = 0;
1162  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1163
1164    // C1*(C2+V) -> C1*C2 + C1*V
1165    if (Ops.size() == 2)
1166      if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1167        if (Add->getNumOperands() == 2 &&
1168            isa<SCEVConstant>(Add->getOperand(0)))
1169          return SCEVAddExpr::get(SCEVMulExpr::get(LHSC, Add->getOperand(0)),
1170                                  SCEVMulExpr::get(LHSC, Add->getOperand(1)));
1171
1172
1173    ++Idx;
1174    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1175      // We found two constants, fold them together!
1176      Constant *Fold = ConstantExpr::getMul(LHSC->getValue(), RHSC->getValue());
1177      if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
1178        Ops[0] = SCEVConstant::get(CI);
1179        Ops.erase(Ops.begin()+1);  // Erase the folded element
1180        if (Ops.size() == 1) return Ops[0];
1181      } else {
1182        // If we couldn't fold the expression, move to the next constant.  Note
1183        // that this is impossible to happen in practice because we always
1184        // constant fold constant ints to constant ints.
1185        ++Idx;
1186      }
1187    }
1188
1189    // If we are left with a constant one being multiplied, strip it off.
1190    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1191      Ops.erase(Ops.begin());
1192      --Idx;
1193    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isNullValue()) {
1194      // If we have a multiply of zero, it will always be zero.
1195      return Ops[0];
1196    }
1197  }
1198
1199  // Skip over the add expression until we get to a multiply.
1200  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1201    ++Idx;
1202
1203  if (Ops.size() == 1)
1204    return Ops[0];
1205
1206  // If there are mul operands inline them all into this expression.
1207  if (Idx < Ops.size()) {
1208    bool DeletedMul = false;
1209    while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1210      // If we have an mul, expand the mul operands onto the end of the operands
1211      // list.
1212      Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1213      Ops.erase(Ops.begin()+Idx);
1214      DeletedMul = true;
1215    }
1216
1217    // If we deleted at least one mul, we added operands to the end of the list,
1218    // and they are not necessarily sorted.  Recurse to resort and resimplify
1219    // any operands we just aquired.
1220    if (DeletedMul)
1221      return get(Ops);
1222  }
1223
1224  // If there are any add recurrences in the operands list, see if any other
1225  // added values are loop invariant.  If so, we can fold them into the
1226  // recurrence.
1227  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1228    ++Idx;
1229
1230  // Scan over all recurrences, trying to fold loop invariants into them.
1231  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1232    // Scan all of the other operands to this mul and add them to the vector if
1233    // they are loop invariant w.r.t. the recurrence.
1234    std::vector<SCEVHandle> LIOps;
1235    SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1236    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1237      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1238        LIOps.push_back(Ops[i]);
1239        Ops.erase(Ops.begin()+i);
1240        --i; --e;
1241      }
1242
1243    // If we found some loop invariants, fold them into the recurrence.
1244    if (!LIOps.empty()) {
1245      //  NLI * LI * { Start,+,Step}  -->  NLI * { LI*Start,+,LI*Step }
1246      std::vector<SCEVHandle> NewOps;
1247      NewOps.reserve(AddRec->getNumOperands());
1248      if (LIOps.size() == 1) {
1249        SCEV *Scale = LIOps[0];
1250        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1251          NewOps.push_back(SCEVMulExpr::get(Scale, AddRec->getOperand(i)));
1252      } else {
1253        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
1254          std::vector<SCEVHandle> MulOps(LIOps);
1255          MulOps.push_back(AddRec->getOperand(i));
1256          NewOps.push_back(SCEVMulExpr::get(MulOps));
1257        }
1258      }
1259
1260      SCEVHandle NewRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
1261
1262      // If all of the other operands were loop invariant, we are done.
1263      if (Ops.size() == 1) return NewRec;
1264
1265      // Otherwise, multiply the folded AddRec by the non-liv parts.
1266      for (unsigned i = 0;; ++i)
1267        if (Ops[i] == AddRec) {
1268          Ops[i] = NewRec;
1269          break;
1270        }
1271      return SCEVMulExpr::get(Ops);
1272    }
1273
1274    // Okay, if there weren't any loop invariants to be folded, check to see if
1275    // there are multiple AddRec's with the same loop induction variable being
1276    // multiplied together.  If so, we can fold them.
1277    for (unsigned OtherIdx = Idx+1;
1278         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1279      if (OtherIdx != Idx) {
1280        SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1281        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1282          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
1283          SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1284          SCEVHandle NewStart = SCEVMulExpr::get(F->getStart(),
1285                                                 G->getStart());
1286          SCEVHandle B = F->getStepRecurrence();
1287          SCEVHandle D = G->getStepRecurrence();
1288          SCEVHandle NewStep = SCEVAddExpr::get(SCEVMulExpr::get(F, D),
1289                                                SCEVMulExpr::get(G, B),
1290                                                SCEVMulExpr::get(B, D));
1291          SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewStart, NewStep,
1292                                                     F->getLoop());
1293          if (Ops.size() == 2) return NewAddRec;
1294
1295          Ops.erase(Ops.begin()+Idx);
1296          Ops.erase(Ops.begin()+OtherIdx-1);
1297          Ops.push_back(NewAddRec);
1298          return SCEVMulExpr::get(Ops);
1299        }
1300      }
1301
1302    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1303    // next one.
1304  }
1305
1306  // Okay, it looks like we really DO need an mul expr.  Check to see if we
1307  // already have one, otherwise create a new one.
1308  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
1309  SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scMulExpr,
1310                                                              SCEVOps)];
1311  if (Result == 0) Result = new SCEVMulExpr(Ops);
1312  return Result;
1313}
1314
1315SCEVHandle SCEVUDivExpr::get(const SCEVHandle &LHS, const SCEVHandle &RHS) {
1316  if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1317    if (RHSC->getValue()->equalsInt(1))
1318      return LHS;                            // X /u 1 --> x
1319    if (RHSC->getValue()->isAllOnesValue())
1320      return getNegativeSCEV(LHS);           // X /u -1  -->  -x
1321
1322    if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1323      Constant *LHSCV = LHSC->getValue();
1324      Constant *RHSCV = RHSC->getValue();
1325      if (LHSCV->getType()->isSigned())
1326        LHSCV = ConstantExpr::getCast(LHSCV,
1327                                      LHSCV->getType()->getUnsignedVersion());
1328      if (RHSCV->getType()->isSigned())
1329        RHSCV = ConstantExpr::getCast(RHSCV, LHSCV->getType());
1330      return SCEVUnknown::get(ConstantExpr::getDiv(LHSCV, RHSCV));
1331    }
1332  }
1333
1334  // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
1335
1336  SCEVUDivExpr *&Result = SCEVUDivs[std::make_pair(LHS, RHS)];
1337  if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
1338  return Result;
1339}
1340
1341
1342/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1343/// specified loop.  Simplify the expression as much as possible.
1344SCEVHandle SCEVAddRecExpr::get(const SCEVHandle &Start,
1345                               const SCEVHandle &Step, const Loop *L) {
1346  std::vector<SCEVHandle> Operands;
1347  Operands.push_back(Start);
1348  if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1349    if (StepChrec->getLoop() == L) {
1350      Operands.insert(Operands.end(), StepChrec->op_begin(),
1351                      StepChrec->op_end());
1352      return get(Operands, L);
1353    }
1354
1355  Operands.push_back(Step);
1356  return get(Operands, L);
1357}
1358
1359/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1360/// specified loop.  Simplify the expression as much as possible.
1361SCEVHandle SCEVAddRecExpr::get(std::vector<SCEVHandle> &Operands,
1362                               const Loop *L) {
1363  if (Operands.size() == 1) return Operands[0];
1364
1365  if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Operands.back()))
1366    if (StepC->getValue()->isNullValue()) {
1367      Operands.pop_back();
1368      return get(Operands, L);             // { X,+,0 }  -->  X
1369    }
1370
1371  SCEVAddRecExpr *&Result =
1372    SCEVAddRecExprs[std::make_pair(L, std::vector<SCEV*>(Operands.begin(),
1373                                                         Operands.end()))];
1374  if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1375  return Result;
1376}
1377
1378
1379//===----------------------------------------------------------------------===//
1380//                  Non-trivial closed-form SCEV Expanders
1381//===----------------------------------------------------------------------===//
1382
1383Value *SCEVTruncateExpr::expandCodeFor(ScalarEvolutionRewriter &SER,
1384                                       Instruction *InsertPt) {
1385  Value *V = SER.ExpandCodeFor(getOperand(), InsertPt);
1386  return new CastInst(V, getType(), "tmp.", InsertPt);
1387}
1388
1389Value *SCEVZeroExtendExpr::expandCodeFor(ScalarEvolutionRewriter &SER,
1390                                         Instruction *InsertPt) {
1391  Value *V = SER.ExpandCodeFor(getOperand(), InsertPt,
1392                               getOperand()->getType()->getUnsignedVersion());
1393  return new CastInst(V, getType(), "tmp.", InsertPt);
1394}
1395
1396Value *SCEVAddExpr::expandCodeFor(ScalarEvolutionRewriter &SER,
1397                                  Instruction *InsertPt) {
1398  const Type *Ty = getType();
1399  Value *V = SER.ExpandCodeFor(getOperand(getNumOperands()-1), InsertPt, Ty);
1400
1401  // Emit a bunch of add instructions
1402  for (int i = getNumOperands()-2; i >= 0; --i)
1403    V = BinaryOperator::create(Instruction::Add, V,
1404                               SER.ExpandCodeFor(getOperand(i), InsertPt, Ty),
1405                               "tmp.", InsertPt);
1406  return V;
1407}
1408
1409Value *SCEVMulExpr::expandCodeFor(ScalarEvolutionRewriter &SER,
1410                                  Instruction *InsertPt) {
1411  const Type *Ty = getType();
1412  int FirstOp = 0;  // Set if we should emit a subtract.
1413  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getOperand(0)))
1414    if (SC->getValue()->isAllOnesValue())
1415      FirstOp = 1;
1416
1417  int i = getNumOperands()-2;
1418  Value *V = SER.ExpandCodeFor(getOperand(i+1), InsertPt, Ty);
1419
1420  // Emit a bunch of multiply instructions
1421  for (; i >= FirstOp; --i)
1422    V = BinaryOperator::create(Instruction::Mul, V,
1423                               SER.ExpandCodeFor(getOperand(i), InsertPt, Ty),
1424                               "tmp.", InsertPt);
1425  // -1 * ...  --->  0 - ...
1426  if (FirstOp == 1)
1427    V = BinaryOperator::create(Instruction::Sub, Constant::getNullValue(Ty), V,
1428                               "tmp.", InsertPt);
1429  return V;
1430}
1431
1432Value *SCEVUDivExpr::expandCodeFor(ScalarEvolutionRewriter &SER,
1433                                   Instruction *InsertPt) {
1434  const Type *Ty = getType();
1435  Value *LHS = SER.ExpandCodeFor(getLHS(), InsertPt, Ty);
1436  Value *RHS = SER.ExpandCodeFor(getRHS(), InsertPt, Ty);
1437  return BinaryOperator::create(Instruction::Div, LHS, RHS, "tmp.", InsertPt);
1438}
1439
1440Value *SCEVAddRecExpr::expandCodeFor(ScalarEvolutionRewriter &SER,
1441                                     Instruction *InsertPt) {
1442  const Type *Ty = getType();
1443  // We cannot yet do fp recurrences, e.g. the xform of {X,+,F} --> X+{0,+,F}
1444  assert(Ty->isIntegral() && "Cannot expand fp recurrences yet!");
1445
1446  // {X,+,F} --> X + {0,+,F}
1447  if (!isa<SCEVConstant>(getStart()) ||
1448      !cast<SCEVConstant>(getStart())->getValue()->isNullValue()) {
1449    Value *Start = SER.ExpandCodeFor(getStart(), InsertPt, Ty);
1450    std::vector<SCEVHandle> NewOps(op_begin(), op_end());
1451    NewOps[0] = getIntegerSCEV(0, getType());
1452    Value *Rest = SER.ExpandCodeFor(SCEVAddRecExpr::get(NewOps, getLoop()),
1453                                    InsertPt, getType());
1454
1455    // FIXME: look for an existing add to use.
1456    return BinaryOperator::create(Instruction::Add, Rest, Start, "tmp.",
1457                                  InsertPt);
1458  }
1459
1460  // {0,+,1} --> Insert a canonical induction variable into the loop!
1461  if (getNumOperands() == 2 && getOperand(1) == getIntegerSCEV(1, getType())) {
1462    // Create and insert the PHI node for the induction variable in the
1463    // specified loop.
1464    BasicBlock *Header = getLoop()->getHeader();
1465    PHINode *PN = new PHINode(Ty, "indvar", Header->begin());
1466    PN->addIncoming(Constant::getNullValue(Ty), L->getLoopPreheader());
1467
1468    pred_iterator HPI = pred_begin(Header);
1469    assert(HPI != pred_end(Header) && "Loop with zero preds???");
1470    if (!getLoop()->contains(*HPI)) ++HPI;
1471    assert(HPI != pred_end(Header) && getLoop()->contains(*HPI) &&
1472           "No backedge in loop?");
1473
1474    // Insert a unit add instruction right before the terminator corresponding
1475    // to the back-edge.
1476    Constant *One = Ty->isFloatingPoint() ? (Constant*)ConstantFP::get(Ty, 1.0)
1477      : (Constant*)ConstantInt::get(Ty, 1);
1478    Instruction *Add = BinaryOperator::create(Instruction::Add, PN, One,
1479                                              "indvar.next",
1480                                              (*HPI)->getTerminator());
1481
1482    pred_iterator PI = pred_begin(Header);
1483    if (*PI == L->getLoopPreheader())
1484      ++PI;
1485    PN->addIncoming(Add, *PI);
1486    return PN;
1487  }
1488
1489  // Get the canonical induction variable I for this loop.
1490  Value *I = SER.GetOrInsertCanonicalInductionVariable(getLoop(), Ty);
1491
1492  if (getNumOperands() == 2) {   // {0,+,F} --> i*F
1493    Value *F = SER.ExpandCodeFor(getOperand(1), InsertPt, Ty);
1494    return BinaryOperator::create(Instruction::Mul, I, F, "tmp.", InsertPt);
1495  }
1496
1497  // If this is a chain of recurrences, turn it into a closed form, using the
1498  // folders, then expandCodeFor the closed form.  This allows the folders to
1499  // simplify the expression without having to build a bunch of special code
1500  // into this folder.
1501  SCEVHandle IH = SCEVUnknown::get(I);   // Get I as a "symbolic" SCEV.
1502
1503  SCEVHandle V = evaluateAtIteration(IH);
1504  //std::cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
1505
1506  return SER.ExpandCodeFor(V, InsertPt, Ty);
1507}
1508
1509
1510//===----------------------------------------------------------------------===//
1511//             ScalarEvolutionsImpl Definition and Implementation
1512//===----------------------------------------------------------------------===//
1513//
1514/// ScalarEvolutionsImpl - This class implements the main driver for the scalar
1515/// evolution code.
1516///
1517namespace {
1518  struct ScalarEvolutionsImpl {
1519    /// F - The function we are analyzing.
1520    ///
1521    Function &F;
1522
1523    /// LI - The loop information for the function we are currently analyzing.
1524    ///
1525    LoopInfo &LI;
1526
1527    /// UnknownValue - This SCEV is used to represent unknown trip counts and
1528    /// things.
1529    SCEVHandle UnknownValue;
1530
1531    /// Scalars - This is a cache of the scalars we have analyzed so far.
1532    ///
1533    std::map<Value*, SCEVHandle> Scalars;
1534
1535    /// IterationCounts - Cache the iteration count of the loops for this
1536    /// function as they are computed.
1537    std::map<const Loop*, SCEVHandle> IterationCounts;
1538
1539  public:
1540    ScalarEvolutionsImpl(Function &f, LoopInfo &li)
1541      : F(f), LI(li), UnknownValue(new SCEVCouldNotCompute()) {}
1542
1543    /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1544    /// expression and create a new one.
1545    SCEVHandle getSCEV(Value *V);
1546
1547    /// getSCEVAtScope - Compute the value of the specified expression within
1548    /// the indicated loop (which may be null to indicate in no loop).  If the
1549    /// expression cannot be evaluated, return UnknownValue itself.
1550    SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L);
1551
1552
1553    /// hasLoopInvariantIterationCount - Return true if the specified loop has
1554    /// an analyzable loop-invariant iteration count.
1555    bool hasLoopInvariantIterationCount(const Loop *L);
1556
1557    /// getIterationCount - If the specified loop has a predictable iteration
1558    /// count, return it.  Note that it is not valid to call this method on a
1559    /// loop without a loop-invariant iteration count.
1560    SCEVHandle getIterationCount(const Loop *L);
1561
1562    /// deleteInstructionFromRecords - This method should be called by the
1563    /// client before it removes an instruction from the program, to make sure
1564    /// that no dangling references are left around.
1565    void deleteInstructionFromRecords(Instruction *I);
1566
1567  private:
1568    /// createSCEV - We know that there is no SCEV for the specified value.
1569    /// Analyze the expression.
1570    SCEVHandle createSCEV(Value *V);
1571    SCEVHandle createNodeForCast(CastInst *CI);
1572
1573    /// createNodeForPHI - Provide the special handling we need to analyze PHI
1574    /// SCEVs.
1575    SCEVHandle createNodeForPHI(PHINode *PN);
1576    void UpdatePHIUserScalarEntries(Instruction *I, PHINode *PN,
1577                                    std::set<Instruction*> &UpdatedInsts);
1578
1579    /// ComputeIterationCount - Compute the number of times the specified loop
1580    /// will iterate.
1581    SCEVHandle ComputeIterationCount(const Loop *L);
1582
1583    /// HowFarToZero - Return the number of times a backedge comparing the
1584    /// specified value to zero will execute.  If not computable, return
1585    /// UnknownValue
1586    SCEVHandle HowFarToZero(SCEV *V, const Loop *L);
1587
1588    /// HowFarToNonZero - Return the number of times a backedge checking the
1589    /// specified value for nonzero will execute.  If not computable, return
1590    /// UnknownValue
1591    SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L);
1592  };
1593}
1594
1595//===----------------------------------------------------------------------===//
1596//            Basic SCEV Analysis and PHI Idiom Recognition Code
1597//
1598
1599/// deleteInstructionFromRecords - This method should be called by the
1600/// client before it removes an instruction from the program, to make sure
1601/// that no dangling references are left around.
1602void ScalarEvolutionsImpl::deleteInstructionFromRecords(Instruction *I) {
1603  Scalars.erase(I);
1604}
1605
1606
1607/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1608/// expression and create a new one.
1609SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) {
1610  assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!");
1611
1612  std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V);
1613  if (I != Scalars.end()) return I->second;
1614  SCEVHandle S = createSCEV(V);
1615  Scalars.insert(std::make_pair(V, S));
1616  return S;
1617}
1618
1619
1620/// UpdatePHIUserScalarEntries - After PHI node analysis, we have a bunch of
1621/// entries in the scalar map that refer to the "symbolic" PHI value instead of
1622/// the recurrence value.  After we resolve the PHI we must loop over all of the
1623/// using instructions that have scalar map entries and update them.
1624void ScalarEvolutionsImpl::UpdatePHIUserScalarEntries(Instruction *I,
1625                                                      PHINode *PN,
1626                                        std::set<Instruction*> &UpdatedInsts) {
1627  std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I);
1628  if (SI == Scalars.end()) return;   // This scalar wasn't previous processed.
1629  if (UpdatedInsts.insert(I).second) {
1630    Scalars.erase(SI);                 // Remove the old entry
1631    getSCEV(I);                        // Calculate the new entry
1632
1633    for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1634         UI != E; ++UI)
1635      UpdatePHIUserScalarEntries(cast<Instruction>(*UI), PN, UpdatedInsts);
1636  }
1637}
1638
1639
1640/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
1641/// a loop header, making it a potential recurrence, or it doesn't.
1642///
1643SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) {
1644  if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
1645    if (const Loop *L = LI.getLoopFor(PN->getParent()))
1646      if (L->getHeader() == PN->getParent()) {
1647        // If it lives in the loop header, it has two incoming values, one
1648        // from outside the loop, and one from inside.
1649        unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1650        unsigned BackEdge     = IncomingEdge^1;
1651
1652        // While we are analyzing this PHI node, handle its value symbolically.
1653        SCEVHandle SymbolicName = SCEVUnknown::get(PN);
1654        assert(Scalars.find(PN) == Scalars.end() &&
1655               "PHI node already processed?");
1656        Scalars.insert(std::make_pair(PN, SymbolicName));
1657
1658        // Using this symbolic name for the PHI, analyze the value coming around
1659        // the back-edge.
1660        SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1661
1662        // NOTE: If BEValue is loop invariant, we know that the PHI node just
1663        // has a special value for the first iteration of the loop.
1664
1665        // If the value coming around the backedge is an add with the symbolic
1666        // value we just inserted, then we found a simple induction variable!
1667        if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
1668          // If there is a single occurrence of the symbolic value, replace it
1669          // with a recurrence.
1670          unsigned FoundIndex = Add->getNumOperands();
1671          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1672            if (Add->getOperand(i) == SymbolicName)
1673              if (FoundIndex == e) {
1674                FoundIndex = i;
1675                break;
1676              }
1677
1678          if (FoundIndex != Add->getNumOperands()) {
1679            // Create an add with everything but the specified operand.
1680            std::vector<SCEVHandle> Ops;
1681            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1682              if (i != FoundIndex)
1683                Ops.push_back(Add->getOperand(i));
1684            SCEVHandle Accum = SCEVAddExpr::get(Ops);
1685
1686            // This is not a valid addrec if the step amount is varying each
1687            // loop iteration, but is not itself an addrec in this loop.
1688            if (Accum->isLoopInvariant(L) ||
1689                (isa<SCEVAddRecExpr>(Accum) &&
1690                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1691              SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1692              SCEVHandle PHISCEV  = SCEVAddRecExpr::get(StartVal, Accum, L);
1693
1694              // Okay, for the entire analysis of this edge we assumed the PHI
1695              // to be symbolic.  We now need to go back and update all of the
1696              // entries for the scalars that use the PHI (except for the PHI
1697              // itself) to use the new analyzed value instead of the "symbolic"
1698              // value.
1699              Scalars.find(PN)->second = PHISCEV;       // Update the PHI value
1700              std::set<Instruction*> UpdatedInsts;
1701              UpdatedInsts.insert(PN);
1702              for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
1703                   UI != E; ++UI)
1704                UpdatePHIUserScalarEntries(cast<Instruction>(*UI), PN,
1705                                           UpdatedInsts);
1706              return PHISCEV;
1707            }
1708          }
1709        }
1710
1711        return SymbolicName;
1712      }
1713
1714  // If it's not a loop phi, we can't handle it yet.
1715  return SCEVUnknown::get(PN);
1716}
1717
1718/// createNodeForCast - Handle the various forms of casts that we support.
1719///
1720SCEVHandle ScalarEvolutionsImpl::createNodeForCast(CastInst *CI) {
1721  const Type *SrcTy = CI->getOperand(0)->getType();
1722  const Type *DestTy = CI->getType();
1723
1724  // If this is a noop cast (ie, conversion from int to uint), ignore it.
1725  if (SrcTy->isLosslesslyConvertibleTo(DestTy))
1726    return getSCEV(CI->getOperand(0));
1727
1728  if (SrcTy->isInteger() && DestTy->isInteger()) {
1729    // Otherwise, if this is a truncating integer cast, we can represent this
1730    // cast.
1731    if (SrcTy->getPrimitiveSize() > DestTy->getPrimitiveSize())
1732      return SCEVTruncateExpr::get(getSCEV(CI->getOperand(0)),
1733                                   CI->getType()->getUnsignedVersion());
1734    if (SrcTy->isUnsigned() &&
1735        SrcTy->getPrimitiveSize() > DestTy->getPrimitiveSize())
1736      return SCEVZeroExtendExpr::get(getSCEV(CI->getOperand(0)),
1737                                     CI->getType()->getUnsignedVersion());
1738  }
1739
1740  // If this is an sign or zero extending cast and we can prove that the value
1741  // will never overflow, we could do similar transformations.
1742
1743  // Otherwise, we can't handle this cast!
1744  return SCEVUnknown::get(CI);
1745}
1746
1747
1748/// createSCEV - We know that there is no SCEV for the specified value.
1749/// Analyze the expression.
1750///
1751SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) {
1752  if (Instruction *I = dyn_cast<Instruction>(V)) {
1753    switch (I->getOpcode()) {
1754    case Instruction::Add:
1755      return SCEVAddExpr::get(getSCEV(I->getOperand(0)),
1756                              getSCEV(I->getOperand(1)));
1757    case Instruction::Mul:
1758      return SCEVMulExpr::get(getSCEV(I->getOperand(0)),
1759                              getSCEV(I->getOperand(1)));
1760    case Instruction::Div:
1761      if (V->getType()->isInteger() && V->getType()->isUnsigned())
1762        return SCEVUDivExpr::get(getSCEV(I->getOperand(0)),
1763                                 getSCEV(I->getOperand(1)));
1764      break;
1765
1766    case Instruction::Sub:
1767      return getMinusSCEV(getSCEV(I->getOperand(0)), getSCEV(I->getOperand(1)));
1768
1769    case Instruction::Shl:
1770      // Turn shift left of a constant amount into a multiply.
1771      if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1772        Constant *X = ConstantInt::get(V->getType(), 1);
1773        X = ConstantExpr::getShl(X, SA);
1774        return SCEVMulExpr::get(getSCEV(I->getOperand(0)), getSCEV(X));
1775      }
1776      break;
1777
1778    case Instruction::Shr:
1779      if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1)))
1780        if (V->getType()->isUnsigned()) {
1781          Constant *X = ConstantInt::get(V->getType(), 1);
1782          X = ConstantExpr::getShl(X, SA);
1783          return SCEVUDivExpr::get(getSCEV(I->getOperand(0)), getSCEV(X));
1784        }
1785      break;
1786
1787    case Instruction::Cast:
1788      return createNodeForCast(cast<CastInst>(I));
1789
1790    case Instruction::PHI:
1791      return createNodeForPHI(cast<PHINode>(I));
1792
1793    default: // We cannot analyze this expression.
1794      break;
1795    }
1796  }
1797
1798  return SCEVUnknown::get(V);
1799}
1800
1801
1802
1803//===----------------------------------------------------------------------===//
1804//                   Iteration Count Computation Code
1805//
1806
1807/// getIterationCount - If the specified loop has a predictable iteration
1808/// count, return it.  Note that it is not valid to call this method on a
1809/// loop without a loop-invariant iteration count.
1810SCEVHandle ScalarEvolutionsImpl::getIterationCount(const Loop *L) {
1811  std::map<const Loop*, SCEVHandle>::iterator I = IterationCounts.find(L);
1812  if (I == IterationCounts.end()) {
1813    SCEVHandle ItCount = ComputeIterationCount(L);
1814    I = IterationCounts.insert(std::make_pair(L, ItCount)).first;
1815    if (ItCount != UnknownValue) {
1816      assert(ItCount->isLoopInvariant(L) &&
1817             "Computed trip count isn't loop invariant for loop!");
1818      ++NumTripCountsComputed;
1819    } else if (isa<PHINode>(L->getHeader()->begin())) {
1820      // Only count loops that have phi nodes as not being computable.
1821      ++NumTripCountsNotComputed;
1822    }
1823  }
1824  return I->second;
1825}
1826
1827/// ComputeIterationCount - Compute the number of times the specified loop
1828/// will iterate.
1829SCEVHandle ScalarEvolutionsImpl::ComputeIterationCount(const Loop *L) {
1830  // If the loop has a non-one exit block count, we can't analyze it.
1831  if (L->getExitBlocks().size() != 1) return UnknownValue;
1832
1833  // Okay, there is one exit block.  Try to find the condition that causes the
1834  // loop to be exited.
1835  BasicBlock *ExitBlock = L->getExitBlocks()[0];
1836
1837  BasicBlock *ExitingBlock = 0;
1838  for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
1839       PI != E; ++PI)
1840    if (L->contains(*PI)) {
1841      if (ExitingBlock == 0)
1842        ExitingBlock = *PI;
1843      else
1844        return UnknownValue;   // More than one block exiting!
1845    }
1846  assert(ExitingBlock && "No exits from loop, something is broken!");
1847
1848  // Okay, we've computed the exiting block.  See what condition causes us to
1849  // exit.
1850  //
1851  // FIXME: we should be able to handle switch instructions (with a single exit)
1852  // FIXME: We should handle cast of int to bool as well
1853  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1854  if (ExitBr == 0) return UnknownValue;
1855  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
1856  SetCondInst *ExitCond = dyn_cast<SetCondInst>(ExitBr->getCondition());
1857  if (ExitCond == 0) return UnknownValue;
1858
1859  SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
1860  SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
1861
1862  // Try to evaluate any dependencies out of the loop.
1863  SCEVHandle Tmp = getSCEVAtScope(LHS, L);
1864  if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
1865  Tmp = getSCEVAtScope(RHS, L);
1866  if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
1867
1868  // If the condition was exit on true, convert the condition to exit on false.
1869  Instruction::BinaryOps Cond;
1870  if (ExitBr->getSuccessor(1) == ExitBlock)
1871    Cond = ExitCond->getOpcode();
1872  else
1873    Cond = ExitCond->getInverseCondition();
1874
1875  // At this point, we would like to compute how many iterations of the loop the
1876  // predicate will return true for these inputs.
1877  if (isa<SCEVConstant>(LHS) && !isa<SCEVConstant>(RHS)) {
1878    // If there is a constant, force it into the RHS.
1879    std::swap(LHS, RHS);
1880    Cond = SetCondInst::getSwappedCondition(Cond);
1881  }
1882
1883  // FIXME: think about handling pointer comparisons!  i.e.:
1884  // while (P != P+100) ++P;
1885
1886  // If we have a comparison of a chrec against a constant, try to use value
1887  // ranges to answer this query.
1888  if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
1889    if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
1890      if (AddRec->getLoop() == L) {
1891        // Form the comparison range using the constant of the correct type so
1892        // that the ConstantRange class knows to do a signed or unsigned
1893        // comparison.
1894        ConstantInt *CompVal = RHSC->getValue();
1895        const Type *RealTy = ExitCond->getOperand(0)->getType();
1896        CompVal = dyn_cast<ConstantInt>(ConstantExpr::getCast(CompVal, RealTy));
1897        if (CompVal) {
1898          // Form the constant range.
1899          ConstantRange CompRange(Cond, CompVal);
1900
1901          // Now that we have it, if it's signed, convert it to an unsigned
1902          // range.
1903          if (CompRange.getLower()->getType()->isSigned()) {
1904            const Type *NewTy = RHSC->getValue()->getType();
1905            Constant *NewL = ConstantExpr::getCast(CompRange.getLower(), NewTy);
1906            Constant *NewU = ConstantExpr::getCast(CompRange.getUpper(), NewTy);
1907            CompRange = ConstantRange(NewL, NewU);
1908          }
1909
1910          SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange);
1911          if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
1912        }
1913      }
1914
1915  switch (Cond) {
1916  case Instruction::SetNE:                     // while (X != Y)
1917    // Convert to: while (X-Y != 0)
1918    if (LHS->getType()->isInteger())
1919      return HowFarToZero(getMinusSCEV(LHS, RHS), L);
1920    break;
1921  case Instruction::SetEQ:
1922    // Convert to: while (X-Y == 0)           // while (X == Y)
1923    if (LHS->getType()->isInteger())
1924      return HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
1925    break;
1926  default:
1927#if 0
1928    std::cerr << "ComputeIterationCount ";
1929    if (ExitCond->getOperand(0)->getType()->isUnsigned())
1930      std::cerr << "[unsigned] ";
1931    std::cerr << *LHS << "   "
1932              << Instruction::getOpcodeName(Cond) << "   " << *RHS << "\n";
1933#endif
1934    break;
1935  }
1936  return UnknownValue;
1937}
1938
1939/// getSCEVAtScope - Compute the value of the specified expression within the
1940/// indicated loop (which may be null to indicate in no loop).  If the
1941/// expression cannot be evaluated, return UnknownValue.
1942SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) {
1943  // FIXME: this should be turned into a virtual method on SCEV!
1944
1945  if (isa<SCEVConstant>(V) || isa<SCEVUnknown>(V)) return V;
1946  if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
1947    // Avoid performing the look-up in the common case where the specified
1948    // expression has no loop-variant portions.
1949    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
1950      SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
1951      if (OpAtScope != Comm->getOperand(i)) {
1952        if (OpAtScope == UnknownValue) return UnknownValue;
1953        // Okay, at least one of these operands is loop variant but might be
1954        // foldable.  Build a new instance of the folded commutative expression.
1955        std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i-1);
1956        NewOps.push_back(OpAtScope);
1957
1958        for (++i; i != e; ++i) {
1959          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
1960          if (OpAtScope == UnknownValue) return UnknownValue;
1961          NewOps.push_back(OpAtScope);
1962        }
1963        if (isa<SCEVAddExpr>(Comm))
1964          return SCEVAddExpr::get(NewOps);
1965        assert(isa<SCEVMulExpr>(Comm) && "Only know about add and mul!");
1966        return SCEVMulExpr::get(NewOps);
1967      }
1968    }
1969    // If we got here, all operands are loop invariant.
1970    return Comm;
1971  }
1972
1973  if (SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(V)) {
1974    SCEVHandle LHS = getSCEVAtScope(UDiv->getLHS(), L);
1975    if (LHS == UnknownValue) return LHS;
1976    SCEVHandle RHS = getSCEVAtScope(UDiv->getRHS(), L);
1977    if (RHS == UnknownValue) return RHS;
1978    if (LHS == UDiv->getLHS() && RHS == UDiv->getRHS())
1979      return UDiv;   // must be loop invariant
1980    return SCEVUDivExpr::get(LHS, RHS);
1981  }
1982
1983  // If this is a loop recurrence for a loop that does not contain L, then we
1984  // are dealing with the final value computed by the loop.
1985  if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
1986    if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
1987      // To evaluate this recurrence, we need to know how many times the AddRec
1988      // loop iterates.  Compute this now.
1989      SCEVHandle IterationCount = getIterationCount(AddRec->getLoop());
1990      if (IterationCount == UnknownValue) return UnknownValue;
1991      IterationCount = getTruncateOrZeroExtend(IterationCount,
1992                                               AddRec->getType());
1993
1994      // If the value is affine, simplify the expression evaluation to just
1995      // Start + Step*IterationCount.
1996      if (AddRec->isAffine())
1997        return SCEVAddExpr::get(AddRec->getStart(),
1998                                SCEVMulExpr::get(IterationCount,
1999                                                 AddRec->getOperand(1)));
2000
2001      // Otherwise, evaluate it the hard way.
2002      return AddRec->evaluateAtIteration(IterationCount);
2003    }
2004    return UnknownValue;
2005  }
2006
2007  //assert(0 && "Unknown SCEV type!");
2008  return UnknownValue;
2009}
2010
2011
2012/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
2013/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
2014/// might be the same) or two SCEVCouldNotCompute objects.
2015///
2016static std::pair<SCEVHandle,SCEVHandle>
2017SolveQuadraticEquation(const SCEVAddRecExpr *AddRec) {
2018  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
2019  SCEVConstant *L = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
2020  SCEVConstant *M = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
2021  SCEVConstant *N = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
2022
2023  // We currently can only solve this if the coefficients are constants.
2024  if (!L || !M || !N) {
2025    SCEV *CNC = new SCEVCouldNotCompute();
2026    return std::make_pair(CNC, CNC);
2027  }
2028
2029  Constant *Two = ConstantInt::get(L->getValue()->getType(), 2);
2030
2031  // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
2032  Constant *C = L->getValue();
2033  // The B coefficient is M-N/2
2034  Constant *B = ConstantExpr::getSub(M->getValue(),
2035                                     ConstantExpr::getDiv(N->getValue(),
2036                                                          Two));
2037  // The A coefficient is N/2
2038  Constant *A = ConstantExpr::getDiv(N->getValue(), Two);
2039
2040  // Compute the B^2-4ac term.
2041  Constant *SqrtTerm =
2042    ConstantExpr::getMul(ConstantInt::get(C->getType(), 4),
2043                         ConstantExpr::getMul(A, C));
2044  SqrtTerm = ConstantExpr::getSub(ConstantExpr::getMul(B, B), SqrtTerm);
2045
2046  // Compute floor(sqrt(B^2-4ac))
2047  ConstantUInt *SqrtVal =
2048    cast<ConstantUInt>(ConstantExpr::getCast(SqrtTerm,
2049                                   SqrtTerm->getType()->getUnsignedVersion()));
2050  uint64_t SqrtValV = SqrtVal->getValue();
2051  uint64_t SqrtValV2 = (uint64_t)sqrt(SqrtValV);
2052  // The square root might not be precise for arbitrary 64-bit integer
2053  // values.  Do some sanity checks to ensure it's correct.
2054  if (SqrtValV2*SqrtValV2 > SqrtValV ||
2055      (SqrtValV2+1)*(SqrtValV2+1) <= SqrtValV) {
2056    SCEV *CNC = new SCEVCouldNotCompute();
2057    return std::make_pair(CNC, CNC);
2058  }
2059
2060  SqrtVal = ConstantUInt::get(Type::ULongTy, SqrtValV2);
2061  SqrtTerm = ConstantExpr::getCast(SqrtVal, SqrtTerm->getType());
2062
2063  Constant *NegB = ConstantExpr::getNeg(B);
2064  Constant *TwoA = ConstantExpr::getMul(A, Two);
2065
2066  // The divisions must be performed as signed divisions.
2067  const Type *SignedTy = NegB->getType()->getSignedVersion();
2068  NegB = ConstantExpr::getCast(NegB, SignedTy);
2069  TwoA = ConstantExpr::getCast(TwoA, SignedTy);
2070  SqrtTerm = ConstantExpr::getCast(SqrtTerm, SignedTy);
2071
2072  Constant *Solution1 =
2073    ConstantExpr::getDiv(ConstantExpr::getAdd(NegB, SqrtTerm), TwoA);
2074  Constant *Solution2 =
2075    ConstantExpr::getDiv(ConstantExpr::getSub(NegB, SqrtTerm), TwoA);
2076  return std::make_pair(SCEVUnknown::get(Solution1),
2077                        SCEVUnknown::get(Solution2));
2078}
2079
2080/// HowFarToZero - Return the number of times a backedge comparing the specified
2081/// value to zero will execute.  If not computable, return UnknownValue
2082SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) {
2083  // If the value is a constant
2084  if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2085    // If the value is already zero, the branch will execute zero times.
2086    if (C->getValue()->isNullValue()) return C;
2087    return UnknownValue;  // Otherwise it will loop infinitely.
2088  }
2089
2090  SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
2091  if (!AddRec || AddRec->getLoop() != L)
2092    return UnknownValue;
2093
2094  if (AddRec->isAffine()) {
2095    // If this is an affine expression the execution count of this branch is
2096    // equal to:
2097    //
2098    //     (0 - Start/Step)    iff   Start % Step == 0
2099    //
2100    // Get the initial value for the loop.
2101    SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
2102    SCEVHandle Step = AddRec->getOperand(1);
2103
2104    Step = getSCEVAtScope(Step, L->getParentLoop());
2105
2106    // Figure out if Start % Step == 0.
2107    // FIXME: We should add DivExpr and RemExpr operations to our AST.
2108    if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
2109      if (StepC->getValue()->equalsInt(1))      // N % 1 == 0
2110        return getNegativeSCEV(Start);  // 0 - Start/1 == -Start
2111      if (StepC->getValue()->isAllOnesValue())  // N % -1 == 0
2112        return Start;                   // 0 - Start/-1 == Start
2113
2114      // Check to see if Start is divisible by SC with no remainder.
2115      if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
2116        ConstantInt *StartCC = StartC->getValue();
2117        Constant *StartNegC = ConstantExpr::getNeg(StartCC);
2118        Constant *Rem = ConstantExpr::getRem(StartNegC, StepC->getValue());
2119        if (Rem->isNullValue()) {
2120          Constant *Result =ConstantExpr::getDiv(StartNegC,StepC->getValue());
2121          return SCEVUnknown::get(Result);
2122        }
2123      }
2124    }
2125  } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
2126    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
2127    // the quadratic equation to solve it.
2128    std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec);
2129    SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2130    SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2131    if (R1) {
2132#if 0
2133      std::cerr << "HFTZ: " << *V << " - sol#1: " << *R1
2134                << "  sol#2: " << *R2 << "\n";
2135#endif
2136      // Pick the smallest positive root value.
2137      assert(R1->getType()->isUnsigned()&&"Didn't canonicalize to unsigned?");
2138      if (ConstantBool *CB =
2139          dyn_cast<ConstantBool>(ConstantExpr::getSetLT(R1->getValue(),
2140                                                        R2->getValue()))) {
2141        if (CB != ConstantBool::True)
2142          std::swap(R1, R2);   // R1 is the minimum root now.
2143
2144        // We can only use this value if the chrec ends up with an exact zero
2145        // value at this index.  When solving for "X*X != 5", for example, we
2146        // should not accept a root of 2.
2147        SCEVHandle Val = AddRec->evaluateAtIteration(R1);
2148        if (SCEVConstant *EvalVal = dyn_cast<SCEVConstant>(Val))
2149          if (EvalVal->getValue()->isNullValue())
2150            return R1;  // We found a quadratic root!
2151      }
2152    }
2153  }
2154
2155  return UnknownValue;
2156}
2157
2158/// HowFarToNonZero - Return the number of times a backedge checking the
2159/// specified value for nonzero will execute.  If not computable, return
2160/// UnknownValue
2161SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) {
2162  // Loops that look like: while (X == 0) are very strange indeed.  We don't
2163  // handle them yet except for the trivial case.  This could be expanded in the
2164  // future as needed.
2165
2166  // If the value is a constant, check to see if it is known to be non-zero
2167  // already.  If so, the backedge will execute zero times.
2168  if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2169    Constant *Zero = Constant::getNullValue(C->getValue()->getType());
2170    Constant *NonZero = ConstantExpr::getSetNE(C->getValue(), Zero);
2171    if (NonZero == ConstantBool::True)
2172      return getSCEV(Zero);
2173    return UnknownValue;  // Otherwise it will loop infinitely.
2174  }
2175
2176  // We could implement others, but I really doubt anyone writes loops like
2177  // this, and if they did, they would already be constant folded.
2178  return UnknownValue;
2179}
2180
2181static ConstantInt *
2182EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, Constant *C) {
2183  SCEVHandle InVal = SCEVConstant::get(cast<ConstantInt>(C));
2184  SCEVHandle Val = AddRec->evaluateAtIteration(InVal);
2185  assert(isa<SCEVConstant>(Val) &&
2186         "Evaluation of SCEV at constant didn't fold correctly?");
2187  return cast<SCEVConstant>(Val)->getValue();
2188}
2189
2190
2191/// getNumIterationsInRange - Return the number of iterations of this loop that
2192/// produce values in the specified constant range.  Another way of looking at
2193/// this is that it returns the first iteration number where the value is not in
2194/// the condition, thus computing the exit count. If the iteration count can't
2195/// be computed, an instance of SCEVCouldNotCompute is returned.
2196SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range) const {
2197  if (Range.isFullSet())  // Infinite loop.
2198    return new SCEVCouldNotCompute();
2199
2200  // If the start is a non-zero constant, shift the range to simplify things.
2201  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
2202    if (!SC->getValue()->isNullValue()) {
2203      std::vector<SCEVHandle> Operands(op_begin(), op_end());
2204      Operands[0] = getIntegerSCEV(0, SC->getType());
2205      SCEVHandle Shifted = SCEVAddRecExpr::get(Operands, getLoop());
2206      if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
2207        return ShiftedAddRec->getNumIterationsInRange(
2208                                              Range.subtract(SC->getValue()));
2209      // This is strange and shouldn't happen.
2210      return new SCEVCouldNotCompute();
2211    }
2212
2213  // The only time we can solve this is when we have all constant indices.
2214  // Otherwise, we cannot determine the overflow conditions.
2215  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2216    if (!isa<SCEVConstant>(getOperand(i)))
2217      return new SCEVCouldNotCompute();
2218
2219
2220  // Okay at this point we know that all elements of the chrec are constants and
2221  // that the start element is zero.
2222
2223  // First check to see if the range contains zero.  If not, the first
2224  // iteration exits.
2225  ConstantInt *Zero = ConstantInt::get(getType(), 0);
2226  if (!Range.contains(Zero)) return SCEVConstant::get(Zero);
2227
2228  if (isAffine()) {
2229    // If this is an affine expression then we have this situation:
2230    //   Solve {0,+,A} in Range  ===  Ax in Range
2231
2232    // Since we know that zero is in the range, we know that the upper value of
2233    // the range must be the first possible exit value.  Also note that we
2234    // already checked for a full range.
2235    ConstantInt *Upper = cast<ConstantInt>(Range.getUpper());
2236    ConstantInt *A     = cast<SCEVConstant>(getOperand(1))->getValue();
2237    ConstantInt *One   = ConstantInt::get(getType(), 1);
2238
2239    // The exit value should be (Upper+A-1)/A.
2240    Constant *ExitValue = Upper;
2241    if (A != One) {
2242      ExitValue = ConstantExpr::getSub(ConstantExpr::getAdd(Upper, A), One);
2243      ExitValue = ConstantExpr::getDiv(ExitValue, A);
2244    }
2245    assert(isa<ConstantInt>(ExitValue) &&
2246           "Constant folding of integers not implemented?");
2247
2248    // Evaluate at the exit value.  If we really did fall out of the valid
2249    // range, then we computed our trip count, otherwise wrap around or other
2250    // things must have happened.
2251    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue);
2252    if (Range.contains(Val))
2253      return new SCEVCouldNotCompute();  // Something strange happened
2254
2255    // Ensure that the previous value is in the range.  This is a sanity check.
2256    assert(Range.contains(EvaluateConstantChrecAtConstant(this,
2257                              ConstantExpr::getSub(ExitValue, One))) &&
2258           "Linear scev computation is off in a bad way!");
2259    return SCEVConstant::get(cast<ConstantInt>(ExitValue));
2260  } else if (isQuadratic()) {
2261    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
2262    // quadratic equation to solve it.  To do this, we must frame our problem in
2263    // terms of figuring out when zero is crossed, instead of when
2264    // Range.getUpper() is crossed.
2265    std::vector<SCEVHandle> NewOps(op_begin(), op_end());
2266    NewOps[0] = getNegativeSCEV(SCEVUnknown::get(Range.getUpper()));
2267    SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, getLoop());
2268
2269    // Next, solve the constructed addrec
2270    std::pair<SCEVHandle,SCEVHandle> Roots =
2271      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec));
2272    SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2273    SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2274    if (R1) {
2275      // Pick the smallest positive root value.
2276      assert(R1->getType()->isUnsigned() && "Didn't canonicalize to unsigned?");
2277      if (ConstantBool *CB =
2278          dyn_cast<ConstantBool>(ConstantExpr::getSetLT(R1->getValue(),
2279                                                        R2->getValue()))) {
2280        if (CB != ConstantBool::True)
2281          std::swap(R1, R2);   // R1 is the minimum root now.
2282
2283        // Make sure the root is not off by one.  The returned iteration should
2284        // not be in the range, but the previous one should be.  When solving
2285        // for "X*X < 5", for example, we should not return a root of 2.
2286        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
2287                                                             R1->getValue());
2288        if (Range.contains(R1Val)) {
2289          // The next iteration must be out of the range...
2290          Constant *NextVal =
2291            ConstantExpr::getAdd(R1->getValue(),
2292                                 ConstantInt::get(R1->getType(), 1));
2293
2294          R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
2295          if (!Range.contains(R1Val))
2296            return SCEVUnknown::get(NextVal);
2297          return new SCEVCouldNotCompute();  // Something strange happened
2298        }
2299
2300        // If R1 was not in the range, then it is a good return value.  Make
2301        // sure that R1-1 WAS in the range though, just in case.
2302        Constant *NextVal =
2303          ConstantExpr::getSub(R1->getValue(),
2304                               ConstantInt::get(R1->getType(), 1));
2305        R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
2306        if (Range.contains(R1Val))
2307          return R1;
2308        return new SCEVCouldNotCompute();  // Something strange happened
2309      }
2310    }
2311  }
2312
2313  // Fallback, if this is a general polynomial, figure out the progression
2314  // through brute force: evaluate until we find an iteration that fails the
2315  // test.  This is likely to be slow, but getting an accurate trip count is
2316  // incredibly important, we will be able to simplify the exit test a lot, and
2317  // we are almost guaranteed to get a trip count in this case.
2318  ConstantInt *TestVal = ConstantInt::get(getType(), 0);
2319  ConstantInt *One     = ConstantInt::get(getType(), 1);
2320  ConstantInt *EndVal  = TestVal;  // Stop when we wrap around.
2321  do {
2322    ++NumBruteForceEvaluations;
2323    SCEVHandle Val = evaluateAtIteration(SCEVConstant::get(TestVal));
2324    if (!isa<SCEVConstant>(Val))  // This shouldn't happen.
2325      return new SCEVCouldNotCompute();
2326
2327    // Check to see if we found the value!
2328    if (!Range.contains(cast<SCEVConstant>(Val)->getValue()))
2329      return SCEVConstant::get(TestVal);
2330
2331    // Increment to test the next index.
2332    TestVal = cast<ConstantInt>(ConstantExpr::getAdd(TestVal, One));
2333  } while (TestVal != EndVal);
2334
2335  return new SCEVCouldNotCompute();
2336}
2337
2338
2339
2340//===----------------------------------------------------------------------===//
2341//                   ScalarEvolution Class Implementation
2342//===----------------------------------------------------------------------===//
2343
2344bool ScalarEvolution::runOnFunction(Function &F) {
2345  Impl = new ScalarEvolutionsImpl(F, getAnalysis<LoopInfo>());
2346  return false;
2347}
2348
2349void ScalarEvolution::releaseMemory() {
2350  delete (ScalarEvolutionsImpl*)Impl;
2351  Impl = 0;
2352}
2353
2354void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
2355  AU.setPreservesAll();
2356  AU.addRequiredID(LoopSimplifyID);
2357  AU.addRequiredTransitive<LoopInfo>();
2358}
2359
2360SCEVHandle ScalarEvolution::getSCEV(Value *V) const {
2361  return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V);
2362}
2363
2364SCEVHandle ScalarEvolution::getIterationCount(const Loop *L) const {
2365  return ((ScalarEvolutionsImpl*)Impl)->getIterationCount(L);
2366}
2367
2368bool ScalarEvolution::hasLoopInvariantIterationCount(const Loop *L) const {
2369  return !isa<SCEVCouldNotCompute>(getIterationCount(L));
2370}
2371
2372SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const {
2373  return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L);
2374}
2375
2376void ScalarEvolution::deleteInstructionFromRecords(Instruction *I) const {
2377  return ((ScalarEvolutionsImpl*)Impl)->deleteInstructionFromRecords(I);
2378}
2379
2380
2381/// shouldSubstituteIndVar - Return true if we should perform induction variable
2382/// substitution for this variable.  This is a hack because we don't have a
2383/// strength reduction pass yet.  When we do we will promote all vars, because
2384/// we can strength reduce them later as desired.
2385bool ScalarEvolution::shouldSubstituteIndVar(const SCEV *S) const {
2386  // Don't substitute high degree polynomials.
2387  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S))
2388    if (AddRec->getNumOperands() > 3) return false;
2389  return true;
2390}
2391
2392
2393static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE,
2394                          const Loop *L) {
2395  // Print all inner loops first
2396  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
2397    PrintLoopInfo(OS, SE, *I);
2398
2399  std::cerr << "Loop " << L->getHeader()->getName() << ": ";
2400  if (L->getExitBlocks().size() != 1)
2401    std::cerr << "<multiple exits> ";
2402
2403  if (SE->hasLoopInvariantIterationCount(L)) {
2404    std::cerr << *SE->getIterationCount(L) << " iterations! ";
2405  } else {
2406    std::cerr << "Unpredictable iteration count. ";
2407  }
2408
2409  std::cerr << "\n";
2410}
2411
2412void ScalarEvolution::print(std::ostream &OS) const {
2413  Function &F = ((ScalarEvolutionsImpl*)Impl)->F;
2414  LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI;
2415
2416  OS << "Classifying expressions for: " << F.getName() << "\n";
2417  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
2418    if ((*I)->getType()->isInteger()) {
2419      OS << **I;
2420      OS << "  --> ";
2421      SCEVHandle SV = getSCEV(*I);
2422      SV->print(OS);
2423      OS << "\t\t";
2424
2425      if ((*I)->getType()->isIntegral()) {
2426        ConstantRange Bounds = SV->getValueRange();
2427        if (!Bounds.isFullSet())
2428          OS << "Bounds: " << Bounds << " ";
2429      }
2430
2431      if (const Loop *L = LI.getLoopFor((*I)->getParent())) {
2432        OS << "Exits: ";
2433        SCEVHandle ExitValue = getSCEVAtScope(*I, L->getParentLoop());
2434        if (isa<SCEVCouldNotCompute>(ExitValue)) {
2435          OS << "<<Unknown>>";
2436        } else {
2437          OS << *ExitValue;
2438        }
2439      }
2440
2441
2442      OS << "\n";
2443    }
2444
2445  OS << "Determining loop execution counts for: " << F.getName() << "\n";
2446  for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
2447    PrintLoopInfo(OS, this, *I);
2448}
2449
2450//===----------------------------------------------------------------------===//
2451//                ScalarEvolutionRewriter Class Implementation
2452//===----------------------------------------------------------------------===//
2453
2454Value *ScalarEvolutionRewriter::
2455GetOrInsertCanonicalInductionVariable(const Loop *L, const Type *Ty) {
2456  assert((Ty->isInteger() || Ty->isFloatingPoint()) &&
2457         "Can only insert integer or floating point induction variables!");
2458
2459  // Check to see if we already inserted one.
2460  SCEVHandle H = SCEVAddRecExpr::get(getIntegerSCEV(0, Ty),
2461                                     getIntegerSCEV(1, Ty), L);
2462  return ExpandCodeFor(H, 0, Ty);
2463}
2464
2465/// ExpandCodeFor - Insert code to directly compute the specified SCEV
2466/// expression into the program.  The inserted code is inserted into the
2467/// specified block.
2468Value *ScalarEvolutionRewriter::ExpandCodeFor(SCEVHandle SH,
2469                                              Instruction *InsertPt,
2470                                              const Type *Ty) {
2471  std::map<SCEVHandle, Value*>::iterator ExistVal =InsertedExpressions.find(SH);
2472  Value *V;
2473  if (ExistVal != InsertedExpressions.end()) {
2474    V = ExistVal->second;
2475  } else {
2476    // Ask the recurrence object to expand the code for itself.
2477    V = SH->expandCodeFor(*this, InsertPt);
2478    // Cache the generated result.
2479    InsertedExpressions.insert(std::make_pair(SH, V));
2480  }
2481
2482  if (Ty == 0 || V->getType() == Ty)
2483    return V;
2484  if (Constant *C = dyn_cast<Constant>(V))
2485    return ConstantExpr::getCast(C, Ty);
2486  else if (Instruction *I = dyn_cast<Instruction>(V)) {
2487    // FIXME: check to see if there is already a cast!
2488    BasicBlock::iterator IP = I; ++IP;
2489    if (InvokeInst *II = dyn_cast<InvokeInst>(I))
2490      IP = II->getNormalDest()->begin();
2491    while (isa<PHINode>(IP)) ++IP;
2492    return new CastInst(V, Ty, V->getName(), IP);
2493  } else {
2494    // FIXME: check to see if there is already a cast!
2495    return new CastInst(V, Ty, V->getName(), InsertPt);
2496  }
2497}
2498