ScalarEvolution.cpp revision 185cf0395c9d7d72ea12ce4d316a6cb2eab9115e
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle.  These classes are reference counted, managed by the SCEVHandle
18// class.  We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression.  These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
36// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43//  Chains of recurrences -- a method to expedite the evaluation
44//  of closed-form functions
45//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47//  On computational properties of chains of recurrences
48//  Eugene V. Zima
49//
50//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51//  Robert A. van Engelen
52//
53//  Efficient Symbolic Analysis for Optimizing Compilers
54//  Robert A. van Engelen
55//
56//  Using the chains of recurrences algebra for data dependence testing and
57//  induction variable substitution
58//  MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
62#define DEBUG_TYPE "scalar-evolution"
63#include "llvm/Analysis/ScalarEvolutionExpressions.h"
64#include "llvm/Constants.h"
65#include "llvm/DerivedTypes.h"
66#include "llvm/GlobalVariable.h"
67#include "llvm/Instructions.h"
68#include "llvm/Analysis/ConstantFolding.h"
69#include "llvm/Analysis/Dominators.h"
70#include "llvm/Analysis/LoopInfo.h"
71#include "llvm/Assembly/Writer.h"
72#include "llvm/Target/TargetData.h"
73#include "llvm/Support/CommandLine.h"
74#include "llvm/Support/Compiler.h"
75#include "llvm/Support/ConstantRange.h"
76#include "llvm/Support/GetElementPtrTypeIterator.h"
77#include "llvm/Support/InstIterator.h"
78#include "llvm/Support/ManagedStatic.h"
79#include "llvm/Support/MathExtras.h"
80#include "llvm/Support/raw_ostream.h"
81#include "llvm/ADT/Statistic.h"
82#include "llvm/ADT/STLExtras.h"
83#include <ostream>
84#include <algorithm>
85using namespace llvm;
86
87STATISTIC(NumArrayLenItCounts,
88          "Number of trip counts computed with array length");
89STATISTIC(NumTripCountsComputed,
90          "Number of loops with predictable loop counts");
91STATISTIC(NumTripCountsNotComputed,
92          "Number of loops without predictable loop counts");
93STATISTIC(NumBruteForceTripCountsComputed,
94          "Number of loops with trip counts computed by force");
95
96static cl::opt<unsigned>
97MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
98                        cl::desc("Maximum number of iterations SCEV will "
99                                 "symbolically execute a constant derived loop"),
100                        cl::init(100));
101
102static RegisterPass<ScalarEvolution>
103R("scalar-evolution", "Scalar Evolution Analysis", false, true);
104char ScalarEvolution::ID = 0;
105
106//===----------------------------------------------------------------------===//
107//                           SCEV class definitions
108//===----------------------------------------------------------------------===//
109
110//===----------------------------------------------------------------------===//
111// Implementation of the SCEV class.
112//
113SCEV::~SCEV() {}
114void SCEV::dump() const {
115  print(errs());
116  errs() << '\n';
117}
118
119void SCEV::print(std::ostream &o) const {
120  raw_os_ostream OS(o);
121  print(OS);
122}
123
124bool SCEV::isZero() const {
125  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
126    return SC->getValue()->isZero();
127  return false;
128}
129
130
131SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
132SCEVCouldNotCompute::~SCEVCouldNotCompute() {}
133
134bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
135  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
136  return false;
137}
138
139const Type *SCEVCouldNotCompute::getType() const {
140  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
141  return 0;
142}
143
144bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
145  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
146  return false;
147}
148
149SCEVHandle SCEVCouldNotCompute::
150replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
151                                  const SCEVHandle &Conc,
152                                  ScalarEvolution &SE) const {
153  return this;
154}
155
156void SCEVCouldNotCompute::print(raw_ostream &OS) const {
157  OS << "***COULDNOTCOMPUTE***";
158}
159
160bool SCEVCouldNotCompute::classof(const SCEV *S) {
161  return S->getSCEVType() == scCouldNotCompute;
162}
163
164
165// SCEVConstants - Only allow the creation of one SCEVConstant for any
166// particular value.  Don't use a SCEVHandle here, or else the object will
167// never be deleted!
168static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
169
170
171SCEVConstant::~SCEVConstant() {
172  SCEVConstants->erase(V);
173}
174
175SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) {
176  SCEVConstant *&R = (*SCEVConstants)[V];
177  if (R == 0) R = new SCEVConstant(V);
178  return R;
179}
180
181SCEVHandle ScalarEvolution::getConstant(const APInt& Val) {
182  return getConstant(ConstantInt::get(Val));
183}
184
185const Type *SCEVConstant::getType() const { return V->getType(); }
186
187void SCEVConstant::print(raw_ostream &OS) const {
188  WriteAsOperand(OS, V, false);
189}
190
191SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy,
192                           const SCEVHandle &op, const Type *ty)
193  : SCEV(SCEVTy), Op(op), Ty(ty) {}
194
195SCEVCastExpr::~SCEVCastExpr() {}
196
197bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
198  return Op->dominates(BB, DT);
199}
200
201// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
202// particular input.  Don't use a SCEVHandle here, or else the object will
203// never be deleted!
204static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
205                     SCEVTruncateExpr*> > SCEVTruncates;
206
207SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
208  : SCEVCastExpr(scTruncate, op, ty) {
209  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
210         (Ty->isInteger() || isa<PointerType>(Ty)) &&
211         "Cannot truncate non-integer value!");
212}
213
214SCEVTruncateExpr::~SCEVTruncateExpr() {
215  SCEVTruncates->erase(std::make_pair(Op, Ty));
216}
217
218void SCEVTruncateExpr::print(raw_ostream &OS) const {
219  OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
220}
221
222// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
223// particular input.  Don't use a SCEVHandle here, or else the object will never
224// be deleted!
225static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
226                     SCEVZeroExtendExpr*> > SCEVZeroExtends;
227
228SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
229  : SCEVCastExpr(scZeroExtend, op, ty) {
230  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
231         (Ty->isInteger() || isa<PointerType>(Ty)) &&
232         "Cannot zero extend non-integer value!");
233}
234
235SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
236  SCEVZeroExtends->erase(std::make_pair(Op, Ty));
237}
238
239void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
240  OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
241}
242
243// SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any
244// particular input.  Don't use a SCEVHandle here, or else the object will never
245// be deleted!
246static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
247                     SCEVSignExtendExpr*> > SCEVSignExtends;
248
249SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty)
250  : SCEVCastExpr(scSignExtend, op, ty) {
251  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
252         (Ty->isInteger() || isa<PointerType>(Ty)) &&
253         "Cannot sign extend non-integer value!");
254}
255
256SCEVSignExtendExpr::~SCEVSignExtendExpr() {
257  SCEVSignExtends->erase(std::make_pair(Op, Ty));
258}
259
260void SCEVSignExtendExpr::print(raw_ostream &OS) const {
261  OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
262}
263
264// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
265// particular input.  Don't use a SCEVHandle here, or else the object will never
266// be deleted!
267static ManagedStatic<std::map<std::pair<unsigned, std::vector<const SCEV*> >,
268                     SCEVCommutativeExpr*> > SCEVCommExprs;
269
270SCEVCommutativeExpr::~SCEVCommutativeExpr() {
271  std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
272  SCEVCommExprs->erase(std::make_pair(getSCEVType(), SCEVOps));
273}
274
275void SCEVCommutativeExpr::print(raw_ostream &OS) const {
276  assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
277  const char *OpStr = getOperationStr();
278  OS << "(" << *Operands[0];
279  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
280    OS << OpStr << *Operands[i];
281  OS << ")";
282}
283
284SCEVHandle SCEVCommutativeExpr::
285replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
286                                  const SCEVHandle &Conc,
287                                  ScalarEvolution &SE) const {
288  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
289    SCEVHandle H =
290      getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
291    if (H != getOperand(i)) {
292      std::vector<SCEVHandle> NewOps;
293      NewOps.reserve(getNumOperands());
294      for (unsigned j = 0; j != i; ++j)
295        NewOps.push_back(getOperand(j));
296      NewOps.push_back(H);
297      for (++i; i != e; ++i)
298        NewOps.push_back(getOperand(i)->
299                         replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
300
301      if (isa<SCEVAddExpr>(this))
302        return SE.getAddExpr(NewOps);
303      else if (isa<SCEVMulExpr>(this))
304        return SE.getMulExpr(NewOps);
305      else if (isa<SCEVSMaxExpr>(this))
306        return SE.getSMaxExpr(NewOps);
307      else if (isa<SCEVUMaxExpr>(this))
308        return SE.getUMaxExpr(NewOps);
309      else
310        assert(0 && "Unknown commutative expr!");
311    }
312  }
313  return this;
314}
315
316bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
317  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
318    if (!getOperand(i)->dominates(BB, DT))
319      return false;
320  }
321  return true;
322}
323
324
325// SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
326// input.  Don't use a SCEVHandle here, or else the object will never be
327// deleted!
328static ManagedStatic<std::map<std::pair<const SCEV*, const SCEV*>,
329                     SCEVUDivExpr*> > SCEVUDivs;
330
331SCEVUDivExpr::~SCEVUDivExpr() {
332  SCEVUDivs->erase(std::make_pair(LHS, RHS));
333}
334
335bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
336  return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
337}
338
339void SCEVUDivExpr::print(raw_ostream &OS) const {
340  OS << "(" << *LHS << " /u " << *RHS << ")";
341}
342
343const Type *SCEVUDivExpr::getType() const {
344  return LHS->getType();
345}
346
347// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
348// particular input.  Don't use a SCEVHandle here, or else the object will never
349// be deleted!
350static ManagedStatic<std::map<std::pair<const Loop *,
351                                        std::vector<const SCEV*> >,
352                     SCEVAddRecExpr*> > SCEVAddRecExprs;
353
354SCEVAddRecExpr::~SCEVAddRecExpr() {
355  std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
356  SCEVAddRecExprs->erase(std::make_pair(L, SCEVOps));
357}
358
359SCEVHandle SCEVAddRecExpr::
360replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
361                                  const SCEVHandle &Conc,
362                                  ScalarEvolution &SE) const {
363  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
364    SCEVHandle H =
365      getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
366    if (H != getOperand(i)) {
367      std::vector<SCEVHandle> NewOps;
368      NewOps.reserve(getNumOperands());
369      for (unsigned j = 0; j != i; ++j)
370        NewOps.push_back(getOperand(j));
371      NewOps.push_back(H);
372      for (++i; i != e; ++i)
373        NewOps.push_back(getOperand(i)->
374                         replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
375
376      return SE.getAddRecExpr(NewOps, L);
377    }
378  }
379  return this;
380}
381
382
383bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
384  // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
385  // contain L and if the start is invariant.
386  return !QueryLoop->contains(L->getHeader()) &&
387         getOperand(0)->isLoopInvariant(QueryLoop);
388}
389
390
391void SCEVAddRecExpr::print(raw_ostream &OS) const {
392  OS << "{" << *Operands[0];
393  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
394    OS << ",+," << *Operands[i];
395  OS << "}<" << L->getHeader()->getName() + ">";
396}
397
398// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
399// value.  Don't use a SCEVHandle here, or else the object will never be
400// deleted!
401static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
402
403SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
404
405bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
406  // All non-instruction values are loop invariant.  All instructions are loop
407  // invariant if they are not contained in the specified loop.
408  if (Instruction *I = dyn_cast<Instruction>(V))
409    return !L->contains(I->getParent());
410  return true;
411}
412
413bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
414  if (Instruction *I = dyn_cast<Instruction>(getValue()))
415    return DT->dominates(I->getParent(), BB);
416  return true;
417}
418
419const Type *SCEVUnknown::getType() const {
420  return V->getType();
421}
422
423void SCEVUnknown::print(raw_ostream &OS) const {
424  WriteAsOperand(OS, V, false);
425}
426
427//===----------------------------------------------------------------------===//
428//                               SCEV Utilities
429//===----------------------------------------------------------------------===//
430
431namespace {
432  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
433  /// than the complexity of the RHS.  This comparator is used to canonicalize
434  /// expressions.
435  class VISIBILITY_HIDDEN SCEVComplexityCompare {
436    LoopInfo *LI;
437  public:
438    explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
439
440    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
441      // Primarily, sort the SCEVs by their getSCEVType().
442      if (LHS->getSCEVType() != RHS->getSCEVType())
443        return LHS->getSCEVType() < RHS->getSCEVType();
444
445      // Aside from the getSCEVType() ordering, the particular ordering
446      // isn't very important except that it's beneficial to be consistent,
447      // so that (a + b) and (b + a) don't end up as different expressions.
448
449      // Sort SCEVUnknown values with some loose heuristics. TODO: This is
450      // not as complete as it could be.
451      if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
452        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
453
454        // Compare getValueID values.
455        if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
456          return LU->getValue()->getValueID() < RU->getValue()->getValueID();
457
458        // Sort arguments by their position.
459        if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
460          const Argument *RA = cast<Argument>(RU->getValue());
461          return LA->getArgNo() < RA->getArgNo();
462        }
463
464        // For instructions, compare their loop depth, and their opcode.
465        // This is pretty loose.
466        if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
467          Instruction *RV = cast<Instruction>(RU->getValue());
468
469          // Compare loop depths.
470          if (LI->getLoopDepth(LV->getParent()) !=
471              LI->getLoopDepth(RV->getParent()))
472            return LI->getLoopDepth(LV->getParent()) <
473                   LI->getLoopDepth(RV->getParent());
474
475          // Compare opcodes.
476          if (LV->getOpcode() != RV->getOpcode())
477            return LV->getOpcode() < RV->getOpcode();
478
479          // Compare the number of operands.
480          if (LV->getNumOperands() != RV->getNumOperands())
481            return LV->getNumOperands() < RV->getNumOperands();
482        }
483
484        return false;
485      }
486
487      // Constant sorting doesn't matter since they'll be folded.
488      if (isa<SCEVConstant>(LHS))
489        return false;
490
491      // Lexicographically compare n-ary expressions.
492      if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
493        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
494        for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
495          if (i >= RC->getNumOperands())
496            return false;
497          if (operator()(LC->getOperand(i), RC->getOperand(i)))
498            return true;
499          if (operator()(RC->getOperand(i), LC->getOperand(i)))
500            return false;
501        }
502        return LC->getNumOperands() < RC->getNumOperands();
503      }
504
505      // Lexicographically compare udiv expressions.
506      if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
507        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
508        if (operator()(LC->getLHS(), RC->getLHS()))
509          return true;
510        if (operator()(RC->getLHS(), LC->getLHS()))
511          return false;
512        if (operator()(LC->getRHS(), RC->getRHS()))
513          return true;
514        if (operator()(RC->getRHS(), LC->getRHS()))
515          return false;
516        return false;
517      }
518
519      // Compare cast expressions by operand.
520      if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
521        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
522        return operator()(LC->getOperand(), RC->getOperand());
523      }
524
525      assert(0 && "Unknown SCEV kind!");
526      return false;
527    }
528  };
529}
530
531/// GroupByComplexity - Given a list of SCEV objects, order them by their
532/// complexity, and group objects of the same complexity together by value.
533/// When this routine is finished, we know that any duplicates in the vector are
534/// consecutive and that complexity is monotonically increasing.
535///
536/// Note that we go take special precautions to ensure that we get determinstic
537/// results from this routine.  In other words, we don't want the results of
538/// this to depend on where the addresses of various SCEV objects happened to
539/// land in memory.
540///
541static void GroupByComplexity(std::vector<SCEVHandle> &Ops,
542                              LoopInfo *LI) {
543  if (Ops.size() < 2) return;  // Noop
544  if (Ops.size() == 2) {
545    // This is the common case, which also happens to be trivially simple.
546    // Special case it.
547    if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
548      std::swap(Ops[0], Ops[1]);
549    return;
550  }
551
552  // Do the rough sort by complexity.
553  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
554
555  // Now that we are sorted by complexity, group elements of the same
556  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
557  // be extremely short in practice.  Note that we take this approach because we
558  // do not want to depend on the addresses of the objects we are grouping.
559  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
560    const SCEV *S = Ops[i];
561    unsigned Complexity = S->getSCEVType();
562
563    // If there are any objects of the same complexity and same value as this
564    // one, group them.
565    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
566      if (Ops[j] == S) { // Found a duplicate.
567        // Move it to immediately after i'th element.
568        std::swap(Ops[i+1], Ops[j]);
569        ++i;   // no need to rescan it.
570        if (i == e-2) return;  // Done!
571      }
572    }
573  }
574}
575
576
577
578//===----------------------------------------------------------------------===//
579//                      Simple SCEV method implementations
580//===----------------------------------------------------------------------===//
581
582/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
583// Assume, K > 0.
584static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K,
585                                      ScalarEvolution &SE,
586                                      const Type* ResultTy) {
587  // Handle the simplest case efficiently.
588  if (K == 1)
589    return SE.getTruncateOrZeroExtend(It, ResultTy);
590
591  // We are using the following formula for BC(It, K):
592  //
593  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
594  //
595  // Suppose, W is the bitwidth of the return value.  We must be prepared for
596  // overflow.  Hence, we must assure that the result of our computation is
597  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
598  // safe in modular arithmetic.
599  //
600  // However, this code doesn't use exactly that formula; the formula it uses
601  // is something like the following, where T is the number of factors of 2 in
602  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
603  // exponentiation:
604  //
605  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
606  //
607  // This formula is trivially equivalent to the previous formula.  However,
608  // this formula can be implemented much more efficiently.  The trick is that
609  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
610  // arithmetic.  To do exact division in modular arithmetic, all we have
611  // to do is multiply by the inverse.  Therefore, this step can be done at
612  // width W.
613  //
614  // The next issue is how to safely do the division by 2^T.  The way this
615  // is done is by doing the multiplication step at a width of at least W + T
616  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
617  // when we perform the division by 2^T (which is equivalent to a right shift
618  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
619  // truncated out after the division by 2^T.
620  //
621  // In comparison to just directly using the first formula, this technique
622  // is much more efficient; using the first formula requires W * K bits,
623  // but this formula less than W + K bits. Also, the first formula requires
624  // a division step, whereas this formula only requires multiplies and shifts.
625  //
626  // It doesn't matter whether the subtraction step is done in the calculation
627  // width or the input iteration count's width; if the subtraction overflows,
628  // the result must be zero anyway.  We prefer here to do it in the width of
629  // the induction variable because it helps a lot for certain cases; CodeGen
630  // isn't smart enough to ignore the overflow, which leads to much less
631  // efficient code if the width of the subtraction is wider than the native
632  // register width.
633  //
634  // (It's possible to not widen at all by pulling out factors of 2 before
635  // the multiplication; for example, K=2 can be calculated as
636  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
637  // extra arithmetic, so it's not an obvious win, and it gets
638  // much more complicated for K > 3.)
639
640  // Protection from insane SCEVs; this bound is conservative,
641  // but it probably doesn't matter.
642  if (K > 1000)
643    return SE.getCouldNotCompute();
644
645  unsigned W = SE.getTypeSizeInBits(ResultTy);
646
647  // Calculate K! / 2^T and T; we divide out the factors of two before
648  // multiplying for calculating K! / 2^T to avoid overflow.
649  // Other overflow doesn't matter because we only care about the bottom
650  // W bits of the result.
651  APInt OddFactorial(W, 1);
652  unsigned T = 1;
653  for (unsigned i = 3; i <= K; ++i) {
654    APInt Mult(W, i);
655    unsigned TwoFactors = Mult.countTrailingZeros();
656    T += TwoFactors;
657    Mult = Mult.lshr(TwoFactors);
658    OddFactorial *= Mult;
659  }
660
661  // We need at least W + T bits for the multiplication step
662  unsigned CalculationBits = W + T;
663
664  // Calcuate 2^T, at width T+W.
665  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
666
667  // Calculate the multiplicative inverse of K! / 2^T;
668  // this multiplication factor will perform the exact division by
669  // K! / 2^T.
670  APInt Mod = APInt::getSignedMinValue(W+1);
671  APInt MultiplyFactor = OddFactorial.zext(W+1);
672  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
673  MultiplyFactor = MultiplyFactor.trunc(W);
674
675  // Calculate the product, at width T+W
676  const IntegerType *CalculationTy = IntegerType::get(CalculationBits);
677  SCEVHandle Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
678  for (unsigned i = 1; i != K; ++i) {
679    SCEVHandle S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
680    Dividend = SE.getMulExpr(Dividend,
681                             SE.getTruncateOrZeroExtend(S, CalculationTy));
682  }
683
684  // Divide by 2^T
685  SCEVHandle DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
686
687  // Truncate the result, and divide by K! / 2^T.
688
689  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
690                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
691}
692
693/// evaluateAtIteration - Return the value of this chain of recurrences at
694/// the specified iteration number.  We can evaluate this recurrence by
695/// multiplying each element in the chain by the binomial coefficient
696/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
697///
698///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
699///
700/// where BC(It, k) stands for binomial coefficient.
701///
702SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It,
703                                               ScalarEvolution &SE) const {
704  SCEVHandle Result = getStart();
705  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
706    // The computation is correct in the face of overflow provided that the
707    // multiplication is performed _after_ the evaluation of the binomial
708    // coefficient.
709    SCEVHandle Coeff = BinomialCoefficient(It, i, SE, getType());
710    if (isa<SCEVCouldNotCompute>(Coeff))
711      return Coeff;
712
713    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
714  }
715  return Result;
716}
717
718//===----------------------------------------------------------------------===//
719//                    SCEV Expression folder implementations
720//===----------------------------------------------------------------------===//
721
722SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op,
723                                            const Type *Ty) {
724  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
725         "This is not a truncating conversion!");
726  assert(isSCEVable(Ty) &&
727         "This is not a conversion to a SCEVable type!");
728  Ty = getEffectiveSCEVType(Ty);
729
730  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
731    return getUnknown(
732        ConstantExpr::getTrunc(SC->getValue(), Ty));
733
734  // trunc(trunc(x)) --> trunc(x)
735  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
736    return getTruncateExpr(ST->getOperand(), Ty);
737
738  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
739  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
740    return getTruncateOrSignExtend(SS->getOperand(), Ty);
741
742  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
743  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
744    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
745
746  // If the input value is a chrec scev made out of constants, truncate
747  // all of the constants.
748  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
749    std::vector<SCEVHandle> Operands;
750    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
751      // FIXME: This should allow truncation of other expression types!
752      if (isa<SCEVConstant>(AddRec->getOperand(i)))
753        Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
754      else
755        break;
756    if (Operands.size() == AddRec->getNumOperands())
757      return getAddRecExpr(Operands, AddRec->getLoop());
758  }
759
760  SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
761  if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
762  return Result;
763}
764
765SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op,
766                                              const Type *Ty) {
767  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
768         "This is not an extending conversion!");
769  assert(isSCEVable(Ty) &&
770         "This is not a conversion to a SCEVable type!");
771  Ty = getEffectiveSCEVType(Ty);
772
773  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
774    const Type *IntTy = getEffectiveSCEVType(Ty);
775    Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
776    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
777    return getUnknown(C);
778  }
779
780  // zext(zext(x)) --> zext(x)
781  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
782    return getZeroExtendExpr(SZ->getOperand(), Ty);
783
784  // If the input value is a chrec scev, and we can prove that the value
785  // did not overflow the old, smaller, value, we can zero extend all of the
786  // operands (often constants).  This allows analysis of something like
787  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
788  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
789    if (AR->isAffine()) {
790      // Check whether the backedge-taken count is SCEVCouldNotCompute.
791      // Note that this serves two purposes: It filters out loops that are
792      // simply not analyzable, and it covers the case where this code is
793      // being called from within backedge-taken count analysis, such that
794      // attempting to ask for the backedge-taken count would likely result
795      // in infinite recursion. In the later case, the analysis code will
796      // cope with a conservative value, and it will take care to purge
797      // that value once it has finished.
798      SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
799      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
800        // Manually compute the final value for AR, checking for
801        // overflow.
802        SCEVHandle Start = AR->getStart();
803        SCEVHandle Step = AR->getStepRecurrence(*this);
804
805        // Check whether the backedge-taken count can be losslessly casted to
806        // the addrec's type. The count is always unsigned.
807        SCEVHandle CastedMaxBECount =
808          getTruncateOrZeroExtend(MaxBECount, Start->getType());
809        if (MaxBECount ==
810            getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType())) {
811          const Type *WideTy =
812            IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
813          // Check whether Start+Step*MaxBECount has no unsigned overflow.
814          SCEVHandle ZMul =
815            getMulExpr(CastedMaxBECount,
816                       getTruncateOrZeroExtend(Step, Start->getType()));
817          SCEVHandle Add = getAddExpr(Start, ZMul);
818          if (getZeroExtendExpr(Add, WideTy) ==
819              getAddExpr(getZeroExtendExpr(Start, WideTy),
820                         getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
821                                    getZeroExtendExpr(Step, WideTy))))
822            // Return the expression with the addrec on the outside.
823            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
824                                 getZeroExtendExpr(Step, Ty),
825                                 AR->getLoop());
826
827          // Similar to above, only this time treat the step value as signed.
828          // This covers loops that count down.
829          SCEVHandle SMul =
830            getMulExpr(CastedMaxBECount,
831                       getTruncateOrSignExtend(Step, Start->getType()));
832          Add = getAddExpr(Start, SMul);
833          if (getZeroExtendExpr(Add, WideTy) ==
834              getAddExpr(getZeroExtendExpr(Start, WideTy),
835                         getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
836                                    getSignExtendExpr(Step, WideTy))))
837            // Return the expression with the addrec on the outside.
838            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
839                                 getSignExtendExpr(Step, Ty),
840                                 AR->getLoop());
841        }
842      }
843    }
844
845  SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
846  if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
847  return Result;
848}
849
850SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op,
851                                              const Type *Ty) {
852  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
853         "This is not an extending conversion!");
854  assert(isSCEVable(Ty) &&
855         "This is not a conversion to a SCEVable type!");
856  Ty = getEffectiveSCEVType(Ty);
857
858  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
859    const Type *IntTy = getEffectiveSCEVType(Ty);
860    Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
861    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
862    return getUnknown(C);
863  }
864
865  // sext(sext(x)) --> sext(x)
866  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
867    return getSignExtendExpr(SS->getOperand(), Ty);
868
869  // If the input value is a chrec scev, and we can prove that the value
870  // did not overflow the old, smaller, value, we can sign extend all of the
871  // operands (often constants).  This allows analysis of something like
872  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
873  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
874    if (AR->isAffine()) {
875      // Check whether the backedge-taken count is SCEVCouldNotCompute.
876      // Note that this serves two purposes: It filters out loops that are
877      // simply not analyzable, and it covers the case where this code is
878      // being called from within backedge-taken count analysis, such that
879      // attempting to ask for the backedge-taken count would likely result
880      // in infinite recursion. In the later case, the analysis code will
881      // cope with a conservative value, and it will take care to purge
882      // that value once it has finished.
883      SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
884      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
885        // Manually compute the final value for AR, checking for
886        // overflow.
887        SCEVHandle Start = AR->getStart();
888        SCEVHandle Step = AR->getStepRecurrence(*this);
889
890        // Check whether the backedge-taken count can be losslessly casted to
891        // the addrec's type. The count is always unsigned.
892        SCEVHandle CastedMaxBECount =
893          getTruncateOrZeroExtend(MaxBECount, Start->getType());
894        if (MaxBECount ==
895            getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType())) {
896          const Type *WideTy =
897            IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
898          // Check whether Start+Step*MaxBECount has no signed overflow.
899          SCEVHandle SMul =
900            getMulExpr(CastedMaxBECount,
901                       getTruncateOrSignExtend(Step, Start->getType()));
902          SCEVHandle Add = getAddExpr(Start, SMul);
903          if (getSignExtendExpr(Add, WideTy) ==
904              getAddExpr(getSignExtendExpr(Start, WideTy),
905                         getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
906                                    getSignExtendExpr(Step, WideTy))))
907            // Return the expression with the addrec on the outside.
908            return getAddRecExpr(getSignExtendExpr(Start, Ty),
909                                 getSignExtendExpr(Step, Ty),
910                                 AR->getLoop());
911        }
912      }
913    }
914
915  SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)];
916  if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty);
917  return Result;
918}
919
920// get - Get a canonical add expression, or something simpler if possible.
921SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) {
922  assert(!Ops.empty() && "Cannot get empty add!");
923  if (Ops.size() == 1) return Ops[0];
924
925  // Sort by complexity, this groups all similar expression types together.
926  GroupByComplexity(Ops, LI);
927
928  // If there are any constants, fold them together.
929  unsigned Idx = 0;
930  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
931    ++Idx;
932    assert(Idx < Ops.size());
933    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
934      // We found two constants, fold them together!
935      ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() +
936                                           RHSC->getValue()->getValue());
937      Ops[0] = getConstant(Fold);
938      Ops.erase(Ops.begin()+1);  // Erase the folded element
939      if (Ops.size() == 1) return Ops[0];
940      LHSC = cast<SCEVConstant>(Ops[0]);
941    }
942
943    // If we are left with a constant zero being added, strip it off.
944    if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
945      Ops.erase(Ops.begin());
946      --Idx;
947    }
948  }
949
950  if (Ops.size() == 1) return Ops[0];
951
952  // Okay, check to see if the same value occurs in the operand list twice.  If
953  // so, merge them together into an multiply expression.  Since we sorted the
954  // list, these values are required to be adjacent.
955  const Type *Ty = Ops[0]->getType();
956  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
957    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
958      // Found a match, merge the two values into a multiply, and add any
959      // remaining values to the result.
960      SCEVHandle Two = getIntegerSCEV(2, Ty);
961      SCEVHandle Mul = getMulExpr(Ops[i], Two);
962      if (Ops.size() == 2)
963        return Mul;
964      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
965      Ops.push_back(Mul);
966      return getAddExpr(Ops);
967    }
968
969  // Now we know the first non-constant operand.  Skip past any cast SCEVs.
970  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
971    ++Idx;
972
973  // If there are add operands they would be next.
974  if (Idx < Ops.size()) {
975    bool DeletedAdd = false;
976    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
977      // If we have an add, expand the add operands onto the end of the operands
978      // list.
979      Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
980      Ops.erase(Ops.begin()+Idx);
981      DeletedAdd = true;
982    }
983
984    // If we deleted at least one add, we added operands to the end of the list,
985    // and they are not necessarily sorted.  Recurse to resort and resimplify
986    // any operands we just aquired.
987    if (DeletedAdd)
988      return getAddExpr(Ops);
989  }
990
991  // Skip over the add expression until we get to a multiply.
992  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
993    ++Idx;
994
995  // If we are adding something to a multiply expression, make sure the
996  // something is not already an operand of the multiply.  If so, merge it into
997  // the multiply.
998  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
999    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1000    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1001      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1002      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1003        if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
1004          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1005          SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
1006          if (Mul->getNumOperands() != 2) {
1007            // If the multiply has more than two operands, we must get the
1008            // Y*Z term.
1009            std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
1010            MulOps.erase(MulOps.begin()+MulOp);
1011            InnerMul = getMulExpr(MulOps);
1012          }
1013          SCEVHandle One = getIntegerSCEV(1, Ty);
1014          SCEVHandle AddOne = getAddExpr(InnerMul, One);
1015          SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]);
1016          if (Ops.size() == 2) return OuterMul;
1017          if (AddOp < Idx) {
1018            Ops.erase(Ops.begin()+AddOp);
1019            Ops.erase(Ops.begin()+Idx-1);
1020          } else {
1021            Ops.erase(Ops.begin()+Idx);
1022            Ops.erase(Ops.begin()+AddOp-1);
1023          }
1024          Ops.push_back(OuterMul);
1025          return getAddExpr(Ops);
1026        }
1027
1028      // Check this multiply against other multiplies being added together.
1029      for (unsigned OtherMulIdx = Idx+1;
1030           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1031           ++OtherMulIdx) {
1032        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1033        // If MulOp occurs in OtherMul, we can fold the two multiplies
1034        // together.
1035        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1036             OMulOp != e; ++OMulOp)
1037          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1038            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1039            SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
1040            if (Mul->getNumOperands() != 2) {
1041              std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
1042              MulOps.erase(MulOps.begin()+MulOp);
1043              InnerMul1 = getMulExpr(MulOps);
1044            }
1045            SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1046            if (OtherMul->getNumOperands() != 2) {
1047              std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
1048                                             OtherMul->op_end());
1049              MulOps.erase(MulOps.begin()+OMulOp);
1050              InnerMul2 = getMulExpr(MulOps);
1051            }
1052            SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1053            SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1054            if (Ops.size() == 2) return OuterMul;
1055            Ops.erase(Ops.begin()+Idx);
1056            Ops.erase(Ops.begin()+OtherMulIdx-1);
1057            Ops.push_back(OuterMul);
1058            return getAddExpr(Ops);
1059          }
1060      }
1061    }
1062  }
1063
1064  // If there are any add recurrences in the operands list, see if any other
1065  // added values are loop invariant.  If so, we can fold them into the
1066  // recurrence.
1067  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1068    ++Idx;
1069
1070  // Scan over all recurrences, trying to fold loop invariants into them.
1071  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1072    // Scan all of the other operands to this add and add them to the vector if
1073    // they are loop invariant w.r.t. the recurrence.
1074    std::vector<SCEVHandle> LIOps;
1075    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1076    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1077      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1078        LIOps.push_back(Ops[i]);
1079        Ops.erase(Ops.begin()+i);
1080        --i; --e;
1081      }
1082
1083    // If we found some loop invariants, fold them into the recurrence.
1084    if (!LIOps.empty()) {
1085      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1086      LIOps.push_back(AddRec->getStart());
1087
1088      std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
1089      AddRecOps[0] = getAddExpr(LIOps);
1090
1091      SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
1092      // If all of the other operands were loop invariant, we are done.
1093      if (Ops.size() == 1) return NewRec;
1094
1095      // Otherwise, add the folded AddRec by the non-liv parts.
1096      for (unsigned i = 0;; ++i)
1097        if (Ops[i] == AddRec) {
1098          Ops[i] = NewRec;
1099          break;
1100        }
1101      return getAddExpr(Ops);
1102    }
1103
1104    // Okay, if there weren't any loop invariants to be folded, check to see if
1105    // there are multiple AddRec's with the same loop induction variable being
1106    // added together.  If so, we can fold them.
1107    for (unsigned OtherIdx = Idx+1;
1108         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1109      if (OtherIdx != Idx) {
1110        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1111        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1112          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
1113          std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
1114          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1115            if (i >= NewOps.size()) {
1116              NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1117                            OtherAddRec->op_end());
1118              break;
1119            }
1120            NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
1121          }
1122          SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
1123
1124          if (Ops.size() == 2) return NewAddRec;
1125
1126          Ops.erase(Ops.begin()+Idx);
1127          Ops.erase(Ops.begin()+OtherIdx-1);
1128          Ops.push_back(NewAddRec);
1129          return getAddExpr(Ops);
1130        }
1131      }
1132
1133    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1134    // next one.
1135  }
1136
1137  // Okay, it looks like we really DO need an add expr.  Check to see if we
1138  // already have one, otherwise create a new one.
1139  std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1140  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
1141                                                                 SCEVOps)];
1142  if (Result == 0) Result = new SCEVAddExpr(Ops);
1143  return Result;
1144}
1145
1146
1147SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) {
1148  assert(!Ops.empty() && "Cannot get empty mul!");
1149
1150  // Sort by complexity, this groups all similar expression types together.
1151  GroupByComplexity(Ops, LI);
1152
1153  // If there are any constants, fold them together.
1154  unsigned Idx = 0;
1155  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1156
1157    // C1*(C2+V) -> C1*C2 + C1*V
1158    if (Ops.size() == 2)
1159      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1160        if (Add->getNumOperands() == 2 &&
1161            isa<SCEVConstant>(Add->getOperand(0)))
1162          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1163                            getMulExpr(LHSC, Add->getOperand(1)));
1164
1165
1166    ++Idx;
1167    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1168      // We found two constants, fold them together!
1169      ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() *
1170                                           RHSC->getValue()->getValue());
1171      Ops[0] = getConstant(Fold);
1172      Ops.erase(Ops.begin()+1);  // Erase the folded element
1173      if (Ops.size() == 1) return Ops[0];
1174      LHSC = cast<SCEVConstant>(Ops[0]);
1175    }
1176
1177    // If we are left with a constant one being multiplied, strip it off.
1178    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1179      Ops.erase(Ops.begin());
1180      --Idx;
1181    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1182      // If we have a multiply of zero, it will always be zero.
1183      return Ops[0];
1184    }
1185  }
1186
1187  // Skip over the add expression until we get to a multiply.
1188  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1189    ++Idx;
1190
1191  if (Ops.size() == 1)
1192    return Ops[0];
1193
1194  // If there are mul operands inline them all into this expression.
1195  if (Idx < Ops.size()) {
1196    bool DeletedMul = false;
1197    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1198      // If we have an mul, expand the mul operands onto the end of the operands
1199      // list.
1200      Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1201      Ops.erase(Ops.begin()+Idx);
1202      DeletedMul = true;
1203    }
1204
1205    // If we deleted at least one mul, we added operands to the end of the list,
1206    // and they are not necessarily sorted.  Recurse to resort and resimplify
1207    // any operands we just aquired.
1208    if (DeletedMul)
1209      return getMulExpr(Ops);
1210  }
1211
1212  // If there are any add recurrences in the operands list, see if any other
1213  // added values are loop invariant.  If so, we can fold them into the
1214  // recurrence.
1215  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1216    ++Idx;
1217
1218  // Scan over all recurrences, trying to fold loop invariants into them.
1219  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1220    // Scan all of the other operands to this mul and add them to the vector if
1221    // they are loop invariant w.r.t. the recurrence.
1222    std::vector<SCEVHandle> LIOps;
1223    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1224    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1225      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1226        LIOps.push_back(Ops[i]);
1227        Ops.erase(Ops.begin()+i);
1228        --i; --e;
1229      }
1230
1231    // If we found some loop invariants, fold them into the recurrence.
1232    if (!LIOps.empty()) {
1233      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1234      std::vector<SCEVHandle> NewOps;
1235      NewOps.reserve(AddRec->getNumOperands());
1236      if (LIOps.size() == 1) {
1237        const SCEV *Scale = LIOps[0];
1238        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1239          NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1240      } else {
1241        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
1242          std::vector<SCEVHandle> MulOps(LIOps);
1243          MulOps.push_back(AddRec->getOperand(i));
1244          NewOps.push_back(getMulExpr(MulOps));
1245        }
1246      }
1247
1248      SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
1249
1250      // If all of the other operands were loop invariant, we are done.
1251      if (Ops.size() == 1) return NewRec;
1252
1253      // Otherwise, multiply the folded AddRec by the non-liv parts.
1254      for (unsigned i = 0;; ++i)
1255        if (Ops[i] == AddRec) {
1256          Ops[i] = NewRec;
1257          break;
1258        }
1259      return getMulExpr(Ops);
1260    }
1261
1262    // Okay, if there weren't any loop invariants to be folded, check to see if
1263    // there are multiple AddRec's with the same loop induction variable being
1264    // multiplied together.  If so, we can fold them.
1265    for (unsigned OtherIdx = Idx+1;
1266         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1267      if (OtherIdx != Idx) {
1268        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1269        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1270          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
1271          const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1272          SCEVHandle NewStart = getMulExpr(F->getStart(),
1273                                                 G->getStart());
1274          SCEVHandle B = F->getStepRecurrence(*this);
1275          SCEVHandle D = G->getStepRecurrence(*this);
1276          SCEVHandle NewStep = getAddExpr(getMulExpr(F, D),
1277                                          getMulExpr(G, B),
1278                                          getMulExpr(B, D));
1279          SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep,
1280                                               F->getLoop());
1281          if (Ops.size() == 2) return NewAddRec;
1282
1283          Ops.erase(Ops.begin()+Idx);
1284          Ops.erase(Ops.begin()+OtherIdx-1);
1285          Ops.push_back(NewAddRec);
1286          return getMulExpr(Ops);
1287        }
1288      }
1289
1290    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1291    // next one.
1292  }
1293
1294  // Okay, it looks like we really DO need an mul expr.  Check to see if we
1295  // already have one, otherwise create a new one.
1296  std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1297  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
1298                                                                 SCEVOps)];
1299  if (Result == 0)
1300    Result = new SCEVMulExpr(Ops);
1301  return Result;
1302}
1303
1304SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS,
1305                                        const SCEVHandle &RHS) {
1306  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1307    if (RHSC->getValue()->equalsInt(1))
1308      return LHS;                            // X udiv 1 --> x
1309    if (RHSC->isZero())
1310      return getIntegerSCEV(0, LHS->getType()); // value is undefined
1311
1312    // Determine if the division can be folded into the operands of
1313    // its operands.
1314    // TODO: Generalize this to non-constants by using known-bits information.
1315    const Type *Ty = LHS->getType();
1316    unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1317    unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1318    // For non-power-of-two values, effectively round the value up to the
1319    // nearest power of two.
1320    if (!RHSC->getValue()->getValue().isPowerOf2())
1321      ++MaxShiftAmt;
1322    const IntegerType *ExtTy =
1323      IntegerType::get(getTypeSizeInBits(Ty) + MaxShiftAmt);
1324    // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1325    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1326      if (const SCEVConstant *Step =
1327            dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1328        if (!Step->getValue()->getValue()
1329              .urem(RHSC->getValue()->getValue()) &&
1330            getTruncateExpr(getZeroExtendExpr(AR, ExtTy), Ty) == AR) {
1331          std::vector<SCEVHandle> Operands;
1332          for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1333            Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1334          return getAddRecExpr(Operands, AR->getLoop());
1335        }
1336    // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1337    if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS))
1338      if (getTruncateExpr(getZeroExtendExpr(M, ExtTy), Ty) == M)
1339        // Find an operand that's safely divisible.
1340        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1341          SCEVHandle Op = M->getOperand(i);
1342          SCEVHandle Div = getUDivExpr(Op, RHSC);
1343          if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1344            std::vector<SCEVHandle> Operands = M->getOperands();
1345            Operands[i] = Div;
1346            return getMulExpr(Operands);
1347          }
1348        }
1349    // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1350    if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS))
1351      if (getTruncateExpr(getZeroExtendExpr(A, ExtTy), Ty) == A) {
1352        std::vector<SCEVHandle> Operands;
1353        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1354          SCEVHandle Op = getUDivExpr(A->getOperand(i), RHS);
1355          if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i))
1356            break;
1357          Operands.push_back(Op);
1358        }
1359        if (Operands.size() == A->getNumOperands())
1360          return getAddExpr(Operands);
1361      }
1362
1363    // Fold if both operands are constant.
1364    if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1365      Constant *LHSCV = LHSC->getValue();
1366      Constant *RHSCV = RHSC->getValue();
1367      return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV));
1368    }
1369  }
1370
1371  SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)];
1372  if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
1373  return Result;
1374}
1375
1376
1377/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1378/// specified loop.  Simplify the expression as much as possible.
1379SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start,
1380                               const SCEVHandle &Step, const Loop *L) {
1381  std::vector<SCEVHandle> Operands;
1382  Operands.push_back(Start);
1383  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1384    if (StepChrec->getLoop() == L) {
1385      Operands.insert(Operands.end(), StepChrec->op_begin(),
1386                      StepChrec->op_end());
1387      return getAddRecExpr(Operands, L);
1388    }
1389
1390  Operands.push_back(Step);
1391  return getAddRecExpr(Operands, L);
1392}
1393
1394/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1395/// specified loop.  Simplify the expression as much as possible.
1396SCEVHandle ScalarEvolution::getAddRecExpr(std::vector<SCEVHandle> &Operands,
1397                                          const Loop *L) {
1398  if (Operands.size() == 1) return Operands[0];
1399
1400  if (Operands.back()->isZero()) {
1401    Operands.pop_back();
1402    return getAddRecExpr(Operands, L);             // {X,+,0}  -->  X
1403  }
1404
1405  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
1406  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
1407    const Loop* NestedLoop = NestedAR->getLoop();
1408    if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
1409      std::vector<SCEVHandle> NestedOperands(NestedAR->op_begin(),
1410                                             NestedAR->op_end());
1411      SCEVHandle NestedARHandle(NestedAR);
1412      Operands[0] = NestedAR->getStart();
1413      NestedOperands[0] = getAddRecExpr(Operands, L);
1414      return getAddRecExpr(NestedOperands, NestedLoop);
1415    }
1416  }
1417
1418  std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
1419  SCEVAddRecExpr *&Result = (*SCEVAddRecExprs)[std::make_pair(L, SCEVOps)];
1420  if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1421  return Result;
1422}
1423
1424SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS,
1425                                        const SCEVHandle &RHS) {
1426  std::vector<SCEVHandle> Ops;
1427  Ops.push_back(LHS);
1428  Ops.push_back(RHS);
1429  return getSMaxExpr(Ops);
1430}
1431
1432SCEVHandle ScalarEvolution::getSMaxExpr(std::vector<SCEVHandle> Ops) {
1433  assert(!Ops.empty() && "Cannot get empty smax!");
1434  if (Ops.size() == 1) return Ops[0];
1435
1436  // Sort by complexity, this groups all similar expression types together.
1437  GroupByComplexity(Ops, LI);
1438
1439  // If there are any constants, fold them together.
1440  unsigned Idx = 0;
1441  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1442    ++Idx;
1443    assert(Idx < Ops.size());
1444    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1445      // We found two constants, fold them together!
1446      ConstantInt *Fold = ConstantInt::get(
1447                              APIntOps::smax(LHSC->getValue()->getValue(),
1448                                             RHSC->getValue()->getValue()));
1449      Ops[0] = getConstant(Fold);
1450      Ops.erase(Ops.begin()+1);  // Erase the folded element
1451      if (Ops.size() == 1) return Ops[0];
1452      LHSC = cast<SCEVConstant>(Ops[0]);
1453    }
1454
1455    // If we are left with a constant -inf, strip it off.
1456    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1457      Ops.erase(Ops.begin());
1458      --Idx;
1459    }
1460  }
1461
1462  if (Ops.size() == 1) return Ops[0];
1463
1464  // Find the first SMax
1465  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1466    ++Idx;
1467
1468  // Check to see if one of the operands is an SMax. If so, expand its operands
1469  // onto our operand list, and recurse to simplify.
1470  if (Idx < Ops.size()) {
1471    bool DeletedSMax = false;
1472    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
1473      Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1474      Ops.erase(Ops.begin()+Idx);
1475      DeletedSMax = true;
1476    }
1477
1478    if (DeletedSMax)
1479      return getSMaxExpr(Ops);
1480  }
1481
1482  // Okay, check to see if the same value occurs in the operand list twice.  If
1483  // so, delete one.  Since we sorted the list, these values are required to
1484  // be adjacent.
1485  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1486    if (Ops[i] == Ops[i+1]) {      //  X smax Y smax Y  -->  X smax Y
1487      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1488      --i; --e;
1489    }
1490
1491  if (Ops.size() == 1) return Ops[0];
1492
1493  assert(!Ops.empty() && "Reduced smax down to nothing!");
1494
1495  // Okay, it looks like we really DO need an smax expr.  Check to see if we
1496  // already have one, otherwise create a new one.
1497  std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1498  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr,
1499                                                                 SCEVOps)];
1500  if (Result == 0) Result = new SCEVSMaxExpr(Ops);
1501  return Result;
1502}
1503
1504SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS,
1505                                        const SCEVHandle &RHS) {
1506  std::vector<SCEVHandle> Ops;
1507  Ops.push_back(LHS);
1508  Ops.push_back(RHS);
1509  return getUMaxExpr(Ops);
1510}
1511
1512SCEVHandle ScalarEvolution::getUMaxExpr(std::vector<SCEVHandle> Ops) {
1513  assert(!Ops.empty() && "Cannot get empty umax!");
1514  if (Ops.size() == 1) return Ops[0];
1515
1516  // Sort by complexity, this groups all similar expression types together.
1517  GroupByComplexity(Ops, LI);
1518
1519  // If there are any constants, fold them together.
1520  unsigned Idx = 0;
1521  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1522    ++Idx;
1523    assert(Idx < Ops.size());
1524    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1525      // We found two constants, fold them together!
1526      ConstantInt *Fold = ConstantInt::get(
1527                              APIntOps::umax(LHSC->getValue()->getValue(),
1528                                             RHSC->getValue()->getValue()));
1529      Ops[0] = getConstant(Fold);
1530      Ops.erase(Ops.begin()+1);  // Erase the folded element
1531      if (Ops.size() == 1) return Ops[0];
1532      LHSC = cast<SCEVConstant>(Ops[0]);
1533    }
1534
1535    // If we are left with a constant zero, strip it off.
1536    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
1537      Ops.erase(Ops.begin());
1538      --Idx;
1539    }
1540  }
1541
1542  if (Ops.size() == 1) return Ops[0];
1543
1544  // Find the first UMax
1545  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
1546    ++Idx;
1547
1548  // Check to see if one of the operands is a UMax. If so, expand its operands
1549  // onto our operand list, and recurse to simplify.
1550  if (Idx < Ops.size()) {
1551    bool DeletedUMax = false;
1552    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
1553      Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
1554      Ops.erase(Ops.begin()+Idx);
1555      DeletedUMax = true;
1556    }
1557
1558    if (DeletedUMax)
1559      return getUMaxExpr(Ops);
1560  }
1561
1562  // Okay, check to see if the same value occurs in the operand list twice.  If
1563  // so, delete one.  Since we sorted the list, these values are required to
1564  // be adjacent.
1565  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1566    if (Ops[i] == Ops[i+1]) {      //  X umax Y umax Y  -->  X umax Y
1567      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1568      --i; --e;
1569    }
1570
1571  if (Ops.size() == 1) return Ops[0];
1572
1573  assert(!Ops.empty() && "Reduced umax down to nothing!");
1574
1575  // Okay, it looks like we really DO need a umax expr.  Check to see if we
1576  // already have one, otherwise create a new one.
1577  std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1578  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr,
1579                                                                 SCEVOps)];
1580  if (Result == 0) Result = new SCEVUMaxExpr(Ops);
1581  return Result;
1582}
1583
1584SCEVHandle ScalarEvolution::getUnknown(Value *V) {
1585  if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
1586    return getConstant(CI);
1587  if (isa<ConstantPointerNull>(V))
1588    return getIntegerSCEV(0, V->getType());
1589  SCEVUnknown *&Result = (*SCEVUnknowns)[V];
1590  if (Result == 0) Result = new SCEVUnknown(V);
1591  return Result;
1592}
1593
1594//===----------------------------------------------------------------------===//
1595//            Basic SCEV Analysis and PHI Idiom Recognition Code
1596//
1597
1598/// isSCEVable - Test if values of the given type are analyzable within
1599/// the SCEV framework. This primarily includes integer types, and it
1600/// can optionally include pointer types if the ScalarEvolution class
1601/// has access to target-specific information.
1602bool ScalarEvolution::isSCEVable(const Type *Ty) const {
1603  // Integers are always SCEVable.
1604  if (Ty->isInteger())
1605    return true;
1606
1607  // Pointers are SCEVable if TargetData information is available
1608  // to provide pointer size information.
1609  if (isa<PointerType>(Ty))
1610    return TD != NULL;
1611
1612  // Otherwise it's not SCEVable.
1613  return false;
1614}
1615
1616/// getTypeSizeInBits - Return the size in bits of the specified type,
1617/// for which isSCEVable must return true.
1618uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
1619  assert(isSCEVable(Ty) && "Type is not SCEVable!");
1620
1621  // If we have a TargetData, use it!
1622  if (TD)
1623    return TD->getTypeSizeInBits(Ty);
1624
1625  // Otherwise, we support only integer types.
1626  assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!");
1627  return Ty->getPrimitiveSizeInBits();
1628}
1629
1630/// getEffectiveSCEVType - Return a type with the same bitwidth as
1631/// the given type and which represents how SCEV will treat the given
1632/// type, for which isSCEVable must return true. For pointer types,
1633/// this is the pointer-sized integer type.
1634const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
1635  assert(isSCEVable(Ty) && "Type is not SCEVable!");
1636
1637  if (Ty->isInteger())
1638    return Ty;
1639
1640  assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
1641  return TD->getIntPtrType();
1642}
1643
1644SCEVHandle ScalarEvolution::getCouldNotCompute() {
1645  return UnknownValue;
1646}
1647
1648/// hasSCEV - Return true if the SCEV for this value has already been
1649/// computed.
1650bool ScalarEvolution::hasSCEV(Value *V) const {
1651  return Scalars.count(V);
1652}
1653
1654/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1655/// expression and create a new one.
1656SCEVHandle ScalarEvolution::getSCEV(Value *V) {
1657  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
1658
1659  std::map<SCEVCallbackVH, SCEVHandle>::iterator I = Scalars.find(V);
1660  if (I != Scalars.end()) return I->second;
1661  SCEVHandle S = createSCEV(V);
1662  Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
1663  return S;
1664}
1665
1666/// getIntegerSCEV - Given an integer or FP type, create a constant for the
1667/// specified signed integer value and return a SCEV for the constant.
1668SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
1669  Ty = getEffectiveSCEVType(Ty);
1670  Constant *C;
1671  if (Val == 0)
1672    C = Constant::getNullValue(Ty);
1673  else if (Ty->isFloatingPoint())
1674    C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle :
1675                                APFloat::IEEEdouble, Val));
1676  else
1677    C = ConstantInt::get(Ty, Val);
1678  return getUnknown(C);
1679}
1680
1681/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
1682///
1683SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) {
1684  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
1685    return getUnknown(ConstantExpr::getNeg(VC->getValue()));
1686
1687  const Type *Ty = V->getType();
1688  Ty = getEffectiveSCEVType(Ty);
1689  return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(Ty)));
1690}
1691
1692/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
1693SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) {
1694  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
1695    return getUnknown(ConstantExpr::getNot(VC->getValue()));
1696
1697  const Type *Ty = V->getType();
1698  Ty = getEffectiveSCEVType(Ty);
1699  SCEVHandle AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty));
1700  return getMinusSCEV(AllOnes, V);
1701}
1702
1703/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
1704///
1705SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS,
1706                                         const SCEVHandle &RHS) {
1707  // X - Y --> X + -Y
1708  return getAddExpr(LHS, getNegativeSCEV(RHS));
1709}
1710
1711/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
1712/// input value to the specified type.  If the type must be extended, it is zero
1713/// extended.
1714SCEVHandle
1715ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V,
1716                                         const Type *Ty) {
1717  const Type *SrcTy = V->getType();
1718  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1719         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1720         "Cannot truncate or zero extend with non-integer arguments!");
1721  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1722    return V;  // No conversion
1723  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
1724    return getTruncateExpr(V, Ty);
1725  return getZeroExtendExpr(V, Ty);
1726}
1727
1728/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
1729/// input value to the specified type.  If the type must be extended, it is sign
1730/// extended.
1731SCEVHandle
1732ScalarEvolution::getTruncateOrSignExtend(const SCEVHandle &V,
1733                                         const Type *Ty) {
1734  const Type *SrcTy = V->getType();
1735  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1736         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1737         "Cannot truncate or zero extend with non-integer arguments!");
1738  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1739    return V;  // No conversion
1740  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
1741    return getTruncateExpr(V, Ty);
1742  return getSignExtendExpr(V, Ty);
1743}
1744
1745/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1746/// the specified instruction and replaces any references to the symbolic value
1747/// SymName with the specified value.  This is used during PHI resolution.
1748void ScalarEvolution::
1749ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1750                                 const SCEVHandle &NewVal) {
1751  std::map<SCEVCallbackVH, SCEVHandle>::iterator SI =
1752    Scalars.find(SCEVCallbackVH(I, this));
1753  if (SI == Scalars.end()) return;
1754
1755  SCEVHandle NV =
1756    SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this);
1757  if (NV == SI->second) return;  // No change.
1758
1759  SI->second = NV;       // Update the scalars map!
1760
1761  // Any instruction values that use this instruction might also need to be
1762  // updated!
1763  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1764       UI != E; ++UI)
1765    ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1766}
1767
1768/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
1769/// a loop header, making it a potential recurrence, or it doesn't.
1770///
1771SCEVHandle ScalarEvolution::createNodeForPHI(PHINode *PN) {
1772  if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
1773    if (const Loop *L = LI->getLoopFor(PN->getParent()))
1774      if (L->getHeader() == PN->getParent()) {
1775        // If it lives in the loop header, it has two incoming values, one
1776        // from outside the loop, and one from inside.
1777        unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1778        unsigned BackEdge     = IncomingEdge^1;
1779
1780        // While we are analyzing this PHI node, handle its value symbolically.
1781        SCEVHandle SymbolicName = getUnknown(PN);
1782        assert(Scalars.find(PN) == Scalars.end() &&
1783               "PHI node already processed?");
1784        Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
1785
1786        // Using this symbolic name for the PHI, analyze the value coming around
1787        // the back-edge.
1788        SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1789
1790        // NOTE: If BEValue is loop invariant, we know that the PHI node just
1791        // has a special value for the first iteration of the loop.
1792
1793        // If the value coming around the backedge is an add with the symbolic
1794        // value we just inserted, then we found a simple induction variable!
1795        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
1796          // If there is a single occurrence of the symbolic value, replace it
1797          // with a recurrence.
1798          unsigned FoundIndex = Add->getNumOperands();
1799          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1800            if (Add->getOperand(i) == SymbolicName)
1801              if (FoundIndex == e) {
1802                FoundIndex = i;
1803                break;
1804              }
1805
1806          if (FoundIndex != Add->getNumOperands()) {
1807            // Create an add with everything but the specified operand.
1808            std::vector<SCEVHandle> Ops;
1809            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1810              if (i != FoundIndex)
1811                Ops.push_back(Add->getOperand(i));
1812            SCEVHandle Accum = getAddExpr(Ops);
1813
1814            // This is not a valid addrec if the step amount is varying each
1815            // loop iteration, but is not itself an addrec in this loop.
1816            if (Accum->isLoopInvariant(L) ||
1817                (isa<SCEVAddRecExpr>(Accum) &&
1818                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1819              SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1820              SCEVHandle PHISCEV  = getAddRecExpr(StartVal, Accum, L);
1821
1822              // Okay, for the entire analysis of this edge we assumed the PHI
1823              // to be symbolic.  We now need to go back and update all of the
1824              // entries for the scalars that use the PHI (except for the PHI
1825              // itself) to use the new analyzed value instead of the "symbolic"
1826              // value.
1827              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1828              return PHISCEV;
1829            }
1830          }
1831        } else if (const SCEVAddRecExpr *AddRec =
1832                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
1833          // Otherwise, this could be a loop like this:
1834          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
1835          // In this case, j = {1,+,1}  and BEValue is j.
1836          // Because the other in-value of i (0) fits the evolution of BEValue
1837          // i really is an addrec evolution.
1838          if (AddRec->getLoop() == L && AddRec->isAffine()) {
1839            SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1840
1841            // If StartVal = j.start - j.stride, we can use StartVal as the
1842            // initial step of the addrec evolution.
1843            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
1844                                            AddRec->getOperand(1))) {
1845              SCEVHandle PHISCEV =
1846                 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
1847
1848              // Okay, for the entire analysis of this edge we assumed the PHI
1849              // to be symbolic.  We now need to go back and update all of the
1850              // entries for the scalars that use the PHI (except for the PHI
1851              // itself) to use the new analyzed value instead of the "symbolic"
1852              // value.
1853              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1854              return PHISCEV;
1855            }
1856          }
1857        }
1858
1859        return SymbolicName;
1860      }
1861
1862  // If it's not a loop phi, we can't handle it yet.
1863  return getUnknown(PN);
1864}
1865
1866/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
1867/// guaranteed to end in (at every loop iteration).  It is, at the same time,
1868/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
1869/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
1870static uint32_t GetMinTrailingZeros(SCEVHandle S, const ScalarEvolution &SE) {
1871  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
1872    return C->getValue()->getValue().countTrailingZeros();
1873
1874  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
1875    return std::min(GetMinTrailingZeros(T->getOperand(), SE),
1876                    (uint32_t)SE.getTypeSizeInBits(T->getType()));
1877
1878  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
1879    uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE);
1880    return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ?
1881             SE.getTypeSizeInBits(E->getOperand()->getType()) : OpRes;
1882  }
1883
1884  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
1885    uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE);
1886    return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ?
1887             SE.getTypeSizeInBits(E->getOperand()->getType()) : OpRes;
1888  }
1889
1890  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
1891    // The result is the min of all operands results.
1892    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE);
1893    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
1894      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE));
1895    return MinOpRes;
1896  }
1897
1898  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
1899    // The result is the sum of all operands results.
1900    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
1901    uint32_t BitWidth = SE.getTypeSizeInBits(M->getType());
1902    for (unsigned i = 1, e = M->getNumOperands();
1903         SumOpRes != BitWidth && i != e; ++i)
1904      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i), SE),
1905                          BitWidth);
1906    return SumOpRes;
1907  }
1908
1909  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
1910    // The result is the min of all operands results.
1911    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE);
1912    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
1913      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE));
1914    return MinOpRes;
1915  }
1916
1917  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
1918    // The result is the min of all operands results.
1919    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
1920    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
1921      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE));
1922    return MinOpRes;
1923  }
1924
1925  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
1926    // The result is the min of all operands results.
1927    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
1928    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
1929      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE));
1930    return MinOpRes;
1931  }
1932
1933  // SCEVUDivExpr, SCEVUnknown
1934  return 0;
1935}
1936
1937/// createSCEV - We know that there is no SCEV for the specified value.
1938/// Analyze the expression.
1939///
1940SCEVHandle ScalarEvolution::createSCEV(Value *V) {
1941  if (!isSCEVable(V->getType()))
1942    return getUnknown(V);
1943
1944  unsigned Opcode = Instruction::UserOp1;
1945  if (Instruction *I = dyn_cast<Instruction>(V))
1946    Opcode = I->getOpcode();
1947  else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1948    Opcode = CE->getOpcode();
1949  else
1950    return getUnknown(V);
1951
1952  User *U = cast<User>(V);
1953  switch (Opcode) {
1954  case Instruction::Add:
1955    return getAddExpr(getSCEV(U->getOperand(0)),
1956                      getSCEV(U->getOperand(1)));
1957  case Instruction::Mul:
1958    return getMulExpr(getSCEV(U->getOperand(0)),
1959                      getSCEV(U->getOperand(1)));
1960  case Instruction::UDiv:
1961    return getUDivExpr(getSCEV(U->getOperand(0)),
1962                       getSCEV(U->getOperand(1)));
1963  case Instruction::Sub:
1964    return getMinusSCEV(getSCEV(U->getOperand(0)),
1965                        getSCEV(U->getOperand(1)));
1966  case Instruction::And:
1967    // For an expression like x&255 that merely masks off the high bits,
1968    // use zext(trunc(x)) as the SCEV expression.
1969    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
1970      if (CI->isNullValue())
1971        return getSCEV(U->getOperand(1));
1972      if (CI->isAllOnesValue())
1973        return getSCEV(U->getOperand(0));
1974      const APInt &A = CI->getValue();
1975      unsigned Ones = A.countTrailingOnes();
1976      if (APIntOps::isMask(Ones, A))
1977        return
1978          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
1979                                            IntegerType::get(Ones)),
1980                            U->getType());
1981    }
1982    break;
1983  case Instruction::Or:
1984    // If the RHS of the Or is a constant, we may have something like:
1985    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
1986    // optimizations will transparently handle this case.
1987    //
1988    // In order for this transformation to be safe, the LHS must be of the
1989    // form X*(2^n) and the Or constant must be less than 2^n.
1990    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
1991      SCEVHandle LHS = getSCEV(U->getOperand(0));
1992      const APInt &CIVal = CI->getValue();
1993      if (GetMinTrailingZeros(LHS, *this) >=
1994          (CIVal.getBitWidth() - CIVal.countLeadingZeros()))
1995        return getAddExpr(LHS, getSCEV(U->getOperand(1)));
1996    }
1997    break;
1998  case Instruction::Xor:
1999    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2000      // If the RHS of the xor is a signbit, then this is just an add.
2001      // Instcombine turns add of signbit into xor as a strength reduction step.
2002      if (CI->getValue().isSignBit())
2003        return getAddExpr(getSCEV(U->getOperand(0)),
2004                          getSCEV(U->getOperand(1)));
2005
2006      // If the RHS of xor is -1, then this is a not operation.
2007      else if (CI->isAllOnesValue())
2008        return getNotSCEV(getSCEV(U->getOperand(0)));
2009    }
2010    break;
2011
2012  case Instruction::Shl:
2013    // Turn shift left of a constant amount into a multiply.
2014    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2015      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2016      Constant *X = ConstantInt::get(
2017        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
2018      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
2019    }
2020    break;
2021
2022  case Instruction::LShr:
2023    // Turn logical shift right of a constant into a unsigned divide.
2024    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2025      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2026      Constant *X = ConstantInt::get(
2027        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
2028      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
2029    }
2030    break;
2031
2032  case Instruction::AShr:
2033    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
2034    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
2035      if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
2036        if (L->getOpcode() == Instruction::Shl &&
2037            L->getOperand(1) == U->getOperand(1)) {
2038          unsigned BitWidth = getTypeSizeInBits(U->getType());
2039          uint64_t Amt = BitWidth - CI->getZExtValue();
2040          if (Amt == BitWidth)
2041            return getSCEV(L->getOperand(0));       // shift by zero --> noop
2042          if (Amt > BitWidth)
2043            return getIntegerSCEV(0, U->getType()); // value is undefined
2044          return
2045            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
2046                                                      IntegerType::get(Amt)),
2047                                 U->getType());
2048        }
2049    break;
2050
2051  case Instruction::Trunc:
2052    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
2053
2054  case Instruction::ZExt:
2055    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
2056
2057  case Instruction::SExt:
2058    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
2059
2060  case Instruction::BitCast:
2061    // BitCasts are no-op casts so we just eliminate the cast.
2062    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
2063      return getSCEV(U->getOperand(0));
2064    break;
2065
2066  case Instruction::IntToPtr:
2067    if (!TD) break; // Without TD we can't analyze pointers.
2068    return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
2069                                   TD->getIntPtrType());
2070
2071  case Instruction::PtrToInt:
2072    if (!TD) break; // Without TD we can't analyze pointers.
2073    return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
2074                                   U->getType());
2075
2076  case Instruction::GetElementPtr: {
2077    if (!TD) break; // Without TD we can't analyze pointers.
2078    const Type *IntPtrTy = TD->getIntPtrType();
2079    Value *Base = U->getOperand(0);
2080    SCEVHandle TotalOffset = getIntegerSCEV(0, IntPtrTy);
2081    gep_type_iterator GTI = gep_type_begin(U);
2082    for (GetElementPtrInst::op_iterator I = next(U->op_begin()),
2083                                        E = U->op_end();
2084         I != E; ++I) {
2085      Value *Index = *I;
2086      // Compute the (potentially symbolic) offset in bytes for this index.
2087      if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2088        // For a struct, add the member offset.
2089        const StructLayout &SL = *TD->getStructLayout(STy);
2090        unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2091        uint64_t Offset = SL.getElementOffset(FieldNo);
2092        TotalOffset = getAddExpr(TotalOffset,
2093                                    getIntegerSCEV(Offset, IntPtrTy));
2094      } else {
2095        // For an array, add the element offset, explicitly scaled.
2096        SCEVHandle LocalOffset = getSCEV(Index);
2097        if (!isa<PointerType>(LocalOffset->getType()))
2098          // Getelementptr indicies are signed.
2099          LocalOffset = getTruncateOrSignExtend(LocalOffset,
2100                                                IntPtrTy);
2101        LocalOffset =
2102          getMulExpr(LocalOffset,
2103                     getIntegerSCEV(TD->getTypePaddedSize(*GTI),
2104                                    IntPtrTy));
2105        TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2106      }
2107    }
2108    return getAddExpr(getSCEV(Base), TotalOffset);
2109  }
2110
2111  case Instruction::PHI:
2112    return createNodeForPHI(cast<PHINode>(U));
2113
2114  case Instruction::Select:
2115    // This could be a smax or umax that was lowered earlier.
2116    // Try to recover it.
2117    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
2118      Value *LHS = ICI->getOperand(0);
2119      Value *RHS = ICI->getOperand(1);
2120      switch (ICI->getPredicate()) {
2121      case ICmpInst::ICMP_SLT:
2122      case ICmpInst::ICMP_SLE:
2123        std::swap(LHS, RHS);
2124        // fall through
2125      case ICmpInst::ICMP_SGT:
2126      case ICmpInst::ICMP_SGE:
2127        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2128          return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
2129        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2130          // ~smax(~x, ~y) == smin(x, y).
2131          return getNotSCEV(getSMaxExpr(
2132                                   getNotSCEV(getSCEV(LHS)),
2133                                   getNotSCEV(getSCEV(RHS))));
2134        break;
2135      case ICmpInst::ICMP_ULT:
2136      case ICmpInst::ICMP_ULE:
2137        std::swap(LHS, RHS);
2138        // fall through
2139      case ICmpInst::ICMP_UGT:
2140      case ICmpInst::ICMP_UGE:
2141        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2142          return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
2143        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2144          // ~umax(~x, ~y) == umin(x, y)
2145          return getNotSCEV(getUMaxExpr(getNotSCEV(getSCEV(LHS)),
2146                                        getNotSCEV(getSCEV(RHS))));
2147        break;
2148      default:
2149        break;
2150      }
2151    }
2152
2153  default: // We cannot analyze this expression.
2154    break;
2155  }
2156
2157  return getUnknown(V);
2158}
2159
2160
2161
2162//===----------------------------------------------------------------------===//
2163//                   Iteration Count Computation Code
2164//
2165
2166/// getBackedgeTakenCount - If the specified loop has a predictable
2167/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
2168/// object. The backedge-taken count is the number of times the loop header
2169/// will be branched to from within the loop. This is one less than the
2170/// trip count of the loop, since it doesn't count the first iteration,
2171/// when the header is branched to from outside the loop.
2172///
2173/// Note that it is not valid to call this method on a loop without a
2174/// loop-invariant backedge-taken count (see
2175/// hasLoopInvariantBackedgeTakenCount).
2176///
2177SCEVHandle ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
2178  return getBackedgeTakenInfo(L).Exact;
2179}
2180
2181/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
2182/// return the least SCEV value that is known never to be less than the
2183/// actual backedge taken count.
2184SCEVHandle ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
2185  return getBackedgeTakenInfo(L).Max;
2186}
2187
2188const ScalarEvolution::BackedgeTakenInfo &
2189ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
2190  // Initially insert a CouldNotCompute for this loop. If the insertion
2191  // succeeds, procede to actually compute a backedge-taken count and
2192  // update the value. The temporary CouldNotCompute value tells SCEV
2193  // code elsewhere that it shouldn't attempt to request a new
2194  // backedge-taken count, which could result in infinite recursion.
2195  std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair =
2196    BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
2197  if (Pair.second) {
2198    BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
2199    if (ItCount.Exact != UnknownValue) {
2200      assert(ItCount.Exact->isLoopInvariant(L) &&
2201             ItCount.Max->isLoopInvariant(L) &&
2202             "Computed trip count isn't loop invariant for loop!");
2203      ++NumTripCountsComputed;
2204
2205      // Update the value in the map.
2206      Pair.first->second = ItCount;
2207    } else if (isa<PHINode>(L->getHeader()->begin())) {
2208      // Only count loops that have phi nodes as not being computable.
2209      ++NumTripCountsNotComputed;
2210    }
2211
2212    // Now that we know more about the trip count for this loop, forget any
2213    // existing SCEV values for PHI nodes in this loop since they are only
2214    // conservative estimates made without the benefit
2215    // of trip count information.
2216    if (ItCount.hasAnyInfo())
2217      forgetLoopPHIs(L);
2218  }
2219  return Pair.first->second;
2220}
2221
2222/// forgetLoopBackedgeTakenCount - This method should be called by the
2223/// client when it has changed a loop in a way that may effect
2224/// ScalarEvolution's ability to compute a trip count, or if the loop
2225/// is deleted.
2226void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) {
2227  BackedgeTakenCounts.erase(L);
2228  forgetLoopPHIs(L);
2229}
2230
2231/// forgetLoopPHIs - Delete the memoized SCEVs associated with the
2232/// PHI nodes in the given loop. This is used when the trip count of
2233/// the loop may have changed.
2234void ScalarEvolution::forgetLoopPHIs(const Loop *L) {
2235  BasicBlock *Header = L->getHeader();
2236
2237  SmallVector<Instruction *, 16> Worklist;
2238  for (BasicBlock::iterator I = Header->begin();
2239       PHINode *PN = dyn_cast<PHINode>(I); ++I)
2240    Worklist.push_back(PN);
2241
2242  while (!Worklist.empty()) {
2243    Instruction *I = Worklist.pop_back_val();
2244    if (Scalars.erase(I))
2245      for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2246           UI != UE; ++UI)
2247        Worklist.push_back(cast<Instruction>(UI));
2248  }
2249}
2250
2251/// ComputeBackedgeTakenCount - Compute the number of times the backedge
2252/// of the specified loop will execute.
2253ScalarEvolution::BackedgeTakenInfo
2254ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
2255  // If the loop has a non-one exit block count, we can't analyze it.
2256  SmallVector<BasicBlock*, 8> ExitBlocks;
2257  L->getExitBlocks(ExitBlocks);
2258  if (ExitBlocks.size() != 1) return UnknownValue;
2259
2260  // Okay, there is one exit block.  Try to find the condition that causes the
2261  // loop to be exited.
2262  BasicBlock *ExitBlock = ExitBlocks[0];
2263
2264  BasicBlock *ExitingBlock = 0;
2265  for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
2266       PI != E; ++PI)
2267    if (L->contains(*PI)) {
2268      if (ExitingBlock == 0)
2269        ExitingBlock = *PI;
2270      else
2271        return UnknownValue;   // More than one block exiting!
2272    }
2273  assert(ExitingBlock && "No exits from loop, something is broken!");
2274
2275  // Okay, we've computed the exiting block.  See what condition causes us to
2276  // exit.
2277  //
2278  // FIXME: we should be able to handle switch instructions (with a single exit)
2279  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2280  if (ExitBr == 0) return UnknownValue;
2281  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
2282
2283  // At this point, we know we have a conditional branch that determines whether
2284  // the loop is exited.  However, we don't know if the branch is executed each
2285  // time through the loop.  If not, then the execution count of the branch will
2286  // not be equal to the trip count of the loop.
2287  //
2288  // Currently we check for this by checking to see if the Exit branch goes to
2289  // the loop header.  If so, we know it will always execute the same number of
2290  // times as the loop.  We also handle the case where the exit block *is* the
2291  // loop header.  This is common for un-rotated loops.  More extensive analysis
2292  // could be done to handle more cases here.
2293  if (ExitBr->getSuccessor(0) != L->getHeader() &&
2294      ExitBr->getSuccessor(1) != L->getHeader() &&
2295      ExitBr->getParent() != L->getHeader())
2296    return UnknownValue;
2297
2298  ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition());
2299
2300  // If it's not an integer comparison then compute it the hard way.
2301  // Note that ICmpInst deals with pointer comparisons too so we must check
2302  // the type of the operand.
2303  if (ExitCond == 0 || isa<PointerType>(ExitCond->getOperand(0)->getType()))
2304    return ComputeBackedgeTakenCountExhaustively(L, ExitBr->getCondition(),
2305                                          ExitBr->getSuccessor(0) == ExitBlock);
2306
2307  // If the condition was exit on true, convert the condition to exit on false
2308  ICmpInst::Predicate Cond;
2309  if (ExitBr->getSuccessor(1) == ExitBlock)
2310    Cond = ExitCond->getPredicate();
2311  else
2312    Cond = ExitCond->getInversePredicate();
2313
2314  // Handle common loops like: for (X = "string"; *X; ++X)
2315  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
2316    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
2317      SCEVHandle ItCnt =
2318        ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
2319      if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
2320    }
2321
2322  SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
2323  SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
2324
2325  // Try to evaluate any dependencies out of the loop.
2326  SCEVHandle Tmp = getSCEVAtScope(LHS, L);
2327  if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
2328  Tmp = getSCEVAtScope(RHS, L);
2329  if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
2330
2331  // At this point, we would like to compute how many iterations of the
2332  // loop the predicate will return true for these inputs.
2333  if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
2334    // If there is a loop-invariant, force it into the RHS.
2335    std::swap(LHS, RHS);
2336    Cond = ICmpInst::getSwappedPredicate(Cond);
2337  }
2338
2339  // If we have a comparison of a chrec against a constant, try to use value
2340  // ranges to answer this query.
2341  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
2342    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
2343      if (AddRec->getLoop() == L) {
2344        // Form the comparison range using the constant of the correct type so
2345        // that the ConstantRange class knows to do a signed or unsigned
2346        // comparison.
2347        ConstantInt *CompVal = RHSC->getValue();
2348        const Type *RealTy = ExitCond->getOperand(0)->getType();
2349        CompVal = dyn_cast<ConstantInt>(
2350          ConstantExpr::getBitCast(CompVal, RealTy));
2351        if (CompVal) {
2352          // Form the constant range.
2353          ConstantRange CompRange(
2354              ICmpInst::makeConstantRange(Cond, CompVal->getValue()));
2355
2356          SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, *this);
2357          if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
2358        }
2359      }
2360
2361  switch (Cond) {
2362  case ICmpInst::ICMP_NE: {                     // while (X != Y)
2363    // Convert to: while (X-Y != 0)
2364    SCEVHandle TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
2365    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2366    break;
2367  }
2368  case ICmpInst::ICMP_EQ: {
2369    // Convert to: while (X-Y == 0)           // while (X == Y)
2370    SCEVHandle TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
2371    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2372    break;
2373  }
2374  case ICmpInst::ICMP_SLT: {
2375    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
2376    if (BTI.hasAnyInfo()) return BTI;
2377    break;
2378  }
2379  case ICmpInst::ICMP_SGT: {
2380    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
2381                                             getNotSCEV(RHS), L, true);
2382    if (BTI.hasAnyInfo()) return BTI;
2383    break;
2384  }
2385  case ICmpInst::ICMP_ULT: {
2386    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
2387    if (BTI.hasAnyInfo()) return BTI;
2388    break;
2389  }
2390  case ICmpInst::ICMP_UGT: {
2391    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
2392                                             getNotSCEV(RHS), L, false);
2393    if (BTI.hasAnyInfo()) return BTI;
2394    break;
2395  }
2396  default:
2397#if 0
2398    errs() << "ComputeBackedgeTakenCount ";
2399    if (ExitCond->getOperand(0)->getType()->isUnsigned())
2400      errs() << "[unsigned] ";
2401    errs() << *LHS << "   "
2402         << Instruction::getOpcodeName(Instruction::ICmp)
2403         << "   " << *RHS << "\n";
2404#endif
2405    break;
2406  }
2407  return
2408    ComputeBackedgeTakenCountExhaustively(L, ExitCond,
2409                                          ExitBr->getSuccessor(0) == ExitBlock);
2410}
2411
2412static ConstantInt *
2413EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
2414                                ScalarEvolution &SE) {
2415  SCEVHandle InVal = SE.getConstant(C);
2416  SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE);
2417  assert(isa<SCEVConstant>(Val) &&
2418         "Evaluation of SCEV at constant didn't fold correctly?");
2419  return cast<SCEVConstant>(Val)->getValue();
2420}
2421
2422/// GetAddressedElementFromGlobal - Given a global variable with an initializer
2423/// and a GEP expression (missing the pointer index) indexing into it, return
2424/// the addressed element of the initializer or null if the index expression is
2425/// invalid.
2426static Constant *
2427GetAddressedElementFromGlobal(GlobalVariable *GV,
2428                              const std::vector<ConstantInt*> &Indices) {
2429  Constant *Init = GV->getInitializer();
2430  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
2431    uint64_t Idx = Indices[i]->getZExtValue();
2432    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
2433      assert(Idx < CS->getNumOperands() && "Bad struct index!");
2434      Init = cast<Constant>(CS->getOperand(Idx));
2435    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
2436      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
2437      Init = cast<Constant>(CA->getOperand(Idx));
2438    } else if (isa<ConstantAggregateZero>(Init)) {
2439      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
2440        assert(Idx < STy->getNumElements() && "Bad struct index!");
2441        Init = Constant::getNullValue(STy->getElementType(Idx));
2442      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
2443        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
2444        Init = Constant::getNullValue(ATy->getElementType());
2445      } else {
2446        assert(0 && "Unknown constant aggregate type!");
2447      }
2448      return 0;
2449    } else {
2450      return 0; // Unknown initializer type
2451    }
2452  }
2453  return Init;
2454}
2455
2456/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
2457/// 'icmp op load X, cst', try to see if we can compute the backedge
2458/// execution count.
2459SCEVHandle ScalarEvolution::
2460ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS,
2461                                             const Loop *L,
2462                                             ICmpInst::Predicate predicate) {
2463  if (LI->isVolatile()) return UnknownValue;
2464
2465  // Check to see if the loaded pointer is a getelementptr of a global.
2466  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
2467  if (!GEP) return UnknownValue;
2468
2469  // Make sure that it is really a constant global we are gepping, with an
2470  // initializer, and make sure the first IDX is really 0.
2471  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
2472  if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
2473      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
2474      !cast<Constant>(GEP->getOperand(1))->isNullValue())
2475    return UnknownValue;
2476
2477  // Okay, we allow one non-constant index into the GEP instruction.
2478  Value *VarIdx = 0;
2479  std::vector<ConstantInt*> Indexes;
2480  unsigned VarIdxNum = 0;
2481  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
2482    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
2483      Indexes.push_back(CI);
2484    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
2485      if (VarIdx) return UnknownValue;  // Multiple non-constant idx's.
2486      VarIdx = GEP->getOperand(i);
2487      VarIdxNum = i-2;
2488      Indexes.push_back(0);
2489    }
2490
2491  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
2492  // Check to see if X is a loop variant variable value now.
2493  SCEVHandle Idx = getSCEV(VarIdx);
2494  SCEVHandle Tmp = getSCEVAtScope(Idx, L);
2495  if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
2496
2497  // We can only recognize very limited forms of loop index expressions, in
2498  // particular, only affine AddRec's like {C1,+,C2}.
2499  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
2500  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
2501      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
2502      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
2503    return UnknownValue;
2504
2505  unsigned MaxSteps = MaxBruteForceIterations;
2506  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
2507    ConstantInt *ItCst =
2508      ConstantInt::get(IdxExpr->getType(), IterationNum);
2509    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
2510
2511    // Form the GEP offset.
2512    Indexes[VarIdxNum] = Val;
2513
2514    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
2515    if (Result == 0) break;  // Cannot compute!
2516
2517    // Evaluate the condition for this iteration.
2518    Result = ConstantExpr::getICmp(predicate, Result, RHS);
2519    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
2520    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
2521#if 0
2522      errs() << "\n***\n*** Computed loop count " << *ItCst
2523             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
2524             << "***\n";
2525#endif
2526      ++NumArrayLenItCounts;
2527      return getConstant(ItCst);   // Found terminating iteration!
2528    }
2529  }
2530  return UnknownValue;
2531}
2532
2533
2534/// CanConstantFold - Return true if we can constant fold an instruction of the
2535/// specified type, assuming that all operands were constants.
2536static bool CanConstantFold(const Instruction *I) {
2537  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
2538      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
2539    return true;
2540
2541  if (const CallInst *CI = dyn_cast<CallInst>(I))
2542    if (const Function *F = CI->getCalledFunction())
2543      return canConstantFoldCallTo(F);
2544  return false;
2545}
2546
2547/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
2548/// in the loop that V is derived from.  We allow arbitrary operations along the
2549/// way, but the operands of an operation must either be constants or a value
2550/// derived from a constant PHI.  If this expression does not fit with these
2551/// constraints, return null.
2552static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
2553  // If this is not an instruction, or if this is an instruction outside of the
2554  // loop, it can't be derived from a loop PHI.
2555  Instruction *I = dyn_cast<Instruction>(V);
2556  if (I == 0 || !L->contains(I->getParent())) return 0;
2557
2558  if (PHINode *PN = dyn_cast<PHINode>(I)) {
2559    if (L->getHeader() == I->getParent())
2560      return PN;
2561    else
2562      // We don't currently keep track of the control flow needed to evaluate
2563      // PHIs, so we cannot handle PHIs inside of loops.
2564      return 0;
2565  }
2566
2567  // If we won't be able to constant fold this expression even if the operands
2568  // are constants, return early.
2569  if (!CanConstantFold(I)) return 0;
2570
2571  // Otherwise, we can evaluate this instruction if all of its operands are
2572  // constant or derived from a PHI node themselves.
2573  PHINode *PHI = 0;
2574  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
2575    if (!(isa<Constant>(I->getOperand(Op)) ||
2576          isa<GlobalValue>(I->getOperand(Op)))) {
2577      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
2578      if (P == 0) return 0;  // Not evolving from PHI
2579      if (PHI == 0)
2580        PHI = P;
2581      else if (PHI != P)
2582        return 0;  // Evolving from multiple different PHIs.
2583    }
2584
2585  // This is a expression evolving from a constant PHI!
2586  return PHI;
2587}
2588
2589/// EvaluateExpression - Given an expression that passes the
2590/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
2591/// in the loop has the value PHIVal.  If we can't fold this expression for some
2592/// reason, return null.
2593static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
2594  if (isa<PHINode>(V)) return PHIVal;
2595  if (Constant *C = dyn_cast<Constant>(V)) return C;
2596  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
2597  Instruction *I = cast<Instruction>(V);
2598
2599  std::vector<Constant*> Operands;
2600  Operands.resize(I->getNumOperands());
2601
2602  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2603    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
2604    if (Operands[i] == 0) return 0;
2605  }
2606
2607  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2608    return ConstantFoldCompareInstOperands(CI->getPredicate(),
2609                                           &Operands[0], Operands.size());
2610  else
2611    return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2612                                    &Operands[0], Operands.size());
2613}
2614
2615/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
2616/// in the header of its containing loop, we know the loop executes a
2617/// constant number of times, and the PHI node is just a recurrence
2618/// involving constants, fold it.
2619Constant *ScalarEvolution::
2620getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L){
2621  std::map<PHINode*, Constant*>::iterator I =
2622    ConstantEvolutionLoopExitValue.find(PN);
2623  if (I != ConstantEvolutionLoopExitValue.end())
2624    return I->second;
2625
2626  if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
2627    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
2628
2629  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
2630
2631  // Since the loop is canonicalized, the PHI node must have two entries.  One
2632  // entry must be a constant (coming in from outside of the loop), and the
2633  // second must be derived from the same PHI.
2634  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2635  Constant *StartCST =
2636    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2637  if (StartCST == 0)
2638    return RetVal = 0;  // Must be a constant.
2639
2640  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2641  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2642  if (PN2 != PN)
2643    return RetVal = 0;  // Not derived from same PHI.
2644
2645  // Execute the loop symbolically to determine the exit value.
2646  if (BEs.getActiveBits() >= 32)
2647    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
2648
2649  unsigned NumIterations = BEs.getZExtValue(); // must be in range
2650  unsigned IterationNum = 0;
2651  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
2652    if (IterationNum == NumIterations)
2653      return RetVal = PHIVal;  // Got exit value!
2654
2655    // Compute the value of the PHI node for the next iteration.
2656    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2657    if (NextPHI == PHIVal)
2658      return RetVal = NextPHI;  // Stopped evolving!
2659    if (NextPHI == 0)
2660      return 0;        // Couldn't evaluate!
2661    PHIVal = NextPHI;
2662  }
2663}
2664
2665/// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a
2666/// constant number of times (the condition evolves only from constants),
2667/// try to evaluate a few iterations of the loop until we get the exit
2668/// condition gets a value of ExitWhen (true or false).  If we cannot
2669/// evaluate the trip count of the loop, return UnknownValue.
2670SCEVHandle ScalarEvolution::
2671ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
2672  PHINode *PN = getConstantEvolvingPHI(Cond, L);
2673  if (PN == 0) return UnknownValue;
2674
2675  // Since the loop is canonicalized, the PHI node must have two entries.  One
2676  // entry must be a constant (coming in from outside of the loop), and the
2677  // second must be derived from the same PHI.
2678  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2679  Constant *StartCST =
2680    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2681  if (StartCST == 0) return UnknownValue;  // Must be a constant.
2682
2683  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2684  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2685  if (PN2 != PN) return UnknownValue;  // Not derived from same PHI.
2686
2687  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
2688  // the loop symbolically to determine when the condition gets a value of
2689  // "ExitWhen".
2690  unsigned IterationNum = 0;
2691  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
2692  for (Constant *PHIVal = StartCST;
2693       IterationNum != MaxIterations; ++IterationNum) {
2694    ConstantInt *CondVal =
2695      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
2696
2697    // Couldn't symbolically evaluate.
2698    if (!CondVal) return UnknownValue;
2699
2700    if (CondVal->getValue() == uint64_t(ExitWhen)) {
2701      ConstantEvolutionLoopExitValue[PN] = PHIVal;
2702      ++NumBruteForceTripCountsComputed;
2703      return getConstant(ConstantInt::get(Type::Int32Ty, IterationNum));
2704    }
2705
2706    // Compute the value of the PHI node for the next iteration.
2707    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2708    if (NextPHI == 0 || NextPHI == PHIVal)
2709      return UnknownValue;  // Couldn't evaluate or not making progress...
2710    PHIVal = NextPHI;
2711  }
2712
2713  // Too many iterations were needed to evaluate.
2714  return UnknownValue;
2715}
2716
2717/// getSCEVAtScope - Compute the value of the specified expression within the
2718/// indicated loop (which may be null to indicate in no loop).  If the
2719/// expression cannot be evaluated, return UnknownValue.
2720SCEVHandle ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
2721  // FIXME: this should be turned into a virtual method on SCEV!
2722
2723  if (isa<SCEVConstant>(V)) return V;
2724
2725  // If this instruction is evolved from a constant-evolving PHI, compute the
2726  // exit value from the loop without using SCEVs.
2727  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
2728    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
2729      const Loop *LI = (*this->LI)[I->getParent()];
2730      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
2731        if (PHINode *PN = dyn_cast<PHINode>(I))
2732          if (PN->getParent() == LI->getHeader()) {
2733            // Okay, there is no closed form solution for the PHI node.  Check
2734            // to see if the loop that contains it has a known backedge-taken
2735            // count.  If so, we may be able to force computation of the exit
2736            // value.
2737            SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(LI);
2738            if (const SCEVConstant *BTCC =
2739                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
2740              // Okay, we know how many times the containing loop executes.  If
2741              // this is a constant evolving PHI node, get the final value at
2742              // the specified iteration number.
2743              Constant *RV = getConstantEvolutionLoopExitValue(PN,
2744                                                   BTCC->getValue()->getValue(),
2745                                                               LI);
2746              if (RV) return getUnknown(RV);
2747            }
2748          }
2749
2750      // Okay, this is an expression that we cannot symbolically evaluate
2751      // into a SCEV.  Check to see if it's possible to symbolically evaluate
2752      // the arguments into constants, and if so, try to constant propagate the
2753      // result.  This is particularly useful for computing loop exit values.
2754      if (CanConstantFold(I)) {
2755        std::vector<Constant*> Operands;
2756        Operands.reserve(I->getNumOperands());
2757        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2758          Value *Op = I->getOperand(i);
2759          if (Constant *C = dyn_cast<Constant>(Op)) {
2760            Operands.push_back(C);
2761          } else {
2762            // If any of the operands is non-constant and if they are
2763            // non-integer and non-pointer, don't even try to analyze them
2764            // with scev techniques.
2765            if (!isSCEVable(Op->getType()))
2766              return V;
2767
2768            SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
2769            if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
2770              Constant *C = SC->getValue();
2771              if (C->getType() != Op->getType())
2772                C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
2773                                                                  Op->getType(),
2774                                                                  false),
2775                                          C, Op->getType());
2776              Operands.push_back(C);
2777            } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
2778              if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
2779                if (C->getType() != Op->getType())
2780                  C =
2781                    ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
2782                                                                  Op->getType(),
2783                                                                  false),
2784                                          C, Op->getType());
2785                Operands.push_back(C);
2786              } else
2787                return V;
2788            } else {
2789              return V;
2790            }
2791          }
2792        }
2793
2794        Constant *C;
2795        if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2796          C = ConstantFoldCompareInstOperands(CI->getPredicate(),
2797                                              &Operands[0], Operands.size());
2798        else
2799          C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2800                                       &Operands[0], Operands.size());
2801        return getUnknown(C);
2802      }
2803    }
2804
2805    // This is some other type of SCEVUnknown, just return it.
2806    return V;
2807  }
2808
2809  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
2810    // Avoid performing the look-up in the common case where the specified
2811    // expression has no loop-variant portions.
2812    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
2813      SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2814      if (OpAtScope != Comm->getOperand(i)) {
2815        if (OpAtScope == UnknownValue) return UnknownValue;
2816        // Okay, at least one of these operands is loop variant but might be
2817        // foldable.  Build a new instance of the folded commutative expression.
2818        std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
2819        NewOps.push_back(OpAtScope);
2820
2821        for (++i; i != e; ++i) {
2822          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2823          if (OpAtScope == UnknownValue) return UnknownValue;
2824          NewOps.push_back(OpAtScope);
2825        }
2826        if (isa<SCEVAddExpr>(Comm))
2827          return getAddExpr(NewOps);
2828        if (isa<SCEVMulExpr>(Comm))
2829          return getMulExpr(NewOps);
2830        if (isa<SCEVSMaxExpr>(Comm))
2831          return getSMaxExpr(NewOps);
2832        if (isa<SCEVUMaxExpr>(Comm))
2833          return getUMaxExpr(NewOps);
2834        assert(0 && "Unknown commutative SCEV type!");
2835      }
2836    }
2837    // If we got here, all operands are loop invariant.
2838    return Comm;
2839  }
2840
2841  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
2842    SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
2843    if (LHS == UnknownValue) return LHS;
2844    SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
2845    if (RHS == UnknownValue) return RHS;
2846    if (LHS == Div->getLHS() && RHS == Div->getRHS())
2847      return Div;   // must be loop invariant
2848    return getUDivExpr(LHS, RHS);
2849  }
2850
2851  // If this is a loop recurrence for a loop that does not contain L, then we
2852  // are dealing with the final value computed by the loop.
2853  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
2854    if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
2855      // To evaluate this recurrence, we need to know how many times the AddRec
2856      // loop iterates.  Compute this now.
2857      SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
2858      if (BackedgeTakenCount == UnknownValue) return UnknownValue;
2859
2860      // Then, evaluate the AddRec.
2861      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
2862    }
2863    return UnknownValue;
2864  }
2865
2866  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
2867    SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
2868    if (Op == UnknownValue) return Op;
2869    if (Op == Cast->getOperand())
2870      return Cast;  // must be loop invariant
2871    return getZeroExtendExpr(Op, Cast->getType());
2872  }
2873
2874  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
2875    SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
2876    if (Op == UnknownValue) return Op;
2877    if (Op == Cast->getOperand())
2878      return Cast;  // must be loop invariant
2879    return getSignExtendExpr(Op, Cast->getType());
2880  }
2881
2882  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
2883    SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
2884    if (Op == UnknownValue) return Op;
2885    if (Op == Cast->getOperand())
2886      return Cast;  // must be loop invariant
2887    return getTruncateExpr(Op, Cast->getType());
2888  }
2889
2890  assert(0 && "Unknown SCEV type!");
2891}
2892
2893/// getSCEVAtScope - Return a SCEV expression handle for the specified value
2894/// at the specified scope in the program.  The L value specifies a loop
2895/// nest to evaluate the expression at, where null is the top-level or a
2896/// specified loop is immediately inside of the loop.
2897///
2898/// This method can be used to compute the exit value for a variable defined
2899/// in a loop by querying what the value will hold in the parent loop.
2900///
2901/// If this value is not computable at this scope, a SCEVCouldNotCompute
2902/// object is returned.
2903SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
2904  return getSCEVAtScope(getSCEV(V), L);
2905}
2906
2907/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
2908/// following equation:
2909///
2910///     A * X = B (mod N)
2911///
2912/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
2913/// A and B isn't important.
2914///
2915/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
2916static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
2917                                               ScalarEvolution &SE) {
2918  uint32_t BW = A.getBitWidth();
2919  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
2920  assert(A != 0 && "A must be non-zero.");
2921
2922  // 1. D = gcd(A, N)
2923  //
2924  // The gcd of A and N may have only one prime factor: 2. The number of
2925  // trailing zeros in A is its multiplicity
2926  uint32_t Mult2 = A.countTrailingZeros();
2927  // D = 2^Mult2
2928
2929  // 2. Check if B is divisible by D.
2930  //
2931  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
2932  // is not less than multiplicity of this prime factor for D.
2933  if (B.countTrailingZeros() < Mult2)
2934    return SE.getCouldNotCompute();
2935
2936  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
2937  // modulo (N / D).
2938  //
2939  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
2940  // bit width during computations.
2941  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
2942  APInt Mod(BW + 1, 0);
2943  Mod.set(BW - Mult2);  // Mod = N / D
2944  APInt I = AD.multiplicativeInverse(Mod);
2945
2946  // 4. Compute the minimum unsigned root of the equation:
2947  // I * (B / D) mod (N / D)
2948  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
2949
2950  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
2951  // bits.
2952  return SE.getConstant(Result.trunc(BW));
2953}
2954
2955/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
2956/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
2957/// might be the same) or two SCEVCouldNotCompute objects.
2958///
2959static std::pair<SCEVHandle,SCEVHandle>
2960SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
2961  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
2962  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
2963  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
2964  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
2965
2966  // We currently can only solve this if the coefficients are constants.
2967  if (!LC || !MC || !NC) {
2968    const SCEV *CNC = SE.getCouldNotCompute();
2969    return std::make_pair(CNC, CNC);
2970  }
2971
2972  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
2973  const APInt &L = LC->getValue()->getValue();
2974  const APInt &M = MC->getValue()->getValue();
2975  const APInt &N = NC->getValue()->getValue();
2976  APInt Two(BitWidth, 2);
2977  APInt Four(BitWidth, 4);
2978
2979  {
2980    using namespace APIntOps;
2981    const APInt& C = L;
2982    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
2983    // The B coefficient is M-N/2
2984    APInt B(M);
2985    B -= sdiv(N,Two);
2986
2987    // The A coefficient is N/2
2988    APInt A(N.sdiv(Two));
2989
2990    // Compute the B^2-4ac term.
2991    APInt SqrtTerm(B);
2992    SqrtTerm *= B;
2993    SqrtTerm -= Four * (A * C);
2994
2995    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
2996    // integer value or else APInt::sqrt() will assert.
2997    APInt SqrtVal(SqrtTerm.sqrt());
2998
2999    // Compute the two solutions for the quadratic formula.
3000    // The divisions must be performed as signed divisions.
3001    APInt NegB(-B);
3002    APInt TwoA( A << 1 );
3003    if (TwoA.isMinValue()) {
3004      const SCEV *CNC = SE.getCouldNotCompute();
3005      return std::make_pair(CNC, CNC);
3006    }
3007
3008    ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA));
3009    ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA));
3010
3011    return std::make_pair(SE.getConstant(Solution1),
3012                          SE.getConstant(Solution2));
3013    } // end APIntOps namespace
3014}
3015
3016/// HowFarToZero - Return the number of times a backedge comparing the specified
3017/// value to zero will execute.  If not computable, return UnknownValue
3018SCEVHandle ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
3019  // If the value is a constant
3020  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
3021    // If the value is already zero, the branch will execute zero times.
3022    if (C->getValue()->isZero()) return C;
3023    return UnknownValue;  // Otherwise it will loop infinitely.
3024  }
3025
3026  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
3027  if (!AddRec || AddRec->getLoop() != L)
3028    return UnknownValue;
3029
3030  if (AddRec->isAffine()) {
3031    // If this is an affine expression, the execution count of this branch is
3032    // the minimum unsigned root of the following equation:
3033    //
3034    //     Start + Step*N = 0 (mod 2^BW)
3035    //
3036    // equivalent to:
3037    //
3038    //             Step*N = -Start (mod 2^BW)
3039    //
3040    // where BW is the common bit width of Start and Step.
3041
3042    // Get the initial value for the loop.
3043    SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
3044    if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
3045
3046    SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
3047
3048    if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
3049      // For now we handle only constant steps.
3050
3051      // First, handle unitary steps.
3052      if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so:
3053        return getNegativeSCEV(Start);       //   N = -Start (as unsigned)
3054      if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so:
3055        return Start;                           //    N = Start (as unsigned)
3056
3057      // Then, try to solve the above equation provided that Start is constant.
3058      if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
3059        return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
3060                                            -StartC->getValue()->getValue(),
3061                                            *this);
3062    }
3063  } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
3064    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
3065    // the quadratic equation to solve it.
3066    std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec,
3067                                                                    *this);
3068    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
3069    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
3070    if (R1) {
3071#if 0
3072      errs() << "HFTZ: " << *V << " - sol#1: " << *R1
3073             << "  sol#2: " << *R2 << "\n";
3074#endif
3075      // Pick the smallest positive root value.
3076      if (ConstantInt *CB =
3077          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
3078                                   R1->getValue(), R2->getValue()))) {
3079        if (CB->getZExtValue() == false)
3080          std::swap(R1, R2);   // R1 is the minimum root now.
3081
3082        // We can only use this value if the chrec ends up with an exact zero
3083        // value at this index.  When solving for "X*X != 5", for example, we
3084        // should not accept a root of 2.
3085        SCEVHandle Val = AddRec->evaluateAtIteration(R1, *this);
3086        if (Val->isZero())
3087          return R1;  // We found a quadratic root!
3088      }
3089    }
3090  }
3091
3092  return UnknownValue;
3093}
3094
3095/// HowFarToNonZero - Return the number of times a backedge checking the
3096/// specified value for nonzero will execute.  If not computable, return
3097/// UnknownValue
3098SCEVHandle ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
3099  // Loops that look like: while (X == 0) are very strange indeed.  We don't
3100  // handle them yet except for the trivial case.  This could be expanded in the
3101  // future as needed.
3102
3103  // If the value is a constant, check to see if it is known to be non-zero
3104  // already.  If so, the backedge will execute zero times.
3105  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
3106    if (!C->getValue()->isNullValue())
3107      return getIntegerSCEV(0, C->getType());
3108    return UnknownValue;  // Otherwise it will loop infinitely.
3109  }
3110
3111  // We could implement others, but I really doubt anyone writes loops like
3112  // this, and if they did, they would already be constant folded.
3113  return UnknownValue;
3114}
3115
3116/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
3117/// (which may not be an immediate predecessor) which has exactly one
3118/// successor from which BB is reachable, or null if no such block is
3119/// found.
3120///
3121BasicBlock *
3122ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
3123  // If the block has a unique predecessor, then there is no path from the
3124  // predecessor to the block that does not go through the direct edge
3125  // from the predecessor to the block.
3126  if (BasicBlock *Pred = BB->getSinglePredecessor())
3127    return Pred;
3128
3129  // A loop's header is defined to be a block that dominates the loop.
3130  // If the loop has a preheader, it must be a block that has exactly
3131  // one successor that can reach BB. This is slightly more strict
3132  // than necessary, but works if critical edges are split.
3133  if (Loop *L = LI->getLoopFor(BB))
3134    return L->getLoopPreheader();
3135
3136  return 0;
3137}
3138
3139/// isLoopGuardedByCond - Test whether entry to the loop is protected by
3140/// a conditional between LHS and RHS.  This is used to help avoid max
3141/// expressions in loop trip counts.
3142bool ScalarEvolution::isLoopGuardedByCond(const Loop *L,
3143                                          ICmpInst::Predicate Pred,
3144                                          const SCEV *LHS, const SCEV *RHS) {
3145  BasicBlock *Preheader = L->getLoopPreheader();
3146  BasicBlock *PreheaderDest = L->getHeader();
3147
3148  // Starting at the preheader, climb up the predecessor chain, as long as
3149  // there are predecessors that can be found that have unique successors
3150  // leading to the original header.
3151  for (; Preheader;
3152       PreheaderDest = Preheader,
3153       Preheader = getPredecessorWithUniqueSuccessorForBB(Preheader)) {
3154
3155    BranchInst *LoopEntryPredicate =
3156      dyn_cast<BranchInst>(Preheader->getTerminator());
3157    if (!LoopEntryPredicate ||
3158        LoopEntryPredicate->isUnconditional())
3159      continue;
3160
3161    ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition());
3162    if (!ICI) continue;
3163
3164    // Now that we found a conditional branch that dominates the loop, check to
3165    // see if it is the comparison we are looking for.
3166    Value *PreCondLHS = ICI->getOperand(0);
3167    Value *PreCondRHS = ICI->getOperand(1);
3168    ICmpInst::Predicate Cond;
3169    if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest)
3170      Cond = ICI->getPredicate();
3171    else
3172      Cond = ICI->getInversePredicate();
3173
3174    if (Cond == Pred)
3175      ; // An exact match.
3176    else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE)
3177      ; // The actual condition is beyond sufficient.
3178    else
3179      // Check a few special cases.
3180      switch (Cond) {
3181      case ICmpInst::ICMP_UGT:
3182        if (Pred == ICmpInst::ICMP_ULT) {
3183          std::swap(PreCondLHS, PreCondRHS);
3184          Cond = ICmpInst::ICMP_ULT;
3185          break;
3186        }
3187        continue;
3188      case ICmpInst::ICMP_SGT:
3189        if (Pred == ICmpInst::ICMP_SLT) {
3190          std::swap(PreCondLHS, PreCondRHS);
3191          Cond = ICmpInst::ICMP_SLT;
3192          break;
3193        }
3194        continue;
3195      case ICmpInst::ICMP_NE:
3196        // Expressions like (x >u 0) are often canonicalized to (x != 0),
3197        // so check for this case by checking if the NE is comparing against
3198        // a minimum or maximum constant.
3199        if (!ICmpInst::isTrueWhenEqual(Pred))
3200          if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) {
3201            const APInt &A = CI->getValue();
3202            switch (Pred) {
3203            case ICmpInst::ICMP_SLT:
3204              if (A.isMaxSignedValue()) break;
3205              continue;
3206            case ICmpInst::ICMP_SGT:
3207              if (A.isMinSignedValue()) break;
3208              continue;
3209            case ICmpInst::ICMP_ULT:
3210              if (A.isMaxValue()) break;
3211              continue;
3212            case ICmpInst::ICMP_UGT:
3213              if (A.isMinValue()) break;
3214              continue;
3215            default:
3216              continue;
3217            }
3218            Cond = ICmpInst::ICMP_NE;
3219            // NE is symmetric but the original comparison may not be. Swap
3220            // the operands if necessary so that they match below.
3221            if (isa<SCEVConstant>(LHS))
3222              std::swap(PreCondLHS, PreCondRHS);
3223            break;
3224          }
3225        continue;
3226      default:
3227        // We weren't able to reconcile the condition.
3228        continue;
3229      }
3230
3231    if (!PreCondLHS->getType()->isInteger()) continue;
3232
3233    SCEVHandle PreCondLHSSCEV = getSCEV(PreCondLHS);
3234    SCEVHandle PreCondRHSSCEV = getSCEV(PreCondRHS);
3235    if ((LHS == PreCondLHSSCEV && RHS == PreCondRHSSCEV) ||
3236        (LHS == getNotSCEV(PreCondRHSSCEV) &&
3237         RHS == getNotSCEV(PreCondLHSSCEV)))
3238      return true;
3239  }
3240
3241  return false;
3242}
3243
3244/// HowManyLessThans - Return the number of times a backedge containing the
3245/// specified less-than comparison will execute.  If not computable, return
3246/// UnknownValue.
3247ScalarEvolution::BackedgeTakenInfo ScalarEvolution::
3248HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
3249                 const Loop *L, bool isSigned) {
3250  // Only handle:  "ADDREC < LoopInvariant".
3251  if (!RHS->isLoopInvariant(L)) return UnknownValue;
3252
3253  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
3254  if (!AddRec || AddRec->getLoop() != L)
3255    return UnknownValue;
3256
3257  if (AddRec->isAffine()) {
3258    // FORNOW: We only support unit strides.
3259    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
3260    SCEVHandle Step = AddRec->getStepRecurrence(*this);
3261    SCEVHandle NegOne = getIntegerSCEV(-1, AddRec->getType());
3262
3263    // TODO: handle non-constant strides.
3264    const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
3265    if (!CStep || CStep->isZero())
3266      return UnknownValue;
3267    if (CStep->getValue()->getValue() == 1) {
3268      // With unit stride, the iteration never steps past the limit value.
3269    } else if (CStep->getValue()->getValue().isStrictlyPositive()) {
3270      if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) {
3271        // Test whether a positive iteration iteration can step past the limit
3272        // value and past the maximum value for its type in a single step.
3273        if (isSigned) {
3274          APInt Max = APInt::getSignedMaxValue(BitWidth);
3275          if ((Max - CStep->getValue()->getValue())
3276                .slt(CLimit->getValue()->getValue()))
3277            return UnknownValue;
3278        } else {
3279          APInt Max = APInt::getMaxValue(BitWidth);
3280          if ((Max - CStep->getValue()->getValue())
3281                .ult(CLimit->getValue()->getValue()))
3282            return UnknownValue;
3283        }
3284      } else
3285        // TODO: handle non-constant limit values below.
3286        return UnknownValue;
3287    } else
3288      // TODO: handle negative strides below.
3289      return UnknownValue;
3290
3291    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
3292    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
3293    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
3294    // treat m-n as signed nor unsigned due to overflow possibility.
3295
3296    // First, we get the value of the LHS in the first iteration: n
3297    SCEVHandle Start = AddRec->getOperand(0);
3298
3299    // Determine the minimum constant start value.
3300    SCEVHandle MinStart = isa<SCEVConstant>(Start) ? Start :
3301      getConstant(isSigned ? APInt::getSignedMinValue(BitWidth) :
3302                             APInt::getMinValue(BitWidth));
3303
3304    // If we know that the condition is true in order to enter the loop,
3305    // then we know that it will run exactly (m-n)/s times. Otherwise, we
3306    // only know if will execute (max(m,n)-n)/s times. In both cases, the
3307    // division must round up.
3308    SCEVHandle End = RHS;
3309    if (!isLoopGuardedByCond(L,
3310                             isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
3311                             getMinusSCEV(Start, Step), RHS))
3312      End = isSigned ? getSMaxExpr(RHS, Start)
3313                     : getUMaxExpr(RHS, Start);
3314
3315    // Determine the maximum constant end value.
3316    SCEVHandle MaxEnd = isa<SCEVConstant>(End) ? End :
3317      getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth) :
3318                             APInt::getMaxValue(BitWidth));
3319
3320    // Finally, we subtract these two values and divide, rounding up, to get
3321    // the number of times the backedge is executed.
3322    SCEVHandle BECount = getUDivExpr(getAddExpr(getMinusSCEV(End, Start),
3323                                                getAddExpr(Step, NegOne)),
3324                                     Step);
3325
3326    // The maximum backedge count is similar, except using the minimum start
3327    // value and the maximum end value.
3328    SCEVHandle MaxBECount = getUDivExpr(getAddExpr(getMinusSCEV(MaxEnd,
3329                                                                MinStart),
3330                                                   getAddExpr(Step, NegOne)),
3331                                        Step);
3332
3333    return BackedgeTakenInfo(BECount, MaxBECount);
3334  }
3335
3336  return UnknownValue;
3337}
3338
3339/// getNumIterationsInRange - Return the number of iterations of this loop that
3340/// produce values in the specified constant range.  Another way of looking at
3341/// this is that it returns the first iteration number where the value is not in
3342/// the condition, thus computing the exit count. If the iteration count can't
3343/// be computed, an instance of SCEVCouldNotCompute is returned.
3344SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
3345                                                   ScalarEvolution &SE) const {
3346  if (Range.isFullSet())  // Infinite loop.
3347    return SE.getCouldNotCompute();
3348
3349  // If the start is a non-zero constant, shift the range to simplify things.
3350  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
3351    if (!SC->getValue()->isZero()) {
3352      std::vector<SCEVHandle> Operands(op_begin(), op_end());
3353      Operands[0] = SE.getIntegerSCEV(0, SC->getType());
3354      SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop());
3355      if (const SCEVAddRecExpr *ShiftedAddRec =
3356            dyn_cast<SCEVAddRecExpr>(Shifted))
3357        return ShiftedAddRec->getNumIterationsInRange(
3358                           Range.subtract(SC->getValue()->getValue()), SE);
3359      // This is strange and shouldn't happen.
3360      return SE.getCouldNotCompute();
3361    }
3362
3363  // The only time we can solve this is when we have all constant indices.
3364  // Otherwise, we cannot determine the overflow conditions.
3365  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
3366    if (!isa<SCEVConstant>(getOperand(i)))
3367      return SE.getCouldNotCompute();
3368
3369
3370  // Okay at this point we know that all elements of the chrec are constants and
3371  // that the start element is zero.
3372
3373  // First check to see if the range contains zero.  If not, the first
3374  // iteration exits.
3375  unsigned BitWidth = SE.getTypeSizeInBits(getType());
3376  if (!Range.contains(APInt(BitWidth, 0)))
3377    return SE.getConstant(ConstantInt::get(getType(),0));
3378
3379  if (isAffine()) {
3380    // If this is an affine expression then we have this situation:
3381    //   Solve {0,+,A} in Range  ===  Ax in Range
3382
3383    // We know that zero is in the range.  If A is positive then we know that
3384    // the upper value of the range must be the first possible exit value.
3385    // If A is negative then the lower of the range is the last possible loop
3386    // value.  Also note that we already checked for a full range.
3387    APInt One(BitWidth,1);
3388    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
3389    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
3390
3391    // The exit value should be (End+A)/A.
3392    APInt ExitVal = (End + A).udiv(A);
3393    ConstantInt *ExitValue = ConstantInt::get(ExitVal);
3394
3395    // Evaluate at the exit value.  If we really did fall out of the valid
3396    // range, then we computed our trip count, otherwise wrap around or other
3397    // things must have happened.
3398    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
3399    if (Range.contains(Val->getValue()))
3400      return SE.getCouldNotCompute();  // Something strange happened
3401
3402    // Ensure that the previous value is in the range.  This is a sanity check.
3403    assert(Range.contains(
3404           EvaluateConstantChrecAtConstant(this,
3405           ConstantInt::get(ExitVal - One), SE)->getValue()) &&
3406           "Linear scev computation is off in a bad way!");
3407    return SE.getConstant(ExitValue);
3408  } else if (isQuadratic()) {
3409    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
3410    // quadratic equation to solve it.  To do this, we must frame our problem in
3411    // terms of figuring out when zero is crossed, instead of when
3412    // Range.getUpper() is crossed.
3413    std::vector<SCEVHandle> NewOps(op_begin(), op_end());
3414    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
3415    SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
3416
3417    // Next, solve the constructed addrec
3418    std::pair<SCEVHandle,SCEVHandle> Roots =
3419      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
3420    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
3421    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
3422    if (R1) {
3423      // Pick the smallest positive root value.
3424      if (ConstantInt *CB =
3425          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
3426                                   R1->getValue(), R2->getValue()))) {
3427        if (CB->getZExtValue() == false)
3428          std::swap(R1, R2);   // R1 is the minimum root now.
3429
3430        // Make sure the root is not off by one.  The returned iteration should
3431        // not be in the range, but the previous one should be.  When solving
3432        // for "X*X < 5", for example, we should not return a root of 2.
3433        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
3434                                                             R1->getValue(),
3435                                                             SE);
3436        if (Range.contains(R1Val->getValue())) {
3437          // The next iteration must be out of the range...
3438          ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1);
3439
3440          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
3441          if (!Range.contains(R1Val->getValue()))
3442            return SE.getConstant(NextVal);
3443          return SE.getCouldNotCompute();  // Something strange happened
3444        }
3445
3446        // If R1 was not in the range, then it is a good return value.  Make
3447        // sure that R1-1 WAS in the range though, just in case.
3448        ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1);
3449        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
3450        if (Range.contains(R1Val->getValue()))
3451          return R1;
3452        return SE.getCouldNotCompute();  // Something strange happened
3453      }
3454    }
3455  }
3456
3457  return SE.getCouldNotCompute();
3458}
3459
3460
3461
3462//===----------------------------------------------------------------------===//
3463//                   SCEVCallbackVH Class Implementation
3464//===----------------------------------------------------------------------===//
3465
3466void SCEVCallbackVH::deleted() {
3467  assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
3468  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
3469    SE->ConstantEvolutionLoopExitValue.erase(PN);
3470  SE->Scalars.erase(getValPtr());
3471  // this now dangles!
3472}
3473
3474void SCEVCallbackVH::allUsesReplacedWith(Value *) {
3475  assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
3476
3477  // Forget all the expressions associated with users of the old value,
3478  // so that future queries will recompute the expressions using the new
3479  // value.
3480  SmallVector<User *, 16> Worklist;
3481  Value *Old = getValPtr();
3482  bool DeleteOld = false;
3483  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
3484       UI != UE; ++UI)
3485    Worklist.push_back(*UI);
3486  while (!Worklist.empty()) {
3487    User *U = Worklist.pop_back_val();
3488    // Deleting the Old value will cause this to dangle. Postpone
3489    // that until everything else is done.
3490    if (U == Old) {
3491      DeleteOld = true;
3492      continue;
3493    }
3494    if (PHINode *PN = dyn_cast<PHINode>(U))
3495      SE->ConstantEvolutionLoopExitValue.erase(PN);
3496    if (SE->Scalars.erase(U))
3497      for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
3498           UI != UE; ++UI)
3499        Worklist.push_back(*UI);
3500  }
3501  if (DeleteOld) {
3502    if (PHINode *PN = dyn_cast<PHINode>(Old))
3503      SE->ConstantEvolutionLoopExitValue.erase(PN);
3504    SE->Scalars.erase(Old);
3505    // this now dangles!
3506  }
3507  // this may dangle!
3508}
3509
3510SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
3511  : CallbackVH(V), SE(se) {}
3512
3513//===----------------------------------------------------------------------===//
3514//                   ScalarEvolution Class Implementation
3515//===----------------------------------------------------------------------===//
3516
3517ScalarEvolution::ScalarEvolution()
3518  : FunctionPass(&ID), UnknownValue(new SCEVCouldNotCompute()) {
3519}
3520
3521bool ScalarEvolution::runOnFunction(Function &F) {
3522  this->F = &F;
3523  LI = &getAnalysis<LoopInfo>();
3524  TD = getAnalysisIfAvailable<TargetData>();
3525  return false;
3526}
3527
3528void ScalarEvolution::releaseMemory() {
3529  Scalars.clear();
3530  BackedgeTakenCounts.clear();
3531  ConstantEvolutionLoopExitValue.clear();
3532}
3533
3534void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
3535  AU.setPreservesAll();
3536  AU.addRequiredTransitive<LoopInfo>();
3537}
3538
3539bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
3540  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
3541}
3542
3543static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
3544                          const Loop *L) {
3545  // Print all inner loops first
3546  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3547    PrintLoopInfo(OS, SE, *I);
3548
3549  OS << "Loop " << L->getHeader()->getName() << ": ";
3550
3551  SmallVector<BasicBlock*, 8> ExitBlocks;
3552  L->getExitBlocks(ExitBlocks);
3553  if (ExitBlocks.size() != 1)
3554    OS << "<multiple exits> ";
3555
3556  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
3557    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
3558  } else {
3559    OS << "Unpredictable backedge-taken count. ";
3560  }
3561
3562  OS << "\n";
3563}
3564
3565void ScalarEvolution::print(raw_ostream &OS, const Module* ) const {
3566  // ScalarEvolution's implementaiton of the print method is to print
3567  // out SCEV values of all instructions that are interesting. Doing
3568  // this potentially causes it to create new SCEV objects though,
3569  // which technically conflicts with the const qualifier. This isn't
3570  // observable from outside the class though (the hasSCEV function
3571  // notwithstanding), so casting away the const isn't dangerous.
3572  ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this);
3573
3574  OS << "Classifying expressions for: " << F->getName() << "\n";
3575  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
3576    if (isSCEVable(I->getType())) {
3577      OS << *I;
3578      OS << "  -->  ";
3579      SCEVHandle SV = SE.getSCEV(&*I);
3580      SV->print(OS);
3581      OS << "\t\t";
3582
3583      if (const Loop *L = LI->getLoopFor((*I).getParent())) {
3584        OS << "Exits: ";
3585        SCEVHandle ExitValue = SE.getSCEVAtScope(&*I, L->getParentLoop());
3586        if (isa<SCEVCouldNotCompute>(ExitValue)) {
3587          OS << "<<Unknown>>";
3588        } else {
3589          OS << *ExitValue;
3590        }
3591      }
3592
3593
3594      OS << "\n";
3595    }
3596
3597  OS << "Determining loop execution counts for: " << F->getName() << "\n";
3598  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
3599    PrintLoopInfo(OS, &SE, *I);
3600}
3601
3602void ScalarEvolution::print(std::ostream &o, const Module *M) const {
3603  raw_os_ostream OS(o);
3604  print(OS, M);
3605}
3606