ScalarEvolution.cpp revision 1afdc5f3565f09d33de888fede895540059dca4c
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle.  These classes are reference counted, managed by the const SCEV *
18// class.  We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression.  These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
36// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43//  Chains of recurrences -- a method to expedite the evaluation
44//  of closed-form functions
45//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47//  On computational properties of chains of recurrences
48//  Eugene V. Zima
49//
50//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51//  Robert A. van Engelen
52//
53//  Efficient Symbolic Analysis for Optimizing Compilers
54//  Robert A. van Engelen
55//
56//  Using the chains of recurrences algebra for data dependence testing and
57//  induction variable substitution
58//  MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
62#define DEBUG_TYPE "scalar-evolution"
63#include "llvm/Analysis/ScalarEvolutionExpressions.h"
64#include "llvm/Constants.h"
65#include "llvm/DerivedTypes.h"
66#include "llvm/GlobalVariable.h"
67#include "llvm/Instructions.h"
68#include "llvm/LLVMContext.h"
69#include "llvm/Analysis/ConstantFolding.h"
70#include "llvm/Analysis/Dominators.h"
71#include "llvm/Analysis/LoopInfo.h"
72#include "llvm/Analysis/ValueTracking.h"
73#include "llvm/Assembly/Writer.h"
74#include "llvm/Target/TargetData.h"
75#include "llvm/Support/CommandLine.h"
76#include "llvm/Support/Compiler.h"
77#include "llvm/Support/ConstantRange.h"
78#include "llvm/Support/GetElementPtrTypeIterator.h"
79#include "llvm/Support/InstIterator.h"
80#include "llvm/Support/MathExtras.h"
81#include "llvm/Support/raw_ostream.h"
82#include "llvm/ADT/Statistic.h"
83#include "llvm/ADT/STLExtras.h"
84#include "llvm/ADT/SmallPtrSet.h"
85#include <algorithm>
86using namespace llvm;
87
88STATISTIC(NumArrayLenItCounts,
89          "Number of trip counts computed with array length");
90STATISTIC(NumTripCountsComputed,
91          "Number of loops with predictable loop counts");
92STATISTIC(NumTripCountsNotComputed,
93          "Number of loops without predictable loop counts");
94STATISTIC(NumBruteForceTripCountsComputed,
95          "Number of loops with trip counts computed by force");
96
97static cl::opt<unsigned>
98MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
99                        cl::desc("Maximum number of iterations SCEV will "
100                                 "symbolically execute a constant "
101                                 "derived loop"),
102                        cl::init(100));
103
104static RegisterPass<ScalarEvolution>
105R("scalar-evolution", "Scalar Evolution Analysis", false, true);
106char ScalarEvolution::ID = 0;
107
108//===----------------------------------------------------------------------===//
109//                           SCEV class definitions
110//===----------------------------------------------------------------------===//
111
112//===----------------------------------------------------------------------===//
113// Implementation of the SCEV class.
114//
115
116SCEV::~SCEV() {}
117
118void SCEV::dump() const {
119  print(errs());
120  errs() << '\n';
121}
122
123void SCEV::print(std::ostream &o) const {
124  raw_os_ostream OS(o);
125  print(OS);
126}
127
128bool SCEV::isZero() const {
129  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
130    return SC->getValue()->isZero();
131  return false;
132}
133
134bool SCEV::isOne() const {
135  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
136    return SC->getValue()->isOne();
137  return false;
138}
139
140bool SCEV::isAllOnesValue() const {
141  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
142    return SC->getValue()->isAllOnesValue();
143  return false;
144}
145
146SCEVCouldNotCompute::SCEVCouldNotCompute() :
147  SCEV(scCouldNotCompute) {}
148
149void SCEVCouldNotCompute::Profile(FoldingSetNodeID &ID) const {
150  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
151}
152
153bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
154  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
155  return false;
156}
157
158const Type *SCEVCouldNotCompute::getType() const {
159  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
160  return 0;
161}
162
163bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
164  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
165  return false;
166}
167
168const SCEV *
169SCEVCouldNotCompute::replaceSymbolicValuesWithConcrete(
170                                                    const SCEV *Sym,
171                                                    const SCEV *Conc,
172                                                    ScalarEvolution &SE) const {
173  return this;
174}
175
176void SCEVCouldNotCompute::print(raw_ostream &OS) const {
177  OS << "***COULDNOTCOMPUTE***";
178}
179
180bool SCEVCouldNotCompute::classof(const SCEV *S) {
181  return S->getSCEVType() == scCouldNotCompute;
182}
183
184const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
185  FoldingSetNodeID ID;
186  ID.AddInteger(scConstant);
187  ID.AddPointer(V);
188  void *IP = 0;
189  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
190  SCEV *S = SCEVAllocator.Allocate<SCEVConstant>();
191  new (S) SCEVConstant(V);
192  UniqueSCEVs.InsertNode(S, IP);
193  return S;
194}
195
196const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
197  return getConstant(ConstantInt::get(Val));
198}
199
200const SCEV *
201ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
202  return getConstant(ConstantInt::get(cast<IntegerType>(Ty), V, isSigned));
203}
204
205void SCEVConstant::Profile(FoldingSetNodeID &ID) const {
206  ID.AddInteger(scConstant);
207  ID.AddPointer(V);
208}
209
210const Type *SCEVConstant::getType() const { return V->getType(); }
211
212void SCEVConstant::print(raw_ostream &OS) const {
213  WriteAsOperand(OS, V, false);
214}
215
216SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy,
217                           const SCEV *op, const Type *ty)
218  : SCEV(SCEVTy), Op(op), Ty(ty) {}
219
220void SCEVCastExpr::Profile(FoldingSetNodeID &ID) const {
221  ID.AddInteger(getSCEVType());
222  ID.AddPointer(Op);
223  ID.AddPointer(Ty);
224}
225
226bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
227  return Op->dominates(BB, DT);
228}
229
230SCEVTruncateExpr::SCEVTruncateExpr(const SCEV *op, const Type *ty)
231  : SCEVCastExpr(scTruncate, op, ty) {
232  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
233         (Ty->isInteger() || isa<PointerType>(Ty)) &&
234         "Cannot truncate non-integer value!");
235}
236
237void SCEVTruncateExpr::print(raw_ostream &OS) const {
238  OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
239}
240
241SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEV *op, const Type *ty)
242  : SCEVCastExpr(scZeroExtend, op, ty) {
243  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
244         (Ty->isInteger() || isa<PointerType>(Ty)) &&
245         "Cannot zero extend non-integer value!");
246}
247
248void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
249  OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
250}
251
252SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEV *op, const Type *ty)
253  : SCEVCastExpr(scSignExtend, op, ty) {
254  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
255         (Ty->isInteger() || isa<PointerType>(Ty)) &&
256         "Cannot sign extend non-integer value!");
257}
258
259void SCEVSignExtendExpr::print(raw_ostream &OS) const {
260  OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
261}
262
263void SCEVCommutativeExpr::print(raw_ostream &OS) const {
264  assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
265  const char *OpStr = getOperationStr();
266  OS << "(" << *Operands[0];
267  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
268    OS << OpStr << *Operands[i];
269  OS << ")";
270}
271
272const SCEV *
273SCEVCommutativeExpr::replaceSymbolicValuesWithConcrete(
274                                                    const SCEV *Sym,
275                                                    const SCEV *Conc,
276                                                    ScalarEvolution &SE) const {
277  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
278    const SCEV *H =
279      getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
280    if (H != getOperand(i)) {
281      SmallVector<const SCEV *, 8> NewOps;
282      NewOps.reserve(getNumOperands());
283      for (unsigned j = 0; j != i; ++j)
284        NewOps.push_back(getOperand(j));
285      NewOps.push_back(H);
286      for (++i; i != e; ++i)
287        NewOps.push_back(getOperand(i)->
288                         replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
289
290      if (isa<SCEVAddExpr>(this))
291        return SE.getAddExpr(NewOps);
292      else if (isa<SCEVMulExpr>(this))
293        return SE.getMulExpr(NewOps);
294      else if (isa<SCEVSMaxExpr>(this))
295        return SE.getSMaxExpr(NewOps);
296      else if (isa<SCEVUMaxExpr>(this))
297        return SE.getUMaxExpr(NewOps);
298      else
299        assert(0 && "Unknown commutative expr!");
300    }
301  }
302  return this;
303}
304
305void SCEVNAryExpr::Profile(FoldingSetNodeID &ID) const {
306  ID.AddInteger(getSCEVType());
307  ID.AddInteger(Operands.size());
308  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
309    ID.AddPointer(Operands[i]);
310}
311
312bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
313  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
314    if (!getOperand(i)->dominates(BB, DT))
315      return false;
316  }
317  return true;
318}
319
320void SCEVUDivExpr::Profile(FoldingSetNodeID &ID) const {
321  ID.AddInteger(scUDivExpr);
322  ID.AddPointer(LHS);
323  ID.AddPointer(RHS);
324}
325
326bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
327  return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
328}
329
330void SCEVUDivExpr::print(raw_ostream &OS) const {
331  OS << "(" << *LHS << " /u " << *RHS << ")";
332}
333
334const Type *SCEVUDivExpr::getType() const {
335  // In most cases the types of LHS and RHS will be the same, but in some
336  // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
337  // depend on the type for correctness, but handling types carefully can
338  // avoid extra casts in the SCEVExpander. The LHS is more likely to be
339  // a pointer type than the RHS, so use the RHS' type here.
340  return RHS->getType();
341}
342
343void SCEVAddRecExpr::Profile(FoldingSetNodeID &ID) const {
344  ID.AddInteger(scAddRecExpr);
345  ID.AddInteger(Operands.size());
346  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
347    ID.AddPointer(Operands[i]);
348  ID.AddPointer(L);
349}
350
351const SCEV *
352SCEVAddRecExpr::replaceSymbolicValuesWithConcrete(const SCEV *Sym,
353                                                  const SCEV *Conc,
354                                                  ScalarEvolution &SE) const {
355  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
356    const SCEV *H =
357      getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
358    if (H != getOperand(i)) {
359      SmallVector<const SCEV *, 8> NewOps;
360      NewOps.reserve(getNumOperands());
361      for (unsigned j = 0; j != i; ++j)
362        NewOps.push_back(getOperand(j));
363      NewOps.push_back(H);
364      for (++i; i != e; ++i)
365        NewOps.push_back(getOperand(i)->
366                         replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
367
368      return SE.getAddRecExpr(NewOps, L);
369    }
370  }
371  return this;
372}
373
374
375bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
376  // Add recurrences are never invariant in the function-body (null loop).
377  if (!QueryLoop)
378    return false;
379
380  // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
381  if (QueryLoop->contains(L->getHeader()))
382    return false;
383
384  // This recurrence is variant w.r.t. QueryLoop if any of its operands
385  // are variant.
386  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
387    if (!getOperand(i)->isLoopInvariant(QueryLoop))
388      return false;
389
390  // Otherwise it's loop-invariant.
391  return true;
392}
393
394void SCEVAddRecExpr::print(raw_ostream &OS) const {
395  OS << "{" << *Operands[0];
396  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
397    OS << ",+," << *Operands[i];
398  OS << "}<" << L->getHeader()->getName() + ">";
399}
400
401void SCEVUnknown::Profile(FoldingSetNodeID &ID) const {
402  ID.AddInteger(scUnknown);
403  ID.AddPointer(V);
404}
405
406bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
407  // All non-instruction values are loop invariant.  All instructions are loop
408  // invariant if they are not contained in the specified loop.
409  // Instructions are never considered invariant in the function body
410  // (null loop) because they are defined within the "loop".
411  if (Instruction *I = dyn_cast<Instruction>(V))
412    return L && !L->contains(I->getParent());
413  return true;
414}
415
416bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
417  if (Instruction *I = dyn_cast<Instruction>(getValue()))
418    return DT->dominates(I->getParent(), BB);
419  return true;
420}
421
422const Type *SCEVUnknown::getType() const {
423  return V->getType();
424}
425
426void SCEVUnknown::print(raw_ostream &OS) const {
427  WriteAsOperand(OS, V, false);
428}
429
430//===----------------------------------------------------------------------===//
431//                               SCEV Utilities
432//===----------------------------------------------------------------------===//
433
434namespace {
435  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
436  /// than the complexity of the RHS.  This comparator is used to canonicalize
437  /// expressions.
438  class VISIBILITY_HIDDEN SCEVComplexityCompare {
439    LoopInfo *LI;
440  public:
441    explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
442
443    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
444      // Primarily, sort the SCEVs by their getSCEVType().
445      if (LHS->getSCEVType() != RHS->getSCEVType())
446        return LHS->getSCEVType() < RHS->getSCEVType();
447
448      // Aside from the getSCEVType() ordering, the particular ordering
449      // isn't very important except that it's beneficial to be consistent,
450      // so that (a + b) and (b + a) don't end up as different expressions.
451
452      // Sort SCEVUnknown values with some loose heuristics. TODO: This is
453      // not as complete as it could be.
454      if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
455        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
456
457        // Order pointer values after integer values. This helps SCEVExpander
458        // form GEPs.
459        if (isa<PointerType>(LU->getType()) && !isa<PointerType>(RU->getType()))
460          return false;
461        if (isa<PointerType>(RU->getType()) && !isa<PointerType>(LU->getType()))
462          return true;
463
464        // Compare getValueID values.
465        if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
466          return LU->getValue()->getValueID() < RU->getValue()->getValueID();
467
468        // Sort arguments by their position.
469        if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
470          const Argument *RA = cast<Argument>(RU->getValue());
471          return LA->getArgNo() < RA->getArgNo();
472        }
473
474        // For instructions, compare their loop depth, and their opcode.
475        // This is pretty loose.
476        if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
477          Instruction *RV = cast<Instruction>(RU->getValue());
478
479          // Compare loop depths.
480          if (LI->getLoopDepth(LV->getParent()) !=
481              LI->getLoopDepth(RV->getParent()))
482            return LI->getLoopDepth(LV->getParent()) <
483                   LI->getLoopDepth(RV->getParent());
484
485          // Compare opcodes.
486          if (LV->getOpcode() != RV->getOpcode())
487            return LV->getOpcode() < RV->getOpcode();
488
489          // Compare the number of operands.
490          if (LV->getNumOperands() != RV->getNumOperands())
491            return LV->getNumOperands() < RV->getNumOperands();
492        }
493
494        return false;
495      }
496
497      // Compare constant values.
498      if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) {
499        const SCEVConstant *RC = cast<SCEVConstant>(RHS);
500        if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth())
501          return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth();
502        return LC->getValue()->getValue().ult(RC->getValue()->getValue());
503      }
504
505      // Compare addrec loop depths.
506      if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) {
507        const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
508        if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth())
509          return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth();
510      }
511
512      // Lexicographically compare n-ary expressions.
513      if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
514        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
515        for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
516          if (i >= RC->getNumOperands())
517            return false;
518          if (operator()(LC->getOperand(i), RC->getOperand(i)))
519            return true;
520          if (operator()(RC->getOperand(i), LC->getOperand(i)))
521            return false;
522        }
523        return LC->getNumOperands() < RC->getNumOperands();
524      }
525
526      // Lexicographically compare udiv expressions.
527      if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
528        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
529        if (operator()(LC->getLHS(), RC->getLHS()))
530          return true;
531        if (operator()(RC->getLHS(), LC->getLHS()))
532          return false;
533        if (operator()(LC->getRHS(), RC->getRHS()))
534          return true;
535        if (operator()(RC->getRHS(), LC->getRHS()))
536          return false;
537        return false;
538      }
539
540      // Compare cast expressions by operand.
541      if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
542        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
543        return operator()(LC->getOperand(), RC->getOperand());
544      }
545
546      assert(0 && "Unknown SCEV kind!");
547      return false;
548    }
549  };
550}
551
552/// GroupByComplexity - Given a list of SCEV objects, order them by their
553/// complexity, and group objects of the same complexity together by value.
554/// When this routine is finished, we know that any duplicates in the vector are
555/// consecutive and that complexity is monotonically increasing.
556///
557/// Note that we go take special precautions to ensure that we get determinstic
558/// results from this routine.  In other words, we don't want the results of
559/// this to depend on where the addresses of various SCEV objects happened to
560/// land in memory.
561///
562static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
563                              LoopInfo *LI) {
564  if (Ops.size() < 2) return;  // Noop
565  if (Ops.size() == 2) {
566    // This is the common case, which also happens to be trivially simple.
567    // Special case it.
568    if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
569      std::swap(Ops[0], Ops[1]);
570    return;
571  }
572
573  // Do the rough sort by complexity.
574  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
575
576  // Now that we are sorted by complexity, group elements of the same
577  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
578  // be extremely short in practice.  Note that we take this approach because we
579  // do not want to depend on the addresses of the objects we are grouping.
580  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
581    const SCEV *S = Ops[i];
582    unsigned Complexity = S->getSCEVType();
583
584    // If there are any objects of the same complexity and same value as this
585    // one, group them.
586    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
587      if (Ops[j] == S) { // Found a duplicate.
588        // Move it to immediately after i'th element.
589        std::swap(Ops[i+1], Ops[j]);
590        ++i;   // no need to rescan it.
591        if (i == e-2) return;  // Done!
592      }
593    }
594  }
595}
596
597
598
599//===----------------------------------------------------------------------===//
600//                      Simple SCEV method implementations
601//===----------------------------------------------------------------------===//
602
603/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
604/// Assume, K > 0.
605static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
606                                      ScalarEvolution &SE,
607                                      const Type* ResultTy) {
608  // Handle the simplest case efficiently.
609  if (K == 1)
610    return SE.getTruncateOrZeroExtend(It, ResultTy);
611
612  // We are using the following formula for BC(It, K):
613  //
614  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
615  //
616  // Suppose, W is the bitwidth of the return value.  We must be prepared for
617  // overflow.  Hence, we must assure that the result of our computation is
618  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
619  // safe in modular arithmetic.
620  //
621  // However, this code doesn't use exactly that formula; the formula it uses
622  // is something like the following, where T is the number of factors of 2 in
623  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
624  // exponentiation:
625  //
626  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
627  //
628  // This formula is trivially equivalent to the previous formula.  However,
629  // this formula can be implemented much more efficiently.  The trick is that
630  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
631  // arithmetic.  To do exact division in modular arithmetic, all we have
632  // to do is multiply by the inverse.  Therefore, this step can be done at
633  // width W.
634  //
635  // The next issue is how to safely do the division by 2^T.  The way this
636  // is done is by doing the multiplication step at a width of at least W + T
637  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
638  // when we perform the division by 2^T (which is equivalent to a right shift
639  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
640  // truncated out after the division by 2^T.
641  //
642  // In comparison to just directly using the first formula, this technique
643  // is much more efficient; using the first formula requires W * K bits,
644  // but this formula less than W + K bits. Also, the first formula requires
645  // a division step, whereas this formula only requires multiplies and shifts.
646  //
647  // It doesn't matter whether the subtraction step is done in the calculation
648  // width or the input iteration count's width; if the subtraction overflows,
649  // the result must be zero anyway.  We prefer here to do it in the width of
650  // the induction variable because it helps a lot for certain cases; CodeGen
651  // isn't smart enough to ignore the overflow, which leads to much less
652  // efficient code if the width of the subtraction is wider than the native
653  // register width.
654  //
655  // (It's possible to not widen at all by pulling out factors of 2 before
656  // the multiplication; for example, K=2 can be calculated as
657  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
658  // extra arithmetic, so it's not an obvious win, and it gets
659  // much more complicated for K > 3.)
660
661  // Protection from insane SCEVs; this bound is conservative,
662  // but it probably doesn't matter.
663  if (K > 1000)
664    return SE.getCouldNotCompute();
665
666  unsigned W = SE.getTypeSizeInBits(ResultTy);
667
668  // Calculate K! / 2^T and T; we divide out the factors of two before
669  // multiplying for calculating K! / 2^T to avoid overflow.
670  // Other overflow doesn't matter because we only care about the bottom
671  // W bits of the result.
672  APInt OddFactorial(W, 1);
673  unsigned T = 1;
674  for (unsigned i = 3; i <= K; ++i) {
675    APInt Mult(W, i);
676    unsigned TwoFactors = Mult.countTrailingZeros();
677    T += TwoFactors;
678    Mult = Mult.lshr(TwoFactors);
679    OddFactorial *= Mult;
680  }
681
682  // We need at least W + T bits for the multiplication step
683  unsigned CalculationBits = W + T;
684
685  // Calcuate 2^T, at width T+W.
686  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
687
688  // Calculate the multiplicative inverse of K! / 2^T;
689  // this multiplication factor will perform the exact division by
690  // K! / 2^T.
691  APInt Mod = APInt::getSignedMinValue(W+1);
692  APInt MultiplyFactor = OddFactorial.zext(W+1);
693  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
694  MultiplyFactor = MultiplyFactor.trunc(W);
695
696  // Calculate the product, at width T+W
697  const IntegerType *CalculationTy = IntegerType::get(CalculationBits);
698  const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
699  for (unsigned i = 1; i != K; ++i) {
700    const SCEV *S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
701    Dividend = SE.getMulExpr(Dividend,
702                             SE.getTruncateOrZeroExtend(S, CalculationTy));
703  }
704
705  // Divide by 2^T
706  const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
707
708  // Truncate the result, and divide by K! / 2^T.
709
710  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
711                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
712}
713
714/// evaluateAtIteration - Return the value of this chain of recurrences at
715/// the specified iteration number.  We can evaluate this recurrence by
716/// multiplying each element in the chain by the binomial coefficient
717/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
718///
719///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
720///
721/// where BC(It, k) stands for binomial coefficient.
722///
723const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
724                                               ScalarEvolution &SE) const {
725  const SCEV *Result = getStart();
726  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
727    // The computation is correct in the face of overflow provided that the
728    // multiplication is performed _after_ the evaluation of the binomial
729    // coefficient.
730    const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
731    if (isa<SCEVCouldNotCompute>(Coeff))
732      return Coeff;
733
734    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
735  }
736  return Result;
737}
738
739//===----------------------------------------------------------------------===//
740//                    SCEV Expression folder implementations
741//===----------------------------------------------------------------------===//
742
743const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
744                                            const Type *Ty) {
745  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
746         "This is not a truncating conversion!");
747  assert(isSCEVable(Ty) &&
748         "This is not a conversion to a SCEVable type!");
749  Ty = getEffectiveSCEVType(Ty);
750
751  // Fold if the operand is constant.
752  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
753    return getConstant(
754      cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
755
756  // trunc(trunc(x)) --> trunc(x)
757  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
758    return getTruncateExpr(ST->getOperand(), Ty);
759
760  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
761  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
762    return getTruncateOrSignExtend(SS->getOperand(), Ty);
763
764  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
765  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
766    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
767
768  // If the input value is a chrec scev, truncate the chrec's operands.
769  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
770    SmallVector<const SCEV *, 4> Operands;
771    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
772      Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
773    return getAddRecExpr(Operands, AddRec->getLoop());
774  }
775
776  FoldingSetNodeID ID;
777  ID.AddInteger(scTruncate);
778  ID.AddPointer(Op);
779  ID.AddPointer(Ty);
780  void *IP = 0;
781  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
782  SCEV *S = SCEVAllocator.Allocate<SCEVTruncateExpr>();
783  new (S) SCEVTruncateExpr(Op, Ty);
784  UniqueSCEVs.InsertNode(S, IP);
785  return S;
786}
787
788const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
789                                              const Type *Ty) {
790  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
791         "This is not an extending conversion!");
792  assert(isSCEVable(Ty) &&
793         "This is not a conversion to a SCEVable type!");
794  Ty = getEffectiveSCEVType(Ty);
795
796  // Fold if the operand is constant.
797  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
798    const Type *IntTy = getEffectiveSCEVType(Ty);
799    Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
800    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
801    return getConstant(cast<ConstantInt>(C));
802  }
803
804  // zext(zext(x)) --> zext(x)
805  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
806    return getZeroExtendExpr(SZ->getOperand(), Ty);
807
808  // If the input value is a chrec scev, and we can prove that the value
809  // did not overflow the old, smaller, value, we can zero extend all of the
810  // operands (often constants).  This allows analysis of something like
811  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
812  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
813    if (AR->isAffine()) {
814      const SCEV *Start = AR->getStart();
815      const SCEV *Step = AR->getStepRecurrence(*this);
816      unsigned BitWidth = getTypeSizeInBits(AR->getType());
817      const Loop *L = AR->getLoop();
818
819      // Check whether the backedge-taken count is SCEVCouldNotCompute.
820      // Note that this serves two purposes: It filters out loops that are
821      // simply not analyzable, and it covers the case where this code is
822      // being called from within backedge-taken count analysis, such that
823      // attempting to ask for the backedge-taken count would likely result
824      // in infinite recursion. In the later case, the analysis code will
825      // cope with a conservative value, and it will take care to purge
826      // that value once it has finished.
827      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
828      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
829        // Manually compute the final value for AR, checking for
830        // overflow.
831
832        // Check whether the backedge-taken count can be losslessly casted to
833        // the addrec's type. The count is always unsigned.
834        const SCEV *CastedMaxBECount =
835          getTruncateOrZeroExtend(MaxBECount, Start->getType());
836        const SCEV *RecastedMaxBECount =
837          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
838        if (MaxBECount == RecastedMaxBECount) {
839          const Type *WideTy = IntegerType::get(BitWidth * 2);
840          // Check whether Start+Step*MaxBECount has no unsigned overflow.
841          const SCEV *ZMul =
842            getMulExpr(CastedMaxBECount,
843                       getTruncateOrZeroExtend(Step, Start->getType()));
844          const SCEV *Add = getAddExpr(Start, ZMul);
845          const SCEV *OperandExtendedAdd =
846            getAddExpr(getZeroExtendExpr(Start, WideTy),
847                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
848                                  getZeroExtendExpr(Step, WideTy)));
849          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
850            // Return the expression with the addrec on the outside.
851            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
852                                 getZeroExtendExpr(Step, Ty),
853                                 L);
854
855          // Similar to above, only this time treat the step value as signed.
856          // This covers loops that count down.
857          const SCEV *SMul =
858            getMulExpr(CastedMaxBECount,
859                       getTruncateOrSignExtend(Step, Start->getType()));
860          Add = getAddExpr(Start, SMul);
861          OperandExtendedAdd =
862            getAddExpr(getZeroExtendExpr(Start, WideTy),
863                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
864                                  getSignExtendExpr(Step, WideTy)));
865          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
866            // Return the expression with the addrec on the outside.
867            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
868                                 getSignExtendExpr(Step, Ty),
869                                 L);
870        }
871
872        // If the backedge is guarded by a comparison with the pre-inc value
873        // the addrec is safe. Also, if the entry is guarded by a comparison
874        // with the start value and the backedge is guarded by a comparison
875        // with the post-inc value, the addrec is safe.
876        if (isKnownPositive(Step)) {
877          const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
878                                      getUnsignedRange(Step).getUnsignedMax());
879          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
880              (isLoopGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
881               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
882                                           AR->getPostIncExpr(*this), N)))
883            // Return the expression with the addrec on the outside.
884            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
885                                 getZeroExtendExpr(Step, Ty),
886                                 L);
887        } else if (isKnownNegative(Step)) {
888          const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
889                                      getSignedRange(Step).getSignedMin());
890          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) &&
891              (isLoopGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) ||
892               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
893                                           AR->getPostIncExpr(*this), N)))
894            // Return the expression with the addrec on the outside.
895            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
896                                 getSignExtendExpr(Step, Ty),
897                                 L);
898        }
899      }
900    }
901
902  FoldingSetNodeID ID;
903  ID.AddInteger(scZeroExtend);
904  ID.AddPointer(Op);
905  ID.AddPointer(Ty);
906  void *IP = 0;
907  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
908  SCEV *S = SCEVAllocator.Allocate<SCEVZeroExtendExpr>();
909  new (S) SCEVZeroExtendExpr(Op, Ty);
910  UniqueSCEVs.InsertNode(S, IP);
911  return S;
912}
913
914const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
915                                              const Type *Ty) {
916  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
917         "This is not an extending conversion!");
918  assert(isSCEVable(Ty) &&
919         "This is not a conversion to a SCEVable type!");
920  Ty = getEffectiveSCEVType(Ty);
921
922  // Fold if the operand is constant.
923  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
924    const Type *IntTy = getEffectiveSCEVType(Ty);
925    Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
926    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
927    return getConstant(cast<ConstantInt>(C));
928  }
929
930  // sext(sext(x)) --> sext(x)
931  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
932    return getSignExtendExpr(SS->getOperand(), Ty);
933
934  // If the input value is a chrec scev, and we can prove that the value
935  // did not overflow the old, smaller, value, we can sign extend all of the
936  // operands (often constants).  This allows analysis of something like
937  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
938  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
939    if (AR->isAffine()) {
940      const SCEV *Start = AR->getStart();
941      const SCEV *Step = AR->getStepRecurrence(*this);
942      unsigned BitWidth = getTypeSizeInBits(AR->getType());
943      const Loop *L = AR->getLoop();
944
945      // Check whether the backedge-taken count is SCEVCouldNotCompute.
946      // Note that this serves two purposes: It filters out loops that are
947      // simply not analyzable, and it covers the case where this code is
948      // being called from within backedge-taken count analysis, such that
949      // attempting to ask for the backedge-taken count would likely result
950      // in infinite recursion. In the later case, the analysis code will
951      // cope with a conservative value, and it will take care to purge
952      // that value once it has finished.
953      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
954      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
955        // Manually compute the final value for AR, checking for
956        // overflow.
957
958        // Check whether the backedge-taken count can be losslessly casted to
959        // the addrec's type. The count is always unsigned.
960        const SCEV *CastedMaxBECount =
961          getTruncateOrZeroExtend(MaxBECount, Start->getType());
962        const SCEV *RecastedMaxBECount =
963          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
964        if (MaxBECount == RecastedMaxBECount) {
965          const Type *WideTy = IntegerType::get(BitWidth * 2);
966          // Check whether Start+Step*MaxBECount has no signed overflow.
967          const SCEV *SMul =
968            getMulExpr(CastedMaxBECount,
969                       getTruncateOrSignExtend(Step, Start->getType()));
970          const SCEV *Add = getAddExpr(Start, SMul);
971          const SCEV *OperandExtendedAdd =
972            getAddExpr(getSignExtendExpr(Start, WideTy),
973                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
974                                  getSignExtendExpr(Step, WideTy)));
975          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
976            // Return the expression with the addrec on the outside.
977            return getAddRecExpr(getSignExtendExpr(Start, Ty),
978                                 getSignExtendExpr(Step, Ty),
979                                 L);
980        }
981
982        // If the backedge is guarded by a comparison with the pre-inc value
983        // the addrec is safe. Also, if the entry is guarded by a comparison
984        // with the start value and the backedge is guarded by a comparison
985        // with the post-inc value, the addrec is safe.
986        if (isKnownPositive(Step)) {
987          const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
988                                      getSignedRange(Step).getSignedMax());
989          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
990              (isLoopGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
991               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
992                                           AR->getPostIncExpr(*this), N)))
993            // Return the expression with the addrec on the outside.
994            return getAddRecExpr(getSignExtendExpr(Start, Ty),
995                                 getSignExtendExpr(Step, Ty),
996                                 L);
997        } else if (isKnownNegative(Step)) {
998          const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
999                                      getSignedRange(Step).getSignedMin());
1000          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
1001              (isLoopGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
1002               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1003                                           AR->getPostIncExpr(*this), N)))
1004            // Return the expression with the addrec on the outside.
1005            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1006                                 getSignExtendExpr(Step, Ty),
1007                                 L);
1008        }
1009      }
1010    }
1011
1012  FoldingSetNodeID ID;
1013  ID.AddInteger(scSignExtend);
1014  ID.AddPointer(Op);
1015  ID.AddPointer(Ty);
1016  void *IP = 0;
1017  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1018  SCEV *S = SCEVAllocator.Allocate<SCEVSignExtendExpr>();
1019  new (S) SCEVSignExtendExpr(Op, Ty);
1020  UniqueSCEVs.InsertNode(S, IP);
1021  return S;
1022}
1023
1024/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1025/// unspecified bits out to the given type.
1026///
1027const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1028                                             const Type *Ty) {
1029  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1030         "This is not an extending conversion!");
1031  assert(isSCEVable(Ty) &&
1032         "This is not a conversion to a SCEVable type!");
1033  Ty = getEffectiveSCEVType(Ty);
1034
1035  // Sign-extend negative constants.
1036  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1037    if (SC->getValue()->getValue().isNegative())
1038      return getSignExtendExpr(Op, Ty);
1039
1040  // Peel off a truncate cast.
1041  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1042    const SCEV *NewOp = T->getOperand();
1043    if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1044      return getAnyExtendExpr(NewOp, Ty);
1045    return getTruncateOrNoop(NewOp, Ty);
1046  }
1047
1048  // Next try a zext cast. If the cast is folded, use it.
1049  const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1050  if (!isa<SCEVZeroExtendExpr>(ZExt))
1051    return ZExt;
1052
1053  // Next try a sext cast. If the cast is folded, use it.
1054  const SCEV *SExt = getSignExtendExpr(Op, Ty);
1055  if (!isa<SCEVSignExtendExpr>(SExt))
1056    return SExt;
1057
1058  // If the expression is obviously signed, use the sext cast value.
1059  if (isa<SCEVSMaxExpr>(Op))
1060    return SExt;
1061
1062  // Absent any other information, use the zext cast value.
1063  return ZExt;
1064}
1065
1066/// CollectAddOperandsWithScales - Process the given Ops list, which is
1067/// a list of operands to be added under the given scale, update the given
1068/// map. This is a helper function for getAddRecExpr. As an example of
1069/// what it does, given a sequence of operands that would form an add
1070/// expression like this:
1071///
1072///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1073///
1074/// where A and B are constants, update the map with these values:
1075///
1076///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1077///
1078/// and add 13 + A*B*29 to AccumulatedConstant.
1079/// This will allow getAddRecExpr to produce this:
1080///
1081///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1082///
1083/// This form often exposes folding opportunities that are hidden in
1084/// the original operand list.
1085///
1086/// Return true iff it appears that any interesting folding opportunities
1087/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1088/// the common case where no interesting opportunities are present, and
1089/// is also used as a check to avoid infinite recursion.
1090///
1091static bool
1092CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1093                             SmallVector<const SCEV *, 8> &NewOps,
1094                             APInt &AccumulatedConstant,
1095                             const SmallVectorImpl<const SCEV *> &Ops,
1096                             const APInt &Scale,
1097                             ScalarEvolution &SE) {
1098  bool Interesting = false;
1099
1100  // Iterate over the add operands.
1101  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1102    const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1103    if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1104      APInt NewScale =
1105        Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1106      if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1107        // A multiplication of a constant with another add; recurse.
1108        Interesting |=
1109          CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1110                                       cast<SCEVAddExpr>(Mul->getOperand(1))
1111                                         ->getOperands(),
1112                                       NewScale, SE);
1113      } else {
1114        // A multiplication of a constant with some other value. Update
1115        // the map.
1116        SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1117        const SCEV *Key = SE.getMulExpr(MulOps);
1118        std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1119          M.insert(std::make_pair(Key, NewScale));
1120        if (Pair.second) {
1121          NewOps.push_back(Pair.first->first);
1122        } else {
1123          Pair.first->second += NewScale;
1124          // The map already had an entry for this value, which may indicate
1125          // a folding opportunity.
1126          Interesting = true;
1127        }
1128      }
1129    } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1130      // Pull a buried constant out to the outside.
1131      if (Scale != 1 || AccumulatedConstant != 0 || C->isZero())
1132        Interesting = true;
1133      AccumulatedConstant += Scale * C->getValue()->getValue();
1134    } else {
1135      // An ordinary operand. Update the map.
1136      std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1137        M.insert(std::make_pair(Ops[i], Scale));
1138      if (Pair.second) {
1139        NewOps.push_back(Pair.first->first);
1140      } else {
1141        Pair.first->second += Scale;
1142        // The map already had an entry for this value, which may indicate
1143        // a folding opportunity.
1144        Interesting = true;
1145      }
1146    }
1147  }
1148
1149  return Interesting;
1150}
1151
1152namespace {
1153  struct APIntCompare {
1154    bool operator()(const APInt &LHS, const APInt &RHS) const {
1155      return LHS.ult(RHS);
1156    }
1157  };
1158}
1159
1160/// getAddExpr - Get a canonical add expression, or something simpler if
1161/// possible.
1162const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops) {
1163  assert(!Ops.empty() && "Cannot get empty add!");
1164  if (Ops.size() == 1) return Ops[0];
1165#ifndef NDEBUG
1166  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1167    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1168           getEffectiveSCEVType(Ops[0]->getType()) &&
1169           "SCEVAddExpr operand types don't match!");
1170#endif
1171
1172  // Sort by complexity, this groups all similar expression types together.
1173  GroupByComplexity(Ops, LI);
1174
1175  // If there are any constants, fold them together.
1176  unsigned Idx = 0;
1177  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1178    ++Idx;
1179    assert(Idx < Ops.size());
1180    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1181      // We found two constants, fold them together!
1182      Ops[0] = getConstant(LHSC->getValue()->getValue() +
1183                           RHSC->getValue()->getValue());
1184      if (Ops.size() == 2) return Ops[0];
1185      Ops.erase(Ops.begin()+1);  // Erase the folded element
1186      LHSC = cast<SCEVConstant>(Ops[0]);
1187    }
1188
1189    // If we are left with a constant zero being added, strip it off.
1190    if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1191      Ops.erase(Ops.begin());
1192      --Idx;
1193    }
1194  }
1195
1196  if (Ops.size() == 1) return Ops[0];
1197
1198  // Okay, check to see if the same value occurs in the operand list twice.  If
1199  // so, merge them together into an multiply expression.  Since we sorted the
1200  // list, these values are required to be adjacent.
1201  const Type *Ty = Ops[0]->getType();
1202  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1203    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
1204      // Found a match, merge the two values into a multiply, and add any
1205      // remaining values to the result.
1206      const SCEV *Two = getIntegerSCEV(2, Ty);
1207      const SCEV *Mul = getMulExpr(Ops[i], Two);
1208      if (Ops.size() == 2)
1209        return Mul;
1210      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1211      Ops.push_back(Mul);
1212      return getAddExpr(Ops);
1213    }
1214
1215  // Check for truncates. If all the operands are truncated from the same
1216  // type, see if factoring out the truncate would permit the result to be
1217  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1218  // if the contents of the resulting outer trunc fold to something simple.
1219  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1220    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1221    const Type *DstType = Trunc->getType();
1222    const Type *SrcType = Trunc->getOperand()->getType();
1223    SmallVector<const SCEV *, 8> LargeOps;
1224    bool Ok = true;
1225    // Check all the operands to see if they can be represented in the
1226    // source type of the truncate.
1227    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1228      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1229        if (T->getOperand()->getType() != SrcType) {
1230          Ok = false;
1231          break;
1232        }
1233        LargeOps.push_back(T->getOperand());
1234      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1235        // This could be either sign or zero extension, but sign extension
1236        // is much more likely to be foldable here.
1237        LargeOps.push_back(getSignExtendExpr(C, SrcType));
1238      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1239        SmallVector<const SCEV *, 8> LargeMulOps;
1240        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1241          if (const SCEVTruncateExpr *T =
1242                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1243            if (T->getOperand()->getType() != SrcType) {
1244              Ok = false;
1245              break;
1246            }
1247            LargeMulOps.push_back(T->getOperand());
1248          } else if (const SCEVConstant *C =
1249                       dyn_cast<SCEVConstant>(M->getOperand(j))) {
1250            // This could be either sign or zero extension, but sign extension
1251            // is much more likely to be foldable here.
1252            LargeMulOps.push_back(getSignExtendExpr(C, SrcType));
1253          } else {
1254            Ok = false;
1255            break;
1256          }
1257        }
1258        if (Ok)
1259          LargeOps.push_back(getMulExpr(LargeMulOps));
1260      } else {
1261        Ok = false;
1262        break;
1263      }
1264    }
1265    if (Ok) {
1266      // Evaluate the expression in the larger type.
1267      const SCEV *Fold = getAddExpr(LargeOps);
1268      // If it folds to something simple, use it. Otherwise, don't.
1269      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1270        return getTruncateExpr(Fold, DstType);
1271    }
1272  }
1273
1274  // Skip past any other cast SCEVs.
1275  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1276    ++Idx;
1277
1278  // If there are add operands they would be next.
1279  if (Idx < Ops.size()) {
1280    bool DeletedAdd = false;
1281    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1282      // If we have an add, expand the add operands onto the end of the operands
1283      // list.
1284      Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1285      Ops.erase(Ops.begin()+Idx);
1286      DeletedAdd = true;
1287    }
1288
1289    // If we deleted at least one add, we added operands to the end of the list,
1290    // and they are not necessarily sorted.  Recurse to resort and resimplify
1291    // any operands we just aquired.
1292    if (DeletedAdd)
1293      return getAddExpr(Ops);
1294  }
1295
1296  // Skip over the add expression until we get to a multiply.
1297  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1298    ++Idx;
1299
1300  // Check to see if there are any folding opportunities present with
1301  // operands multiplied by constant values.
1302  if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1303    uint64_t BitWidth = getTypeSizeInBits(Ty);
1304    DenseMap<const SCEV *, APInt> M;
1305    SmallVector<const SCEV *, 8> NewOps;
1306    APInt AccumulatedConstant(BitWidth, 0);
1307    if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1308                                     Ops, APInt(BitWidth, 1), *this)) {
1309      // Some interesting folding opportunity is present, so its worthwhile to
1310      // re-generate the operands list. Group the operands by constant scale,
1311      // to avoid multiplying by the same constant scale multiple times.
1312      std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1313      for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(),
1314           E = NewOps.end(); I != E; ++I)
1315        MulOpLists[M.find(*I)->second].push_back(*I);
1316      // Re-generate the operands list.
1317      Ops.clear();
1318      if (AccumulatedConstant != 0)
1319        Ops.push_back(getConstant(AccumulatedConstant));
1320      for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1321           I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1322        if (I->first != 0)
1323          Ops.push_back(getMulExpr(getConstant(I->first),
1324                                   getAddExpr(I->second)));
1325      if (Ops.empty())
1326        return getIntegerSCEV(0, Ty);
1327      if (Ops.size() == 1)
1328        return Ops[0];
1329      return getAddExpr(Ops);
1330    }
1331  }
1332
1333  // If we are adding something to a multiply expression, make sure the
1334  // something is not already an operand of the multiply.  If so, merge it into
1335  // the multiply.
1336  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1337    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1338    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1339      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1340      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1341        if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
1342          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1343          const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1344          if (Mul->getNumOperands() != 2) {
1345            // If the multiply has more than two operands, we must get the
1346            // Y*Z term.
1347            SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end());
1348            MulOps.erase(MulOps.begin()+MulOp);
1349            InnerMul = getMulExpr(MulOps);
1350          }
1351          const SCEV *One = getIntegerSCEV(1, Ty);
1352          const SCEV *AddOne = getAddExpr(InnerMul, One);
1353          const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]);
1354          if (Ops.size() == 2) return OuterMul;
1355          if (AddOp < Idx) {
1356            Ops.erase(Ops.begin()+AddOp);
1357            Ops.erase(Ops.begin()+Idx-1);
1358          } else {
1359            Ops.erase(Ops.begin()+Idx);
1360            Ops.erase(Ops.begin()+AddOp-1);
1361          }
1362          Ops.push_back(OuterMul);
1363          return getAddExpr(Ops);
1364        }
1365
1366      // Check this multiply against other multiplies being added together.
1367      for (unsigned OtherMulIdx = Idx+1;
1368           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1369           ++OtherMulIdx) {
1370        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1371        // If MulOp occurs in OtherMul, we can fold the two multiplies
1372        // together.
1373        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1374             OMulOp != e; ++OMulOp)
1375          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1376            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1377            const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
1378            if (Mul->getNumOperands() != 2) {
1379              SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1380                                                  Mul->op_end());
1381              MulOps.erase(MulOps.begin()+MulOp);
1382              InnerMul1 = getMulExpr(MulOps);
1383            }
1384            const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1385            if (OtherMul->getNumOperands() != 2) {
1386              SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1387                                                  OtherMul->op_end());
1388              MulOps.erase(MulOps.begin()+OMulOp);
1389              InnerMul2 = getMulExpr(MulOps);
1390            }
1391            const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1392            const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1393            if (Ops.size() == 2) return OuterMul;
1394            Ops.erase(Ops.begin()+Idx);
1395            Ops.erase(Ops.begin()+OtherMulIdx-1);
1396            Ops.push_back(OuterMul);
1397            return getAddExpr(Ops);
1398          }
1399      }
1400    }
1401  }
1402
1403  // If there are any add recurrences in the operands list, see if any other
1404  // added values are loop invariant.  If so, we can fold them into the
1405  // recurrence.
1406  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1407    ++Idx;
1408
1409  // Scan over all recurrences, trying to fold loop invariants into them.
1410  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1411    // Scan all of the other operands to this add and add them to the vector if
1412    // they are loop invariant w.r.t. the recurrence.
1413    SmallVector<const SCEV *, 8> LIOps;
1414    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1415    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1416      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1417        LIOps.push_back(Ops[i]);
1418        Ops.erase(Ops.begin()+i);
1419        --i; --e;
1420      }
1421
1422    // If we found some loop invariants, fold them into the recurrence.
1423    if (!LIOps.empty()) {
1424      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1425      LIOps.push_back(AddRec->getStart());
1426
1427      SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1428                                           AddRec->op_end());
1429      AddRecOps[0] = getAddExpr(LIOps);
1430
1431      const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
1432      // If all of the other operands were loop invariant, we are done.
1433      if (Ops.size() == 1) return NewRec;
1434
1435      // Otherwise, add the folded AddRec by the non-liv parts.
1436      for (unsigned i = 0;; ++i)
1437        if (Ops[i] == AddRec) {
1438          Ops[i] = NewRec;
1439          break;
1440        }
1441      return getAddExpr(Ops);
1442    }
1443
1444    // Okay, if there weren't any loop invariants to be folded, check to see if
1445    // there are multiple AddRec's with the same loop induction variable being
1446    // added together.  If so, we can fold them.
1447    for (unsigned OtherIdx = Idx+1;
1448         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1449      if (OtherIdx != Idx) {
1450        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1451        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1452          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
1453          SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(),
1454                                              AddRec->op_end());
1455          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1456            if (i >= NewOps.size()) {
1457              NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1458                            OtherAddRec->op_end());
1459              break;
1460            }
1461            NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
1462          }
1463          const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
1464
1465          if (Ops.size() == 2) return NewAddRec;
1466
1467          Ops.erase(Ops.begin()+Idx);
1468          Ops.erase(Ops.begin()+OtherIdx-1);
1469          Ops.push_back(NewAddRec);
1470          return getAddExpr(Ops);
1471        }
1472      }
1473
1474    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1475    // next one.
1476  }
1477
1478  // Okay, it looks like we really DO need an add expr.  Check to see if we
1479  // already have one, otherwise create a new one.
1480  FoldingSetNodeID ID;
1481  ID.AddInteger(scAddExpr);
1482  ID.AddInteger(Ops.size());
1483  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1484    ID.AddPointer(Ops[i]);
1485  void *IP = 0;
1486  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1487  SCEV *S = SCEVAllocator.Allocate<SCEVAddExpr>();
1488  new (S) SCEVAddExpr(Ops);
1489  UniqueSCEVs.InsertNode(S, IP);
1490  return S;
1491}
1492
1493
1494/// getMulExpr - Get a canonical multiply expression, or something simpler if
1495/// possible.
1496const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops) {
1497  assert(!Ops.empty() && "Cannot get empty mul!");
1498#ifndef NDEBUG
1499  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1500    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1501           getEffectiveSCEVType(Ops[0]->getType()) &&
1502           "SCEVMulExpr operand types don't match!");
1503#endif
1504
1505  // Sort by complexity, this groups all similar expression types together.
1506  GroupByComplexity(Ops, LI);
1507
1508  // If there are any constants, fold them together.
1509  unsigned Idx = 0;
1510  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1511
1512    // C1*(C2+V) -> C1*C2 + C1*V
1513    if (Ops.size() == 2)
1514      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1515        if (Add->getNumOperands() == 2 &&
1516            isa<SCEVConstant>(Add->getOperand(0)))
1517          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1518                            getMulExpr(LHSC, Add->getOperand(1)));
1519
1520
1521    ++Idx;
1522    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1523      // We found two constants, fold them together!
1524      ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() *
1525                                           RHSC->getValue()->getValue());
1526      Ops[0] = getConstant(Fold);
1527      Ops.erase(Ops.begin()+1);  // Erase the folded element
1528      if (Ops.size() == 1) return Ops[0];
1529      LHSC = cast<SCEVConstant>(Ops[0]);
1530    }
1531
1532    // If we are left with a constant one being multiplied, strip it off.
1533    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1534      Ops.erase(Ops.begin());
1535      --Idx;
1536    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1537      // If we have a multiply of zero, it will always be zero.
1538      return Ops[0];
1539    }
1540  }
1541
1542  // Skip over the add expression until we get to a multiply.
1543  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1544    ++Idx;
1545
1546  if (Ops.size() == 1)
1547    return Ops[0];
1548
1549  // If there are mul operands inline them all into this expression.
1550  if (Idx < Ops.size()) {
1551    bool DeletedMul = false;
1552    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1553      // If we have an mul, expand the mul operands onto the end of the operands
1554      // list.
1555      Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1556      Ops.erase(Ops.begin()+Idx);
1557      DeletedMul = true;
1558    }
1559
1560    // If we deleted at least one mul, we added operands to the end of the list,
1561    // and they are not necessarily sorted.  Recurse to resort and resimplify
1562    // any operands we just aquired.
1563    if (DeletedMul)
1564      return getMulExpr(Ops);
1565  }
1566
1567  // If there are any add recurrences in the operands list, see if any other
1568  // added values are loop invariant.  If so, we can fold them into the
1569  // recurrence.
1570  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1571    ++Idx;
1572
1573  // Scan over all recurrences, trying to fold loop invariants into them.
1574  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1575    // Scan all of the other operands to this mul and add them to the vector if
1576    // they are loop invariant w.r.t. the recurrence.
1577    SmallVector<const SCEV *, 8> LIOps;
1578    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1579    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1580      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1581        LIOps.push_back(Ops[i]);
1582        Ops.erase(Ops.begin()+i);
1583        --i; --e;
1584      }
1585
1586    // If we found some loop invariants, fold them into the recurrence.
1587    if (!LIOps.empty()) {
1588      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1589      SmallVector<const SCEV *, 4> NewOps;
1590      NewOps.reserve(AddRec->getNumOperands());
1591      if (LIOps.size() == 1) {
1592        const SCEV *Scale = LIOps[0];
1593        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1594          NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1595      } else {
1596        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
1597          SmallVector<const SCEV *, 4> MulOps(LIOps.begin(), LIOps.end());
1598          MulOps.push_back(AddRec->getOperand(i));
1599          NewOps.push_back(getMulExpr(MulOps));
1600        }
1601      }
1602
1603      const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
1604
1605      // If all of the other operands were loop invariant, we are done.
1606      if (Ops.size() == 1) return NewRec;
1607
1608      // Otherwise, multiply the folded AddRec by the non-liv parts.
1609      for (unsigned i = 0;; ++i)
1610        if (Ops[i] == AddRec) {
1611          Ops[i] = NewRec;
1612          break;
1613        }
1614      return getMulExpr(Ops);
1615    }
1616
1617    // Okay, if there weren't any loop invariants to be folded, check to see if
1618    // there are multiple AddRec's with the same loop induction variable being
1619    // multiplied together.  If so, we can fold them.
1620    for (unsigned OtherIdx = Idx+1;
1621         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1622      if (OtherIdx != Idx) {
1623        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1624        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1625          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
1626          const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1627          const SCEV *NewStart = getMulExpr(F->getStart(),
1628                                                 G->getStart());
1629          const SCEV *B = F->getStepRecurrence(*this);
1630          const SCEV *D = G->getStepRecurrence(*this);
1631          const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1632                                          getMulExpr(G, B),
1633                                          getMulExpr(B, D));
1634          const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1635                                               F->getLoop());
1636          if (Ops.size() == 2) return NewAddRec;
1637
1638          Ops.erase(Ops.begin()+Idx);
1639          Ops.erase(Ops.begin()+OtherIdx-1);
1640          Ops.push_back(NewAddRec);
1641          return getMulExpr(Ops);
1642        }
1643      }
1644
1645    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1646    // next one.
1647  }
1648
1649  // Okay, it looks like we really DO need an mul expr.  Check to see if we
1650  // already have one, otherwise create a new one.
1651  FoldingSetNodeID ID;
1652  ID.AddInteger(scMulExpr);
1653  ID.AddInteger(Ops.size());
1654  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1655    ID.AddPointer(Ops[i]);
1656  void *IP = 0;
1657  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1658  SCEV *S = SCEVAllocator.Allocate<SCEVMulExpr>();
1659  new (S) SCEVMulExpr(Ops);
1660  UniqueSCEVs.InsertNode(S, IP);
1661  return S;
1662}
1663
1664/// getUDivExpr - Get a canonical multiply expression, or something simpler if
1665/// possible.
1666const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1667                                         const SCEV *RHS) {
1668  assert(getEffectiveSCEVType(LHS->getType()) ==
1669         getEffectiveSCEVType(RHS->getType()) &&
1670         "SCEVUDivExpr operand types don't match!");
1671
1672  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1673    if (RHSC->getValue()->equalsInt(1))
1674      return LHS;                            // X udiv 1 --> x
1675    if (RHSC->isZero())
1676      return getIntegerSCEV(0, LHS->getType()); // value is undefined
1677
1678    // Determine if the division can be folded into the operands of
1679    // its operands.
1680    // TODO: Generalize this to non-constants by using known-bits information.
1681    const Type *Ty = LHS->getType();
1682    unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1683    unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1684    // For non-power-of-two values, effectively round the value up to the
1685    // nearest power of two.
1686    if (!RHSC->getValue()->getValue().isPowerOf2())
1687      ++MaxShiftAmt;
1688    const IntegerType *ExtTy =
1689      IntegerType::get(getTypeSizeInBits(Ty) + MaxShiftAmt);
1690    // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1691    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1692      if (const SCEVConstant *Step =
1693            dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1694        if (!Step->getValue()->getValue()
1695              .urem(RHSC->getValue()->getValue()) &&
1696            getZeroExtendExpr(AR, ExtTy) ==
1697            getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1698                          getZeroExtendExpr(Step, ExtTy),
1699                          AR->getLoop())) {
1700          SmallVector<const SCEV *, 4> Operands;
1701          for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1702            Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1703          return getAddRecExpr(Operands, AR->getLoop());
1704        }
1705    // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1706    if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1707      SmallVector<const SCEV *, 4> Operands;
1708      for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1709        Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1710      if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1711        // Find an operand that's safely divisible.
1712        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1713          const SCEV *Op = M->getOperand(i);
1714          const SCEV *Div = getUDivExpr(Op, RHSC);
1715          if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1716            const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
1717            Operands = SmallVector<const SCEV *, 4>(MOperands.begin(),
1718                                                  MOperands.end());
1719            Operands[i] = Div;
1720            return getMulExpr(Operands);
1721          }
1722        }
1723    }
1724    // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1725    if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1726      SmallVector<const SCEV *, 4> Operands;
1727      for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1728        Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1729      if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1730        Operands.clear();
1731        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1732          const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
1733          if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i))
1734            break;
1735          Operands.push_back(Op);
1736        }
1737        if (Operands.size() == A->getNumOperands())
1738          return getAddExpr(Operands);
1739      }
1740    }
1741
1742    // Fold if both operands are constant.
1743    if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1744      Constant *LHSCV = LHSC->getValue();
1745      Constant *RHSCV = RHSC->getValue();
1746      return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1747                                                                 RHSCV)));
1748    }
1749  }
1750
1751  FoldingSetNodeID ID;
1752  ID.AddInteger(scUDivExpr);
1753  ID.AddPointer(LHS);
1754  ID.AddPointer(RHS);
1755  void *IP = 0;
1756  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1757  SCEV *S = SCEVAllocator.Allocate<SCEVUDivExpr>();
1758  new (S) SCEVUDivExpr(LHS, RHS);
1759  UniqueSCEVs.InsertNode(S, IP);
1760  return S;
1761}
1762
1763
1764/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1765/// Simplify the expression as much as possible.
1766const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
1767                               const SCEV *Step, const Loop *L) {
1768  SmallVector<const SCEV *, 4> Operands;
1769  Operands.push_back(Start);
1770  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1771    if (StepChrec->getLoop() == L) {
1772      Operands.insert(Operands.end(), StepChrec->op_begin(),
1773                      StepChrec->op_end());
1774      return getAddRecExpr(Operands, L);
1775    }
1776
1777  Operands.push_back(Step);
1778  return getAddRecExpr(Operands, L);
1779}
1780
1781/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1782/// Simplify the expression as much as possible.
1783const SCEV *
1784ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
1785                               const Loop *L) {
1786  if (Operands.size() == 1) return Operands[0];
1787#ifndef NDEBUG
1788  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1789    assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1790           getEffectiveSCEVType(Operands[0]->getType()) &&
1791           "SCEVAddRecExpr operand types don't match!");
1792#endif
1793
1794  if (Operands.back()->isZero()) {
1795    Operands.pop_back();
1796    return getAddRecExpr(Operands, L);             // {X,+,0}  -->  X
1797  }
1798
1799  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
1800  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
1801    const Loop* NestedLoop = NestedAR->getLoop();
1802    if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
1803      SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
1804                                                NestedAR->op_end());
1805      Operands[0] = NestedAR->getStart();
1806      // AddRecs require their operands be loop-invariant with respect to their
1807      // loops. Don't perform this transformation if it would break this
1808      // requirement.
1809      bool AllInvariant = true;
1810      for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1811        if (!Operands[i]->isLoopInvariant(L)) {
1812          AllInvariant = false;
1813          break;
1814        }
1815      if (AllInvariant) {
1816        NestedOperands[0] = getAddRecExpr(Operands, L);
1817        AllInvariant = true;
1818        for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
1819          if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
1820            AllInvariant = false;
1821            break;
1822          }
1823        if (AllInvariant)
1824          // Ok, both add recurrences are valid after the transformation.
1825          return getAddRecExpr(NestedOperands, NestedLoop);
1826      }
1827      // Reset Operands to its original state.
1828      Operands[0] = NestedAR;
1829    }
1830  }
1831
1832  FoldingSetNodeID ID;
1833  ID.AddInteger(scAddRecExpr);
1834  ID.AddInteger(Operands.size());
1835  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1836    ID.AddPointer(Operands[i]);
1837  ID.AddPointer(L);
1838  void *IP = 0;
1839  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1840  SCEV *S = SCEVAllocator.Allocate<SCEVAddRecExpr>();
1841  new (S) SCEVAddRecExpr(Operands, L);
1842  UniqueSCEVs.InsertNode(S, IP);
1843  return S;
1844}
1845
1846const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
1847                                         const SCEV *RHS) {
1848  SmallVector<const SCEV *, 2> Ops;
1849  Ops.push_back(LHS);
1850  Ops.push_back(RHS);
1851  return getSMaxExpr(Ops);
1852}
1853
1854const SCEV *
1855ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
1856  assert(!Ops.empty() && "Cannot get empty smax!");
1857  if (Ops.size() == 1) return Ops[0];
1858#ifndef NDEBUG
1859  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1860    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1861           getEffectiveSCEVType(Ops[0]->getType()) &&
1862           "SCEVSMaxExpr operand types don't match!");
1863#endif
1864
1865  // Sort by complexity, this groups all similar expression types together.
1866  GroupByComplexity(Ops, LI);
1867
1868  // If there are any constants, fold them together.
1869  unsigned Idx = 0;
1870  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1871    ++Idx;
1872    assert(Idx < Ops.size());
1873    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1874      // We found two constants, fold them together!
1875      ConstantInt *Fold = ConstantInt::get(
1876                              APIntOps::smax(LHSC->getValue()->getValue(),
1877                                             RHSC->getValue()->getValue()));
1878      Ops[0] = getConstant(Fold);
1879      Ops.erase(Ops.begin()+1);  // Erase the folded element
1880      if (Ops.size() == 1) return Ops[0];
1881      LHSC = cast<SCEVConstant>(Ops[0]);
1882    }
1883
1884    // If we are left with a constant minimum-int, strip it off.
1885    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1886      Ops.erase(Ops.begin());
1887      --Idx;
1888    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
1889      // If we have an smax with a constant maximum-int, it will always be
1890      // maximum-int.
1891      return Ops[0];
1892    }
1893  }
1894
1895  if (Ops.size() == 1) return Ops[0];
1896
1897  // Find the first SMax
1898  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1899    ++Idx;
1900
1901  // Check to see if one of the operands is an SMax. If so, expand its operands
1902  // onto our operand list, and recurse to simplify.
1903  if (Idx < Ops.size()) {
1904    bool DeletedSMax = false;
1905    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
1906      Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1907      Ops.erase(Ops.begin()+Idx);
1908      DeletedSMax = true;
1909    }
1910
1911    if (DeletedSMax)
1912      return getSMaxExpr(Ops);
1913  }
1914
1915  // Okay, check to see if the same value occurs in the operand list twice.  If
1916  // so, delete one.  Since we sorted the list, these values are required to
1917  // be adjacent.
1918  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1919    if (Ops[i] == Ops[i+1]) {      //  X smax Y smax Y  -->  X smax Y
1920      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1921      --i; --e;
1922    }
1923
1924  if (Ops.size() == 1) return Ops[0];
1925
1926  assert(!Ops.empty() && "Reduced smax down to nothing!");
1927
1928  // Okay, it looks like we really DO need an smax expr.  Check to see if we
1929  // already have one, otherwise create a new one.
1930  FoldingSetNodeID ID;
1931  ID.AddInteger(scSMaxExpr);
1932  ID.AddInteger(Ops.size());
1933  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1934    ID.AddPointer(Ops[i]);
1935  void *IP = 0;
1936  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1937  SCEV *S = SCEVAllocator.Allocate<SCEVSMaxExpr>();
1938  new (S) SCEVSMaxExpr(Ops);
1939  UniqueSCEVs.InsertNode(S, IP);
1940  return S;
1941}
1942
1943const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
1944                                         const SCEV *RHS) {
1945  SmallVector<const SCEV *, 2> Ops;
1946  Ops.push_back(LHS);
1947  Ops.push_back(RHS);
1948  return getUMaxExpr(Ops);
1949}
1950
1951const SCEV *
1952ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
1953  assert(!Ops.empty() && "Cannot get empty umax!");
1954  if (Ops.size() == 1) return Ops[0];
1955#ifndef NDEBUG
1956  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1957    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1958           getEffectiveSCEVType(Ops[0]->getType()) &&
1959           "SCEVUMaxExpr operand types don't match!");
1960#endif
1961
1962  // Sort by complexity, this groups all similar expression types together.
1963  GroupByComplexity(Ops, LI);
1964
1965  // If there are any constants, fold them together.
1966  unsigned Idx = 0;
1967  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1968    ++Idx;
1969    assert(Idx < Ops.size());
1970    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1971      // We found two constants, fold them together!
1972      ConstantInt *Fold = ConstantInt::get(
1973                              APIntOps::umax(LHSC->getValue()->getValue(),
1974                                             RHSC->getValue()->getValue()));
1975      Ops[0] = getConstant(Fold);
1976      Ops.erase(Ops.begin()+1);  // Erase the folded element
1977      if (Ops.size() == 1) return Ops[0];
1978      LHSC = cast<SCEVConstant>(Ops[0]);
1979    }
1980
1981    // If we are left with a constant minimum-int, strip it off.
1982    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
1983      Ops.erase(Ops.begin());
1984      --Idx;
1985    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
1986      // If we have an umax with a constant maximum-int, it will always be
1987      // maximum-int.
1988      return Ops[0];
1989    }
1990  }
1991
1992  if (Ops.size() == 1) return Ops[0];
1993
1994  // Find the first UMax
1995  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
1996    ++Idx;
1997
1998  // Check to see if one of the operands is a UMax. If so, expand its operands
1999  // onto our operand list, and recurse to simplify.
2000  if (Idx < Ops.size()) {
2001    bool DeletedUMax = false;
2002    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
2003      Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
2004      Ops.erase(Ops.begin()+Idx);
2005      DeletedUMax = true;
2006    }
2007
2008    if (DeletedUMax)
2009      return getUMaxExpr(Ops);
2010  }
2011
2012  // Okay, check to see if the same value occurs in the operand list twice.  If
2013  // so, delete one.  Since we sorted the list, these values are required to
2014  // be adjacent.
2015  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2016    if (Ops[i] == Ops[i+1]) {      //  X umax Y umax Y  -->  X umax Y
2017      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2018      --i; --e;
2019    }
2020
2021  if (Ops.size() == 1) return Ops[0];
2022
2023  assert(!Ops.empty() && "Reduced umax down to nothing!");
2024
2025  // Okay, it looks like we really DO need a umax expr.  Check to see if we
2026  // already have one, otherwise create a new one.
2027  FoldingSetNodeID ID;
2028  ID.AddInteger(scUMaxExpr);
2029  ID.AddInteger(Ops.size());
2030  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2031    ID.AddPointer(Ops[i]);
2032  void *IP = 0;
2033  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2034  SCEV *S = SCEVAllocator.Allocate<SCEVUMaxExpr>();
2035  new (S) SCEVUMaxExpr(Ops);
2036  UniqueSCEVs.InsertNode(S, IP);
2037  return S;
2038}
2039
2040const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2041                                         const SCEV *RHS) {
2042  // ~smax(~x, ~y) == smin(x, y).
2043  return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2044}
2045
2046const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2047                                         const SCEV *RHS) {
2048  // ~umax(~x, ~y) == umin(x, y)
2049  return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2050}
2051
2052const SCEV *ScalarEvolution::getUnknown(Value *V) {
2053  // Don't attempt to do anything other than create a SCEVUnknown object
2054  // here.  createSCEV only calls getUnknown after checking for all other
2055  // interesting possibilities, and any other code that calls getUnknown
2056  // is doing so in order to hide a value from SCEV canonicalization.
2057
2058  FoldingSetNodeID ID;
2059  ID.AddInteger(scUnknown);
2060  ID.AddPointer(V);
2061  void *IP = 0;
2062  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2063  SCEV *S = SCEVAllocator.Allocate<SCEVUnknown>();
2064  new (S) SCEVUnknown(V);
2065  UniqueSCEVs.InsertNode(S, IP);
2066  return S;
2067}
2068
2069//===----------------------------------------------------------------------===//
2070//            Basic SCEV Analysis and PHI Idiom Recognition Code
2071//
2072
2073/// isSCEVable - Test if values of the given type are analyzable within
2074/// the SCEV framework. This primarily includes integer types, and it
2075/// can optionally include pointer types if the ScalarEvolution class
2076/// has access to target-specific information.
2077bool ScalarEvolution::isSCEVable(const Type *Ty) const {
2078  // Integers are always SCEVable.
2079  if (Ty->isInteger())
2080    return true;
2081
2082  // Pointers are SCEVable if TargetData information is available
2083  // to provide pointer size information.
2084  if (isa<PointerType>(Ty))
2085    return TD != NULL;
2086
2087  // Otherwise it's not SCEVable.
2088  return false;
2089}
2090
2091/// getTypeSizeInBits - Return the size in bits of the specified type,
2092/// for which isSCEVable must return true.
2093uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
2094  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2095
2096  // If we have a TargetData, use it!
2097  if (TD)
2098    return TD->getTypeSizeInBits(Ty);
2099
2100  // Otherwise, we support only integer types.
2101  assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!");
2102  return Ty->getPrimitiveSizeInBits();
2103}
2104
2105/// getEffectiveSCEVType - Return a type with the same bitwidth as
2106/// the given type and which represents how SCEV will treat the given
2107/// type, for which isSCEVable must return true. For pointer types,
2108/// this is the pointer-sized integer type.
2109const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
2110  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2111
2112  if (Ty->isInteger())
2113    return Ty;
2114
2115  assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
2116  return TD->getIntPtrType();
2117}
2118
2119const SCEV *ScalarEvolution::getCouldNotCompute() {
2120  return &CouldNotCompute;
2121}
2122
2123/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2124/// expression and create a new one.
2125const SCEV *ScalarEvolution::getSCEV(Value *V) {
2126  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
2127
2128  std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V);
2129  if (I != Scalars.end()) return I->second;
2130  const SCEV *S = createSCEV(V);
2131  Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
2132  return S;
2133}
2134
2135/// getIntegerSCEV - Given a SCEVable type, create a constant for the
2136/// specified signed integer value and return a SCEV for the constant.
2137const SCEV *ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
2138  const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
2139  return getConstant(ConstantInt::get(ITy, Val));
2140}
2141
2142/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2143///
2144const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
2145  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2146    return getConstant(cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
2147
2148  const Type *Ty = V->getType();
2149  Ty = getEffectiveSCEVType(Ty);
2150  return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(Ty)));
2151}
2152
2153/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2154const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
2155  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2156    return getConstant(cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
2157
2158  const Type *Ty = V->getType();
2159  Ty = getEffectiveSCEVType(Ty);
2160  const SCEV *AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty));
2161  return getMinusSCEV(AllOnes, V);
2162}
2163
2164/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2165///
2166const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2167                                          const SCEV *RHS) {
2168  // X - Y --> X + -Y
2169  return getAddExpr(LHS, getNegativeSCEV(RHS));
2170}
2171
2172/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2173/// input value to the specified type.  If the type must be extended, it is zero
2174/// extended.
2175const SCEV *
2176ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
2177                                         const Type *Ty) {
2178  const Type *SrcTy = V->getType();
2179  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2180         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2181         "Cannot truncate or zero extend with non-integer arguments!");
2182  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2183    return V;  // No conversion
2184  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2185    return getTruncateExpr(V, Ty);
2186  return getZeroExtendExpr(V, Ty);
2187}
2188
2189/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2190/// input value to the specified type.  If the type must be extended, it is sign
2191/// extended.
2192const SCEV *
2193ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
2194                                         const Type *Ty) {
2195  const Type *SrcTy = V->getType();
2196  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2197         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2198         "Cannot truncate or zero extend with non-integer arguments!");
2199  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2200    return V;  // No conversion
2201  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2202    return getTruncateExpr(V, Ty);
2203  return getSignExtendExpr(V, Ty);
2204}
2205
2206/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2207/// input value to the specified type.  If the type must be extended, it is zero
2208/// extended.  The conversion must not be narrowing.
2209const SCEV *
2210ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
2211  const Type *SrcTy = V->getType();
2212  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2213         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2214         "Cannot noop or zero extend with non-integer arguments!");
2215  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2216         "getNoopOrZeroExtend cannot truncate!");
2217  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2218    return V;  // No conversion
2219  return getZeroExtendExpr(V, Ty);
2220}
2221
2222/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2223/// input value to the specified type.  If the type must be extended, it is sign
2224/// extended.  The conversion must not be narrowing.
2225const SCEV *
2226ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
2227  const Type *SrcTy = V->getType();
2228  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2229         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2230         "Cannot noop or sign extend with non-integer arguments!");
2231  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2232         "getNoopOrSignExtend cannot truncate!");
2233  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2234    return V;  // No conversion
2235  return getSignExtendExpr(V, Ty);
2236}
2237
2238/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2239/// the input value to the specified type. If the type must be extended,
2240/// it is extended with unspecified bits. The conversion must not be
2241/// narrowing.
2242const SCEV *
2243ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
2244  const Type *SrcTy = V->getType();
2245  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2246         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2247         "Cannot noop or any extend with non-integer arguments!");
2248  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2249         "getNoopOrAnyExtend cannot truncate!");
2250  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2251    return V;  // No conversion
2252  return getAnyExtendExpr(V, Ty);
2253}
2254
2255/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2256/// input value to the specified type.  The conversion must not be widening.
2257const SCEV *
2258ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
2259  const Type *SrcTy = V->getType();
2260  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2261         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2262         "Cannot truncate or noop with non-integer arguments!");
2263  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2264         "getTruncateOrNoop cannot extend!");
2265  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2266    return V;  // No conversion
2267  return getTruncateExpr(V, Ty);
2268}
2269
2270/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2271/// the types using zero-extension, and then perform a umax operation
2272/// with them.
2273const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2274                                                        const SCEV *RHS) {
2275  const SCEV *PromotedLHS = LHS;
2276  const SCEV *PromotedRHS = RHS;
2277
2278  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2279    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2280  else
2281    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2282
2283  return getUMaxExpr(PromotedLHS, PromotedRHS);
2284}
2285
2286/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2287/// the types using zero-extension, and then perform a umin operation
2288/// with them.
2289const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2290                                                        const SCEV *RHS) {
2291  const SCEV *PromotedLHS = LHS;
2292  const SCEV *PromotedRHS = RHS;
2293
2294  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2295    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2296  else
2297    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2298
2299  return getUMinExpr(PromotedLHS, PromotedRHS);
2300}
2301
2302/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
2303/// the specified instruction and replaces any references to the symbolic value
2304/// SymName with the specified value.  This is used during PHI resolution.
2305void
2306ScalarEvolution::ReplaceSymbolicValueWithConcrete(Instruction *I,
2307                                                  const SCEV *SymName,
2308                                                  const SCEV *NewVal) {
2309  std::map<SCEVCallbackVH, const SCEV *>::iterator SI =
2310    Scalars.find(SCEVCallbackVH(I, this));
2311  if (SI == Scalars.end()) return;
2312
2313  const SCEV *NV =
2314    SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this);
2315  if (NV == SI->second) return;  // No change.
2316
2317  SI->second = NV;       // Update the scalars map!
2318
2319  // Any instruction values that use this instruction might also need to be
2320  // updated!
2321  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
2322       UI != E; ++UI)
2323    ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
2324}
2325
2326/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
2327/// a loop header, making it a potential recurrence, or it doesn't.
2328///
2329const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
2330  if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
2331    if (const Loop *L = LI->getLoopFor(PN->getParent()))
2332      if (L->getHeader() == PN->getParent()) {
2333        // If it lives in the loop header, it has two incoming values, one
2334        // from outside the loop, and one from inside.
2335        unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
2336        unsigned BackEdge     = IncomingEdge^1;
2337
2338        // While we are analyzing this PHI node, handle its value symbolically.
2339        const SCEV *SymbolicName = getUnknown(PN);
2340        assert(Scalars.find(PN) == Scalars.end() &&
2341               "PHI node already processed?");
2342        Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
2343
2344        // Using this symbolic name for the PHI, analyze the value coming around
2345        // the back-edge.
2346        const SCEV *BEValue = getSCEV(PN->getIncomingValue(BackEdge));
2347
2348        // NOTE: If BEValue is loop invariant, we know that the PHI node just
2349        // has a special value for the first iteration of the loop.
2350
2351        // If the value coming around the backedge is an add with the symbolic
2352        // value we just inserted, then we found a simple induction variable!
2353        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
2354          // If there is a single occurrence of the symbolic value, replace it
2355          // with a recurrence.
2356          unsigned FoundIndex = Add->getNumOperands();
2357          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2358            if (Add->getOperand(i) == SymbolicName)
2359              if (FoundIndex == e) {
2360                FoundIndex = i;
2361                break;
2362              }
2363
2364          if (FoundIndex != Add->getNumOperands()) {
2365            // Create an add with everything but the specified operand.
2366            SmallVector<const SCEV *, 8> Ops;
2367            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2368              if (i != FoundIndex)
2369                Ops.push_back(Add->getOperand(i));
2370            const SCEV *Accum = getAddExpr(Ops);
2371
2372            // This is not a valid addrec if the step amount is varying each
2373            // loop iteration, but is not itself an addrec in this loop.
2374            if (Accum->isLoopInvariant(L) ||
2375                (isa<SCEVAddRecExpr>(Accum) &&
2376                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
2377              const SCEV *StartVal =
2378                getSCEV(PN->getIncomingValue(IncomingEdge));
2379              const SCEV *PHISCEV =
2380                getAddRecExpr(StartVal, Accum, L);
2381
2382              // Okay, for the entire analysis of this edge we assumed the PHI
2383              // to be symbolic.  We now need to go back and update all of the
2384              // entries for the scalars that use the PHI (except for the PHI
2385              // itself) to use the new analyzed value instead of the "symbolic"
2386              // value.
2387              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
2388              return PHISCEV;
2389            }
2390          }
2391        } else if (const SCEVAddRecExpr *AddRec =
2392                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
2393          // Otherwise, this could be a loop like this:
2394          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
2395          // In this case, j = {1,+,1}  and BEValue is j.
2396          // Because the other in-value of i (0) fits the evolution of BEValue
2397          // i really is an addrec evolution.
2398          if (AddRec->getLoop() == L && AddRec->isAffine()) {
2399            const SCEV *StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
2400
2401            // If StartVal = j.start - j.stride, we can use StartVal as the
2402            // initial step of the addrec evolution.
2403            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
2404                                            AddRec->getOperand(1))) {
2405              const SCEV *PHISCEV =
2406                 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
2407
2408              // Okay, for the entire analysis of this edge we assumed the PHI
2409              // to be symbolic.  We now need to go back and update all of the
2410              // entries for the scalars that use the PHI (except for the PHI
2411              // itself) to use the new analyzed value instead of the "symbolic"
2412              // value.
2413              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
2414              return PHISCEV;
2415            }
2416          }
2417        }
2418
2419        return SymbolicName;
2420      }
2421
2422  // If it's not a loop phi, we can't handle it yet.
2423  return getUnknown(PN);
2424}
2425
2426/// createNodeForGEP - Expand GEP instructions into add and multiply
2427/// operations. This allows them to be analyzed by regular SCEV code.
2428///
2429const SCEV *ScalarEvolution::createNodeForGEP(User *GEP) {
2430
2431  const Type *IntPtrTy = TD->getIntPtrType();
2432  Value *Base = GEP->getOperand(0);
2433  // Don't attempt to analyze GEPs over unsized objects.
2434  if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2435    return getUnknown(GEP);
2436  const SCEV *TotalOffset = getIntegerSCEV(0, IntPtrTy);
2437  gep_type_iterator GTI = gep_type_begin(GEP);
2438  for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2439                                      E = GEP->op_end();
2440       I != E; ++I) {
2441    Value *Index = *I;
2442    // Compute the (potentially symbolic) offset in bytes for this index.
2443    if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2444      // For a struct, add the member offset.
2445      const StructLayout &SL = *TD->getStructLayout(STy);
2446      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2447      uint64_t Offset = SL.getElementOffset(FieldNo);
2448      TotalOffset = getAddExpr(TotalOffset, getIntegerSCEV(Offset, IntPtrTy));
2449    } else {
2450      // For an array, add the element offset, explicitly scaled.
2451      const SCEV *LocalOffset = getSCEV(Index);
2452      if (!isa<PointerType>(LocalOffset->getType()))
2453        // Getelementptr indicies are signed.
2454        LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy);
2455      LocalOffset =
2456        getMulExpr(LocalOffset,
2457                   getIntegerSCEV(TD->getTypeAllocSize(*GTI), IntPtrTy));
2458      TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2459    }
2460  }
2461  return getAddExpr(getSCEV(Base), TotalOffset);
2462}
2463
2464/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2465/// guaranteed to end in (at every loop iteration).  It is, at the same time,
2466/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
2467/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
2468uint32_t
2469ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
2470  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2471    return C->getValue()->getValue().countTrailingZeros();
2472
2473  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
2474    return std::min(GetMinTrailingZeros(T->getOperand()),
2475                    (uint32_t)getTypeSizeInBits(T->getType()));
2476
2477  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
2478    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2479    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2480             getTypeSizeInBits(E->getType()) : OpRes;
2481  }
2482
2483  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
2484    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2485    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2486             getTypeSizeInBits(E->getType()) : OpRes;
2487  }
2488
2489  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
2490    // The result is the min of all operands results.
2491    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2492    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2493      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2494    return MinOpRes;
2495  }
2496
2497  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
2498    // The result is the sum of all operands results.
2499    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2500    uint32_t BitWidth = getTypeSizeInBits(M->getType());
2501    for (unsigned i = 1, e = M->getNumOperands();
2502         SumOpRes != BitWidth && i != e; ++i)
2503      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
2504                          BitWidth);
2505    return SumOpRes;
2506  }
2507
2508  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
2509    // The result is the min of all operands results.
2510    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2511    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2512      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2513    return MinOpRes;
2514  }
2515
2516  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
2517    // The result is the min of all operands results.
2518    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2519    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2520      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2521    return MinOpRes;
2522  }
2523
2524  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
2525    // The result is the min of all operands results.
2526    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2527    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2528      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2529    return MinOpRes;
2530  }
2531
2532  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2533    // For a SCEVUnknown, ask ValueTracking.
2534    unsigned BitWidth = getTypeSizeInBits(U->getType());
2535    APInt Mask = APInt::getAllOnesValue(BitWidth);
2536    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2537    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2538    return Zeros.countTrailingOnes();
2539  }
2540
2541  // SCEVUDivExpr
2542  return 0;
2543}
2544
2545/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2546///
2547ConstantRange
2548ScalarEvolution::getUnsignedRange(const SCEV *S) {
2549
2550  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2551    return ConstantRange(C->getValue()->getValue());
2552
2553  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2554    ConstantRange X = getUnsignedRange(Add->getOperand(0));
2555    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2556      X = X.add(getUnsignedRange(Add->getOperand(i)));
2557    return X;
2558  }
2559
2560  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2561    ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2562    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2563      X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
2564    return X;
2565  }
2566
2567  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2568    ConstantRange X = getUnsignedRange(SMax->getOperand(0));
2569    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2570      X = X.smax(getUnsignedRange(SMax->getOperand(i)));
2571    return X;
2572  }
2573
2574  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2575    ConstantRange X = getUnsignedRange(UMax->getOperand(0));
2576    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2577      X = X.umax(getUnsignedRange(UMax->getOperand(i)));
2578    return X;
2579  }
2580
2581  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2582    ConstantRange X = getUnsignedRange(UDiv->getLHS());
2583    ConstantRange Y = getUnsignedRange(UDiv->getRHS());
2584    return X.udiv(Y);
2585  }
2586
2587  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2588    ConstantRange X = getUnsignedRange(ZExt->getOperand());
2589    return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
2590  }
2591
2592  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2593    ConstantRange X = getUnsignedRange(SExt->getOperand());
2594    return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
2595  }
2596
2597  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2598    ConstantRange X = getUnsignedRange(Trunc->getOperand());
2599    return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
2600  }
2601
2602  ConstantRange FullSet(getTypeSizeInBits(S->getType()), true);
2603
2604  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
2605    const SCEV *T = getBackedgeTakenCount(AddRec->getLoop());
2606    const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
2607    if (!Trip) return FullSet;
2608
2609    // TODO: non-affine addrec
2610    if (AddRec->isAffine()) {
2611      const Type *Ty = AddRec->getType();
2612      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
2613      if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) {
2614        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
2615
2616        const SCEV *Start = AddRec->getStart();
2617        const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
2618
2619        // Check for overflow.
2620        if (!isKnownPredicate(ICmpInst::ICMP_ULE, Start, End))
2621          return FullSet;
2622
2623        ConstantRange StartRange = getUnsignedRange(Start);
2624        ConstantRange EndRange = getUnsignedRange(End);
2625        APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
2626                                   EndRange.getUnsignedMin());
2627        APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
2628                                   EndRange.getUnsignedMax());
2629        if (Min.isMinValue() && Max.isMaxValue())
2630          return ConstantRange(Min.getBitWidth(), /*isFullSet=*/true);
2631        return ConstantRange(Min, Max+1);
2632      }
2633    }
2634  }
2635
2636  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2637    // For a SCEVUnknown, ask ValueTracking.
2638    unsigned BitWidth = getTypeSizeInBits(U->getType());
2639    APInt Mask = APInt::getAllOnesValue(BitWidth);
2640    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2641    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
2642    return ConstantRange(Ones, ~Zeros);
2643  }
2644
2645  return FullSet;
2646}
2647
2648/// getSignedRange - Determine the signed range for a particular SCEV.
2649///
2650ConstantRange
2651ScalarEvolution::getSignedRange(const SCEV *S) {
2652
2653  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2654    return ConstantRange(C->getValue()->getValue());
2655
2656  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2657    ConstantRange X = getSignedRange(Add->getOperand(0));
2658    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2659      X = X.add(getSignedRange(Add->getOperand(i)));
2660    return X;
2661  }
2662
2663  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2664    ConstantRange X = getSignedRange(Mul->getOperand(0));
2665    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2666      X = X.multiply(getSignedRange(Mul->getOperand(i)));
2667    return X;
2668  }
2669
2670  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2671    ConstantRange X = getSignedRange(SMax->getOperand(0));
2672    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2673      X = X.smax(getSignedRange(SMax->getOperand(i)));
2674    return X;
2675  }
2676
2677  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2678    ConstantRange X = getSignedRange(UMax->getOperand(0));
2679    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2680      X = X.umax(getSignedRange(UMax->getOperand(i)));
2681    return X;
2682  }
2683
2684  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2685    ConstantRange X = getSignedRange(UDiv->getLHS());
2686    ConstantRange Y = getSignedRange(UDiv->getRHS());
2687    return X.udiv(Y);
2688  }
2689
2690  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2691    ConstantRange X = getSignedRange(ZExt->getOperand());
2692    return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
2693  }
2694
2695  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2696    ConstantRange X = getSignedRange(SExt->getOperand());
2697    return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
2698  }
2699
2700  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2701    ConstantRange X = getSignedRange(Trunc->getOperand());
2702    return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
2703  }
2704
2705  ConstantRange FullSet(getTypeSizeInBits(S->getType()), true);
2706
2707  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
2708    const SCEV *T = getBackedgeTakenCount(AddRec->getLoop());
2709    const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
2710    if (!Trip) return FullSet;
2711
2712    // TODO: non-affine addrec
2713    if (AddRec->isAffine()) {
2714      const Type *Ty = AddRec->getType();
2715      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
2716      if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) {
2717        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
2718
2719        const SCEV *Start = AddRec->getStart();
2720        const SCEV *Step = AddRec->getStepRecurrence(*this);
2721        const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
2722
2723        // Check for overflow.
2724        if (!(isKnownPositive(Step) &&
2725              isKnownPredicate(ICmpInst::ICMP_SLT, Start, End)) &&
2726            !(isKnownNegative(Step) &&
2727              isKnownPredicate(ICmpInst::ICMP_SGT, Start, End)))
2728          return FullSet;
2729
2730        ConstantRange StartRange = getSignedRange(Start);
2731        ConstantRange EndRange = getSignedRange(End);
2732        APInt Min = APIntOps::smin(StartRange.getSignedMin(),
2733                                   EndRange.getSignedMin());
2734        APInt Max = APIntOps::smax(StartRange.getSignedMax(),
2735                                   EndRange.getSignedMax());
2736        if (Min.isMinSignedValue() && Max.isMaxSignedValue())
2737          return ConstantRange(Min.getBitWidth(), /*isFullSet=*/true);
2738        return ConstantRange(Min, Max+1);
2739      }
2740    }
2741  }
2742
2743  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2744    // For a SCEVUnknown, ask ValueTracking.
2745    unsigned BitWidth = getTypeSizeInBits(U->getType());
2746    unsigned NS = ComputeNumSignBits(U->getValue(), TD);
2747    if (NS == 1)
2748      return FullSet;
2749    return
2750      ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
2751                    APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1);
2752  }
2753
2754  return FullSet;
2755}
2756
2757/// createSCEV - We know that there is no SCEV for the specified value.
2758/// Analyze the expression.
2759///
2760const SCEV *ScalarEvolution::createSCEV(Value *V) {
2761  if (!isSCEVable(V->getType()))
2762    return getUnknown(V);
2763
2764  unsigned Opcode = Instruction::UserOp1;
2765  if (Instruction *I = dyn_cast<Instruction>(V))
2766    Opcode = I->getOpcode();
2767  else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2768    Opcode = CE->getOpcode();
2769  else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
2770    return getConstant(CI);
2771  else if (isa<ConstantPointerNull>(V))
2772    return getIntegerSCEV(0, V->getType());
2773  else if (isa<UndefValue>(V))
2774    return getIntegerSCEV(0, V->getType());
2775  else
2776    return getUnknown(V);
2777
2778  User *U = cast<User>(V);
2779  switch (Opcode) {
2780  case Instruction::Add:
2781    return getAddExpr(getSCEV(U->getOperand(0)),
2782                      getSCEV(U->getOperand(1)));
2783  case Instruction::Mul:
2784    return getMulExpr(getSCEV(U->getOperand(0)),
2785                      getSCEV(U->getOperand(1)));
2786  case Instruction::UDiv:
2787    return getUDivExpr(getSCEV(U->getOperand(0)),
2788                       getSCEV(U->getOperand(1)));
2789  case Instruction::Sub:
2790    return getMinusSCEV(getSCEV(U->getOperand(0)),
2791                        getSCEV(U->getOperand(1)));
2792  case Instruction::And:
2793    // For an expression like x&255 that merely masks off the high bits,
2794    // use zext(trunc(x)) as the SCEV expression.
2795    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2796      if (CI->isNullValue())
2797        return getSCEV(U->getOperand(1));
2798      if (CI->isAllOnesValue())
2799        return getSCEV(U->getOperand(0));
2800      const APInt &A = CI->getValue();
2801
2802      // Instcombine's ShrinkDemandedConstant may strip bits out of
2803      // constants, obscuring what would otherwise be a low-bits mask.
2804      // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
2805      // knew about to reconstruct a low-bits mask value.
2806      unsigned LZ = A.countLeadingZeros();
2807      unsigned BitWidth = A.getBitWidth();
2808      APInt AllOnes = APInt::getAllOnesValue(BitWidth);
2809      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2810      ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
2811
2812      APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
2813
2814      if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
2815        return
2816          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
2817                                            IntegerType::get(BitWidth - LZ)),
2818                            U->getType());
2819    }
2820    break;
2821
2822  case Instruction::Or:
2823    // If the RHS of the Or is a constant, we may have something like:
2824    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
2825    // optimizations will transparently handle this case.
2826    //
2827    // In order for this transformation to be safe, the LHS must be of the
2828    // form X*(2^n) and the Or constant must be less than 2^n.
2829    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2830      const SCEV *LHS = getSCEV(U->getOperand(0));
2831      const APInt &CIVal = CI->getValue();
2832      if (GetMinTrailingZeros(LHS) >=
2833          (CIVal.getBitWidth() - CIVal.countLeadingZeros()))
2834        return getAddExpr(LHS, getSCEV(U->getOperand(1)));
2835    }
2836    break;
2837  case Instruction::Xor:
2838    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2839      // If the RHS of the xor is a signbit, then this is just an add.
2840      // Instcombine turns add of signbit into xor as a strength reduction step.
2841      if (CI->getValue().isSignBit())
2842        return getAddExpr(getSCEV(U->getOperand(0)),
2843                          getSCEV(U->getOperand(1)));
2844
2845      // If the RHS of xor is -1, then this is a not operation.
2846      if (CI->isAllOnesValue())
2847        return getNotSCEV(getSCEV(U->getOperand(0)));
2848
2849      // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
2850      // This is a variant of the check for xor with -1, and it handles
2851      // the case where instcombine has trimmed non-demanded bits out
2852      // of an xor with -1.
2853      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
2854        if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
2855          if (BO->getOpcode() == Instruction::And &&
2856              LCI->getValue() == CI->getValue())
2857            if (const SCEVZeroExtendExpr *Z =
2858                  dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
2859              const Type *UTy = U->getType();
2860              const SCEV *Z0 = Z->getOperand();
2861              const Type *Z0Ty = Z0->getType();
2862              unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
2863
2864              // If C is a low-bits mask, the zero extend is zerving to
2865              // mask off the high bits. Complement the operand and
2866              // re-apply the zext.
2867              if (APIntOps::isMask(Z0TySize, CI->getValue()))
2868                return getZeroExtendExpr(getNotSCEV(Z0), UTy);
2869
2870              // If C is a single bit, it may be in the sign-bit position
2871              // before the zero-extend. In this case, represent the xor
2872              // using an add, which is equivalent, and re-apply the zext.
2873              APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
2874              if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
2875                  Trunc.isSignBit())
2876                return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
2877                                         UTy);
2878            }
2879    }
2880    break;
2881
2882  case Instruction::Shl:
2883    // Turn shift left of a constant amount into a multiply.
2884    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2885      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2886      Constant *X = ConstantInt::get(
2887        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
2888      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
2889    }
2890    break;
2891
2892  case Instruction::LShr:
2893    // Turn logical shift right of a constant into a unsigned divide.
2894    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2895      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2896      Constant *X = ConstantInt::get(
2897        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
2898      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
2899    }
2900    break;
2901
2902  case Instruction::AShr:
2903    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
2904    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
2905      if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
2906        if (L->getOpcode() == Instruction::Shl &&
2907            L->getOperand(1) == U->getOperand(1)) {
2908          unsigned BitWidth = getTypeSizeInBits(U->getType());
2909          uint64_t Amt = BitWidth - CI->getZExtValue();
2910          if (Amt == BitWidth)
2911            return getSCEV(L->getOperand(0));       // shift by zero --> noop
2912          if (Amt > BitWidth)
2913            return getIntegerSCEV(0, U->getType()); // value is undefined
2914          return
2915            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
2916                                                      IntegerType::get(Amt)),
2917                                 U->getType());
2918        }
2919    break;
2920
2921  case Instruction::Trunc:
2922    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
2923
2924  case Instruction::ZExt:
2925    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
2926
2927  case Instruction::SExt:
2928    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
2929
2930  case Instruction::BitCast:
2931    // BitCasts are no-op casts so we just eliminate the cast.
2932    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
2933      return getSCEV(U->getOperand(0));
2934    break;
2935
2936  case Instruction::IntToPtr:
2937    if (!TD) break; // Without TD we can't analyze pointers.
2938    return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
2939                                   TD->getIntPtrType());
2940
2941  case Instruction::PtrToInt:
2942    if (!TD) break; // Without TD we can't analyze pointers.
2943    return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
2944                                   U->getType());
2945
2946  case Instruction::GetElementPtr:
2947    if (!TD) break; // Without TD we can't analyze pointers.
2948    return createNodeForGEP(U);
2949
2950  case Instruction::PHI:
2951    return createNodeForPHI(cast<PHINode>(U));
2952
2953  case Instruction::Select:
2954    // This could be a smax or umax that was lowered earlier.
2955    // Try to recover it.
2956    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
2957      Value *LHS = ICI->getOperand(0);
2958      Value *RHS = ICI->getOperand(1);
2959      switch (ICI->getPredicate()) {
2960      case ICmpInst::ICMP_SLT:
2961      case ICmpInst::ICMP_SLE:
2962        std::swap(LHS, RHS);
2963        // fall through
2964      case ICmpInst::ICMP_SGT:
2965      case ICmpInst::ICMP_SGE:
2966        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2967          return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
2968        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2969          return getSMinExpr(getSCEV(LHS), getSCEV(RHS));
2970        break;
2971      case ICmpInst::ICMP_ULT:
2972      case ICmpInst::ICMP_ULE:
2973        std::swap(LHS, RHS);
2974        // fall through
2975      case ICmpInst::ICMP_UGT:
2976      case ICmpInst::ICMP_UGE:
2977        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2978          return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
2979        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2980          return getUMinExpr(getSCEV(LHS), getSCEV(RHS));
2981        break;
2982      case ICmpInst::ICMP_NE:
2983        // n != 0 ? n : 1  ->  umax(n, 1)
2984        if (LHS == U->getOperand(1) &&
2985            isa<ConstantInt>(U->getOperand(2)) &&
2986            cast<ConstantInt>(U->getOperand(2))->isOne() &&
2987            isa<ConstantInt>(RHS) &&
2988            cast<ConstantInt>(RHS)->isZero())
2989          return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(2)));
2990        break;
2991      case ICmpInst::ICMP_EQ:
2992        // n == 0 ? 1 : n  ->  umax(n, 1)
2993        if (LHS == U->getOperand(2) &&
2994            isa<ConstantInt>(U->getOperand(1)) &&
2995            cast<ConstantInt>(U->getOperand(1))->isOne() &&
2996            isa<ConstantInt>(RHS) &&
2997            cast<ConstantInt>(RHS)->isZero())
2998          return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(1)));
2999        break;
3000      default:
3001        break;
3002      }
3003    }
3004
3005  default: // We cannot analyze this expression.
3006    break;
3007  }
3008
3009  return getUnknown(V);
3010}
3011
3012
3013
3014//===----------------------------------------------------------------------===//
3015//                   Iteration Count Computation Code
3016//
3017
3018/// getBackedgeTakenCount - If the specified loop has a predictable
3019/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3020/// object. The backedge-taken count is the number of times the loop header
3021/// will be branched to from within the loop. This is one less than the
3022/// trip count of the loop, since it doesn't count the first iteration,
3023/// when the header is branched to from outside the loop.
3024///
3025/// Note that it is not valid to call this method on a loop without a
3026/// loop-invariant backedge-taken count (see
3027/// hasLoopInvariantBackedgeTakenCount).
3028///
3029const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
3030  return getBackedgeTakenInfo(L).Exact;
3031}
3032
3033/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3034/// return the least SCEV value that is known never to be less than the
3035/// actual backedge taken count.
3036const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
3037  return getBackedgeTakenInfo(L).Max;
3038}
3039
3040/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3041/// onto the given Worklist.
3042static void
3043PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3044  BasicBlock *Header = L->getHeader();
3045
3046  // Push all Loop-header PHIs onto the Worklist stack.
3047  for (BasicBlock::iterator I = Header->begin();
3048       PHINode *PN = dyn_cast<PHINode>(I); ++I)
3049    Worklist.push_back(PN);
3050}
3051
3052/// PushDefUseChildren - Push users of the given Instruction
3053/// onto the given Worklist.
3054static void
3055PushDefUseChildren(Instruction *I,
3056                   SmallVectorImpl<Instruction *> &Worklist) {
3057  // Push the def-use children onto the Worklist stack.
3058  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
3059       UI != UE; ++UI)
3060    Worklist.push_back(cast<Instruction>(UI));
3061}
3062
3063const ScalarEvolution::BackedgeTakenInfo &
3064ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
3065  // Initially insert a CouldNotCompute for this loop. If the insertion
3066  // succeeds, procede to actually compute a backedge-taken count and
3067  // update the value. The temporary CouldNotCompute value tells SCEV
3068  // code elsewhere that it shouldn't attempt to request a new
3069  // backedge-taken count, which could result in infinite recursion.
3070  std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair =
3071    BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3072  if (Pair.second) {
3073    BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
3074    if (ItCount.Exact != getCouldNotCompute()) {
3075      assert(ItCount.Exact->isLoopInvariant(L) &&
3076             ItCount.Max->isLoopInvariant(L) &&
3077             "Computed trip count isn't loop invariant for loop!");
3078      ++NumTripCountsComputed;
3079
3080      // Update the value in the map.
3081      Pair.first->second = ItCount;
3082    } else {
3083      if (ItCount.Max != getCouldNotCompute())
3084        // Update the value in the map.
3085        Pair.first->second = ItCount;
3086      if (isa<PHINode>(L->getHeader()->begin()))
3087        // Only count loops that have phi nodes as not being computable.
3088        ++NumTripCountsNotComputed;
3089    }
3090
3091    // Now that we know more about the trip count for this loop, forget any
3092    // existing SCEV values for PHI nodes in this loop since they are only
3093    // conservative estimates made without the benefit of trip count
3094    // information. This is similar to the code in
3095    // forgetLoopBackedgeTakenCount, except that it handles SCEVUnknown PHI
3096    // nodes specially.
3097    if (ItCount.hasAnyInfo()) {
3098      SmallVector<Instruction *, 16> Worklist;
3099      PushLoopPHIs(L, Worklist);
3100
3101      SmallPtrSet<Instruction *, 8> Visited;
3102      while (!Worklist.empty()) {
3103        Instruction *I = Worklist.pop_back_val();
3104        if (!Visited.insert(I)) continue;
3105
3106        std::map<SCEVCallbackVH, const SCEV*>::iterator It =
3107          Scalars.find(static_cast<Value *>(I));
3108        if (It != Scalars.end()) {
3109          // SCEVUnknown for a PHI either means that it has an unrecognized
3110          // structure, or it's a PHI that's in the progress of being computed
3111          // by createNodeForPHI.  In the former case, additional loop trip count
3112          // information isn't going to change anything. In the later case,
3113          // createNodeForPHI will perform the necessary updates on its own when
3114          // it gets to that point.
3115          if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second))
3116            Scalars.erase(It);
3117          ValuesAtScopes.erase(I);
3118          if (PHINode *PN = dyn_cast<PHINode>(I))
3119            ConstantEvolutionLoopExitValue.erase(PN);
3120        }
3121
3122        PushDefUseChildren(I, Worklist);
3123      }
3124    }
3125  }
3126  return Pair.first->second;
3127}
3128
3129/// forgetLoopBackedgeTakenCount - This method should be called by the
3130/// client when it has changed a loop in a way that may effect
3131/// ScalarEvolution's ability to compute a trip count, or if the loop
3132/// is deleted.
3133void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) {
3134  BackedgeTakenCounts.erase(L);
3135
3136  SmallVector<Instruction *, 16> Worklist;
3137  PushLoopPHIs(L, Worklist);
3138
3139  SmallPtrSet<Instruction *, 8> Visited;
3140  while (!Worklist.empty()) {
3141    Instruction *I = Worklist.pop_back_val();
3142    if (!Visited.insert(I)) continue;
3143
3144    std::map<SCEVCallbackVH, const SCEV*>::iterator It =
3145      Scalars.find(static_cast<Value *>(I));
3146    if (It != Scalars.end()) {
3147      Scalars.erase(It);
3148      ValuesAtScopes.erase(I);
3149      if (PHINode *PN = dyn_cast<PHINode>(I))
3150        ConstantEvolutionLoopExitValue.erase(PN);
3151    }
3152
3153    PushDefUseChildren(I, Worklist);
3154  }
3155}
3156
3157/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3158/// of the specified loop will execute.
3159ScalarEvolution::BackedgeTakenInfo
3160ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
3161  SmallVector<BasicBlock*, 8> ExitingBlocks;
3162  L->getExitingBlocks(ExitingBlocks);
3163
3164  // Examine all exits and pick the most conservative values.
3165  const SCEV *BECount = getCouldNotCompute();
3166  const SCEV *MaxBECount = getCouldNotCompute();
3167  bool CouldNotComputeBECount = false;
3168  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3169    BackedgeTakenInfo NewBTI =
3170      ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
3171
3172    if (NewBTI.Exact == getCouldNotCompute()) {
3173      // We couldn't compute an exact value for this exit, so
3174      // we won't be able to compute an exact value for the loop.
3175      CouldNotComputeBECount = true;
3176      BECount = getCouldNotCompute();
3177    } else if (!CouldNotComputeBECount) {
3178      if (BECount == getCouldNotCompute())
3179        BECount = NewBTI.Exact;
3180      else
3181        BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
3182    }
3183    if (MaxBECount == getCouldNotCompute())
3184      MaxBECount = NewBTI.Max;
3185    else if (NewBTI.Max != getCouldNotCompute())
3186      MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
3187  }
3188
3189  return BackedgeTakenInfo(BECount, MaxBECount);
3190}
3191
3192/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3193/// of the specified loop will execute if it exits via the specified block.
3194ScalarEvolution::BackedgeTakenInfo
3195ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3196                                                   BasicBlock *ExitingBlock) {
3197
3198  // Okay, we've chosen an exiting block.  See what condition causes us to
3199  // exit at this block.
3200  //
3201  // FIXME: we should be able to handle switch instructions (with a single exit)
3202  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
3203  if (ExitBr == 0) return getCouldNotCompute();
3204  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
3205
3206  // At this point, we know we have a conditional branch that determines whether
3207  // the loop is exited.  However, we don't know if the branch is executed each
3208  // time through the loop.  If not, then the execution count of the branch will
3209  // not be equal to the trip count of the loop.
3210  //
3211  // Currently we check for this by checking to see if the Exit branch goes to
3212  // the loop header.  If so, we know it will always execute the same number of
3213  // times as the loop.  We also handle the case where the exit block *is* the
3214  // loop header.  This is common for un-rotated loops.
3215  //
3216  // If both of those tests fail, walk up the unique predecessor chain to the
3217  // header, stopping if there is an edge that doesn't exit the loop. If the
3218  // header is reached, the execution count of the branch will be equal to the
3219  // trip count of the loop.
3220  //
3221  //  More extensive analysis could be done to handle more cases here.
3222  //
3223  if (ExitBr->getSuccessor(0) != L->getHeader() &&
3224      ExitBr->getSuccessor(1) != L->getHeader() &&
3225      ExitBr->getParent() != L->getHeader()) {
3226    // The simple checks failed, try climbing the unique predecessor chain
3227    // up to the header.
3228    bool Ok = false;
3229    for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3230      BasicBlock *Pred = BB->getUniquePredecessor();
3231      if (!Pred)
3232        return getCouldNotCompute();
3233      TerminatorInst *PredTerm = Pred->getTerminator();
3234      for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3235        BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3236        if (PredSucc == BB)
3237          continue;
3238        // If the predecessor has a successor that isn't BB and isn't
3239        // outside the loop, assume the worst.
3240        if (L->contains(PredSucc))
3241          return getCouldNotCompute();
3242      }
3243      if (Pred == L->getHeader()) {
3244        Ok = true;
3245        break;
3246      }
3247      BB = Pred;
3248    }
3249    if (!Ok)
3250      return getCouldNotCompute();
3251  }
3252
3253  // Procede to the next level to examine the exit condition expression.
3254  return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3255                                               ExitBr->getSuccessor(0),
3256                                               ExitBr->getSuccessor(1));
3257}
3258
3259/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3260/// backedge of the specified loop will execute if its exit condition
3261/// were a conditional branch of ExitCond, TBB, and FBB.
3262ScalarEvolution::BackedgeTakenInfo
3263ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3264                                                       Value *ExitCond,
3265                                                       BasicBlock *TBB,
3266                                                       BasicBlock *FBB) {
3267  // Check if the controlling expression for this loop is an And or Or.
3268  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3269    if (BO->getOpcode() == Instruction::And) {
3270      // Recurse on the operands of the and.
3271      BackedgeTakenInfo BTI0 =
3272        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3273      BackedgeTakenInfo BTI1 =
3274        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3275      const SCEV *BECount = getCouldNotCompute();
3276      const SCEV *MaxBECount = getCouldNotCompute();
3277      if (L->contains(TBB)) {
3278        // Both conditions must be true for the loop to continue executing.
3279        // Choose the less conservative count.
3280        if (BTI0.Exact == getCouldNotCompute() ||
3281            BTI1.Exact == getCouldNotCompute())
3282          BECount = getCouldNotCompute();
3283        else
3284          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3285        if (BTI0.Max == getCouldNotCompute())
3286          MaxBECount = BTI1.Max;
3287        else if (BTI1.Max == getCouldNotCompute())
3288          MaxBECount = BTI0.Max;
3289        else
3290          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3291      } else {
3292        // Both conditions must be true for the loop to exit.
3293        assert(L->contains(FBB) && "Loop block has no successor in loop!");
3294        if (BTI0.Exact != getCouldNotCompute() &&
3295            BTI1.Exact != getCouldNotCompute())
3296          BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3297        if (BTI0.Max != getCouldNotCompute() &&
3298            BTI1.Max != getCouldNotCompute())
3299          MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3300      }
3301
3302      return BackedgeTakenInfo(BECount, MaxBECount);
3303    }
3304    if (BO->getOpcode() == Instruction::Or) {
3305      // Recurse on the operands of the or.
3306      BackedgeTakenInfo BTI0 =
3307        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3308      BackedgeTakenInfo BTI1 =
3309        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3310      const SCEV *BECount = getCouldNotCompute();
3311      const SCEV *MaxBECount = getCouldNotCompute();
3312      if (L->contains(FBB)) {
3313        // Both conditions must be false for the loop to continue executing.
3314        // Choose the less conservative count.
3315        if (BTI0.Exact == getCouldNotCompute() ||
3316            BTI1.Exact == getCouldNotCompute())
3317          BECount = getCouldNotCompute();
3318        else
3319          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3320        if (BTI0.Max == getCouldNotCompute())
3321          MaxBECount = BTI1.Max;
3322        else if (BTI1.Max == getCouldNotCompute())
3323          MaxBECount = BTI0.Max;
3324        else
3325          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3326      } else {
3327        // Both conditions must be false for the loop to exit.
3328        assert(L->contains(TBB) && "Loop block has no successor in loop!");
3329        if (BTI0.Exact != getCouldNotCompute() &&
3330            BTI1.Exact != getCouldNotCompute())
3331          BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3332        if (BTI0.Max != getCouldNotCompute() &&
3333            BTI1.Max != getCouldNotCompute())
3334          MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3335      }
3336
3337      return BackedgeTakenInfo(BECount, MaxBECount);
3338    }
3339  }
3340
3341  // With an icmp, it may be feasible to compute an exact backedge-taken count.
3342  // Procede to the next level to examine the icmp.
3343  if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3344    return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
3345
3346  // If it's not an integer or pointer comparison then compute it the hard way.
3347  return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3348}
3349
3350/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
3351/// backedge of the specified loop will execute if its exit condition
3352/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
3353ScalarEvolution::BackedgeTakenInfo
3354ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
3355                                                           ICmpInst *ExitCond,
3356                                                           BasicBlock *TBB,
3357                                                           BasicBlock *FBB) {
3358
3359  // If the condition was exit on true, convert the condition to exit on false
3360  ICmpInst::Predicate Cond;
3361  if (!L->contains(FBB))
3362    Cond = ExitCond->getPredicate();
3363  else
3364    Cond = ExitCond->getInversePredicate();
3365
3366  // Handle common loops like: for (X = "string"; *X; ++X)
3367  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
3368    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
3369      const SCEV *ItCnt =
3370        ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
3371      if (!isa<SCEVCouldNotCompute>(ItCnt)) {
3372        unsigned BitWidth = getTypeSizeInBits(ItCnt->getType());
3373        return BackedgeTakenInfo(ItCnt,
3374                                 isa<SCEVConstant>(ItCnt) ? ItCnt :
3375                                   getConstant(APInt::getMaxValue(BitWidth)-1));
3376      }
3377    }
3378
3379  const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
3380  const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
3381
3382  // Try to evaluate any dependencies out of the loop.
3383  LHS = getSCEVAtScope(LHS, L);
3384  RHS = getSCEVAtScope(RHS, L);
3385
3386  // At this point, we would like to compute how many iterations of the
3387  // loop the predicate will return true for these inputs.
3388  if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
3389    // If there is a loop-invariant, force it into the RHS.
3390    std::swap(LHS, RHS);
3391    Cond = ICmpInst::getSwappedPredicate(Cond);
3392  }
3393
3394  // If we have a comparison of a chrec against a constant, try to use value
3395  // ranges to answer this query.
3396  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
3397    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
3398      if (AddRec->getLoop() == L) {
3399        // Form the constant range.
3400        ConstantRange CompRange(
3401            ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
3402
3403        const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
3404        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
3405      }
3406
3407  switch (Cond) {
3408  case ICmpInst::ICMP_NE: {                     // while (X != Y)
3409    // Convert to: while (X-Y != 0)
3410    const SCEV *TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
3411    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
3412    break;
3413  }
3414  case ICmpInst::ICMP_EQ: {
3415    // Convert to: while (X-Y == 0)           // while (X == Y)
3416    const SCEV *TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
3417    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
3418    break;
3419  }
3420  case ICmpInst::ICMP_SLT: {
3421    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
3422    if (BTI.hasAnyInfo()) return BTI;
3423    break;
3424  }
3425  case ICmpInst::ICMP_SGT: {
3426    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3427                                             getNotSCEV(RHS), L, true);
3428    if (BTI.hasAnyInfo()) return BTI;
3429    break;
3430  }
3431  case ICmpInst::ICMP_ULT: {
3432    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
3433    if (BTI.hasAnyInfo()) return BTI;
3434    break;
3435  }
3436  case ICmpInst::ICMP_UGT: {
3437    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3438                                             getNotSCEV(RHS), L, false);
3439    if (BTI.hasAnyInfo()) return BTI;
3440    break;
3441  }
3442  default:
3443#if 0
3444    errs() << "ComputeBackedgeTakenCount ";
3445    if (ExitCond->getOperand(0)->getType()->isUnsigned())
3446      errs() << "[unsigned] ";
3447    errs() << *LHS << "   "
3448         << Instruction::getOpcodeName(Instruction::ICmp)
3449         << "   " << *RHS << "\n";
3450#endif
3451    break;
3452  }
3453  return
3454    ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3455}
3456
3457static ConstantInt *
3458EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
3459                                ScalarEvolution &SE) {
3460  const SCEV *InVal = SE.getConstant(C);
3461  const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
3462  assert(isa<SCEVConstant>(Val) &&
3463         "Evaluation of SCEV at constant didn't fold correctly?");
3464  return cast<SCEVConstant>(Val)->getValue();
3465}
3466
3467/// GetAddressedElementFromGlobal - Given a global variable with an initializer
3468/// and a GEP expression (missing the pointer index) indexing into it, return
3469/// the addressed element of the initializer or null if the index expression is
3470/// invalid.
3471static Constant *
3472GetAddressedElementFromGlobal(GlobalVariable *GV,
3473                              const std::vector<ConstantInt*> &Indices) {
3474  Constant *Init = GV->getInitializer();
3475  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
3476    uint64_t Idx = Indices[i]->getZExtValue();
3477    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
3478      assert(Idx < CS->getNumOperands() && "Bad struct index!");
3479      Init = cast<Constant>(CS->getOperand(Idx));
3480    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
3481      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
3482      Init = cast<Constant>(CA->getOperand(Idx));
3483    } else if (isa<ConstantAggregateZero>(Init)) {
3484      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
3485        assert(Idx < STy->getNumElements() && "Bad struct index!");
3486        Init = Constant::getNullValue(STy->getElementType(Idx));
3487      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
3488        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
3489        Init = Constant::getNullValue(ATy->getElementType());
3490      } else {
3491        assert(0 && "Unknown constant aggregate type!");
3492      }
3493      return 0;
3494    } else {
3495      return 0; // Unknown initializer type
3496    }
3497  }
3498  return Init;
3499}
3500
3501/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
3502/// 'icmp op load X, cst', try to see if we can compute the backedge
3503/// execution count.
3504const SCEV *
3505ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
3506                                                LoadInst *LI,
3507                                                Constant *RHS,
3508                                                const Loop *L,
3509                                                ICmpInst::Predicate predicate) {
3510  if (LI->isVolatile()) return getCouldNotCompute();
3511
3512  // Check to see if the loaded pointer is a getelementptr of a global.
3513  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
3514  if (!GEP) return getCouldNotCompute();
3515
3516  // Make sure that it is really a constant global we are gepping, with an
3517  // initializer, and make sure the first IDX is really 0.
3518  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
3519  if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
3520      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
3521      !cast<Constant>(GEP->getOperand(1))->isNullValue())
3522    return getCouldNotCompute();
3523
3524  // Okay, we allow one non-constant index into the GEP instruction.
3525  Value *VarIdx = 0;
3526  std::vector<ConstantInt*> Indexes;
3527  unsigned VarIdxNum = 0;
3528  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
3529    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
3530      Indexes.push_back(CI);
3531    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
3532      if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
3533      VarIdx = GEP->getOperand(i);
3534      VarIdxNum = i-2;
3535      Indexes.push_back(0);
3536    }
3537
3538  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
3539  // Check to see if X is a loop variant variable value now.
3540  const SCEV *Idx = getSCEV(VarIdx);
3541  Idx = getSCEVAtScope(Idx, L);
3542
3543  // We can only recognize very limited forms of loop index expressions, in
3544  // particular, only affine AddRec's like {C1,+,C2}.
3545  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
3546  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
3547      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
3548      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
3549    return getCouldNotCompute();
3550
3551  unsigned MaxSteps = MaxBruteForceIterations;
3552  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
3553    ConstantInt *ItCst =
3554      ConstantInt::get(cast<IntegerType>(IdxExpr->getType()), IterationNum);
3555    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
3556
3557    // Form the GEP offset.
3558    Indexes[VarIdxNum] = Val;
3559
3560    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
3561    if (Result == 0) break;  // Cannot compute!
3562
3563    // Evaluate the condition for this iteration.
3564    Result = ConstantExpr::getICmp(predicate, Result, RHS);
3565    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
3566    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
3567#if 0
3568      errs() << "\n***\n*** Computed loop count " << *ItCst
3569             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
3570             << "***\n";
3571#endif
3572      ++NumArrayLenItCounts;
3573      return getConstant(ItCst);   // Found terminating iteration!
3574    }
3575  }
3576  return getCouldNotCompute();
3577}
3578
3579
3580/// CanConstantFold - Return true if we can constant fold an instruction of the
3581/// specified type, assuming that all operands were constants.
3582static bool CanConstantFold(const Instruction *I) {
3583  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
3584      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
3585    return true;
3586
3587  if (const CallInst *CI = dyn_cast<CallInst>(I))
3588    if (const Function *F = CI->getCalledFunction())
3589      return canConstantFoldCallTo(F);
3590  return false;
3591}
3592
3593/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
3594/// in the loop that V is derived from.  We allow arbitrary operations along the
3595/// way, but the operands of an operation must either be constants or a value
3596/// derived from a constant PHI.  If this expression does not fit with these
3597/// constraints, return null.
3598static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
3599  // If this is not an instruction, or if this is an instruction outside of the
3600  // loop, it can't be derived from a loop PHI.
3601  Instruction *I = dyn_cast<Instruction>(V);
3602  if (I == 0 || !L->contains(I->getParent())) return 0;
3603
3604  if (PHINode *PN = dyn_cast<PHINode>(I)) {
3605    if (L->getHeader() == I->getParent())
3606      return PN;
3607    else
3608      // We don't currently keep track of the control flow needed to evaluate
3609      // PHIs, so we cannot handle PHIs inside of loops.
3610      return 0;
3611  }
3612
3613  // If we won't be able to constant fold this expression even if the operands
3614  // are constants, return early.
3615  if (!CanConstantFold(I)) return 0;
3616
3617  // Otherwise, we can evaluate this instruction if all of its operands are
3618  // constant or derived from a PHI node themselves.
3619  PHINode *PHI = 0;
3620  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
3621    if (!(isa<Constant>(I->getOperand(Op)) ||
3622          isa<GlobalValue>(I->getOperand(Op)))) {
3623      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
3624      if (P == 0) return 0;  // Not evolving from PHI
3625      if (PHI == 0)
3626        PHI = P;
3627      else if (PHI != P)
3628        return 0;  // Evolving from multiple different PHIs.
3629    }
3630
3631  // This is a expression evolving from a constant PHI!
3632  return PHI;
3633}
3634
3635/// EvaluateExpression - Given an expression that passes the
3636/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
3637/// in the loop has the value PHIVal.  If we can't fold this expression for some
3638/// reason, return null.
3639static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
3640  if (isa<PHINode>(V)) return PHIVal;
3641  if (Constant *C = dyn_cast<Constant>(V)) return C;
3642  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
3643  Instruction *I = cast<Instruction>(V);
3644  LLVMContext *Context = I->getParent()->getContext();
3645
3646  std::vector<Constant*> Operands;
3647  Operands.resize(I->getNumOperands());
3648
3649  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3650    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
3651    if (Operands[i] == 0) return 0;
3652  }
3653
3654  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
3655    return ConstantFoldCompareInstOperands(CI->getPredicate(),
3656                                           &Operands[0], Operands.size(),
3657                                           Context);
3658  else
3659    return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
3660                                    &Operands[0], Operands.size(),
3661                                    Context);
3662}
3663
3664/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
3665/// in the header of its containing loop, we know the loop executes a
3666/// constant number of times, and the PHI node is just a recurrence
3667/// involving constants, fold it.
3668Constant *
3669ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
3670                                                   const APInt& BEs,
3671                                                   const Loop *L) {
3672  std::map<PHINode*, Constant*>::iterator I =
3673    ConstantEvolutionLoopExitValue.find(PN);
3674  if (I != ConstantEvolutionLoopExitValue.end())
3675    return I->second;
3676
3677  if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
3678    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
3679
3680  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
3681
3682  // Since the loop is canonicalized, the PHI node must have two entries.  One
3683  // entry must be a constant (coming in from outside of the loop), and the
3684  // second must be derived from the same PHI.
3685  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
3686  Constant *StartCST =
3687    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
3688  if (StartCST == 0)
3689    return RetVal = 0;  // Must be a constant.
3690
3691  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
3692  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
3693  if (PN2 != PN)
3694    return RetVal = 0;  // Not derived from same PHI.
3695
3696  // Execute the loop symbolically to determine the exit value.
3697  if (BEs.getActiveBits() >= 32)
3698    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
3699
3700  unsigned NumIterations = BEs.getZExtValue(); // must be in range
3701  unsigned IterationNum = 0;
3702  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
3703    if (IterationNum == NumIterations)
3704      return RetVal = PHIVal;  // Got exit value!
3705
3706    // Compute the value of the PHI node for the next iteration.
3707    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
3708    if (NextPHI == PHIVal)
3709      return RetVal = NextPHI;  // Stopped evolving!
3710    if (NextPHI == 0)
3711      return 0;        // Couldn't evaluate!
3712    PHIVal = NextPHI;
3713  }
3714}
3715
3716/// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a
3717/// constant number of times (the condition evolves only from constants),
3718/// try to evaluate a few iterations of the loop until we get the exit
3719/// condition gets a value of ExitWhen (true or false).  If we cannot
3720/// evaluate the trip count of the loop, return getCouldNotCompute().
3721const SCEV *
3722ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
3723                                                       Value *Cond,
3724                                                       bool ExitWhen) {
3725  PHINode *PN = getConstantEvolvingPHI(Cond, L);
3726  if (PN == 0) return getCouldNotCompute();
3727
3728  // Since the loop is canonicalized, the PHI node must have two entries.  One
3729  // entry must be a constant (coming in from outside of the loop), and the
3730  // second must be derived from the same PHI.
3731  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
3732  Constant *StartCST =
3733    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
3734  if (StartCST == 0) return getCouldNotCompute();  // Must be a constant.
3735
3736  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
3737  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
3738  if (PN2 != PN) return getCouldNotCompute();  // Not derived from same PHI.
3739
3740  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
3741  // the loop symbolically to determine when the condition gets a value of
3742  // "ExitWhen".
3743  unsigned IterationNum = 0;
3744  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
3745  for (Constant *PHIVal = StartCST;
3746       IterationNum != MaxIterations; ++IterationNum) {
3747    ConstantInt *CondVal =
3748      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
3749
3750    // Couldn't symbolically evaluate.
3751    if (!CondVal) return getCouldNotCompute();
3752
3753    if (CondVal->getValue() == uint64_t(ExitWhen)) {
3754      ++NumBruteForceTripCountsComputed;
3755      return getConstant(Type::Int32Ty, IterationNum);
3756    }
3757
3758    // Compute the value of the PHI node for the next iteration.
3759    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
3760    if (NextPHI == 0 || NextPHI == PHIVal)
3761      return getCouldNotCompute();// Couldn't evaluate or not making progress...
3762    PHIVal = NextPHI;
3763  }
3764
3765  // Too many iterations were needed to evaluate.
3766  return getCouldNotCompute();
3767}
3768
3769/// getSCEVAtScope - Return a SCEV expression handle for the specified value
3770/// at the specified scope in the program.  The L value specifies a loop
3771/// nest to evaluate the expression at, where null is the top-level or a
3772/// specified loop is immediately inside of the loop.
3773///
3774/// This method can be used to compute the exit value for a variable defined
3775/// in a loop by querying what the value will hold in the parent loop.
3776///
3777/// In the case that a relevant loop exit value cannot be computed, the
3778/// original value V is returned.
3779const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
3780  // FIXME: this should be turned into a virtual method on SCEV!
3781
3782  if (isa<SCEVConstant>(V)) return V;
3783
3784  // If this instruction is evolved from a constant-evolving PHI, compute the
3785  // exit value from the loop without using SCEVs.
3786  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
3787    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
3788      const Loop *LI = (*this->LI)[I->getParent()];
3789      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
3790        if (PHINode *PN = dyn_cast<PHINode>(I))
3791          if (PN->getParent() == LI->getHeader()) {
3792            // Okay, there is no closed form solution for the PHI node.  Check
3793            // to see if the loop that contains it has a known backedge-taken
3794            // count.  If so, we may be able to force computation of the exit
3795            // value.
3796            const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
3797            if (const SCEVConstant *BTCC =
3798                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
3799              // Okay, we know how many times the containing loop executes.  If
3800              // this is a constant evolving PHI node, get the final value at
3801              // the specified iteration number.
3802              Constant *RV = getConstantEvolutionLoopExitValue(PN,
3803                                                   BTCC->getValue()->getValue(),
3804                                                               LI);
3805              if (RV) return getSCEV(RV);
3806            }
3807          }
3808
3809      // Okay, this is an expression that we cannot symbolically evaluate
3810      // into a SCEV.  Check to see if it's possible to symbolically evaluate
3811      // the arguments into constants, and if so, try to constant propagate the
3812      // result.  This is particularly useful for computing loop exit values.
3813      if (CanConstantFold(I)) {
3814        // Check to see if we've folded this instruction at this loop before.
3815        std::map<const Loop *, Constant *> &Values = ValuesAtScopes[I];
3816        std::pair<std::map<const Loop *, Constant *>::iterator, bool> Pair =
3817          Values.insert(std::make_pair(L, static_cast<Constant *>(0)));
3818        if (!Pair.second)
3819          return Pair.first->second ? &*getSCEV(Pair.first->second) : V;
3820
3821        std::vector<Constant*> Operands;
3822        Operands.reserve(I->getNumOperands());
3823        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3824          Value *Op = I->getOperand(i);
3825          if (Constant *C = dyn_cast<Constant>(Op)) {
3826            Operands.push_back(C);
3827          } else {
3828            // If any of the operands is non-constant and if they are
3829            // non-integer and non-pointer, don't even try to analyze them
3830            // with scev techniques.
3831            if (!isSCEVable(Op->getType()))
3832              return V;
3833
3834            const SCEV* OpV = getSCEVAtScope(Op, L);
3835            if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
3836              Constant *C = SC->getValue();
3837              if (C->getType() != Op->getType())
3838                C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3839                                                                  Op->getType(),
3840                                                                  false),
3841                                          C, Op->getType());
3842              Operands.push_back(C);
3843            } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
3844              if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
3845                if (C->getType() != Op->getType())
3846                  C =
3847                    ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3848                                                                  Op->getType(),
3849                                                                  false),
3850                                          C, Op->getType());
3851                Operands.push_back(C);
3852              } else
3853                return V;
3854            } else {
3855              return V;
3856            }
3857          }
3858        }
3859
3860        Constant *C;
3861        if (const CmpInst *CI = dyn_cast<CmpInst>(I))
3862          C = ConstantFoldCompareInstOperands(CI->getPredicate(),
3863                                              &Operands[0], Operands.size(),
3864                                              Context);
3865        else
3866          C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
3867                                       &Operands[0], Operands.size(), Context);
3868        Pair.first->second = C;
3869        return getSCEV(C);
3870      }
3871    }
3872
3873    // This is some other type of SCEVUnknown, just return it.
3874    return V;
3875  }
3876
3877  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
3878    // Avoid performing the look-up in the common case where the specified
3879    // expression has no loop-variant portions.
3880    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
3881      const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
3882      if (OpAtScope != Comm->getOperand(i)) {
3883        // Okay, at least one of these operands is loop variant but might be
3884        // foldable.  Build a new instance of the folded commutative expression.
3885        SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
3886                                            Comm->op_begin()+i);
3887        NewOps.push_back(OpAtScope);
3888
3889        for (++i; i != e; ++i) {
3890          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
3891          NewOps.push_back(OpAtScope);
3892        }
3893        if (isa<SCEVAddExpr>(Comm))
3894          return getAddExpr(NewOps);
3895        if (isa<SCEVMulExpr>(Comm))
3896          return getMulExpr(NewOps);
3897        if (isa<SCEVSMaxExpr>(Comm))
3898          return getSMaxExpr(NewOps);
3899        if (isa<SCEVUMaxExpr>(Comm))
3900          return getUMaxExpr(NewOps);
3901        assert(0 && "Unknown commutative SCEV type!");
3902      }
3903    }
3904    // If we got here, all operands are loop invariant.
3905    return Comm;
3906  }
3907
3908  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
3909    const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
3910    const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
3911    if (LHS == Div->getLHS() && RHS == Div->getRHS())
3912      return Div;   // must be loop invariant
3913    return getUDivExpr(LHS, RHS);
3914  }
3915
3916  // If this is a loop recurrence for a loop that does not contain L, then we
3917  // are dealing with the final value computed by the loop.
3918  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
3919    if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
3920      // To evaluate this recurrence, we need to know how many times the AddRec
3921      // loop iterates.  Compute this now.
3922      const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
3923      if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
3924
3925      // Then, evaluate the AddRec.
3926      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
3927    }
3928    return AddRec;
3929  }
3930
3931  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
3932    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
3933    if (Op == Cast->getOperand())
3934      return Cast;  // must be loop invariant
3935    return getZeroExtendExpr(Op, Cast->getType());
3936  }
3937
3938  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
3939    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
3940    if (Op == Cast->getOperand())
3941      return Cast;  // must be loop invariant
3942    return getSignExtendExpr(Op, Cast->getType());
3943  }
3944
3945  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
3946    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
3947    if (Op == Cast->getOperand())
3948      return Cast;  // must be loop invariant
3949    return getTruncateExpr(Op, Cast->getType());
3950  }
3951
3952  assert(0 && "Unknown SCEV type!");
3953  return 0;
3954}
3955
3956/// getSCEVAtScope - This is a convenience function which does
3957/// getSCEVAtScope(getSCEV(V), L).
3958const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
3959  return getSCEVAtScope(getSCEV(V), L);
3960}
3961
3962/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
3963/// following equation:
3964///
3965///     A * X = B (mod N)
3966///
3967/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
3968/// A and B isn't important.
3969///
3970/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
3971static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
3972                                               ScalarEvolution &SE) {
3973  uint32_t BW = A.getBitWidth();
3974  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
3975  assert(A != 0 && "A must be non-zero.");
3976
3977  // 1. D = gcd(A, N)
3978  //
3979  // The gcd of A and N may have only one prime factor: 2. The number of
3980  // trailing zeros in A is its multiplicity
3981  uint32_t Mult2 = A.countTrailingZeros();
3982  // D = 2^Mult2
3983
3984  // 2. Check if B is divisible by D.
3985  //
3986  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
3987  // is not less than multiplicity of this prime factor for D.
3988  if (B.countTrailingZeros() < Mult2)
3989    return SE.getCouldNotCompute();
3990
3991  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
3992  // modulo (N / D).
3993  //
3994  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
3995  // bit width during computations.
3996  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
3997  APInt Mod(BW + 1, 0);
3998  Mod.set(BW - Mult2);  // Mod = N / D
3999  APInt I = AD.multiplicativeInverse(Mod);
4000
4001  // 4. Compute the minimum unsigned root of the equation:
4002  // I * (B / D) mod (N / D)
4003  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4004
4005  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4006  // bits.
4007  return SE.getConstant(Result.trunc(BW));
4008}
4009
4010/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4011/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
4012/// might be the same) or two SCEVCouldNotCompute objects.
4013///
4014static std::pair<const SCEV *,const SCEV *>
4015SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
4016  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
4017  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4018  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4019  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
4020
4021  // We currently can only solve this if the coefficients are constants.
4022  if (!LC || !MC || !NC) {
4023    const SCEV *CNC = SE.getCouldNotCompute();
4024    return std::make_pair(CNC, CNC);
4025  }
4026
4027  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
4028  const APInt &L = LC->getValue()->getValue();
4029  const APInt &M = MC->getValue()->getValue();
4030  const APInt &N = NC->getValue()->getValue();
4031  APInt Two(BitWidth, 2);
4032  APInt Four(BitWidth, 4);
4033
4034  {
4035    using namespace APIntOps;
4036    const APInt& C = L;
4037    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4038    // The B coefficient is M-N/2
4039    APInt B(M);
4040    B -= sdiv(N,Two);
4041
4042    // The A coefficient is N/2
4043    APInt A(N.sdiv(Two));
4044
4045    // Compute the B^2-4ac term.
4046    APInt SqrtTerm(B);
4047    SqrtTerm *= B;
4048    SqrtTerm -= Four * (A * C);
4049
4050    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4051    // integer value or else APInt::sqrt() will assert.
4052    APInt SqrtVal(SqrtTerm.sqrt());
4053
4054    // Compute the two solutions for the quadratic formula.
4055    // The divisions must be performed as signed divisions.
4056    APInt NegB(-B);
4057    APInt TwoA( A << 1 );
4058    if (TwoA.isMinValue()) {
4059      const SCEV *CNC = SE.getCouldNotCompute();
4060      return std::make_pair(CNC, CNC);
4061    }
4062
4063    LLVMContext *Context = SE.getContext();
4064
4065    ConstantInt *Solution1 =
4066      Context->getConstantInt((NegB + SqrtVal).sdiv(TwoA));
4067    ConstantInt *Solution2 =
4068      Context->getConstantInt((NegB - SqrtVal).sdiv(TwoA));
4069
4070    return std::make_pair(SE.getConstant(Solution1),
4071                          SE.getConstant(Solution2));
4072    } // end APIntOps namespace
4073}
4074
4075/// HowFarToZero - Return the number of times a backedge comparing the specified
4076/// value to zero will execute.  If not computable, return CouldNotCompute.
4077const SCEV *ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
4078  // If the value is a constant
4079  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4080    // If the value is already zero, the branch will execute zero times.
4081    if (C->getValue()->isZero()) return C;
4082    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4083  }
4084
4085  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
4086  if (!AddRec || AddRec->getLoop() != L)
4087    return getCouldNotCompute();
4088
4089  if (AddRec->isAffine()) {
4090    // If this is an affine expression, the execution count of this branch is
4091    // the minimum unsigned root of the following equation:
4092    //
4093    //     Start + Step*N = 0 (mod 2^BW)
4094    //
4095    // equivalent to:
4096    //
4097    //             Step*N = -Start (mod 2^BW)
4098    //
4099    // where BW is the common bit width of Start and Step.
4100
4101    // Get the initial value for the loop.
4102    const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4103                                       L->getParentLoop());
4104    const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4105                                      L->getParentLoop());
4106
4107    if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
4108      // For now we handle only constant steps.
4109
4110      // First, handle unitary steps.
4111      if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so:
4112        return getNegativeSCEV(Start);       //   N = -Start (as unsigned)
4113      if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so:
4114        return Start;                           //    N = Start (as unsigned)
4115
4116      // Then, try to solve the above equation provided that Start is constant.
4117      if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
4118        return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
4119                                            -StartC->getValue()->getValue(),
4120                                            *this);
4121    }
4122  } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
4123    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4124    // the quadratic equation to solve it.
4125    std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
4126                                                                    *this);
4127    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4128    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
4129    if (R1) {
4130#if 0
4131      errs() << "HFTZ: " << *V << " - sol#1: " << *R1
4132             << "  sol#2: " << *R2 << "\n";
4133#endif
4134      // Pick the smallest positive root value.
4135      if (ConstantInt *CB =
4136          dyn_cast<ConstantInt>(Context->getConstantExprICmp(ICmpInst::ICMP_ULT,
4137                                   R1->getValue(), R2->getValue()))) {
4138        if (CB->getZExtValue() == false)
4139          std::swap(R1, R2);   // R1 is the minimum root now.
4140
4141        // We can only use this value if the chrec ends up with an exact zero
4142        // value at this index.  When solving for "X*X != 5", for example, we
4143        // should not accept a root of 2.
4144        const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
4145        if (Val->isZero())
4146          return R1;  // We found a quadratic root!
4147      }
4148    }
4149  }
4150
4151  return getCouldNotCompute();
4152}
4153
4154/// HowFarToNonZero - Return the number of times a backedge checking the
4155/// specified value for nonzero will execute.  If not computable, return
4156/// CouldNotCompute
4157const SCEV *ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
4158  // Loops that look like: while (X == 0) are very strange indeed.  We don't
4159  // handle them yet except for the trivial case.  This could be expanded in the
4160  // future as needed.
4161
4162  // If the value is a constant, check to see if it is known to be non-zero
4163  // already.  If so, the backedge will execute zero times.
4164  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4165    if (!C->getValue()->isNullValue())
4166      return getIntegerSCEV(0, C->getType());
4167    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4168  }
4169
4170  // We could implement others, but I really doubt anyone writes loops like
4171  // this, and if they did, they would already be constant folded.
4172  return getCouldNotCompute();
4173}
4174
4175/// getLoopPredecessor - If the given loop's header has exactly one unique
4176/// predecessor outside the loop, return it. Otherwise return null.
4177///
4178BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
4179  BasicBlock *Header = L->getHeader();
4180  BasicBlock *Pred = 0;
4181  for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
4182       PI != E; ++PI)
4183    if (!L->contains(*PI)) {
4184      if (Pred && Pred != *PI) return 0; // Multiple predecessors.
4185      Pred = *PI;
4186    }
4187  return Pred;
4188}
4189
4190/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4191/// (which may not be an immediate predecessor) which has exactly one
4192/// successor from which BB is reachable, or null if no such block is
4193/// found.
4194///
4195BasicBlock *
4196ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
4197  // If the block has a unique predecessor, then there is no path from the
4198  // predecessor to the block that does not go through the direct edge
4199  // from the predecessor to the block.
4200  if (BasicBlock *Pred = BB->getSinglePredecessor())
4201    return Pred;
4202
4203  // A loop's header is defined to be a block that dominates the loop.
4204  // If the header has a unique predecessor outside the loop, it must be
4205  // a block that has exactly one successor that can reach the loop.
4206  if (Loop *L = LI->getLoopFor(BB))
4207    return getLoopPredecessor(L);
4208
4209  return 0;
4210}
4211
4212/// HasSameValue - SCEV structural equivalence is usually sufficient for
4213/// testing whether two expressions are equal, however for the purposes of
4214/// looking for a condition guarding a loop, it can be useful to be a little
4215/// more general, since a front-end may have replicated the controlling
4216/// expression.
4217///
4218static bool HasSameValue(const SCEV *A, const SCEV *B) {
4219  // Quick check to see if they are the same SCEV.
4220  if (A == B) return true;
4221
4222  // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4223  // two different instructions with the same value. Check for this case.
4224  if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4225    if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4226      if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4227        if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
4228          if (AI->isIdenticalTo(BI))
4229            return true;
4230
4231  // Otherwise assume they may have a different value.
4232  return false;
4233}
4234
4235bool ScalarEvolution::isKnownNegative(const SCEV *S) {
4236  return getSignedRange(S).getSignedMax().isNegative();
4237}
4238
4239bool ScalarEvolution::isKnownPositive(const SCEV *S) {
4240  return getSignedRange(S).getSignedMin().isStrictlyPositive();
4241}
4242
4243bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
4244  return !getSignedRange(S).getSignedMin().isNegative();
4245}
4246
4247bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
4248  return !getSignedRange(S).getSignedMax().isStrictlyPositive();
4249}
4250
4251bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
4252  return isKnownNegative(S) || isKnownPositive(S);
4253}
4254
4255bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
4256                                       const SCEV *LHS, const SCEV *RHS) {
4257
4258  if (HasSameValue(LHS, RHS))
4259    return ICmpInst::isTrueWhenEqual(Pred);
4260
4261  switch (Pred) {
4262  default:
4263    assert(0 && "Unexpected ICmpInst::Predicate value!");
4264    break;
4265  case ICmpInst::ICMP_SGT:
4266    Pred = ICmpInst::ICMP_SLT;
4267    std::swap(LHS, RHS);
4268  case ICmpInst::ICMP_SLT: {
4269    ConstantRange LHSRange = getSignedRange(LHS);
4270    ConstantRange RHSRange = getSignedRange(RHS);
4271    if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
4272      return true;
4273    if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
4274      return false;
4275
4276    const SCEV *Diff = getMinusSCEV(LHS, RHS);
4277    ConstantRange DiffRange = getUnsignedRange(Diff);
4278    if (isKnownNegative(Diff)) {
4279      if (DiffRange.getUnsignedMax().ult(LHSRange.getUnsignedMin()))
4280        return true;
4281      if (DiffRange.getUnsignedMin().uge(LHSRange.getUnsignedMax()))
4282        return false;
4283    } else if (isKnownPositive(Diff)) {
4284      if (LHSRange.getUnsignedMax().ult(DiffRange.getUnsignedMin()))
4285        return true;
4286      if (LHSRange.getUnsignedMin().uge(DiffRange.getUnsignedMax()))
4287        return false;
4288    }
4289    break;
4290  }
4291  case ICmpInst::ICMP_SGE:
4292    Pred = ICmpInst::ICMP_SLE;
4293    std::swap(LHS, RHS);
4294  case ICmpInst::ICMP_SLE: {
4295    ConstantRange LHSRange = getSignedRange(LHS);
4296    ConstantRange RHSRange = getSignedRange(RHS);
4297    if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
4298      return true;
4299    if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
4300      return false;
4301
4302    const SCEV *Diff = getMinusSCEV(LHS, RHS);
4303    ConstantRange DiffRange = getUnsignedRange(Diff);
4304    if (isKnownNonPositive(Diff)) {
4305      if (DiffRange.getUnsignedMax().ule(LHSRange.getUnsignedMin()))
4306        return true;
4307      if (DiffRange.getUnsignedMin().ugt(LHSRange.getUnsignedMax()))
4308        return false;
4309    } else if (isKnownNonNegative(Diff)) {
4310      if (LHSRange.getUnsignedMax().ule(DiffRange.getUnsignedMin()))
4311        return true;
4312      if (LHSRange.getUnsignedMin().ugt(DiffRange.getUnsignedMax()))
4313        return false;
4314    }
4315    break;
4316  }
4317  case ICmpInst::ICMP_UGT:
4318    Pred = ICmpInst::ICMP_ULT;
4319    std::swap(LHS, RHS);
4320  case ICmpInst::ICMP_ULT: {
4321    ConstantRange LHSRange = getUnsignedRange(LHS);
4322    ConstantRange RHSRange = getUnsignedRange(RHS);
4323    if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
4324      return true;
4325    if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
4326      return false;
4327
4328    const SCEV *Diff = getMinusSCEV(LHS, RHS);
4329    ConstantRange DiffRange = getUnsignedRange(Diff);
4330    if (LHSRange.getUnsignedMax().ult(DiffRange.getUnsignedMin()))
4331      return true;
4332    if (LHSRange.getUnsignedMin().uge(DiffRange.getUnsignedMax()))
4333      return false;
4334    break;
4335  }
4336  case ICmpInst::ICMP_UGE:
4337    Pred = ICmpInst::ICMP_ULE;
4338    std::swap(LHS, RHS);
4339  case ICmpInst::ICMP_ULE: {
4340    ConstantRange LHSRange = getUnsignedRange(LHS);
4341    ConstantRange RHSRange = getUnsignedRange(RHS);
4342    if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
4343      return true;
4344    if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
4345      return false;
4346
4347    const SCEV *Diff = getMinusSCEV(LHS, RHS);
4348    ConstantRange DiffRange = getUnsignedRange(Diff);
4349    if (LHSRange.getUnsignedMax().ule(DiffRange.getUnsignedMin()))
4350      return true;
4351    if (LHSRange.getUnsignedMin().ugt(DiffRange.getUnsignedMax()))
4352      return false;
4353    break;
4354  }
4355  case ICmpInst::ICMP_NE: {
4356    if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
4357      return true;
4358    if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
4359      return true;
4360
4361    const SCEV *Diff = getMinusSCEV(LHS, RHS);
4362    if (isKnownNonZero(Diff))
4363      return true;
4364    break;
4365  }
4366  case ICmpInst::ICMP_EQ:
4367    break;
4368  }
4369  return false;
4370}
4371
4372/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
4373/// protected by a conditional between LHS and RHS.  This is used to
4374/// to eliminate casts.
4375bool
4376ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
4377                                             ICmpInst::Predicate Pred,
4378                                             const SCEV *LHS, const SCEV *RHS) {
4379  // Interpret a null as meaning no loop, where there is obviously no guard
4380  // (interprocedural conditions notwithstanding).
4381  if (!L) return true;
4382
4383  BasicBlock *Latch = L->getLoopLatch();
4384  if (!Latch)
4385    return false;
4386
4387  BranchInst *LoopContinuePredicate =
4388    dyn_cast<BranchInst>(Latch->getTerminator());
4389  if (!LoopContinuePredicate ||
4390      LoopContinuePredicate->isUnconditional())
4391    return false;
4392
4393  return
4394    isNecessaryCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS,
4395                    LoopContinuePredicate->getSuccessor(0) != L->getHeader());
4396}
4397
4398/// isLoopGuardedByCond - Test whether entry to the loop is protected
4399/// by a conditional between LHS and RHS.  This is used to help avoid max
4400/// expressions in loop trip counts, and to eliminate casts.
4401bool
4402ScalarEvolution::isLoopGuardedByCond(const Loop *L,
4403                                     ICmpInst::Predicate Pred,
4404                                     const SCEV *LHS, const SCEV *RHS) {
4405  // Interpret a null as meaning no loop, where there is obviously no guard
4406  // (interprocedural conditions notwithstanding).
4407  if (!L) return false;
4408
4409  BasicBlock *Predecessor = getLoopPredecessor(L);
4410  BasicBlock *PredecessorDest = L->getHeader();
4411
4412  // Starting at the loop predecessor, climb up the predecessor chain, as long
4413  // as there are predecessors that can be found that have unique successors
4414  // leading to the original header.
4415  for (; Predecessor;
4416       PredecessorDest = Predecessor,
4417       Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) {
4418
4419    BranchInst *LoopEntryPredicate =
4420      dyn_cast<BranchInst>(Predecessor->getTerminator());
4421    if (!LoopEntryPredicate ||
4422        LoopEntryPredicate->isUnconditional())
4423      continue;
4424
4425    if (isNecessaryCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS,
4426                        LoopEntryPredicate->getSuccessor(0) != PredecessorDest))
4427      return true;
4428  }
4429
4430  return false;
4431}
4432
4433/// isNecessaryCond - Test whether the condition described by Pred, LHS,
4434/// and RHS is a necessary condition for the given Cond value to evaluate
4435/// to true.
4436bool ScalarEvolution::isNecessaryCond(Value *CondValue,
4437                                      ICmpInst::Predicate Pred,
4438                                      const SCEV *LHS, const SCEV *RHS,
4439                                      bool Inverse) {
4440  // Recursivly handle And and Or conditions.
4441  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) {
4442    if (BO->getOpcode() == Instruction::And) {
4443      if (!Inverse)
4444        return isNecessaryCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
4445               isNecessaryCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
4446    } else if (BO->getOpcode() == Instruction::Or) {
4447      if (Inverse)
4448        return isNecessaryCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
4449               isNecessaryCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
4450    }
4451  }
4452
4453  ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue);
4454  if (!ICI) return false;
4455
4456  // Now that we found a conditional branch that dominates the loop, check to
4457  // see if it is the comparison we are looking for.
4458  Value *PreCondLHS = ICI->getOperand(0);
4459  Value *PreCondRHS = ICI->getOperand(1);
4460  ICmpInst::Predicate FoundPred;
4461  if (Inverse)
4462    FoundPred = ICI->getInversePredicate();
4463  else
4464    FoundPred = ICI->getPredicate();
4465
4466  if (FoundPred == Pred)
4467    ; // An exact match.
4468  else if (!ICmpInst::isTrueWhenEqual(FoundPred) && Pred == ICmpInst::ICMP_NE) {
4469    // The actual condition is beyond sufficient.
4470    FoundPred = ICmpInst::ICMP_NE;
4471    // NE is symmetric but the original comparison may not be. Swap
4472    // the operands if necessary so that they match below.
4473    if (isa<SCEVConstant>(LHS))
4474      std::swap(PreCondLHS, PreCondRHS);
4475  } else
4476    // Check a few special cases.
4477    switch (FoundPred) {
4478    case ICmpInst::ICMP_UGT:
4479      if (Pred == ICmpInst::ICMP_ULT) {
4480        std::swap(PreCondLHS, PreCondRHS);
4481        FoundPred = ICmpInst::ICMP_ULT;
4482        break;
4483      }
4484      return false;
4485    case ICmpInst::ICMP_SGT:
4486      if (Pred == ICmpInst::ICMP_SLT) {
4487        std::swap(PreCondLHS, PreCondRHS);
4488        FoundPred = ICmpInst::ICMP_SLT;
4489        break;
4490      }
4491      return false;
4492    case ICmpInst::ICMP_NE:
4493      // Expressions like (x >u 0) are often canonicalized to (x != 0),
4494      // so check for this case by checking if the NE is comparing against
4495      // a minimum or maximum constant.
4496      if (!ICmpInst::isTrueWhenEqual(Pred))
4497        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(RHS)) {
4498          const APInt &A = C->getValue()->getValue();
4499          switch (Pred) {
4500          case ICmpInst::ICMP_SLT:
4501            if (A.isMaxSignedValue()) break;
4502            return false;
4503          case ICmpInst::ICMP_SGT:
4504            if (A.isMinSignedValue()) break;
4505            return false;
4506          case ICmpInst::ICMP_ULT:
4507            if (A.isMaxValue()) break;
4508            return false;
4509          case ICmpInst::ICMP_UGT:
4510            if (A.isMinValue()) break;
4511            return false;
4512          default:
4513            return false;
4514          }
4515          FoundPred = Pred;
4516          // NE is symmetric but the original comparison may not be. Swap
4517          // the operands if necessary so that they match below.
4518          if (isa<SCEVConstant>(LHS))
4519            std::swap(PreCondLHS, PreCondRHS);
4520          break;
4521        }
4522      return false;
4523    default:
4524      // We weren't able to reconcile the condition.
4525      return false;
4526    }
4527
4528  assert(Pred == FoundPred && "Conditions were not reconciled!");
4529
4530  const SCEV *FoundLHS = getSCEV(PreCondLHS);
4531  const SCEV *FoundRHS = getSCEV(PreCondRHS);
4532
4533  // Balance the types.
4534  if (getTypeSizeInBits(LHS->getType()) >
4535      getTypeSizeInBits(FoundLHS->getType())) {
4536    if (CmpInst::isSigned(Pred)) {
4537      FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
4538      FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
4539    } else {
4540      FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
4541      FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
4542    }
4543  } else if (getTypeSizeInBits(LHS->getType()) <
4544             getTypeSizeInBits(FoundLHS->getType())) {
4545    // TODO: Cast LHS and RHS to FoundLHS' type. Currently this can
4546    // result in infinite recursion since the code to construct
4547    // cast expressions may want to know things about the loop
4548    // iteration in order to do simplifications.
4549    return false;
4550  }
4551
4552  return isNecessaryCondOperands(Pred, LHS, RHS,
4553                                 FoundLHS, FoundRHS) ||
4554         // ~x < ~y --> x > y
4555         isNecessaryCondOperands(Pred, LHS, RHS,
4556                                 getNotSCEV(FoundRHS), getNotSCEV(FoundLHS));
4557}
4558
4559/// isNecessaryCondOperands - Test whether the condition described by Pred,
4560/// LHS, and RHS is a necessary condition for the condition described by
4561/// Pred, FoundLHS, and FoundRHS to evaluate to true.
4562bool
4563ScalarEvolution::isNecessaryCondOperands(ICmpInst::Predicate Pred,
4564                                         const SCEV *LHS, const SCEV *RHS,
4565                                         const SCEV *FoundLHS,
4566                                         const SCEV *FoundRHS) {
4567  switch (Pred) {
4568  default: break;
4569  case ICmpInst::ICMP_SLT:
4570    if (isKnownPredicate(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
4571        isKnownPredicate(ICmpInst::ICMP_SGE, RHS, FoundRHS))
4572      return true;
4573    break;
4574  case ICmpInst::ICMP_SGT:
4575    if (isKnownPredicate(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
4576        isKnownPredicate(ICmpInst::ICMP_SLE, RHS, FoundRHS))
4577      return true;
4578    break;
4579  case ICmpInst::ICMP_ULT:
4580    if (isKnownPredicate(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
4581        isKnownPredicate(ICmpInst::ICMP_UGE, RHS, FoundRHS))
4582      return true;
4583    break;
4584  case ICmpInst::ICMP_UGT:
4585    if (isKnownPredicate(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
4586        isKnownPredicate(ICmpInst::ICMP_ULE, RHS, FoundRHS))
4587      return true;
4588    break;
4589  }
4590
4591  return false;
4592}
4593
4594/// getBECount - Subtract the end and start values and divide by the step,
4595/// rounding up, to get the number of times the backedge is executed. Return
4596/// CouldNotCompute if an intermediate computation overflows.
4597const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
4598                                       const SCEV *End,
4599                                       const SCEV *Step) {
4600  const Type *Ty = Start->getType();
4601  const SCEV *NegOne = getIntegerSCEV(-1, Ty);
4602  const SCEV *Diff = getMinusSCEV(End, Start);
4603  const SCEV *RoundUp = getAddExpr(Step, NegOne);
4604
4605  // Add an adjustment to the difference between End and Start so that
4606  // the division will effectively round up.
4607  const SCEV *Add = getAddExpr(Diff, RoundUp);
4608
4609  // Check Add for unsigned overflow.
4610  // TODO: More sophisticated things could be done here.
4611  const Type *WideTy = Context->getIntegerType(getTypeSizeInBits(Ty) + 1);
4612  const SCEV *OperandExtendedAdd =
4613    getAddExpr(getZeroExtendExpr(Diff, WideTy),
4614               getZeroExtendExpr(RoundUp, WideTy));
4615  if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
4616    return getCouldNotCompute();
4617
4618  return getUDivExpr(Add, Step);
4619}
4620
4621/// HowManyLessThans - Return the number of times a backedge containing the
4622/// specified less-than comparison will execute.  If not computable, return
4623/// CouldNotCompute.
4624ScalarEvolution::BackedgeTakenInfo
4625ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
4626                                  const Loop *L, bool isSigned) {
4627  // Only handle:  "ADDREC < LoopInvariant".
4628  if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
4629
4630  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
4631  if (!AddRec || AddRec->getLoop() != L)
4632    return getCouldNotCompute();
4633
4634  if (AddRec->isAffine()) {
4635    // FORNOW: We only support unit strides.
4636    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
4637    const SCEV *Step = AddRec->getStepRecurrence(*this);
4638
4639    // TODO: handle non-constant strides.
4640    const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
4641    if (!CStep || CStep->isZero())
4642      return getCouldNotCompute();
4643    if (CStep->isOne()) {
4644      // With unit stride, the iteration never steps past the limit value.
4645    } else if (CStep->getValue()->getValue().isStrictlyPositive()) {
4646      if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) {
4647        // Test whether a positive iteration iteration can step past the limit
4648        // value and past the maximum value for its type in a single step.
4649        if (isSigned) {
4650          APInt Max = APInt::getSignedMaxValue(BitWidth);
4651          if ((Max - CStep->getValue()->getValue())
4652                .slt(CLimit->getValue()->getValue()))
4653            return getCouldNotCompute();
4654        } else {
4655          APInt Max = APInt::getMaxValue(BitWidth);
4656          if ((Max - CStep->getValue()->getValue())
4657                .ult(CLimit->getValue()->getValue()))
4658            return getCouldNotCompute();
4659        }
4660      } else
4661        // TODO: handle non-constant limit values below.
4662        return getCouldNotCompute();
4663    } else
4664      // TODO: handle negative strides below.
4665      return getCouldNotCompute();
4666
4667    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
4668    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
4669    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
4670    // treat m-n as signed nor unsigned due to overflow possibility.
4671
4672    // First, we get the value of the LHS in the first iteration: n
4673    const SCEV *Start = AddRec->getOperand(0);
4674
4675    // Determine the minimum constant start value.
4676    const SCEV *MinStart = getConstant(isSigned ?
4677      getSignedRange(Start).getSignedMin() :
4678      getUnsignedRange(Start).getUnsignedMin());
4679
4680    // If we know that the condition is true in order to enter the loop,
4681    // then we know that it will run exactly (m-n)/s times. Otherwise, we
4682    // only know that it will execute (max(m,n)-n)/s times. In both cases,
4683    // the division must round up.
4684    const SCEV *End = RHS;
4685    if (!isLoopGuardedByCond(L,
4686                             isSigned ? ICmpInst::ICMP_SLT :
4687                                        ICmpInst::ICMP_ULT,
4688                             getMinusSCEV(Start, Step), RHS))
4689      End = isSigned ? getSMaxExpr(RHS, Start)
4690                     : getUMaxExpr(RHS, Start);
4691
4692    // Determine the maximum constant end value.
4693    const SCEV *MaxEnd = getConstant(isSigned ?
4694      getSignedRange(End).getSignedMax() :
4695      getUnsignedRange(End).getUnsignedMax());
4696
4697    // Finally, we subtract these two values and divide, rounding up, to get
4698    // the number of times the backedge is executed.
4699    const SCEV *BECount = getBECount(Start, End, Step);
4700
4701    // The maximum backedge count is similar, except using the minimum start
4702    // value and the maximum end value.
4703    const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step);
4704
4705    return BackedgeTakenInfo(BECount, MaxBECount);
4706  }
4707
4708  return getCouldNotCompute();
4709}
4710
4711/// getNumIterationsInRange - Return the number of iterations of this loop that
4712/// produce values in the specified constant range.  Another way of looking at
4713/// this is that it returns the first iteration number where the value is not in
4714/// the condition, thus computing the exit count. If the iteration count can't
4715/// be computed, an instance of SCEVCouldNotCompute is returned.
4716const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
4717                                                    ScalarEvolution &SE) const {
4718  if (Range.isFullSet())  // Infinite loop.
4719    return SE.getCouldNotCompute();
4720
4721  // If the start is a non-zero constant, shift the range to simplify things.
4722  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
4723    if (!SC->getValue()->isZero()) {
4724      SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
4725      Operands[0] = SE.getIntegerSCEV(0, SC->getType());
4726      const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
4727      if (const SCEVAddRecExpr *ShiftedAddRec =
4728            dyn_cast<SCEVAddRecExpr>(Shifted))
4729        return ShiftedAddRec->getNumIterationsInRange(
4730                           Range.subtract(SC->getValue()->getValue()), SE);
4731      // This is strange and shouldn't happen.
4732      return SE.getCouldNotCompute();
4733    }
4734
4735  // The only time we can solve this is when we have all constant indices.
4736  // Otherwise, we cannot determine the overflow conditions.
4737  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4738    if (!isa<SCEVConstant>(getOperand(i)))
4739      return SE.getCouldNotCompute();
4740
4741
4742  // Okay at this point we know that all elements of the chrec are constants and
4743  // that the start element is zero.
4744
4745  // First check to see if the range contains zero.  If not, the first
4746  // iteration exits.
4747  unsigned BitWidth = SE.getTypeSizeInBits(getType());
4748  if (!Range.contains(APInt(BitWidth, 0)))
4749    return SE.getIntegerSCEV(0, getType());
4750
4751  if (isAffine()) {
4752    // If this is an affine expression then we have this situation:
4753    //   Solve {0,+,A} in Range  ===  Ax in Range
4754
4755    // We know that zero is in the range.  If A is positive then we know that
4756    // the upper value of the range must be the first possible exit value.
4757    // If A is negative then the lower of the range is the last possible loop
4758    // value.  Also note that we already checked for a full range.
4759    APInt One(BitWidth,1);
4760    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
4761    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
4762
4763    // The exit value should be (End+A)/A.
4764    APInt ExitVal = (End + A).udiv(A);
4765    ConstantInt *ExitValue = SE.getContext()->getConstantInt(ExitVal);
4766
4767    // Evaluate at the exit value.  If we really did fall out of the valid
4768    // range, then we computed our trip count, otherwise wrap around or other
4769    // things must have happened.
4770    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
4771    if (Range.contains(Val->getValue()))
4772      return SE.getCouldNotCompute();  // Something strange happened
4773
4774    // Ensure that the previous value is in the range.  This is a sanity check.
4775    assert(Range.contains(
4776           EvaluateConstantChrecAtConstant(this,
4777           SE.getContext()->getConstantInt(ExitVal - One), SE)->getValue()) &&
4778           "Linear scev computation is off in a bad way!");
4779    return SE.getConstant(ExitValue);
4780  } else if (isQuadratic()) {
4781    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
4782    // quadratic equation to solve it.  To do this, we must frame our problem in
4783    // terms of figuring out when zero is crossed, instead of when
4784    // Range.getUpper() is crossed.
4785    SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
4786    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
4787    const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
4788
4789    // Next, solve the constructed addrec
4790    std::pair<const SCEV *,const SCEV *> Roots =
4791      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
4792    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4793    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
4794    if (R1) {
4795      // Pick the smallest positive root value.
4796      if (ConstantInt *CB =
4797          dyn_cast<ConstantInt>(
4798                       SE.getContext()->getConstantExprICmp(ICmpInst::ICMP_ULT,
4799                         R1->getValue(), R2->getValue()))) {
4800        if (CB->getZExtValue() == false)
4801          std::swap(R1, R2);   // R1 is the minimum root now.
4802
4803        // Make sure the root is not off by one.  The returned iteration should
4804        // not be in the range, but the previous one should be.  When solving
4805        // for "X*X < 5", for example, we should not return a root of 2.
4806        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
4807                                                             R1->getValue(),
4808                                                             SE);
4809        if (Range.contains(R1Val->getValue())) {
4810          // The next iteration must be out of the range...
4811          ConstantInt *NextVal =
4812                 SE.getContext()->getConstantInt(R1->getValue()->getValue()+1);
4813
4814          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
4815          if (!Range.contains(R1Val->getValue()))
4816            return SE.getConstant(NextVal);
4817          return SE.getCouldNotCompute();  // Something strange happened
4818        }
4819
4820        // If R1 was not in the range, then it is a good return value.  Make
4821        // sure that R1-1 WAS in the range though, just in case.
4822        ConstantInt *NextVal =
4823                 SE.getContext()->getConstantInt(R1->getValue()->getValue()-1);
4824        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
4825        if (Range.contains(R1Val->getValue()))
4826          return R1;
4827        return SE.getCouldNotCompute();  // Something strange happened
4828      }
4829    }
4830  }
4831
4832  return SE.getCouldNotCompute();
4833}
4834
4835
4836
4837//===----------------------------------------------------------------------===//
4838//                   SCEVCallbackVH Class Implementation
4839//===----------------------------------------------------------------------===//
4840
4841void ScalarEvolution::SCEVCallbackVH::deleted() {
4842  assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
4843  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
4844    SE->ConstantEvolutionLoopExitValue.erase(PN);
4845  if (Instruction *I = dyn_cast<Instruction>(getValPtr()))
4846    SE->ValuesAtScopes.erase(I);
4847  SE->Scalars.erase(getValPtr());
4848  // this now dangles!
4849}
4850
4851void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
4852  assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
4853
4854  // Forget all the expressions associated with users of the old value,
4855  // so that future queries will recompute the expressions using the new
4856  // value.
4857  SmallVector<User *, 16> Worklist;
4858  Value *Old = getValPtr();
4859  bool DeleteOld = false;
4860  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
4861       UI != UE; ++UI)
4862    Worklist.push_back(*UI);
4863  while (!Worklist.empty()) {
4864    User *U = Worklist.pop_back_val();
4865    // Deleting the Old value will cause this to dangle. Postpone
4866    // that until everything else is done.
4867    if (U == Old) {
4868      DeleteOld = true;
4869      continue;
4870    }
4871    if (PHINode *PN = dyn_cast<PHINode>(U))
4872      SE->ConstantEvolutionLoopExitValue.erase(PN);
4873    if (Instruction *I = dyn_cast<Instruction>(U))
4874      SE->ValuesAtScopes.erase(I);
4875    if (SE->Scalars.erase(U))
4876      for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
4877           UI != UE; ++UI)
4878        Worklist.push_back(*UI);
4879  }
4880  if (DeleteOld) {
4881    if (PHINode *PN = dyn_cast<PHINode>(Old))
4882      SE->ConstantEvolutionLoopExitValue.erase(PN);
4883    if (Instruction *I = dyn_cast<Instruction>(Old))
4884      SE->ValuesAtScopes.erase(I);
4885    SE->Scalars.erase(Old);
4886    // this now dangles!
4887  }
4888  // this may dangle!
4889}
4890
4891ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
4892  : CallbackVH(V), SE(se) {}
4893
4894//===----------------------------------------------------------------------===//
4895//                   ScalarEvolution Class Implementation
4896//===----------------------------------------------------------------------===//
4897
4898ScalarEvolution::ScalarEvolution()
4899  : FunctionPass(&ID) {
4900}
4901
4902bool ScalarEvolution::runOnFunction(Function &F) {
4903  this->F = &F;
4904  LI = &getAnalysis<LoopInfo>();
4905  TD = getAnalysisIfAvailable<TargetData>();
4906  return false;
4907}
4908
4909void ScalarEvolution::releaseMemory() {
4910  Scalars.clear();
4911  BackedgeTakenCounts.clear();
4912  ConstantEvolutionLoopExitValue.clear();
4913  ValuesAtScopes.clear();
4914  UniqueSCEVs.clear();
4915  SCEVAllocator.Reset();
4916}
4917
4918void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
4919  AU.setPreservesAll();
4920  AU.addRequiredTransitive<LoopInfo>();
4921}
4922
4923bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
4924  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
4925}
4926
4927static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
4928                          const Loop *L) {
4929  // Print all inner loops first
4930  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4931    PrintLoopInfo(OS, SE, *I);
4932
4933  OS << "Loop " << L->getHeader()->getName() << ": ";
4934
4935  SmallVector<BasicBlock*, 8> ExitBlocks;
4936  L->getExitBlocks(ExitBlocks);
4937  if (ExitBlocks.size() != 1)
4938    OS << "<multiple exits> ";
4939
4940  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
4941    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
4942  } else {
4943    OS << "Unpredictable backedge-taken count. ";
4944  }
4945
4946  OS << "\n";
4947  OS << "Loop " << L->getHeader()->getName() << ": ";
4948
4949  if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
4950    OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
4951  } else {
4952    OS << "Unpredictable max backedge-taken count. ";
4953  }
4954
4955  OS << "\n";
4956}
4957
4958void ScalarEvolution::print(raw_ostream &OS, const Module* ) const {
4959  // ScalarEvolution's implementaiton of the print method is to print
4960  // out SCEV values of all instructions that are interesting. Doing
4961  // this potentially causes it to create new SCEV objects though,
4962  // which technically conflicts with the const qualifier. This isn't
4963  // observable from outside the class though, so casting away the
4964  // const isn't dangerous.
4965  ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this);
4966
4967  OS << "Classifying expressions for: " << F->getName() << "\n";
4968  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
4969    if (isSCEVable(I->getType())) {
4970      OS << *I;
4971      OS << "  -->  ";
4972      const SCEV *SV = SE.getSCEV(&*I);
4973      SV->print(OS);
4974
4975      const Loop *L = LI->getLoopFor((*I).getParent());
4976
4977      const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
4978      if (AtUse != SV) {
4979        OS << "  -->  ";
4980        AtUse->print(OS);
4981      }
4982
4983      if (L) {
4984        OS << "\t\t" "Exits: ";
4985        const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
4986        if (!ExitValue->isLoopInvariant(L)) {
4987          OS << "<<Unknown>>";
4988        } else {
4989          OS << *ExitValue;
4990        }
4991      }
4992
4993      OS << "\n";
4994    }
4995
4996  OS << "Determining loop execution counts for: " << F->getName() << "\n";
4997  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
4998    PrintLoopInfo(OS, &SE, *I);
4999}
5000
5001void ScalarEvolution::print(std::ostream &o, const Module *M) const {
5002  raw_os_ostream OS(o);
5003  print(OS, M);
5004}
5005