ScalarEvolution.cpp revision 2166f6229042a4d3d65847ebe0d453cd664682ef
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
19//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression.  These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
30//
31// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
35// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42//  Chains of recurrences -- a method to expedite the evaluation
43//  of closed-form functions
44//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46//  On computational properties of chains of recurrences
47//  Eugene V. Zima
48//
49//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50//  Robert A. van Engelen
51//
52//  Efficient Symbolic Analysis for Optimizing Compilers
53//  Robert A. van Engelen
54//
55//  Using the chains of recurrences algebra for data dependence testing and
56//  induction variable substitution
57//  MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
61#define DEBUG_TYPE "scalar-evolution"
62#include "llvm/Analysis/ScalarEvolutionExpressions.h"
63#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
65#include "llvm/GlobalVariable.h"
66#include "llvm/GlobalAlias.h"
67#include "llvm/Instructions.h"
68#include "llvm/LLVMContext.h"
69#include "llvm/Operator.h"
70#include "llvm/Analysis/ConstantFolding.h"
71#include "llvm/Analysis/Dominators.h"
72#include "llvm/Analysis/LoopInfo.h"
73#include "llvm/Analysis/ValueTracking.h"
74#include "llvm/Assembly/Writer.h"
75#include "llvm/Target/TargetData.h"
76#include "llvm/Support/CommandLine.h"
77#include "llvm/Support/ConstantRange.h"
78#include "llvm/Support/ErrorHandling.h"
79#include "llvm/Support/GetElementPtrTypeIterator.h"
80#include "llvm/Support/InstIterator.h"
81#include "llvm/Support/MathExtras.h"
82#include "llvm/Support/raw_ostream.h"
83#include "llvm/ADT/Statistic.h"
84#include "llvm/ADT/STLExtras.h"
85#include "llvm/ADT/SmallPtrSet.h"
86#include <algorithm>
87using namespace llvm;
88
89STATISTIC(NumArrayLenItCounts,
90          "Number of trip counts computed with array length");
91STATISTIC(NumTripCountsComputed,
92          "Number of loops with predictable loop counts");
93STATISTIC(NumTripCountsNotComputed,
94          "Number of loops without predictable loop counts");
95STATISTIC(NumBruteForceTripCountsComputed,
96          "Number of loops with trip counts computed by force");
97
98static cl::opt<unsigned>
99MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
100                        cl::desc("Maximum number of iterations SCEV will "
101                                 "symbolically execute a constant "
102                                 "derived loop"),
103                        cl::init(100));
104
105static RegisterPass<ScalarEvolution>
106R("scalar-evolution", "Scalar Evolution Analysis", false, true);
107char ScalarEvolution::ID = 0;
108
109//===----------------------------------------------------------------------===//
110//                           SCEV class definitions
111//===----------------------------------------------------------------------===//
112
113//===----------------------------------------------------------------------===//
114// Implementation of the SCEV class.
115//
116
117SCEV::~SCEV() {}
118
119void SCEV::dump() const {
120  print(errs());
121  errs() << '\n';
122}
123
124bool SCEV::isZero() const {
125  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
126    return SC->getValue()->isZero();
127  return false;
128}
129
130bool SCEV::isOne() const {
131  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
132    return SC->getValue()->isOne();
133  return false;
134}
135
136bool SCEV::isAllOnesValue() const {
137  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
138    return SC->getValue()->isAllOnesValue();
139  return false;
140}
141
142SCEVCouldNotCompute::SCEVCouldNotCompute() :
143  SCEV(FoldingSetNodeID(), scCouldNotCompute) {}
144
145bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
146  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
147  return false;
148}
149
150const Type *SCEVCouldNotCompute::getType() const {
151  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
152  return 0;
153}
154
155bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
156  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
157  return false;
158}
159
160bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
161  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
162  return false;
163}
164
165void SCEVCouldNotCompute::print(raw_ostream &OS) const {
166  OS << "***COULDNOTCOMPUTE***";
167}
168
169bool SCEVCouldNotCompute::classof(const SCEV *S) {
170  return S->getSCEVType() == scCouldNotCompute;
171}
172
173const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
174  FoldingSetNodeID ID;
175  ID.AddInteger(scConstant);
176  ID.AddPointer(V);
177  void *IP = 0;
178  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
179  SCEV *S = SCEVAllocator.Allocate<SCEVConstant>();
180  new (S) SCEVConstant(ID, V);
181  UniqueSCEVs.InsertNode(S, IP);
182  return S;
183}
184
185const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
186  return getConstant(ConstantInt::get(getContext(), Val));
187}
188
189const SCEV *
190ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
191  return getConstant(
192    ConstantInt::get(cast<IntegerType>(Ty), V, isSigned));
193}
194
195const Type *SCEVConstant::getType() const { return V->getType(); }
196
197void SCEVConstant::print(raw_ostream &OS) const {
198  WriteAsOperand(OS, V, false);
199}
200
201SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeID &ID,
202                           unsigned SCEVTy, const SCEV *op, const Type *ty)
203  : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
204
205bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
206  return Op->dominates(BB, DT);
207}
208
209bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
210  return Op->properlyDominates(BB, DT);
211}
212
213SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeID &ID,
214                                   const SCEV *op, const Type *ty)
215  : SCEVCastExpr(ID, scTruncate, op, ty) {
216  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
217         (Ty->isInteger() || isa<PointerType>(Ty)) &&
218         "Cannot truncate non-integer value!");
219}
220
221void SCEVTruncateExpr::print(raw_ostream &OS) const {
222  OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
223}
224
225SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeID &ID,
226                                       const SCEV *op, const Type *ty)
227  : SCEVCastExpr(ID, scZeroExtend, op, ty) {
228  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
229         (Ty->isInteger() || isa<PointerType>(Ty)) &&
230         "Cannot zero extend non-integer value!");
231}
232
233void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
234  OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
235}
236
237SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeID &ID,
238                                       const SCEV *op, const Type *ty)
239  : SCEVCastExpr(ID, scSignExtend, op, ty) {
240  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
241         (Ty->isInteger() || isa<PointerType>(Ty)) &&
242         "Cannot sign extend non-integer value!");
243}
244
245void SCEVSignExtendExpr::print(raw_ostream &OS) const {
246  OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
247}
248
249void SCEVCommutativeExpr::print(raw_ostream &OS) const {
250  assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
251  const char *OpStr = getOperationStr();
252  OS << "(" << *Operands[0];
253  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
254    OS << OpStr << *Operands[i];
255  OS << ")";
256}
257
258bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
259  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
260    if (!getOperand(i)->dominates(BB, DT))
261      return false;
262  }
263  return true;
264}
265
266bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
267  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
268    if (!getOperand(i)->properlyDominates(BB, DT))
269      return false;
270  }
271  return true;
272}
273
274bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
275  return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
276}
277
278bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
279  return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
280}
281
282void SCEVUDivExpr::print(raw_ostream &OS) const {
283  OS << "(" << *LHS << " /u " << *RHS << ")";
284}
285
286const Type *SCEVUDivExpr::getType() const {
287  // In most cases the types of LHS and RHS will be the same, but in some
288  // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
289  // depend on the type for correctness, but handling types carefully can
290  // avoid extra casts in the SCEVExpander. The LHS is more likely to be
291  // a pointer type than the RHS, so use the RHS' type here.
292  return RHS->getType();
293}
294
295bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
296  // Add recurrences are never invariant in the function-body (null loop).
297  if (!QueryLoop)
298    return false;
299
300  // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
301  if (QueryLoop->contains(L->getHeader()))
302    return false;
303
304  // This recurrence is variant w.r.t. QueryLoop if any of its operands
305  // are variant.
306  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
307    if (!getOperand(i)->isLoopInvariant(QueryLoop))
308      return false;
309
310  // Otherwise it's loop-invariant.
311  return true;
312}
313
314void SCEVAddRecExpr::print(raw_ostream &OS) const {
315  OS << "{" << *Operands[0];
316  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
317    OS << ",+," << *Operands[i];
318  OS << "}<" << L->getHeader()->getName() + ">";
319}
320
321void SCEVFieldOffsetExpr::print(raw_ostream &OS) const {
322  // LLVM struct fields don't have names, so just print the field number.
323  OS << "offsetof(" << *STy << ", " << FieldNo << ")";
324}
325
326void SCEVAllocSizeExpr::print(raw_ostream &OS) const {
327  OS << "sizeof(" << *AllocTy << ")";
328}
329
330bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
331  // All non-instruction values are loop invariant.  All instructions are loop
332  // invariant if they are not contained in the specified loop.
333  // Instructions are never considered invariant in the function body
334  // (null loop) because they are defined within the "loop".
335  if (Instruction *I = dyn_cast<Instruction>(V))
336    return L && !L->contains(I->getParent());
337  return true;
338}
339
340bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
341  if (Instruction *I = dyn_cast<Instruction>(getValue()))
342    return DT->dominates(I->getParent(), BB);
343  return true;
344}
345
346bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
347  if (Instruction *I = dyn_cast<Instruction>(getValue()))
348    return DT->properlyDominates(I->getParent(), BB);
349  return true;
350}
351
352const Type *SCEVUnknown::getType() const {
353  return V->getType();
354}
355
356void SCEVUnknown::print(raw_ostream &OS) const {
357  WriteAsOperand(OS, V, false);
358}
359
360//===----------------------------------------------------------------------===//
361//                               SCEV Utilities
362//===----------------------------------------------------------------------===//
363
364static bool CompareTypes(const Type *A, const Type *B) {
365  if (A->getTypeID() != B->getTypeID())
366    return A->getTypeID() < B->getTypeID();
367  if (const IntegerType *AI = dyn_cast<IntegerType>(A)) {
368    const IntegerType *BI = cast<IntegerType>(B);
369    return AI->getBitWidth() < BI->getBitWidth();
370  }
371  if (const PointerType *AI = dyn_cast<PointerType>(A)) {
372    const PointerType *BI = cast<PointerType>(B);
373    return CompareTypes(AI->getElementType(), BI->getElementType());
374  }
375  if (const ArrayType *AI = dyn_cast<ArrayType>(A)) {
376    const ArrayType *BI = cast<ArrayType>(B);
377    if (AI->getNumElements() != BI->getNumElements())
378      return AI->getNumElements() < BI->getNumElements();
379    return CompareTypes(AI->getElementType(), BI->getElementType());
380  }
381  if (const VectorType *AI = dyn_cast<VectorType>(A)) {
382    const VectorType *BI = cast<VectorType>(B);
383    if (AI->getNumElements() != BI->getNumElements())
384      return AI->getNumElements() < BI->getNumElements();
385    return CompareTypes(AI->getElementType(), BI->getElementType());
386  }
387  if (const StructType *AI = dyn_cast<StructType>(A)) {
388    const StructType *BI = cast<StructType>(B);
389    if (AI->getNumElements() != BI->getNumElements())
390      return AI->getNumElements() < BI->getNumElements();
391    for (unsigned i = 0, e = AI->getNumElements(); i != e; ++i)
392      if (CompareTypes(AI->getElementType(i), BI->getElementType(i)) ||
393          CompareTypes(BI->getElementType(i), AI->getElementType(i)))
394        return CompareTypes(AI->getElementType(i), BI->getElementType(i));
395  }
396  return false;
397}
398
399namespace {
400  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
401  /// than the complexity of the RHS.  This comparator is used to canonicalize
402  /// expressions.
403  class SCEVComplexityCompare {
404    LoopInfo *LI;
405  public:
406    explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
407
408    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
409      // Fast-path: SCEVs are uniqued so we can do a quick equality check.
410      if (LHS == RHS)
411        return false;
412
413      // Primarily, sort the SCEVs by their getSCEVType().
414      if (LHS->getSCEVType() != RHS->getSCEVType())
415        return LHS->getSCEVType() < RHS->getSCEVType();
416
417      // Aside from the getSCEVType() ordering, the particular ordering
418      // isn't very important except that it's beneficial to be consistent,
419      // so that (a + b) and (b + a) don't end up as different expressions.
420
421      // Sort SCEVUnknown values with some loose heuristics. TODO: This is
422      // not as complete as it could be.
423      if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
424        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
425
426        // Order pointer values after integer values. This helps SCEVExpander
427        // form GEPs.
428        if (isa<PointerType>(LU->getType()) && !isa<PointerType>(RU->getType()))
429          return false;
430        if (isa<PointerType>(RU->getType()) && !isa<PointerType>(LU->getType()))
431          return true;
432
433        // Compare getValueID values.
434        if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
435          return LU->getValue()->getValueID() < RU->getValue()->getValueID();
436
437        // Sort arguments by their position.
438        if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
439          const Argument *RA = cast<Argument>(RU->getValue());
440          return LA->getArgNo() < RA->getArgNo();
441        }
442
443        // For instructions, compare their loop depth, and their opcode.
444        // This is pretty loose.
445        if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
446          Instruction *RV = cast<Instruction>(RU->getValue());
447
448          // Compare loop depths.
449          if (LI->getLoopDepth(LV->getParent()) !=
450              LI->getLoopDepth(RV->getParent()))
451            return LI->getLoopDepth(LV->getParent()) <
452                   LI->getLoopDepth(RV->getParent());
453
454          // Compare opcodes.
455          if (LV->getOpcode() != RV->getOpcode())
456            return LV->getOpcode() < RV->getOpcode();
457
458          // Compare the number of operands.
459          if (LV->getNumOperands() != RV->getNumOperands())
460            return LV->getNumOperands() < RV->getNumOperands();
461        }
462
463        return false;
464      }
465
466      // Compare constant values.
467      if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) {
468        const SCEVConstant *RC = cast<SCEVConstant>(RHS);
469        if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth())
470          return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth();
471        return LC->getValue()->getValue().ult(RC->getValue()->getValue());
472      }
473
474      // Compare addrec loop depths.
475      if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) {
476        const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
477        if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth())
478          return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth();
479      }
480
481      // Lexicographically compare n-ary expressions.
482      if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
483        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
484        for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
485          if (i >= RC->getNumOperands())
486            return false;
487          if (operator()(LC->getOperand(i), RC->getOperand(i)))
488            return true;
489          if (operator()(RC->getOperand(i), LC->getOperand(i)))
490            return false;
491        }
492        return LC->getNumOperands() < RC->getNumOperands();
493      }
494
495      // Lexicographically compare udiv expressions.
496      if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
497        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
498        if (operator()(LC->getLHS(), RC->getLHS()))
499          return true;
500        if (operator()(RC->getLHS(), LC->getLHS()))
501          return false;
502        if (operator()(LC->getRHS(), RC->getRHS()))
503          return true;
504        if (operator()(RC->getRHS(), LC->getRHS()))
505          return false;
506        return false;
507      }
508
509      // Compare cast expressions by operand.
510      if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
511        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
512        return operator()(LC->getOperand(), RC->getOperand());
513      }
514
515      // Compare offsetof expressions.
516      if (const SCEVFieldOffsetExpr *LA = dyn_cast<SCEVFieldOffsetExpr>(LHS)) {
517        const SCEVFieldOffsetExpr *RA = cast<SCEVFieldOffsetExpr>(RHS);
518        if (CompareTypes(LA->getStructType(), RA->getStructType()) ||
519            CompareTypes(RA->getStructType(), LA->getStructType()))
520          return CompareTypes(LA->getStructType(), RA->getStructType());
521        return LA->getFieldNo() < RA->getFieldNo();
522      }
523
524      // Compare sizeof expressions by the allocation type.
525      if (const SCEVAllocSizeExpr *LA = dyn_cast<SCEVAllocSizeExpr>(LHS)) {
526        const SCEVAllocSizeExpr *RA = cast<SCEVAllocSizeExpr>(RHS);
527        return CompareTypes(LA->getAllocType(), RA->getAllocType());
528      }
529
530      llvm_unreachable("Unknown SCEV kind!");
531      return false;
532    }
533  };
534}
535
536/// GroupByComplexity - Given a list of SCEV objects, order them by their
537/// complexity, and group objects of the same complexity together by value.
538/// When this routine is finished, we know that any duplicates in the vector are
539/// consecutive and that complexity is monotonically increasing.
540///
541/// Note that we go take special precautions to ensure that we get determinstic
542/// results from this routine.  In other words, we don't want the results of
543/// this to depend on where the addresses of various SCEV objects happened to
544/// land in memory.
545///
546static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
547                              LoopInfo *LI) {
548  if (Ops.size() < 2) return;  // Noop
549  if (Ops.size() == 2) {
550    // This is the common case, which also happens to be trivially simple.
551    // Special case it.
552    if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
553      std::swap(Ops[0], Ops[1]);
554    return;
555  }
556
557  // Do the rough sort by complexity.
558  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
559
560  // Now that we are sorted by complexity, group elements of the same
561  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
562  // be extremely short in practice.  Note that we take this approach because we
563  // do not want to depend on the addresses of the objects we are grouping.
564  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
565    const SCEV *S = Ops[i];
566    unsigned Complexity = S->getSCEVType();
567
568    // If there are any objects of the same complexity and same value as this
569    // one, group them.
570    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
571      if (Ops[j] == S) { // Found a duplicate.
572        // Move it to immediately after i'th element.
573        std::swap(Ops[i+1], Ops[j]);
574        ++i;   // no need to rescan it.
575        if (i == e-2) return;  // Done!
576      }
577    }
578  }
579}
580
581
582
583//===----------------------------------------------------------------------===//
584//                      Simple SCEV method implementations
585//===----------------------------------------------------------------------===//
586
587/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
588/// Assume, K > 0.
589static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
590                                       ScalarEvolution &SE,
591                                       const Type* ResultTy) {
592  // Handle the simplest case efficiently.
593  if (K == 1)
594    return SE.getTruncateOrZeroExtend(It, ResultTy);
595
596  // We are using the following formula for BC(It, K):
597  //
598  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
599  //
600  // Suppose, W is the bitwidth of the return value.  We must be prepared for
601  // overflow.  Hence, we must assure that the result of our computation is
602  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
603  // safe in modular arithmetic.
604  //
605  // However, this code doesn't use exactly that formula; the formula it uses
606  // is something like the following, where T is the number of factors of 2 in
607  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
608  // exponentiation:
609  //
610  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
611  //
612  // This formula is trivially equivalent to the previous formula.  However,
613  // this formula can be implemented much more efficiently.  The trick is that
614  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
615  // arithmetic.  To do exact division in modular arithmetic, all we have
616  // to do is multiply by the inverse.  Therefore, this step can be done at
617  // width W.
618  //
619  // The next issue is how to safely do the division by 2^T.  The way this
620  // is done is by doing the multiplication step at a width of at least W + T
621  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
622  // when we perform the division by 2^T (which is equivalent to a right shift
623  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
624  // truncated out after the division by 2^T.
625  //
626  // In comparison to just directly using the first formula, this technique
627  // is much more efficient; using the first formula requires W * K bits,
628  // but this formula less than W + K bits. Also, the first formula requires
629  // a division step, whereas this formula only requires multiplies and shifts.
630  //
631  // It doesn't matter whether the subtraction step is done in the calculation
632  // width or the input iteration count's width; if the subtraction overflows,
633  // the result must be zero anyway.  We prefer here to do it in the width of
634  // the induction variable because it helps a lot for certain cases; CodeGen
635  // isn't smart enough to ignore the overflow, which leads to much less
636  // efficient code if the width of the subtraction is wider than the native
637  // register width.
638  //
639  // (It's possible to not widen at all by pulling out factors of 2 before
640  // the multiplication; for example, K=2 can be calculated as
641  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
642  // extra arithmetic, so it's not an obvious win, and it gets
643  // much more complicated for K > 3.)
644
645  // Protection from insane SCEVs; this bound is conservative,
646  // but it probably doesn't matter.
647  if (K > 1000)
648    return SE.getCouldNotCompute();
649
650  unsigned W = SE.getTypeSizeInBits(ResultTy);
651
652  // Calculate K! / 2^T and T; we divide out the factors of two before
653  // multiplying for calculating K! / 2^T to avoid overflow.
654  // Other overflow doesn't matter because we only care about the bottom
655  // W bits of the result.
656  APInt OddFactorial(W, 1);
657  unsigned T = 1;
658  for (unsigned i = 3; i <= K; ++i) {
659    APInt Mult(W, i);
660    unsigned TwoFactors = Mult.countTrailingZeros();
661    T += TwoFactors;
662    Mult = Mult.lshr(TwoFactors);
663    OddFactorial *= Mult;
664  }
665
666  // We need at least W + T bits for the multiplication step
667  unsigned CalculationBits = W + T;
668
669  // Calcuate 2^T, at width T+W.
670  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
671
672  // Calculate the multiplicative inverse of K! / 2^T;
673  // this multiplication factor will perform the exact division by
674  // K! / 2^T.
675  APInt Mod = APInt::getSignedMinValue(W+1);
676  APInt MultiplyFactor = OddFactorial.zext(W+1);
677  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
678  MultiplyFactor = MultiplyFactor.trunc(W);
679
680  // Calculate the product, at width T+W
681  const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
682                                                      CalculationBits);
683  const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
684  for (unsigned i = 1; i != K; ++i) {
685    const SCEV *S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
686    Dividend = SE.getMulExpr(Dividend,
687                             SE.getTruncateOrZeroExtend(S, CalculationTy));
688  }
689
690  // Divide by 2^T
691  const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
692
693  // Truncate the result, and divide by K! / 2^T.
694
695  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
696                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
697}
698
699/// evaluateAtIteration - Return the value of this chain of recurrences at
700/// the specified iteration number.  We can evaluate this recurrence by
701/// multiplying each element in the chain by the binomial coefficient
702/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
703///
704///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
705///
706/// where BC(It, k) stands for binomial coefficient.
707///
708const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
709                                                ScalarEvolution &SE) const {
710  const SCEV *Result = getStart();
711  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
712    // The computation is correct in the face of overflow provided that the
713    // multiplication is performed _after_ the evaluation of the binomial
714    // coefficient.
715    const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
716    if (isa<SCEVCouldNotCompute>(Coeff))
717      return Coeff;
718
719    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
720  }
721  return Result;
722}
723
724//===----------------------------------------------------------------------===//
725//                    SCEV Expression folder implementations
726//===----------------------------------------------------------------------===//
727
728const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
729                                             const Type *Ty) {
730  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
731         "This is not a truncating conversion!");
732  assert(isSCEVable(Ty) &&
733         "This is not a conversion to a SCEVable type!");
734  Ty = getEffectiveSCEVType(Ty);
735
736  FoldingSetNodeID ID;
737  ID.AddInteger(scTruncate);
738  ID.AddPointer(Op);
739  ID.AddPointer(Ty);
740  void *IP = 0;
741  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
742
743  // Fold if the operand is constant.
744  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
745    return getConstant(
746      cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
747
748  // trunc(trunc(x)) --> trunc(x)
749  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
750    return getTruncateExpr(ST->getOperand(), Ty);
751
752  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
753  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
754    return getTruncateOrSignExtend(SS->getOperand(), Ty);
755
756  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
757  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
758    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
759
760  // If the input value is a chrec scev, truncate the chrec's operands.
761  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
762    SmallVector<const SCEV *, 4> Operands;
763    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
764      Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
765    return getAddRecExpr(Operands, AddRec->getLoop());
766  }
767
768  // The cast wasn't folded; create an explicit cast node.
769  // Recompute the insert position, as it may have been invalidated.
770  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
771  SCEV *S = SCEVAllocator.Allocate<SCEVTruncateExpr>();
772  new (S) SCEVTruncateExpr(ID, Op, Ty);
773  UniqueSCEVs.InsertNode(S, IP);
774  return S;
775}
776
777const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
778                                               const Type *Ty) {
779  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
780         "This is not an extending conversion!");
781  assert(isSCEVable(Ty) &&
782         "This is not a conversion to a SCEVable type!");
783  Ty = getEffectiveSCEVType(Ty);
784
785  // Fold if the operand is constant.
786  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
787    const Type *IntTy = getEffectiveSCEVType(Ty);
788    Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
789    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
790    return getConstant(cast<ConstantInt>(C));
791  }
792
793  // zext(zext(x)) --> zext(x)
794  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
795    return getZeroExtendExpr(SZ->getOperand(), Ty);
796
797  // Before doing any expensive analysis, check to see if we've already
798  // computed a SCEV for this Op and Ty.
799  FoldingSetNodeID ID;
800  ID.AddInteger(scZeroExtend);
801  ID.AddPointer(Op);
802  ID.AddPointer(Ty);
803  void *IP = 0;
804  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
805
806  // If the input value is a chrec scev, and we can prove that the value
807  // did not overflow the old, smaller, value, we can zero extend all of the
808  // operands (often constants).  This allows analysis of something like
809  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
810  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
811    if (AR->isAffine()) {
812      const SCEV *Start = AR->getStart();
813      const SCEV *Step = AR->getStepRecurrence(*this);
814      unsigned BitWidth = getTypeSizeInBits(AR->getType());
815      const Loop *L = AR->getLoop();
816
817      // If we have special knowledge that this addrec won't overflow,
818      // we don't need to do any further analysis.
819      if (AR->hasNoUnsignedWrap())
820        return getAddRecExpr(getZeroExtendExpr(Start, Ty),
821                             getZeroExtendExpr(Step, Ty),
822                             L);
823
824      // Check whether the backedge-taken count is SCEVCouldNotCompute.
825      // Note that this serves two purposes: It filters out loops that are
826      // simply not analyzable, and it covers the case where this code is
827      // being called from within backedge-taken count analysis, such that
828      // attempting to ask for the backedge-taken count would likely result
829      // in infinite recursion. In the later case, the analysis code will
830      // cope with a conservative value, and it will take care to purge
831      // that value once it has finished.
832      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
833      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
834        // Manually compute the final value for AR, checking for
835        // overflow.
836
837        // Check whether the backedge-taken count can be losslessly casted to
838        // the addrec's type. The count is always unsigned.
839        const SCEV *CastedMaxBECount =
840          getTruncateOrZeroExtend(MaxBECount, Start->getType());
841        const SCEV *RecastedMaxBECount =
842          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
843        if (MaxBECount == RecastedMaxBECount) {
844          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
845          // Check whether Start+Step*MaxBECount has no unsigned overflow.
846          const SCEV *ZMul =
847            getMulExpr(CastedMaxBECount,
848                       getTruncateOrZeroExtend(Step, Start->getType()));
849          const SCEV *Add = getAddExpr(Start, ZMul);
850          const SCEV *OperandExtendedAdd =
851            getAddExpr(getZeroExtendExpr(Start, WideTy),
852                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
853                                  getZeroExtendExpr(Step, WideTy)));
854          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
855            // Return the expression with the addrec on the outside.
856            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
857                                 getZeroExtendExpr(Step, Ty),
858                                 L);
859
860          // Similar to above, only this time treat the step value as signed.
861          // This covers loops that count down.
862          const SCEV *SMul =
863            getMulExpr(CastedMaxBECount,
864                       getTruncateOrSignExtend(Step, Start->getType()));
865          Add = getAddExpr(Start, SMul);
866          OperandExtendedAdd =
867            getAddExpr(getZeroExtendExpr(Start, WideTy),
868                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
869                                  getSignExtendExpr(Step, WideTy)));
870          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
871            // Return the expression with the addrec on the outside.
872            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
873                                 getSignExtendExpr(Step, Ty),
874                                 L);
875        }
876
877        // If the backedge is guarded by a comparison with the pre-inc value
878        // the addrec is safe. Also, if the entry is guarded by a comparison
879        // with the start value and the backedge is guarded by a comparison
880        // with the post-inc value, the addrec is safe.
881        if (isKnownPositive(Step)) {
882          const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
883                                      getUnsignedRange(Step).getUnsignedMax());
884          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
885              (isLoopGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
886               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
887                                           AR->getPostIncExpr(*this), N)))
888            // Return the expression with the addrec on the outside.
889            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
890                                 getZeroExtendExpr(Step, Ty),
891                                 L);
892        } else if (isKnownNegative(Step)) {
893          const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
894                                      getSignedRange(Step).getSignedMin());
895          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) &&
896              (isLoopGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) ||
897               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
898                                           AR->getPostIncExpr(*this), N)))
899            // Return the expression with the addrec on the outside.
900            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
901                                 getSignExtendExpr(Step, Ty),
902                                 L);
903        }
904      }
905    }
906
907  // The cast wasn't folded; create an explicit cast node.
908  // Recompute the insert position, as it may have been invalidated.
909  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
910  SCEV *S = SCEVAllocator.Allocate<SCEVZeroExtendExpr>();
911  new (S) SCEVZeroExtendExpr(ID, Op, Ty);
912  UniqueSCEVs.InsertNode(S, IP);
913  return S;
914}
915
916const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
917                                               const Type *Ty) {
918  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
919         "This is not an extending conversion!");
920  assert(isSCEVable(Ty) &&
921         "This is not a conversion to a SCEVable type!");
922  Ty = getEffectiveSCEVType(Ty);
923
924  // Fold if the operand is constant.
925  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
926    const Type *IntTy = getEffectiveSCEVType(Ty);
927    Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
928    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
929    return getConstant(cast<ConstantInt>(C));
930  }
931
932  // sext(sext(x)) --> sext(x)
933  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
934    return getSignExtendExpr(SS->getOperand(), Ty);
935
936  // Before doing any expensive analysis, check to see if we've already
937  // computed a SCEV for this Op and Ty.
938  FoldingSetNodeID ID;
939  ID.AddInteger(scSignExtend);
940  ID.AddPointer(Op);
941  ID.AddPointer(Ty);
942  void *IP = 0;
943  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
944
945  // If the input value is a chrec scev, and we can prove that the value
946  // did not overflow the old, smaller, value, we can sign extend all of the
947  // operands (often constants).  This allows analysis of something like
948  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
949  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
950    if (AR->isAffine()) {
951      const SCEV *Start = AR->getStart();
952      const SCEV *Step = AR->getStepRecurrence(*this);
953      unsigned BitWidth = getTypeSizeInBits(AR->getType());
954      const Loop *L = AR->getLoop();
955
956      // If we have special knowledge that this addrec won't overflow,
957      // we don't need to do any further analysis.
958      if (AR->hasNoSignedWrap())
959        return getAddRecExpr(getSignExtendExpr(Start, Ty),
960                             getSignExtendExpr(Step, Ty),
961                             L);
962
963      // Check whether the backedge-taken count is SCEVCouldNotCompute.
964      // Note that this serves two purposes: It filters out loops that are
965      // simply not analyzable, and it covers the case where this code is
966      // being called from within backedge-taken count analysis, such that
967      // attempting to ask for the backedge-taken count would likely result
968      // in infinite recursion. In the later case, the analysis code will
969      // cope with a conservative value, and it will take care to purge
970      // that value once it has finished.
971      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
972      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
973        // Manually compute the final value for AR, checking for
974        // overflow.
975
976        // Check whether the backedge-taken count can be losslessly casted to
977        // the addrec's type. The count is always unsigned.
978        const SCEV *CastedMaxBECount =
979          getTruncateOrZeroExtend(MaxBECount, Start->getType());
980        const SCEV *RecastedMaxBECount =
981          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
982        if (MaxBECount == RecastedMaxBECount) {
983          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
984          // Check whether Start+Step*MaxBECount has no signed overflow.
985          const SCEV *SMul =
986            getMulExpr(CastedMaxBECount,
987                       getTruncateOrSignExtend(Step, Start->getType()));
988          const SCEV *Add = getAddExpr(Start, SMul);
989          const SCEV *OperandExtendedAdd =
990            getAddExpr(getSignExtendExpr(Start, WideTy),
991                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
992                                  getSignExtendExpr(Step, WideTy)));
993          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
994            // Return the expression with the addrec on the outside.
995            return getAddRecExpr(getSignExtendExpr(Start, Ty),
996                                 getSignExtendExpr(Step, Ty),
997                                 L);
998
999          // Similar to above, only this time treat the step value as unsigned.
1000          // This covers loops that count up with an unsigned step.
1001          const SCEV *UMul =
1002            getMulExpr(CastedMaxBECount,
1003                       getTruncateOrZeroExtend(Step, Start->getType()));
1004          Add = getAddExpr(Start, UMul);
1005          OperandExtendedAdd =
1006            getAddExpr(getSignExtendExpr(Start, WideTy),
1007                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1008                                  getZeroExtendExpr(Step, WideTy)));
1009          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
1010            // Return the expression with the addrec on the outside.
1011            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1012                                 getZeroExtendExpr(Step, Ty),
1013                                 L);
1014        }
1015
1016        // If the backedge is guarded by a comparison with the pre-inc value
1017        // the addrec is safe. Also, if the entry is guarded by a comparison
1018        // with the start value and the backedge is guarded by a comparison
1019        // with the post-inc value, the addrec is safe.
1020        if (isKnownPositive(Step)) {
1021          const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1022                                      getSignedRange(Step).getSignedMax());
1023          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
1024              (isLoopGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
1025               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1026                                           AR->getPostIncExpr(*this), N)))
1027            // Return the expression with the addrec on the outside.
1028            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1029                                 getSignExtendExpr(Step, Ty),
1030                                 L);
1031        } else if (isKnownNegative(Step)) {
1032          const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1033                                      getSignedRange(Step).getSignedMin());
1034          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
1035              (isLoopGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
1036               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1037                                           AR->getPostIncExpr(*this), N)))
1038            // Return the expression with the addrec on the outside.
1039            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1040                                 getSignExtendExpr(Step, Ty),
1041                                 L);
1042        }
1043      }
1044    }
1045
1046  // The cast wasn't folded; create an explicit cast node.
1047  // Recompute the insert position, as it may have been invalidated.
1048  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1049  SCEV *S = SCEVAllocator.Allocate<SCEVSignExtendExpr>();
1050  new (S) SCEVSignExtendExpr(ID, Op, Ty);
1051  UniqueSCEVs.InsertNode(S, IP);
1052  return S;
1053}
1054
1055/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1056/// unspecified bits out to the given type.
1057///
1058const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1059                                              const Type *Ty) {
1060  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1061         "This is not an extending conversion!");
1062  assert(isSCEVable(Ty) &&
1063         "This is not a conversion to a SCEVable type!");
1064  Ty = getEffectiveSCEVType(Ty);
1065
1066  // Sign-extend negative constants.
1067  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1068    if (SC->getValue()->getValue().isNegative())
1069      return getSignExtendExpr(Op, Ty);
1070
1071  // Peel off a truncate cast.
1072  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1073    const SCEV *NewOp = T->getOperand();
1074    if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1075      return getAnyExtendExpr(NewOp, Ty);
1076    return getTruncateOrNoop(NewOp, Ty);
1077  }
1078
1079  // Next try a zext cast. If the cast is folded, use it.
1080  const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1081  if (!isa<SCEVZeroExtendExpr>(ZExt))
1082    return ZExt;
1083
1084  // Next try a sext cast. If the cast is folded, use it.
1085  const SCEV *SExt = getSignExtendExpr(Op, Ty);
1086  if (!isa<SCEVSignExtendExpr>(SExt))
1087    return SExt;
1088
1089  // If the expression is obviously signed, use the sext cast value.
1090  if (isa<SCEVSMaxExpr>(Op))
1091    return SExt;
1092
1093  // Absent any other information, use the zext cast value.
1094  return ZExt;
1095}
1096
1097/// CollectAddOperandsWithScales - Process the given Ops list, which is
1098/// a list of operands to be added under the given scale, update the given
1099/// map. This is a helper function for getAddRecExpr. As an example of
1100/// what it does, given a sequence of operands that would form an add
1101/// expression like this:
1102///
1103///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1104///
1105/// where A and B are constants, update the map with these values:
1106///
1107///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1108///
1109/// and add 13 + A*B*29 to AccumulatedConstant.
1110/// This will allow getAddRecExpr to produce this:
1111///
1112///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1113///
1114/// This form often exposes folding opportunities that are hidden in
1115/// the original operand list.
1116///
1117/// Return true iff it appears that any interesting folding opportunities
1118/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1119/// the common case where no interesting opportunities are present, and
1120/// is also used as a check to avoid infinite recursion.
1121///
1122static bool
1123CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1124                             SmallVector<const SCEV *, 8> &NewOps,
1125                             APInt &AccumulatedConstant,
1126                             const SmallVectorImpl<const SCEV *> &Ops,
1127                             const APInt &Scale,
1128                             ScalarEvolution &SE) {
1129  bool Interesting = false;
1130
1131  // Iterate over the add operands.
1132  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1133    const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1134    if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1135      APInt NewScale =
1136        Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1137      if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1138        // A multiplication of a constant with another add; recurse.
1139        Interesting |=
1140          CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1141                                       cast<SCEVAddExpr>(Mul->getOperand(1))
1142                                         ->getOperands(),
1143                                       NewScale, SE);
1144      } else {
1145        // A multiplication of a constant with some other value. Update
1146        // the map.
1147        SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1148        const SCEV *Key = SE.getMulExpr(MulOps);
1149        std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1150          M.insert(std::make_pair(Key, NewScale));
1151        if (Pair.second) {
1152          NewOps.push_back(Pair.first->first);
1153        } else {
1154          Pair.first->second += NewScale;
1155          // The map already had an entry for this value, which may indicate
1156          // a folding opportunity.
1157          Interesting = true;
1158        }
1159      }
1160    } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1161      // Pull a buried constant out to the outside.
1162      if (Scale != 1 || AccumulatedConstant != 0 || C->isZero())
1163        Interesting = true;
1164      AccumulatedConstant += Scale * C->getValue()->getValue();
1165    } else {
1166      // An ordinary operand. Update the map.
1167      std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1168        M.insert(std::make_pair(Ops[i], Scale));
1169      if (Pair.second) {
1170        NewOps.push_back(Pair.first->first);
1171      } else {
1172        Pair.first->second += Scale;
1173        // The map already had an entry for this value, which may indicate
1174        // a folding opportunity.
1175        Interesting = true;
1176      }
1177    }
1178  }
1179
1180  return Interesting;
1181}
1182
1183namespace {
1184  struct APIntCompare {
1185    bool operator()(const APInt &LHS, const APInt &RHS) const {
1186      return LHS.ult(RHS);
1187    }
1188  };
1189}
1190
1191/// getAddExpr - Get a canonical add expression, or something simpler if
1192/// possible.
1193const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1194                                        bool HasNUW, bool HasNSW) {
1195  assert(!Ops.empty() && "Cannot get empty add!");
1196  if (Ops.size() == 1) return Ops[0];
1197#ifndef NDEBUG
1198  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1199    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1200           getEffectiveSCEVType(Ops[0]->getType()) &&
1201           "SCEVAddExpr operand types don't match!");
1202#endif
1203
1204  // Sort by complexity, this groups all similar expression types together.
1205  GroupByComplexity(Ops, LI);
1206
1207  // If there are any constants, fold them together.
1208  unsigned Idx = 0;
1209  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1210    ++Idx;
1211    assert(Idx < Ops.size());
1212    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1213      // We found two constants, fold them together!
1214      Ops[0] = getConstant(LHSC->getValue()->getValue() +
1215                           RHSC->getValue()->getValue());
1216      if (Ops.size() == 2) return Ops[0];
1217      Ops.erase(Ops.begin()+1);  // Erase the folded element
1218      LHSC = cast<SCEVConstant>(Ops[0]);
1219    }
1220
1221    // If we are left with a constant zero being added, strip it off.
1222    if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1223      Ops.erase(Ops.begin());
1224      --Idx;
1225    }
1226  }
1227
1228  if (Ops.size() == 1) return Ops[0];
1229
1230  // Okay, check to see if the same value occurs in the operand list twice.  If
1231  // so, merge them together into an multiply expression.  Since we sorted the
1232  // list, these values are required to be adjacent.
1233  const Type *Ty = Ops[0]->getType();
1234  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1235    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
1236      // Found a match, merge the two values into a multiply, and add any
1237      // remaining values to the result.
1238      const SCEV *Two = getIntegerSCEV(2, Ty);
1239      const SCEV *Mul = getMulExpr(Ops[i], Two);
1240      if (Ops.size() == 2)
1241        return Mul;
1242      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1243      Ops.push_back(Mul);
1244      return getAddExpr(Ops, HasNUW, HasNSW);
1245    }
1246
1247  // Check for truncates. If all the operands are truncated from the same
1248  // type, see if factoring out the truncate would permit the result to be
1249  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1250  // if the contents of the resulting outer trunc fold to something simple.
1251  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1252    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1253    const Type *DstType = Trunc->getType();
1254    const Type *SrcType = Trunc->getOperand()->getType();
1255    SmallVector<const SCEV *, 8> LargeOps;
1256    bool Ok = true;
1257    // Check all the operands to see if they can be represented in the
1258    // source type of the truncate.
1259    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1260      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1261        if (T->getOperand()->getType() != SrcType) {
1262          Ok = false;
1263          break;
1264        }
1265        LargeOps.push_back(T->getOperand());
1266      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1267        // This could be either sign or zero extension, but sign extension
1268        // is much more likely to be foldable here.
1269        LargeOps.push_back(getSignExtendExpr(C, SrcType));
1270      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1271        SmallVector<const SCEV *, 8> LargeMulOps;
1272        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1273          if (const SCEVTruncateExpr *T =
1274                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1275            if (T->getOperand()->getType() != SrcType) {
1276              Ok = false;
1277              break;
1278            }
1279            LargeMulOps.push_back(T->getOperand());
1280          } else if (const SCEVConstant *C =
1281                       dyn_cast<SCEVConstant>(M->getOperand(j))) {
1282            // This could be either sign or zero extension, but sign extension
1283            // is much more likely to be foldable here.
1284            LargeMulOps.push_back(getSignExtendExpr(C, SrcType));
1285          } else {
1286            Ok = false;
1287            break;
1288          }
1289        }
1290        if (Ok)
1291          LargeOps.push_back(getMulExpr(LargeMulOps));
1292      } else {
1293        Ok = false;
1294        break;
1295      }
1296    }
1297    if (Ok) {
1298      // Evaluate the expression in the larger type.
1299      const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
1300      // If it folds to something simple, use it. Otherwise, don't.
1301      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1302        return getTruncateExpr(Fold, DstType);
1303    }
1304  }
1305
1306  // Skip past any other cast SCEVs.
1307  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1308    ++Idx;
1309
1310  // If there are add operands they would be next.
1311  if (Idx < Ops.size()) {
1312    bool DeletedAdd = false;
1313    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1314      // If we have an add, expand the add operands onto the end of the operands
1315      // list.
1316      Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1317      Ops.erase(Ops.begin()+Idx);
1318      DeletedAdd = true;
1319    }
1320
1321    // If we deleted at least one add, we added operands to the end of the list,
1322    // and they are not necessarily sorted.  Recurse to resort and resimplify
1323    // any operands we just aquired.
1324    if (DeletedAdd)
1325      return getAddExpr(Ops);
1326  }
1327
1328  // Skip over the add expression until we get to a multiply.
1329  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1330    ++Idx;
1331
1332  // Check to see if there are any folding opportunities present with
1333  // operands multiplied by constant values.
1334  if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1335    uint64_t BitWidth = getTypeSizeInBits(Ty);
1336    DenseMap<const SCEV *, APInt> M;
1337    SmallVector<const SCEV *, 8> NewOps;
1338    APInt AccumulatedConstant(BitWidth, 0);
1339    if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1340                                     Ops, APInt(BitWidth, 1), *this)) {
1341      // Some interesting folding opportunity is present, so its worthwhile to
1342      // re-generate the operands list. Group the operands by constant scale,
1343      // to avoid multiplying by the same constant scale multiple times.
1344      std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1345      for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(),
1346           E = NewOps.end(); I != E; ++I)
1347        MulOpLists[M.find(*I)->second].push_back(*I);
1348      // Re-generate the operands list.
1349      Ops.clear();
1350      if (AccumulatedConstant != 0)
1351        Ops.push_back(getConstant(AccumulatedConstant));
1352      for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1353           I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1354        if (I->first != 0)
1355          Ops.push_back(getMulExpr(getConstant(I->first),
1356                                   getAddExpr(I->second)));
1357      if (Ops.empty())
1358        return getIntegerSCEV(0, Ty);
1359      if (Ops.size() == 1)
1360        return Ops[0];
1361      return getAddExpr(Ops);
1362    }
1363  }
1364
1365  // If we are adding something to a multiply expression, make sure the
1366  // something is not already an operand of the multiply.  If so, merge it into
1367  // the multiply.
1368  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1369    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1370    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1371      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1372      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1373        if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
1374          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1375          const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1376          if (Mul->getNumOperands() != 2) {
1377            // If the multiply has more than two operands, we must get the
1378            // Y*Z term.
1379            SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end());
1380            MulOps.erase(MulOps.begin()+MulOp);
1381            InnerMul = getMulExpr(MulOps);
1382          }
1383          const SCEV *One = getIntegerSCEV(1, Ty);
1384          const SCEV *AddOne = getAddExpr(InnerMul, One);
1385          const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]);
1386          if (Ops.size() == 2) return OuterMul;
1387          if (AddOp < Idx) {
1388            Ops.erase(Ops.begin()+AddOp);
1389            Ops.erase(Ops.begin()+Idx-1);
1390          } else {
1391            Ops.erase(Ops.begin()+Idx);
1392            Ops.erase(Ops.begin()+AddOp-1);
1393          }
1394          Ops.push_back(OuterMul);
1395          return getAddExpr(Ops);
1396        }
1397
1398      // Check this multiply against other multiplies being added together.
1399      for (unsigned OtherMulIdx = Idx+1;
1400           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1401           ++OtherMulIdx) {
1402        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1403        // If MulOp occurs in OtherMul, we can fold the two multiplies
1404        // together.
1405        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1406             OMulOp != e; ++OMulOp)
1407          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1408            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1409            const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
1410            if (Mul->getNumOperands() != 2) {
1411              SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1412                                                  Mul->op_end());
1413              MulOps.erase(MulOps.begin()+MulOp);
1414              InnerMul1 = getMulExpr(MulOps);
1415            }
1416            const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1417            if (OtherMul->getNumOperands() != 2) {
1418              SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1419                                                  OtherMul->op_end());
1420              MulOps.erase(MulOps.begin()+OMulOp);
1421              InnerMul2 = getMulExpr(MulOps);
1422            }
1423            const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1424            const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1425            if (Ops.size() == 2) return OuterMul;
1426            Ops.erase(Ops.begin()+Idx);
1427            Ops.erase(Ops.begin()+OtherMulIdx-1);
1428            Ops.push_back(OuterMul);
1429            return getAddExpr(Ops);
1430          }
1431      }
1432    }
1433  }
1434
1435  // If there are any add recurrences in the operands list, see if any other
1436  // added values are loop invariant.  If so, we can fold them into the
1437  // recurrence.
1438  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1439    ++Idx;
1440
1441  // Scan over all recurrences, trying to fold loop invariants into them.
1442  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1443    // Scan all of the other operands to this add and add them to the vector if
1444    // they are loop invariant w.r.t. the recurrence.
1445    SmallVector<const SCEV *, 8> LIOps;
1446    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1447    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1448      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1449        LIOps.push_back(Ops[i]);
1450        Ops.erase(Ops.begin()+i);
1451        --i; --e;
1452      }
1453
1454    // If we found some loop invariants, fold them into the recurrence.
1455    if (!LIOps.empty()) {
1456      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1457      LIOps.push_back(AddRec->getStart());
1458
1459      SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1460                                           AddRec->op_end());
1461      AddRecOps[0] = getAddExpr(LIOps);
1462
1463      const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
1464      // If all of the other operands were loop invariant, we are done.
1465      if (Ops.size() == 1) return NewRec;
1466
1467      // Otherwise, add the folded AddRec by the non-liv parts.
1468      for (unsigned i = 0;; ++i)
1469        if (Ops[i] == AddRec) {
1470          Ops[i] = NewRec;
1471          break;
1472        }
1473      return getAddExpr(Ops);
1474    }
1475
1476    // Okay, if there weren't any loop invariants to be folded, check to see if
1477    // there are multiple AddRec's with the same loop induction variable being
1478    // added together.  If so, we can fold them.
1479    for (unsigned OtherIdx = Idx+1;
1480         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1481      if (OtherIdx != Idx) {
1482        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1483        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1484          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
1485          SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(),
1486                                              AddRec->op_end());
1487          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1488            if (i >= NewOps.size()) {
1489              NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1490                            OtherAddRec->op_end());
1491              break;
1492            }
1493            NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
1494          }
1495          const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
1496
1497          if (Ops.size() == 2) return NewAddRec;
1498
1499          Ops.erase(Ops.begin()+Idx);
1500          Ops.erase(Ops.begin()+OtherIdx-1);
1501          Ops.push_back(NewAddRec);
1502          return getAddExpr(Ops);
1503        }
1504      }
1505
1506    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1507    // next one.
1508  }
1509
1510  // Okay, it looks like we really DO need an add expr.  Check to see if we
1511  // already have one, otherwise create a new one.
1512  FoldingSetNodeID ID;
1513  ID.AddInteger(scAddExpr);
1514  ID.AddInteger(Ops.size());
1515  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1516    ID.AddPointer(Ops[i]);
1517  void *IP = 0;
1518  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1519  SCEVAddExpr *S = SCEVAllocator.Allocate<SCEVAddExpr>();
1520  new (S) SCEVAddExpr(ID, Ops);
1521  UniqueSCEVs.InsertNode(S, IP);
1522  if (HasNUW) S->setHasNoUnsignedWrap(true);
1523  if (HasNSW) S->setHasNoSignedWrap(true);
1524  return S;
1525}
1526
1527
1528/// getMulExpr - Get a canonical multiply expression, or something simpler if
1529/// possible.
1530const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1531                                        bool HasNUW, bool HasNSW) {
1532  assert(!Ops.empty() && "Cannot get empty mul!");
1533#ifndef NDEBUG
1534  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1535    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1536           getEffectiveSCEVType(Ops[0]->getType()) &&
1537           "SCEVMulExpr operand types don't match!");
1538#endif
1539
1540  // Sort by complexity, this groups all similar expression types together.
1541  GroupByComplexity(Ops, LI);
1542
1543  // If there are any constants, fold them together.
1544  unsigned Idx = 0;
1545  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1546
1547    // C1*(C2+V) -> C1*C2 + C1*V
1548    if (Ops.size() == 2)
1549      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1550        if (Add->getNumOperands() == 2 &&
1551            isa<SCEVConstant>(Add->getOperand(0)))
1552          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1553                            getMulExpr(LHSC, Add->getOperand(1)));
1554
1555
1556    ++Idx;
1557    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1558      // We found two constants, fold them together!
1559      ConstantInt *Fold = ConstantInt::get(getContext(),
1560                                           LHSC->getValue()->getValue() *
1561                                           RHSC->getValue()->getValue());
1562      Ops[0] = getConstant(Fold);
1563      Ops.erase(Ops.begin()+1);  // Erase the folded element
1564      if (Ops.size() == 1) return Ops[0];
1565      LHSC = cast<SCEVConstant>(Ops[0]);
1566    }
1567
1568    // If we are left with a constant one being multiplied, strip it off.
1569    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1570      Ops.erase(Ops.begin());
1571      --Idx;
1572    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1573      // If we have a multiply of zero, it will always be zero.
1574      return Ops[0];
1575    }
1576  }
1577
1578  // Skip over the add expression until we get to a multiply.
1579  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1580    ++Idx;
1581
1582  if (Ops.size() == 1)
1583    return Ops[0];
1584
1585  // If there are mul operands inline them all into this expression.
1586  if (Idx < Ops.size()) {
1587    bool DeletedMul = false;
1588    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1589      // If we have an mul, expand the mul operands onto the end of the operands
1590      // list.
1591      Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1592      Ops.erase(Ops.begin()+Idx);
1593      DeletedMul = true;
1594    }
1595
1596    // If we deleted at least one mul, we added operands to the end of the list,
1597    // and they are not necessarily sorted.  Recurse to resort and resimplify
1598    // any operands we just aquired.
1599    if (DeletedMul)
1600      return getMulExpr(Ops);
1601  }
1602
1603  // If there are any add recurrences in the operands list, see if any other
1604  // added values are loop invariant.  If so, we can fold them into the
1605  // recurrence.
1606  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1607    ++Idx;
1608
1609  // Scan over all recurrences, trying to fold loop invariants into them.
1610  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1611    // Scan all of the other operands to this mul and add them to the vector if
1612    // they are loop invariant w.r.t. the recurrence.
1613    SmallVector<const SCEV *, 8> LIOps;
1614    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1615    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1616      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1617        LIOps.push_back(Ops[i]);
1618        Ops.erase(Ops.begin()+i);
1619        --i; --e;
1620      }
1621
1622    // If we found some loop invariants, fold them into the recurrence.
1623    if (!LIOps.empty()) {
1624      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1625      SmallVector<const SCEV *, 4> NewOps;
1626      NewOps.reserve(AddRec->getNumOperands());
1627      if (LIOps.size() == 1) {
1628        const SCEV *Scale = LIOps[0];
1629        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1630          NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1631      } else {
1632        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
1633          SmallVector<const SCEV *, 4> MulOps(LIOps.begin(), LIOps.end());
1634          MulOps.push_back(AddRec->getOperand(i));
1635          NewOps.push_back(getMulExpr(MulOps));
1636        }
1637      }
1638
1639      const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
1640
1641      // If all of the other operands were loop invariant, we are done.
1642      if (Ops.size() == 1) return NewRec;
1643
1644      // Otherwise, multiply the folded AddRec by the non-liv parts.
1645      for (unsigned i = 0;; ++i)
1646        if (Ops[i] == AddRec) {
1647          Ops[i] = NewRec;
1648          break;
1649        }
1650      return getMulExpr(Ops);
1651    }
1652
1653    // Okay, if there weren't any loop invariants to be folded, check to see if
1654    // there are multiple AddRec's with the same loop induction variable being
1655    // multiplied together.  If so, we can fold them.
1656    for (unsigned OtherIdx = Idx+1;
1657         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1658      if (OtherIdx != Idx) {
1659        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1660        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1661          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
1662          const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1663          const SCEV *NewStart = getMulExpr(F->getStart(),
1664                                                 G->getStart());
1665          const SCEV *B = F->getStepRecurrence(*this);
1666          const SCEV *D = G->getStepRecurrence(*this);
1667          const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1668                                          getMulExpr(G, B),
1669                                          getMulExpr(B, D));
1670          const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1671                                               F->getLoop());
1672          if (Ops.size() == 2) return NewAddRec;
1673
1674          Ops.erase(Ops.begin()+Idx);
1675          Ops.erase(Ops.begin()+OtherIdx-1);
1676          Ops.push_back(NewAddRec);
1677          return getMulExpr(Ops);
1678        }
1679      }
1680
1681    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1682    // next one.
1683  }
1684
1685  // Okay, it looks like we really DO need an mul expr.  Check to see if we
1686  // already have one, otherwise create a new one.
1687  FoldingSetNodeID ID;
1688  ID.AddInteger(scMulExpr);
1689  ID.AddInteger(Ops.size());
1690  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1691    ID.AddPointer(Ops[i]);
1692  void *IP = 0;
1693  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1694  SCEVMulExpr *S = SCEVAllocator.Allocate<SCEVMulExpr>();
1695  new (S) SCEVMulExpr(ID, Ops);
1696  UniqueSCEVs.InsertNode(S, IP);
1697  if (HasNUW) S->setHasNoUnsignedWrap(true);
1698  if (HasNSW) S->setHasNoSignedWrap(true);
1699  return S;
1700}
1701
1702/// getUDivExpr - Get a canonical unsigned division expression, or something
1703/// simpler if possible.
1704const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1705                                         const SCEV *RHS) {
1706  assert(getEffectiveSCEVType(LHS->getType()) ==
1707         getEffectiveSCEVType(RHS->getType()) &&
1708         "SCEVUDivExpr operand types don't match!");
1709
1710  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1711    if (RHSC->getValue()->equalsInt(1))
1712      return LHS;                               // X udiv 1 --> x
1713    if (RHSC->isZero())
1714      return getIntegerSCEV(0, LHS->getType()); // value is undefined
1715
1716    // Determine if the division can be folded into the operands of
1717    // its operands.
1718    // TODO: Generalize this to non-constants by using known-bits information.
1719    const Type *Ty = LHS->getType();
1720    unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1721    unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1722    // For non-power-of-two values, effectively round the value up to the
1723    // nearest power of two.
1724    if (!RHSC->getValue()->getValue().isPowerOf2())
1725      ++MaxShiftAmt;
1726    const IntegerType *ExtTy =
1727      IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1728    // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1729    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1730      if (const SCEVConstant *Step =
1731            dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1732        if (!Step->getValue()->getValue()
1733              .urem(RHSC->getValue()->getValue()) &&
1734            getZeroExtendExpr(AR, ExtTy) ==
1735            getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1736                          getZeroExtendExpr(Step, ExtTy),
1737                          AR->getLoop())) {
1738          SmallVector<const SCEV *, 4> Operands;
1739          for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1740            Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1741          return getAddRecExpr(Operands, AR->getLoop());
1742        }
1743    // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1744    if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1745      SmallVector<const SCEV *, 4> Operands;
1746      for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1747        Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1748      if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1749        // Find an operand that's safely divisible.
1750        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1751          const SCEV *Op = M->getOperand(i);
1752          const SCEV *Div = getUDivExpr(Op, RHSC);
1753          if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1754            const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
1755            Operands = SmallVector<const SCEV *, 4>(MOperands.begin(),
1756                                                  MOperands.end());
1757            Operands[i] = Div;
1758            return getMulExpr(Operands);
1759          }
1760        }
1761    }
1762    // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1763    if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1764      SmallVector<const SCEV *, 4> Operands;
1765      for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1766        Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1767      if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1768        Operands.clear();
1769        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1770          const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
1771          if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i))
1772            break;
1773          Operands.push_back(Op);
1774        }
1775        if (Operands.size() == A->getNumOperands())
1776          return getAddExpr(Operands);
1777      }
1778    }
1779
1780    // Fold if both operands are constant.
1781    if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1782      Constant *LHSCV = LHSC->getValue();
1783      Constant *RHSCV = RHSC->getValue();
1784      return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1785                                                                 RHSCV)));
1786    }
1787  }
1788
1789  FoldingSetNodeID ID;
1790  ID.AddInteger(scUDivExpr);
1791  ID.AddPointer(LHS);
1792  ID.AddPointer(RHS);
1793  void *IP = 0;
1794  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1795  SCEV *S = SCEVAllocator.Allocate<SCEVUDivExpr>();
1796  new (S) SCEVUDivExpr(ID, LHS, RHS);
1797  UniqueSCEVs.InsertNode(S, IP);
1798  return S;
1799}
1800
1801
1802/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1803/// Simplify the expression as much as possible.
1804const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
1805                                           const SCEV *Step, const Loop *L,
1806                                           bool HasNUW, bool HasNSW) {
1807  SmallVector<const SCEV *, 4> Operands;
1808  Operands.push_back(Start);
1809  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1810    if (StepChrec->getLoop() == L) {
1811      Operands.insert(Operands.end(), StepChrec->op_begin(),
1812                      StepChrec->op_end());
1813      return getAddRecExpr(Operands, L);
1814    }
1815
1816  Operands.push_back(Step);
1817  return getAddRecExpr(Operands, L, HasNUW, HasNSW);
1818}
1819
1820/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1821/// Simplify the expression as much as possible.
1822const SCEV *
1823ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
1824                               const Loop *L,
1825                               bool HasNUW, bool HasNSW) {
1826  if (Operands.size() == 1) return Operands[0];
1827#ifndef NDEBUG
1828  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1829    assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1830           getEffectiveSCEVType(Operands[0]->getType()) &&
1831           "SCEVAddRecExpr operand types don't match!");
1832#endif
1833
1834  if (Operands.back()->isZero()) {
1835    Operands.pop_back();
1836    return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0}  -->  X
1837  }
1838
1839  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
1840  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
1841    const Loop* NestedLoop = NestedAR->getLoop();
1842    if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
1843      SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
1844                                                NestedAR->op_end());
1845      Operands[0] = NestedAR->getStart();
1846      // AddRecs require their operands be loop-invariant with respect to their
1847      // loops. Don't perform this transformation if it would break this
1848      // requirement.
1849      bool AllInvariant = true;
1850      for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1851        if (!Operands[i]->isLoopInvariant(L)) {
1852          AllInvariant = false;
1853          break;
1854        }
1855      if (AllInvariant) {
1856        NestedOperands[0] = getAddRecExpr(Operands, L);
1857        AllInvariant = true;
1858        for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
1859          if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
1860            AllInvariant = false;
1861            break;
1862          }
1863        if (AllInvariant)
1864          // Ok, both add recurrences are valid after the transformation.
1865          return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
1866      }
1867      // Reset Operands to its original state.
1868      Operands[0] = NestedAR;
1869    }
1870  }
1871
1872  FoldingSetNodeID ID;
1873  ID.AddInteger(scAddRecExpr);
1874  ID.AddInteger(Operands.size());
1875  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1876    ID.AddPointer(Operands[i]);
1877  ID.AddPointer(L);
1878  void *IP = 0;
1879  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1880  SCEVAddRecExpr *S = SCEVAllocator.Allocate<SCEVAddRecExpr>();
1881  new (S) SCEVAddRecExpr(ID, Operands, L);
1882  UniqueSCEVs.InsertNode(S, IP);
1883  if (HasNUW) S->setHasNoUnsignedWrap(true);
1884  if (HasNSW) S->setHasNoSignedWrap(true);
1885  return S;
1886}
1887
1888const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
1889                                         const SCEV *RHS) {
1890  SmallVector<const SCEV *, 2> Ops;
1891  Ops.push_back(LHS);
1892  Ops.push_back(RHS);
1893  return getSMaxExpr(Ops);
1894}
1895
1896const SCEV *
1897ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
1898  assert(!Ops.empty() && "Cannot get empty smax!");
1899  if (Ops.size() == 1) return Ops[0];
1900#ifndef NDEBUG
1901  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1902    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1903           getEffectiveSCEVType(Ops[0]->getType()) &&
1904           "SCEVSMaxExpr operand types don't match!");
1905#endif
1906
1907  // Sort by complexity, this groups all similar expression types together.
1908  GroupByComplexity(Ops, LI);
1909
1910  // If there are any constants, fold them together.
1911  unsigned Idx = 0;
1912  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1913    ++Idx;
1914    assert(Idx < Ops.size());
1915    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1916      // We found two constants, fold them together!
1917      ConstantInt *Fold = ConstantInt::get(getContext(),
1918                              APIntOps::smax(LHSC->getValue()->getValue(),
1919                                             RHSC->getValue()->getValue()));
1920      Ops[0] = getConstant(Fold);
1921      Ops.erase(Ops.begin()+1);  // Erase the folded element
1922      if (Ops.size() == 1) return Ops[0];
1923      LHSC = cast<SCEVConstant>(Ops[0]);
1924    }
1925
1926    // If we are left with a constant minimum-int, strip it off.
1927    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1928      Ops.erase(Ops.begin());
1929      --Idx;
1930    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
1931      // If we have an smax with a constant maximum-int, it will always be
1932      // maximum-int.
1933      return Ops[0];
1934    }
1935  }
1936
1937  if (Ops.size() == 1) return Ops[0];
1938
1939  // Find the first SMax
1940  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1941    ++Idx;
1942
1943  // Check to see if one of the operands is an SMax. If so, expand its operands
1944  // onto our operand list, and recurse to simplify.
1945  if (Idx < Ops.size()) {
1946    bool DeletedSMax = false;
1947    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
1948      Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1949      Ops.erase(Ops.begin()+Idx);
1950      DeletedSMax = true;
1951    }
1952
1953    if (DeletedSMax)
1954      return getSMaxExpr(Ops);
1955  }
1956
1957  // Okay, check to see if the same value occurs in the operand list twice.  If
1958  // so, delete one.  Since we sorted the list, these values are required to
1959  // be adjacent.
1960  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1961    if (Ops[i] == Ops[i+1]) {      //  X smax Y smax Y  -->  X smax Y
1962      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1963      --i; --e;
1964    }
1965
1966  if (Ops.size() == 1) return Ops[0];
1967
1968  assert(!Ops.empty() && "Reduced smax down to nothing!");
1969
1970  // Okay, it looks like we really DO need an smax expr.  Check to see if we
1971  // already have one, otherwise create a new one.
1972  FoldingSetNodeID ID;
1973  ID.AddInteger(scSMaxExpr);
1974  ID.AddInteger(Ops.size());
1975  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1976    ID.AddPointer(Ops[i]);
1977  void *IP = 0;
1978  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1979  SCEV *S = SCEVAllocator.Allocate<SCEVSMaxExpr>();
1980  new (S) SCEVSMaxExpr(ID, Ops);
1981  UniqueSCEVs.InsertNode(S, IP);
1982  return S;
1983}
1984
1985const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
1986                                         const SCEV *RHS) {
1987  SmallVector<const SCEV *, 2> Ops;
1988  Ops.push_back(LHS);
1989  Ops.push_back(RHS);
1990  return getUMaxExpr(Ops);
1991}
1992
1993const SCEV *
1994ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
1995  assert(!Ops.empty() && "Cannot get empty umax!");
1996  if (Ops.size() == 1) return Ops[0];
1997#ifndef NDEBUG
1998  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1999    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2000           getEffectiveSCEVType(Ops[0]->getType()) &&
2001           "SCEVUMaxExpr operand types don't match!");
2002#endif
2003
2004  // Sort by complexity, this groups all similar expression types together.
2005  GroupByComplexity(Ops, LI);
2006
2007  // If there are any constants, fold them together.
2008  unsigned Idx = 0;
2009  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2010    ++Idx;
2011    assert(Idx < Ops.size());
2012    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2013      // We found two constants, fold them together!
2014      ConstantInt *Fold = ConstantInt::get(getContext(),
2015                              APIntOps::umax(LHSC->getValue()->getValue(),
2016                                             RHSC->getValue()->getValue()));
2017      Ops[0] = getConstant(Fold);
2018      Ops.erase(Ops.begin()+1);  // Erase the folded element
2019      if (Ops.size() == 1) return Ops[0];
2020      LHSC = cast<SCEVConstant>(Ops[0]);
2021    }
2022
2023    // If we are left with a constant minimum-int, strip it off.
2024    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2025      Ops.erase(Ops.begin());
2026      --Idx;
2027    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2028      // If we have an umax with a constant maximum-int, it will always be
2029      // maximum-int.
2030      return Ops[0];
2031    }
2032  }
2033
2034  if (Ops.size() == 1) return Ops[0];
2035
2036  // Find the first UMax
2037  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2038    ++Idx;
2039
2040  // Check to see if one of the operands is a UMax. If so, expand its operands
2041  // onto our operand list, and recurse to simplify.
2042  if (Idx < Ops.size()) {
2043    bool DeletedUMax = false;
2044    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
2045      Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
2046      Ops.erase(Ops.begin()+Idx);
2047      DeletedUMax = true;
2048    }
2049
2050    if (DeletedUMax)
2051      return getUMaxExpr(Ops);
2052  }
2053
2054  // Okay, check to see if the same value occurs in the operand list twice.  If
2055  // so, delete one.  Since we sorted the list, these values are required to
2056  // be adjacent.
2057  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2058    if (Ops[i] == Ops[i+1]) {      //  X umax Y umax Y  -->  X umax Y
2059      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2060      --i; --e;
2061    }
2062
2063  if (Ops.size() == 1) return Ops[0];
2064
2065  assert(!Ops.empty() && "Reduced umax down to nothing!");
2066
2067  // Okay, it looks like we really DO need a umax expr.  Check to see if we
2068  // already have one, otherwise create a new one.
2069  FoldingSetNodeID ID;
2070  ID.AddInteger(scUMaxExpr);
2071  ID.AddInteger(Ops.size());
2072  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2073    ID.AddPointer(Ops[i]);
2074  void *IP = 0;
2075  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2076  SCEV *S = SCEVAllocator.Allocate<SCEVUMaxExpr>();
2077  new (S) SCEVUMaxExpr(ID, Ops);
2078  UniqueSCEVs.InsertNode(S, IP);
2079  return S;
2080}
2081
2082const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2083                                         const SCEV *RHS) {
2084  // ~smax(~x, ~y) == smin(x, y).
2085  return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2086}
2087
2088const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2089                                         const SCEV *RHS) {
2090  // ~umax(~x, ~y) == umin(x, y)
2091  return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2092}
2093
2094const SCEV *ScalarEvolution::getFieldOffsetExpr(const StructType *STy,
2095                                                unsigned FieldNo) {
2096  // If we have TargetData we can determine the constant offset.
2097  if (TD) {
2098    const Type *IntPtrTy = TD->getIntPtrType(getContext());
2099    const StructLayout &SL = *TD->getStructLayout(STy);
2100    uint64_t Offset = SL.getElementOffset(FieldNo);
2101    return getIntegerSCEV(Offset, IntPtrTy);
2102  }
2103
2104  // Field 0 is always at offset 0.
2105  if (FieldNo == 0) {
2106    const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2107    return getIntegerSCEV(0, Ty);
2108  }
2109
2110  // Okay, it looks like we really DO need an offsetof expr.  Check to see if we
2111  // already have one, otherwise create a new one.
2112  FoldingSetNodeID ID;
2113  ID.AddInteger(scFieldOffset);
2114  ID.AddPointer(STy);
2115  ID.AddInteger(FieldNo);
2116  void *IP = 0;
2117  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2118  SCEV *S = SCEVAllocator.Allocate<SCEVFieldOffsetExpr>();
2119  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2120  new (S) SCEVFieldOffsetExpr(ID, Ty, STy, FieldNo);
2121  UniqueSCEVs.InsertNode(S, IP);
2122  return S;
2123}
2124
2125const SCEV *ScalarEvolution::getAllocSizeExpr(const Type *AllocTy) {
2126  // If we have TargetData we can determine the constant size.
2127  if (TD && AllocTy->isSized()) {
2128    const Type *IntPtrTy = TD->getIntPtrType(getContext());
2129    return getIntegerSCEV(TD->getTypeAllocSize(AllocTy), IntPtrTy);
2130  }
2131
2132  // Expand an array size into the element size times the number
2133  // of elements.
2134  if (const ArrayType *ATy = dyn_cast<ArrayType>(AllocTy)) {
2135    const SCEV *E = getAllocSizeExpr(ATy->getElementType());
2136    return getMulExpr(
2137      E, getConstant(ConstantInt::get(cast<IntegerType>(E->getType()),
2138                                      ATy->getNumElements())));
2139  }
2140
2141  // Expand a vector size into the element size times the number
2142  // of elements.
2143  if (const VectorType *VTy = dyn_cast<VectorType>(AllocTy)) {
2144    const SCEV *E = getAllocSizeExpr(VTy->getElementType());
2145    return getMulExpr(
2146      E, getConstant(ConstantInt::get(cast<IntegerType>(E->getType()),
2147                                      VTy->getNumElements())));
2148  }
2149
2150  // Okay, it looks like we really DO need a sizeof expr.  Check to see if we
2151  // already have one, otherwise create a new one.
2152  FoldingSetNodeID ID;
2153  ID.AddInteger(scAllocSize);
2154  ID.AddPointer(AllocTy);
2155  void *IP = 0;
2156  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2157  SCEV *S = SCEVAllocator.Allocate<SCEVAllocSizeExpr>();
2158  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2159  new (S) SCEVAllocSizeExpr(ID, Ty, AllocTy);
2160  UniqueSCEVs.InsertNode(S, IP);
2161  return S;
2162}
2163
2164const SCEV *ScalarEvolution::getUnknown(Value *V) {
2165  // Don't attempt to do anything other than create a SCEVUnknown object
2166  // here.  createSCEV only calls getUnknown after checking for all other
2167  // interesting possibilities, and any other code that calls getUnknown
2168  // is doing so in order to hide a value from SCEV canonicalization.
2169
2170  FoldingSetNodeID ID;
2171  ID.AddInteger(scUnknown);
2172  ID.AddPointer(V);
2173  void *IP = 0;
2174  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2175  SCEV *S = SCEVAllocator.Allocate<SCEVUnknown>();
2176  new (S) SCEVUnknown(ID, V);
2177  UniqueSCEVs.InsertNode(S, IP);
2178  return S;
2179}
2180
2181//===----------------------------------------------------------------------===//
2182//            Basic SCEV Analysis and PHI Idiom Recognition Code
2183//
2184
2185/// isSCEVable - Test if values of the given type are analyzable within
2186/// the SCEV framework. This primarily includes integer types, and it
2187/// can optionally include pointer types if the ScalarEvolution class
2188/// has access to target-specific information.
2189bool ScalarEvolution::isSCEVable(const Type *Ty) const {
2190  // Integers and pointers are always SCEVable.
2191  return Ty->isInteger() || isa<PointerType>(Ty);
2192}
2193
2194/// getTypeSizeInBits - Return the size in bits of the specified type,
2195/// for which isSCEVable must return true.
2196uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
2197  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2198
2199  // If we have a TargetData, use it!
2200  if (TD)
2201    return TD->getTypeSizeInBits(Ty);
2202
2203  // Integer types have fixed sizes.
2204  if (Ty->isInteger())
2205    return Ty->getPrimitiveSizeInBits();
2206
2207  // The only other support type is pointer. Without TargetData, conservatively
2208  // assume pointers are 64-bit.
2209  assert(isa<PointerType>(Ty) && "isSCEVable permitted a non-SCEVable type!");
2210  return 64;
2211}
2212
2213/// getEffectiveSCEVType - Return a type with the same bitwidth as
2214/// the given type and which represents how SCEV will treat the given
2215/// type, for which isSCEVable must return true. For pointer types,
2216/// this is the pointer-sized integer type.
2217const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
2218  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2219
2220  if (Ty->isInteger())
2221    return Ty;
2222
2223  // The only other support type is pointer.
2224  assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
2225  if (TD) return TD->getIntPtrType(getContext());
2226
2227  // Without TargetData, conservatively assume pointers are 64-bit.
2228  return Type::getInt64Ty(getContext());
2229}
2230
2231const SCEV *ScalarEvolution::getCouldNotCompute() {
2232  return &CouldNotCompute;
2233}
2234
2235/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2236/// expression and create a new one.
2237const SCEV *ScalarEvolution::getSCEV(Value *V) {
2238  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
2239
2240  std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V);
2241  if (I != Scalars.end()) return I->second;
2242  const SCEV *S = createSCEV(V);
2243  Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
2244  return S;
2245}
2246
2247/// getIntegerSCEV - Given a SCEVable type, create a constant for the
2248/// specified signed integer value and return a SCEV for the constant.
2249const SCEV *ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
2250  const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
2251  return getConstant(ConstantInt::get(ITy, Val));
2252}
2253
2254/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2255///
2256const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
2257  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2258    return getConstant(
2259               cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
2260
2261  const Type *Ty = V->getType();
2262  Ty = getEffectiveSCEVType(Ty);
2263  return getMulExpr(V,
2264                  getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
2265}
2266
2267/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2268const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
2269  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2270    return getConstant(
2271                cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
2272
2273  const Type *Ty = V->getType();
2274  Ty = getEffectiveSCEVType(Ty);
2275  const SCEV *AllOnes =
2276                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
2277  return getMinusSCEV(AllOnes, V);
2278}
2279
2280/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2281///
2282const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2283                                          const SCEV *RHS) {
2284  // X - Y --> X + -Y
2285  return getAddExpr(LHS, getNegativeSCEV(RHS));
2286}
2287
2288/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2289/// input value to the specified type.  If the type must be extended, it is zero
2290/// extended.
2291const SCEV *
2292ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
2293                                         const Type *Ty) {
2294  const Type *SrcTy = V->getType();
2295  assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2296         (Ty->isInteger() || isa<PointerType>(Ty)) &&
2297         "Cannot truncate or zero extend with non-integer arguments!");
2298  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2299    return V;  // No conversion
2300  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2301    return getTruncateExpr(V, Ty);
2302  return getZeroExtendExpr(V, Ty);
2303}
2304
2305/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2306/// input value to the specified type.  If the type must be extended, it is sign
2307/// extended.
2308const SCEV *
2309ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
2310                                         const Type *Ty) {
2311  const Type *SrcTy = V->getType();
2312  assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2313         (Ty->isInteger() || isa<PointerType>(Ty)) &&
2314         "Cannot truncate or zero extend with non-integer arguments!");
2315  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2316    return V;  // No conversion
2317  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2318    return getTruncateExpr(V, Ty);
2319  return getSignExtendExpr(V, Ty);
2320}
2321
2322/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2323/// input value to the specified type.  If the type must be extended, it is zero
2324/// extended.  The conversion must not be narrowing.
2325const SCEV *
2326ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
2327  const Type *SrcTy = V->getType();
2328  assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2329         (Ty->isInteger() || isa<PointerType>(Ty)) &&
2330         "Cannot noop or zero extend with non-integer arguments!");
2331  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2332         "getNoopOrZeroExtend cannot truncate!");
2333  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2334    return V;  // No conversion
2335  return getZeroExtendExpr(V, Ty);
2336}
2337
2338/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2339/// input value to the specified type.  If the type must be extended, it is sign
2340/// extended.  The conversion must not be narrowing.
2341const SCEV *
2342ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
2343  const Type *SrcTy = V->getType();
2344  assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2345         (Ty->isInteger() || isa<PointerType>(Ty)) &&
2346         "Cannot noop or sign extend with non-integer arguments!");
2347  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2348         "getNoopOrSignExtend cannot truncate!");
2349  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2350    return V;  // No conversion
2351  return getSignExtendExpr(V, Ty);
2352}
2353
2354/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2355/// the input value to the specified type. If the type must be extended,
2356/// it is extended with unspecified bits. The conversion must not be
2357/// narrowing.
2358const SCEV *
2359ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
2360  const Type *SrcTy = V->getType();
2361  assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2362         (Ty->isInteger() || isa<PointerType>(Ty)) &&
2363         "Cannot noop or any extend with non-integer arguments!");
2364  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2365         "getNoopOrAnyExtend cannot truncate!");
2366  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2367    return V;  // No conversion
2368  return getAnyExtendExpr(V, Ty);
2369}
2370
2371/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2372/// input value to the specified type.  The conversion must not be widening.
2373const SCEV *
2374ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
2375  const Type *SrcTy = V->getType();
2376  assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2377         (Ty->isInteger() || isa<PointerType>(Ty)) &&
2378         "Cannot truncate or noop with non-integer arguments!");
2379  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2380         "getTruncateOrNoop cannot extend!");
2381  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2382    return V;  // No conversion
2383  return getTruncateExpr(V, Ty);
2384}
2385
2386/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2387/// the types using zero-extension, and then perform a umax operation
2388/// with them.
2389const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2390                                                        const SCEV *RHS) {
2391  const SCEV *PromotedLHS = LHS;
2392  const SCEV *PromotedRHS = RHS;
2393
2394  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2395    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2396  else
2397    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2398
2399  return getUMaxExpr(PromotedLHS, PromotedRHS);
2400}
2401
2402/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2403/// the types using zero-extension, and then perform a umin operation
2404/// with them.
2405const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2406                                                        const SCEV *RHS) {
2407  const SCEV *PromotedLHS = LHS;
2408  const SCEV *PromotedRHS = RHS;
2409
2410  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2411    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2412  else
2413    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2414
2415  return getUMinExpr(PromotedLHS, PromotedRHS);
2416}
2417
2418/// PushDefUseChildren - Push users of the given Instruction
2419/// onto the given Worklist.
2420static void
2421PushDefUseChildren(Instruction *I,
2422                   SmallVectorImpl<Instruction *> &Worklist) {
2423  // Push the def-use children onto the Worklist stack.
2424  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2425       UI != UE; ++UI)
2426    Worklist.push_back(cast<Instruction>(UI));
2427}
2428
2429/// ForgetSymbolicValue - This looks up computed SCEV values for all
2430/// instructions that depend on the given instruction and removes them from
2431/// the Scalars map if they reference SymName. This is used during PHI
2432/// resolution.
2433void
2434ScalarEvolution::ForgetSymbolicName(Instruction *I, const SCEV *SymName) {
2435  SmallVector<Instruction *, 16> Worklist;
2436  PushDefUseChildren(I, Worklist);
2437
2438  SmallPtrSet<Instruction *, 8> Visited;
2439  Visited.insert(I);
2440  while (!Worklist.empty()) {
2441    Instruction *I = Worklist.pop_back_val();
2442    if (!Visited.insert(I)) continue;
2443
2444    std::map<SCEVCallbackVH, const SCEV*>::iterator It =
2445      Scalars.find(static_cast<Value *>(I));
2446    if (It != Scalars.end()) {
2447      // Short-circuit the def-use traversal if the symbolic name
2448      // ceases to appear in expressions.
2449      if (!It->second->hasOperand(SymName))
2450        continue;
2451
2452      // SCEVUnknown for a PHI either means that it has an unrecognized
2453      // structure, or it's a PHI that's in the progress of being computed
2454      // by createNodeForPHI.  In the former case, additional loop trip
2455      // count information isn't going to change anything. In the later
2456      // case, createNodeForPHI will perform the necessary updates on its
2457      // own when it gets to that point.
2458      if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
2459        ValuesAtScopes.erase(It->second);
2460        Scalars.erase(It);
2461      }
2462    }
2463
2464    PushDefUseChildren(I, Worklist);
2465  }
2466}
2467
2468/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
2469/// a loop header, making it a potential recurrence, or it doesn't.
2470///
2471const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
2472  if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
2473    if (const Loop *L = LI->getLoopFor(PN->getParent()))
2474      if (L->getHeader() == PN->getParent()) {
2475        // If it lives in the loop header, it has two incoming values, one
2476        // from outside the loop, and one from inside.
2477        unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
2478        unsigned BackEdge     = IncomingEdge^1;
2479
2480        // While we are analyzing this PHI node, handle its value symbolically.
2481        const SCEV *SymbolicName = getUnknown(PN);
2482        assert(Scalars.find(PN) == Scalars.end() &&
2483               "PHI node already processed?");
2484        Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
2485
2486        // Using this symbolic name for the PHI, analyze the value coming around
2487        // the back-edge.
2488        Value *BEValueV = PN->getIncomingValue(BackEdge);
2489        const SCEV *BEValue = getSCEV(BEValueV);
2490
2491        // NOTE: If BEValue is loop invariant, we know that the PHI node just
2492        // has a special value for the first iteration of the loop.
2493
2494        // If the value coming around the backedge is an add with the symbolic
2495        // value we just inserted, then we found a simple induction variable!
2496        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
2497          // If there is a single occurrence of the symbolic value, replace it
2498          // with a recurrence.
2499          unsigned FoundIndex = Add->getNumOperands();
2500          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2501            if (Add->getOperand(i) == SymbolicName)
2502              if (FoundIndex == e) {
2503                FoundIndex = i;
2504                break;
2505              }
2506
2507          if (FoundIndex != Add->getNumOperands()) {
2508            // Create an add with everything but the specified operand.
2509            SmallVector<const SCEV *, 8> Ops;
2510            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2511              if (i != FoundIndex)
2512                Ops.push_back(Add->getOperand(i));
2513            const SCEV *Accum = getAddExpr(Ops);
2514
2515            // This is not a valid addrec if the step amount is varying each
2516            // loop iteration, but is not itself an addrec in this loop.
2517            if (Accum->isLoopInvariant(L) ||
2518                (isa<SCEVAddRecExpr>(Accum) &&
2519                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
2520              const SCEV *StartVal =
2521                getSCEV(PN->getIncomingValue(IncomingEdge));
2522              const SCEVAddRecExpr *PHISCEV =
2523                cast<SCEVAddRecExpr>(getAddRecExpr(StartVal, Accum, L));
2524
2525              // If the increment doesn't overflow, then neither the addrec nor the
2526              // post-increment will overflow.
2527              if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV))
2528                if (OBO->getOperand(0) == PN &&
2529                    getSCEV(OBO->getOperand(1)) ==
2530                      PHISCEV->getStepRecurrence(*this)) {
2531                  const SCEVAddRecExpr *PostInc = PHISCEV->getPostIncExpr(*this);
2532                  if (OBO->hasNoUnsignedWrap()) {
2533                    const_cast<SCEVAddRecExpr *>(PHISCEV)
2534                      ->setHasNoUnsignedWrap(true);
2535                    const_cast<SCEVAddRecExpr *>(PostInc)
2536                      ->setHasNoUnsignedWrap(true);
2537                  }
2538                  if (OBO->hasNoSignedWrap()) {
2539                    const_cast<SCEVAddRecExpr *>(PHISCEV)
2540                      ->setHasNoSignedWrap(true);
2541                    const_cast<SCEVAddRecExpr *>(PostInc)
2542                      ->setHasNoSignedWrap(true);
2543                  }
2544                }
2545
2546              // Okay, for the entire analysis of this edge we assumed the PHI
2547              // to be symbolic.  We now need to go back and purge all of the
2548              // entries for the scalars that use the symbolic expression.
2549              ForgetSymbolicName(PN, SymbolicName);
2550              Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
2551              return PHISCEV;
2552            }
2553          }
2554        } else if (const SCEVAddRecExpr *AddRec =
2555                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
2556          // Otherwise, this could be a loop like this:
2557          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
2558          // In this case, j = {1,+,1}  and BEValue is j.
2559          // Because the other in-value of i (0) fits the evolution of BEValue
2560          // i really is an addrec evolution.
2561          if (AddRec->getLoop() == L && AddRec->isAffine()) {
2562            const SCEV *StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
2563
2564            // If StartVal = j.start - j.stride, we can use StartVal as the
2565            // initial step of the addrec evolution.
2566            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
2567                                            AddRec->getOperand(1))) {
2568              const SCEV *PHISCEV =
2569                 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
2570
2571              // Okay, for the entire analysis of this edge we assumed the PHI
2572              // to be symbolic.  We now need to go back and purge all of the
2573              // entries for the scalars that use the symbolic expression.
2574              ForgetSymbolicName(PN, SymbolicName);
2575              Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
2576              return PHISCEV;
2577            }
2578          }
2579        }
2580
2581        return SymbolicName;
2582      }
2583
2584  // It's tempting to recognize PHIs with a unique incoming value, however
2585  // this leads passes like indvars to break LCSSA form. Fortunately, such
2586  // PHIs are rare, as instcombine zaps them.
2587
2588  // If it's not a loop phi, we can't handle it yet.
2589  return getUnknown(PN);
2590}
2591
2592/// createNodeForGEP - Expand GEP instructions into add and multiply
2593/// operations. This allows them to be analyzed by regular SCEV code.
2594///
2595const SCEV *ScalarEvolution::createNodeForGEP(Operator *GEP) {
2596
2597  const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
2598  Value *Base = GEP->getOperand(0);
2599  // Don't attempt to analyze GEPs over unsized objects.
2600  if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2601    return getUnknown(GEP);
2602  const SCEV *TotalOffset = getIntegerSCEV(0, IntPtrTy);
2603  gep_type_iterator GTI = gep_type_begin(GEP);
2604  for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2605                                      E = GEP->op_end();
2606       I != E; ++I) {
2607    Value *Index = *I;
2608    // Compute the (potentially symbolic) offset in bytes for this index.
2609    if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2610      // For a struct, add the member offset.
2611      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2612      TotalOffset = getAddExpr(TotalOffset,
2613                               getFieldOffsetExpr(STy, FieldNo));
2614    } else {
2615      // For an array, add the element offset, explicitly scaled.
2616      const SCEV *LocalOffset = getSCEV(Index);
2617      if (!isa<PointerType>(LocalOffset->getType()))
2618        // Getelementptr indicies are signed.
2619        LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy);
2620      LocalOffset = getMulExpr(LocalOffset, getAllocSizeExpr(*GTI));
2621      TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2622    }
2623  }
2624  return getAddExpr(getSCEV(Base), TotalOffset);
2625}
2626
2627/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2628/// guaranteed to end in (at every loop iteration).  It is, at the same time,
2629/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
2630/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
2631uint32_t
2632ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
2633  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2634    return C->getValue()->getValue().countTrailingZeros();
2635
2636  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
2637    return std::min(GetMinTrailingZeros(T->getOperand()),
2638                    (uint32_t)getTypeSizeInBits(T->getType()));
2639
2640  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
2641    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2642    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2643             getTypeSizeInBits(E->getType()) : OpRes;
2644  }
2645
2646  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
2647    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2648    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2649             getTypeSizeInBits(E->getType()) : OpRes;
2650  }
2651
2652  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
2653    // The result is the min of all operands results.
2654    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2655    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2656      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2657    return MinOpRes;
2658  }
2659
2660  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
2661    // The result is the sum of all operands results.
2662    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2663    uint32_t BitWidth = getTypeSizeInBits(M->getType());
2664    for (unsigned i = 1, e = M->getNumOperands();
2665         SumOpRes != BitWidth && i != e; ++i)
2666      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
2667                          BitWidth);
2668    return SumOpRes;
2669  }
2670
2671  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
2672    // The result is the min of all operands results.
2673    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2674    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2675      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2676    return MinOpRes;
2677  }
2678
2679  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
2680    // The result is the min of all operands results.
2681    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2682    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2683      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2684    return MinOpRes;
2685  }
2686
2687  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
2688    // The result is the min of all operands results.
2689    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2690    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2691      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2692    return MinOpRes;
2693  }
2694
2695  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2696    // For a SCEVUnknown, ask ValueTracking.
2697    unsigned BitWidth = getTypeSizeInBits(U->getType());
2698    APInt Mask = APInt::getAllOnesValue(BitWidth);
2699    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2700    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2701    return Zeros.countTrailingOnes();
2702  }
2703
2704  // SCEVUDivExpr
2705  return 0;
2706}
2707
2708/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2709///
2710ConstantRange
2711ScalarEvolution::getUnsignedRange(const SCEV *S) {
2712
2713  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2714    return ConstantRange(C->getValue()->getValue());
2715
2716  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2717    ConstantRange X = getUnsignedRange(Add->getOperand(0));
2718    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2719      X = X.add(getUnsignedRange(Add->getOperand(i)));
2720    return X;
2721  }
2722
2723  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2724    ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2725    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2726      X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
2727    return X;
2728  }
2729
2730  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2731    ConstantRange X = getUnsignedRange(SMax->getOperand(0));
2732    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2733      X = X.smax(getUnsignedRange(SMax->getOperand(i)));
2734    return X;
2735  }
2736
2737  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2738    ConstantRange X = getUnsignedRange(UMax->getOperand(0));
2739    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2740      X = X.umax(getUnsignedRange(UMax->getOperand(i)));
2741    return X;
2742  }
2743
2744  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2745    ConstantRange X = getUnsignedRange(UDiv->getLHS());
2746    ConstantRange Y = getUnsignedRange(UDiv->getRHS());
2747    return X.udiv(Y);
2748  }
2749
2750  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2751    ConstantRange X = getUnsignedRange(ZExt->getOperand());
2752    return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
2753  }
2754
2755  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2756    ConstantRange X = getUnsignedRange(SExt->getOperand());
2757    return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
2758  }
2759
2760  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2761    ConstantRange X = getUnsignedRange(Trunc->getOperand());
2762    return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
2763  }
2764
2765  ConstantRange FullSet(getTypeSizeInBits(S->getType()), true);
2766
2767  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
2768    const SCEV *T = getBackedgeTakenCount(AddRec->getLoop());
2769    const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
2770    if (!Trip) return FullSet;
2771
2772    // TODO: non-affine addrec
2773    if (AddRec->isAffine()) {
2774      const Type *Ty = AddRec->getType();
2775      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
2776      if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) {
2777        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
2778
2779        const SCEV *Start = AddRec->getStart();
2780        const SCEV *Step = AddRec->getStepRecurrence(*this);
2781        const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
2782
2783        // Check for overflow.
2784        // TODO: This is very conservative.
2785        if (!(Step->isOne() &&
2786              isKnownPredicate(ICmpInst::ICMP_ULT, Start, End)) &&
2787            !(Step->isAllOnesValue() &&
2788              isKnownPredicate(ICmpInst::ICMP_UGT, Start, End)))
2789          return FullSet;
2790
2791        ConstantRange StartRange = getUnsignedRange(Start);
2792        ConstantRange EndRange = getUnsignedRange(End);
2793        APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
2794                                   EndRange.getUnsignedMin());
2795        APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
2796                                   EndRange.getUnsignedMax());
2797        if (Min.isMinValue() && Max.isMaxValue())
2798          return FullSet;
2799        return ConstantRange(Min, Max+1);
2800      }
2801    }
2802  }
2803
2804  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2805    // For a SCEVUnknown, ask ValueTracking.
2806    unsigned BitWidth = getTypeSizeInBits(U->getType());
2807    APInt Mask = APInt::getAllOnesValue(BitWidth);
2808    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2809    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
2810    if (Ones == ~Zeros + 1)
2811      return FullSet;
2812    return ConstantRange(Ones, ~Zeros + 1);
2813  }
2814
2815  return FullSet;
2816}
2817
2818/// getSignedRange - Determine the signed range for a particular SCEV.
2819///
2820ConstantRange
2821ScalarEvolution::getSignedRange(const SCEV *S) {
2822
2823  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2824    return ConstantRange(C->getValue()->getValue());
2825
2826  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2827    ConstantRange X = getSignedRange(Add->getOperand(0));
2828    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2829      X = X.add(getSignedRange(Add->getOperand(i)));
2830    return X;
2831  }
2832
2833  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2834    ConstantRange X = getSignedRange(Mul->getOperand(0));
2835    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2836      X = X.multiply(getSignedRange(Mul->getOperand(i)));
2837    return X;
2838  }
2839
2840  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2841    ConstantRange X = getSignedRange(SMax->getOperand(0));
2842    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2843      X = X.smax(getSignedRange(SMax->getOperand(i)));
2844    return X;
2845  }
2846
2847  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2848    ConstantRange X = getSignedRange(UMax->getOperand(0));
2849    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2850      X = X.umax(getSignedRange(UMax->getOperand(i)));
2851    return X;
2852  }
2853
2854  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2855    ConstantRange X = getSignedRange(UDiv->getLHS());
2856    ConstantRange Y = getSignedRange(UDiv->getRHS());
2857    return X.udiv(Y);
2858  }
2859
2860  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2861    ConstantRange X = getSignedRange(ZExt->getOperand());
2862    return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
2863  }
2864
2865  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2866    ConstantRange X = getSignedRange(SExt->getOperand());
2867    return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
2868  }
2869
2870  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2871    ConstantRange X = getSignedRange(Trunc->getOperand());
2872    return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
2873  }
2874
2875  ConstantRange FullSet(getTypeSizeInBits(S->getType()), true);
2876
2877  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
2878    const SCEV *T = getBackedgeTakenCount(AddRec->getLoop());
2879    const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
2880    if (!Trip) return FullSet;
2881
2882    // TODO: non-affine addrec
2883    if (AddRec->isAffine()) {
2884      const Type *Ty = AddRec->getType();
2885      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
2886      if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) {
2887        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
2888
2889        const SCEV *Start = AddRec->getStart();
2890        const SCEV *Step = AddRec->getStepRecurrence(*this);
2891        const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
2892
2893        // Check for overflow.
2894        // TODO: This is very conservative.
2895        if (!(Step->isOne() &&
2896              isKnownPredicate(ICmpInst::ICMP_SLT, Start, End)) &&
2897            !(Step->isAllOnesValue() &&
2898              isKnownPredicate(ICmpInst::ICMP_SGT, Start, End)))
2899          return FullSet;
2900
2901        ConstantRange StartRange = getSignedRange(Start);
2902        ConstantRange EndRange = getSignedRange(End);
2903        APInt Min = APIntOps::smin(StartRange.getSignedMin(),
2904                                   EndRange.getSignedMin());
2905        APInt Max = APIntOps::smax(StartRange.getSignedMax(),
2906                                   EndRange.getSignedMax());
2907        if (Min.isMinSignedValue() && Max.isMaxSignedValue())
2908          return FullSet;
2909        return ConstantRange(Min, Max+1);
2910      }
2911    }
2912  }
2913
2914  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2915    // For a SCEVUnknown, ask ValueTracking.
2916    unsigned BitWidth = getTypeSizeInBits(U->getType());
2917    unsigned NS = ComputeNumSignBits(U->getValue(), TD);
2918    if (NS == 1)
2919      return FullSet;
2920    return
2921      ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
2922                    APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1);
2923  }
2924
2925  return FullSet;
2926}
2927
2928/// createSCEV - We know that there is no SCEV for the specified value.
2929/// Analyze the expression.
2930///
2931const SCEV *ScalarEvolution::createSCEV(Value *V) {
2932  if (!isSCEVable(V->getType()))
2933    return getUnknown(V);
2934
2935  unsigned Opcode = Instruction::UserOp1;
2936  if (Instruction *I = dyn_cast<Instruction>(V))
2937    Opcode = I->getOpcode();
2938  else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2939    Opcode = CE->getOpcode();
2940  else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
2941    return getConstant(CI);
2942  else if (isa<ConstantPointerNull>(V))
2943    return getIntegerSCEV(0, V->getType());
2944  else if (isa<UndefValue>(V))
2945    return getIntegerSCEV(0, V->getType());
2946  else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
2947    return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
2948  else
2949    return getUnknown(V);
2950
2951  Operator *U = cast<Operator>(V);
2952  switch (Opcode) {
2953  case Instruction::Add:
2954    // Don't transfer the NSW and NUW bits from the Add instruction to the
2955    // Add expression, because the Instruction may be guarded by control
2956    // flow and the no-overflow bits may not be valid for the expression in
2957    // any context.
2958    return getAddExpr(getSCEV(U->getOperand(0)),
2959                      getSCEV(U->getOperand(1)));
2960  case Instruction::Mul:
2961    // Don't transfer the NSW and NUW bits from the Mul instruction to the
2962    // Mul expression, as with Add.
2963    return getMulExpr(getSCEV(U->getOperand(0)),
2964                      getSCEV(U->getOperand(1)));
2965  case Instruction::UDiv:
2966    return getUDivExpr(getSCEV(U->getOperand(0)),
2967                       getSCEV(U->getOperand(1)));
2968  case Instruction::Sub:
2969    return getMinusSCEV(getSCEV(U->getOperand(0)),
2970                        getSCEV(U->getOperand(1)));
2971  case Instruction::And:
2972    // For an expression like x&255 that merely masks off the high bits,
2973    // use zext(trunc(x)) as the SCEV expression.
2974    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2975      if (CI->isNullValue())
2976        return getSCEV(U->getOperand(1));
2977      if (CI->isAllOnesValue())
2978        return getSCEV(U->getOperand(0));
2979      const APInt &A = CI->getValue();
2980
2981      // Instcombine's ShrinkDemandedConstant may strip bits out of
2982      // constants, obscuring what would otherwise be a low-bits mask.
2983      // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
2984      // knew about to reconstruct a low-bits mask value.
2985      unsigned LZ = A.countLeadingZeros();
2986      unsigned BitWidth = A.getBitWidth();
2987      APInt AllOnes = APInt::getAllOnesValue(BitWidth);
2988      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2989      ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
2990
2991      APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
2992
2993      if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
2994        return
2995          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
2996                                IntegerType::get(getContext(), BitWidth - LZ)),
2997                            U->getType());
2998    }
2999    break;
3000
3001  case Instruction::Or:
3002    // If the RHS of the Or is a constant, we may have something like:
3003    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
3004    // optimizations will transparently handle this case.
3005    //
3006    // In order for this transformation to be safe, the LHS must be of the
3007    // form X*(2^n) and the Or constant must be less than 2^n.
3008    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3009      const SCEV *LHS = getSCEV(U->getOperand(0));
3010      const APInt &CIVal = CI->getValue();
3011      if (GetMinTrailingZeros(LHS) >=
3012          (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3013        // Build a plain add SCEV.
3014        const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3015        // If the LHS of the add was an addrec and it has no-wrap flags,
3016        // transfer the no-wrap flags, since an or won't introduce a wrap.
3017        if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3018          const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3019          if (OldAR->hasNoUnsignedWrap())
3020            const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3021          if (OldAR->hasNoSignedWrap())
3022            const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3023        }
3024        return S;
3025      }
3026    }
3027    break;
3028  case Instruction::Xor:
3029    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3030      // If the RHS of the xor is a signbit, then this is just an add.
3031      // Instcombine turns add of signbit into xor as a strength reduction step.
3032      if (CI->getValue().isSignBit())
3033        return getAddExpr(getSCEV(U->getOperand(0)),
3034                          getSCEV(U->getOperand(1)));
3035
3036      // If the RHS of xor is -1, then this is a not operation.
3037      if (CI->isAllOnesValue())
3038        return getNotSCEV(getSCEV(U->getOperand(0)));
3039
3040      // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3041      // This is a variant of the check for xor with -1, and it handles
3042      // the case where instcombine has trimmed non-demanded bits out
3043      // of an xor with -1.
3044      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3045        if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3046          if (BO->getOpcode() == Instruction::And &&
3047              LCI->getValue() == CI->getValue())
3048            if (const SCEVZeroExtendExpr *Z =
3049                  dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
3050              const Type *UTy = U->getType();
3051              const SCEV *Z0 = Z->getOperand();
3052              const Type *Z0Ty = Z0->getType();
3053              unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3054
3055              // If C is a low-bits mask, the zero extend is zerving to
3056              // mask off the high bits. Complement the operand and
3057              // re-apply the zext.
3058              if (APIntOps::isMask(Z0TySize, CI->getValue()))
3059                return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3060
3061              // If C is a single bit, it may be in the sign-bit position
3062              // before the zero-extend. In this case, represent the xor
3063              // using an add, which is equivalent, and re-apply the zext.
3064              APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3065              if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3066                  Trunc.isSignBit())
3067                return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3068                                         UTy);
3069            }
3070    }
3071    break;
3072
3073  case Instruction::Shl:
3074    // Turn shift left of a constant amount into a multiply.
3075    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3076      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
3077      Constant *X = ConstantInt::get(getContext(),
3078        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
3079      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3080    }
3081    break;
3082
3083  case Instruction::LShr:
3084    // Turn logical shift right of a constant into a unsigned divide.
3085    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3086      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
3087      Constant *X = ConstantInt::get(getContext(),
3088        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
3089      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3090    }
3091    break;
3092
3093  case Instruction::AShr:
3094    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3095    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
3096      if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
3097        if (L->getOpcode() == Instruction::Shl &&
3098            L->getOperand(1) == U->getOperand(1)) {
3099          unsigned BitWidth = getTypeSizeInBits(U->getType());
3100          uint64_t Amt = BitWidth - CI->getZExtValue();
3101          if (Amt == BitWidth)
3102            return getSCEV(L->getOperand(0));       // shift by zero --> noop
3103          if (Amt > BitWidth)
3104            return getIntegerSCEV(0, U->getType()); // value is undefined
3105          return
3106            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
3107                                           IntegerType::get(getContext(), Amt)),
3108                                 U->getType());
3109        }
3110    break;
3111
3112  case Instruction::Trunc:
3113    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
3114
3115  case Instruction::ZExt:
3116    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3117
3118  case Instruction::SExt:
3119    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3120
3121  case Instruction::BitCast:
3122    // BitCasts are no-op casts so we just eliminate the cast.
3123    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
3124      return getSCEV(U->getOperand(0));
3125    break;
3126
3127    // It's tempting to handle inttoptr and ptrtoint, however this can
3128    // lead to pointer expressions which cannot be expanded to GEPs
3129    // (because they may overflow). For now, the only pointer-typed
3130    // expressions we handle are GEPs and address literals.
3131
3132  case Instruction::GetElementPtr:
3133    return createNodeForGEP(U);
3134
3135  case Instruction::PHI:
3136    return createNodeForPHI(cast<PHINode>(U));
3137
3138  case Instruction::Select:
3139    // This could be a smax or umax that was lowered earlier.
3140    // Try to recover it.
3141    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3142      Value *LHS = ICI->getOperand(0);
3143      Value *RHS = ICI->getOperand(1);
3144      switch (ICI->getPredicate()) {
3145      case ICmpInst::ICMP_SLT:
3146      case ICmpInst::ICMP_SLE:
3147        std::swap(LHS, RHS);
3148        // fall through
3149      case ICmpInst::ICMP_SGT:
3150      case ICmpInst::ICMP_SGE:
3151        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
3152          return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
3153        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
3154          return getSMinExpr(getSCEV(LHS), getSCEV(RHS));
3155        break;
3156      case ICmpInst::ICMP_ULT:
3157      case ICmpInst::ICMP_ULE:
3158        std::swap(LHS, RHS);
3159        // fall through
3160      case ICmpInst::ICMP_UGT:
3161      case ICmpInst::ICMP_UGE:
3162        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
3163          return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
3164        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
3165          return getUMinExpr(getSCEV(LHS), getSCEV(RHS));
3166        break;
3167      case ICmpInst::ICMP_NE:
3168        // n != 0 ? n : 1  ->  umax(n, 1)
3169        if (LHS == U->getOperand(1) &&
3170            isa<ConstantInt>(U->getOperand(2)) &&
3171            cast<ConstantInt>(U->getOperand(2))->isOne() &&
3172            isa<ConstantInt>(RHS) &&
3173            cast<ConstantInt>(RHS)->isZero())
3174          return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(2)));
3175        break;
3176      case ICmpInst::ICMP_EQ:
3177        // n == 0 ? 1 : n  ->  umax(n, 1)
3178        if (LHS == U->getOperand(2) &&
3179            isa<ConstantInt>(U->getOperand(1)) &&
3180            cast<ConstantInt>(U->getOperand(1))->isOne() &&
3181            isa<ConstantInt>(RHS) &&
3182            cast<ConstantInt>(RHS)->isZero())
3183          return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(1)));
3184        break;
3185      default:
3186        break;
3187      }
3188    }
3189
3190  default: // We cannot analyze this expression.
3191    break;
3192  }
3193
3194  return getUnknown(V);
3195}
3196
3197
3198
3199//===----------------------------------------------------------------------===//
3200//                   Iteration Count Computation Code
3201//
3202
3203/// getBackedgeTakenCount - If the specified loop has a predictable
3204/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3205/// object. The backedge-taken count is the number of times the loop header
3206/// will be branched to from within the loop. This is one less than the
3207/// trip count of the loop, since it doesn't count the first iteration,
3208/// when the header is branched to from outside the loop.
3209///
3210/// Note that it is not valid to call this method on a loop without a
3211/// loop-invariant backedge-taken count (see
3212/// hasLoopInvariantBackedgeTakenCount).
3213///
3214const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
3215  return getBackedgeTakenInfo(L).Exact;
3216}
3217
3218/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3219/// return the least SCEV value that is known never to be less than the
3220/// actual backedge taken count.
3221const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
3222  return getBackedgeTakenInfo(L).Max;
3223}
3224
3225/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3226/// onto the given Worklist.
3227static void
3228PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3229  BasicBlock *Header = L->getHeader();
3230
3231  // Push all Loop-header PHIs onto the Worklist stack.
3232  for (BasicBlock::iterator I = Header->begin();
3233       PHINode *PN = dyn_cast<PHINode>(I); ++I)
3234    Worklist.push_back(PN);
3235}
3236
3237const ScalarEvolution::BackedgeTakenInfo &
3238ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
3239  // Initially insert a CouldNotCompute for this loop. If the insertion
3240  // succeeds, procede to actually compute a backedge-taken count and
3241  // update the value. The temporary CouldNotCompute value tells SCEV
3242  // code elsewhere that it shouldn't attempt to request a new
3243  // backedge-taken count, which could result in infinite recursion.
3244  std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair =
3245    BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3246  if (Pair.second) {
3247    BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
3248    if (ItCount.Exact != getCouldNotCompute()) {
3249      assert(ItCount.Exact->isLoopInvariant(L) &&
3250             ItCount.Max->isLoopInvariant(L) &&
3251             "Computed trip count isn't loop invariant for loop!");
3252      ++NumTripCountsComputed;
3253
3254      // Update the value in the map.
3255      Pair.first->second = ItCount;
3256    } else {
3257      if (ItCount.Max != getCouldNotCompute())
3258        // Update the value in the map.
3259        Pair.first->second = ItCount;
3260      if (isa<PHINode>(L->getHeader()->begin()))
3261        // Only count loops that have phi nodes as not being computable.
3262        ++NumTripCountsNotComputed;
3263    }
3264
3265    // Now that we know more about the trip count for this loop, forget any
3266    // existing SCEV values for PHI nodes in this loop since they are only
3267    // conservative estimates made without the benefit of trip count
3268    // information. This is similar to the code in forgetLoop, except that
3269    // it handles SCEVUnknown PHI nodes specially.
3270    if (ItCount.hasAnyInfo()) {
3271      SmallVector<Instruction *, 16> Worklist;
3272      PushLoopPHIs(L, Worklist);
3273
3274      SmallPtrSet<Instruction *, 8> Visited;
3275      while (!Worklist.empty()) {
3276        Instruction *I = Worklist.pop_back_val();
3277        if (!Visited.insert(I)) continue;
3278
3279        std::map<SCEVCallbackVH, const SCEV*>::iterator It =
3280          Scalars.find(static_cast<Value *>(I));
3281        if (It != Scalars.end()) {
3282          // SCEVUnknown for a PHI either means that it has an unrecognized
3283          // structure, or it's a PHI that's in the progress of being computed
3284          // by createNodeForPHI.  In the former case, additional loop trip
3285          // count information isn't going to change anything. In the later
3286          // case, createNodeForPHI will perform the necessary updates on its
3287          // own when it gets to that point.
3288          if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
3289            ValuesAtScopes.erase(It->second);
3290            Scalars.erase(It);
3291          }
3292          if (PHINode *PN = dyn_cast<PHINode>(I))
3293            ConstantEvolutionLoopExitValue.erase(PN);
3294        }
3295
3296        PushDefUseChildren(I, Worklist);
3297      }
3298    }
3299  }
3300  return Pair.first->second;
3301}
3302
3303/// forgetLoop - This method should be called by the client when it has
3304/// changed a loop in a way that may effect ScalarEvolution's ability to
3305/// compute a trip count, or if the loop is deleted.
3306void ScalarEvolution::forgetLoop(const Loop *L) {
3307  // Drop any stored trip count value.
3308  BackedgeTakenCounts.erase(L);
3309
3310  // Drop information about expressions based on loop-header PHIs.
3311  SmallVector<Instruction *, 16> Worklist;
3312  PushLoopPHIs(L, Worklist);
3313
3314  SmallPtrSet<Instruction *, 8> Visited;
3315  while (!Worklist.empty()) {
3316    Instruction *I = Worklist.pop_back_val();
3317    if (!Visited.insert(I)) continue;
3318
3319    std::map<SCEVCallbackVH, const SCEV*>::iterator It =
3320      Scalars.find(static_cast<Value *>(I));
3321    if (It != Scalars.end()) {
3322      ValuesAtScopes.erase(It->second);
3323      Scalars.erase(It);
3324      if (PHINode *PN = dyn_cast<PHINode>(I))
3325        ConstantEvolutionLoopExitValue.erase(PN);
3326    }
3327
3328    PushDefUseChildren(I, Worklist);
3329  }
3330}
3331
3332/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3333/// of the specified loop will execute.
3334ScalarEvolution::BackedgeTakenInfo
3335ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
3336  SmallVector<BasicBlock*, 8> ExitingBlocks;
3337  L->getExitingBlocks(ExitingBlocks);
3338
3339  // Examine all exits and pick the most conservative values.
3340  const SCEV *BECount = getCouldNotCompute();
3341  const SCEV *MaxBECount = getCouldNotCompute();
3342  bool CouldNotComputeBECount = false;
3343  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3344    BackedgeTakenInfo NewBTI =
3345      ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
3346
3347    if (NewBTI.Exact == getCouldNotCompute()) {
3348      // We couldn't compute an exact value for this exit, so
3349      // we won't be able to compute an exact value for the loop.
3350      CouldNotComputeBECount = true;
3351      BECount = getCouldNotCompute();
3352    } else if (!CouldNotComputeBECount) {
3353      if (BECount == getCouldNotCompute())
3354        BECount = NewBTI.Exact;
3355      else
3356        BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
3357    }
3358    if (MaxBECount == getCouldNotCompute())
3359      MaxBECount = NewBTI.Max;
3360    else if (NewBTI.Max != getCouldNotCompute())
3361      MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
3362  }
3363
3364  return BackedgeTakenInfo(BECount, MaxBECount);
3365}
3366
3367/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3368/// of the specified loop will execute if it exits via the specified block.
3369ScalarEvolution::BackedgeTakenInfo
3370ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3371                                                   BasicBlock *ExitingBlock) {
3372
3373  // Okay, we've chosen an exiting block.  See what condition causes us to
3374  // exit at this block.
3375  //
3376  // FIXME: we should be able to handle switch instructions (with a single exit)
3377  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
3378  if (ExitBr == 0) return getCouldNotCompute();
3379  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
3380
3381  // At this point, we know we have a conditional branch that determines whether
3382  // the loop is exited.  However, we don't know if the branch is executed each
3383  // time through the loop.  If not, then the execution count of the branch will
3384  // not be equal to the trip count of the loop.
3385  //
3386  // Currently we check for this by checking to see if the Exit branch goes to
3387  // the loop header.  If so, we know it will always execute the same number of
3388  // times as the loop.  We also handle the case where the exit block *is* the
3389  // loop header.  This is common for un-rotated loops.
3390  //
3391  // If both of those tests fail, walk up the unique predecessor chain to the
3392  // header, stopping if there is an edge that doesn't exit the loop. If the
3393  // header is reached, the execution count of the branch will be equal to the
3394  // trip count of the loop.
3395  //
3396  //  More extensive analysis could be done to handle more cases here.
3397  //
3398  if (ExitBr->getSuccessor(0) != L->getHeader() &&
3399      ExitBr->getSuccessor(1) != L->getHeader() &&
3400      ExitBr->getParent() != L->getHeader()) {
3401    // The simple checks failed, try climbing the unique predecessor chain
3402    // up to the header.
3403    bool Ok = false;
3404    for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3405      BasicBlock *Pred = BB->getUniquePredecessor();
3406      if (!Pred)
3407        return getCouldNotCompute();
3408      TerminatorInst *PredTerm = Pred->getTerminator();
3409      for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3410        BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3411        if (PredSucc == BB)
3412          continue;
3413        // If the predecessor has a successor that isn't BB and isn't
3414        // outside the loop, assume the worst.
3415        if (L->contains(PredSucc))
3416          return getCouldNotCompute();
3417      }
3418      if (Pred == L->getHeader()) {
3419        Ok = true;
3420        break;
3421      }
3422      BB = Pred;
3423    }
3424    if (!Ok)
3425      return getCouldNotCompute();
3426  }
3427
3428  // Procede to the next level to examine the exit condition expression.
3429  return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3430                                               ExitBr->getSuccessor(0),
3431                                               ExitBr->getSuccessor(1));
3432}
3433
3434/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3435/// backedge of the specified loop will execute if its exit condition
3436/// were a conditional branch of ExitCond, TBB, and FBB.
3437ScalarEvolution::BackedgeTakenInfo
3438ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3439                                                       Value *ExitCond,
3440                                                       BasicBlock *TBB,
3441                                                       BasicBlock *FBB) {
3442  // Check if the controlling expression for this loop is an And or Or.
3443  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3444    if (BO->getOpcode() == Instruction::And) {
3445      // Recurse on the operands of the and.
3446      BackedgeTakenInfo BTI0 =
3447        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3448      BackedgeTakenInfo BTI1 =
3449        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3450      const SCEV *BECount = getCouldNotCompute();
3451      const SCEV *MaxBECount = getCouldNotCompute();
3452      if (L->contains(TBB)) {
3453        // Both conditions must be true for the loop to continue executing.
3454        // Choose the less conservative count.
3455        if (BTI0.Exact == getCouldNotCompute() ||
3456            BTI1.Exact == getCouldNotCompute())
3457          BECount = getCouldNotCompute();
3458        else
3459          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3460        if (BTI0.Max == getCouldNotCompute())
3461          MaxBECount = BTI1.Max;
3462        else if (BTI1.Max == getCouldNotCompute())
3463          MaxBECount = BTI0.Max;
3464        else
3465          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3466      } else {
3467        // Both conditions must be true for the loop to exit.
3468        assert(L->contains(FBB) && "Loop block has no successor in loop!");
3469        if (BTI0.Exact != getCouldNotCompute() &&
3470            BTI1.Exact != getCouldNotCompute())
3471          BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3472        if (BTI0.Max != getCouldNotCompute() &&
3473            BTI1.Max != getCouldNotCompute())
3474          MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3475      }
3476
3477      return BackedgeTakenInfo(BECount, MaxBECount);
3478    }
3479    if (BO->getOpcode() == Instruction::Or) {
3480      // Recurse on the operands of the or.
3481      BackedgeTakenInfo BTI0 =
3482        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3483      BackedgeTakenInfo BTI1 =
3484        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3485      const SCEV *BECount = getCouldNotCompute();
3486      const SCEV *MaxBECount = getCouldNotCompute();
3487      if (L->contains(FBB)) {
3488        // Both conditions must be false for the loop to continue executing.
3489        // Choose the less conservative count.
3490        if (BTI0.Exact == getCouldNotCompute() ||
3491            BTI1.Exact == getCouldNotCompute())
3492          BECount = getCouldNotCompute();
3493        else
3494          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3495        if (BTI0.Max == getCouldNotCompute())
3496          MaxBECount = BTI1.Max;
3497        else if (BTI1.Max == getCouldNotCompute())
3498          MaxBECount = BTI0.Max;
3499        else
3500          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3501      } else {
3502        // Both conditions must be false for the loop to exit.
3503        assert(L->contains(TBB) && "Loop block has no successor in loop!");
3504        if (BTI0.Exact != getCouldNotCompute() &&
3505            BTI1.Exact != getCouldNotCompute())
3506          BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3507        if (BTI0.Max != getCouldNotCompute() &&
3508            BTI1.Max != getCouldNotCompute())
3509          MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3510      }
3511
3512      return BackedgeTakenInfo(BECount, MaxBECount);
3513    }
3514  }
3515
3516  // With an icmp, it may be feasible to compute an exact backedge-taken count.
3517  // Procede to the next level to examine the icmp.
3518  if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3519    return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
3520
3521  // If it's not an integer or pointer comparison then compute it the hard way.
3522  return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3523}
3524
3525/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
3526/// backedge of the specified loop will execute if its exit condition
3527/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
3528ScalarEvolution::BackedgeTakenInfo
3529ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
3530                                                           ICmpInst *ExitCond,
3531                                                           BasicBlock *TBB,
3532                                                           BasicBlock *FBB) {
3533
3534  // If the condition was exit on true, convert the condition to exit on false
3535  ICmpInst::Predicate Cond;
3536  if (!L->contains(FBB))
3537    Cond = ExitCond->getPredicate();
3538  else
3539    Cond = ExitCond->getInversePredicate();
3540
3541  // Handle common loops like: for (X = "string"; *X; ++X)
3542  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
3543    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
3544      const SCEV *ItCnt =
3545        ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
3546      if (!isa<SCEVCouldNotCompute>(ItCnt)) {
3547        unsigned BitWidth = getTypeSizeInBits(ItCnt->getType());
3548        return BackedgeTakenInfo(ItCnt,
3549                                 isa<SCEVConstant>(ItCnt) ? ItCnt :
3550                                   getConstant(APInt::getMaxValue(BitWidth)-1));
3551      }
3552    }
3553
3554  const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
3555  const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
3556
3557  // Try to evaluate any dependencies out of the loop.
3558  LHS = getSCEVAtScope(LHS, L);
3559  RHS = getSCEVAtScope(RHS, L);
3560
3561  // At this point, we would like to compute how many iterations of the
3562  // loop the predicate will return true for these inputs.
3563  if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
3564    // If there is a loop-invariant, force it into the RHS.
3565    std::swap(LHS, RHS);
3566    Cond = ICmpInst::getSwappedPredicate(Cond);
3567  }
3568
3569  // If we have a comparison of a chrec against a constant, try to use value
3570  // ranges to answer this query.
3571  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
3572    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
3573      if (AddRec->getLoop() == L) {
3574        // Form the constant range.
3575        ConstantRange CompRange(
3576            ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
3577
3578        const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
3579        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
3580      }
3581
3582  switch (Cond) {
3583  case ICmpInst::ICMP_NE: {                     // while (X != Y)
3584    // Convert to: while (X-Y != 0)
3585    const SCEV *TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
3586    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
3587    break;
3588  }
3589  case ICmpInst::ICMP_EQ: {                     // while (X == Y)
3590    // Convert to: while (X-Y == 0)
3591    const SCEV *TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
3592    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
3593    break;
3594  }
3595  case ICmpInst::ICMP_SLT: {
3596    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
3597    if (BTI.hasAnyInfo()) return BTI;
3598    break;
3599  }
3600  case ICmpInst::ICMP_SGT: {
3601    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3602                                             getNotSCEV(RHS), L, true);
3603    if (BTI.hasAnyInfo()) return BTI;
3604    break;
3605  }
3606  case ICmpInst::ICMP_ULT: {
3607    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
3608    if (BTI.hasAnyInfo()) return BTI;
3609    break;
3610  }
3611  case ICmpInst::ICMP_UGT: {
3612    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3613                                             getNotSCEV(RHS), L, false);
3614    if (BTI.hasAnyInfo()) return BTI;
3615    break;
3616  }
3617  default:
3618#if 0
3619    errs() << "ComputeBackedgeTakenCount ";
3620    if (ExitCond->getOperand(0)->getType()->isUnsigned())
3621      errs() << "[unsigned] ";
3622    errs() << *LHS << "   "
3623         << Instruction::getOpcodeName(Instruction::ICmp)
3624         << "   " << *RHS << "\n";
3625#endif
3626    break;
3627  }
3628  return
3629    ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3630}
3631
3632static ConstantInt *
3633EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
3634                                ScalarEvolution &SE) {
3635  const SCEV *InVal = SE.getConstant(C);
3636  const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
3637  assert(isa<SCEVConstant>(Val) &&
3638         "Evaluation of SCEV at constant didn't fold correctly?");
3639  return cast<SCEVConstant>(Val)->getValue();
3640}
3641
3642/// GetAddressedElementFromGlobal - Given a global variable with an initializer
3643/// and a GEP expression (missing the pointer index) indexing into it, return
3644/// the addressed element of the initializer or null if the index expression is
3645/// invalid.
3646static Constant *
3647GetAddressedElementFromGlobal(LLVMContext &Context, GlobalVariable *GV,
3648                              const std::vector<ConstantInt*> &Indices) {
3649  Constant *Init = GV->getInitializer();
3650  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
3651    uint64_t Idx = Indices[i]->getZExtValue();
3652    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
3653      assert(Idx < CS->getNumOperands() && "Bad struct index!");
3654      Init = cast<Constant>(CS->getOperand(Idx));
3655    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
3656      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
3657      Init = cast<Constant>(CA->getOperand(Idx));
3658    } else if (isa<ConstantAggregateZero>(Init)) {
3659      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
3660        assert(Idx < STy->getNumElements() && "Bad struct index!");
3661        Init = Constant::getNullValue(STy->getElementType(Idx));
3662      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
3663        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
3664        Init = Constant::getNullValue(ATy->getElementType());
3665      } else {
3666        llvm_unreachable("Unknown constant aggregate type!");
3667      }
3668      return 0;
3669    } else {
3670      return 0; // Unknown initializer type
3671    }
3672  }
3673  return Init;
3674}
3675
3676/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
3677/// 'icmp op load X, cst', try to see if we can compute the backedge
3678/// execution count.
3679const SCEV *
3680ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
3681                                                LoadInst *LI,
3682                                                Constant *RHS,
3683                                                const Loop *L,
3684                                                ICmpInst::Predicate predicate) {
3685  if (LI->isVolatile()) return getCouldNotCompute();
3686
3687  // Check to see if the loaded pointer is a getelementptr of a global.
3688  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
3689  if (!GEP) return getCouldNotCompute();
3690
3691  // Make sure that it is really a constant global we are gepping, with an
3692  // initializer, and make sure the first IDX is really 0.
3693  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
3694  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
3695      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
3696      !cast<Constant>(GEP->getOperand(1))->isNullValue())
3697    return getCouldNotCompute();
3698
3699  // Okay, we allow one non-constant index into the GEP instruction.
3700  Value *VarIdx = 0;
3701  std::vector<ConstantInt*> Indexes;
3702  unsigned VarIdxNum = 0;
3703  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
3704    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
3705      Indexes.push_back(CI);
3706    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
3707      if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
3708      VarIdx = GEP->getOperand(i);
3709      VarIdxNum = i-2;
3710      Indexes.push_back(0);
3711    }
3712
3713  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
3714  // Check to see if X is a loop variant variable value now.
3715  const SCEV *Idx = getSCEV(VarIdx);
3716  Idx = getSCEVAtScope(Idx, L);
3717
3718  // We can only recognize very limited forms of loop index expressions, in
3719  // particular, only affine AddRec's like {C1,+,C2}.
3720  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
3721  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
3722      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
3723      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
3724    return getCouldNotCompute();
3725
3726  unsigned MaxSteps = MaxBruteForceIterations;
3727  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
3728    ConstantInt *ItCst = ConstantInt::get(
3729                           cast<IntegerType>(IdxExpr->getType()), IterationNum);
3730    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
3731
3732    // Form the GEP offset.
3733    Indexes[VarIdxNum] = Val;
3734
3735    Constant *Result = GetAddressedElementFromGlobal(getContext(), GV, Indexes);
3736    if (Result == 0) break;  // Cannot compute!
3737
3738    // Evaluate the condition for this iteration.
3739    Result = ConstantExpr::getICmp(predicate, Result, RHS);
3740    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
3741    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
3742#if 0
3743      errs() << "\n***\n*** Computed loop count " << *ItCst
3744             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
3745             << "***\n";
3746#endif
3747      ++NumArrayLenItCounts;
3748      return getConstant(ItCst);   // Found terminating iteration!
3749    }
3750  }
3751  return getCouldNotCompute();
3752}
3753
3754
3755/// CanConstantFold - Return true if we can constant fold an instruction of the
3756/// specified type, assuming that all operands were constants.
3757static bool CanConstantFold(const Instruction *I) {
3758  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
3759      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
3760    return true;
3761
3762  if (const CallInst *CI = dyn_cast<CallInst>(I))
3763    if (const Function *F = CI->getCalledFunction())
3764      return canConstantFoldCallTo(F);
3765  return false;
3766}
3767
3768/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
3769/// in the loop that V is derived from.  We allow arbitrary operations along the
3770/// way, but the operands of an operation must either be constants or a value
3771/// derived from a constant PHI.  If this expression does not fit with these
3772/// constraints, return null.
3773static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
3774  // If this is not an instruction, or if this is an instruction outside of the
3775  // loop, it can't be derived from a loop PHI.
3776  Instruction *I = dyn_cast<Instruction>(V);
3777  if (I == 0 || !L->contains(I->getParent())) return 0;
3778
3779  if (PHINode *PN = dyn_cast<PHINode>(I)) {
3780    if (L->getHeader() == I->getParent())
3781      return PN;
3782    else
3783      // We don't currently keep track of the control flow needed to evaluate
3784      // PHIs, so we cannot handle PHIs inside of loops.
3785      return 0;
3786  }
3787
3788  // If we won't be able to constant fold this expression even if the operands
3789  // are constants, return early.
3790  if (!CanConstantFold(I)) return 0;
3791
3792  // Otherwise, we can evaluate this instruction if all of its operands are
3793  // constant or derived from a PHI node themselves.
3794  PHINode *PHI = 0;
3795  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
3796    if (!(isa<Constant>(I->getOperand(Op)) ||
3797          isa<GlobalValue>(I->getOperand(Op)))) {
3798      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
3799      if (P == 0) return 0;  // Not evolving from PHI
3800      if (PHI == 0)
3801        PHI = P;
3802      else if (PHI != P)
3803        return 0;  // Evolving from multiple different PHIs.
3804    }
3805
3806  // This is a expression evolving from a constant PHI!
3807  return PHI;
3808}
3809
3810/// EvaluateExpression - Given an expression that passes the
3811/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
3812/// in the loop has the value PHIVal.  If we can't fold this expression for some
3813/// reason, return null.
3814static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
3815  if (isa<PHINode>(V)) return PHIVal;
3816  if (Constant *C = dyn_cast<Constant>(V)) return C;
3817  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
3818  Instruction *I = cast<Instruction>(V);
3819  LLVMContext &Context = I->getParent()->getContext();
3820
3821  std::vector<Constant*> Operands;
3822  Operands.resize(I->getNumOperands());
3823
3824  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3825    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
3826    if (Operands[i] == 0) return 0;
3827  }
3828
3829  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
3830    return ConstantFoldCompareInstOperands(CI->getPredicate(),
3831                                           &Operands[0], Operands.size(),
3832                                           Context);
3833  else
3834    return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
3835                                    &Operands[0], Operands.size(),
3836                                    Context);
3837}
3838
3839/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
3840/// in the header of its containing loop, we know the loop executes a
3841/// constant number of times, and the PHI node is just a recurrence
3842/// involving constants, fold it.
3843Constant *
3844ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
3845                                                   const APInt& BEs,
3846                                                   const Loop *L) {
3847  std::map<PHINode*, Constant*>::iterator I =
3848    ConstantEvolutionLoopExitValue.find(PN);
3849  if (I != ConstantEvolutionLoopExitValue.end())
3850    return I->second;
3851
3852  if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
3853    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
3854
3855  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
3856
3857  // Since the loop is canonicalized, the PHI node must have two entries.  One
3858  // entry must be a constant (coming in from outside of the loop), and the
3859  // second must be derived from the same PHI.
3860  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
3861  Constant *StartCST =
3862    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
3863  if (StartCST == 0)
3864    return RetVal = 0;  // Must be a constant.
3865
3866  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
3867  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
3868  if (PN2 != PN)
3869    return RetVal = 0;  // Not derived from same PHI.
3870
3871  // Execute the loop symbolically to determine the exit value.
3872  if (BEs.getActiveBits() >= 32)
3873    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
3874
3875  unsigned NumIterations = BEs.getZExtValue(); // must be in range
3876  unsigned IterationNum = 0;
3877  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
3878    if (IterationNum == NumIterations)
3879      return RetVal = PHIVal;  // Got exit value!
3880
3881    // Compute the value of the PHI node for the next iteration.
3882    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
3883    if (NextPHI == PHIVal)
3884      return RetVal = NextPHI;  // Stopped evolving!
3885    if (NextPHI == 0)
3886      return 0;        // Couldn't evaluate!
3887    PHIVal = NextPHI;
3888  }
3889}
3890
3891/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
3892/// constant number of times (the condition evolves only from constants),
3893/// try to evaluate a few iterations of the loop until we get the exit
3894/// condition gets a value of ExitWhen (true or false).  If we cannot
3895/// evaluate the trip count of the loop, return getCouldNotCompute().
3896const SCEV *
3897ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
3898                                                       Value *Cond,
3899                                                       bool ExitWhen) {
3900  PHINode *PN = getConstantEvolvingPHI(Cond, L);
3901  if (PN == 0) return getCouldNotCompute();
3902
3903  // Since the loop is canonicalized, the PHI node must have two entries.  One
3904  // entry must be a constant (coming in from outside of the loop), and the
3905  // second must be derived from the same PHI.
3906  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
3907  Constant *StartCST =
3908    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
3909  if (StartCST == 0) return getCouldNotCompute();  // Must be a constant.
3910
3911  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
3912  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
3913  if (PN2 != PN) return getCouldNotCompute();  // Not derived from same PHI.
3914
3915  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
3916  // the loop symbolically to determine when the condition gets a value of
3917  // "ExitWhen".
3918  unsigned IterationNum = 0;
3919  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
3920  for (Constant *PHIVal = StartCST;
3921       IterationNum != MaxIterations; ++IterationNum) {
3922    ConstantInt *CondVal =
3923      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
3924
3925    // Couldn't symbolically evaluate.
3926    if (!CondVal) return getCouldNotCompute();
3927
3928    if (CondVal->getValue() == uint64_t(ExitWhen)) {
3929      ++NumBruteForceTripCountsComputed;
3930      return getConstant(Type::getInt32Ty(getContext()), IterationNum);
3931    }
3932
3933    // Compute the value of the PHI node for the next iteration.
3934    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
3935    if (NextPHI == 0 || NextPHI == PHIVal)
3936      return getCouldNotCompute();// Couldn't evaluate or not making progress...
3937    PHIVal = NextPHI;
3938  }
3939
3940  // Too many iterations were needed to evaluate.
3941  return getCouldNotCompute();
3942}
3943
3944/// getSCEVAtScope - Return a SCEV expression for the specified value
3945/// at the specified scope in the program.  The L value specifies a loop
3946/// nest to evaluate the expression at, where null is the top-level or a
3947/// specified loop is immediately inside of the loop.
3948///
3949/// This method can be used to compute the exit value for a variable defined
3950/// in a loop by querying what the value will hold in the parent loop.
3951///
3952/// In the case that a relevant loop exit value cannot be computed, the
3953/// original value V is returned.
3954const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
3955  // Check to see if we've folded this expression at this loop before.
3956  std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
3957  std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
3958    Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
3959  if (!Pair.second)
3960    return Pair.first->second ? Pair.first->second : V;
3961
3962  // Otherwise compute it.
3963  const SCEV *C = computeSCEVAtScope(V, L);
3964  ValuesAtScopes[V][L] = C;
3965  return C;
3966}
3967
3968const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
3969  if (isa<SCEVConstant>(V)) return V;
3970
3971  // If this instruction is evolved from a constant-evolving PHI, compute the
3972  // exit value from the loop without using SCEVs.
3973  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
3974    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
3975      const Loop *LI = (*this->LI)[I->getParent()];
3976      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
3977        if (PHINode *PN = dyn_cast<PHINode>(I))
3978          if (PN->getParent() == LI->getHeader()) {
3979            // Okay, there is no closed form solution for the PHI node.  Check
3980            // to see if the loop that contains it has a known backedge-taken
3981            // count.  If so, we may be able to force computation of the exit
3982            // value.
3983            const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
3984            if (const SCEVConstant *BTCC =
3985                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
3986              // Okay, we know how many times the containing loop executes.  If
3987              // this is a constant evolving PHI node, get the final value at
3988              // the specified iteration number.
3989              Constant *RV = getConstantEvolutionLoopExitValue(PN,
3990                                                   BTCC->getValue()->getValue(),
3991                                                               LI);
3992              if (RV) return getSCEV(RV);
3993            }
3994          }
3995
3996      // Okay, this is an expression that we cannot symbolically evaluate
3997      // into a SCEV.  Check to see if it's possible to symbolically evaluate
3998      // the arguments into constants, and if so, try to constant propagate the
3999      // result.  This is particularly useful for computing loop exit values.
4000      if (CanConstantFold(I)) {
4001        std::vector<Constant*> Operands;
4002        Operands.reserve(I->getNumOperands());
4003        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4004          Value *Op = I->getOperand(i);
4005          if (Constant *C = dyn_cast<Constant>(Op)) {
4006            Operands.push_back(C);
4007          } else {
4008            // If any of the operands is non-constant and if they are
4009            // non-integer and non-pointer, don't even try to analyze them
4010            // with scev techniques.
4011            if (!isSCEVable(Op->getType()))
4012              return V;
4013
4014            const SCEV* OpV = getSCEVAtScope(Op, L);
4015            if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
4016              Constant *C = SC->getValue();
4017              if (C->getType() != Op->getType())
4018                C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4019                                                                  Op->getType(),
4020                                                                  false),
4021                                          C, Op->getType());
4022              Operands.push_back(C);
4023            } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
4024              if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
4025                if (C->getType() != Op->getType())
4026                  C =
4027                    ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4028                                                                  Op->getType(),
4029                                                                  false),
4030                                          C, Op->getType());
4031                Operands.push_back(C);
4032              } else
4033                return V;
4034            } else {
4035              return V;
4036            }
4037          }
4038        }
4039
4040        Constant *C;
4041        if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4042          C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4043                                              &Operands[0], Operands.size(),
4044                                              getContext());
4045        else
4046          C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4047                                       &Operands[0], Operands.size(),
4048                                       getContext());
4049        return getSCEV(C);
4050      }
4051    }
4052
4053    // This is some other type of SCEVUnknown, just return it.
4054    return V;
4055  }
4056
4057  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
4058    // Avoid performing the look-up in the common case where the specified
4059    // expression has no loop-variant portions.
4060    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
4061      const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4062      if (OpAtScope != Comm->getOperand(i)) {
4063        // Okay, at least one of these operands is loop variant but might be
4064        // foldable.  Build a new instance of the folded commutative expression.
4065        SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4066                                            Comm->op_begin()+i);
4067        NewOps.push_back(OpAtScope);
4068
4069        for (++i; i != e; ++i) {
4070          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4071          NewOps.push_back(OpAtScope);
4072        }
4073        if (isa<SCEVAddExpr>(Comm))
4074          return getAddExpr(NewOps);
4075        if (isa<SCEVMulExpr>(Comm))
4076          return getMulExpr(NewOps);
4077        if (isa<SCEVSMaxExpr>(Comm))
4078          return getSMaxExpr(NewOps);
4079        if (isa<SCEVUMaxExpr>(Comm))
4080          return getUMaxExpr(NewOps);
4081        llvm_unreachable("Unknown commutative SCEV type!");
4082      }
4083    }
4084    // If we got here, all operands are loop invariant.
4085    return Comm;
4086  }
4087
4088  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
4089    const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4090    const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
4091    if (LHS == Div->getLHS() && RHS == Div->getRHS())
4092      return Div;   // must be loop invariant
4093    return getUDivExpr(LHS, RHS);
4094  }
4095
4096  // If this is a loop recurrence for a loop that does not contain L, then we
4097  // are dealing with the final value computed by the loop.
4098  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4099    if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
4100      // To evaluate this recurrence, we need to know how many times the AddRec
4101      // loop iterates.  Compute this now.
4102      const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
4103      if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
4104
4105      // Then, evaluate the AddRec.
4106      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
4107    }
4108    return AddRec;
4109  }
4110
4111  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
4112    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4113    if (Op == Cast->getOperand())
4114      return Cast;  // must be loop invariant
4115    return getZeroExtendExpr(Op, Cast->getType());
4116  }
4117
4118  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
4119    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4120    if (Op == Cast->getOperand())
4121      return Cast;  // must be loop invariant
4122    return getSignExtendExpr(Op, Cast->getType());
4123  }
4124
4125  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
4126    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4127    if (Op == Cast->getOperand())
4128      return Cast;  // must be loop invariant
4129    return getTruncateExpr(Op, Cast->getType());
4130  }
4131
4132  if (isa<SCEVTargetDataConstant>(V))
4133    return V;
4134
4135  llvm_unreachable("Unknown SCEV type!");
4136  return 0;
4137}
4138
4139/// getSCEVAtScope - This is a convenience function which does
4140/// getSCEVAtScope(getSCEV(V), L).
4141const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
4142  return getSCEVAtScope(getSCEV(V), L);
4143}
4144
4145/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4146/// following equation:
4147///
4148///     A * X = B (mod N)
4149///
4150/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4151/// A and B isn't important.
4152///
4153/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
4154static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
4155                                               ScalarEvolution &SE) {
4156  uint32_t BW = A.getBitWidth();
4157  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4158  assert(A != 0 && "A must be non-zero.");
4159
4160  // 1. D = gcd(A, N)
4161  //
4162  // The gcd of A and N may have only one prime factor: 2. The number of
4163  // trailing zeros in A is its multiplicity
4164  uint32_t Mult2 = A.countTrailingZeros();
4165  // D = 2^Mult2
4166
4167  // 2. Check if B is divisible by D.
4168  //
4169  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4170  // is not less than multiplicity of this prime factor for D.
4171  if (B.countTrailingZeros() < Mult2)
4172    return SE.getCouldNotCompute();
4173
4174  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4175  // modulo (N / D).
4176  //
4177  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
4178  // bit width during computations.
4179  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
4180  APInt Mod(BW + 1, 0);
4181  Mod.set(BW - Mult2);  // Mod = N / D
4182  APInt I = AD.multiplicativeInverse(Mod);
4183
4184  // 4. Compute the minimum unsigned root of the equation:
4185  // I * (B / D) mod (N / D)
4186  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4187
4188  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4189  // bits.
4190  return SE.getConstant(Result.trunc(BW));
4191}
4192
4193/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4194/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
4195/// might be the same) or two SCEVCouldNotCompute objects.
4196///
4197static std::pair<const SCEV *,const SCEV *>
4198SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
4199  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
4200  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4201  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4202  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
4203
4204  // We currently can only solve this if the coefficients are constants.
4205  if (!LC || !MC || !NC) {
4206    const SCEV *CNC = SE.getCouldNotCompute();
4207    return std::make_pair(CNC, CNC);
4208  }
4209
4210  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
4211  const APInt &L = LC->getValue()->getValue();
4212  const APInt &M = MC->getValue()->getValue();
4213  const APInt &N = NC->getValue()->getValue();
4214  APInt Two(BitWidth, 2);
4215  APInt Four(BitWidth, 4);
4216
4217  {
4218    using namespace APIntOps;
4219    const APInt& C = L;
4220    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4221    // The B coefficient is M-N/2
4222    APInt B(M);
4223    B -= sdiv(N,Two);
4224
4225    // The A coefficient is N/2
4226    APInt A(N.sdiv(Two));
4227
4228    // Compute the B^2-4ac term.
4229    APInt SqrtTerm(B);
4230    SqrtTerm *= B;
4231    SqrtTerm -= Four * (A * C);
4232
4233    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4234    // integer value or else APInt::sqrt() will assert.
4235    APInt SqrtVal(SqrtTerm.sqrt());
4236
4237    // Compute the two solutions for the quadratic formula.
4238    // The divisions must be performed as signed divisions.
4239    APInt NegB(-B);
4240    APInt TwoA( A << 1 );
4241    if (TwoA.isMinValue()) {
4242      const SCEV *CNC = SE.getCouldNotCompute();
4243      return std::make_pair(CNC, CNC);
4244    }
4245
4246    LLVMContext &Context = SE.getContext();
4247
4248    ConstantInt *Solution1 =
4249      ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
4250    ConstantInt *Solution2 =
4251      ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
4252
4253    return std::make_pair(SE.getConstant(Solution1),
4254                          SE.getConstant(Solution2));
4255    } // end APIntOps namespace
4256}
4257
4258/// HowFarToZero - Return the number of times a backedge comparing the specified
4259/// value to zero will execute.  If not computable, return CouldNotCompute.
4260const SCEV *ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
4261  // If the value is a constant
4262  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4263    // If the value is already zero, the branch will execute zero times.
4264    if (C->getValue()->isZero()) return C;
4265    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4266  }
4267
4268  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
4269  if (!AddRec || AddRec->getLoop() != L)
4270    return getCouldNotCompute();
4271
4272  if (AddRec->isAffine()) {
4273    // If this is an affine expression, the execution count of this branch is
4274    // the minimum unsigned root of the following equation:
4275    //
4276    //     Start + Step*N = 0 (mod 2^BW)
4277    //
4278    // equivalent to:
4279    //
4280    //             Step*N = -Start (mod 2^BW)
4281    //
4282    // where BW is the common bit width of Start and Step.
4283
4284    // Get the initial value for the loop.
4285    const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4286                                       L->getParentLoop());
4287    const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4288                                      L->getParentLoop());
4289
4290    if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
4291      // For now we handle only constant steps.
4292
4293      // First, handle unitary steps.
4294      if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so:
4295        return getNegativeSCEV(Start);          //   N = -Start (as unsigned)
4296      if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so:
4297        return Start;                           //    N = Start (as unsigned)
4298
4299      // Then, try to solve the above equation provided that Start is constant.
4300      if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
4301        return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
4302                                            -StartC->getValue()->getValue(),
4303                                            *this);
4304    }
4305  } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
4306    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4307    // the quadratic equation to solve it.
4308    std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
4309                                                                    *this);
4310    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4311    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
4312    if (R1) {
4313#if 0
4314      errs() << "HFTZ: " << *V << " - sol#1: " << *R1
4315             << "  sol#2: " << *R2 << "\n";
4316#endif
4317      // Pick the smallest positive root value.
4318      if (ConstantInt *CB =
4319          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
4320                                   R1->getValue(), R2->getValue()))) {
4321        if (CB->getZExtValue() == false)
4322          std::swap(R1, R2);   // R1 is the minimum root now.
4323
4324        // We can only use this value if the chrec ends up with an exact zero
4325        // value at this index.  When solving for "X*X != 5", for example, we
4326        // should not accept a root of 2.
4327        const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
4328        if (Val->isZero())
4329          return R1;  // We found a quadratic root!
4330      }
4331    }
4332  }
4333
4334  return getCouldNotCompute();
4335}
4336
4337/// HowFarToNonZero - Return the number of times a backedge checking the
4338/// specified value for nonzero will execute.  If not computable, return
4339/// CouldNotCompute
4340const SCEV *ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
4341  // Loops that look like: while (X == 0) are very strange indeed.  We don't
4342  // handle them yet except for the trivial case.  This could be expanded in the
4343  // future as needed.
4344
4345  // If the value is a constant, check to see if it is known to be non-zero
4346  // already.  If so, the backedge will execute zero times.
4347  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4348    if (!C->getValue()->isNullValue())
4349      return getIntegerSCEV(0, C->getType());
4350    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4351  }
4352
4353  // We could implement others, but I really doubt anyone writes loops like
4354  // this, and if they did, they would already be constant folded.
4355  return getCouldNotCompute();
4356}
4357
4358/// getLoopPredecessor - If the given loop's header has exactly one unique
4359/// predecessor outside the loop, return it. Otherwise return null.
4360///
4361BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
4362  BasicBlock *Header = L->getHeader();
4363  BasicBlock *Pred = 0;
4364  for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
4365       PI != E; ++PI)
4366    if (!L->contains(*PI)) {
4367      if (Pred && Pred != *PI) return 0; // Multiple predecessors.
4368      Pred = *PI;
4369    }
4370  return Pred;
4371}
4372
4373/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4374/// (which may not be an immediate predecessor) which has exactly one
4375/// successor from which BB is reachable, or null if no such block is
4376/// found.
4377///
4378BasicBlock *
4379ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
4380  // If the block has a unique predecessor, then there is no path from the
4381  // predecessor to the block that does not go through the direct edge
4382  // from the predecessor to the block.
4383  if (BasicBlock *Pred = BB->getSinglePredecessor())
4384    return Pred;
4385
4386  // A loop's header is defined to be a block that dominates the loop.
4387  // If the header has a unique predecessor outside the loop, it must be
4388  // a block that has exactly one successor that can reach the loop.
4389  if (Loop *L = LI->getLoopFor(BB))
4390    return getLoopPredecessor(L);
4391
4392  return 0;
4393}
4394
4395/// HasSameValue - SCEV structural equivalence is usually sufficient for
4396/// testing whether two expressions are equal, however for the purposes of
4397/// looking for a condition guarding a loop, it can be useful to be a little
4398/// more general, since a front-end may have replicated the controlling
4399/// expression.
4400///
4401static bool HasSameValue(const SCEV *A, const SCEV *B) {
4402  // Quick check to see if they are the same SCEV.
4403  if (A == B) return true;
4404
4405  // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4406  // two different instructions with the same value. Check for this case.
4407  if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4408    if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4409      if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4410        if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
4411          if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
4412            return true;
4413
4414  // Otherwise assume they may have a different value.
4415  return false;
4416}
4417
4418bool ScalarEvolution::isKnownNegative(const SCEV *S) {
4419  return getSignedRange(S).getSignedMax().isNegative();
4420}
4421
4422bool ScalarEvolution::isKnownPositive(const SCEV *S) {
4423  return getSignedRange(S).getSignedMin().isStrictlyPositive();
4424}
4425
4426bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
4427  return !getSignedRange(S).getSignedMin().isNegative();
4428}
4429
4430bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
4431  return !getSignedRange(S).getSignedMax().isStrictlyPositive();
4432}
4433
4434bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
4435  return isKnownNegative(S) || isKnownPositive(S);
4436}
4437
4438bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
4439                                       const SCEV *LHS, const SCEV *RHS) {
4440
4441  if (HasSameValue(LHS, RHS))
4442    return ICmpInst::isTrueWhenEqual(Pred);
4443
4444  switch (Pred) {
4445  default:
4446    llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4447    break;
4448  case ICmpInst::ICMP_SGT:
4449    Pred = ICmpInst::ICMP_SLT;
4450    std::swap(LHS, RHS);
4451  case ICmpInst::ICMP_SLT: {
4452    ConstantRange LHSRange = getSignedRange(LHS);
4453    ConstantRange RHSRange = getSignedRange(RHS);
4454    if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
4455      return true;
4456    if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
4457      return false;
4458    break;
4459  }
4460  case ICmpInst::ICMP_SGE:
4461    Pred = ICmpInst::ICMP_SLE;
4462    std::swap(LHS, RHS);
4463  case ICmpInst::ICMP_SLE: {
4464    ConstantRange LHSRange = getSignedRange(LHS);
4465    ConstantRange RHSRange = getSignedRange(RHS);
4466    if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
4467      return true;
4468    if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
4469      return false;
4470    break;
4471  }
4472  case ICmpInst::ICMP_UGT:
4473    Pred = ICmpInst::ICMP_ULT;
4474    std::swap(LHS, RHS);
4475  case ICmpInst::ICMP_ULT: {
4476    ConstantRange LHSRange = getUnsignedRange(LHS);
4477    ConstantRange RHSRange = getUnsignedRange(RHS);
4478    if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
4479      return true;
4480    if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
4481      return false;
4482    break;
4483  }
4484  case ICmpInst::ICMP_UGE:
4485    Pred = ICmpInst::ICMP_ULE;
4486    std::swap(LHS, RHS);
4487  case ICmpInst::ICMP_ULE: {
4488    ConstantRange LHSRange = getUnsignedRange(LHS);
4489    ConstantRange RHSRange = getUnsignedRange(RHS);
4490    if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
4491      return true;
4492    if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
4493      return false;
4494    break;
4495  }
4496  case ICmpInst::ICMP_NE: {
4497    if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
4498      return true;
4499    if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
4500      return true;
4501
4502    const SCEV *Diff = getMinusSCEV(LHS, RHS);
4503    if (isKnownNonZero(Diff))
4504      return true;
4505    break;
4506  }
4507  case ICmpInst::ICMP_EQ:
4508    // The check at the top of the function catches the case where
4509    // the values are known to be equal.
4510    break;
4511  }
4512  return false;
4513}
4514
4515/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
4516/// protected by a conditional between LHS and RHS.  This is used to
4517/// to eliminate casts.
4518bool
4519ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
4520                                             ICmpInst::Predicate Pred,
4521                                             const SCEV *LHS, const SCEV *RHS) {
4522  // Interpret a null as meaning no loop, where there is obviously no guard
4523  // (interprocedural conditions notwithstanding).
4524  if (!L) return true;
4525
4526  BasicBlock *Latch = L->getLoopLatch();
4527  if (!Latch)
4528    return false;
4529
4530  BranchInst *LoopContinuePredicate =
4531    dyn_cast<BranchInst>(Latch->getTerminator());
4532  if (!LoopContinuePredicate ||
4533      LoopContinuePredicate->isUnconditional())
4534    return false;
4535
4536  return isImpliedCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS,
4537                       LoopContinuePredicate->getSuccessor(0) != L->getHeader());
4538}
4539
4540/// isLoopGuardedByCond - Test whether entry to the loop is protected
4541/// by a conditional between LHS and RHS.  This is used to help avoid max
4542/// expressions in loop trip counts, and to eliminate casts.
4543bool
4544ScalarEvolution::isLoopGuardedByCond(const Loop *L,
4545                                     ICmpInst::Predicate Pred,
4546                                     const SCEV *LHS, const SCEV *RHS) {
4547  // Interpret a null as meaning no loop, where there is obviously no guard
4548  // (interprocedural conditions notwithstanding).
4549  if (!L) return false;
4550
4551  BasicBlock *Predecessor = getLoopPredecessor(L);
4552  BasicBlock *PredecessorDest = L->getHeader();
4553
4554  // Starting at the loop predecessor, climb up the predecessor chain, as long
4555  // as there are predecessors that can be found that have unique successors
4556  // leading to the original header.
4557  for (; Predecessor;
4558       PredecessorDest = Predecessor,
4559       Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) {
4560
4561    BranchInst *LoopEntryPredicate =
4562      dyn_cast<BranchInst>(Predecessor->getTerminator());
4563    if (!LoopEntryPredicate ||
4564        LoopEntryPredicate->isUnconditional())
4565      continue;
4566
4567    if (isImpliedCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS,
4568                      LoopEntryPredicate->getSuccessor(0) != PredecessorDest))
4569      return true;
4570  }
4571
4572  return false;
4573}
4574
4575/// isImpliedCond - Test whether the condition described by Pred, LHS,
4576/// and RHS is true whenever the given Cond value evaluates to true.
4577bool ScalarEvolution::isImpliedCond(Value *CondValue,
4578                                    ICmpInst::Predicate Pred,
4579                                    const SCEV *LHS, const SCEV *RHS,
4580                                    bool Inverse) {
4581  // Recursivly handle And and Or conditions.
4582  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) {
4583    if (BO->getOpcode() == Instruction::And) {
4584      if (!Inverse)
4585        return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
4586               isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
4587    } else if (BO->getOpcode() == Instruction::Or) {
4588      if (Inverse)
4589        return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
4590               isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
4591    }
4592  }
4593
4594  ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue);
4595  if (!ICI) return false;
4596
4597  // Bail if the ICmp's operands' types are wider than the needed type
4598  // before attempting to call getSCEV on them. This avoids infinite
4599  // recursion, since the analysis of widening casts can require loop
4600  // exit condition information for overflow checking, which would
4601  // lead back here.
4602  if (getTypeSizeInBits(LHS->getType()) <
4603      getTypeSizeInBits(ICI->getOperand(0)->getType()))
4604    return false;
4605
4606  // Now that we found a conditional branch that dominates the loop, check to
4607  // see if it is the comparison we are looking for.
4608  ICmpInst::Predicate FoundPred;
4609  if (Inverse)
4610    FoundPred = ICI->getInversePredicate();
4611  else
4612    FoundPred = ICI->getPredicate();
4613
4614  const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
4615  const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
4616
4617  // Balance the types. The case where FoundLHS' type is wider than
4618  // LHS' type is checked for above.
4619  if (getTypeSizeInBits(LHS->getType()) >
4620      getTypeSizeInBits(FoundLHS->getType())) {
4621    if (CmpInst::isSigned(Pred)) {
4622      FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
4623      FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
4624    } else {
4625      FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
4626      FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
4627    }
4628  }
4629
4630  // Canonicalize the query to match the way instcombine will have
4631  // canonicalized the comparison.
4632  // First, put a constant operand on the right.
4633  if (isa<SCEVConstant>(LHS)) {
4634    std::swap(LHS, RHS);
4635    Pred = ICmpInst::getSwappedPredicate(Pred);
4636  }
4637  // Then, canonicalize comparisons with boundary cases.
4638  if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4639    const APInt &RA = RC->getValue()->getValue();
4640    switch (Pred) {
4641    default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4642    case ICmpInst::ICMP_EQ:
4643    case ICmpInst::ICMP_NE:
4644      break;
4645    case ICmpInst::ICMP_UGE:
4646      if ((RA - 1).isMinValue()) {
4647        Pred = ICmpInst::ICMP_NE;
4648        RHS = getConstant(RA - 1);
4649        break;
4650      }
4651      if (RA.isMaxValue()) {
4652        Pred = ICmpInst::ICMP_EQ;
4653        break;
4654      }
4655      if (RA.isMinValue()) return true;
4656      break;
4657    case ICmpInst::ICMP_ULE:
4658      if ((RA + 1).isMaxValue()) {
4659        Pred = ICmpInst::ICMP_NE;
4660        RHS = getConstant(RA + 1);
4661        break;
4662      }
4663      if (RA.isMinValue()) {
4664        Pred = ICmpInst::ICMP_EQ;
4665        break;
4666      }
4667      if (RA.isMaxValue()) return true;
4668      break;
4669    case ICmpInst::ICMP_SGE:
4670      if ((RA - 1).isMinSignedValue()) {
4671        Pred = ICmpInst::ICMP_NE;
4672        RHS = getConstant(RA - 1);
4673        break;
4674      }
4675      if (RA.isMaxSignedValue()) {
4676        Pred = ICmpInst::ICMP_EQ;
4677        break;
4678      }
4679      if (RA.isMinSignedValue()) return true;
4680      break;
4681    case ICmpInst::ICMP_SLE:
4682      if ((RA + 1).isMaxSignedValue()) {
4683        Pred = ICmpInst::ICMP_NE;
4684        RHS = getConstant(RA + 1);
4685        break;
4686      }
4687      if (RA.isMinSignedValue()) {
4688        Pred = ICmpInst::ICMP_EQ;
4689        break;
4690      }
4691      if (RA.isMaxSignedValue()) return true;
4692      break;
4693    case ICmpInst::ICMP_UGT:
4694      if (RA.isMinValue()) {
4695        Pred = ICmpInst::ICMP_NE;
4696        break;
4697      }
4698      if ((RA + 1).isMaxValue()) {
4699        Pred = ICmpInst::ICMP_EQ;
4700        RHS = getConstant(RA + 1);
4701        break;
4702      }
4703      if (RA.isMaxValue()) return false;
4704      break;
4705    case ICmpInst::ICMP_ULT:
4706      if (RA.isMaxValue()) {
4707        Pred = ICmpInst::ICMP_NE;
4708        break;
4709      }
4710      if ((RA - 1).isMinValue()) {
4711        Pred = ICmpInst::ICMP_EQ;
4712        RHS = getConstant(RA - 1);
4713        break;
4714      }
4715      if (RA.isMinValue()) return false;
4716      break;
4717    case ICmpInst::ICMP_SGT:
4718      if (RA.isMinSignedValue()) {
4719        Pred = ICmpInst::ICMP_NE;
4720        break;
4721      }
4722      if ((RA + 1).isMaxSignedValue()) {
4723        Pred = ICmpInst::ICMP_EQ;
4724        RHS = getConstant(RA + 1);
4725        break;
4726      }
4727      if (RA.isMaxSignedValue()) return false;
4728      break;
4729    case ICmpInst::ICMP_SLT:
4730      if (RA.isMaxSignedValue()) {
4731        Pred = ICmpInst::ICMP_NE;
4732        break;
4733      }
4734      if ((RA - 1).isMinSignedValue()) {
4735       Pred = ICmpInst::ICMP_EQ;
4736       RHS = getConstant(RA - 1);
4737       break;
4738      }
4739      if (RA.isMinSignedValue()) return false;
4740      break;
4741    }
4742  }
4743
4744  // Check to see if we can make the LHS or RHS match.
4745  if (LHS == FoundRHS || RHS == FoundLHS) {
4746    if (isa<SCEVConstant>(RHS)) {
4747      std::swap(FoundLHS, FoundRHS);
4748      FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
4749    } else {
4750      std::swap(LHS, RHS);
4751      Pred = ICmpInst::getSwappedPredicate(Pred);
4752    }
4753  }
4754
4755  // Check whether the found predicate is the same as the desired predicate.
4756  if (FoundPred == Pred)
4757    return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
4758
4759  // Check whether swapping the found predicate makes it the same as the
4760  // desired predicate.
4761  if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
4762    if (isa<SCEVConstant>(RHS))
4763      return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
4764    else
4765      return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
4766                                   RHS, LHS, FoundLHS, FoundRHS);
4767  }
4768
4769  // Check whether the actual condition is beyond sufficient.
4770  if (FoundPred == ICmpInst::ICMP_EQ)
4771    if (ICmpInst::isTrueWhenEqual(Pred))
4772      if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
4773        return true;
4774  if (Pred == ICmpInst::ICMP_NE)
4775    if (!ICmpInst::isTrueWhenEqual(FoundPred))
4776      if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
4777        return true;
4778
4779  // Otherwise assume the worst.
4780  return false;
4781}
4782
4783/// isImpliedCondOperands - Test whether the condition described by Pred,
4784/// LHS, and RHS is true whenever the condition desribed by Pred, FoundLHS,
4785/// and FoundRHS is true.
4786bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
4787                                            const SCEV *LHS, const SCEV *RHS,
4788                                            const SCEV *FoundLHS,
4789                                            const SCEV *FoundRHS) {
4790  return isImpliedCondOperandsHelper(Pred, LHS, RHS,
4791                                     FoundLHS, FoundRHS) ||
4792         // ~x < ~y --> x > y
4793         isImpliedCondOperandsHelper(Pred, LHS, RHS,
4794                                     getNotSCEV(FoundRHS),
4795                                     getNotSCEV(FoundLHS));
4796}
4797
4798/// isImpliedCondOperandsHelper - Test whether the condition described by
4799/// Pred, LHS, and RHS is true whenever the condition desribed by Pred,
4800/// FoundLHS, and FoundRHS is true.
4801bool
4802ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
4803                                             const SCEV *LHS, const SCEV *RHS,
4804                                             const SCEV *FoundLHS,
4805                                             const SCEV *FoundRHS) {
4806  switch (Pred) {
4807  default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4808  case ICmpInst::ICMP_EQ:
4809  case ICmpInst::ICMP_NE:
4810    if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
4811      return true;
4812    break;
4813  case ICmpInst::ICMP_SLT:
4814  case ICmpInst::ICMP_SLE:
4815    if (isKnownPredicate(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
4816        isKnownPredicate(ICmpInst::ICMP_SGE, RHS, FoundRHS))
4817      return true;
4818    break;
4819  case ICmpInst::ICMP_SGT:
4820  case ICmpInst::ICMP_SGE:
4821    if (isKnownPredicate(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
4822        isKnownPredicate(ICmpInst::ICMP_SLE, RHS, FoundRHS))
4823      return true;
4824    break;
4825  case ICmpInst::ICMP_ULT:
4826  case ICmpInst::ICMP_ULE:
4827    if (isKnownPredicate(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
4828        isKnownPredicate(ICmpInst::ICMP_UGE, RHS, FoundRHS))
4829      return true;
4830    break;
4831  case ICmpInst::ICMP_UGT:
4832  case ICmpInst::ICMP_UGE:
4833    if (isKnownPredicate(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
4834        isKnownPredicate(ICmpInst::ICMP_ULE, RHS, FoundRHS))
4835      return true;
4836    break;
4837  }
4838
4839  return false;
4840}
4841
4842/// getBECount - Subtract the end and start values and divide by the step,
4843/// rounding up, to get the number of times the backedge is executed. Return
4844/// CouldNotCompute if an intermediate computation overflows.
4845const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
4846                                        const SCEV *End,
4847                                        const SCEV *Step,
4848                                        bool NoWrap) {
4849  const Type *Ty = Start->getType();
4850  const SCEV *NegOne = getIntegerSCEV(-1, Ty);
4851  const SCEV *Diff = getMinusSCEV(End, Start);
4852  const SCEV *RoundUp = getAddExpr(Step, NegOne);
4853
4854  // Add an adjustment to the difference between End and Start so that
4855  // the division will effectively round up.
4856  const SCEV *Add = getAddExpr(Diff, RoundUp);
4857
4858  if (!NoWrap) {
4859    // Check Add for unsigned overflow.
4860    // TODO: More sophisticated things could be done here.
4861    const Type *WideTy = IntegerType::get(getContext(),
4862                                          getTypeSizeInBits(Ty) + 1);
4863    const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
4864    const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
4865    const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
4866    if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
4867      return getCouldNotCompute();
4868  }
4869
4870  return getUDivExpr(Add, Step);
4871}
4872
4873/// HowManyLessThans - Return the number of times a backedge containing the
4874/// specified less-than comparison will execute.  If not computable, return
4875/// CouldNotCompute.
4876ScalarEvolution::BackedgeTakenInfo
4877ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
4878                                  const Loop *L, bool isSigned) {
4879  // Only handle:  "ADDREC < LoopInvariant".
4880  if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
4881
4882  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
4883  if (!AddRec || AddRec->getLoop() != L)
4884    return getCouldNotCompute();
4885
4886  // Check to see if we have a flag which makes analysis easy.
4887  bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
4888                           AddRec->hasNoUnsignedWrap();
4889
4890  if (AddRec->isAffine()) {
4891    // FORNOW: We only support unit strides.
4892    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
4893    const SCEV *Step = AddRec->getStepRecurrence(*this);
4894
4895    // TODO: handle non-constant strides.
4896    const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
4897    if (!CStep || CStep->isZero())
4898      return getCouldNotCompute();
4899    if (CStep->isOne()) {
4900      // With unit stride, the iteration never steps past the limit value.
4901    } else if (CStep->getValue()->getValue().isStrictlyPositive()) {
4902      if (NoWrap) {
4903        // We know the iteration won't step past the maximum value for its type.
4904        ;
4905      } else if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) {
4906        // Test whether a positive iteration iteration can step past the limit
4907        // value and past the maximum value for its type in a single step.
4908        if (isSigned) {
4909          APInt Max = APInt::getSignedMaxValue(BitWidth);
4910          if ((Max - CStep->getValue()->getValue())
4911                .slt(CLimit->getValue()->getValue()))
4912            return getCouldNotCompute();
4913        } else {
4914          APInt Max = APInt::getMaxValue(BitWidth);
4915          if ((Max - CStep->getValue()->getValue())
4916                .ult(CLimit->getValue()->getValue()))
4917            return getCouldNotCompute();
4918        }
4919      } else
4920        // TODO: handle non-constant limit values below.
4921        return getCouldNotCompute();
4922    } else
4923      // TODO: handle negative strides below.
4924      return getCouldNotCompute();
4925
4926    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
4927    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
4928    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
4929    // treat m-n as signed nor unsigned due to overflow possibility.
4930
4931    // First, we get the value of the LHS in the first iteration: n
4932    const SCEV *Start = AddRec->getOperand(0);
4933
4934    // Determine the minimum constant start value.
4935    const SCEV *MinStart = getConstant(isSigned ?
4936      getSignedRange(Start).getSignedMin() :
4937      getUnsignedRange(Start).getUnsignedMin());
4938
4939    // If we know that the condition is true in order to enter the loop,
4940    // then we know that it will run exactly (m-n)/s times. Otherwise, we
4941    // only know that it will execute (max(m,n)-n)/s times. In both cases,
4942    // the division must round up.
4943    const SCEV *End = RHS;
4944    if (!isLoopGuardedByCond(L,
4945                             isSigned ? ICmpInst::ICMP_SLT :
4946                                        ICmpInst::ICMP_ULT,
4947                             getMinusSCEV(Start, Step), RHS))
4948      End = isSigned ? getSMaxExpr(RHS, Start)
4949                     : getUMaxExpr(RHS, Start);
4950
4951    // Determine the maximum constant end value.
4952    const SCEV *MaxEnd = getConstant(isSigned ?
4953      getSignedRange(End).getSignedMax() :
4954      getUnsignedRange(End).getUnsignedMax());
4955
4956    // Finally, we subtract these two values and divide, rounding up, to get
4957    // the number of times the backedge is executed.
4958    const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
4959
4960    // The maximum backedge count is similar, except using the minimum start
4961    // value and the maximum end value.
4962    const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
4963
4964    return BackedgeTakenInfo(BECount, MaxBECount);
4965  }
4966
4967  return getCouldNotCompute();
4968}
4969
4970/// getNumIterationsInRange - Return the number of iterations of this loop that
4971/// produce values in the specified constant range.  Another way of looking at
4972/// this is that it returns the first iteration number where the value is not in
4973/// the condition, thus computing the exit count. If the iteration count can't
4974/// be computed, an instance of SCEVCouldNotCompute is returned.
4975const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
4976                                                    ScalarEvolution &SE) const {
4977  if (Range.isFullSet())  // Infinite loop.
4978    return SE.getCouldNotCompute();
4979
4980  // If the start is a non-zero constant, shift the range to simplify things.
4981  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
4982    if (!SC->getValue()->isZero()) {
4983      SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
4984      Operands[0] = SE.getIntegerSCEV(0, SC->getType());
4985      const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
4986      if (const SCEVAddRecExpr *ShiftedAddRec =
4987            dyn_cast<SCEVAddRecExpr>(Shifted))
4988        return ShiftedAddRec->getNumIterationsInRange(
4989                           Range.subtract(SC->getValue()->getValue()), SE);
4990      // This is strange and shouldn't happen.
4991      return SE.getCouldNotCompute();
4992    }
4993
4994  // The only time we can solve this is when we have all constant indices.
4995  // Otherwise, we cannot determine the overflow conditions.
4996  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4997    if (!isa<SCEVConstant>(getOperand(i)))
4998      return SE.getCouldNotCompute();
4999
5000
5001  // Okay at this point we know that all elements of the chrec are constants and
5002  // that the start element is zero.
5003
5004  // First check to see if the range contains zero.  If not, the first
5005  // iteration exits.
5006  unsigned BitWidth = SE.getTypeSizeInBits(getType());
5007  if (!Range.contains(APInt(BitWidth, 0)))
5008    return SE.getIntegerSCEV(0, getType());
5009
5010  if (isAffine()) {
5011    // If this is an affine expression then we have this situation:
5012    //   Solve {0,+,A} in Range  ===  Ax in Range
5013
5014    // We know that zero is in the range.  If A is positive then we know that
5015    // the upper value of the range must be the first possible exit value.
5016    // If A is negative then the lower of the range is the last possible loop
5017    // value.  Also note that we already checked for a full range.
5018    APInt One(BitWidth,1);
5019    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5020    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
5021
5022    // The exit value should be (End+A)/A.
5023    APInt ExitVal = (End + A).udiv(A);
5024    ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
5025
5026    // Evaluate at the exit value.  If we really did fall out of the valid
5027    // range, then we computed our trip count, otherwise wrap around or other
5028    // things must have happened.
5029    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
5030    if (Range.contains(Val->getValue()))
5031      return SE.getCouldNotCompute();  // Something strange happened
5032
5033    // Ensure that the previous value is in the range.  This is a sanity check.
5034    assert(Range.contains(
5035           EvaluateConstantChrecAtConstant(this,
5036           ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
5037           "Linear scev computation is off in a bad way!");
5038    return SE.getConstant(ExitValue);
5039  } else if (isQuadratic()) {
5040    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5041    // quadratic equation to solve it.  To do this, we must frame our problem in
5042    // terms of figuring out when zero is crossed, instead of when
5043    // Range.getUpper() is crossed.
5044    SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
5045    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
5046    const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
5047
5048    // Next, solve the constructed addrec
5049    std::pair<const SCEV *,const SCEV *> Roots =
5050      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
5051    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5052    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
5053    if (R1) {
5054      // Pick the smallest positive root value.
5055      if (ConstantInt *CB =
5056          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
5057                         R1->getValue(), R2->getValue()))) {
5058        if (CB->getZExtValue() == false)
5059          std::swap(R1, R2);   // R1 is the minimum root now.
5060
5061        // Make sure the root is not off by one.  The returned iteration should
5062        // not be in the range, but the previous one should be.  When solving
5063        // for "X*X < 5", for example, we should not return a root of 2.
5064        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
5065                                                             R1->getValue(),
5066                                                             SE);
5067        if (Range.contains(R1Val->getValue())) {
5068          // The next iteration must be out of the range...
5069          ConstantInt *NextVal =
5070                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
5071
5072          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5073          if (!Range.contains(R1Val->getValue()))
5074            return SE.getConstant(NextVal);
5075          return SE.getCouldNotCompute();  // Something strange happened
5076        }
5077
5078        // If R1 was not in the range, then it is a good return value.  Make
5079        // sure that R1-1 WAS in the range though, just in case.
5080        ConstantInt *NextVal =
5081               ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
5082        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5083        if (Range.contains(R1Val->getValue()))
5084          return R1;
5085        return SE.getCouldNotCompute();  // Something strange happened
5086      }
5087    }
5088  }
5089
5090  return SE.getCouldNotCompute();
5091}
5092
5093
5094
5095//===----------------------------------------------------------------------===//
5096//                   SCEVCallbackVH Class Implementation
5097//===----------------------------------------------------------------------===//
5098
5099void ScalarEvolution::SCEVCallbackVH::deleted() {
5100  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5101  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5102    SE->ConstantEvolutionLoopExitValue.erase(PN);
5103  SE->Scalars.erase(getValPtr());
5104  // this now dangles!
5105}
5106
5107void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
5108  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5109
5110  // Forget all the expressions associated with users of the old value,
5111  // so that future queries will recompute the expressions using the new
5112  // value.
5113  SmallVector<User *, 16> Worklist;
5114  SmallPtrSet<User *, 8> Visited;
5115  Value *Old = getValPtr();
5116  bool DeleteOld = false;
5117  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5118       UI != UE; ++UI)
5119    Worklist.push_back(*UI);
5120  while (!Worklist.empty()) {
5121    User *U = Worklist.pop_back_val();
5122    // Deleting the Old value will cause this to dangle. Postpone
5123    // that until everything else is done.
5124    if (U == Old) {
5125      DeleteOld = true;
5126      continue;
5127    }
5128    if (!Visited.insert(U))
5129      continue;
5130    if (PHINode *PN = dyn_cast<PHINode>(U))
5131      SE->ConstantEvolutionLoopExitValue.erase(PN);
5132    SE->Scalars.erase(U);
5133    for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5134         UI != UE; ++UI)
5135      Worklist.push_back(*UI);
5136  }
5137  // Delete the Old value if it (indirectly) references itself.
5138  if (DeleteOld) {
5139    if (PHINode *PN = dyn_cast<PHINode>(Old))
5140      SE->ConstantEvolutionLoopExitValue.erase(PN);
5141    SE->Scalars.erase(Old);
5142    // this now dangles!
5143  }
5144  // this may dangle!
5145}
5146
5147ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
5148  : CallbackVH(V), SE(se) {}
5149
5150//===----------------------------------------------------------------------===//
5151//                   ScalarEvolution Class Implementation
5152//===----------------------------------------------------------------------===//
5153
5154FunctionPass *createScalarEvolutionPass() { return new ScalarEvolution(); }
5155
5156ScalarEvolution::ScalarEvolution()
5157  : FunctionPass(&ID) {
5158}
5159
5160bool ScalarEvolution::runOnFunction(Function &F) {
5161  this->F = &F;
5162  LI = &getAnalysis<LoopInfo>();
5163  TD = getAnalysisIfAvailable<TargetData>();
5164  return false;
5165}
5166
5167void ScalarEvolution::releaseMemory() {
5168  Scalars.clear();
5169  BackedgeTakenCounts.clear();
5170  ConstantEvolutionLoopExitValue.clear();
5171  ValuesAtScopes.clear();
5172  UniqueSCEVs.clear();
5173  SCEVAllocator.Reset();
5174}
5175
5176void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5177  AU.setPreservesAll();
5178  AU.addRequiredTransitive<LoopInfo>();
5179}
5180
5181bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
5182  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
5183}
5184
5185static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
5186                          const Loop *L) {
5187  // Print all inner loops first
5188  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5189    PrintLoopInfo(OS, SE, *I);
5190
5191  OS << "Loop " << L->getHeader()->getName() << ": ";
5192
5193  SmallVector<BasicBlock*, 8> ExitBlocks;
5194  L->getExitBlocks(ExitBlocks);
5195  if (ExitBlocks.size() != 1)
5196    OS << "<multiple exits> ";
5197
5198  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5199    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
5200  } else {
5201    OS << "Unpredictable backedge-taken count. ";
5202  }
5203
5204  OS << "\n";
5205  OS << "Loop " << L->getHeader()->getName() << ": ";
5206
5207  if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5208    OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5209  } else {
5210    OS << "Unpredictable max backedge-taken count. ";
5211  }
5212
5213  OS << "\n";
5214}
5215
5216void ScalarEvolution::print(raw_ostream &OS, const Module* ) const {
5217  // ScalarEvolution's implementaiton of the print method is to print
5218  // out SCEV values of all instructions that are interesting. Doing
5219  // this potentially causes it to create new SCEV objects though,
5220  // which technically conflicts with the const qualifier. This isn't
5221  // observable from outside the class though, so casting away the
5222  // const isn't dangerous.
5223  ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this);
5224
5225  OS << "Classifying expressions for: " << F->getName() << "\n";
5226  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
5227    if (isSCEVable(I->getType())) {
5228      OS << *I << '\n';
5229      OS << "  -->  ";
5230      const SCEV *SV = SE.getSCEV(&*I);
5231      SV->print(OS);
5232
5233      const Loop *L = LI->getLoopFor((*I).getParent());
5234
5235      const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
5236      if (AtUse != SV) {
5237        OS << "  -->  ";
5238        AtUse->print(OS);
5239      }
5240
5241      if (L) {
5242        OS << "\t\t" "Exits: ";
5243        const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
5244        if (!ExitValue->isLoopInvariant(L)) {
5245          OS << "<<Unknown>>";
5246        } else {
5247          OS << *ExitValue;
5248        }
5249      }
5250
5251      OS << "\n";
5252    }
5253
5254  OS << "Determining loop execution counts for: " << F->getName() << "\n";
5255  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5256    PrintLoopInfo(OS, &SE, *I);
5257}
5258
5259