ScalarEvolution.cpp revision 308bec390f4e6cba04ae06e2ca1a274c91a14f41
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
19//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression.  These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
30//
31// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
35// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42//  Chains of recurrences -- a method to expedite the evaluation
43//  of closed-form functions
44//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46//  On computational properties of chains of recurrences
47//  Eugene V. Zima
48//
49//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50//  Robert A. van Engelen
51//
52//  Efficient Symbolic Analysis for Optimizing Compilers
53//  Robert A. van Engelen
54//
55//  Using the chains of recurrences algebra for data dependence testing and
56//  induction variable substitution
57//  MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
61#define DEBUG_TYPE "scalar-evolution"
62#include "llvm/Analysis/ScalarEvolutionExpressions.h"
63#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
65#include "llvm/GlobalVariable.h"
66#include "llvm/GlobalAlias.h"
67#include "llvm/Instructions.h"
68#include "llvm/LLVMContext.h"
69#include "llvm/Operator.h"
70#include "llvm/Analysis/ConstantFolding.h"
71#include "llvm/Analysis/Dominators.h"
72#include "llvm/Analysis/InstructionSimplify.h"
73#include "llvm/Analysis/LoopInfo.h"
74#include "llvm/Analysis/ValueTracking.h"
75#include "llvm/Assembly/Writer.h"
76#include "llvm/Target/TargetData.h"
77#include "llvm/Support/CommandLine.h"
78#include "llvm/Support/ConstantRange.h"
79#include "llvm/Support/Debug.h"
80#include "llvm/Support/ErrorHandling.h"
81#include "llvm/Support/GetElementPtrTypeIterator.h"
82#include "llvm/Support/InstIterator.h"
83#include "llvm/Support/MathExtras.h"
84#include "llvm/Support/raw_ostream.h"
85#include "llvm/ADT/Statistic.h"
86#include "llvm/ADT/STLExtras.h"
87#include "llvm/ADT/SmallPtrSet.h"
88#include <algorithm>
89using namespace llvm;
90
91STATISTIC(NumArrayLenItCounts,
92          "Number of trip counts computed with array length");
93STATISTIC(NumTripCountsComputed,
94          "Number of loops with predictable loop counts");
95STATISTIC(NumTripCountsNotComputed,
96          "Number of loops without predictable loop counts");
97STATISTIC(NumBruteForceTripCountsComputed,
98          "Number of loops with trip counts computed by force");
99
100static cl::opt<unsigned>
101MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
102                        cl::desc("Maximum number of iterations SCEV will "
103                                 "symbolically execute a constant "
104                                 "derived loop"),
105                        cl::init(100));
106
107INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
108                "Scalar Evolution Analysis", false, true)
109INITIALIZE_PASS_DEPENDENCY(LoopInfo)
110INITIALIZE_PASS_DEPENDENCY(DominatorTree)
111INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
112                "Scalar Evolution Analysis", false, true)
113char ScalarEvolution::ID = 0;
114
115//===----------------------------------------------------------------------===//
116//                           SCEV class definitions
117//===----------------------------------------------------------------------===//
118
119//===----------------------------------------------------------------------===//
120// Implementation of the SCEV class.
121//
122
123void SCEV::dump() const {
124  print(dbgs());
125  dbgs() << '\n';
126}
127
128void SCEV::print(raw_ostream &OS) const {
129  switch (getSCEVType()) {
130  case scConstant:
131    WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
132    return;
133  case scTruncate: {
134    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
135    const SCEV *Op = Trunc->getOperand();
136    OS << "(trunc " << *Op->getType() << " " << *Op << " to "
137       << *Trunc->getType() << ")";
138    return;
139  }
140  case scZeroExtend: {
141    const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
142    const SCEV *Op = ZExt->getOperand();
143    OS << "(zext " << *Op->getType() << " " << *Op << " to "
144       << *ZExt->getType() << ")";
145    return;
146  }
147  case scSignExtend: {
148    const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
149    const SCEV *Op = SExt->getOperand();
150    OS << "(sext " << *Op->getType() << " " << *Op << " to "
151       << *SExt->getType() << ")";
152    return;
153  }
154  case scAddRecExpr: {
155    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
156    OS << "{" << *AR->getOperand(0);
157    for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
158      OS << ",+," << *AR->getOperand(i);
159    OS << "}<";
160    if (AR->getNoWrapFlags(FlagNUW))
161      OS << "nuw><";
162    if (AR->getNoWrapFlags(FlagNSW))
163      OS << "nsw><";
164    if (AR->getNoWrapFlags(FlagNW) &&
165        !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
166      OS << "nw><";
167    WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
168    OS << ">";
169    return;
170  }
171  case scAddExpr:
172  case scMulExpr:
173  case scUMaxExpr:
174  case scSMaxExpr: {
175    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
176    const char *OpStr = 0;
177    switch (NAry->getSCEVType()) {
178    case scAddExpr: OpStr = " + "; break;
179    case scMulExpr: OpStr = " * "; break;
180    case scUMaxExpr: OpStr = " umax "; break;
181    case scSMaxExpr: OpStr = " smax "; break;
182    }
183    OS << "(";
184    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
185         I != E; ++I) {
186      OS << **I;
187      if (llvm::next(I) != E)
188        OS << OpStr;
189    }
190    OS << ")";
191    return;
192  }
193  case scUDivExpr: {
194    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
195    OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
196    return;
197  }
198  case scUnknown: {
199    const SCEVUnknown *U = cast<SCEVUnknown>(this);
200    const Type *AllocTy;
201    if (U->isSizeOf(AllocTy)) {
202      OS << "sizeof(" << *AllocTy << ")";
203      return;
204    }
205    if (U->isAlignOf(AllocTy)) {
206      OS << "alignof(" << *AllocTy << ")";
207      return;
208    }
209
210    const Type *CTy;
211    Constant *FieldNo;
212    if (U->isOffsetOf(CTy, FieldNo)) {
213      OS << "offsetof(" << *CTy << ", ";
214      WriteAsOperand(OS, FieldNo, false);
215      OS << ")";
216      return;
217    }
218
219    // Otherwise just print it normally.
220    WriteAsOperand(OS, U->getValue(), false);
221    return;
222  }
223  case scCouldNotCompute:
224    OS << "***COULDNOTCOMPUTE***";
225    return;
226  default: break;
227  }
228  llvm_unreachable("Unknown SCEV kind!");
229}
230
231const Type *SCEV::getType() const {
232  switch (getSCEVType()) {
233  case scConstant:
234    return cast<SCEVConstant>(this)->getType();
235  case scTruncate:
236  case scZeroExtend:
237  case scSignExtend:
238    return cast<SCEVCastExpr>(this)->getType();
239  case scAddRecExpr:
240  case scMulExpr:
241  case scUMaxExpr:
242  case scSMaxExpr:
243    return cast<SCEVNAryExpr>(this)->getType();
244  case scAddExpr:
245    return cast<SCEVAddExpr>(this)->getType();
246  case scUDivExpr:
247    return cast<SCEVUDivExpr>(this)->getType();
248  case scUnknown:
249    return cast<SCEVUnknown>(this)->getType();
250  case scCouldNotCompute:
251    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
252    return 0;
253  default: break;
254  }
255  llvm_unreachable("Unknown SCEV kind!");
256  return 0;
257}
258
259bool SCEV::isZero() const {
260  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
261    return SC->getValue()->isZero();
262  return false;
263}
264
265bool SCEV::isOne() const {
266  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
267    return SC->getValue()->isOne();
268  return false;
269}
270
271bool SCEV::isAllOnesValue() const {
272  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
273    return SC->getValue()->isAllOnesValue();
274  return false;
275}
276
277SCEVCouldNotCompute::SCEVCouldNotCompute() :
278  SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
279
280bool SCEVCouldNotCompute::classof(const SCEV *S) {
281  return S->getSCEVType() == scCouldNotCompute;
282}
283
284const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
285  FoldingSetNodeID ID;
286  ID.AddInteger(scConstant);
287  ID.AddPointer(V);
288  void *IP = 0;
289  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
290  SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
291  UniqueSCEVs.InsertNode(S, IP);
292  return S;
293}
294
295const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
296  return getConstant(ConstantInt::get(getContext(), Val));
297}
298
299const SCEV *
300ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
301  const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
302  return getConstant(ConstantInt::get(ITy, V, isSigned));
303}
304
305SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
306                           unsigned SCEVTy, const SCEV *op, const Type *ty)
307  : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
308
309SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
310                                   const SCEV *op, const Type *ty)
311  : SCEVCastExpr(ID, scTruncate, op, ty) {
312  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
313         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
314         "Cannot truncate non-integer value!");
315}
316
317SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
318                                       const SCEV *op, const Type *ty)
319  : SCEVCastExpr(ID, scZeroExtend, op, ty) {
320  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
321         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
322         "Cannot zero extend non-integer value!");
323}
324
325SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
326                                       const SCEV *op, const Type *ty)
327  : SCEVCastExpr(ID, scSignExtend, op, ty) {
328  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
329         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
330         "Cannot sign extend non-integer value!");
331}
332
333void SCEVUnknown::deleted() {
334  // Clear this SCEVUnknown from various maps.
335  SE->forgetMemoizedResults(this);
336
337  // Remove this SCEVUnknown from the uniquing map.
338  SE->UniqueSCEVs.RemoveNode(this);
339
340  // Release the value.
341  setValPtr(0);
342}
343
344void SCEVUnknown::allUsesReplacedWith(Value *New) {
345  // Clear this SCEVUnknown from various maps.
346  SE->forgetMemoizedResults(this);
347
348  // Remove this SCEVUnknown from the uniquing map.
349  SE->UniqueSCEVs.RemoveNode(this);
350
351  // Update this SCEVUnknown to point to the new value. This is needed
352  // because there may still be outstanding SCEVs which still point to
353  // this SCEVUnknown.
354  setValPtr(New);
355}
356
357bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
358  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
359    if (VCE->getOpcode() == Instruction::PtrToInt)
360      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
361        if (CE->getOpcode() == Instruction::GetElementPtr &&
362            CE->getOperand(0)->isNullValue() &&
363            CE->getNumOperands() == 2)
364          if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
365            if (CI->isOne()) {
366              AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
367                                 ->getElementType();
368              return true;
369            }
370
371  return false;
372}
373
374bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
375  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
376    if (VCE->getOpcode() == Instruction::PtrToInt)
377      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
378        if (CE->getOpcode() == Instruction::GetElementPtr &&
379            CE->getOperand(0)->isNullValue()) {
380          const Type *Ty =
381            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
382          if (const StructType *STy = dyn_cast<StructType>(Ty))
383            if (!STy->isPacked() &&
384                CE->getNumOperands() == 3 &&
385                CE->getOperand(1)->isNullValue()) {
386              if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
387                if (CI->isOne() &&
388                    STy->getNumElements() == 2 &&
389                    STy->getElementType(0)->isIntegerTy(1)) {
390                  AllocTy = STy->getElementType(1);
391                  return true;
392                }
393            }
394        }
395
396  return false;
397}
398
399bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
400  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
401    if (VCE->getOpcode() == Instruction::PtrToInt)
402      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
403        if (CE->getOpcode() == Instruction::GetElementPtr &&
404            CE->getNumOperands() == 3 &&
405            CE->getOperand(0)->isNullValue() &&
406            CE->getOperand(1)->isNullValue()) {
407          const Type *Ty =
408            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
409          // Ignore vector types here so that ScalarEvolutionExpander doesn't
410          // emit getelementptrs that index into vectors.
411          if (Ty->isStructTy() || Ty->isArrayTy()) {
412            CTy = Ty;
413            FieldNo = CE->getOperand(2);
414            return true;
415          }
416        }
417
418  return false;
419}
420
421//===----------------------------------------------------------------------===//
422//                               SCEV Utilities
423//===----------------------------------------------------------------------===//
424
425namespace {
426  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
427  /// than the complexity of the RHS.  This comparator is used to canonicalize
428  /// expressions.
429  class SCEVComplexityCompare {
430    const LoopInfo *const LI;
431  public:
432    explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
433
434    // Return true or false if LHS is less than, or at least RHS, respectively.
435    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
436      return compare(LHS, RHS) < 0;
437    }
438
439    // Return negative, zero, or positive, if LHS is less than, equal to, or
440    // greater than RHS, respectively. A three-way result allows recursive
441    // comparisons to be more efficient.
442    int compare(const SCEV *LHS, const SCEV *RHS) const {
443      // Fast-path: SCEVs are uniqued so we can do a quick equality check.
444      if (LHS == RHS)
445        return 0;
446
447      // Primarily, sort the SCEVs by their getSCEVType().
448      unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
449      if (LType != RType)
450        return (int)LType - (int)RType;
451
452      // Aside from the getSCEVType() ordering, the particular ordering
453      // isn't very important except that it's beneficial to be consistent,
454      // so that (a + b) and (b + a) don't end up as different expressions.
455      switch (LType) {
456      case scUnknown: {
457        const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
458        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
459
460        // Sort SCEVUnknown values with some loose heuristics. TODO: This is
461        // not as complete as it could be.
462        const Value *LV = LU->getValue(), *RV = RU->getValue();
463
464        // Order pointer values after integer values. This helps SCEVExpander
465        // form GEPs.
466        bool LIsPointer = LV->getType()->isPointerTy(),
467             RIsPointer = RV->getType()->isPointerTy();
468        if (LIsPointer != RIsPointer)
469          return (int)LIsPointer - (int)RIsPointer;
470
471        // Compare getValueID values.
472        unsigned LID = LV->getValueID(),
473                 RID = RV->getValueID();
474        if (LID != RID)
475          return (int)LID - (int)RID;
476
477        // Sort arguments by their position.
478        if (const Argument *LA = dyn_cast<Argument>(LV)) {
479          const Argument *RA = cast<Argument>(RV);
480          unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
481          return (int)LArgNo - (int)RArgNo;
482        }
483
484        // For instructions, compare their loop depth, and their operand
485        // count.  This is pretty loose.
486        if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
487          const Instruction *RInst = cast<Instruction>(RV);
488
489          // Compare loop depths.
490          const BasicBlock *LParent = LInst->getParent(),
491                           *RParent = RInst->getParent();
492          if (LParent != RParent) {
493            unsigned LDepth = LI->getLoopDepth(LParent),
494                     RDepth = LI->getLoopDepth(RParent);
495            if (LDepth != RDepth)
496              return (int)LDepth - (int)RDepth;
497          }
498
499          // Compare the number of operands.
500          unsigned LNumOps = LInst->getNumOperands(),
501                   RNumOps = RInst->getNumOperands();
502          return (int)LNumOps - (int)RNumOps;
503        }
504
505        return 0;
506      }
507
508      case scConstant: {
509        const SCEVConstant *LC = cast<SCEVConstant>(LHS);
510        const SCEVConstant *RC = cast<SCEVConstant>(RHS);
511
512        // Compare constant values.
513        const APInt &LA = LC->getValue()->getValue();
514        const APInt &RA = RC->getValue()->getValue();
515        unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
516        if (LBitWidth != RBitWidth)
517          return (int)LBitWidth - (int)RBitWidth;
518        return LA.ult(RA) ? -1 : 1;
519      }
520
521      case scAddRecExpr: {
522        const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
523        const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
524
525        // Compare addrec loop depths.
526        const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
527        if (LLoop != RLoop) {
528          unsigned LDepth = LLoop->getLoopDepth(),
529                   RDepth = RLoop->getLoopDepth();
530          if (LDepth != RDepth)
531            return (int)LDepth - (int)RDepth;
532        }
533
534        // Addrec complexity grows with operand count.
535        unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
536        if (LNumOps != RNumOps)
537          return (int)LNumOps - (int)RNumOps;
538
539        // Lexicographically compare.
540        for (unsigned i = 0; i != LNumOps; ++i) {
541          long X = compare(LA->getOperand(i), RA->getOperand(i));
542          if (X != 0)
543            return X;
544        }
545
546        return 0;
547      }
548
549      case scAddExpr:
550      case scMulExpr:
551      case scSMaxExpr:
552      case scUMaxExpr: {
553        const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
554        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
555
556        // Lexicographically compare n-ary expressions.
557        unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
558        for (unsigned i = 0; i != LNumOps; ++i) {
559          if (i >= RNumOps)
560            return 1;
561          long X = compare(LC->getOperand(i), RC->getOperand(i));
562          if (X != 0)
563            return X;
564        }
565        return (int)LNumOps - (int)RNumOps;
566      }
567
568      case scUDivExpr: {
569        const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
570        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
571
572        // Lexicographically compare udiv expressions.
573        long X = compare(LC->getLHS(), RC->getLHS());
574        if (X != 0)
575          return X;
576        return compare(LC->getRHS(), RC->getRHS());
577      }
578
579      case scTruncate:
580      case scZeroExtend:
581      case scSignExtend: {
582        const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
583        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
584
585        // Compare cast expressions by operand.
586        return compare(LC->getOperand(), RC->getOperand());
587      }
588
589      default:
590        break;
591      }
592
593      llvm_unreachable("Unknown SCEV kind!");
594      return 0;
595    }
596  };
597}
598
599/// GroupByComplexity - Given a list of SCEV objects, order them by their
600/// complexity, and group objects of the same complexity together by value.
601/// When this routine is finished, we know that any duplicates in the vector are
602/// consecutive and that complexity is monotonically increasing.
603///
604/// Note that we go take special precautions to ensure that we get deterministic
605/// results from this routine.  In other words, we don't want the results of
606/// this to depend on where the addresses of various SCEV objects happened to
607/// land in memory.
608///
609static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
610                              LoopInfo *LI) {
611  if (Ops.size() < 2) return;  // Noop
612  if (Ops.size() == 2) {
613    // This is the common case, which also happens to be trivially simple.
614    // Special case it.
615    const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
616    if (SCEVComplexityCompare(LI)(RHS, LHS))
617      std::swap(LHS, RHS);
618    return;
619  }
620
621  // Do the rough sort by complexity.
622  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
623
624  // Now that we are sorted by complexity, group elements of the same
625  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
626  // be extremely short in practice.  Note that we take this approach because we
627  // do not want to depend on the addresses of the objects we are grouping.
628  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
629    const SCEV *S = Ops[i];
630    unsigned Complexity = S->getSCEVType();
631
632    // If there are any objects of the same complexity and same value as this
633    // one, group them.
634    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
635      if (Ops[j] == S) { // Found a duplicate.
636        // Move it to immediately after i'th element.
637        std::swap(Ops[i+1], Ops[j]);
638        ++i;   // no need to rescan it.
639        if (i == e-2) return;  // Done!
640      }
641    }
642  }
643}
644
645
646
647//===----------------------------------------------------------------------===//
648//                      Simple SCEV method implementations
649//===----------------------------------------------------------------------===//
650
651/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
652/// Assume, K > 0.
653static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
654                                       ScalarEvolution &SE,
655                                       const Type* ResultTy) {
656  // Handle the simplest case efficiently.
657  if (K == 1)
658    return SE.getTruncateOrZeroExtend(It, ResultTy);
659
660  // We are using the following formula for BC(It, K):
661  //
662  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
663  //
664  // Suppose, W is the bitwidth of the return value.  We must be prepared for
665  // overflow.  Hence, we must assure that the result of our computation is
666  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
667  // safe in modular arithmetic.
668  //
669  // However, this code doesn't use exactly that formula; the formula it uses
670  // is something like the following, where T is the number of factors of 2 in
671  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
672  // exponentiation:
673  //
674  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
675  //
676  // This formula is trivially equivalent to the previous formula.  However,
677  // this formula can be implemented much more efficiently.  The trick is that
678  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
679  // arithmetic.  To do exact division in modular arithmetic, all we have
680  // to do is multiply by the inverse.  Therefore, this step can be done at
681  // width W.
682  //
683  // The next issue is how to safely do the division by 2^T.  The way this
684  // is done is by doing the multiplication step at a width of at least W + T
685  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
686  // when we perform the division by 2^T (which is equivalent to a right shift
687  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
688  // truncated out after the division by 2^T.
689  //
690  // In comparison to just directly using the first formula, this technique
691  // is much more efficient; using the first formula requires W * K bits,
692  // but this formula less than W + K bits. Also, the first formula requires
693  // a division step, whereas this formula only requires multiplies and shifts.
694  //
695  // It doesn't matter whether the subtraction step is done in the calculation
696  // width or the input iteration count's width; if the subtraction overflows,
697  // the result must be zero anyway.  We prefer here to do it in the width of
698  // the induction variable because it helps a lot for certain cases; CodeGen
699  // isn't smart enough to ignore the overflow, which leads to much less
700  // efficient code if the width of the subtraction is wider than the native
701  // register width.
702  //
703  // (It's possible to not widen at all by pulling out factors of 2 before
704  // the multiplication; for example, K=2 can be calculated as
705  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
706  // extra arithmetic, so it's not an obvious win, and it gets
707  // much more complicated for K > 3.)
708
709  // Protection from insane SCEVs; this bound is conservative,
710  // but it probably doesn't matter.
711  if (K > 1000)
712    return SE.getCouldNotCompute();
713
714  unsigned W = SE.getTypeSizeInBits(ResultTy);
715
716  // Calculate K! / 2^T and T; we divide out the factors of two before
717  // multiplying for calculating K! / 2^T to avoid overflow.
718  // Other overflow doesn't matter because we only care about the bottom
719  // W bits of the result.
720  APInt OddFactorial(W, 1);
721  unsigned T = 1;
722  for (unsigned i = 3; i <= K; ++i) {
723    APInt Mult(W, i);
724    unsigned TwoFactors = Mult.countTrailingZeros();
725    T += TwoFactors;
726    Mult = Mult.lshr(TwoFactors);
727    OddFactorial *= Mult;
728  }
729
730  // We need at least W + T bits for the multiplication step
731  unsigned CalculationBits = W + T;
732
733  // Calculate 2^T, at width T+W.
734  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
735
736  // Calculate the multiplicative inverse of K! / 2^T;
737  // this multiplication factor will perform the exact division by
738  // K! / 2^T.
739  APInt Mod = APInt::getSignedMinValue(W+1);
740  APInt MultiplyFactor = OddFactorial.zext(W+1);
741  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
742  MultiplyFactor = MultiplyFactor.trunc(W);
743
744  // Calculate the product, at width T+W
745  const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
746                                                      CalculationBits);
747  const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
748  for (unsigned i = 1; i != K; ++i) {
749    const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
750    Dividend = SE.getMulExpr(Dividend,
751                             SE.getTruncateOrZeroExtend(S, CalculationTy));
752  }
753
754  // Divide by 2^T
755  const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
756
757  // Truncate the result, and divide by K! / 2^T.
758
759  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
760                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
761}
762
763/// evaluateAtIteration - Return the value of this chain of recurrences at
764/// the specified iteration number.  We can evaluate this recurrence by
765/// multiplying each element in the chain by the binomial coefficient
766/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
767///
768///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
769///
770/// where BC(It, k) stands for binomial coefficient.
771///
772const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
773                                                ScalarEvolution &SE) const {
774  const SCEV *Result = getStart();
775  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
776    // The computation is correct in the face of overflow provided that the
777    // multiplication is performed _after_ the evaluation of the binomial
778    // coefficient.
779    const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
780    if (isa<SCEVCouldNotCompute>(Coeff))
781      return Coeff;
782
783    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
784  }
785  return Result;
786}
787
788//===----------------------------------------------------------------------===//
789//                    SCEV Expression folder implementations
790//===----------------------------------------------------------------------===//
791
792const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
793                                             const Type *Ty) {
794  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
795         "This is not a truncating conversion!");
796  assert(isSCEVable(Ty) &&
797         "This is not a conversion to a SCEVable type!");
798  Ty = getEffectiveSCEVType(Ty);
799
800  FoldingSetNodeID ID;
801  ID.AddInteger(scTruncate);
802  ID.AddPointer(Op);
803  ID.AddPointer(Ty);
804  void *IP = 0;
805  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
806
807  // Fold if the operand is constant.
808  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
809    return getConstant(
810      cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
811                                               getEffectiveSCEVType(Ty))));
812
813  // trunc(trunc(x)) --> trunc(x)
814  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
815    return getTruncateExpr(ST->getOperand(), Ty);
816
817  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
818  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
819    return getTruncateOrSignExtend(SS->getOperand(), Ty);
820
821  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
822  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
823    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
824
825  // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
826  // eliminate all the truncates.
827  if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
828    SmallVector<const SCEV *, 4> Operands;
829    bool hasTrunc = false;
830    for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
831      const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
832      hasTrunc = isa<SCEVTruncateExpr>(S);
833      Operands.push_back(S);
834    }
835    if (!hasTrunc)
836      return getAddExpr(Operands);
837    UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
838  }
839
840  // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
841  // eliminate all the truncates.
842  if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
843    SmallVector<const SCEV *, 4> Operands;
844    bool hasTrunc = false;
845    for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
846      const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
847      hasTrunc = isa<SCEVTruncateExpr>(S);
848      Operands.push_back(S);
849    }
850    if (!hasTrunc)
851      return getMulExpr(Operands);
852    UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
853  }
854
855  // If the input value is a chrec scev, truncate the chrec's operands.
856  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
857    SmallVector<const SCEV *, 4> Operands;
858    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
859      Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
860    return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
861  }
862
863  // As a special case, fold trunc(undef) to undef. We don't want to
864  // know too much about SCEVUnknowns, but this special case is handy
865  // and harmless.
866  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
867    if (isa<UndefValue>(U->getValue()))
868      return getSCEV(UndefValue::get(Ty));
869
870  // The cast wasn't folded; create an explicit cast node. We can reuse
871  // the existing insert position since if we get here, we won't have
872  // made any changes which would invalidate it.
873  SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
874                                                 Op, Ty);
875  UniqueSCEVs.InsertNode(S, IP);
876  return S;
877}
878
879const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
880                                               const Type *Ty) {
881  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
882         "This is not an extending conversion!");
883  assert(isSCEVable(Ty) &&
884         "This is not a conversion to a SCEVable type!");
885  Ty = getEffectiveSCEVType(Ty);
886
887  // Fold if the operand is constant.
888  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
889    return getConstant(
890      cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
891                                              getEffectiveSCEVType(Ty))));
892
893  // zext(zext(x)) --> zext(x)
894  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
895    return getZeroExtendExpr(SZ->getOperand(), Ty);
896
897  // Before doing any expensive analysis, check to see if we've already
898  // computed a SCEV for this Op and Ty.
899  FoldingSetNodeID ID;
900  ID.AddInteger(scZeroExtend);
901  ID.AddPointer(Op);
902  ID.AddPointer(Ty);
903  void *IP = 0;
904  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
905
906  // zext(trunc(x)) --> zext(x) or x or trunc(x)
907  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
908    // It's possible the bits taken off by the truncate were all zero bits. If
909    // so, we should be able to simplify this further.
910    const SCEV *X = ST->getOperand();
911    ConstantRange CR = getUnsignedRange(X);
912    unsigned TruncBits = getTypeSizeInBits(ST->getType());
913    unsigned NewBits = getTypeSizeInBits(Ty);
914    if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
915            CR.zextOrTrunc(NewBits)))
916      return getTruncateOrZeroExtend(X, Ty);
917  }
918
919  // If the input value is a chrec scev, and we can prove that the value
920  // did not overflow the old, smaller, value, we can zero extend all of the
921  // operands (often constants).  This allows analysis of something like
922  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
923  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
924    if (AR->isAffine()) {
925      const SCEV *Start = AR->getStart();
926      const SCEV *Step = AR->getStepRecurrence(*this);
927      unsigned BitWidth = getTypeSizeInBits(AR->getType());
928      const Loop *L = AR->getLoop();
929
930      // If we have special knowledge that this addrec won't overflow,
931      // we don't need to do any further analysis.
932      if (AR->getNoWrapFlags(SCEV::FlagNUW))
933        return getAddRecExpr(getZeroExtendExpr(Start, Ty),
934                             getZeroExtendExpr(Step, Ty),
935                             L, AR->getNoWrapFlags());
936
937      // Check whether the backedge-taken count is SCEVCouldNotCompute.
938      // Note that this serves two purposes: It filters out loops that are
939      // simply not analyzable, and it covers the case where this code is
940      // being called from within backedge-taken count analysis, such that
941      // attempting to ask for the backedge-taken count would likely result
942      // in infinite recursion. In the later case, the analysis code will
943      // cope with a conservative value, and it will take care to purge
944      // that value once it has finished.
945      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
946      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
947        // Manually compute the final value for AR, checking for
948        // overflow.
949
950        // Check whether the backedge-taken count can be losslessly casted to
951        // the addrec's type. The count is always unsigned.
952        const SCEV *CastedMaxBECount =
953          getTruncateOrZeroExtend(MaxBECount, Start->getType());
954        const SCEV *RecastedMaxBECount =
955          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
956        if (MaxBECount == RecastedMaxBECount) {
957          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
958          // Check whether Start+Step*MaxBECount has no unsigned overflow.
959          const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
960          const SCEV *Add = getAddExpr(Start, ZMul);
961          const SCEV *OperandExtendedAdd =
962            getAddExpr(getZeroExtendExpr(Start, WideTy),
963                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
964                                  getZeroExtendExpr(Step, WideTy)));
965          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) {
966            // Cache knowledge of AR NUW, which is propagated to this AddRec.
967            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
968            // Return the expression with the addrec on the outside.
969            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
970                                 getZeroExtendExpr(Step, Ty),
971                                 L, AR->getNoWrapFlags());
972          }
973          // Similar to above, only this time treat the step value as signed.
974          // This covers loops that count down.
975          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
976          Add = getAddExpr(Start, SMul);
977          OperandExtendedAdd =
978            getAddExpr(getZeroExtendExpr(Start, WideTy),
979                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
980                                  getSignExtendExpr(Step, WideTy)));
981          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) {
982            // Cache knowledge of AR NW, which is propagated to this AddRec.
983            // Negative step causes unsigned wrap, but it still can't self-wrap.
984            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
985            // Return the expression with the addrec on the outside.
986            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
987                                 getSignExtendExpr(Step, Ty),
988                                 L, AR->getNoWrapFlags());
989          }
990        }
991
992        // If the backedge is guarded by a comparison with the pre-inc value
993        // the addrec is safe. Also, if the entry is guarded by a comparison
994        // with the start value and the backedge is guarded by a comparison
995        // with the post-inc value, the addrec is safe.
996        if (isKnownPositive(Step)) {
997          const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
998                                      getUnsignedRange(Step).getUnsignedMax());
999          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1000              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1001               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1002                                           AR->getPostIncExpr(*this), N))) {
1003            // Cache knowledge of AR NUW, which is propagated to this AddRec.
1004            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1005            // Return the expression with the addrec on the outside.
1006            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1007                                 getZeroExtendExpr(Step, Ty),
1008                                 L, AR->getNoWrapFlags());
1009          }
1010        } else if (isKnownNegative(Step)) {
1011          const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1012                                      getSignedRange(Step).getSignedMin());
1013          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1014              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1015               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1016                                           AR->getPostIncExpr(*this), N))) {
1017            // Cache knowledge of AR NW, which is propagated to this AddRec.
1018            // Negative step causes unsigned wrap, but it still can't self-wrap.
1019            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1020            // Return the expression with the addrec on the outside.
1021            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1022                                 getSignExtendExpr(Step, Ty),
1023                                 L, AR->getNoWrapFlags());
1024          }
1025        }
1026      }
1027    }
1028
1029  // The cast wasn't folded; create an explicit cast node.
1030  // Recompute the insert position, as it may have been invalidated.
1031  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1032  SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1033                                                   Op, Ty);
1034  UniqueSCEVs.InsertNode(S, IP);
1035  return S;
1036}
1037
1038const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1039                                               const Type *Ty) {
1040  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1041         "This is not an extending conversion!");
1042  assert(isSCEVable(Ty) &&
1043         "This is not a conversion to a SCEVable type!");
1044  Ty = getEffectiveSCEVType(Ty);
1045
1046  // Fold if the operand is constant.
1047  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1048    return getConstant(
1049      cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1050                                              getEffectiveSCEVType(Ty))));
1051
1052  // sext(sext(x)) --> sext(x)
1053  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1054    return getSignExtendExpr(SS->getOperand(), Ty);
1055
1056  // sext(zext(x)) --> zext(x)
1057  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1058    return getZeroExtendExpr(SZ->getOperand(), Ty);
1059
1060  // Before doing any expensive analysis, check to see if we've already
1061  // computed a SCEV for this Op and Ty.
1062  FoldingSetNodeID ID;
1063  ID.AddInteger(scSignExtend);
1064  ID.AddPointer(Op);
1065  ID.AddPointer(Ty);
1066  void *IP = 0;
1067  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1068
1069  // If the input value is provably positive, build a zext instead.
1070  if (isKnownNonNegative(Op))
1071    return getZeroExtendExpr(Op, Ty);
1072
1073  // sext(trunc(x)) --> sext(x) or x or trunc(x)
1074  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1075    // It's possible the bits taken off by the truncate were all sign bits. If
1076    // so, we should be able to simplify this further.
1077    const SCEV *X = ST->getOperand();
1078    ConstantRange CR = getSignedRange(X);
1079    unsigned TruncBits = getTypeSizeInBits(ST->getType());
1080    unsigned NewBits = getTypeSizeInBits(Ty);
1081    if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1082            CR.sextOrTrunc(NewBits)))
1083      return getTruncateOrSignExtend(X, Ty);
1084  }
1085
1086  // If the input value is a chrec scev, and we can prove that the value
1087  // did not overflow the old, smaller, value, we can sign extend all of the
1088  // operands (often constants).  This allows analysis of something like
1089  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1090  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1091    if (AR->isAffine()) {
1092      const SCEV *Start = AR->getStart();
1093      const SCEV *Step = AR->getStepRecurrence(*this);
1094      unsigned BitWidth = getTypeSizeInBits(AR->getType());
1095      const Loop *L = AR->getLoop();
1096
1097      // If we have special knowledge that this addrec won't overflow,
1098      // we don't need to do any further analysis.
1099      if (AR->getNoWrapFlags(SCEV::FlagNSW))
1100        return getAddRecExpr(getSignExtendExpr(Start, Ty),
1101                             getSignExtendExpr(Step, Ty),
1102                             L, SCEV::FlagNSW);
1103
1104      // Check whether the backedge-taken count is SCEVCouldNotCompute.
1105      // Note that this serves two purposes: It filters out loops that are
1106      // simply not analyzable, and it covers the case where this code is
1107      // being called from within backedge-taken count analysis, such that
1108      // attempting to ask for the backedge-taken count would likely result
1109      // in infinite recursion. In the later case, the analysis code will
1110      // cope with a conservative value, and it will take care to purge
1111      // that value once it has finished.
1112      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1113      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1114        // Manually compute the final value for AR, checking for
1115        // overflow.
1116
1117        // Check whether the backedge-taken count can be losslessly casted to
1118        // the addrec's type. The count is always unsigned.
1119        const SCEV *CastedMaxBECount =
1120          getTruncateOrZeroExtend(MaxBECount, Start->getType());
1121        const SCEV *RecastedMaxBECount =
1122          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1123        if (MaxBECount == RecastedMaxBECount) {
1124          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1125          // Check whether Start+Step*MaxBECount has no signed overflow.
1126          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1127          const SCEV *Add = getAddExpr(Start, SMul);
1128          const SCEV *OperandExtendedAdd =
1129            getAddExpr(getSignExtendExpr(Start, WideTy),
1130                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1131                                  getSignExtendExpr(Step, WideTy)));
1132          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) {
1133            // Cache knowledge of AR NSW, which is propagated to this AddRec.
1134            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1135            // Return the expression with the addrec on the outside.
1136            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1137                                 getSignExtendExpr(Step, Ty),
1138                                 L, AR->getNoWrapFlags());
1139          }
1140          // Similar to above, only this time treat the step value as unsigned.
1141          // This covers loops that count up with an unsigned step.
1142          const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
1143          Add = getAddExpr(Start, UMul);
1144          OperandExtendedAdd =
1145            getAddExpr(getSignExtendExpr(Start, WideTy),
1146                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1147                                  getZeroExtendExpr(Step, WideTy)));
1148          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) {
1149            // Cache knowledge of AR NSW, which is propagated to this AddRec.
1150            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1151            // Return the expression with the addrec on the outside.
1152            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1153                                 getZeroExtendExpr(Step, Ty),
1154                                 L, AR->getNoWrapFlags());
1155          }
1156        }
1157
1158        // If the backedge is guarded by a comparison with the pre-inc value
1159        // the addrec is safe. Also, if the entry is guarded by a comparison
1160        // with the start value and the backedge is guarded by a comparison
1161        // with the post-inc value, the addrec is safe.
1162        if (isKnownPositive(Step)) {
1163          const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1164                                      getSignedRange(Step).getSignedMax());
1165          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
1166              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
1167               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1168                                           AR->getPostIncExpr(*this), N))) {
1169            // Cache knowledge of AR NSW, which is propagated to this AddRec.
1170            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1171            // Return the expression with the addrec on the outside.
1172            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1173                                 getSignExtendExpr(Step, Ty),
1174                                 L, AR->getNoWrapFlags());
1175          }
1176        } else if (isKnownNegative(Step)) {
1177          const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1178                                      getSignedRange(Step).getSignedMin());
1179          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
1180              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
1181               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1182                                           AR->getPostIncExpr(*this), N))) {
1183            // Cache knowledge of AR NSW, which is propagated to this AddRec.
1184            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1185            // Return the expression with the addrec on the outside.
1186            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1187                                 getSignExtendExpr(Step, Ty),
1188                                 L, AR->getNoWrapFlags());
1189          }
1190        }
1191      }
1192    }
1193
1194  // The cast wasn't folded; create an explicit cast node.
1195  // Recompute the insert position, as it may have been invalidated.
1196  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1197  SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1198                                                   Op, Ty);
1199  UniqueSCEVs.InsertNode(S, IP);
1200  return S;
1201}
1202
1203/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1204/// unspecified bits out to the given type.
1205///
1206const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1207                                              const Type *Ty) {
1208  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1209         "This is not an extending conversion!");
1210  assert(isSCEVable(Ty) &&
1211         "This is not a conversion to a SCEVable type!");
1212  Ty = getEffectiveSCEVType(Ty);
1213
1214  // Sign-extend negative constants.
1215  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1216    if (SC->getValue()->getValue().isNegative())
1217      return getSignExtendExpr(Op, Ty);
1218
1219  // Peel off a truncate cast.
1220  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1221    const SCEV *NewOp = T->getOperand();
1222    if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1223      return getAnyExtendExpr(NewOp, Ty);
1224    return getTruncateOrNoop(NewOp, Ty);
1225  }
1226
1227  // Next try a zext cast. If the cast is folded, use it.
1228  const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1229  if (!isa<SCEVZeroExtendExpr>(ZExt))
1230    return ZExt;
1231
1232  // Next try a sext cast. If the cast is folded, use it.
1233  const SCEV *SExt = getSignExtendExpr(Op, Ty);
1234  if (!isa<SCEVSignExtendExpr>(SExt))
1235    return SExt;
1236
1237  // Force the cast to be folded into the operands of an addrec.
1238  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1239    SmallVector<const SCEV *, 4> Ops;
1240    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1241         I != E; ++I)
1242      Ops.push_back(getAnyExtendExpr(*I, Ty));
1243    return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
1244  }
1245
1246  // As a special case, fold anyext(undef) to undef. We don't want to
1247  // know too much about SCEVUnknowns, but this special case is handy
1248  // and harmless.
1249  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1250    if (isa<UndefValue>(U->getValue()))
1251      return getSCEV(UndefValue::get(Ty));
1252
1253  // If the expression is obviously signed, use the sext cast value.
1254  if (isa<SCEVSMaxExpr>(Op))
1255    return SExt;
1256
1257  // Absent any other information, use the zext cast value.
1258  return ZExt;
1259}
1260
1261/// CollectAddOperandsWithScales - Process the given Ops list, which is
1262/// a list of operands to be added under the given scale, update the given
1263/// map. This is a helper function for getAddRecExpr. As an example of
1264/// what it does, given a sequence of operands that would form an add
1265/// expression like this:
1266///
1267///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1268///
1269/// where A and B are constants, update the map with these values:
1270///
1271///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1272///
1273/// and add 13 + A*B*29 to AccumulatedConstant.
1274/// This will allow getAddRecExpr to produce this:
1275///
1276///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1277///
1278/// This form often exposes folding opportunities that are hidden in
1279/// the original operand list.
1280///
1281/// Return true iff it appears that any interesting folding opportunities
1282/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1283/// the common case where no interesting opportunities are present, and
1284/// is also used as a check to avoid infinite recursion.
1285///
1286static bool
1287CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1288                             SmallVector<const SCEV *, 8> &NewOps,
1289                             APInt &AccumulatedConstant,
1290                             const SCEV *const *Ops, size_t NumOperands,
1291                             const APInt &Scale,
1292                             ScalarEvolution &SE) {
1293  bool Interesting = false;
1294
1295  // Iterate over the add operands. They are sorted, with constants first.
1296  unsigned i = 0;
1297  while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1298    ++i;
1299    // Pull a buried constant out to the outside.
1300    if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1301      Interesting = true;
1302    AccumulatedConstant += Scale * C->getValue()->getValue();
1303  }
1304
1305  // Next comes everything else. We're especially interested in multiplies
1306  // here, but they're in the middle, so just visit the rest with one loop.
1307  for (; i != NumOperands; ++i) {
1308    const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1309    if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1310      APInt NewScale =
1311        Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1312      if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1313        // A multiplication of a constant with another add; recurse.
1314        const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1315        Interesting |=
1316          CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1317                                       Add->op_begin(), Add->getNumOperands(),
1318                                       NewScale, SE);
1319      } else {
1320        // A multiplication of a constant with some other value. Update
1321        // the map.
1322        SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1323        const SCEV *Key = SE.getMulExpr(MulOps);
1324        std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1325          M.insert(std::make_pair(Key, NewScale));
1326        if (Pair.second) {
1327          NewOps.push_back(Pair.first->first);
1328        } else {
1329          Pair.first->second += NewScale;
1330          // The map already had an entry for this value, which may indicate
1331          // a folding opportunity.
1332          Interesting = true;
1333        }
1334      }
1335    } else {
1336      // An ordinary operand. Update the map.
1337      std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1338        M.insert(std::make_pair(Ops[i], Scale));
1339      if (Pair.second) {
1340        NewOps.push_back(Pair.first->first);
1341      } else {
1342        Pair.first->second += Scale;
1343        // The map already had an entry for this value, which may indicate
1344        // a folding opportunity.
1345        Interesting = true;
1346      }
1347    }
1348  }
1349
1350  return Interesting;
1351}
1352
1353namespace {
1354  struct APIntCompare {
1355    bool operator()(const APInt &LHS, const APInt &RHS) const {
1356      return LHS.ult(RHS);
1357    }
1358  };
1359}
1360
1361/// getAddExpr - Get a canonical add expression, or something simpler if
1362/// possible.
1363const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1364                                        SCEV::NoWrapFlags Flags) {
1365  assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1366         "only nuw or nsw allowed");
1367  assert(!Ops.empty() && "Cannot get empty add!");
1368  if (Ops.size() == 1) return Ops[0];
1369#ifndef NDEBUG
1370  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1371  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1372    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1373           "SCEVAddExpr operand types don't match!");
1374#endif
1375
1376  // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1377  // And vice-versa.
1378  int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1379  SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1380  if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
1381    bool All = true;
1382    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1383         E = Ops.end(); I != E; ++I)
1384      if (!isKnownNonNegative(*I)) {
1385        All = false;
1386        break;
1387      }
1388    if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1389  }
1390
1391  // Sort by complexity, this groups all similar expression types together.
1392  GroupByComplexity(Ops, LI);
1393
1394  // If there are any constants, fold them together.
1395  unsigned Idx = 0;
1396  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1397    ++Idx;
1398    assert(Idx < Ops.size());
1399    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1400      // We found two constants, fold them together!
1401      Ops[0] = getConstant(LHSC->getValue()->getValue() +
1402                           RHSC->getValue()->getValue());
1403      if (Ops.size() == 2) return Ops[0];
1404      Ops.erase(Ops.begin()+1);  // Erase the folded element
1405      LHSC = cast<SCEVConstant>(Ops[0]);
1406    }
1407
1408    // If we are left with a constant zero being added, strip it off.
1409    if (LHSC->getValue()->isZero()) {
1410      Ops.erase(Ops.begin());
1411      --Idx;
1412    }
1413
1414    if (Ops.size() == 1) return Ops[0];
1415  }
1416
1417  // Okay, check to see if the same value occurs in the operand list more than
1418  // once.  If so, merge them together into an multiply expression.  Since we
1419  // sorted the list, these values are required to be adjacent.
1420  const Type *Ty = Ops[0]->getType();
1421  bool FoundMatch = false;
1422  for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
1423    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
1424      // Scan ahead to count how many equal operands there are.
1425      unsigned Count = 2;
1426      while (i+Count != e && Ops[i+Count] == Ops[i])
1427        ++Count;
1428      // Merge the values into a multiply.
1429      const SCEV *Scale = getConstant(Ty, Count);
1430      const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1431      if (Ops.size() == Count)
1432        return Mul;
1433      Ops[i] = Mul;
1434      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
1435      --i; e -= Count - 1;
1436      FoundMatch = true;
1437    }
1438  if (FoundMatch)
1439    return getAddExpr(Ops, Flags);
1440
1441  // Check for truncates. If all the operands are truncated from the same
1442  // type, see if factoring out the truncate would permit the result to be
1443  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1444  // if the contents of the resulting outer trunc fold to something simple.
1445  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1446    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1447    const Type *DstType = Trunc->getType();
1448    const Type *SrcType = Trunc->getOperand()->getType();
1449    SmallVector<const SCEV *, 8> LargeOps;
1450    bool Ok = true;
1451    // Check all the operands to see if they can be represented in the
1452    // source type of the truncate.
1453    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1454      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1455        if (T->getOperand()->getType() != SrcType) {
1456          Ok = false;
1457          break;
1458        }
1459        LargeOps.push_back(T->getOperand());
1460      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1461        LargeOps.push_back(getAnyExtendExpr(C, SrcType));
1462      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1463        SmallVector<const SCEV *, 8> LargeMulOps;
1464        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1465          if (const SCEVTruncateExpr *T =
1466                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1467            if (T->getOperand()->getType() != SrcType) {
1468              Ok = false;
1469              break;
1470            }
1471            LargeMulOps.push_back(T->getOperand());
1472          } else if (const SCEVConstant *C =
1473                       dyn_cast<SCEVConstant>(M->getOperand(j))) {
1474            LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
1475          } else {
1476            Ok = false;
1477            break;
1478          }
1479        }
1480        if (Ok)
1481          LargeOps.push_back(getMulExpr(LargeMulOps));
1482      } else {
1483        Ok = false;
1484        break;
1485      }
1486    }
1487    if (Ok) {
1488      // Evaluate the expression in the larger type.
1489      const SCEV *Fold = getAddExpr(LargeOps, Flags);
1490      // If it folds to something simple, use it. Otherwise, don't.
1491      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1492        return getTruncateExpr(Fold, DstType);
1493    }
1494  }
1495
1496  // Skip past any other cast SCEVs.
1497  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1498    ++Idx;
1499
1500  // If there are add operands they would be next.
1501  if (Idx < Ops.size()) {
1502    bool DeletedAdd = false;
1503    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1504      // If we have an add, expand the add operands onto the end of the operands
1505      // list.
1506      Ops.erase(Ops.begin()+Idx);
1507      Ops.append(Add->op_begin(), Add->op_end());
1508      DeletedAdd = true;
1509    }
1510
1511    // If we deleted at least one add, we added operands to the end of the list,
1512    // and they are not necessarily sorted.  Recurse to resort and resimplify
1513    // any operands we just acquired.
1514    if (DeletedAdd)
1515      return getAddExpr(Ops);
1516  }
1517
1518  // Skip over the add expression until we get to a multiply.
1519  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1520    ++Idx;
1521
1522  // Check to see if there are any folding opportunities present with
1523  // operands multiplied by constant values.
1524  if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1525    uint64_t BitWidth = getTypeSizeInBits(Ty);
1526    DenseMap<const SCEV *, APInt> M;
1527    SmallVector<const SCEV *, 8> NewOps;
1528    APInt AccumulatedConstant(BitWidth, 0);
1529    if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1530                                     Ops.data(), Ops.size(),
1531                                     APInt(BitWidth, 1), *this)) {
1532      // Some interesting folding opportunity is present, so its worthwhile to
1533      // re-generate the operands list. Group the operands by constant scale,
1534      // to avoid multiplying by the same constant scale multiple times.
1535      std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1536      for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
1537           E = NewOps.end(); I != E; ++I)
1538        MulOpLists[M.find(*I)->second].push_back(*I);
1539      // Re-generate the operands list.
1540      Ops.clear();
1541      if (AccumulatedConstant != 0)
1542        Ops.push_back(getConstant(AccumulatedConstant));
1543      for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1544           I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1545        if (I->first != 0)
1546          Ops.push_back(getMulExpr(getConstant(I->first),
1547                                   getAddExpr(I->second)));
1548      if (Ops.empty())
1549        return getConstant(Ty, 0);
1550      if (Ops.size() == 1)
1551        return Ops[0];
1552      return getAddExpr(Ops);
1553    }
1554  }
1555
1556  // If we are adding something to a multiply expression, make sure the
1557  // something is not already an operand of the multiply.  If so, merge it into
1558  // the multiply.
1559  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1560    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1561    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1562      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1563      if (isa<SCEVConstant>(MulOpSCEV))
1564        continue;
1565      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1566        if (MulOpSCEV == Ops[AddOp]) {
1567          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1568          const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1569          if (Mul->getNumOperands() != 2) {
1570            // If the multiply has more than two operands, we must get the
1571            // Y*Z term.
1572            SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1573                                                Mul->op_begin()+MulOp);
1574            MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1575            InnerMul = getMulExpr(MulOps);
1576          }
1577          const SCEV *One = getConstant(Ty, 1);
1578          const SCEV *AddOne = getAddExpr(One, InnerMul);
1579          const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
1580          if (Ops.size() == 2) return OuterMul;
1581          if (AddOp < Idx) {
1582            Ops.erase(Ops.begin()+AddOp);
1583            Ops.erase(Ops.begin()+Idx-1);
1584          } else {
1585            Ops.erase(Ops.begin()+Idx);
1586            Ops.erase(Ops.begin()+AddOp-1);
1587          }
1588          Ops.push_back(OuterMul);
1589          return getAddExpr(Ops);
1590        }
1591
1592      // Check this multiply against other multiplies being added together.
1593      for (unsigned OtherMulIdx = Idx+1;
1594           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1595           ++OtherMulIdx) {
1596        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1597        // If MulOp occurs in OtherMul, we can fold the two multiplies
1598        // together.
1599        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1600             OMulOp != e; ++OMulOp)
1601          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1602            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1603            const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
1604            if (Mul->getNumOperands() != 2) {
1605              SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1606                                                  Mul->op_begin()+MulOp);
1607              MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1608              InnerMul1 = getMulExpr(MulOps);
1609            }
1610            const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1611            if (OtherMul->getNumOperands() != 2) {
1612              SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1613                                                  OtherMul->op_begin()+OMulOp);
1614              MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
1615              InnerMul2 = getMulExpr(MulOps);
1616            }
1617            const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1618            const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1619            if (Ops.size() == 2) return OuterMul;
1620            Ops.erase(Ops.begin()+Idx);
1621            Ops.erase(Ops.begin()+OtherMulIdx-1);
1622            Ops.push_back(OuterMul);
1623            return getAddExpr(Ops);
1624          }
1625      }
1626    }
1627  }
1628
1629  // If there are any add recurrences in the operands list, see if any other
1630  // added values are loop invariant.  If so, we can fold them into the
1631  // recurrence.
1632  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1633    ++Idx;
1634
1635  // Scan over all recurrences, trying to fold loop invariants into them.
1636  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1637    // Scan all of the other operands to this add and add them to the vector if
1638    // they are loop invariant w.r.t. the recurrence.
1639    SmallVector<const SCEV *, 8> LIOps;
1640    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1641    const Loop *AddRecLoop = AddRec->getLoop();
1642    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1643      if (isLoopInvariant(Ops[i], AddRecLoop)) {
1644        LIOps.push_back(Ops[i]);
1645        Ops.erase(Ops.begin()+i);
1646        --i; --e;
1647      }
1648
1649    // If we found some loop invariants, fold them into the recurrence.
1650    if (!LIOps.empty()) {
1651      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1652      LIOps.push_back(AddRec->getStart());
1653
1654      SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1655                                             AddRec->op_end());
1656      AddRecOps[0] = getAddExpr(LIOps);
1657
1658      // Build the new addrec. Propagate the NUW and NSW flags if both the
1659      // outer add and the inner addrec are guaranteed to have no overflow.
1660      // Always propagate NW.
1661      Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
1662      const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
1663
1664      // If all of the other operands were loop invariant, we are done.
1665      if (Ops.size() == 1) return NewRec;
1666
1667      // Otherwise, add the folded AddRec by the non-liv parts.
1668      for (unsigned i = 0;; ++i)
1669        if (Ops[i] == AddRec) {
1670          Ops[i] = NewRec;
1671          break;
1672        }
1673      return getAddExpr(Ops);
1674    }
1675
1676    // Okay, if there weren't any loop invariants to be folded, check to see if
1677    // there are multiple AddRec's with the same loop induction variable being
1678    // added together.  If so, we can fold them.
1679    for (unsigned OtherIdx = Idx+1;
1680         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1681         ++OtherIdx)
1682      if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1683        // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
1684        SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1685                                               AddRec->op_end());
1686        for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1687             ++OtherIdx)
1688          if (const SCEVAddRecExpr *OtherAddRec =
1689                dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1690            if (OtherAddRec->getLoop() == AddRecLoop) {
1691              for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1692                   i != e; ++i) {
1693                if (i >= AddRecOps.size()) {
1694                  AddRecOps.append(OtherAddRec->op_begin()+i,
1695                                   OtherAddRec->op_end());
1696                  break;
1697                }
1698                AddRecOps[i] = getAddExpr(AddRecOps[i],
1699                                          OtherAddRec->getOperand(i));
1700              }
1701              Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1702            }
1703        // Step size has changed, so we cannot guarantee no self-wraparound.
1704        Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
1705        return getAddExpr(Ops);
1706      }
1707
1708    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1709    // next one.
1710  }
1711
1712  // Okay, it looks like we really DO need an add expr.  Check to see if we
1713  // already have one, otherwise create a new one.
1714  FoldingSetNodeID ID;
1715  ID.AddInteger(scAddExpr);
1716  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1717    ID.AddPointer(Ops[i]);
1718  void *IP = 0;
1719  SCEVAddExpr *S =
1720    static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1721  if (!S) {
1722    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1723    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1724    S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1725                                        O, Ops.size());
1726    UniqueSCEVs.InsertNode(S, IP);
1727  }
1728  S->setNoWrapFlags(Flags);
1729  return S;
1730}
1731
1732/// getMulExpr - Get a canonical multiply expression, or something simpler if
1733/// possible.
1734const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1735                                        SCEV::NoWrapFlags Flags) {
1736  assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
1737         "only nuw or nsw allowed");
1738  assert(!Ops.empty() && "Cannot get empty mul!");
1739  if (Ops.size() == 1) return Ops[0];
1740#ifndef NDEBUG
1741  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1742  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1743    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1744           "SCEVMulExpr operand types don't match!");
1745#endif
1746
1747  // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1748  // And vice-versa.
1749  int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1750  SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1751  if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
1752    bool All = true;
1753    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1754         E = Ops.end(); I != E; ++I)
1755      if (!isKnownNonNegative(*I)) {
1756        All = false;
1757        break;
1758      }
1759    if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1760  }
1761
1762  // Sort by complexity, this groups all similar expression types together.
1763  GroupByComplexity(Ops, LI);
1764
1765  // If there are any constants, fold them together.
1766  unsigned Idx = 0;
1767  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1768
1769    // C1*(C2+V) -> C1*C2 + C1*V
1770    if (Ops.size() == 2)
1771      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1772        if (Add->getNumOperands() == 2 &&
1773            isa<SCEVConstant>(Add->getOperand(0)))
1774          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1775                            getMulExpr(LHSC, Add->getOperand(1)));
1776
1777    ++Idx;
1778    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1779      // We found two constants, fold them together!
1780      ConstantInt *Fold = ConstantInt::get(getContext(),
1781                                           LHSC->getValue()->getValue() *
1782                                           RHSC->getValue()->getValue());
1783      Ops[0] = getConstant(Fold);
1784      Ops.erase(Ops.begin()+1);  // Erase the folded element
1785      if (Ops.size() == 1) return Ops[0];
1786      LHSC = cast<SCEVConstant>(Ops[0]);
1787    }
1788
1789    // If we are left with a constant one being multiplied, strip it off.
1790    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1791      Ops.erase(Ops.begin());
1792      --Idx;
1793    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1794      // If we have a multiply of zero, it will always be zero.
1795      return Ops[0];
1796    } else if (Ops[0]->isAllOnesValue()) {
1797      // If we have a mul by -1 of an add, try distributing the -1 among the
1798      // add operands.
1799      if (Ops.size() == 2) {
1800        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1801          SmallVector<const SCEV *, 4> NewOps;
1802          bool AnyFolded = false;
1803          for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
1804                 E = Add->op_end(); I != E; ++I) {
1805            const SCEV *Mul = getMulExpr(Ops[0], *I);
1806            if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1807            NewOps.push_back(Mul);
1808          }
1809          if (AnyFolded)
1810            return getAddExpr(NewOps);
1811        }
1812        else if (const SCEVAddRecExpr *
1813                 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
1814          // Negation preserves a recurrence's no self-wrap property.
1815          SmallVector<const SCEV *, 4> Operands;
1816          for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
1817                 E = AddRec->op_end(); I != E; ++I) {
1818            Operands.push_back(getMulExpr(Ops[0], *I));
1819          }
1820          return getAddRecExpr(Operands, AddRec->getLoop(),
1821                               AddRec->getNoWrapFlags(SCEV::FlagNW));
1822        }
1823      }
1824    }
1825
1826    if (Ops.size() == 1)
1827      return Ops[0];
1828  }
1829
1830  // Skip over the add expression until we get to a multiply.
1831  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1832    ++Idx;
1833
1834  // If there are mul operands inline them all into this expression.
1835  if (Idx < Ops.size()) {
1836    bool DeletedMul = false;
1837    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1838      // If we have an mul, expand the mul operands onto the end of the operands
1839      // list.
1840      Ops.erase(Ops.begin()+Idx);
1841      Ops.append(Mul->op_begin(), Mul->op_end());
1842      DeletedMul = true;
1843    }
1844
1845    // If we deleted at least one mul, we added operands to the end of the list,
1846    // and they are not necessarily sorted.  Recurse to resort and resimplify
1847    // any operands we just acquired.
1848    if (DeletedMul)
1849      return getMulExpr(Ops);
1850  }
1851
1852  // If there are any add recurrences in the operands list, see if any other
1853  // added values are loop invariant.  If so, we can fold them into the
1854  // recurrence.
1855  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1856    ++Idx;
1857
1858  // Scan over all recurrences, trying to fold loop invariants into them.
1859  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1860    // Scan all of the other operands to this mul and add them to the vector if
1861    // they are loop invariant w.r.t. the recurrence.
1862    SmallVector<const SCEV *, 8> LIOps;
1863    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1864    const Loop *AddRecLoop = AddRec->getLoop();
1865    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1866      if (isLoopInvariant(Ops[i], AddRecLoop)) {
1867        LIOps.push_back(Ops[i]);
1868        Ops.erase(Ops.begin()+i);
1869        --i; --e;
1870      }
1871
1872    // If we found some loop invariants, fold them into the recurrence.
1873    if (!LIOps.empty()) {
1874      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1875      SmallVector<const SCEV *, 4> NewOps;
1876      NewOps.reserve(AddRec->getNumOperands());
1877      const SCEV *Scale = getMulExpr(LIOps);
1878      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1879        NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1880
1881      // Build the new addrec. Propagate the NUW and NSW flags if both the
1882      // outer mul and the inner addrec are guaranteed to have no overflow.
1883      //
1884      // No self-wrap cannot be guaranteed after changing the step size, but
1885      // will be inferred if either NUW or NSW is true.
1886      Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
1887      const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
1888
1889      // If all of the other operands were loop invariant, we are done.
1890      if (Ops.size() == 1) return NewRec;
1891
1892      // Otherwise, multiply the folded AddRec by the non-liv parts.
1893      for (unsigned i = 0;; ++i)
1894        if (Ops[i] == AddRec) {
1895          Ops[i] = NewRec;
1896          break;
1897        }
1898      return getMulExpr(Ops);
1899    }
1900
1901    // Okay, if there weren't any loop invariants to be folded, check to see if
1902    // there are multiple AddRec's with the same loop induction variable being
1903    // multiplied together.  If so, we can fold them.
1904    for (unsigned OtherIdx = Idx+1;
1905         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1906         ++OtherIdx)
1907      if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1908        // F * G, where F = {A,+,B}<L> and G = {C,+,D}<L>  -->
1909        // {A*C,+,F*D + G*B + B*D}<L>
1910        for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1911             ++OtherIdx)
1912          if (const SCEVAddRecExpr *OtherAddRec =
1913                dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1914            if (OtherAddRec->getLoop() == AddRecLoop) {
1915              const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1916              const SCEV *NewStart = getMulExpr(F->getStart(), G->getStart());
1917              const SCEV *B = F->getStepRecurrence(*this);
1918              const SCEV *D = G->getStepRecurrence(*this);
1919              const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1920                                               getMulExpr(G, B),
1921                                               getMulExpr(B, D));
1922              const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1923                                                    F->getLoop(),
1924                                                    SCEV::FlagAnyWrap);
1925              if (Ops.size() == 2) return NewAddRec;
1926              Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
1927              Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1928            }
1929        return getMulExpr(Ops);
1930      }
1931
1932    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1933    // next one.
1934  }
1935
1936  // Okay, it looks like we really DO need an mul expr.  Check to see if we
1937  // already have one, otherwise create a new one.
1938  FoldingSetNodeID ID;
1939  ID.AddInteger(scMulExpr);
1940  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1941    ID.AddPointer(Ops[i]);
1942  void *IP = 0;
1943  SCEVMulExpr *S =
1944    static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1945  if (!S) {
1946    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1947    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1948    S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1949                                        O, Ops.size());
1950    UniqueSCEVs.InsertNode(S, IP);
1951  }
1952  S->setNoWrapFlags(Flags);
1953  return S;
1954}
1955
1956/// getUDivExpr - Get a canonical unsigned division expression, or something
1957/// simpler if possible.
1958const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1959                                         const SCEV *RHS) {
1960  assert(getEffectiveSCEVType(LHS->getType()) ==
1961         getEffectiveSCEVType(RHS->getType()) &&
1962         "SCEVUDivExpr operand types don't match!");
1963
1964  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1965    if (RHSC->getValue()->equalsInt(1))
1966      return LHS;                               // X udiv 1 --> x
1967    // If the denominator is zero, the result of the udiv is undefined. Don't
1968    // try to analyze it, because the resolution chosen here may differ from
1969    // the resolution chosen in other parts of the compiler.
1970    if (!RHSC->getValue()->isZero()) {
1971      // Determine if the division can be folded into the operands of
1972      // its operands.
1973      // TODO: Generalize this to non-constants by using known-bits information.
1974      const Type *Ty = LHS->getType();
1975      unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1976      unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
1977      // For non-power-of-two values, effectively round the value up to the
1978      // nearest power of two.
1979      if (!RHSC->getValue()->getValue().isPowerOf2())
1980        ++MaxShiftAmt;
1981      const IntegerType *ExtTy =
1982        IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1983      // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1984      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1985        if (const SCEVConstant *Step =
1986              dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1987          if (!Step->getValue()->getValue()
1988                .urem(RHSC->getValue()->getValue()) &&
1989              getZeroExtendExpr(AR, ExtTy) ==
1990              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1991                            getZeroExtendExpr(Step, ExtTy),
1992                            AR->getLoop(), SCEV::FlagAnyWrap)) {
1993            SmallVector<const SCEV *, 4> Operands;
1994            for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1995              Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1996            return getAddRecExpr(Operands, AR->getLoop(),
1997                                 SCEV::FlagNW);
1998          }
1999      // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2000      if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2001        SmallVector<const SCEV *, 4> Operands;
2002        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2003          Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2004        if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2005          // Find an operand that's safely divisible.
2006          for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2007            const SCEV *Op = M->getOperand(i);
2008            const SCEV *Div = getUDivExpr(Op, RHSC);
2009            if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2010              Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2011                                                      M->op_end());
2012              Operands[i] = Div;
2013              return getMulExpr(Operands);
2014            }
2015          }
2016      }
2017      // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2018      if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
2019        SmallVector<const SCEV *, 4> Operands;
2020        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2021          Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2022        if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2023          Operands.clear();
2024          for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2025            const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2026            if (isa<SCEVUDivExpr>(Op) ||
2027                getMulExpr(Op, RHS) != A->getOperand(i))
2028              break;
2029            Operands.push_back(Op);
2030          }
2031          if (Operands.size() == A->getNumOperands())
2032            return getAddExpr(Operands);
2033        }
2034      }
2035
2036      // Fold if both operands are constant.
2037      if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2038        Constant *LHSCV = LHSC->getValue();
2039        Constant *RHSCV = RHSC->getValue();
2040        return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2041                                                                   RHSCV)));
2042      }
2043    }
2044  }
2045
2046  FoldingSetNodeID ID;
2047  ID.AddInteger(scUDivExpr);
2048  ID.AddPointer(LHS);
2049  ID.AddPointer(RHS);
2050  void *IP = 0;
2051  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2052  SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2053                                             LHS, RHS);
2054  UniqueSCEVs.InsertNode(S, IP);
2055  return S;
2056}
2057
2058
2059/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2060/// Simplify the expression as much as possible.
2061const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2062                                           const Loop *L,
2063                                           SCEV::NoWrapFlags Flags) {
2064  SmallVector<const SCEV *, 4> Operands;
2065  Operands.push_back(Start);
2066  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2067    if (StepChrec->getLoop() == L) {
2068      Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2069      return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
2070    }
2071
2072  Operands.push_back(Step);
2073  return getAddRecExpr(Operands, L, Flags);
2074}
2075
2076/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2077/// Simplify the expression as much as possible.
2078const SCEV *
2079ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2080                               const Loop *L, SCEV::NoWrapFlags Flags) {
2081  if (Operands.size() == 1) return Operands[0];
2082#ifndef NDEBUG
2083  const Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2084  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2085    assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2086           "SCEVAddRecExpr operand types don't match!");
2087  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2088    assert(isLoopInvariant(Operands[i], L) &&
2089           "SCEVAddRecExpr operand is not loop-invariant!");
2090#endif
2091
2092  if (Operands.back()->isZero()) {
2093    Operands.pop_back();
2094    return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
2095  }
2096
2097  // It's tempting to want to call getMaxBackedgeTakenCount count here and
2098  // use that information to infer NUW and NSW flags. However, computing a
2099  // BE count requires calling getAddRecExpr, so we may not yet have a
2100  // meaningful BE count at this point (and if we don't, we'd be stuck
2101  // with a SCEVCouldNotCompute as the cached BE count).
2102
2103  // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2104  // And vice-versa.
2105  int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2106  SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2107  if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
2108    bool All = true;
2109    for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2110         E = Operands.end(); I != E; ++I)
2111      if (!isKnownNonNegative(*I)) {
2112        All = false;
2113        break;
2114      }
2115    if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2116  }
2117
2118  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2119  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2120    const Loop *NestedLoop = NestedAR->getLoop();
2121    if (L->contains(NestedLoop) ?
2122        (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
2123        (!NestedLoop->contains(L) &&
2124         DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
2125      SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2126                                                  NestedAR->op_end());
2127      Operands[0] = NestedAR->getStart();
2128      // AddRecs require their operands be loop-invariant with respect to their
2129      // loops. Don't perform this transformation if it would break this
2130      // requirement.
2131      bool AllInvariant = true;
2132      for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2133        if (!isLoopInvariant(Operands[i], L)) {
2134          AllInvariant = false;
2135          break;
2136        }
2137      if (AllInvariant) {
2138        // Create a recurrence for the outer loop with the same step size.
2139        //
2140        // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2141        // inner recurrence has the same property.
2142        SCEV::NoWrapFlags OuterFlags =
2143          maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
2144
2145        NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
2146        AllInvariant = true;
2147        for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2148          if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
2149            AllInvariant = false;
2150            break;
2151          }
2152        if (AllInvariant) {
2153          // Ok, both add recurrences are valid after the transformation.
2154          //
2155          // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2156          // the outer recurrence has the same property.
2157          SCEV::NoWrapFlags InnerFlags =
2158            maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
2159          return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2160        }
2161      }
2162      // Reset Operands to its original state.
2163      Operands[0] = NestedAR;
2164    }
2165  }
2166
2167  // Okay, it looks like we really DO need an addrec expr.  Check to see if we
2168  // already have one, otherwise create a new one.
2169  FoldingSetNodeID ID;
2170  ID.AddInteger(scAddRecExpr);
2171  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2172    ID.AddPointer(Operands[i]);
2173  ID.AddPointer(L);
2174  void *IP = 0;
2175  SCEVAddRecExpr *S =
2176    static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2177  if (!S) {
2178    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2179    std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2180    S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2181                                           O, Operands.size(), L);
2182    UniqueSCEVs.InsertNode(S, IP);
2183  }
2184  S->setNoWrapFlags(Flags);
2185  return S;
2186}
2187
2188const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2189                                         const SCEV *RHS) {
2190  SmallVector<const SCEV *, 2> Ops;
2191  Ops.push_back(LHS);
2192  Ops.push_back(RHS);
2193  return getSMaxExpr(Ops);
2194}
2195
2196const SCEV *
2197ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2198  assert(!Ops.empty() && "Cannot get empty smax!");
2199  if (Ops.size() == 1) return Ops[0];
2200#ifndef NDEBUG
2201  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2202  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2203    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2204           "SCEVSMaxExpr operand types don't match!");
2205#endif
2206
2207  // Sort by complexity, this groups all similar expression types together.
2208  GroupByComplexity(Ops, LI);
2209
2210  // If there are any constants, fold them together.
2211  unsigned Idx = 0;
2212  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2213    ++Idx;
2214    assert(Idx < Ops.size());
2215    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2216      // We found two constants, fold them together!
2217      ConstantInt *Fold = ConstantInt::get(getContext(),
2218                              APIntOps::smax(LHSC->getValue()->getValue(),
2219                                             RHSC->getValue()->getValue()));
2220      Ops[0] = getConstant(Fold);
2221      Ops.erase(Ops.begin()+1);  // Erase the folded element
2222      if (Ops.size() == 1) return Ops[0];
2223      LHSC = cast<SCEVConstant>(Ops[0]);
2224    }
2225
2226    // If we are left with a constant minimum-int, strip it off.
2227    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2228      Ops.erase(Ops.begin());
2229      --Idx;
2230    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2231      // If we have an smax with a constant maximum-int, it will always be
2232      // maximum-int.
2233      return Ops[0];
2234    }
2235
2236    if (Ops.size() == 1) return Ops[0];
2237  }
2238
2239  // Find the first SMax
2240  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2241    ++Idx;
2242
2243  // Check to see if one of the operands is an SMax. If so, expand its operands
2244  // onto our operand list, and recurse to simplify.
2245  if (Idx < Ops.size()) {
2246    bool DeletedSMax = false;
2247    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
2248      Ops.erase(Ops.begin()+Idx);
2249      Ops.append(SMax->op_begin(), SMax->op_end());
2250      DeletedSMax = true;
2251    }
2252
2253    if (DeletedSMax)
2254      return getSMaxExpr(Ops);
2255  }
2256
2257  // Okay, check to see if the same value occurs in the operand list twice.  If
2258  // so, delete one.  Since we sorted the list, these values are required to
2259  // be adjacent.
2260  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2261    //  X smax Y smax Y  -->  X smax Y
2262    //  X smax Y         -->  X, if X is always greater than Y
2263    if (Ops[i] == Ops[i+1] ||
2264        isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2265      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2266      --i; --e;
2267    } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
2268      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2269      --i; --e;
2270    }
2271
2272  if (Ops.size() == 1) return Ops[0];
2273
2274  assert(!Ops.empty() && "Reduced smax down to nothing!");
2275
2276  // Okay, it looks like we really DO need an smax expr.  Check to see if we
2277  // already have one, otherwise create a new one.
2278  FoldingSetNodeID ID;
2279  ID.AddInteger(scSMaxExpr);
2280  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2281    ID.AddPointer(Ops[i]);
2282  void *IP = 0;
2283  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2284  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2285  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2286  SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2287                                             O, Ops.size());
2288  UniqueSCEVs.InsertNode(S, IP);
2289  return S;
2290}
2291
2292const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2293                                         const SCEV *RHS) {
2294  SmallVector<const SCEV *, 2> Ops;
2295  Ops.push_back(LHS);
2296  Ops.push_back(RHS);
2297  return getUMaxExpr(Ops);
2298}
2299
2300const SCEV *
2301ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2302  assert(!Ops.empty() && "Cannot get empty umax!");
2303  if (Ops.size() == 1) return Ops[0];
2304#ifndef NDEBUG
2305  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2306  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2307    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2308           "SCEVUMaxExpr operand types don't match!");
2309#endif
2310
2311  // Sort by complexity, this groups all similar expression types together.
2312  GroupByComplexity(Ops, LI);
2313
2314  // If there are any constants, fold them together.
2315  unsigned Idx = 0;
2316  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2317    ++Idx;
2318    assert(Idx < Ops.size());
2319    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2320      // We found two constants, fold them together!
2321      ConstantInt *Fold = ConstantInt::get(getContext(),
2322                              APIntOps::umax(LHSC->getValue()->getValue(),
2323                                             RHSC->getValue()->getValue()));
2324      Ops[0] = getConstant(Fold);
2325      Ops.erase(Ops.begin()+1);  // Erase the folded element
2326      if (Ops.size() == 1) return Ops[0];
2327      LHSC = cast<SCEVConstant>(Ops[0]);
2328    }
2329
2330    // If we are left with a constant minimum-int, strip it off.
2331    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2332      Ops.erase(Ops.begin());
2333      --Idx;
2334    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2335      // If we have an umax with a constant maximum-int, it will always be
2336      // maximum-int.
2337      return Ops[0];
2338    }
2339
2340    if (Ops.size() == 1) return Ops[0];
2341  }
2342
2343  // Find the first UMax
2344  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2345    ++Idx;
2346
2347  // Check to see if one of the operands is a UMax. If so, expand its operands
2348  // onto our operand list, and recurse to simplify.
2349  if (Idx < Ops.size()) {
2350    bool DeletedUMax = false;
2351    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
2352      Ops.erase(Ops.begin()+Idx);
2353      Ops.append(UMax->op_begin(), UMax->op_end());
2354      DeletedUMax = true;
2355    }
2356
2357    if (DeletedUMax)
2358      return getUMaxExpr(Ops);
2359  }
2360
2361  // Okay, check to see if the same value occurs in the operand list twice.  If
2362  // so, delete one.  Since we sorted the list, these values are required to
2363  // be adjacent.
2364  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2365    //  X umax Y umax Y  -->  X umax Y
2366    //  X umax Y         -->  X, if X is always greater than Y
2367    if (Ops[i] == Ops[i+1] ||
2368        isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2369      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2370      --i; --e;
2371    } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
2372      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2373      --i; --e;
2374    }
2375
2376  if (Ops.size() == 1) return Ops[0];
2377
2378  assert(!Ops.empty() && "Reduced umax down to nothing!");
2379
2380  // Okay, it looks like we really DO need a umax expr.  Check to see if we
2381  // already have one, otherwise create a new one.
2382  FoldingSetNodeID ID;
2383  ID.AddInteger(scUMaxExpr);
2384  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2385    ID.AddPointer(Ops[i]);
2386  void *IP = 0;
2387  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2388  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2389  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2390  SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2391                                             O, Ops.size());
2392  UniqueSCEVs.InsertNode(S, IP);
2393  return S;
2394}
2395
2396const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2397                                         const SCEV *RHS) {
2398  // ~smax(~x, ~y) == smin(x, y).
2399  return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2400}
2401
2402const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2403                                         const SCEV *RHS) {
2404  // ~umax(~x, ~y) == umin(x, y)
2405  return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2406}
2407
2408const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
2409  // If we have TargetData, we can bypass creating a target-independent
2410  // constant expression and then folding it back into a ConstantInt.
2411  // This is just a compile-time optimization.
2412  if (TD)
2413    return getConstant(TD->getIntPtrType(getContext()),
2414                       TD->getTypeAllocSize(AllocTy));
2415
2416  Constant *C = ConstantExpr::getSizeOf(AllocTy);
2417  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2418    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2419      C = Folded;
2420  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2421  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2422}
2423
2424const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2425  Constant *C = ConstantExpr::getAlignOf(AllocTy);
2426  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2427    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2428      C = Folded;
2429  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2430  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2431}
2432
2433const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2434                                             unsigned FieldNo) {
2435  // If we have TargetData, we can bypass creating a target-independent
2436  // constant expression and then folding it back into a ConstantInt.
2437  // This is just a compile-time optimization.
2438  if (TD)
2439    return getConstant(TD->getIntPtrType(getContext()),
2440                       TD->getStructLayout(STy)->getElementOffset(FieldNo));
2441
2442  Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2443  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2444    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2445      C = Folded;
2446  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2447  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2448}
2449
2450const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2451                                             Constant *FieldNo) {
2452  Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
2453  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2454    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2455      C = Folded;
2456  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
2457  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2458}
2459
2460const SCEV *ScalarEvolution::getUnknown(Value *V) {
2461  // Don't attempt to do anything other than create a SCEVUnknown object
2462  // here.  createSCEV only calls getUnknown after checking for all other
2463  // interesting possibilities, and any other code that calls getUnknown
2464  // is doing so in order to hide a value from SCEV canonicalization.
2465
2466  FoldingSetNodeID ID;
2467  ID.AddInteger(scUnknown);
2468  ID.AddPointer(V);
2469  void *IP = 0;
2470  if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2471    assert(cast<SCEVUnknown>(S)->getValue() == V &&
2472           "Stale SCEVUnknown in uniquing map!");
2473    return S;
2474  }
2475  SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2476                                            FirstUnknown);
2477  FirstUnknown = cast<SCEVUnknown>(S);
2478  UniqueSCEVs.InsertNode(S, IP);
2479  return S;
2480}
2481
2482//===----------------------------------------------------------------------===//
2483//            Basic SCEV Analysis and PHI Idiom Recognition Code
2484//
2485
2486/// isSCEVable - Test if values of the given type are analyzable within
2487/// the SCEV framework. This primarily includes integer types, and it
2488/// can optionally include pointer types if the ScalarEvolution class
2489/// has access to target-specific information.
2490bool ScalarEvolution::isSCEVable(const Type *Ty) const {
2491  // Integers and pointers are always SCEVable.
2492  return Ty->isIntegerTy() || Ty->isPointerTy();
2493}
2494
2495/// getTypeSizeInBits - Return the size in bits of the specified type,
2496/// for which isSCEVable must return true.
2497uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
2498  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2499
2500  // If we have a TargetData, use it!
2501  if (TD)
2502    return TD->getTypeSizeInBits(Ty);
2503
2504  // Integer types have fixed sizes.
2505  if (Ty->isIntegerTy())
2506    return Ty->getPrimitiveSizeInBits();
2507
2508  // The only other support type is pointer. Without TargetData, conservatively
2509  // assume pointers are 64-bit.
2510  assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
2511  return 64;
2512}
2513
2514/// getEffectiveSCEVType - Return a type with the same bitwidth as
2515/// the given type and which represents how SCEV will treat the given
2516/// type, for which isSCEVable must return true. For pointer types,
2517/// this is the pointer-sized integer type.
2518const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
2519  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2520
2521  if (Ty->isIntegerTy())
2522    return Ty;
2523
2524  // The only other support type is pointer.
2525  assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
2526  if (TD) return TD->getIntPtrType(getContext());
2527
2528  // Without TargetData, conservatively assume pointers are 64-bit.
2529  return Type::getInt64Ty(getContext());
2530}
2531
2532const SCEV *ScalarEvolution::getCouldNotCompute() {
2533  return &CouldNotCompute;
2534}
2535
2536/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2537/// expression and create a new one.
2538const SCEV *ScalarEvolution::getSCEV(Value *V) {
2539  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
2540
2541  ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2542  if (I != ValueExprMap.end()) return I->second;
2543  const SCEV *S = createSCEV(V);
2544
2545  // The process of creating a SCEV for V may have caused other SCEVs
2546  // to have been created, so it's necessary to insert the new entry
2547  // from scratch, rather than trying to remember the insert position
2548  // above.
2549  ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
2550  return S;
2551}
2552
2553/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2554///
2555const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
2556  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2557    return getConstant(
2558               cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
2559
2560  const Type *Ty = V->getType();
2561  Ty = getEffectiveSCEVType(Ty);
2562  return getMulExpr(V,
2563                  getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
2564}
2565
2566/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2567const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
2568  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2569    return getConstant(
2570                cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
2571
2572  const Type *Ty = V->getType();
2573  Ty = getEffectiveSCEVType(Ty);
2574  const SCEV *AllOnes =
2575                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
2576  return getMinusSCEV(AllOnes, V);
2577}
2578
2579/// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
2580const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
2581                                          SCEV::NoWrapFlags Flags) {
2582  assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
2583
2584  // Fast path: X - X --> 0.
2585  if (LHS == RHS)
2586    return getConstant(LHS->getType(), 0);
2587
2588  // X - Y --> X + -Y
2589  return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
2590}
2591
2592/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2593/// input value to the specified type.  If the type must be extended, it is zero
2594/// extended.
2595const SCEV *
2596ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, const Type *Ty) {
2597  const Type *SrcTy = V->getType();
2598  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2599         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2600         "Cannot truncate or zero extend with non-integer arguments!");
2601  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2602    return V;  // No conversion
2603  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2604    return getTruncateExpr(V, Ty);
2605  return getZeroExtendExpr(V, Ty);
2606}
2607
2608/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2609/// input value to the specified type.  If the type must be extended, it is sign
2610/// extended.
2611const SCEV *
2612ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
2613                                         const Type *Ty) {
2614  const Type *SrcTy = V->getType();
2615  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2616         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2617         "Cannot truncate or zero extend with non-integer arguments!");
2618  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2619    return V;  // No conversion
2620  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2621    return getTruncateExpr(V, Ty);
2622  return getSignExtendExpr(V, Ty);
2623}
2624
2625/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2626/// input value to the specified type.  If the type must be extended, it is zero
2627/// extended.  The conversion must not be narrowing.
2628const SCEV *
2629ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
2630  const Type *SrcTy = V->getType();
2631  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2632         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2633         "Cannot noop or zero extend with non-integer arguments!");
2634  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2635         "getNoopOrZeroExtend cannot truncate!");
2636  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2637    return V;  // No conversion
2638  return getZeroExtendExpr(V, Ty);
2639}
2640
2641/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2642/// input value to the specified type.  If the type must be extended, it is sign
2643/// extended.  The conversion must not be narrowing.
2644const SCEV *
2645ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
2646  const Type *SrcTy = V->getType();
2647  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2648         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2649         "Cannot noop or sign extend with non-integer arguments!");
2650  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2651         "getNoopOrSignExtend cannot truncate!");
2652  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2653    return V;  // No conversion
2654  return getSignExtendExpr(V, Ty);
2655}
2656
2657/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2658/// the input value to the specified type. If the type must be extended,
2659/// it is extended with unspecified bits. The conversion must not be
2660/// narrowing.
2661const SCEV *
2662ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
2663  const Type *SrcTy = V->getType();
2664  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2665         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2666         "Cannot noop or any extend with non-integer arguments!");
2667  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2668         "getNoopOrAnyExtend cannot truncate!");
2669  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2670    return V;  // No conversion
2671  return getAnyExtendExpr(V, Ty);
2672}
2673
2674/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2675/// input value to the specified type.  The conversion must not be widening.
2676const SCEV *
2677ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
2678  const Type *SrcTy = V->getType();
2679  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2680         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2681         "Cannot truncate or noop with non-integer arguments!");
2682  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2683         "getTruncateOrNoop cannot extend!");
2684  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2685    return V;  // No conversion
2686  return getTruncateExpr(V, Ty);
2687}
2688
2689/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2690/// the types using zero-extension, and then perform a umax operation
2691/// with them.
2692const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2693                                                        const SCEV *RHS) {
2694  const SCEV *PromotedLHS = LHS;
2695  const SCEV *PromotedRHS = RHS;
2696
2697  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2698    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2699  else
2700    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2701
2702  return getUMaxExpr(PromotedLHS, PromotedRHS);
2703}
2704
2705/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2706/// the types using zero-extension, and then perform a umin operation
2707/// with them.
2708const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2709                                                        const SCEV *RHS) {
2710  const SCEV *PromotedLHS = LHS;
2711  const SCEV *PromotedRHS = RHS;
2712
2713  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2714    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2715  else
2716    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2717
2718  return getUMinExpr(PromotedLHS, PromotedRHS);
2719}
2720
2721/// getPointerBase - Transitively follow the chain of pointer-type operands
2722/// until reaching a SCEV that does not have a single pointer operand. This
2723/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
2724/// but corner cases do exist.
2725const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
2726  // A pointer operand may evaluate to a nonpointer expression, such as null.
2727  if (!V->getType()->isPointerTy())
2728    return V;
2729
2730  if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
2731    return getPointerBase(Cast->getOperand());
2732  }
2733  else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
2734    const SCEV *PtrOp = 0;
2735    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
2736         I != E; ++I) {
2737      if ((*I)->getType()->isPointerTy()) {
2738        // Cannot find the base of an expression with multiple pointer operands.
2739        if (PtrOp)
2740          return V;
2741        PtrOp = *I;
2742      }
2743    }
2744    if (!PtrOp)
2745      return V;
2746    return getPointerBase(PtrOp);
2747  }
2748  return V;
2749}
2750
2751/// PushDefUseChildren - Push users of the given Instruction
2752/// onto the given Worklist.
2753static void
2754PushDefUseChildren(Instruction *I,
2755                   SmallVectorImpl<Instruction *> &Worklist) {
2756  // Push the def-use children onto the Worklist stack.
2757  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2758       UI != UE; ++UI)
2759    Worklist.push_back(cast<Instruction>(*UI));
2760}
2761
2762/// ForgetSymbolicValue - This looks up computed SCEV values for all
2763/// instructions that depend on the given instruction and removes them from
2764/// the ValueExprMapType map if they reference SymName. This is used during PHI
2765/// resolution.
2766void
2767ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
2768  SmallVector<Instruction *, 16> Worklist;
2769  PushDefUseChildren(PN, Worklist);
2770
2771  SmallPtrSet<Instruction *, 8> Visited;
2772  Visited.insert(PN);
2773  while (!Worklist.empty()) {
2774    Instruction *I = Worklist.pop_back_val();
2775    if (!Visited.insert(I)) continue;
2776
2777    ValueExprMapType::iterator It =
2778      ValueExprMap.find(static_cast<Value *>(I));
2779    if (It != ValueExprMap.end()) {
2780      const SCEV *Old = It->second;
2781
2782      // Short-circuit the def-use traversal if the symbolic name
2783      // ceases to appear in expressions.
2784      if (Old != SymName && !hasOperand(Old, SymName))
2785        continue;
2786
2787      // SCEVUnknown for a PHI either means that it has an unrecognized
2788      // structure, it's a PHI that's in the progress of being computed
2789      // by createNodeForPHI, or it's a single-value PHI. In the first case,
2790      // additional loop trip count information isn't going to change anything.
2791      // In the second case, createNodeForPHI will perform the necessary
2792      // updates on its own when it gets to that point. In the third, we do
2793      // want to forget the SCEVUnknown.
2794      if (!isa<PHINode>(I) ||
2795          !isa<SCEVUnknown>(Old) ||
2796          (I != PN && Old == SymName)) {
2797        forgetMemoizedResults(Old);
2798        ValueExprMap.erase(It);
2799      }
2800    }
2801
2802    PushDefUseChildren(I, Worklist);
2803  }
2804}
2805
2806/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
2807/// a loop header, making it a potential recurrence, or it doesn't.
2808///
2809const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
2810  if (const Loop *L = LI->getLoopFor(PN->getParent()))
2811    if (L->getHeader() == PN->getParent()) {
2812      // The loop may have multiple entrances or multiple exits; we can analyze
2813      // this phi as an addrec if it has a unique entry value and a unique
2814      // backedge value.
2815      Value *BEValueV = 0, *StartValueV = 0;
2816      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2817        Value *V = PN->getIncomingValue(i);
2818        if (L->contains(PN->getIncomingBlock(i))) {
2819          if (!BEValueV) {
2820            BEValueV = V;
2821          } else if (BEValueV != V) {
2822            BEValueV = 0;
2823            break;
2824          }
2825        } else if (!StartValueV) {
2826          StartValueV = V;
2827        } else if (StartValueV != V) {
2828          StartValueV = 0;
2829          break;
2830        }
2831      }
2832      if (BEValueV && StartValueV) {
2833        // While we are analyzing this PHI node, handle its value symbolically.
2834        const SCEV *SymbolicName = getUnknown(PN);
2835        assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
2836               "PHI node already processed?");
2837        ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
2838
2839        // Using this symbolic name for the PHI, analyze the value coming around
2840        // the back-edge.
2841        const SCEV *BEValue = getSCEV(BEValueV);
2842
2843        // NOTE: If BEValue is loop invariant, we know that the PHI node just
2844        // has a special value for the first iteration of the loop.
2845
2846        // If the value coming around the backedge is an add with the symbolic
2847        // value we just inserted, then we found a simple induction variable!
2848        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
2849          // If there is a single occurrence of the symbolic value, replace it
2850          // with a recurrence.
2851          unsigned FoundIndex = Add->getNumOperands();
2852          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2853            if (Add->getOperand(i) == SymbolicName)
2854              if (FoundIndex == e) {
2855                FoundIndex = i;
2856                break;
2857              }
2858
2859          if (FoundIndex != Add->getNumOperands()) {
2860            // Create an add with everything but the specified operand.
2861            SmallVector<const SCEV *, 8> Ops;
2862            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2863              if (i != FoundIndex)
2864                Ops.push_back(Add->getOperand(i));
2865            const SCEV *Accum = getAddExpr(Ops);
2866
2867            // This is not a valid addrec if the step amount is varying each
2868            // loop iteration, but is not itself an addrec in this loop.
2869            if (isLoopInvariant(Accum, L) ||
2870                (isa<SCEVAddRecExpr>(Accum) &&
2871                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
2872              SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
2873
2874              // If the increment doesn't overflow, then neither the addrec nor
2875              // the post-increment will overflow.
2876              if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2877                if (OBO->hasNoUnsignedWrap())
2878                  Flags = setFlags(Flags, SCEV::FlagNUW);
2879                if (OBO->hasNoSignedWrap())
2880                  Flags = setFlags(Flags, SCEV::FlagNSW);
2881              } else if (const GEPOperator *GEP =
2882                         dyn_cast<GEPOperator>(BEValueV)) {
2883                // If the increment is an inbounds GEP, then we know the address
2884                // space cannot be wrapped around. We cannot make any guarantee
2885                // about signed or unsigned overflow because pointers are
2886                // unsigned but we may have a negative index from the base
2887                // pointer.
2888                if (GEP->isInBounds())
2889                  Flags = setFlags(Flags, SCEV::FlagNW);
2890              }
2891
2892              const SCEV *StartVal = getSCEV(StartValueV);
2893              const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
2894
2895              // Since the no-wrap flags are on the increment, they apply to the
2896              // post-incremented value as well.
2897              if (isLoopInvariant(Accum, L))
2898                (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2899                                    Accum, L, Flags);
2900
2901              // Okay, for the entire analysis of this edge we assumed the PHI
2902              // to be symbolic.  We now need to go back and purge all of the
2903              // entries for the scalars that use the symbolic expression.
2904              ForgetSymbolicName(PN, SymbolicName);
2905              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
2906              return PHISCEV;
2907            }
2908          }
2909        } else if (const SCEVAddRecExpr *AddRec =
2910                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
2911          // Otherwise, this could be a loop like this:
2912          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
2913          // In this case, j = {1,+,1}  and BEValue is j.
2914          // Because the other in-value of i (0) fits the evolution of BEValue
2915          // i really is an addrec evolution.
2916          if (AddRec->getLoop() == L && AddRec->isAffine()) {
2917            const SCEV *StartVal = getSCEV(StartValueV);
2918
2919            // If StartVal = j.start - j.stride, we can use StartVal as the
2920            // initial step of the addrec evolution.
2921            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
2922                                         AddRec->getOperand(1))) {
2923              // FIXME: For constant StartVal, we should be able to infer
2924              // no-wrap flags.
2925              const SCEV *PHISCEV =
2926                getAddRecExpr(StartVal, AddRec->getOperand(1), L,
2927                              SCEV::FlagAnyWrap);
2928
2929              // Okay, for the entire analysis of this edge we assumed the PHI
2930              // to be symbolic.  We now need to go back and purge all of the
2931              // entries for the scalars that use the symbolic expression.
2932              ForgetSymbolicName(PN, SymbolicName);
2933              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
2934              return PHISCEV;
2935            }
2936          }
2937        }
2938      }
2939    }
2940
2941  // If the PHI has a single incoming value, follow that value, unless the
2942  // PHI's incoming blocks are in a different loop, in which case doing so
2943  // risks breaking LCSSA form. Instcombine would normally zap these, but
2944  // it doesn't have DominatorTree information, so it may miss cases.
2945  if (Value *V = SimplifyInstruction(PN, TD, DT))
2946    if (LI->replacementPreservesLCSSAForm(PN, V))
2947      return getSCEV(V);
2948
2949  // If it's not a loop phi, we can't handle it yet.
2950  return getUnknown(PN);
2951}
2952
2953/// createNodeForGEP - Expand GEP instructions into add and multiply
2954/// operations. This allows them to be analyzed by regular SCEV code.
2955///
2956const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
2957
2958  // Don't blindly transfer the inbounds flag from the GEP instruction to the
2959  // Add expression, because the Instruction may be guarded by control flow
2960  // and the no-overflow bits may not be valid for the expression in any
2961  // context.
2962  bool isInBounds = GEP->isInBounds();
2963
2964  const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
2965  Value *Base = GEP->getOperand(0);
2966  // Don't attempt to analyze GEPs over unsized objects.
2967  if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2968    return getUnknown(GEP);
2969  const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
2970  gep_type_iterator GTI = gep_type_begin(GEP);
2971  for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
2972                                      E = GEP->op_end();
2973       I != E; ++I) {
2974    Value *Index = *I;
2975    // Compute the (potentially symbolic) offset in bytes for this index.
2976    if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2977      // For a struct, add the member offset.
2978      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2979      const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
2980
2981      // Add the field offset to the running total offset.
2982      TotalOffset = getAddExpr(TotalOffset, FieldOffset);
2983    } else {
2984      // For an array, add the element offset, explicitly scaled.
2985      const SCEV *ElementSize = getSizeOfExpr(*GTI);
2986      const SCEV *IndexS = getSCEV(Index);
2987      // Getelementptr indices are signed.
2988      IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
2989
2990      // Multiply the index by the element size to compute the element offset.
2991      const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize,
2992                                           isInBounds ? SCEV::FlagNSW :
2993                                           SCEV::FlagAnyWrap);
2994
2995      // Add the element offset to the running total offset.
2996      TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2997    }
2998  }
2999
3000  // Get the SCEV for the GEP base.
3001  const SCEV *BaseS = getSCEV(Base);
3002
3003  // Add the total offset from all the GEP indices to the base.
3004  return getAddExpr(BaseS, TotalOffset,
3005                    isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap);
3006}
3007
3008/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3009/// guaranteed to end in (at every loop iteration).  It is, at the same time,
3010/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
3011/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
3012uint32_t
3013ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
3014  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3015    return C->getValue()->getValue().countTrailingZeros();
3016
3017  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
3018    return std::min(GetMinTrailingZeros(T->getOperand()),
3019                    (uint32_t)getTypeSizeInBits(T->getType()));
3020
3021  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
3022    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3023    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3024             getTypeSizeInBits(E->getType()) : OpRes;
3025  }
3026
3027  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
3028    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3029    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3030             getTypeSizeInBits(E->getType()) : OpRes;
3031  }
3032
3033  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
3034    // The result is the min of all operands results.
3035    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
3036    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
3037      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
3038    return MinOpRes;
3039  }
3040
3041  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
3042    // The result is the sum of all operands results.
3043    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3044    uint32_t BitWidth = getTypeSizeInBits(M->getType());
3045    for (unsigned i = 1, e = M->getNumOperands();
3046         SumOpRes != BitWidth && i != e; ++i)
3047      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
3048                          BitWidth);
3049    return SumOpRes;
3050  }
3051
3052  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
3053    // The result is the min of all operands results.
3054    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
3055    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
3056      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
3057    return MinOpRes;
3058  }
3059
3060  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
3061    // The result is the min of all operands results.
3062    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
3063    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3064      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3065    return MinOpRes;
3066  }
3067
3068  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
3069    // The result is the min of all operands results.
3070    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
3071    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3072      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3073    return MinOpRes;
3074  }
3075
3076  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3077    // For a SCEVUnknown, ask ValueTracking.
3078    unsigned BitWidth = getTypeSizeInBits(U->getType());
3079    APInt Mask = APInt::getAllOnesValue(BitWidth);
3080    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3081    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
3082    return Zeros.countTrailingOnes();
3083  }
3084
3085  // SCEVUDivExpr
3086  return 0;
3087}
3088
3089/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3090///
3091ConstantRange
3092ScalarEvolution::getUnsignedRange(const SCEV *S) {
3093  // See if we've computed this range already.
3094  DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3095  if (I != UnsignedRanges.end())
3096    return I->second;
3097
3098  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3099    return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
3100
3101  unsigned BitWidth = getTypeSizeInBits(S->getType());
3102  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3103
3104  // If the value has known zeros, the maximum unsigned value will have those
3105  // known zeros as well.
3106  uint32_t TZ = GetMinTrailingZeros(S);
3107  if (TZ != 0)
3108    ConservativeResult =
3109      ConstantRange(APInt::getMinValue(BitWidth),
3110                    APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3111
3112  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3113    ConstantRange X = getUnsignedRange(Add->getOperand(0));
3114    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3115      X = X.add(getUnsignedRange(Add->getOperand(i)));
3116    return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
3117  }
3118
3119  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3120    ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3121    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3122      X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
3123    return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
3124  }
3125
3126  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3127    ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3128    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3129      X = X.smax(getUnsignedRange(SMax->getOperand(i)));
3130    return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
3131  }
3132
3133  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3134    ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3135    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3136      X = X.umax(getUnsignedRange(UMax->getOperand(i)));
3137    return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
3138  }
3139
3140  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3141    ConstantRange X = getUnsignedRange(UDiv->getLHS());
3142    ConstantRange Y = getUnsignedRange(UDiv->getRHS());
3143    return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
3144  }
3145
3146  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3147    ConstantRange X = getUnsignedRange(ZExt->getOperand());
3148    return setUnsignedRange(ZExt,
3149      ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3150  }
3151
3152  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3153    ConstantRange X = getUnsignedRange(SExt->getOperand());
3154    return setUnsignedRange(SExt,
3155      ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3156  }
3157
3158  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3159    ConstantRange X = getUnsignedRange(Trunc->getOperand());
3160    return setUnsignedRange(Trunc,
3161      ConservativeResult.intersectWith(X.truncate(BitWidth)));
3162  }
3163
3164  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3165    // If there's no unsigned wrap, the value will never be less than its
3166    // initial value.
3167    if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
3168      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
3169        if (!C->getValue()->isZero())
3170          ConservativeResult =
3171            ConservativeResult.intersectWith(
3172              ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
3173
3174    // TODO: non-affine addrec
3175    if (AddRec->isAffine()) {
3176      const Type *Ty = AddRec->getType();
3177      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3178      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3179          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3180        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3181
3182        const SCEV *Start = AddRec->getStart();
3183        const SCEV *Step = AddRec->getStepRecurrence(*this);
3184
3185        ConstantRange StartRange = getUnsignedRange(Start);
3186        ConstantRange StepRange = getSignedRange(Step);
3187        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3188        ConstantRange EndRange =
3189          StartRange.add(MaxBECountRange.multiply(StepRange));
3190
3191        // Check for overflow. This must be done with ConstantRange arithmetic
3192        // because we could be called from within the ScalarEvolution overflow
3193        // checking code.
3194        ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3195        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3196        ConstantRange ExtMaxBECountRange =
3197          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3198        ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3199        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3200            ExtEndRange)
3201          return setUnsignedRange(AddRec, ConservativeResult);
3202
3203        APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3204                                   EndRange.getUnsignedMin());
3205        APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3206                                   EndRange.getUnsignedMax());
3207        if (Min.isMinValue() && Max.isMaxValue())
3208          return setUnsignedRange(AddRec, ConservativeResult);
3209        return setUnsignedRange(AddRec,
3210          ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3211      }
3212    }
3213
3214    return setUnsignedRange(AddRec, ConservativeResult);
3215  }
3216
3217  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3218    // For a SCEVUnknown, ask ValueTracking.
3219    APInt Mask = APInt::getAllOnesValue(BitWidth);
3220    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3221    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
3222    if (Ones == ~Zeros + 1)
3223      return setUnsignedRange(U, ConservativeResult);
3224    return setUnsignedRange(U,
3225      ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
3226  }
3227
3228  return setUnsignedRange(S, ConservativeResult);
3229}
3230
3231/// getSignedRange - Determine the signed range for a particular SCEV.
3232///
3233ConstantRange
3234ScalarEvolution::getSignedRange(const SCEV *S) {
3235  // See if we've computed this range already.
3236  DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3237  if (I != SignedRanges.end())
3238    return I->second;
3239
3240  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3241    return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
3242
3243  unsigned BitWidth = getTypeSizeInBits(S->getType());
3244  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3245
3246  // If the value has known zeros, the maximum signed value will have those
3247  // known zeros as well.
3248  uint32_t TZ = GetMinTrailingZeros(S);
3249  if (TZ != 0)
3250    ConservativeResult =
3251      ConstantRange(APInt::getSignedMinValue(BitWidth),
3252                    APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3253
3254  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3255    ConstantRange X = getSignedRange(Add->getOperand(0));
3256    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3257      X = X.add(getSignedRange(Add->getOperand(i)));
3258    return setSignedRange(Add, ConservativeResult.intersectWith(X));
3259  }
3260
3261  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3262    ConstantRange X = getSignedRange(Mul->getOperand(0));
3263    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3264      X = X.multiply(getSignedRange(Mul->getOperand(i)));
3265    return setSignedRange(Mul, ConservativeResult.intersectWith(X));
3266  }
3267
3268  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3269    ConstantRange X = getSignedRange(SMax->getOperand(0));
3270    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3271      X = X.smax(getSignedRange(SMax->getOperand(i)));
3272    return setSignedRange(SMax, ConservativeResult.intersectWith(X));
3273  }
3274
3275  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3276    ConstantRange X = getSignedRange(UMax->getOperand(0));
3277    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3278      X = X.umax(getSignedRange(UMax->getOperand(i)));
3279    return setSignedRange(UMax, ConservativeResult.intersectWith(X));
3280  }
3281
3282  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3283    ConstantRange X = getSignedRange(UDiv->getLHS());
3284    ConstantRange Y = getSignedRange(UDiv->getRHS());
3285    return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
3286  }
3287
3288  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3289    ConstantRange X = getSignedRange(ZExt->getOperand());
3290    return setSignedRange(ZExt,
3291      ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3292  }
3293
3294  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3295    ConstantRange X = getSignedRange(SExt->getOperand());
3296    return setSignedRange(SExt,
3297      ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3298  }
3299
3300  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3301    ConstantRange X = getSignedRange(Trunc->getOperand());
3302    return setSignedRange(Trunc,
3303      ConservativeResult.intersectWith(X.truncate(BitWidth)));
3304  }
3305
3306  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3307    // If there's no signed wrap, and all the operands have the same sign or
3308    // zero, the value won't ever change sign.
3309    if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
3310      bool AllNonNeg = true;
3311      bool AllNonPos = true;
3312      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3313        if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3314        if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3315      }
3316      if (AllNonNeg)
3317        ConservativeResult = ConservativeResult.intersectWith(
3318          ConstantRange(APInt(BitWidth, 0),
3319                        APInt::getSignedMinValue(BitWidth)));
3320      else if (AllNonPos)
3321        ConservativeResult = ConservativeResult.intersectWith(
3322          ConstantRange(APInt::getSignedMinValue(BitWidth),
3323                        APInt(BitWidth, 1)));
3324    }
3325
3326    // TODO: non-affine addrec
3327    if (AddRec->isAffine()) {
3328      const Type *Ty = AddRec->getType();
3329      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3330      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3331          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3332        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3333
3334        const SCEV *Start = AddRec->getStart();
3335        const SCEV *Step = AddRec->getStepRecurrence(*this);
3336
3337        ConstantRange StartRange = getSignedRange(Start);
3338        ConstantRange StepRange = getSignedRange(Step);
3339        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3340        ConstantRange EndRange =
3341          StartRange.add(MaxBECountRange.multiply(StepRange));
3342
3343        // Check for overflow. This must be done with ConstantRange arithmetic
3344        // because we could be called from within the ScalarEvolution overflow
3345        // checking code.
3346        ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3347        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3348        ConstantRange ExtMaxBECountRange =
3349          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3350        ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3351        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3352            ExtEndRange)
3353          return setSignedRange(AddRec, ConservativeResult);
3354
3355        APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3356                                   EndRange.getSignedMin());
3357        APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3358                                   EndRange.getSignedMax());
3359        if (Min.isMinSignedValue() && Max.isMaxSignedValue())
3360          return setSignedRange(AddRec, ConservativeResult);
3361        return setSignedRange(AddRec,
3362          ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3363      }
3364    }
3365
3366    return setSignedRange(AddRec, ConservativeResult);
3367  }
3368
3369  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3370    // For a SCEVUnknown, ask ValueTracking.
3371    if (!U->getValue()->getType()->isIntegerTy() && !TD)
3372      return setSignedRange(U, ConservativeResult);
3373    unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3374    if (NS == 1)
3375      return setSignedRange(U, ConservativeResult);
3376    return setSignedRange(U, ConservativeResult.intersectWith(
3377      ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
3378                    APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
3379  }
3380
3381  return setSignedRange(S, ConservativeResult);
3382}
3383
3384/// createSCEV - We know that there is no SCEV for the specified value.
3385/// Analyze the expression.
3386///
3387const SCEV *ScalarEvolution::createSCEV(Value *V) {
3388  if (!isSCEVable(V->getType()))
3389    return getUnknown(V);
3390
3391  unsigned Opcode = Instruction::UserOp1;
3392  if (Instruction *I = dyn_cast<Instruction>(V)) {
3393    Opcode = I->getOpcode();
3394
3395    // Don't attempt to analyze instructions in blocks that aren't
3396    // reachable. Such instructions don't matter, and they aren't required
3397    // to obey basic rules for definitions dominating uses which this
3398    // analysis depends on.
3399    if (!DT->isReachableFromEntry(I->getParent()))
3400      return getUnknown(V);
3401  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
3402    Opcode = CE->getOpcode();
3403  else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3404    return getConstant(CI);
3405  else if (isa<ConstantPointerNull>(V))
3406    return getConstant(V->getType(), 0);
3407  else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3408    return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
3409  else
3410    return getUnknown(V);
3411
3412  Operator *U = cast<Operator>(V);
3413  switch (Opcode) {
3414  case Instruction::Add: {
3415    // The simple thing to do would be to just call getSCEV on both operands
3416    // and call getAddExpr with the result. However if we're looking at a
3417    // bunch of things all added together, this can be quite inefficient,
3418    // because it leads to N-1 getAddExpr calls for N ultimate operands.
3419    // Instead, gather up all the operands and make a single getAddExpr call.
3420    // LLVM IR canonical form means we need only traverse the left operands.
3421    SmallVector<const SCEV *, 4> AddOps;
3422    AddOps.push_back(getSCEV(U->getOperand(1)));
3423    for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3424      unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3425      if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3426        break;
3427      U = cast<Operator>(Op);
3428      const SCEV *Op1 = getSCEV(U->getOperand(1));
3429      if (Opcode == Instruction::Sub)
3430        AddOps.push_back(getNegativeSCEV(Op1));
3431      else
3432        AddOps.push_back(Op1);
3433    }
3434    AddOps.push_back(getSCEV(U->getOperand(0)));
3435    return getAddExpr(AddOps);
3436  }
3437  case Instruction::Mul: {
3438    // See the Add code above.
3439    SmallVector<const SCEV *, 4> MulOps;
3440    MulOps.push_back(getSCEV(U->getOperand(1)));
3441    for (Value *Op = U->getOperand(0);
3442         Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3443         Op = U->getOperand(0)) {
3444      U = cast<Operator>(Op);
3445      MulOps.push_back(getSCEV(U->getOperand(1)));
3446    }
3447    MulOps.push_back(getSCEV(U->getOperand(0)));
3448    return getMulExpr(MulOps);
3449  }
3450  case Instruction::UDiv:
3451    return getUDivExpr(getSCEV(U->getOperand(0)),
3452                       getSCEV(U->getOperand(1)));
3453  case Instruction::Sub:
3454    return getMinusSCEV(getSCEV(U->getOperand(0)),
3455                        getSCEV(U->getOperand(1)));
3456  case Instruction::And:
3457    // For an expression like x&255 that merely masks off the high bits,
3458    // use zext(trunc(x)) as the SCEV expression.
3459    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3460      if (CI->isNullValue())
3461        return getSCEV(U->getOperand(1));
3462      if (CI->isAllOnesValue())
3463        return getSCEV(U->getOperand(0));
3464      const APInt &A = CI->getValue();
3465
3466      // Instcombine's ShrinkDemandedConstant may strip bits out of
3467      // constants, obscuring what would otherwise be a low-bits mask.
3468      // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3469      // knew about to reconstruct a low-bits mask value.
3470      unsigned LZ = A.countLeadingZeros();
3471      unsigned BitWidth = A.getBitWidth();
3472      APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3473      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3474      ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3475
3476      APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3477
3478      if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
3479        return
3480          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
3481                                IntegerType::get(getContext(), BitWidth - LZ)),
3482                            U->getType());
3483    }
3484    break;
3485
3486  case Instruction::Or:
3487    // If the RHS of the Or is a constant, we may have something like:
3488    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
3489    // optimizations will transparently handle this case.
3490    //
3491    // In order for this transformation to be safe, the LHS must be of the
3492    // form X*(2^n) and the Or constant must be less than 2^n.
3493    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3494      const SCEV *LHS = getSCEV(U->getOperand(0));
3495      const APInt &CIVal = CI->getValue();
3496      if (GetMinTrailingZeros(LHS) >=
3497          (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3498        // Build a plain add SCEV.
3499        const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3500        // If the LHS of the add was an addrec and it has no-wrap flags,
3501        // transfer the no-wrap flags, since an or won't introduce a wrap.
3502        if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3503          const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3504          const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
3505            OldAR->getNoWrapFlags());
3506        }
3507        return S;
3508      }
3509    }
3510    break;
3511  case Instruction::Xor:
3512    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3513      // If the RHS of the xor is a signbit, then this is just an add.
3514      // Instcombine turns add of signbit into xor as a strength reduction step.
3515      if (CI->getValue().isSignBit())
3516        return getAddExpr(getSCEV(U->getOperand(0)),
3517                          getSCEV(U->getOperand(1)));
3518
3519      // If the RHS of xor is -1, then this is a not operation.
3520      if (CI->isAllOnesValue())
3521        return getNotSCEV(getSCEV(U->getOperand(0)));
3522
3523      // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3524      // This is a variant of the check for xor with -1, and it handles
3525      // the case where instcombine has trimmed non-demanded bits out
3526      // of an xor with -1.
3527      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3528        if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3529          if (BO->getOpcode() == Instruction::And &&
3530              LCI->getValue() == CI->getValue())
3531            if (const SCEVZeroExtendExpr *Z =
3532                  dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
3533              const Type *UTy = U->getType();
3534              const SCEV *Z0 = Z->getOperand();
3535              const Type *Z0Ty = Z0->getType();
3536              unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3537
3538              // If C is a low-bits mask, the zero extend is serving to
3539              // mask off the high bits. Complement the operand and
3540              // re-apply the zext.
3541              if (APIntOps::isMask(Z0TySize, CI->getValue()))
3542                return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3543
3544              // If C is a single bit, it may be in the sign-bit position
3545              // before the zero-extend. In this case, represent the xor
3546              // using an add, which is equivalent, and re-apply the zext.
3547              APInt Trunc = CI->getValue().trunc(Z0TySize);
3548              if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3549                  Trunc.isSignBit())
3550                return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3551                                         UTy);
3552            }
3553    }
3554    break;
3555
3556  case Instruction::Shl:
3557    // Turn shift left of a constant amount into a multiply.
3558    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3559      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3560
3561      // If the shift count is not less than the bitwidth, the result of
3562      // the shift is undefined. Don't try to analyze it, because the
3563      // resolution chosen here may differ from the resolution chosen in
3564      // other parts of the compiler.
3565      if (SA->getValue().uge(BitWidth))
3566        break;
3567
3568      Constant *X = ConstantInt::get(getContext(),
3569        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3570      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3571    }
3572    break;
3573
3574  case Instruction::LShr:
3575    // Turn logical shift right of a constant into a unsigned divide.
3576    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3577      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3578
3579      // If the shift count is not less than the bitwidth, the result of
3580      // the shift is undefined. Don't try to analyze it, because the
3581      // resolution chosen here may differ from the resolution chosen in
3582      // other parts of the compiler.
3583      if (SA->getValue().uge(BitWidth))
3584        break;
3585
3586      Constant *X = ConstantInt::get(getContext(),
3587        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3588      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3589    }
3590    break;
3591
3592  case Instruction::AShr:
3593    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3594    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
3595      if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
3596        if (L->getOpcode() == Instruction::Shl &&
3597            L->getOperand(1) == U->getOperand(1)) {
3598          uint64_t BitWidth = getTypeSizeInBits(U->getType());
3599
3600          // If the shift count is not less than the bitwidth, the result of
3601          // the shift is undefined. Don't try to analyze it, because the
3602          // resolution chosen here may differ from the resolution chosen in
3603          // other parts of the compiler.
3604          if (CI->getValue().uge(BitWidth))
3605            break;
3606
3607          uint64_t Amt = BitWidth - CI->getZExtValue();
3608          if (Amt == BitWidth)
3609            return getSCEV(L->getOperand(0));       // shift by zero --> noop
3610          return
3611            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
3612                                              IntegerType::get(getContext(),
3613                                                               Amt)),
3614                              U->getType());
3615        }
3616    break;
3617
3618  case Instruction::Trunc:
3619    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
3620
3621  case Instruction::ZExt:
3622    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3623
3624  case Instruction::SExt:
3625    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3626
3627  case Instruction::BitCast:
3628    // BitCasts are no-op casts so we just eliminate the cast.
3629    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
3630      return getSCEV(U->getOperand(0));
3631    break;
3632
3633  // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3634  // lead to pointer expressions which cannot safely be expanded to GEPs,
3635  // because ScalarEvolution doesn't respect the GEP aliasing rules when
3636  // simplifying integer expressions.
3637
3638  case Instruction::GetElementPtr:
3639    return createNodeForGEP(cast<GEPOperator>(U));
3640
3641  case Instruction::PHI:
3642    return createNodeForPHI(cast<PHINode>(U));
3643
3644  case Instruction::Select:
3645    // This could be a smax or umax that was lowered earlier.
3646    // Try to recover it.
3647    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3648      Value *LHS = ICI->getOperand(0);
3649      Value *RHS = ICI->getOperand(1);
3650      switch (ICI->getPredicate()) {
3651      case ICmpInst::ICMP_SLT:
3652      case ICmpInst::ICMP_SLE:
3653        std::swap(LHS, RHS);
3654        // fall through
3655      case ICmpInst::ICMP_SGT:
3656      case ICmpInst::ICMP_SGE:
3657        // a >s b ? a+x : b+x  ->  smax(a, b)+x
3658        // a >s b ? b+x : a+x  ->  smin(a, b)+x
3659        if (LHS->getType() == U->getType()) {
3660          const SCEV *LS = getSCEV(LHS);
3661          const SCEV *RS = getSCEV(RHS);
3662          const SCEV *LA = getSCEV(U->getOperand(1));
3663          const SCEV *RA = getSCEV(U->getOperand(2));
3664          const SCEV *LDiff = getMinusSCEV(LA, LS);
3665          const SCEV *RDiff = getMinusSCEV(RA, RS);
3666          if (LDiff == RDiff)
3667            return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3668          LDiff = getMinusSCEV(LA, RS);
3669          RDiff = getMinusSCEV(RA, LS);
3670          if (LDiff == RDiff)
3671            return getAddExpr(getSMinExpr(LS, RS), LDiff);
3672        }
3673        break;
3674      case ICmpInst::ICMP_ULT:
3675      case ICmpInst::ICMP_ULE:
3676        std::swap(LHS, RHS);
3677        // fall through
3678      case ICmpInst::ICMP_UGT:
3679      case ICmpInst::ICMP_UGE:
3680        // a >u b ? a+x : b+x  ->  umax(a, b)+x
3681        // a >u b ? b+x : a+x  ->  umin(a, b)+x
3682        if (LHS->getType() == U->getType()) {
3683          const SCEV *LS = getSCEV(LHS);
3684          const SCEV *RS = getSCEV(RHS);
3685          const SCEV *LA = getSCEV(U->getOperand(1));
3686          const SCEV *RA = getSCEV(U->getOperand(2));
3687          const SCEV *LDiff = getMinusSCEV(LA, LS);
3688          const SCEV *RDiff = getMinusSCEV(RA, RS);
3689          if (LDiff == RDiff)
3690            return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3691          LDiff = getMinusSCEV(LA, RS);
3692          RDiff = getMinusSCEV(RA, LS);
3693          if (LDiff == RDiff)
3694            return getAddExpr(getUMinExpr(LS, RS), LDiff);
3695        }
3696        break;
3697      case ICmpInst::ICMP_NE:
3698        // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
3699        if (LHS->getType() == U->getType() &&
3700            isa<ConstantInt>(RHS) &&
3701            cast<ConstantInt>(RHS)->isZero()) {
3702          const SCEV *One = getConstant(LHS->getType(), 1);
3703          const SCEV *LS = getSCEV(LHS);
3704          const SCEV *LA = getSCEV(U->getOperand(1));
3705          const SCEV *RA = getSCEV(U->getOperand(2));
3706          const SCEV *LDiff = getMinusSCEV(LA, LS);
3707          const SCEV *RDiff = getMinusSCEV(RA, One);
3708          if (LDiff == RDiff)
3709            return getAddExpr(getUMaxExpr(One, LS), LDiff);
3710        }
3711        break;
3712      case ICmpInst::ICMP_EQ:
3713        // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
3714        if (LHS->getType() == U->getType() &&
3715            isa<ConstantInt>(RHS) &&
3716            cast<ConstantInt>(RHS)->isZero()) {
3717          const SCEV *One = getConstant(LHS->getType(), 1);
3718          const SCEV *LS = getSCEV(LHS);
3719          const SCEV *LA = getSCEV(U->getOperand(1));
3720          const SCEV *RA = getSCEV(U->getOperand(2));
3721          const SCEV *LDiff = getMinusSCEV(LA, One);
3722          const SCEV *RDiff = getMinusSCEV(RA, LS);
3723          if (LDiff == RDiff)
3724            return getAddExpr(getUMaxExpr(One, LS), LDiff);
3725        }
3726        break;
3727      default:
3728        break;
3729      }
3730    }
3731
3732  default: // We cannot analyze this expression.
3733    break;
3734  }
3735
3736  return getUnknown(V);
3737}
3738
3739
3740
3741//===----------------------------------------------------------------------===//
3742//                   Iteration Count Computation Code
3743//
3744
3745/// getBackedgeTakenCount - If the specified loop has a predictable
3746/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3747/// object. The backedge-taken count is the number of times the loop header
3748/// will be branched to from within the loop. This is one less than the
3749/// trip count of the loop, since it doesn't count the first iteration,
3750/// when the header is branched to from outside the loop.
3751///
3752/// Note that it is not valid to call this method on a loop without a
3753/// loop-invariant backedge-taken count (see
3754/// hasLoopInvariantBackedgeTakenCount).
3755///
3756const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
3757  return getBackedgeTakenInfo(L).Exact;
3758}
3759
3760/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3761/// return the least SCEV value that is known never to be less than the
3762/// actual backedge taken count.
3763const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
3764  return getBackedgeTakenInfo(L).Max;
3765}
3766
3767/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3768/// onto the given Worklist.
3769static void
3770PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3771  BasicBlock *Header = L->getHeader();
3772
3773  // Push all Loop-header PHIs onto the Worklist stack.
3774  for (BasicBlock::iterator I = Header->begin();
3775       PHINode *PN = dyn_cast<PHINode>(I); ++I)
3776    Worklist.push_back(PN);
3777}
3778
3779const ScalarEvolution::BackedgeTakenInfo &
3780ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
3781  // Initially insert a CouldNotCompute for this loop. If the insertion
3782  // succeeds, proceed to actually compute a backedge-taken count and
3783  // update the value. The temporary CouldNotCompute value tells SCEV
3784  // code elsewhere that it shouldn't attempt to request a new
3785  // backedge-taken count, which could result in infinite recursion.
3786  std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
3787    BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3788  if (!Pair.second)
3789    return Pair.first->second;
3790
3791  BackedgeTakenInfo Result = getCouldNotCompute();
3792  BackedgeTakenInfo Computed = ComputeBackedgeTakenCount(L);
3793  if (Computed.Exact != getCouldNotCompute()) {
3794    assert(isLoopInvariant(Computed.Exact, L) &&
3795           isLoopInvariant(Computed.Max, L) &&
3796           "Computed backedge-taken count isn't loop invariant for loop!");
3797    ++NumTripCountsComputed;
3798
3799    // Update the value in the map.
3800    Result = Computed;
3801  } else {
3802    if (Computed.Max != getCouldNotCompute())
3803      // Update the value in the map.
3804      Result = Computed;
3805    if (isa<PHINode>(L->getHeader()->begin()))
3806      // Only count loops that have phi nodes as not being computable.
3807      ++NumTripCountsNotComputed;
3808  }
3809
3810  // Now that we know more about the trip count for this loop, forget any
3811  // existing SCEV values for PHI nodes in this loop since they are only
3812  // conservative estimates made without the benefit of trip count
3813  // information. This is similar to the code in forgetLoop, except that
3814  // it handles SCEVUnknown PHI nodes specially.
3815  if (Computed.hasAnyInfo()) {
3816    SmallVector<Instruction *, 16> Worklist;
3817    PushLoopPHIs(L, Worklist);
3818
3819    SmallPtrSet<Instruction *, 8> Visited;
3820    while (!Worklist.empty()) {
3821      Instruction *I = Worklist.pop_back_val();
3822      if (!Visited.insert(I)) continue;
3823
3824      ValueExprMapType::iterator It =
3825        ValueExprMap.find(static_cast<Value *>(I));
3826      if (It != ValueExprMap.end()) {
3827        const SCEV *Old = It->second;
3828
3829        // SCEVUnknown for a PHI either means that it has an unrecognized
3830        // structure, or it's a PHI that's in the progress of being computed
3831        // by createNodeForPHI.  In the former case, additional loop trip
3832        // count information isn't going to change anything. In the later
3833        // case, createNodeForPHI will perform the necessary updates on its
3834        // own when it gets to that point.
3835        if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
3836          forgetMemoizedResults(Old);
3837          ValueExprMap.erase(It);
3838        }
3839        if (PHINode *PN = dyn_cast<PHINode>(I))
3840          ConstantEvolutionLoopExitValue.erase(PN);
3841      }
3842
3843      PushDefUseChildren(I, Worklist);
3844    }
3845  }
3846
3847  // Re-lookup the insert position, since the call to
3848  // ComputeBackedgeTakenCount above could result in a
3849  // recusive call to getBackedgeTakenInfo (on a different
3850  // loop), which would invalidate the iterator computed
3851  // earlier.
3852  return BackedgeTakenCounts.find(L)->second = Result;
3853}
3854
3855/// forgetLoop - This method should be called by the client when it has
3856/// changed a loop in a way that may effect ScalarEvolution's ability to
3857/// compute a trip count, or if the loop is deleted.
3858void ScalarEvolution::forgetLoop(const Loop *L) {
3859  // Drop any stored trip count value.
3860  BackedgeTakenCounts.erase(L);
3861
3862  // Drop information about expressions based on loop-header PHIs.
3863  SmallVector<Instruction *, 16> Worklist;
3864  PushLoopPHIs(L, Worklist);
3865
3866  SmallPtrSet<Instruction *, 8> Visited;
3867  while (!Worklist.empty()) {
3868    Instruction *I = Worklist.pop_back_val();
3869    if (!Visited.insert(I)) continue;
3870
3871    ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3872    if (It != ValueExprMap.end()) {
3873      forgetMemoizedResults(It->second);
3874      ValueExprMap.erase(It);
3875      if (PHINode *PN = dyn_cast<PHINode>(I))
3876        ConstantEvolutionLoopExitValue.erase(PN);
3877    }
3878
3879    PushDefUseChildren(I, Worklist);
3880  }
3881
3882  // Forget all contained loops too, to avoid dangling entries in the
3883  // ValuesAtScopes map.
3884  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3885    forgetLoop(*I);
3886}
3887
3888/// forgetValue - This method should be called by the client when it has
3889/// changed a value in a way that may effect its value, or which may
3890/// disconnect it from a def-use chain linking it to a loop.
3891void ScalarEvolution::forgetValue(Value *V) {
3892  Instruction *I = dyn_cast<Instruction>(V);
3893  if (!I) return;
3894
3895  // Drop information about expressions based on loop-header PHIs.
3896  SmallVector<Instruction *, 16> Worklist;
3897  Worklist.push_back(I);
3898
3899  SmallPtrSet<Instruction *, 8> Visited;
3900  while (!Worklist.empty()) {
3901    I = Worklist.pop_back_val();
3902    if (!Visited.insert(I)) continue;
3903
3904    ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3905    if (It != ValueExprMap.end()) {
3906      forgetMemoizedResults(It->second);
3907      ValueExprMap.erase(It);
3908      if (PHINode *PN = dyn_cast<PHINode>(I))
3909        ConstantEvolutionLoopExitValue.erase(PN);
3910    }
3911
3912    PushDefUseChildren(I, Worklist);
3913  }
3914}
3915
3916/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3917/// of the specified loop will execute.
3918ScalarEvolution::BackedgeTakenInfo
3919ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
3920  SmallVector<BasicBlock *, 8> ExitingBlocks;
3921  L->getExitingBlocks(ExitingBlocks);
3922
3923  // Examine all exits and pick the most conservative values.
3924  const SCEV *BECount = getCouldNotCompute();
3925  const SCEV *MaxBECount = getCouldNotCompute();
3926  bool CouldNotComputeBECount = false;
3927  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3928    BackedgeTakenInfo NewBTI =
3929      ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
3930
3931    if (NewBTI.Exact == getCouldNotCompute()) {
3932      // We couldn't compute an exact value for this exit, so
3933      // we won't be able to compute an exact value for the loop.
3934      CouldNotComputeBECount = true;
3935      BECount = getCouldNotCompute();
3936    } else if (!CouldNotComputeBECount) {
3937      if (BECount == getCouldNotCompute())
3938        BECount = NewBTI.Exact;
3939      else
3940        BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
3941    }
3942    if (MaxBECount == getCouldNotCompute())
3943      MaxBECount = NewBTI.Max;
3944    else if (NewBTI.Max != getCouldNotCompute())
3945      MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
3946  }
3947
3948  return BackedgeTakenInfo(BECount, MaxBECount);
3949}
3950
3951/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3952/// of the specified loop will execute if it exits via the specified block.
3953ScalarEvolution::BackedgeTakenInfo
3954ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3955                                                   BasicBlock *ExitingBlock) {
3956
3957  // Okay, we've chosen an exiting block.  See what condition causes us to
3958  // exit at this block.
3959  //
3960  // FIXME: we should be able to handle switch instructions (with a single exit)
3961  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
3962  if (ExitBr == 0) return getCouldNotCompute();
3963  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
3964
3965  // At this point, we know we have a conditional branch that determines whether
3966  // the loop is exited.  However, we don't know if the branch is executed each
3967  // time through the loop.  If not, then the execution count of the branch will
3968  // not be equal to the trip count of the loop.
3969  //
3970  // Currently we check for this by checking to see if the Exit branch goes to
3971  // the loop header.  If so, we know it will always execute the same number of
3972  // times as the loop.  We also handle the case where the exit block *is* the
3973  // loop header.  This is common for un-rotated loops.
3974  //
3975  // If both of those tests fail, walk up the unique predecessor chain to the
3976  // header, stopping if there is an edge that doesn't exit the loop. If the
3977  // header is reached, the execution count of the branch will be equal to the
3978  // trip count of the loop.
3979  //
3980  //  More extensive analysis could be done to handle more cases here.
3981  //
3982  if (ExitBr->getSuccessor(0) != L->getHeader() &&
3983      ExitBr->getSuccessor(1) != L->getHeader() &&
3984      ExitBr->getParent() != L->getHeader()) {
3985    // The simple checks failed, try climbing the unique predecessor chain
3986    // up to the header.
3987    bool Ok = false;
3988    for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3989      BasicBlock *Pred = BB->getUniquePredecessor();
3990      if (!Pred)
3991        return getCouldNotCompute();
3992      TerminatorInst *PredTerm = Pred->getTerminator();
3993      for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3994        BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3995        if (PredSucc == BB)
3996          continue;
3997        // If the predecessor has a successor that isn't BB and isn't
3998        // outside the loop, assume the worst.
3999        if (L->contains(PredSucc))
4000          return getCouldNotCompute();
4001      }
4002      if (Pred == L->getHeader()) {
4003        Ok = true;
4004        break;
4005      }
4006      BB = Pred;
4007    }
4008    if (!Ok)
4009      return getCouldNotCompute();
4010  }
4011
4012  // Proceed to the next level to examine the exit condition expression.
4013  return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
4014                                               ExitBr->getSuccessor(0),
4015                                               ExitBr->getSuccessor(1));
4016}
4017
4018/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
4019/// backedge of the specified loop will execute if its exit condition
4020/// were a conditional branch of ExitCond, TBB, and FBB.
4021ScalarEvolution::BackedgeTakenInfo
4022ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
4023                                                       Value *ExitCond,
4024                                                       BasicBlock *TBB,
4025                                                       BasicBlock *FBB) {
4026  // Check if the controlling expression for this loop is an And or Or.
4027  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4028    if (BO->getOpcode() == Instruction::And) {
4029      // Recurse on the operands of the and.
4030      BackedgeTakenInfo BTI0 =
4031        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
4032      BackedgeTakenInfo BTI1 =
4033        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
4034      const SCEV *BECount = getCouldNotCompute();
4035      const SCEV *MaxBECount = getCouldNotCompute();
4036      if (L->contains(TBB)) {
4037        // Both conditions must be true for the loop to continue executing.
4038        // Choose the less conservative count.
4039        if (BTI0.Exact == getCouldNotCompute() ||
4040            BTI1.Exact == getCouldNotCompute())
4041          BECount = getCouldNotCompute();
4042        else
4043          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
4044        if (BTI0.Max == getCouldNotCompute())
4045          MaxBECount = BTI1.Max;
4046        else if (BTI1.Max == getCouldNotCompute())
4047          MaxBECount = BTI0.Max;
4048        else
4049          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
4050      } else {
4051        // Both conditions must be true at the same time for the loop to exit.
4052        // For now, be conservative.
4053        assert(L->contains(FBB) && "Loop block has no successor in loop!");
4054        if (BTI0.Max == BTI1.Max)
4055          MaxBECount = BTI0.Max;
4056        if (BTI0.Exact == BTI1.Exact)
4057          BECount = BTI0.Exact;
4058      }
4059
4060      return BackedgeTakenInfo(BECount, MaxBECount);
4061    }
4062    if (BO->getOpcode() == Instruction::Or) {
4063      // Recurse on the operands of the or.
4064      BackedgeTakenInfo BTI0 =
4065        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
4066      BackedgeTakenInfo BTI1 =
4067        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
4068      const SCEV *BECount = getCouldNotCompute();
4069      const SCEV *MaxBECount = getCouldNotCompute();
4070      if (L->contains(FBB)) {
4071        // Both conditions must be false for the loop to continue executing.
4072        // Choose the less conservative count.
4073        if (BTI0.Exact == getCouldNotCompute() ||
4074            BTI1.Exact == getCouldNotCompute())
4075          BECount = getCouldNotCompute();
4076        else
4077          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
4078        if (BTI0.Max == getCouldNotCompute())
4079          MaxBECount = BTI1.Max;
4080        else if (BTI1.Max == getCouldNotCompute())
4081          MaxBECount = BTI0.Max;
4082        else
4083          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
4084      } else {
4085        // Both conditions must be false at the same time for the loop to exit.
4086        // For now, be conservative.
4087        assert(L->contains(TBB) && "Loop block has no successor in loop!");
4088        if (BTI0.Max == BTI1.Max)
4089          MaxBECount = BTI0.Max;
4090        if (BTI0.Exact == BTI1.Exact)
4091          BECount = BTI0.Exact;
4092      }
4093
4094      return BackedgeTakenInfo(BECount, MaxBECount);
4095    }
4096  }
4097
4098  // With an icmp, it may be feasible to compute an exact backedge-taken count.
4099  // Proceed to the next level to examine the icmp.
4100  if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
4101    return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
4102
4103  // Check for a constant condition. These are normally stripped out by
4104  // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4105  // preserve the CFG and is temporarily leaving constant conditions
4106  // in place.
4107  if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4108    if (L->contains(FBB) == !CI->getZExtValue())
4109      // The backedge is always taken.
4110      return getCouldNotCompute();
4111    else
4112      // The backedge is never taken.
4113      return getConstant(CI->getType(), 0);
4114  }
4115
4116  // If it's not an integer or pointer comparison then compute it the hard way.
4117  return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
4118}
4119
4120/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
4121/// backedge of the specified loop will execute if its exit condition
4122/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4123ScalarEvolution::BackedgeTakenInfo
4124ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
4125                                                           ICmpInst *ExitCond,
4126                                                           BasicBlock *TBB,
4127                                                           BasicBlock *FBB) {
4128
4129  // If the condition was exit on true, convert the condition to exit on false
4130  ICmpInst::Predicate Cond;
4131  if (!L->contains(FBB))
4132    Cond = ExitCond->getPredicate();
4133  else
4134    Cond = ExitCond->getInversePredicate();
4135
4136  // Handle common loops like: for (X = "string"; *X; ++X)
4137  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4138    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
4139      BackedgeTakenInfo ItCnt =
4140        ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
4141      if (ItCnt.hasAnyInfo())
4142        return ItCnt;
4143    }
4144
4145  const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4146  const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
4147
4148  // Try to evaluate any dependencies out of the loop.
4149  LHS = getSCEVAtScope(LHS, L);
4150  RHS = getSCEVAtScope(RHS, L);
4151
4152  // At this point, we would like to compute how many iterations of the
4153  // loop the predicate will return true for these inputs.
4154  if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
4155    // If there is a loop-invariant, force it into the RHS.
4156    std::swap(LHS, RHS);
4157    Cond = ICmpInst::getSwappedPredicate(Cond);
4158  }
4159
4160  // Simplify the operands before analyzing them.
4161  (void)SimplifyICmpOperands(Cond, LHS, RHS);
4162
4163  // If we have a comparison of a chrec against a constant, try to use value
4164  // ranges to answer this query.
4165  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4166    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
4167      if (AddRec->getLoop() == L) {
4168        // Form the constant range.
4169        ConstantRange CompRange(
4170            ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
4171
4172        const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
4173        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
4174      }
4175
4176  switch (Cond) {
4177  case ICmpInst::ICMP_NE: {                     // while (X != Y)
4178    // Convert to: while (X-Y != 0)
4179    BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L);
4180    if (BTI.hasAnyInfo()) return BTI;
4181    break;
4182  }
4183  case ICmpInst::ICMP_EQ: {                     // while (X == Y)
4184    // Convert to: while (X-Y == 0)
4185    BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4186    if (BTI.hasAnyInfo()) return BTI;
4187    break;
4188  }
4189  case ICmpInst::ICMP_SLT: {
4190    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
4191    if (BTI.hasAnyInfo()) return BTI;
4192    break;
4193  }
4194  case ICmpInst::ICMP_SGT: {
4195    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4196                                             getNotSCEV(RHS), L, true);
4197    if (BTI.hasAnyInfo()) return BTI;
4198    break;
4199  }
4200  case ICmpInst::ICMP_ULT: {
4201    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
4202    if (BTI.hasAnyInfo()) return BTI;
4203    break;
4204  }
4205  case ICmpInst::ICMP_UGT: {
4206    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4207                                             getNotSCEV(RHS), L, false);
4208    if (BTI.hasAnyInfo()) return BTI;
4209    break;
4210  }
4211  default:
4212#if 0
4213    dbgs() << "ComputeBackedgeTakenCount ";
4214    if (ExitCond->getOperand(0)->getType()->isUnsigned())
4215      dbgs() << "[unsigned] ";
4216    dbgs() << *LHS << "   "
4217         << Instruction::getOpcodeName(Instruction::ICmp)
4218         << "   " << *RHS << "\n";
4219#endif
4220    break;
4221  }
4222  return
4223    ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
4224}
4225
4226static ConstantInt *
4227EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4228                                ScalarEvolution &SE) {
4229  const SCEV *InVal = SE.getConstant(C);
4230  const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
4231  assert(isa<SCEVConstant>(Val) &&
4232         "Evaluation of SCEV at constant didn't fold correctly?");
4233  return cast<SCEVConstant>(Val)->getValue();
4234}
4235
4236/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4237/// and a GEP expression (missing the pointer index) indexing into it, return
4238/// the addressed element of the initializer or null if the index expression is
4239/// invalid.
4240static Constant *
4241GetAddressedElementFromGlobal(GlobalVariable *GV,
4242                              const std::vector<ConstantInt*> &Indices) {
4243  Constant *Init = GV->getInitializer();
4244  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
4245    uint64_t Idx = Indices[i]->getZExtValue();
4246    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4247      assert(Idx < CS->getNumOperands() && "Bad struct index!");
4248      Init = cast<Constant>(CS->getOperand(Idx));
4249    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4250      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
4251      Init = cast<Constant>(CA->getOperand(Idx));
4252    } else if (isa<ConstantAggregateZero>(Init)) {
4253      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
4254        assert(Idx < STy->getNumElements() && "Bad struct index!");
4255        Init = Constant::getNullValue(STy->getElementType(Idx));
4256      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4257        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
4258        Init = Constant::getNullValue(ATy->getElementType());
4259      } else {
4260        llvm_unreachable("Unknown constant aggregate type!");
4261      }
4262      return 0;
4263    } else {
4264      return 0; // Unknown initializer type
4265    }
4266  }
4267  return Init;
4268}
4269
4270/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4271/// 'icmp op load X, cst', try to see if we can compute the backedge
4272/// execution count.
4273ScalarEvolution::BackedgeTakenInfo
4274ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4275                                                LoadInst *LI,
4276                                                Constant *RHS,
4277                                                const Loop *L,
4278                                                ICmpInst::Predicate predicate) {
4279  if (LI->isVolatile()) return getCouldNotCompute();
4280
4281  // Check to see if the loaded pointer is a getelementptr of a global.
4282  // TODO: Use SCEV instead of manually grubbing with GEPs.
4283  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
4284  if (!GEP) return getCouldNotCompute();
4285
4286  // Make sure that it is really a constant global we are gepping, with an
4287  // initializer, and make sure the first IDX is really 0.
4288  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
4289  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
4290      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4291      !cast<Constant>(GEP->getOperand(1))->isNullValue())
4292    return getCouldNotCompute();
4293
4294  // Okay, we allow one non-constant index into the GEP instruction.
4295  Value *VarIdx = 0;
4296  std::vector<ConstantInt*> Indexes;
4297  unsigned VarIdxNum = 0;
4298  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4299    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4300      Indexes.push_back(CI);
4301    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
4302      if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
4303      VarIdx = GEP->getOperand(i);
4304      VarIdxNum = i-2;
4305      Indexes.push_back(0);
4306    }
4307
4308  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4309  // Check to see if X is a loop variant variable value now.
4310  const SCEV *Idx = getSCEV(VarIdx);
4311  Idx = getSCEVAtScope(Idx, L);
4312
4313  // We can only recognize very limited forms of loop index expressions, in
4314  // particular, only affine AddRec's like {C1,+,C2}.
4315  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
4316  if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
4317      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4318      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
4319    return getCouldNotCompute();
4320
4321  unsigned MaxSteps = MaxBruteForceIterations;
4322  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
4323    ConstantInt *ItCst = ConstantInt::get(
4324                           cast<IntegerType>(IdxExpr->getType()), IterationNum);
4325    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
4326
4327    // Form the GEP offset.
4328    Indexes[VarIdxNum] = Val;
4329
4330    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
4331    if (Result == 0) break;  // Cannot compute!
4332
4333    // Evaluate the condition for this iteration.
4334    Result = ConstantExpr::getICmp(predicate, Result, RHS);
4335    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
4336    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
4337#if 0
4338      dbgs() << "\n***\n*** Computed loop count " << *ItCst
4339             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4340             << "***\n";
4341#endif
4342      ++NumArrayLenItCounts;
4343      return getConstant(ItCst);   // Found terminating iteration!
4344    }
4345  }
4346  return getCouldNotCompute();
4347}
4348
4349
4350/// CanConstantFold - Return true if we can constant fold an instruction of the
4351/// specified type, assuming that all operands were constants.
4352static bool CanConstantFold(const Instruction *I) {
4353  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
4354      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4355    return true;
4356
4357  if (const CallInst *CI = dyn_cast<CallInst>(I))
4358    if (const Function *F = CI->getCalledFunction())
4359      return canConstantFoldCallTo(F);
4360  return false;
4361}
4362
4363/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4364/// in the loop that V is derived from.  We allow arbitrary operations along the
4365/// way, but the operands of an operation must either be constants or a value
4366/// derived from a constant PHI.  If this expression does not fit with these
4367/// constraints, return null.
4368static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4369  // If this is not an instruction, or if this is an instruction outside of the
4370  // loop, it can't be derived from a loop PHI.
4371  Instruction *I = dyn_cast<Instruction>(V);
4372  if (I == 0 || !L->contains(I)) return 0;
4373
4374  if (PHINode *PN = dyn_cast<PHINode>(I)) {
4375    if (L->getHeader() == I->getParent())
4376      return PN;
4377    else
4378      // We don't currently keep track of the control flow needed to evaluate
4379      // PHIs, so we cannot handle PHIs inside of loops.
4380      return 0;
4381  }
4382
4383  // If we won't be able to constant fold this expression even if the operands
4384  // are constants, return early.
4385  if (!CanConstantFold(I)) return 0;
4386
4387  // Otherwise, we can evaluate this instruction if all of its operands are
4388  // constant or derived from a PHI node themselves.
4389  PHINode *PHI = 0;
4390  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
4391    if (!isa<Constant>(I->getOperand(Op))) {
4392      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4393      if (P == 0) return 0;  // Not evolving from PHI
4394      if (PHI == 0)
4395        PHI = P;
4396      else if (PHI != P)
4397        return 0;  // Evolving from multiple different PHIs.
4398    }
4399
4400  // This is a expression evolving from a constant PHI!
4401  return PHI;
4402}
4403
4404/// EvaluateExpression - Given an expression that passes the
4405/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4406/// in the loop has the value PHIVal.  If we can't fold this expression for some
4407/// reason, return null.
4408static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4409                                    const TargetData *TD) {
4410  if (isa<PHINode>(V)) return PHIVal;
4411  if (Constant *C = dyn_cast<Constant>(V)) return C;
4412  Instruction *I = cast<Instruction>(V);
4413
4414  std::vector<Constant*> Operands(I->getNumOperands());
4415
4416  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4417    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
4418    if (Operands[i] == 0) return 0;
4419  }
4420
4421  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4422    return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
4423                                           Operands[1], TD);
4424  return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4425                                  &Operands[0], Operands.size(), TD);
4426}
4427
4428/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4429/// in the header of its containing loop, we know the loop executes a
4430/// constant number of times, and the PHI node is just a recurrence
4431/// involving constants, fold it.
4432Constant *
4433ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
4434                                                   const APInt &BEs,
4435                                                   const Loop *L) {
4436  std::map<PHINode*, Constant*>::const_iterator I =
4437    ConstantEvolutionLoopExitValue.find(PN);
4438  if (I != ConstantEvolutionLoopExitValue.end())
4439    return I->second;
4440
4441  if (BEs.ugt(MaxBruteForceIterations))
4442    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
4443
4444  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4445
4446  // Since the loop is canonicalized, the PHI node must have two entries.  One
4447  // entry must be a constant (coming in from outside of the loop), and the
4448  // second must be derived from the same PHI.
4449  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4450  Constant *StartCST =
4451    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4452  if (StartCST == 0)
4453    return RetVal = 0;  // Must be a constant.
4454
4455  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4456  if (getConstantEvolvingPHI(BEValue, L) != PN &&
4457      !isa<Constant>(BEValue))
4458    return RetVal = 0;  // Not derived from same PHI.
4459
4460  // Execute the loop symbolically to determine the exit value.
4461  if (BEs.getActiveBits() >= 32)
4462    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
4463
4464  unsigned NumIterations = BEs.getZExtValue(); // must be in range
4465  unsigned IterationNum = 0;
4466  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4467    if (IterationNum == NumIterations)
4468      return RetVal = PHIVal;  // Got exit value!
4469
4470    // Compute the value of the PHI node for the next iteration.
4471    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4472    if (NextPHI == PHIVal)
4473      return RetVal = NextPHI;  // Stopped evolving!
4474    if (NextPHI == 0)
4475      return 0;        // Couldn't evaluate!
4476    PHIVal = NextPHI;
4477  }
4478}
4479
4480/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
4481/// constant number of times (the condition evolves only from constants),
4482/// try to evaluate a few iterations of the loop until we get the exit
4483/// condition gets a value of ExitWhen (true or false).  If we cannot
4484/// evaluate the trip count of the loop, return getCouldNotCompute().
4485const SCEV *
4486ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4487                                                       Value *Cond,
4488                                                       bool ExitWhen) {
4489  PHINode *PN = getConstantEvolvingPHI(Cond, L);
4490  if (PN == 0) return getCouldNotCompute();
4491
4492  // If the loop is canonicalized, the PHI will have exactly two entries.
4493  // That's the only form we support here.
4494  if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4495
4496  // One entry must be a constant (coming in from outside of the loop), and the
4497  // second must be derived from the same PHI.
4498  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4499  Constant *StartCST =
4500    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4501  if (StartCST == 0) return getCouldNotCompute();  // Must be a constant.
4502
4503  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4504  if (getConstantEvolvingPHI(BEValue, L) != PN &&
4505      !isa<Constant>(BEValue))
4506    return getCouldNotCompute();  // Not derived from same PHI.
4507
4508  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
4509  // the loop symbolically to determine when the condition gets a value of
4510  // "ExitWhen".
4511  unsigned IterationNum = 0;
4512  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
4513  for (Constant *PHIVal = StartCST;
4514       IterationNum != MaxIterations; ++IterationNum) {
4515    ConstantInt *CondVal =
4516      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
4517
4518    // Couldn't symbolically evaluate.
4519    if (!CondVal) return getCouldNotCompute();
4520
4521    if (CondVal->getValue() == uint64_t(ExitWhen)) {
4522      ++NumBruteForceTripCountsComputed;
4523      return getConstant(Type::getInt32Ty(getContext()), IterationNum);
4524    }
4525
4526    // Compute the value of the PHI node for the next iteration.
4527    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4528    if (NextPHI == 0 || NextPHI == PHIVal)
4529      return getCouldNotCompute();// Couldn't evaluate or not making progress...
4530    PHIVal = NextPHI;
4531  }
4532
4533  // Too many iterations were needed to evaluate.
4534  return getCouldNotCompute();
4535}
4536
4537/// getSCEVAtScope - Return a SCEV expression for the specified value
4538/// at the specified scope in the program.  The L value specifies a loop
4539/// nest to evaluate the expression at, where null is the top-level or a
4540/// specified loop is immediately inside of the loop.
4541///
4542/// This method can be used to compute the exit value for a variable defined
4543/// in a loop by querying what the value will hold in the parent loop.
4544///
4545/// In the case that a relevant loop exit value cannot be computed, the
4546/// original value V is returned.
4547const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
4548  // Check to see if we've folded this expression at this loop before.
4549  std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4550  std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4551    Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4552  if (!Pair.second)
4553    return Pair.first->second ? Pair.first->second : V;
4554
4555  // Otherwise compute it.
4556  const SCEV *C = computeSCEVAtScope(V, L);
4557  ValuesAtScopes[V][L] = C;
4558  return C;
4559}
4560
4561const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
4562  if (isa<SCEVConstant>(V)) return V;
4563
4564  // If this instruction is evolved from a constant-evolving PHI, compute the
4565  // exit value from the loop without using SCEVs.
4566  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
4567    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
4568      const Loop *LI = (*this->LI)[I->getParent()];
4569      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
4570        if (PHINode *PN = dyn_cast<PHINode>(I))
4571          if (PN->getParent() == LI->getHeader()) {
4572            // Okay, there is no closed form solution for the PHI node.  Check
4573            // to see if the loop that contains it has a known backedge-taken
4574            // count.  If so, we may be able to force computation of the exit
4575            // value.
4576            const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
4577            if (const SCEVConstant *BTCC =
4578                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
4579              // Okay, we know how many times the containing loop executes.  If
4580              // this is a constant evolving PHI node, get the final value at
4581              // the specified iteration number.
4582              Constant *RV = getConstantEvolutionLoopExitValue(PN,
4583                                                   BTCC->getValue()->getValue(),
4584                                                               LI);
4585              if (RV) return getSCEV(RV);
4586            }
4587          }
4588
4589      // Okay, this is an expression that we cannot symbolically evaluate
4590      // into a SCEV.  Check to see if it's possible to symbolically evaluate
4591      // the arguments into constants, and if so, try to constant propagate the
4592      // result.  This is particularly useful for computing loop exit values.
4593      if (CanConstantFold(I)) {
4594        SmallVector<Constant *, 4> Operands;
4595        bool MadeImprovement = false;
4596        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4597          Value *Op = I->getOperand(i);
4598          if (Constant *C = dyn_cast<Constant>(Op)) {
4599            Operands.push_back(C);
4600            continue;
4601          }
4602
4603          // If any of the operands is non-constant and if they are
4604          // non-integer and non-pointer, don't even try to analyze them
4605          // with scev techniques.
4606          if (!isSCEVable(Op->getType()))
4607            return V;
4608
4609          const SCEV *OrigV = getSCEV(Op);
4610          const SCEV *OpV = getSCEVAtScope(OrigV, L);
4611          MadeImprovement |= OrigV != OpV;
4612
4613          Constant *C = 0;
4614          if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4615            C = SC->getValue();
4616          if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4617            C = dyn_cast<Constant>(SU->getValue());
4618          if (!C) return V;
4619          if (C->getType() != Op->getType())
4620            C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4621                                                              Op->getType(),
4622                                                              false),
4623                                      C, Op->getType());
4624          Operands.push_back(C);
4625        }
4626
4627        // Check to see if getSCEVAtScope actually made an improvement.
4628        if (MadeImprovement) {
4629          Constant *C = 0;
4630          if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4631            C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4632                                                Operands[0], Operands[1], TD);
4633          else
4634            C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4635                                         &Operands[0], Operands.size(), TD);
4636          if (!C) return V;
4637          return getSCEV(C);
4638        }
4639      }
4640    }
4641
4642    // This is some other type of SCEVUnknown, just return it.
4643    return V;
4644  }
4645
4646  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
4647    // Avoid performing the look-up in the common case where the specified
4648    // expression has no loop-variant portions.
4649    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
4650      const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4651      if (OpAtScope != Comm->getOperand(i)) {
4652        // Okay, at least one of these operands is loop variant but might be
4653        // foldable.  Build a new instance of the folded commutative expression.
4654        SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4655                                            Comm->op_begin()+i);
4656        NewOps.push_back(OpAtScope);
4657
4658        for (++i; i != e; ++i) {
4659          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4660          NewOps.push_back(OpAtScope);
4661        }
4662        if (isa<SCEVAddExpr>(Comm))
4663          return getAddExpr(NewOps);
4664        if (isa<SCEVMulExpr>(Comm))
4665          return getMulExpr(NewOps);
4666        if (isa<SCEVSMaxExpr>(Comm))
4667          return getSMaxExpr(NewOps);
4668        if (isa<SCEVUMaxExpr>(Comm))
4669          return getUMaxExpr(NewOps);
4670        llvm_unreachable("Unknown commutative SCEV type!");
4671      }
4672    }
4673    // If we got here, all operands are loop invariant.
4674    return Comm;
4675  }
4676
4677  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
4678    const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4679    const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
4680    if (LHS == Div->getLHS() && RHS == Div->getRHS())
4681      return Div;   // must be loop invariant
4682    return getUDivExpr(LHS, RHS);
4683  }
4684
4685  // If this is a loop recurrence for a loop that does not contain L, then we
4686  // are dealing with the final value computed by the loop.
4687  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4688    // First, attempt to evaluate each operand.
4689    // Avoid performing the look-up in the common case where the specified
4690    // expression has no loop-variant portions.
4691    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4692      const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4693      if (OpAtScope == AddRec->getOperand(i))
4694        continue;
4695
4696      // Okay, at least one of these operands is loop variant but might be
4697      // foldable.  Build a new instance of the folded commutative expression.
4698      SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4699                                          AddRec->op_begin()+i);
4700      NewOps.push_back(OpAtScope);
4701      for (++i; i != e; ++i)
4702        NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4703
4704      AddRec = cast<SCEVAddRecExpr>(
4705        getAddRecExpr(NewOps, AddRec->getLoop(),
4706                      AddRec->getNoWrapFlags(SCEV::FlagNW)));
4707      break;
4708    }
4709
4710    // If the scope is outside the addrec's loop, evaluate it by using the
4711    // loop exit value of the addrec.
4712    if (!AddRec->getLoop()->contains(L)) {
4713      // To evaluate this recurrence, we need to know how many times the AddRec
4714      // loop iterates.  Compute this now.
4715      const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
4716      if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
4717
4718      // Then, evaluate the AddRec.
4719      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
4720    }
4721
4722    return AddRec;
4723  }
4724
4725  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
4726    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4727    if (Op == Cast->getOperand())
4728      return Cast;  // must be loop invariant
4729    return getZeroExtendExpr(Op, Cast->getType());
4730  }
4731
4732  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
4733    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4734    if (Op == Cast->getOperand())
4735      return Cast;  // must be loop invariant
4736    return getSignExtendExpr(Op, Cast->getType());
4737  }
4738
4739  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
4740    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4741    if (Op == Cast->getOperand())
4742      return Cast;  // must be loop invariant
4743    return getTruncateExpr(Op, Cast->getType());
4744  }
4745
4746  llvm_unreachable("Unknown SCEV type!");
4747  return 0;
4748}
4749
4750/// getSCEVAtScope - This is a convenience function which does
4751/// getSCEVAtScope(getSCEV(V), L).
4752const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
4753  return getSCEVAtScope(getSCEV(V), L);
4754}
4755
4756/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4757/// following equation:
4758///
4759///     A * X = B (mod N)
4760///
4761/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4762/// A and B isn't important.
4763///
4764/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
4765static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
4766                                               ScalarEvolution &SE) {
4767  uint32_t BW = A.getBitWidth();
4768  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4769  assert(A != 0 && "A must be non-zero.");
4770
4771  // 1. D = gcd(A, N)
4772  //
4773  // The gcd of A and N may have only one prime factor: 2. The number of
4774  // trailing zeros in A is its multiplicity
4775  uint32_t Mult2 = A.countTrailingZeros();
4776  // D = 2^Mult2
4777
4778  // 2. Check if B is divisible by D.
4779  //
4780  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4781  // is not less than multiplicity of this prime factor for D.
4782  if (B.countTrailingZeros() < Mult2)
4783    return SE.getCouldNotCompute();
4784
4785  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4786  // modulo (N / D).
4787  //
4788  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
4789  // bit width during computations.
4790  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
4791  APInt Mod(BW + 1, 0);
4792  Mod.setBit(BW - Mult2);  // Mod = N / D
4793  APInt I = AD.multiplicativeInverse(Mod);
4794
4795  // 4. Compute the minimum unsigned root of the equation:
4796  // I * (B / D) mod (N / D)
4797  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4798
4799  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4800  // bits.
4801  return SE.getConstant(Result.trunc(BW));
4802}
4803
4804/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4805/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
4806/// might be the same) or two SCEVCouldNotCompute objects.
4807///
4808static std::pair<const SCEV *,const SCEV *>
4809SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
4810  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
4811  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4812  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4813  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
4814
4815  // We currently can only solve this if the coefficients are constants.
4816  if (!LC || !MC || !NC) {
4817    const SCEV *CNC = SE.getCouldNotCompute();
4818    return std::make_pair(CNC, CNC);
4819  }
4820
4821  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
4822  const APInt &L = LC->getValue()->getValue();
4823  const APInt &M = MC->getValue()->getValue();
4824  const APInt &N = NC->getValue()->getValue();
4825  APInt Two(BitWidth, 2);
4826  APInt Four(BitWidth, 4);
4827
4828  {
4829    using namespace APIntOps;
4830    const APInt& C = L;
4831    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4832    // The B coefficient is M-N/2
4833    APInt B(M);
4834    B -= sdiv(N,Two);
4835
4836    // The A coefficient is N/2
4837    APInt A(N.sdiv(Two));
4838
4839    // Compute the B^2-4ac term.
4840    APInt SqrtTerm(B);
4841    SqrtTerm *= B;
4842    SqrtTerm -= Four * (A * C);
4843
4844    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4845    // integer value or else APInt::sqrt() will assert.
4846    APInt SqrtVal(SqrtTerm.sqrt());
4847
4848    // Compute the two solutions for the quadratic formula.
4849    // The divisions must be performed as signed divisions.
4850    APInt NegB(-B);
4851    APInt TwoA( A << 1 );
4852    if (TwoA.isMinValue()) {
4853      const SCEV *CNC = SE.getCouldNotCompute();
4854      return std::make_pair(CNC, CNC);
4855    }
4856
4857    LLVMContext &Context = SE.getContext();
4858
4859    ConstantInt *Solution1 =
4860      ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
4861    ConstantInt *Solution2 =
4862      ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
4863
4864    return std::make_pair(SE.getConstant(Solution1),
4865                          SE.getConstant(Solution2));
4866    } // end APIntOps namespace
4867}
4868
4869/// HowFarToZero - Return the number of times a backedge comparing the specified
4870/// value to zero will execute.  If not computable, return CouldNotCompute.
4871///
4872/// This is only used for loops with a "x != y" exit test. The exit condition is
4873/// now expressed as a single expression, V = x-y. So the exit test is
4874/// effectively V != 0.  We know and take advantage of the fact that this
4875/// expression only being used in a comparison by zero context.
4876ScalarEvolution::BackedgeTakenInfo
4877ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
4878  // If the value is a constant
4879  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4880    // If the value is already zero, the branch will execute zero times.
4881    if (C->getValue()->isZero()) return C;
4882    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4883  }
4884
4885  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
4886  if (!AddRec || AddRec->getLoop() != L)
4887    return getCouldNotCompute();
4888
4889  // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4890  // the quadratic equation to solve it.
4891  if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
4892    std::pair<const SCEV *,const SCEV *> Roots =
4893      SolveQuadraticEquation(AddRec, *this);
4894    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4895    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
4896    if (R1 && R2) {
4897#if 0
4898      dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
4899             << "  sol#2: " << *R2 << "\n";
4900#endif
4901      // Pick the smallest positive root value.
4902      if (ConstantInt *CB =
4903          dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
4904                                                      R1->getValue(),
4905                                                      R2->getValue()))) {
4906        if (CB->getZExtValue() == false)
4907          std::swap(R1, R2);   // R1 is the minimum root now.
4908
4909        // We can only use this value if the chrec ends up with an exact zero
4910        // value at this index.  When solving for "X*X != 5", for example, we
4911        // should not accept a root of 2.
4912        const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
4913        if (Val->isZero())
4914          return R1;  // We found a quadratic root!
4915      }
4916    }
4917    return getCouldNotCompute();
4918  }
4919
4920  // Otherwise we can only handle this if it is affine.
4921  if (!AddRec->isAffine())
4922    return getCouldNotCompute();
4923
4924  // If this is an affine expression, the execution count of this branch is
4925  // the minimum unsigned root of the following equation:
4926  //
4927  //     Start + Step*N = 0 (mod 2^BW)
4928  //
4929  // equivalent to:
4930  //
4931  //             Step*N = -Start (mod 2^BW)
4932  //
4933  // where BW is the common bit width of Start and Step.
4934
4935  // Get the initial value for the loop.
4936  const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
4937  const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
4938
4939  // For now we handle only constant steps.
4940  //
4941  // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
4942  // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
4943  // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
4944  // We have not yet seen any such cases.
4945  const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
4946  if (StepC == 0)
4947    return getCouldNotCompute();
4948
4949  // For positive steps (counting up until unsigned overflow):
4950  //   N = -Start/Step (as unsigned)
4951  // For negative steps (counting down to zero):
4952  //   N = Start/-Step
4953  // First compute the unsigned distance from zero in the direction of Step.
4954  bool CountDown = StepC->getValue()->getValue().isNegative();
4955  const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
4956
4957  // Handle unitary steps, which cannot wraparound.
4958  // 1*N = -Start; -1*N = Start (mod 2^BW), so:
4959  //   N = Distance (as unsigned)
4960  if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue())
4961    return Distance;
4962
4963  // If the recurrence is known not to wraparound, unsigned divide computes the
4964  // back edge count. We know that the value will either become zero (and thus
4965  // the loop terminates), that the loop will terminate through some other exit
4966  // condition first, or that the loop has undefined behavior.  This means
4967  // we can't "miss" the exit value, even with nonunit stride.
4968  //
4969  // FIXME: Prove that loops always exhibits *acceptable* undefined
4970  // behavior. Loops must exhibit defined behavior until a wrapped value is
4971  // actually used. So the trip count computed by udiv could be smaller than the
4972  // number of well-defined iterations.
4973  if (AddRec->getNoWrapFlags(SCEV::FlagNW))
4974    // FIXME: We really want an "isexact" bit for udiv.
4975    return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
4976
4977  // Then, try to solve the above equation provided that Start is constant.
4978  if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
4979    return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
4980                                        -StartC->getValue()->getValue(),
4981                                        *this);
4982  return getCouldNotCompute();
4983}
4984
4985/// HowFarToNonZero - Return the number of times a backedge checking the
4986/// specified value for nonzero will execute.  If not computable, return
4987/// CouldNotCompute
4988ScalarEvolution::BackedgeTakenInfo
4989ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
4990  // Loops that look like: while (X == 0) are very strange indeed.  We don't
4991  // handle them yet except for the trivial case.  This could be expanded in the
4992  // future as needed.
4993
4994  // If the value is a constant, check to see if it is known to be non-zero
4995  // already.  If so, the backedge will execute zero times.
4996  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4997    if (!C->getValue()->isNullValue())
4998      return getConstant(C->getType(), 0);
4999    return getCouldNotCompute();  // Otherwise it will loop infinitely.
5000  }
5001
5002  // We could implement others, but I really doubt anyone writes loops like
5003  // this, and if they did, they would already be constant folded.
5004  return getCouldNotCompute();
5005}
5006
5007/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
5008/// (which may not be an immediate predecessor) which has exactly one
5009/// successor from which BB is reachable, or null if no such block is
5010/// found.
5011///
5012std::pair<BasicBlock *, BasicBlock *>
5013ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
5014  // If the block has a unique predecessor, then there is no path from the
5015  // predecessor to the block that does not go through the direct edge
5016  // from the predecessor to the block.
5017  if (BasicBlock *Pred = BB->getSinglePredecessor())
5018    return std::make_pair(Pred, BB);
5019
5020  // A loop's header is defined to be a block that dominates the loop.
5021  // If the header has a unique predecessor outside the loop, it must be
5022  // a block that has exactly one successor that can reach the loop.
5023  if (Loop *L = LI->getLoopFor(BB))
5024    return std::make_pair(L->getLoopPredecessor(), L->getHeader());
5025
5026  return std::pair<BasicBlock *, BasicBlock *>();
5027}
5028
5029/// HasSameValue - SCEV structural equivalence is usually sufficient for
5030/// testing whether two expressions are equal, however for the purposes of
5031/// looking for a condition guarding a loop, it can be useful to be a little
5032/// more general, since a front-end may have replicated the controlling
5033/// expression.
5034///
5035static bool HasSameValue(const SCEV *A, const SCEV *B) {
5036  // Quick check to see if they are the same SCEV.
5037  if (A == B) return true;
5038
5039  // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5040  // two different instructions with the same value. Check for this case.
5041  if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5042    if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5043      if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5044        if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
5045          if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
5046            return true;
5047
5048  // Otherwise assume they may have a different value.
5049  return false;
5050}
5051
5052/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
5053/// predicate Pred. Return true iff any changes were made.
5054///
5055bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
5056                                           const SCEV *&LHS, const SCEV *&RHS) {
5057  bool Changed = false;
5058
5059  // Canonicalize a constant to the right side.
5060  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5061    // Check for both operands constant.
5062    if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5063      if (ConstantExpr::getICmp(Pred,
5064                                LHSC->getValue(),
5065                                RHSC->getValue())->isNullValue())
5066        goto trivially_false;
5067      else
5068        goto trivially_true;
5069    }
5070    // Otherwise swap the operands to put the constant on the right.
5071    std::swap(LHS, RHS);
5072    Pred = ICmpInst::getSwappedPredicate(Pred);
5073    Changed = true;
5074  }
5075
5076  // If we're comparing an addrec with a value which is loop-invariant in the
5077  // addrec's loop, put the addrec on the left. Also make a dominance check,
5078  // as both operands could be addrecs loop-invariant in each other's loop.
5079  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5080    const Loop *L = AR->getLoop();
5081    if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
5082      std::swap(LHS, RHS);
5083      Pred = ICmpInst::getSwappedPredicate(Pred);
5084      Changed = true;
5085    }
5086  }
5087
5088  // If there's a constant operand, canonicalize comparisons with boundary
5089  // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5090  if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5091    const APInt &RA = RC->getValue()->getValue();
5092    switch (Pred) {
5093    default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5094    case ICmpInst::ICMP_EQ:
5095    case ICmpInst::ICMP_NE:
5096      break;
5097    case ICmpInst::ICMP_UGE:
5098      if ((RA - 1).isMinValue()) {
5099        Pred = ICmpInst::ICMP_NE;
5100        RHS = getConstant(RA - 1);
5101        Changed = true;
5102        break;
5103      }
5104      if (RA.isMaxValue()) {
5105        Pred = ICmpInst::ICMP_EQ;
5106        Changed = true;
5107        break;
5108      }
5109      if (RA.isMinValue()) goto trivially_true;
5110
5111      Pred = ICmpInst::ICMP_UGT;
5112      RHS = getConstant(RA - 1);
5113      Changed = true;
5114      break;
5115    case ICmpInst::ICMP_ULE:
5116      if ((RA + 1).isMaxValue()) {
5117        Pred = ICmpInst::ICMP_NE;
5118        RHS = getConstant(RA + 1);
5119        Changed = true;
5120        break;
5121      }
5122      if (RA.isMinValue()) {
5123        Pred = ICmpInst::ICMP_EQ;
5124        Changed = true;
5125        break;
5126      }
5127      if (RA.isMaxValue()) goto trivially_true;
5128
5129      Pred = ICmpInst::ICMP_ULT;
5130      RHS = getConstant(RA + 1);
5131      Changed = true;
5132      break;
5133    case ICmpInst::ICMP_SGE:
5134      if ((RA - 1).isMinSignedValue()) {
5135        Pred = ICmpInst::ICMP_NE;
5136        RHS = getConstant(RA - 1);
5137        Changed = true;
5138        break;
5139      }
5140      if (RA.isMaxSignedValue()) {
5141        Pred = ICmpInst::ICMP_EQ;
5142        Changed = true;
5143        break;
5144      }
5145      if (RA.isMinSignedValue()) goto trivially_true;
5146
5147      Pred = ICmpInst::ICMP_SGT;
5148      RHS = getConstant(RA - 1);
5149      Changed = true;
5150      break;
5151    case ICmpInst::ICMP_SLE:
5152      if ((RA + 1).isMaxSignedValue()) {
5153        Pred = ICmpInst::ICMP_NE;
5154        RHS = getConstant(RA + 1);
5155        Changed = true;
5156        break;
5157      }
5158      if (RA.isMinSignedValue()) {
5159        Pred = ICmpInst::ICMP_EQ;
5160        Changed = true;
5161        break;
5162      }
5163      if (RA.isMaxSignedValue()) goto trivially_true;
5164
5165      Pred = ICmpInst::ICMP_SLT;
5166      RHS = getConstant(RA + 1);
5167      Changed = true;
5168      break;
5169    case ICmpInst::ICMP_UGT:
5170      if (RA.isMinValue()) {
5171        Pred = ICmpInst::ICMP_NE;
5172        Changed = true;
5173        break;
5174      }
5175      if ((RA + 1).isMaxValue()) {
5176        Pred = ICmpInst::ICMP_EQ;
5177        RHS = getConstant(RA + 1);
5178        Changed = true;
5179        break;
5180      }
5181      if (RA.isMaxValue()) goto trivially_false;
5182      break;
5183    case ICmpInst::ICMP_ULT:
5184      if (RA.isMaxValue()) {
5185        Pred = ICmpInst::ICMP_NE;
5186        Changed = true;
5187        break;
5188      }
5189      if ((RA - 1).isMinValue()) {
5190        Pred = ICmpInst::ICMP_EQ;
5191        RHS = getConstant(RA - 1);
5192        Changed = true;
5193        break;
5194      }
5195      if (RA.isMinValue()) goto trivially_false;
5196      break;
5197    case ICmpInst::ICMP_SGT:
5198      if (RA.isMinSignedValue()) {
5199        Pred = ICmpInst::ICMP_NE;
5200        Changed = true;
5201        break;
5202      }
5203      if ((RA + 1).isMaxSignedValue()) {
5204        Pred = ICmpInst::ICMP_EQ;
5205        RHS = getConstant(RA + 1);
5206        Changed = true;
5207        break;
5208      }
5209      if (RA.isMaxSignedValue()) goto trivially_false;
5210      break;
5211    case ICmpInst::ICMP_SLT:
5212      if (RA.isMaxSignedValue()) {
5213        Pred = ICmpInst::ICMP_NE;
5214        Changed = true;
5215        break;
5216      }
5217      if ((RA - 1).isMinSignedValue()) {
5218       Pred = ICmpInst::ICMP_EQ;
5219       RHS = getConstant(RA - 1);
5220        Changed = true;
5221       break;
5222      }
5223      if (RA.isMinSignedValue()) goto trivially_false;
5224      break;
5225    }
5226  }
5227
5228  // Check for obvious equality.
5229  if (HasSameValue(LHS, RHS)) {
5230    if (ICmpInst::isTrueWhenEqual(Pred))
5231      goto trivially_true;
5232    if (ICmpInst::isFalseWhenEqual(Pred))
5233      goto trivially_false;
5234  }
5235
5236  // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5237  // adding or subtracting 1 from one of the operands.
5238  switch (Pred) {
5239  case ICmpInst::ICMP_SLE:
5240    if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5241      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5242                       SCEV::FlagNSW);
5243      Pred = ICmpInst::ICMP_SLT;
5244      Changed = true;
5245    } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
5246      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5247                       SCEV::FlagNSW);
5248      Pred = ICmpInst::ICMP_SLT;
5249      Changed = true;
5250    }
5251    break;
5252  case ICmpInst::ICMP_SGE:
5253    if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
5254      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5255                       SCEV::FlagNSW);
5256      Pred = ICmpInst::ICMP_SGT;
5257      Changed = true;
5258    } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5259      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5260                       SCEV::FlagNSW);
5261      Pred = ICmpInst::ICMP_SGT;
5262      Changed = true;
5263    }
5264    break;
5265  case ICmpInst::ICMP_ULE:
5266    if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
5267      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5268                       SCEV::FlagNUW);
5269      Pred = ICmpInst::ICMP_ULT;
5270      Changed = true;
5271    } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
5272      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5273                       SCEV::FlagNUW);
5274      Pred = ICmpInst::ICMP_ULT;
5275      Changed = true;
5276    }
5277    break;
5278  case ICmpInst::ICMP_UGE:
5279    if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
5280      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5281                       SCEV::FlagNUW);
5282      Pred = ICmpInst::ICMP_UGT;
5283      Changed = true;
5284    } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
5285      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5286                       SCEV::FlagNUW);
5287      Pred = ICmpInst::ICMP_UGT;
5288      Changed = true;
5289    }
5290    break;
5291  default:
5292    break;
5293  }
5294
5295  // TODO: More simplifications are possible here.
5296
5297  return Changed;
5298
5299trivially_true:
5300  // Return 0 == 0.
5301  LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
5302  Pred = ICmpInst::ICMP_EQ;
5303  return true;
5304
5305trivially_false:
5306  // Return 0 != 0.
5307  LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
5308  Pred = ICmpInst::ICMP_NE;
5309  return true;
5310}
5311
5312bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5313  return getSignedRange(S).getSignedMax().isNegative();
5314}
5315
5316bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5317  return getSignedRange(S).getSignedMin().isStrictlyPositive();
5318}
5319
5320bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5321  return !getSignedRange(S).getSignedMin().isNegative();
5322}
5323
5324bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5325  return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5326}
5327
5328bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5329  return isKnownNegative(S) || isKnownPositive(S);
5330}
5331
5332bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5333                                       const SCEV *LHS, const SCEV *RHS) {
5334  // Canonicalize the inputs first.
5335  (void)SimplifyICmpOperands(Pred, LHS, RHS);
5336
5337  // If LHS or RHS is an addrec, check to see if the condition is true in
5338  // every iteration of the loop.
5339  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5340    if (isLoopEntryGuardedByCond(
5341          AR->getLoop(), Pred, AR->getStart(), RHS) &&
5342        isLoopBackedgeGuardedByCond(
5343          AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
5344      return true;
5345  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5346    if (isLoopEntryGuardedByCond(
5347          AR->getLoop(), Pred, LHS, AR->getStart()) &&
5348        isLoopBackedgeGuardedByCond(
5349          AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
5350      return true;
5351
5352  // Otherwise see what can be done with known constant ranges.
5353  return isKnownPredicateWithRanges(Pred, LHS, RHS);
5354}
5355
5356bool
5357ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5358                                            const SCEV *LHS, const SCEV *RHS) {
5359  if (HasSameValue(LHS, RHS))
5360    return ICmpInst::isTrueWhenEqual(Pred);
5361
5362  // This code is split out from isKnownPredicate because it is called from
5363  // within isLoopEntryGuardedByCond.
5364  switch (Pred) {
5365  default:
5366    llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5367    break;
5368  case ICmpInst::ICMP_SGT:
5369    Pred = ICmpInst::ICMP_SLT;
5370    std::swap(LHS, RHS);
5371  case ICmpInst::ICMP_SLT: {
5372    ConstantRange LHSRange = getSignedRange(LHS);
5373    ConstantRange RHSRange = getSignedRange(RHS);
5374    if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5375      return true;
5376    if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5377      return false;
5378    break;
5379  }
5380  case ICmpInst::ICMP_SGE:
5381    Pred = ICmpInst::ICMP_SLE;
5382    std::swap(LHS, RHS);
5383  case ICmpInst::ICMP_SLE: {
5384    ConstantRange LHSRange = getSignedRange(LHS);
5385    ConstantRange RHSRange = getSignedRange(RHS);
5386    if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5387      return true;
5388    if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5389      return false;
5390    break;
5391  }
5392  case ICmpInst::ICMP_UGT:
5393    Pred = ICmpInst::ICMP_ULT;
5394    std::swap(LHS, RHS);
5395  case ICmpInst::ICMP_ULT: {
5396    ConstantRange LHSRange = getUnsignedRange(LHS);
5397    ConstantRange RHSRange = getUnsignedRange(RHS);
5398    if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5399      return true;
5400    if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5401      return false;
5402    break;
5403  }
5404  case ICmpInst::ICMP_UGE:
5405    Pred = ICmpInst::ICMP_ULE;
5406    std::swap(LHS, RHS);
5407  case ICmpInst::ICMP_ULE: {
5408    ConstantRange LHSRange = getUnsignedRange(LHS);
5409    ConstantRange RHSRange = getUnsignedRange(RHS);
5410    if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5411      return true;
5412    if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5413      return false;
5414    break;
5415  }
5416  case ICmpInst::ICMP_NE: {
5417    if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5418      return true;
5419    if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5420      return true;
5421
5422    const SCEV *Diff = getMinusSCEV(LHS, RHS);
5423    if (isKnownNonZero(Diff))
5424      return true;
5425    break;
5426  }
5427  case ICmpInst::ICMP_EQ:
5428    // The check at the top of the function catches the case where
5429    // the values are known to be equal.
5430    break;
5431  }
5432  return false;
5433}
5434
5435/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5436/// protected by a conditional between LHS and RHS.  This is used to
5437/// to eliminate casts.
5438bool
5439ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5440                                             ICmpInst::Predicate Pred,
5441                                             const SCEV *LHS, const SCEV *RHS) {
5442  // Interpret a null as meaning no loop, where there is obviously no guard
5443  // (interprocedural conditions notwithstanding).
5444  if (!L) return true;
5445
5446  BasicBlock *Latch = L->getLoopLatch();
5447  if (!Latch)
5448    return false;
5449
5450  BranchInst *LoopContinuePredicate =
5451    dyn_cast<BranchInst>(Latch->getTerminator());
5452  if (!LoopContinuePredicate ||
5453      LoopContinuePredicate->isUnconditional())
5454    return false;
5455
5456  return isImpliedCond(Pred, LHS, RHS,
5457                       LoopContinuePredicate->getCondition(),
5458                       LoopContinuePredicate->getSuccessor(0) != L->getHeader());
5459}
5460
5461/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
5462/// by a conditional between LHS and RHS.  This is used to help avoid max
5463/// expressions in loop trip counts, and to eliminate casts.
5464bool
5465ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5466                                          ICmpInst::Predicate Pred,
5467                                          const SCEV *LHS, const SCEV *RHS) {
5468  // Interpret a null as meaning no loop, where there is obviously no guard
5469  // (interprocedural conditions notwithstanding).
5470  if (!L) return false;
5471
5472  // Starting at the loop predecessor, climb up the predecessor chain, as long
5473  // as there are predecessors that can be found that have unique successors
5474  // leading to the original header.
5475  for (std::pair<BasicBlock *, BasicBlock *>
5476         Pair(L->getLoopPredecessor(), L->getHeader());
5477       Pair.first;
5478       Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
5479
5480    BranchInst *LoopEntryPredicate =
5481      dyn_cast<BranchInst>(Pair.first->getTerminator());
5482    if (!LoopEntryPredicate ||
5483        LoopEntryPredicate->isUnconditional())
5484      continue;
5485
5486    if (isImpliedCond(Pred, LHS, RHS,
5487                      LoopEntryPredicate->getCondition(),
5488                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
5489      return true;
5490  }
5491
5492  return false;
5493}
5494
5495/// isImpliedCond - Test whether the condition described by Pred, LHS,
5496/// and RHS is true whenever the given Cond value evaluates to true.
5497bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
5498                                    const SCEV *LHS, const SCEV *RHS,
5499                                    Value *FoundCondValue,
5500                                    bool Inverse) {
5501  // Recursively handle And and Or conditions.
5502  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
5503    if (BO->getOpcode() == Instruction::And) {
5504      if (!Inverse)
5505        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5506               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
5507    } else if (BO->getOpcode() == Instruction::Or) {
5508      if (Inverse)
5509        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5510               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
5511    }
5512  }
5513
5514  ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
5515  if (!ICI) return false;
5516
5517  // Bail if the ICmp's operands' types are wider than the needed type
5518  // before attempting to call getSCEV on them. This avoids infinite
5519  // recursion, since the analysis of widening casts can require loop
5520  // exit condition information for overflow checking, which would
5521  // lead back here.
5522  if (getTypeSizeInBits(LHS->getType()) <
5523      getTypeSizeInBits(ICI->getOperand(0)->getType()))
5524    return false;
5525
5526  // Now that we found a conditional branch that dominates the loop, check to
5527  // see if it is the comparison we are looking for.
5528  ICmpInst::Predicate FoundPred;
5529  if (Inverse)
5530    FoundPred = ICI->getInversePredicate();
5531  else
5532    FoundPred = ICI->getPredicate();
5533
5534  const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5535  const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
5536
5537  // Balance the types. The case where FoundLHS' type is wider than
5538  // LHS' type is checked for above.
5539  if (getTypeSizeInBits(LHS->getType()) >
5540      getTypeSizeInBits(FoundLHS->getType())) {
5541    if (CmpInst::isSigned(Pred)) {
5542      FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5543      FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5544    } else {
5545      FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5546      FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5547    }
5548  }
5549
5550  // Canonicalize the query to match the way instcombine will have
5551  // canonicalized the comparison.
5552  if (SimplifyICmpOperands(Pred, LHS, RHS))
5553    if (LHS == RHS)
5554      return CmpInst::isTrueWhenEqual(Pred);
5555  if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5556    if (FoundLHS == FoundRHS)
5557      return CmpInst::isFalseWhenEqual(Pred);
5558
5559  // Check to see if we can make the LHS or RHS match.
5560  if (LHS == FoundRHS || RHS == FoundLHS) {
5561    if (isa<SCEVConstant>(RHS)) {
5562      std::swap(FoundLHS, FoundRHS);
5563      FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5564    } else {
5565      std::swap(LHS, RHS);
5566      Pred = ICmpInst::getSwappedPredicate(Pred);
5567    }
5568  }
5569
5570  // Check whether the found predicate is the same as the desired predicate.
5571  if (FoundPred == Pred)
5572    return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5573
5574  // Check whether swapping the found predicate makes it the same as the
5575  // desired predicate.
5576  if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5577    if (isa<SCEVConstant>(RHS))
5578      return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5579    else
5580      return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5581                                   RHS, LHS, FoundLHS, FoundRHS);
5582  }
5583
5584  // Check whether the actual condition is beyond sufficient.
5585  if (FoundPred == ICmpInst::ICMP_EQ)
5586    if (ICmpInst::isTrueWhenEqual(Pred))
5587      if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5588        return true;
5589  if (Pred == ICmpInst::ICMP_NE)
5590    if (!ICmpInst::isTrueWhenEqual(FoundPred))
5591      if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5592        return true;
5593
5594  // Otherwise assume the worst.
5595  return false;
5596}
5597
5598/// isImpliedCondOperands - Test whether the condition described by Pred,
5599/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
5600/// and FoundRHS is true.
5601bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5602                                            const SCEV *LHS, const SCEV *RHS,
5603                                            const SCEV *FoundLHS,
5604                                            const SCEV *FoundRHS) {
5605  return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5606                                     FoundLHS, FoundRHS) ||
5607         // ~x < ~y --> x > y
5608         isImpliedCondOperandsHelper(Pred, LHS, RHS,
5609                                     getNotSCEV(FoundRHS),
5610                                     getNotSCEV(FoundLHS));
5611}
5612
5613/// isImpliedCondOperandsHelper - Test whether the condition described by
5614/// Pred, LHS, and RHS is true whenever the condition described by Pred,
5615/// FoundLHS, and FoundRHS is true.
5616bool
5617ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5618                                             const SCEV *LHS, const SCEV *RHS,
5619                                             const SCEV *FoundLHS,
5620                                             const SCEV *FoundRHS) {
5621  switch (Pred) {
5622  default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5623  case ICmpInst::ICMP_EQ:
5624  case ICmpInst::ICMP_NE:
5625    if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5626      return true;
5627    break;
5628  case ICmpInst::ICMP_SLT:
5629  case ICmpInst::ICMP_SLE:
5630    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5631        isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
5632      return true;
5633    break;
5634  case ICmpInst::ICMP_SGT:
5635  case ICmpInst::ICMP_SGE:
5636    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5637        isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
5638      return true;
5639    break;
5640  case ICmpInst::ICMP_ULT:
5641  case ICmpInst::ICMP_ULE:
5642    if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5643        isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
5644      return true;
5645    break;
5646  case ICmpInst::ICMP_UGT:
5647  case ICmpInst::ICMP_UGE:
5648    if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5649        isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
5650      return true;
5651    break;
5652  }
5653
5654  return false;
5655}
5656
5657/// getBECount - Subtract the end and start values and divide by the step,
5658/// rounding up, to get the number of times the backedge is executed. Return
5659/// CouldNotCompute if an intermediate computation overflows.
5660const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
5661                                        const SCEV *End,
5662                                        const SCEV *Step,
5663                                        bool NoWrap) {
5664  assert(!isKnownNegative(Step) &&
5665         "This code doesn't handle negative strides yet!");
5666
5667  const Type *Ty = Start->getType();
5668
5669  // When Start == End, we have an exact BECount == 0. Short-circuit this case
5670  // here because SCEV may not be able to determine that the unsigned division
5671  // after rounding is zero.
5672  if (Start == End)
5673    return getConstant(Ty, 0);
5674
5675  const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
5676  const SCEV *Diff = getMinusSCEV(End, Start);
5677  const SCEV *RoundUp = getAddExpr(Step, NegOne);
5678
5679  // Add an adjustment to the difference between End and Start so that
5680  // the division will effectively round up.
5681  const SCEV *Add = getAddExpr(Diff, RoundUp);
5682
5683  if (!NoWrap) {
5684    // Check Add for unsigned overflow.
5685    // TODO: More sophisticated things could be done here.
5686    const Type *WideTy = IntegerType::get(getContext(),
5687                                          getTypeSizeInBits(Ty) + 1);
5688    const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5689    const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5690    const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5691    if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5692      return getCouldNotCompute();
5693  }
5694
5695  return getUDivExpr(Add, Step);
5696}
5697
5698/// HowManyLessThans - Return the number of times a backedge containing the
5699/// specified less-than comparison will execute.  If not computable, return
5700/// CouldNotCompute.
5701ScalarEvolution::BackedgeTakenInfo
5702ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5703                                  const Loop *L, bool isSigned) {
5704  // Only handle:  "ADDREC < LoopInvariant".
5705  if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
5706
5707  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
5708  if (!AddRec || AddRec->getLoop() != L)
5709    return getCouldNotCompute();
5710
5711  // Check to see if we have a flag which makes analysis easy.
5712  bool NoWrap = isSigned ? AddRec->getNoWrapFlags(SCEV::FlagNSW) :
5713                           AddRec->getNoWrapFlags(SCEV::FlagNUW);
5714
5715  if (AddRec->isAffine()) {
5716    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
5717    const SCEV *Step = AddRec->getStepRecurrence(*this);
5718
5719    if (Step->isZero())
5720      return getCouldNotCompute();
5721    if (Step->isOne()) {
5722      // With unit stride, the iteration never steps past the limit value.
5723    } else if (isKnownPositive(Step)) {
5724      // Test whether a positive iteration can step past the limit
5725      // value and past the maximum value for its type in a single step.
5726      // Note that it's not sufficient to check NoWrap here, because even
5727      // though the value after a wrap is undefined, it's not undefined
5728      // behavior, so if wrap does occur, the loop could either terminate or
5729      // loop infinitely, but in either case, the loop is guaranteed to
5730      // iterate at least until the iteration where the wrapping occurs.
5731      const SCEV *One = getConstant(Step->getType(), 1);
5732      if (isSigned) {
5733        APInt Max = APInt::getSignedMaxValue(BitWidth);
5734        if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5735              .slt(getSignedRange(RHS).getSignedMax()))
5736          return getCouldNotCompute();
5737      } else {
5738        APInt Max = APInt::getMaxValue(BitWidth);
5739        if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5740              .ult(getUnsignedRange(RHS).getUnsignedMax()))
5741          return getCouldNotCompute();
5742      }
5743    } else
5744      // TODO: Handle negative strides here and below.
5745      return getCouldNotCompute();
5746
5747    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5748    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
5749    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
5750    // treat m-n as signed nor unsigned due to overflow possibility.
5751
5752    // First, we get the value of the LHS in the first iteration: n
5753    const SCEV *Start = AddRec->getOperand(0);
5754
5755    // Determine the minimum constant start value.
5756    const SCEV *MinStart = getConstant(isSigned ?
5757      getSignedRange(Start).getSignedMin() :
5758      getUnsignedRange(Start).getUnsignedMin());
5759
5760    // If we know that the condition is true in order to enter the loop,
5761    // then we know that it will run exactly (m-n)/s times. Otherwise, we
5762    // only know that it will execute (max(m,n)-n)/s times. In both cases,
5763    // the division must round up.
5764    const SCEV *End = RHS;
5765    if (!isLoopEntryGuardedByCond(L,
5766                                  isSigned ? ICmpInst::ICMP_SLT :
5767                                             ICmpInst::ICMP_ULT,
5768                                  getMinusSCEV(Start, Step), RHS))
5769      End = isSigned ? getSMaxExpr(RHS, Start)
5770                     : getUMaxExpr(RHS, Start);
5771
5772    // Determine the maximum constant end value.
5773    const SCEV *MaxEnd = getConstant(isSigned ?
5774      getSignedRange(End).getSignedMax() :
5775      getUnsignedRange(End).getUnsignedMax());
5776
5777    // If MaxEnd is within a step of the maximum integer value in its type,
5778    // adjust it down to the minimum value which would produce the same effect.
5779    // This allows the subsequent ceiling division of (N+(step-1))/step to
5780    // compute the correct value.
5781    const SCEV *StepMinusOne = getMinusSCEV(Step,
5782                                            getConstant(Step->getType(), 1));
5783    MaxEnd = isSigned ?
5784      getSMinExpr(MaxEnd,
5785                  getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5786                               StepMinusOne)) :
5787      getUMinExpr(MaxEnd,
5788                  getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5789                               StepMinusOne));
5790
5791    // Finally, we subtract these two values and divide, rounding up, to get
5792    // the number of times the backedge is executed.
5793    const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
5794
5795    // The maximum backedge count is similar, except using the minimum start
5796    // value and the maximum end value.
5797    // If we already have an exact constant BECount, use it instead.
5798    const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount
5799      : getBECount(MinStart, MaxEnd, Step, NoWrap);
5800
5801    // If the stride is nonconstant, and NoWrap == true, then
5802    // getBECount(MinStart, MaxEnd) may not compute. This would result in an
5803    // exact BECount and invalid MaxBECount, which should be avoided to catch
5804    // more optimization opportunities.
5805    if (isa<SCEVCouldNotCompute>(MaxBECount))
5806      MaxBECount = BECount;
5807
5808    return BackedgeTakenInfo(BECount, MaxBECount);
5809  }
5810
5811  return getCouldNotCompute();
5812}
5813
5814/// getNumIterationsInRange - Return the number of iterations of this loop that
5815/// produce values in the specified constant range.  Another way of looking at
5816/// this is that it returns the first iteration number where the value is not in
5817/// the condition, thus computing the exit count. If the iteration count can't
5818/// be computed, an instance of SCEVCouldNotCompute is returned.
5819const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
5820                                                    ScalarEvolution &SE) const {
5821  if (Range.isFullSet())  // Infinite loop.
5822    return SE.getCouldNotCompute();
5823
5824  // If the start is a non-zero constant, shift the range to simplify things.
5825  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
5826    if (!SC->getValue()->isZero()) {
5827      SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
5828      Operands[0] = SE.getConstant(SC->getType(), 0);
5829      const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
5830                                             getNoWrapFlags(FlagNW));
5831      if (const SCEVAddRecExpr *ShiftedAddRec =
5832            dyn_cast<SCEVAddRecExpr>(Shifted))
5833        return ShiftedAddRec->getNumIterationsInRange(
5834                           Range.subtract(SC->getValue()->getValue()), SE);
5835      // This is strange and shouldn't happen.
5836      return SE.getCouldNotCompute();
5837    }
5838
5839  // The only time we can solve this is when we have all constant indices.
5840  // Otherwise, we cannot determine the overflow conditions.
5841  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5842    if (!isa<SCEVConstant>(getOperand(i)))
5843      return SE.getCouldNotCompute();
5844
5845
5846  // Okay at this point we know that all elements of the chrec are constants and
5847  // that the start element is zero.
5848
5849  // First check to see if the range contains zero.  If not, the first
5850  // iteration exits.
5851  unsigned BitWidth = SE.getTypeSizeInBits(getType());
5852  if (!Range.contains(APInt(BitWidth, 0)))
5853    return SE.getConstant(getType(), 0);
5854
5855  if (isAffine()) {
5856    // If this is an affine expression then we have this situation:
5857    //   Solve {0,+,A} in Range  ===  Ax in Range
5858
5859    // We know that zero is in the range.  If A is positive then we know that
5860    // the upper value of the range must be the first possible exit value.
5861    // If A is negative then the lower of the range is the last possible loop
5862    // value.  Also note that we already checked for a full range.
5863    APInt One(BitWidth,1);
5864    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5865    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
5866
5867    // The exit value should be (End+A)/A.
5868    APInt ExitVal = (End + A).udiv(A);
5869    ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
5870
5871    // Evaluate at the exit value.  If we really did fall out of the valid
5872    // range, then we computed our trip count, otherwise wrap around or other
5873    // things must have happened.
5874    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
5875    if (Range.contains(Val->getValue()))
5876      return SE.getCouldNotCompute();  // Something strange happened
5877
5878    // Ensure that the previous value is in the range.  This is a sanity check.
5879    assert(Range.contains(
5880           EvaluateConstantChrecAtConstant(this,
5881           ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
5882           "Linear scev computation is off in a bad way!");
5883    return SE.getConstant(ExitValue);
5884  } else if (isQuadratic()) {
5885    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5886    // quadratic equation to solve it.  To do this, we must frame our problem in
5887    // terms of figuring out when zero is crossed, instead of when
5888    // Range.getUpper() is crossed.
5889    SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
5890    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
5891    const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
5892                                             // getNoWrapFlags(FlagNW)
5893                                             FlagAnyWrap);
5894
5895    // Next, solve the constructed addrec
5896    std::pair<const SCEV *,const SCEV *> Roots =
5897      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
5898    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5899    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
5900    if (R1) {
5901      // Pick the smallest positive root value.
5902      if (ConstantInt *CB =
5903          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
5904                         R1->getValue(), R2->getValue()))) {
5905        if (CB->getZExtValue() == false)
5906          std::swap(R1, R2);   // R1 is the minimum root now.
5907
5908        // Make sure the root is not off by one.  The returned iteration should
5909        // not be in the range, but the previous one should be.  When solving
5910        // for "X*X < 5", for example, we should not return a root of 2.
5911        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
5912                                                             R1->getValue(),
5913                                                             SE);
5914        if (Range.contains(R1Val->getValue())) {
5915          // The next iteration must be out of the range...
5916          ConstantInt *NextVal =
5917                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
5918
5919          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5920          if (!Range.contains(R1Val->getValue()))
5921            return SE.getConstant(NextVal);
5922          return SE.getCouldNotCompute();  // Something strange happened
5923        }
5924
5925        // If R1 was not in the range, then it is a good return value.  Make
5926        // sure that R1-1 WAS in the range though, just in case.
5927        ConstantInt *NextVal =
5928               ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
5929        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5930        if (Range.contains(R1Val->getValue()))
5931          return R1;
5932        return SE.getCouldNotCompute();  // Something strange happened
5933      }
5934    }
5935  }
5936
5937  return SE.getCouldNotCompute();
5938}
5939
5940
5941
5942//===----------------------------------------------------------------------===//
5943//                   SCEVCallbackVH Class Implementation
5944//===----------------------------------------------------------------------===//
5945
5946void ScalarEvolution::SCEVCallbackVH::deleted() {
5947  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5948  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5949    SE->ConstantEvolutionLoopExitValue.erase(PN);
5950  SE->ValueExprMap.erase(getValPtr());
5951  // this now dangles!
5952}
5953
5954void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
5955  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5956
5957  // Forget all the expressions associated with users of the old value,
5958  // so that future queries will recompute the expressions using the new
5959  // value.
5960  Value *Old = getValPtr();
5961  SmallVector<User *, 16> Worklist;
5962  SmallPtrSet<User *, 8> Visited;
5963  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5964       UI != UE; ++UI)
5965    Worklist.push_back(*UI);
5966  while (!Worklist.empty()) {
5967    User *U = Worklist.pop_back_val();
5968    // Deleting the Old value will cause this to dangle. Postpone
5969    // that until everything else is done.
5970    if (U == Old)
5971      continue;
5972    if (!Visited.insert(U))
5973      continue;
5974    if (PHINode *PN = dyn_cast<PHINode>(U))
5975      SE->ConstantEvolutionLoopExitValue.erase(PN);
5976    SE->ValueExprMap.erase(U);
5977    for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5978         UI != UE; ++UI)
5979      Worklist.push_back(*UI);
5980  }
5981  // Delete the Old value.
5982  if (PHINode *PN = dyn_cast<PHINode>(Old))
5983    SE->ConstantEvolutionLoopExitValue.erase(PN);
5984  SE->ValueExprMap.erase(Old);
5985  // this now dangles!
5986}
5987
5988ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
5989  : CallbackVH(V), SE(se) {}
5990
5991//===----------------------------------------------------------------------===//
5992//                   ScalarEvolution Class Implementation
5993//===----------------------------------------------------------------------===//
5994
5995ScalarEvolution::ScalarEvolution()
5996  : FunctionPass(ID), FirstUnknown(0) {
5997  initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
5998}
5999
6000bool ScalarEvolution::runOnFunction(Function &F) {
6001  this->F = &F;
6002  LI = &getAnalysis<LoopInfo>();
6003  TD = getAnalysisIfAvailable<TargetData>();
6004  DT = &getAnalysis<DominatorTree>();
6005  return false;
6006}
6007
6008void ScalarEvolution::releaseMemory() {
6009  // Iterate through all the SCEVUnknown instances and call their
6010  // destructors, so that they release their references to their values.
6011  for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
6012    U->~SCEVUnknown();
6013  FirstUnknown = 0;
6014
6015  ValueExprMap.clear();
6016  BackedgeTakenCounts.clear();
6017  ConstantEvolutionLoopExitValue.clear();
6018  ValuesAtScopes.clear();
6019  LoopDispositions.clear();
6020  BlockDispositions.clear();
6021  UnsignedRanges.clear();
6022  SignedRanges.clear();
6023  UniqueSCEVs.clear();
6024  SCEVAllocator.Reset();
6025}
6026
6027void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
6028  AU.setPreservesAll();
6029  AU.addRequiredTransitive<LoopInfo>();
6030  AU.addRequiredTransitive<DominatorTree>();
6031}
6032
6033bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
6034  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
6035}
6036
6037static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
6038                          const Loop *L) {
6039  // Print all inner loops first
6040  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
6041    PrintLoopInfo(OS, SE, *I);
6042
6043  OS << "Loop ";
6044  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6045  OS << ": ";
6046
6047  SmallVector<BasicBlock *, 8> ExitBlocks;
6048  L->getExitBlocks(ExitBlocks);
6049  if (ExitBlocks.size() != 1)
6050    OS << "<multiple exits> ";
6051
6052  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
6053    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
6054  } else {
6055    OS << "Unpredictable backedge-taken count. ";
6056  }
6057
6058  OS << "\n"
6059        "Loop ";
6060  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6061  OS << ": ";
6062
6063  if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
6064    OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
6065  } else {
6066    OS << "Unpredictable max backedge-taken count. ";
6067  }
6068
6069  OS << "\n";
6070}
6071
6072void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
6073  // ScalarEvolution's implementation of the print method is to print
6074  // out SCEV values of all instructions that are interesting. Doing
6075  // this potentially causes it to create new SCEV objects though,
6076  // which technically conflicts with the const qualifier. This isn't
6077  // observable from outside the class though, so casting away the
6078  // const isn't dangerous.
6079  ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
6080
6081  OS << "Classifying expressions for: ";
6082  WriteAsOperand(OS, F, /*PrintType=*/false);
6083  OS << "\n";
6084  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
6085    if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
6086      OS << *I << '\n';
6087      OS << "  -->  ";
6088      const SCEV *SV = SE.getSCEV(&*I);
6089      SV->print(OS);
6090
6091      const Loop *L = LI->getLoopFor((*I).getParent());
6092
6093      const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
6094      if (AtUse != SV) {
6095        OS << "  -->  ";
6096        AtUse->print(OS);
6097      }
6098
6099      if (L) {
6100        OS << "\t\t" "Exits: ";
6101        const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
6102        if (!SE.isLoopInvariant(ExitValue, L)) {
6103          OS << "<<Unknown>>";
6104        } else {
6105          OS << *ExitValue;
6106        }
6107      }
6108
6109      OS << "\n";
6110    }
6111
6112  OS << "Determining loop execution counts for: ";
6113  WriteAsOperand(OS, F, /*PrintType=*/false);
6114  OS << "\n";
6115  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
6116    PrintLoopInfo(OS, &SE, *I);
6117}
6118
6119ScalarEvolution::LoopDisposition
6120ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
6121  std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
6122  std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
6123    Values.insert(std::make_pair(L, LoopVariant));
6124  if (!Pair.second)
6125    return Pair.first->second;
6126
6127  LoopDisposition D = computeLoopDisposition(S, L);
6128  return LoopDispositions[S][L] = D;
6129}
6130
6131ScalarEvolution::LoopDisposition
6132ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
6133  switch (S->getSCEVType()) {
6134  case scConstant:
6135    return LoopInvariant;
6136  case scTruncate:
6137  case scZeroExtend:
6138  case scSignExtend:
6139    return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
6140  case scAddRecExpr: {
6141    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6142
6143    // If L is the addrec's loop, it's computable.
6144    if (AR->getLoop() == L)
6145      return LoopComputable;
6146
6147    // Add recurrences are never invariant in the function-body (null loop).
6148    if (!L)
6149      return LoopVariant;
6150
6151    // This recurrence is variant w.r.t. L if L contains AR's loop.
6152    if (L->contains(AR->getLoop()))
6153      return LoopVariant;
6154
6155    // This recurrence is invariant w.r.t. L if AR's loop contains L.
6156    if (AR->getLoop()->contains(L))
6157      return LoopInvariant;
6158
6159    // This recurrence is variant w.r.t. L if any of its operands
6160    // are variant.
6161    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
6162         I != E; ++I)
6163      if (!isLoopInvariant(*I, L))
6164        return LoopVariant;
6165
6166    // Otherwise it's loop-invariant.
6167    return LoopInvariant;
6168  }
6169  case scAddExpr:
6170  case scMulExpr:
6171  case scUMaxExpr:
6172  case scSMaxExpr: {
6173    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6174    bool HasVarying = false;
6175    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6176         I != E; ++I) {
6177      LoopDisposition D = getLoopDisposition(*I, L);
6178      if (D == LoopVariant)
6179        return LoopVariant;
6180      if (D == LoopComputable)
6181        HasVarying = true;
6182    }
6183    return HasVarying ? LoopComputable : LoopInvariant;
6184  }
6185  case scUDivExpr: {
6186    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6187    LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
6188    if (LD == LoopVariant)
6189      return LoopVariant;
6190    LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
6191    if (RD == LoopVariant)
6192      return LoopVariant;
6193    return (LD == LoopInvariant && RD == LoopInvariant) ?
6194           LoopInvariant : LoopComputable;
6195  }
6196  case scUnknown:
6197    // All non-instruction values are loop invariant.  All instructions are loop
6198    // invariant if they are not contained in the specified loop.
6199    // Instructions are never considered invariant in the function body
6200    // (null loop) because they are defined within the "loop".
6201    if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
6202      return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
6203    return LoopInvariant;
6204  case scCouldNotCompute:
6205    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6206    return LoopVariant;
6207  default: break;
6208  }
6209  llvm_unreachable("Unknown SCEV kind!");
6210  return LoopVariant;
6211}
6212
6213bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
6214  return getLoopDisposition(S, L) == LoopInvariant;
6215}
6216
6217bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6218  return getLoopDisposition(S, L) == LoopComputable;
6219}
6220
6221ScalarEvolution::BlockDisposition
6222ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6223  std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
6224  std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
6225    Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
6226  if (!Pair.second)
6227    return Pair.first->second;
6228
6229  BlockDisposition D = computeBlockDisposition(S, BB);
6230  return BlockDispositions[S][BB] = D;
6231}
6232
6233ScalarEvolution::BlockDisposition
6234ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6235  switch (S->getSCEVType()) {
6236  case scConstant:
6237    return ProperlyDominatesBlock;
6238  case scTruncate:
6239  case scZeroExtend:
6240  case scSignExtend:
6241    return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
6242  case scAddRecExpr: {
6243    // This uses a "dominates" query instead of "properly dominates" query
6244    // to test for proper dominance too, because the instruction which
6245    // produces the addrec's value is a PHI, and a PHI effectively properly
6246    // dominates its entire containing block.
6247    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6248    if (!DT->dominates(AR->getLoop()->getHeader(), BB))
6249      return DoesNotDominateBlock;
6250  }
6251  // FALL THROUGH into SCEVNAryExpr handling.
6252  case scAddExpr:
6253  case scMulExpr:
6254  case scUMaxExpr:
6255  case scSMaxExpr: {
6256    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6257    bool Proper = true;
6258    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6259         I != E; ++I) {
6260      BlockDisposition D = getBlockDisposition(*I, BB);
6261      if (D == DoesNotDominateBlock)
6262        return DoesNotDominateBlock;
6263      if (D == DominatesBlock)
6264        Proper = false;
6265    }
6266    return Proper ? ProperlyDominatesBlock : DominatesBlock;
6267  }
6268  case scUDivExpr: {
6269    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6270    const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6271    BlockDisposition LD = getBlockDisposition(LHS, BB);
6272    if (LD == DoesNotDominateBlock)
6273      return DoesNotDominateBlock;
6274    BlockDisposition RD = getBlockDisposition(RHS, BB);
6275    if (RD == DoesNotDominateBlock)
6276      return DoesNotDominateBlock;
6277    return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6278      ProperlyDominatesBlock : DominatesBlock;
6279  }
6280  case scUnknown:
6281    if (Instruction *I =
6282          dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6283      if (I->getParent() == BB)
6284        return DominatesBlock;
6285      if (DT->properlyDominates(I->getParent(), BB))
6286        return ProperlyDominatesBlock;
6287      return DoesNotDominateBlock;
6288    }
6289    return ProperlyDominatesBlock;
6290  case scCouldNotCompute:
6291    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6292    return DoesNotDominateBlock;
6293  default: break;
6294  }
6295  llvm_unreachable("Unknown SCEV kind!");
6296  return DoesNotDominateBlock;
6297}
6298
6299bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
6300  return getBlockDisposition(S, BB) >= DominatesBlock;
6301}
6302
6303bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
6304  return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
6305}
6306
6307bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
6308  switch (S->getSCEVType()) {
6309  case scConstant:
6310    return false;
6311  case scTruncate:
6312  case scZeroExtend:
6313  case scSignExtend: {
6314    const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S);
6315    const SCEV *CastOp = Cast->getOperand();
6316    return Op == CastOp || hasOperand(CastOp, Op);
6317  }
6318  case scAddRecExpr:
6319  case scAddExpr:
6320  case scMulExpr:
6321  case scUMaxExpr:
6322  case scSMaxExpr: {
6323    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6324    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6325         I != E; ++I) {
6326      const SCEV *NAryOp = *I;
6327      if (NAryOp == Op || hasOperand(NAryOp, Op))
6328        return true;
6329    }
6330    return false;
6331  }
6332  case scUDivExpr: {
6333    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6334    const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6335    return LHS == Op || hasOperand(LHS, Op) ||
6336           RHS == Op || hasOperand(RHS, Op);
6337  }
6338  case scUnknown:
6339    return false;
6340  case scCouldNotCompute:
6341    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6342    return false;
6343  default: break;
6344  }
6345  llvm_unreachable("Unknown SCEV kind!");
6346  return false;
6347}
6348
6349void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
6350  ValuesAtScopes.erase(S);
6351  LoopDispositions.erase(S);
6352  BlockDispositions.erase(S);
6353  UnsignedRanges.erase(S);
6354  SignedRanges.erase(S);
6355}
6356