ScalarEvolution.cpp revision 32efba698df6aa35335eeb44d89288352d04746d
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
19//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression.  These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
30//
31// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
35// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42//  Chains of recurrences -- a method to expedite the evaluation
43//  of closed-form functions
44//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46//  On computational properties of chains of recurrences
47//  Eugene V. Zima
48//
49//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50//  Robert A. van Engelen
51//
52//  Efficient Symbolic Analysis for Optimizing Compilers
53//  Robert A. van Engelen
54//
55//  Using the chains of recurrences algebra for data dependence testing and
56//  induction variable substitution
57//  MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
61#define DEBUG_TYPE "scalar-evolution"
62#include "llvm/Analysis/ScalarEvolutionExpressions.h"
63#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
65#include "llvm/GlobalVariable.h"
66#include "llvm/GlobalAlias.h"
67#include "llvm/Instructions.h"
68#include "llvm/LLVMContext.h"
69#include "llvm/Operator.h"
70#include "llvm/Analysis/ConstantFolding.h"
71#include "llvm/Analysis/Dominators.h"
72#include "llvm/Analysis/LoopInfo.h"
73#include "llvm/Analysis/ValueTracking.h"
74#include "llvm/Assembly/Writer.h"
75#include "llvm/Target/TargetData.h"
76#include "llvm/Support/CommandLine.h"
77#include "llvm/Support/ConstantRange.h"
78#include "llvm/Support/Debug.h"
79#include "llvm/Support/ErrorHandling.h"
80#include "llvm/Support/GetElementPtrTypeIterator.h"
81#include "llvm/Support/InstIterator.h"
82#include "llvm/Support/MathExtras.h"
83#include "llvm/Support/raw_ostream.h"
84#include "llvm/ADT/Statistic.h"
85#include "llvm/ADT/STLExtras.h"
86#include "llvm/ADT/SmallPtrSet.h"
87#include <algorithm>
88using namespace llvm;
89
90STATISTIC(NumArrayLenItCounts,
91          "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93          "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95          "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97          "Number of loops with trip counts computed by force");
98
99static cl::opt<unsigned>
100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101                        cl::desc("Maximum number of iterations SCEV will "
102                                 "symbolically execute a constant "
103                                 "derived loop"),
104                        cl::init(100));
105
106static RegisterPass<ScalarEvolution>
107R("scalar-evolution", "Scalar Evolution Analysis", false, true);
108char ScalarEvolution::ID = 0;
109
110//===----------------------------------------------------------------------===//
111//                           SCEV class definitions
112//===----------------------------------------------------------------------===//
113
114//===----------------------------------------------------------------------===//
115// Implementation of the SCEV class.
116//
117
118SCEV::~SCEV() {}
119
120void SCEV::dump() const {
121  print(dbgs());
122  dbgs() << '\n';
123}
124
125bool SCEV::isZero() const {
126  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
127    return SC->getValue()->isZero();
128  return false;
129}
130
131bool SCEV::isOne() const {
132  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
133    return SC->getValue()->isOne();
134  return false;
135}
136
137bool SCEV::isAllOnesValue() const {
138  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
139    return SC->getValue()->isAllOnesValue();
140  return false;
141}
142
143SCEVCouldNotCompute::SCEVCouldNotCompute() :
144  SCEV(FoldingSetNodeID(), scCouldNotCompute) {}
145
146bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
147  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
148  return false;
149}
150
151const Type *SCEVCouldNotCompute::getType() const {
152  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
153  return 0;
154}
155
156bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
157  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
158  return false;
159}
160
161bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
162  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
163  return false;
164}
165
166void SCEVCouldNotCompute::print(raw_ostream &OS) const {
167  OS << "***COULDNOTCOMPUTE***";
168}
169
170bool SCEVCouldNotCompute::classof(const SCEV *S) {
171  return S->getSCEVType() == scCouldNotCompute;
172}
173
174const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
175  FoldingSetNodeID ID;
176  ID.AddInteger(scConstant);
177  ID.AddPointer(V);
178  void *IP = 0;
179  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
180  SCEV *S = SCEVAllocator.Allocate<SCEVConstant>();
181  new (S) SCEVConstant(ID, V);
182  UniqueSCEVs.InsertNode(S, IP);
183  return S;
184}
185
186const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
187  return getConstant(ConstantInt::get(getContext(), Val));
188}
189
190const SCEV *
191ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
192  return getConstant(
193    ConstantInt::get(cast<IntegerType>(Ty), V, isSigned));
194}
195
196const Type *SCEVConstant::getType() const { return V->getType(); }
197
198void SCEVConstant::print(raw_ostream &OS) const {
199  WriteAsOperand(OS, V, false);
200}
201
202SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeID &ID,
203                           unsigned SCEVTy, const SCEV *op, const Type *ty)
204  : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
205
206bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
207  return Op->dominates(BB, DT);
208}
209
210bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
211  return Op->properlyDominates(BB, DT);
212}
213
214SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeID &ID,
215                                   const SCEV *op, const Type *ty)
216  : SCEVCastExpr(ID, scTruncate, op, ty) {
217  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
218         (Ty->isInteger() || isa<PointerType>(Ty)) &&
219         "Cannot truncate non-integer value!");
220}
221
222void SCEVTruncateExpr::print(raw_ostream &OS) const {
223  OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
224}
225
226SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeID &ID,
227                                       const SCEV *op, const Type *ty)
228  : SCEVCastExpr(ID, scZeroExtend, op, ty) {
229  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
230         (Ty->isInteger() || isa<PointerType>(Ty)) &&
231         "Cannot zero extend non-integer value!");
232}
233
234void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
235  OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
236}
237
238SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeID &ID,
239                                       const SCEV *op, const Type *ty)
240  : SCEVCastExpr(ID, scSignExtend, op, ty) {
241  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
242         (Ty->isInteger() || isa<PointerType>(Ty)) &&
243         "Cannot sign extend non-integer value!");
244}
245
246void SCEVSignExtendExpr::print(raw_ostream &OS) const {
247  OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
248}
249
250void SCEVCommutativeExpr::print(raw_ostream &OS) const {
251  assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
252  const char *OpStr = getOperationStr();
253  OS << "(" << *Operands[0];
254  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
255    OS << OpStr << *Operands[i];
256  OS << ")";
257}
258
259bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
260  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
261    if (!getOperand(i)->dominates(BB, DT))
262      return false;
263  }
264  return true;
265}
266
267bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
268  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
269    if (!getOperand(i)->properlyDominates(BB, DT))
270      return false;
271  }
272  return true;
273}
274
275bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
276  return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
277}
278
279bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
280  return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
281}
282
283void SCEVUDivExpr::print(raw_ostream &OS) const {
284  OS << "(" << *LHS << " /u " << *RHS << ")";
285}
286
287const Type *SCEVUDivExpr::getType() const {
288  // In most cases the types of LHS and RHS will be the same, but in some
289  // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
290  // depend on the type for correctness, but handling types carefully can
291  // avoid extra casts in the SCEVExpander. The LHS is more likely to be
292  // a pointer type than the RHS, so use the RHS' type here.
293  return RHS->getType();
294}
295
296bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
297  // Add recurrences are never invariant in the function-body (null loop).
298  if (!QueryLoop)
299    return false;
300
301  // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
302  if (QueryLoop->contains(L))
303    return false;
304
305  // This recurrence is variant w.r.t. QueryLoop if any of its operands
306  // are variant.
307  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
308    if (!getOperand(i)->isLoopInvariant(QueryLoop))
309      return false;
310
311  // Otherwise it's loop-invariant.
312  return true;
313}
314
315void SCEVAddRecExpr::print(raw_ostream &OS) const {
316  OS << "{" << *Operands[0];
317  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
318    OS << ",+," << *Operands[i];
319  OS << "}<";
320  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
321  OS << ">";
322}
323
324bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
325  // All non-instruction values are loop invariant.  All instructions are loop
326  // invariant if they are not contained in the specified loop.
327  // Instructions are never considered invariant in the function body
328  // (null loop) because they are defined within the "loop".
329  if (Instruction *I = dyn_cast<Instruction>(V))
330    return L && !L->contains(I);
331  return true;
332}
333
334bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
335  if (Instruction *I = dyn_cast<Instruction>(getValue()))
336    return DT->dominates(I->getParent(), BB);
337  return true;
338}
339
340bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
341  if (Instruction *I = dyn_cast<Instruction>(getValue()))
342    return DT->properlyDominates(I->getParent(), BB);
343  return true;
344}
345
346const Type *SCEVUnknown::getType() const {
347  return V->getType();
348}
349
350bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
351  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
352    if (VCE->getOpcode() == Instruction::PtrToInt)
353      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
354        if (CE->getOpcode() == Instruction::GetElementPtr &&
355            CE->getOperand(0)->isNullValue() &&
356            CE->getNumOperands() == 2)
357          if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
358            if (CI->isOne()) {
359              AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
360                                 ->getElementType();
361              return true;
362            }
363
364  return false;
365}
366
367bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
368  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
369    if (VCE->getOpcode() == Instruction::PtrToInt)
370      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
371        if (CE->getOpcode() == Instruction::GetElementPtr &&
372            CE->getOperand(0)->isNullValue()) {
373          const Type *Ty =
374            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
375          if (const StructType *STy = dyn_cast<StructType>(Ty))
376            if (!STy->isPacked() &&
377                CE->getNumOperands() == 3 &&
378                CE->getOperand(1)->isNullValue()) {
379              if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
380                if (CI->isOne() &&
381                    STy->getNumElements() == 2 &&
382                    STy->getElementType(0)->isInteger(1)) {
383                  AllocTy = STy->getElementType(1);
384                  return true;
385                }
386            }
387        }
388
389  return false;
390}
391
392bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
393  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
394    if (VCE->getOpcode() == Instruction::PtrToInt)
395      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
396        if (CE->getOpcode() == Instruction::GetElementPtr &&
397            CE->getNumOperands() == 3 &&
398            CE->getOperand(0)->isNullValue() &&
399            CE->getOperand(1)->isNullValue()) {
400          const Type *Ty =
401            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
402          // Ignore vector types here so that ScalarEvolutionExpander doesn't
403          // emit getelementptrs that index into vectors.
404          if (isa<StructType>(Ty) || isa<ArrayType>(Ty)) {
405            CTy = Ty;
406            FieldNo = CE->getOperand(2);
407            return true;
408          }
409        }
410
411  return false;
412}
413
414void SCEVUnknown::print(raw_ostream &OS) const {
415  const Type *AllocTy;
416  if (isSizeOf(AllocTy)) {
417    OS << "sizeof(" << *AllocTy << ")";
418    return;
419  }
420  if (isAlignOf(AllocTy)) {
421    OS << "alignof(" << *AllocTy << ")";
422    return;
423  }
424
425  const Type *CTy;
426  Constant *FieldNo;
427  if (isOffsetOf(CTy, FieldNo)) {
428    OS << "offsetof(" << *CTy << ", ";
429    WriteAsOperand(OS, FieldNo, false);
430    OS << ")";
431    return;
432  }
433
434  // Otherwise just print it normally.
435  WriteAsOperand(OS, V, false);
436}
437
438//===----------------------------------------------------------------------===//
439//                               SCEV Utilities
440//===----------------------------------------------------------------------===//
441
442static bool CompareTypes(const Type *A, const Type *B) {
443  if (A->getTypeID() != B->getTypeID())
444    return A->getTypeID() < B->getTypeID();
445  if (const IntegerType *AI = dyn_cast<IntegerType>(A)) {
446    const IntegerType *BI = cast<IntegerType>(B);
447    return AI->getBitWidth() < BI->getBitWidth();
448  }
449  if (const PointerType *AI = dyn_cast<PointerType>(A)) {
450    const PointerType *BI = cast<PointerType>(B);
451    return CompareTypes(AI->getElementType(), BI->getElementType());
452  }
453  if (const ArrayType *AI = dyn_cast<ArrayType>(A)) {
454    const ArrayType *BI = cast<ArrayType>(B);
455    if (AI->getNumElements() != BI->getNumElements())
456      return AI->getNumElements() < BI->getNumElements();
457    return CompareTypes(AI->getElementType(), BI->getElementType());
458  }
459  if (const VectorType *AI = dyn_cast<VectorType>(A)) {
460    const VectorType *BI = cast<VectorType>(B);
461    if (AI->getNumElements() != BI->getNumElements())
462      return AI->getNumElements() < BI->getNumElements();
463    return CompareTypes(AI->getElementType(), BI->getElementType());
464  }
465  if (const StructType *AI = dyn_cast<StructType>(A)) {
466    const StructType *BI = cast<StructType>(B);
467    if (AI->getNumElements() != BI->getNumElements())
468      return AI->getNumElements() < BI->getNumElements();
469    for (unsigned i = 0, e = AI->getNumElements(); i != e; ++i)
470      if (CompareTypes(AI->getElementType(i), BI->getElementType(i)) ||
471          CompareTypes(BI->getElementType(i), AI->getElementType(i)))
472        return CompareTypes(AI->getElementType(i), BI->getElementType(i));
473  }
474  return false;
475}
476
477namespace {
478  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
479  /// than the complexity of the RHS.  This comparator is used to canonicalize
480  /// expressions.
481  class SCEVComplexityCompare {
482    LoopInfo *LI;
483  public:
484    explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
485
486    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
487      // Fast-path: SCEVs are uniqued so we can do a quick equality check.
488      if (LHS == RHS)
489        return false;
490
491      // Primarily, sort the SCEVs by their getSCEVType().
492      if (LHS->getSCEVType() != RHS->getSCEVType())
493        return LHS->getSCEVType() < RHS->getSCEVType();
494
495      // Aside from the getSCEVType() ordering, the particular ordering
496      // isn't very important except that it's beneficial to be consistent,
497      // so that (a + b) and (b + a) don't end up as different expressions.
498
499      // Sort SCEVUnknown values with some loose heuristics. TODO: This is
500      // not as complete as it could be.
501      if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
502        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
503
504        // Order pointer values after integer values. This helps SCEVExpander
505        // form GEPs.
506        if (isa<PointerType>(LU->getType()) && !isa<PointerType>(RU->getType()))
507          return false;
508        if (isa<PointerType>(RU->getType()) && !isa<PointerType>(LU->getType()))
509          return true;
510
511        // Compare getValueID values.
512        if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
513          return LU->getValue()->getValueID() < RU->getValue()->getValueID();
514
515        // Sort arguments by their position.
516        if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
517          const Argument *RA = cast<Argument>(RU->getValue());
518          return LA->getArgNo() < RA->getArgNo();
519        }
520
521        // For instructions, compare their loop depth, and their opcode.
522        // This is pretty loose.
523        if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
524          Instruction *RV = cast<Instruction>(RU->getValue());
525
526          // Compare loop depths.
527          if (LI->getLoopDepth(LV->getParent()) !=
528              LI->getLoopDepth(RV->getParent()))
529            return LI->getLoopDepth(LV->getParent()) <
530                   LI->getLoopDepth(RV->getParent());
531
532          // Compare opcodes.
533          if (LV->getOpcode() != RV->getOpcode())
534            return LV->getOpcode() < RV->getOpcode();
535
536          // Compare the number of operands.
537          if (LV->getNumOperands() != RV->getNumOperands())
538            return LV->getNumOperands() < RV->getNumOperands();
539        }
540
541        return false;
542      }
543
544      // Compare constant values.
545      if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) {
546        const SCEVConstant *RC = cast<SCEVConstant>(RHS);
547        if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth())
548          return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth();
549        return LC->getValue()->getValue().ult(RC->getValue()->getValue());
550      }
551
552      // Compare addrec loop depths.
553      if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) {
554        const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
555        if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth())
556          return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth();
557      }
558
559      // Lexicographically compare n-ary expressions.
560      if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
561        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
562        for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
563          if (i >= RC->getNumOperands())
564            return false;
565          if (operator()(LC->getOperand(i), RC->getOperand(i)))
566            return true;
567          if (operator()(RC->getOperand(i), LC->getOperand(i)))
568            return false;
569        }
570        return LC->getNumOperands() < RC->getNumOperands();
571      }
572
573      // Lexicographically compare udiv expressions.
574      if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
575        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
576        if (operator()(LC->getLHS(), RC->getLHS()))
577          return true;
578        if (operator()(RC->getLHS(), LC->getLHS()))
579          return false;
580        if (operator()(LC->getRHS(), RC->getRHS()))
581          return true;
582        if (operator()(RC->getRHS(), LC->getRHS()))
583          return false;
584        return false;
585      }
586
587      // Compare cast expressions by operand.
588      if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
589        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
590        return operator()(LC->getOperand(), RC->getOperand());
591      }
592
593      llvm_unreachable("Unknown SCEV kind!");
594      return false;
595    }
596  };
597}
598
599/// GroupByComplexity - Given a list of SCEV objects, order them by their
600/// complexity, and group objects of the same complexity together by value.
601/// When this routine is finished, we know that any duplicates in the vector are
602/// consecutive and that complexity is monotonically increasing.
603///
604/// Note that we go take special precautions to ensure that we get determinstic
605/// results from this routine.  In other words, we don't want the results of
606/// this to depend on where the addresses of various SCEV objects happened to
607/// land in memory.
608///
609static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
610                              LoopInfo *LI) {
611  if (Ops.size() < 2) return;  // Noop
612  if (Ops.size() == 2) {
613    // This is the common case, which also happens to be trivially simple.
614    // Special case it.
615    if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
616      std::swap(Ops[0], Ops[1]);
617    return;
618  }
619
620  // Do the rough sort by complexity.
621  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
622
623  // Now that we are sorted by complexity, group elements of the same
624  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
625  // be extremely short in practice.  Note that we take this approach because we
626  // do not want to depend on the addresses of the objects we are grouping.
627  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
628    const SCEV *S = Ops[i];
629    unsigned Complexity = S->getSCEVType();
630
631    // If there are any objects of the same complexity and same value as this
632    // one, group them.
633    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
634      if (Ops[j] == S) { // Found a duplicate.
635        // Move it to immediately after i'th element.
636        std::swap(Ops[i+1], Ops[j]);
637        ++i;   // no need to rescan it.
638        if (i == e-2) return;  // Done!
639      }
640    }
641  }
642}
643
644
645
646//===----------------------------------------------------------------------===//
647//                      Simple SCEV method implementations
648//===----------------------------------------------------------------------===//
649
650/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
651/// Assume, K > 0.
652static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
653                                       ScalarEvolution &SE,
654                                       const Type* ResultTy) {
655  // Handle the simplest case efficiently.
656  if (K == 1)
657    return SE.getTruncateOrZeroExtend(It, ResultTy);
658
659  // We are using the following formula for BC(It, K):
660  //
661  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
662  //
663  // Suppose, W is the bitwidth of the return value.  We must be prepared for
664  // overflow.  Hence, we must assure that the result of our computation is
665  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
666  // safe in modular arithmetic.
667  //
668  // However, this code doesn't use exactly that formula; the formula it uses
669  // is something like the following, where T is the number of factors of 2 in
670  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
671  // exponentiation:
672  //
673  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
674  //
675  // This formula is trivially equivalent to the previous formula.  However,
676  // this formula can be implemented much more efficiently.  The trick is that
677  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
678  // arithmetic.  To do exact division in modular arithmetic, all we have
679  // to do is multiply by the inverse.  Therefore, this step can be done at
680  // width W.
681  //
682  // The next issue is how to safely do the division by 2^T.  The way this
683  // is done is by doing the multiplication step at a width of at least W + T
684  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
685  // when we perform the division by 2^T (which is equivalent to a right shift
686  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
687  // truncated out after the division by 2^T.
688  //
689  // In comparison to just directly using the first formula, this technique
690  // is much more efficient; using the first formula requires W * K bits,
691  // but this formula less than W + K bits. Also, the first formula requires
692  // a division step, whereas this formula only requires multiplies and shifts.
693  //
694  // It doesn't matter whether the subtraction step is done in the calculation
695  // width or the input iteration count's width; if the subtraction overflows,
696  // the result must be zero anyway.  We prefer here to do it in the width of
697  // the induction variable because it helps a lot for certain cases; CodeGen
698  // isn't smart enough to ignore the overflow, which leads to much less
699  // efficient code if the width of the subtraction is wider than the native
700  // register width.
701  //
702  // (It's possible to not widen at all by pulling out factors of 2 before
703  // the multiplication; for example, K=2 can be calculated as
704  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
705  // extra arithmetic, so it's not an obvious win, and it gets
706  // much more complicated for K > 3.)
707
708  // Protection from insane SCEVs; this bound is conservative,
709  // but it probably doesn't matter.
710  if (K > 1000)
711    return SE.getCouldNotCompute();
712
713  unsigned W = SE.getTypeSizeInBits(ResultTy);
714
715  // Calculate K! / 2^T and T; we divide out the factors of two before
716  // multiplying for calculating K! / 2^T to avoid overflow.
717  // Other overflow doesn't matter because we only care about the bottom
718  // W bits of the result.
719  APInt OddFactorial(W, 1);
720  unsigned T = 1;
721  for (unsigned i = 3; i <= K; ++i) {
722    APInt Mult(W, i);
723    unsigned TwoFactors = Mult.countTrailingZeros();
724    T += TwoFactors;
725    Mult = Mult.lshr(TwoFactors);
726    OddFactorial *= Mult;
727  }
728
729  // We need at least W + T bits for the multiplication step
730  unsigned CalculationBits = W + T;
731
732  // Calcuate 2^T, at width T+W.
733  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
734
735  // Calculate the multiplicative inverse of K! / 2^T;
736  // this multiplication factor will perform the exact division by
737  // K! / 2^T.
738  APInt Mod = APInt::getSignedMinValue(W+1);
739  APInt MultiplyFactor = OddFactorial.zext(W+1);
740  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
741  MultiplyFactor = MultiplyFactor.trunc(W);
742
743  // Calculate the product, at width T+W
744  const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
745                                                      CalculationBits);
746  const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
747  for (unsigned i = 1; i != K; ++i) {
748    const SCEV *S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
749    Dividend = SE.getMulExpr(Dividend,
750                             SE.getTruncateOrZeroExtend(S, CalculationTy));
751  }
752
753  // Divide by 2^T
754  const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
755
756  // Truncate the result, and divide by K! / 2^T.
757
758  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
759                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
760}
761
762/// evaluateAtIteration - Return the value of this chain of recurrences at
763/// the specified iteration number.  We can evaluate this recurrence by
764/// multiplying each element in the chain by the binomial coefficient
765/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
766///
767///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
768///
769/// where BC(It, k) stands for binomial coefficient.
770///
771const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
772                                                ScalarEvolution &SE) const {
773  const SCEV *Result = getStart();
774  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
775    // The computation is correct in the face of overflow provided that the
776    // multiplication is performed _after_ the evaluation of the binomial
777    // coefficient.
778    const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
779    if (isa<SCEVCouldNotCompute>(Coeff))
780      return Coeff;
781
782    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
783  }
784  return Result;
785}
786
787//===----------------------------------------------------------------------===//
788//                    SCEV Expression folder implementations
789//===----------------------------------------------------------------------===//
790
791const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
792                                             const Type *Ty) {
793  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
794         "This is not a truncating conversion!");
795  assert(isSCEVable(Ty) &&
796         "This is not a conversion to a SCEVable type!");
797  Ty = getEffectiveSCEVType(Ty);
798
799  FoldingSetNodeID ID;
800  ID.AddInteger(scTruncate);
801  ID.AddPointer(Op);
802  ID.AddPointer(Ty);
803  void *IP = 0;
804  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
805
806  // Fold if the operand is constant.
807  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
808    return getConstant(
809      cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
810
811  // trunc(trunc(x)) --> trunc(x)
812  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
813    return getTruncateExpr(ST->getOperand(), Ty);
814
815  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
816  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
817    return getTruncateOrSignExtend(SS->getOperand(), Ty);
818
819  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
820  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
821    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
822
823  // If the input value is a chrec scev, truncate the chrec's operands.
824  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
825    SmallVector<const SCEV *, 4> Operands;
826    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
827      Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
828    return getAddRecExpr(Operands, AddRec->getLoop());
829  }
830
831  // The cast wasn't folded; create an explicit cast node.
832  // Recompute the insert position, as it may have been invalidated.
833  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
834  SCEV *S = SCEVAllocator.Allocate<SCEVTruncateExpr>();
835  new (S) SCEVTruncateExpr(ID, Op, Ty);
836  UniqueSCEVs.InsertNode(S, IP);
837  return S;
838}
839
840const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
841                                               const Type *Ty) {
842  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
843         "This is not an extending conversion!");
844  assert(isSCEVable(Ty) &&
845         "This is not a conversion to a SCEVable type!");
846  Ty = getEffectiveSCEVType(Ty);
847
848  // Fold if the operand is constant.
849  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
850    const Type *IntTy = getEffectiveSCEVType(Ty);
851    Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
852    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
853    return getConstant(cast<ConstantInt>(C));
854  }
855
856  // zext(zext(x)) --> zext(x)
857  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
858    return getZeroExtendExpr(SZ->getOperand(), Ty);
859
860  // Before doing any expensive analysis, check to see if we've already
861  // computed a SCEV for this Op and Ty.
862  FoldingSetNodeID ID;
863  ID.AddInteger(scZeroExtend);
864  ID.AddPointer(Op);
865  ID.AddPointer(Ty);
866  void *IP = 0;
867  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
868
869  // If the input value is a chrec scev, and we can prove that the value
870  // did not overflow the old, smaller, value, we can zero extend all of the
871  // operands (often constants).  This allows analysis of something like
872  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
873  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
874    if (AR->isAffine()) {
875      const SCEV *Start = AR->getStart();
876      const SCEV *Step = AR->getStepRecurrence(*this);
877      unsigned BitWidth = getTypeSizeInBits(AR->getType());
878      const Loop *L = AR->getLoop();
879
880      // If we have special knowledge that this addrec won't overflow,
881      // we don't need to do any further analysis.
882      if (AR->hasNoUnsignedWrap())
883        return getAddRecExpr(getZeroExtendExpr(Start, Ty),
884                             getZeroExtendExpr(Step, Ty),
885                             L);
886
887      // Check whether the backedge-taken count is SCEVCouldNotCompute.
888      // Note that this serves two purposes: It filters out loops that are
889      // simply not analyzable, and it covers the case where this code is
890      // being called from within backedge-taken count analysis, such that
891      // attempting to ask for the backedge-taken count would likely result
892      // in infinite recursion. In the later case, the analysis code will
893      // cope with a conservative value, and it will take care to purge
894      // that value once it has finished.
895      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
896      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
897        // Manually compute the final value for AR, checking for
898        // overflow.
899
900        // Check whether the backedge-taken count can be losslessly casted to
901        // the addrec's type. The count is always unsigned.
902        const SCEV *CastedMaxBECount =
903          getTruncateOrZeroExtend(MaxBECount, Start->getType());
904        const SCEV *RecastedMaxBECount =
905          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
906        if (MaxBECount == RecastedMaxBECount) {
907          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
908          // Check whether Start+Step*MaxBECount has no unsigned overflow.
909          const SCEV *ZMul =
910            getMulExpr(CastedMaxBECount,
911                       getTruncateOrZeroExtend(Step, Start->getType()));
912          const SCEV *Add = getAddExpr(Start, ZMul);
913          const SCEV *OperandExtendedAdd =
914            getAddExpr(getZeroExtendExpr(Start, WideTy),
915                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
916                                  getZeroExtendExpr(Step, WideTy)));
917          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
918            // Return the expression with the addrec on the outside.
919            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
920                                 getZeroExtendExpr(Step, Ty),
921                                 L);
922
923          // Similar to above, only this time treat the step value as signed.
924          // This covers loops that count down.
925          const SCEV *SMul =
926            getMulExpr(CastedMaxBECount,
927                       getTruncateOrSignExtend(Step, Start->getType()));
928          Add = getAddExpr(Start, SMul);
929          OperandExtendedAdd =
930            getAddExpr(getZeroExtendExpr(Start, WideTy),
931                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
932                                  getSignExtendExpr(Step, WideTy)));
933          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
934            // Return the expression with the addrec on the outside.
935            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
936                                 getSignExtendExpr(Step, Ty),
937                                 L);
938        }
939
940        // If the backedge is guarded by a comparison with the pre-inc value
941        // the addrec is safe. Also, if the entry is guarded by a comparison
942        // with the start value and the backedge is guarded by a comparison
943        // with the post-inc value, the addrec is safe.
944        if (isKnownPositive(Step)) {
945          const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
946                                      getUnsignedRange(Step).getUnsignedMax());
947          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
948              (isLoopGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
949               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
950                                           AR->getPostIncExpr(*this), N)))
951            // Return the expression with the addrec on the outside.
952            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
953                                 getZeroExtendExpr(Step, Ty),
954                                 L);
955        } else if (isKnownNegative(Step)) {
956          const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
957                                      getSignedRange(Step).getSignedMin());
958          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) &&
959              (isLoopGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) ||
960               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
961                                           AR->getPostIncExpr(*this), N)))
962            // Return the expression with the addrec on the outside.
963            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
964                                 getSignExtendExpr(Step, Ty),
965                                 L);
966        }
967      }
968    }
969
970  // The cast wasn't folded; create an explicit cast node.
971  // Recompute the insert position, as it may have been invalidated.
972  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
973  SCEV *S = SCEVAllocator.Allocate<SCEVZeroExtendExpr>();
974  new (S) SCEVZeroExtendExpr(ID, Op, Ty);
975  UniqueSCEVs.InsertNode(S, IP);
976  return S;
977}
978
979const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
980                                               const Type *Ty) {
981  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
982         "This is not an extending conversion!");
983  assert(isSCEVable(Ty) &&
984         "This is not a conversion to a SCEVable type!");
985  Ty = getEffectiveSCEVType(Ty);
986
987  // Fold if the operand is constant.
988  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
989    const Type *IntTy = getEffectiveSCEVType(Ty);
990    Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
991    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
992    return getConstant(cast<ConstantInt>(C));
993  }
994
995  // sext(sext(x)) --> sext(x)
996  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
997    return getSignExtendExpr(SS->getOperand(), Ty);
998
999  // Before doing any expensive analysis, check to see if we've already
1000  // computed a SCEV for this Op and Ty.
1001  FoldingSetNodeID ID;
1002  ID.AddInteger(scSignExtend);
1003  ID.AddPointer(Op);
1004  ID.AddPointer(Ty);
1005  void *IP = 0;
1006  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1007
1008  // If the input value is a chrec scev, and we can prove that the value
1009  // did not overflow the old, smaller, value, we can sign extend all of the
1010  // operands (often constants).  This allows analysis of something like
1011  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1012  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1013    if (AR->isAffine()) {
1014      const SCEV *Start = AR->getStart();
1015      const SCEV *Step = AR->getStepRecurrence(*this);
1016      unsigned BitWidth = getTypeSizeInBits(AR->getType());
1017      const Loop *L = AR->getLoop();
1018
1019      // If we have special knowledge that this addrec won't overflow,
1020      // we don't need to do any further analysis.
1021      if (AR->hasNoSignedWrap())
1022        return getAddRecExpr(getSignExtendExpr(Start, Ty),
1023                             getSignExtendExpr(Step, Ty),
1024                             L);
1025
1026      // Check whether the backedge-taken count is SCEVCouldNotCompute.
1027      // Note that this serves two purposes: It filters out loops that are
1028      // simply not analyzable, and it covers the case where this code is
1029      // being called from within backedge-taken count analysis, such that
1030      // attempting to ask for the backedge-taken count would likely result
1031      // in infinite recursion. In the later case, the analysis code will
1032      // cope with a conservative value, and it will take care to purge
1033      // that value once it has finished.
1034      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1035      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1036        // Manually compute the final value for AR, checking for
1037        // overflow.
1038
1039        // Check whether the backedge-taken count can be losslessly casted to
1040        // the addrec's type. The count is always unsigned.
1041        const SCEV *CastedMaxBECount =
1042          getTruncateOrZeroExtend(MaxBECount, Start->getType());
1043        const SCEV *RecastedMaxBECount =
1044          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1045        if (MaxBECount == RecastedMaxBECount) {
1046          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1047          // Check whether Start+Step*MaxBECount has no signed overflow.
1048          const SCEV *SMul =
1049            getMulExpr(CastedMaxBECount,
1050                       getTruncateOrSignExtend(Step, Start->getType()));
1051          const SCEV *Add = getAddExpr(Start, SMul);
1052          const SCEV *OperandExtendedAdd =
1053            getAddExpr(getSignExtendExpr(Start, WideTy),
1054                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1055                                  getSignExtendExpr(Step, WideTy)));
1056          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
1057            // Return the expression with the addrec on the outside.
1058            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1059                                 getSignExtendExpr(Step, Ty),
1060                                 L);
1061
1062          // Similar to above, only this time treat the step value as unsigned.
1063          // This covers loops that count up with an unsigned step.
1064          const SCEV *UMul =
1065            getMulExpr(CastedMaxBECount,
1066                       getTruncateOrZeroExtend(Step, Start->getType()));
1067          Add = getAddExpr(Start, UMul);
1068          OperandExtendedAdd =
1069            getAddExpr(getSignExtendExpr(Start, WideTy),
1070                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1071                                  getZeroExtendExpr(Step, WideTy)));
1072          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
1073            // Return the expression with the addrec on the outside.
1074            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1075                                 getZeroExtendExpr(Step, Ty),
1076                                 L);
1077        }
1078
1079        // If the backedge is guarded by a comparison with the pre-inc value
1080        // the addrec is safe. Also, if the entry is guarded by a comparison
1081        // with the start value and the backedge is guarded by a comparison
1082        // with the post-inc value, the addrec is safe.
1083        if (isKnownPositive(Step)) {
1084          const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1085                                      getSignedRange(Step).getSignedMax());
1086          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
1087              (isLoopGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
1088               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1089                                           AR->getPostIncExpr(*this), N)))
1090            // Return the expression with the addrec on the outside.
1091            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1092                                 getSignExtendExpr(Step, Ty),
1093                                 L);
1094        } else if (isKnownNegative(Step)) {
1095          const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1096                                      getSignedRange(Step).getSignedMin());
1097          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
1098              (isLoopGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
1099               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1100                                           AR->getPostIncExpr(*this), N)))
1101            // Return the expression with the addrec on the outside.
1102            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1103                                 getSignExtendExpr(Step, Ty),
1104                                 L);
1105        }
1106      }
1107    }
1108
1109  // The cast wasn't folded; create an explicit cast node.
1110  // Recompute the insert position, as it may have been invalidated.
1111  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1112  SCEV *S = SCEVAllocator.Allocate<SCEVSignExtendExpr>();
1113  new (S) SCEVSignExtendExpr(ID, Op, Ty);
1114  UniqueSCEVs.InsertNode(S, IP);
1115  return S;
1116}
1117
1118/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1119/// unspecified bits out to the given type.
1120///
1121const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1122                                              const Type *Ty) {
1123  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1124         "This is not an extending conversion!");
1125  assert(isSCEVable(Ty) &&
1126         "This is not a conversion to a SCEVable type!");
1127  Ty = getEffectiveSCEVType(Ty);
1128
1129  // Sign-extend negative constants.
1130  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1131    if (SC->getValue()->getValue().isNegative())
1132      return getSignExtendExpr(Op, Ty);
1133
1134  // Peel off a truncate cast.
1135  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1136    const SCEV *NewOp = T->getOperand();
1137    if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1138      return getAnyExtendExpr(NewOp, Ty);
1139    return getTruncateOrNoop(NewOp, Ty);
1140  }
1141
1142  // Next try a zext cast. If the cast is folded, use it.
1143  const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1144  if (!isa<SCEVZeroExtendExpr>(ZExt))
1145    return ZExt;
1146
1147  // Next try a sext cast. If the cast is folded, use it.
1148  const SCEV *SExt = getSignExtendExpr(Op, Ty);
1149  if (!isa<SCEVSignExtendExpr>(SExt))
1150    return SExt;
1151
1152  // Force the cast to be folded into the operands of an addrec.
1153  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1154    SmallVector<const SCEV *, 4> Ops;
1155    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1156         I != E; ++I)
1157      Ops.push_back(getAnyExtendExpr(*I, Ty));
1158    return getAddRecExpr(Ops, AR->getLoop());
1159  }
1160
1161  // If the expression is obviously signed, use the sext cast value.
1162  if (isa<SCEVSMaxExpr>(Op))
1163    return SExt;
1164
1165  // Absent any other information, use the zext cast value.
1166  return ZExt;
1167}
1168
1169/// CollectAddOperandsWithScales - Process the given Ops list, which is
1170/// a list of operands to be added under the given scale, update the given
1171/// map. This is a helper function for getAddRecExpr. As an example of
1172/// what it does, given a sequence of operands that would form an add
1173/// expression like this:
1174///
1175///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1176///
1177/// where A and B are constants, update the map with these values:
1178///
1179///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1180///
1181/// and add 13 + A*B*29 to AccumulatedConstant.
1182/// This will allow getAddRecExpr to produce this:
1183///
1184///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1185///
1186/// This form often exposes folding opportunities that are hidden in
1187/// the original operand list.
1188///
1189/// Return true iff it appears that any interesting folding opportunities
1190/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1191/// the common case where no interesting opportunities are present, and
1192/// is also used as a check to avoid infinite recursion.
1193///
1194static bool
1195CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1196                             SmallVector<const SCEV *, 8> &NewOps,
1197                             APInt &AccumulatedConstant,
1198                             const SmallVectorImpl<const SCEV *> &Ops,
1199                             const APInt &Scale,
1200                             ScalarEvolution &SE) {
1201  bool Interesting = false;
1202
1203  // Iterate over the add operands.
1204  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1205    const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1206    if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1207      APInt NewScale =
1208        Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1209      if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1210        // A multiplication of a constant with another add; recurse.
1211        Interesting |=
1212          CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1213                                       cast<SCEVAddExpr>(Mul->getOperand(1))
1214                                         ->getOperands(),
1215                                       NewScale, SE);
1216      } else {
1217        // A multiplication of a constant with some other value. Update
1218        // the map.
1219        SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1220        const SCEV *Key = SE.getMulExpr(MulOps);
1221        std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1222          M.insert(std::make_pair(Key, NewScale));
1223        if (Pair.second) {
1224          NewOps.push_back(Pair.first->first);
1225        } else {
1226          Pair.first->second += NewScale;
1227          // The map already had an entry for this value, which may indicate
1228          // a folding opportunity.
1229          Interesting = true;
1230        }
1231      }
1232    } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1233      // Pull a buried constant out to the outside.
1234      if (Scale != 1 || AccumulatedConstant != 0 || C->isZero())
1235        Interesting = true;
1236      AccumulatedConstant += Scale * C->getValue()->getValue();
1237    } else {
1238      // An ordinary operand. Update the map.
1239      std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1240        M.insert(std::make_pair(Ops[i], Scale));
1241      if (Pair.second) {
1242        NewOps.push_back(Pair.first->first);
1243      } else {
1244        Pair.first->second += Scale;
1245        // The map already had an entry for this value, which may indicate
1246        // a folding opportunity.
1247        Interesting = true;
1248      }
1249    }
1250  }
1251
1252  return Interesting;
1253}
1254
1255namespace {
1256  struct APIntCompare {
1257    bool operator()(const APInt &LHS, const APInt &RHS) const {
1258      return LHS.ult(RHS);
1259    }
1260  };
1261}
1262
1263/// getAddExpr - Get a canonical add expression, or something simpler if
1264/// possible.
1265const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1266                                        bool HasNUW, bool HasNSW) {
1267  assert(!Ops.empty() && "Cannot get empty add!");
1268  if (Ops.size() == 1) return Ops[0];
1269#ifndef NDEBUG
1270  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1271    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1272           getEffectiveSCEVType(Ops[0]->getType()) &&
1273           "SCEVAddExpr operand types don't match!");
1274#endif
1275
1276  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1277  if (!HasNUW && HasNSW) {
1278    bool All = true;
1279    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1280      if (!isKnownNonNegative(Ops[i])) {
1281        All = false;
1282        break;
1283      }
1284    if (All) HasNUW = true;
1285  }
1286
1287  // Sort by complexity, this groups all similar expression types together.
1288  GroupByComplexity(Ops, LI);
1289
1290  // If there are any constants, fold them together.
1291  unsigned Idx = 0;
1292  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1293    ++Idx;
1294    assert(Idx < Ops.size());
1295    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1296      // We found two constants, fold them together!
1297      Ops[0] = getConstant(LHSC->getValue()->getValue() +
1298                           RHSC->getValue()->getValue());
1299      if (Ops.size() == 2) return Ops[0];
1300      Ops.erase(Ops.begin()+1);  // Erase the folded element
1301      LHSC = cast<SCEVConstant>(Ops[0]);
1302    }
1303
1304    // If we are left with a constant zero being added, strip it off.
1305    if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1306      Ops.erase(Ops.begin());
1307      --Idx;
1308    }
1309  }
1310
1311  if (Ops.size() == 1) return Ops[0];
1312
1313  // Okay, check to see if the same value occurs in the operand list twice.  If
1314  // so, merge them together into an multiply expression.  Since we sorted the
1315  // list, these values are required to be adjacent.
1316  const Type *Ty = Ops[0]->getType();
1317  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1318    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
1319      // Found a match, merge the two values into a multiply, and add any
1320      // remaining values to the result.
1321      const SCEV *Two = getIntegerSCEV(2, Ty);
1322      const SCEV *Mul = getMulExpr(Ops[i], Two);
1323      if (Ops.size() == 2)
1324        return Mul;
1325      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1326      Ops.push_back(Mul);
1327      return getAddExpr(Ops, HasNUW, HasNSW);
1328    }
1329
1330  // Check for truncates. If all the operands are truncated from the same
1331  // type, see if factoring out the truncate would permit the result to be
1332  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1333  // if the contents of the resulting outer trunc fold to something simple.
1334  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1335    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1336    const Type *DstType = Trunc->getType();
1337    const Type *SrcType = Trunc->getOperand()->getType();
1338    SmallVector<const SCEV *, 8> LargeOps;
1339    bool Ok = true;
1340    // Check all the operands to see if they can be represented in the
1341    // source type of the truncate.
1342    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1343      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1344        if (T->getOperand()->getType() != SrcType) {
1345          Ok = false;
1346          break;
1347        }
1348        LargeOps.push_back(T->getOperand());
1349      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1350        // This could be either sign or zero extension, but sign extension
1351        // is much more likely to be foldable here.
1352        LargeOps.push_back(getSignExtendExpr(C, SrcType));
1353      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1354        SmallVector<const SCEV *, 8> LargeMulOps;
1355        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1356          if (const SCEVTruncateExpr *T =
1357                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1358            if (T->getOperand()->getType() != SrcType) {
1359              Ok = false;
1360              break;
1361            }
1362            LargeMulOps.push_back(T->getOperand());
1363          } else if (const SCEVConstant *C =
1364                       dyn_cast<SCEVConstant>(M->getOperand(j))) {
1365            // This could be either sign or zero extension, but sign extension
1366            // is much more likely to be foldable here.
1367            LargeMulOps.push_back(getSignExtendExpr(C, SrcType));
1368          } else {
1369            Ok = false;
1370            break;
1371          }
1372        }
1373        if (Ok)
1374          LargeOps.push_back(getMulExpr(LargeMulOps));
1375      } else {
1376        Ok = false;
1377        break;
1378      }
1379    }
1380    if (Ok) {
1381      // Evaluate the expression in the larger type.
1382      const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
1383      // If it folds to something simple, use it. Otherwise, don't.
1384      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1385        return getTruncateExpr(Fold, DstType);
1386    }
1387  }
1388
1389  // Skip past any other cast SCEVs.
1390  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1391    ++Idx;
1392
1393  // If there are add operands they would be next.
1394  if (Idx < Ops.size()) {
1395    bool DeletedAdd = false;
1396    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1397      // If we have an add, expand the add operands onto the end of the operands
1398      // list.
1399      Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1400      Ops.erase(Ops.begin()+Idx);
1401      DeletedAdd = true;
1402    }
1403
1404    // If we deleted at least one add, we added operands to the end of the list,
1405    // and they are not necessarily sorted.  Recurse to resort and resimplify
1406    // any operands we just aquired.
1407    if (DeletedAdd)
1408      return getAddExpr(Ops);
1409  }
1410
1411  // Skip over the add expression until we get to a multiply.
1412  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1413    ++Idx;
1414
1415  // Check to see if there are any folding opportunities present with
1416  // operands multiplied by constant values.
1417  if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1418    uint64_t BitWidth = getTypeSizeInBits(Ty);
1419    DenseMap<const SCEV *, APInt> M;
1420    SmallVector<const SCEV *, 8> NewOps;
1421    APInt AccumulatedConstant(BitWidth, 0);
1422    if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1423                                     Ops, APInt(BitWidth, 1), *this)) {
1424      // Some interesting folding opportunity is present, so its worthwhile to
1425      // re-generate the operands list. Group the operands by constant scale,
1426      // to avoid multiplying by the same constant scale multiple times.
1427      std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1428      for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(),
1429           E = NewOps.end(); I != E; ++I)
1430        MulOpLists[M.find(*I)->second].push_back(*I);
1431      // Re-generate the operands list.
1432      Ops.clear();
1433      if (AccumulatedConstant != 0)
1434        Ops.push_back(getConstant(AccumulatedConstant));
1435      for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1436           I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1437        if (I->first != 0)
1438          Ops.push_back(getMulExpr(getConstant(I->first),
1439                                   getAddExpr(I->second)));
1440      if (Ops.empty())
1441        return getIntegerSCEV(0, Ty);
1442      if (Ops.size() == 1)
1443        return Ops[0];
1444      return getAddExpr(Ops);
1445    }
1446  }
1447
1448  // If we are adding something to a multiply expression, make sure the
1449  // something is not already an operand of the multiply.  If so, merge it into
1450  // the multiply.
1451  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1452    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1453    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1454      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1455      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1456        if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
1457          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1458          const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1459          if (Mul->getNumOperands() != 2) {
1460            // If the multiply has more than two operands, we must get the
1461            // Y*Z term.
1462            SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end());
1463            MulOps.erase(MulOps.begin()+MulOp);
1464            InnerMul = getMulExpr(MulOps);
1465          }
1466          const SCEV *One = getIntegerSCEV(1, Ty);
1467          const SCEV *AddOne = getAddExpr(InnerMul, One);
1468          const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]);
1469          if (Ops.size() == 2) return OuterMul;
1470          if (AddOp < Idx) {
1471            Ops.erase(Ops.begin()+AddOp);
1472            Ops.erase(Ops.begin()+Idx-1);
1473          } else {
1474            Ops.erase(Ops.begin()+Idx);
1475            Ops.erase(Ops.begin()+AddOp-1);
1476          }
1477          Ops.push_back(OuterMul);
1478          return getAddExpr(Ops);
1479        }
1480
1481      // Check this multiply against other multiplies being added together.
1482      for (unsigned OtherMulIdx = Idx+1;
1483           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1484           ++OtherMulIdx) {
1485        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1486        // If MulOp occurs in OtherMul, we can fold the two multiplies
1487        // together.
1488        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1489             OMulOp != e; ++OMulOp)
1490          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1491            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1492            const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
1493            if (Mul->getNumOperands() != 2) {
1494              SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1495                                                  Mul->op_end());
1496              MulOps.erase(MulOps.begin()+MulOp);
1497              InnerMul1 = getMulExpr(MulOps);
1498            }
1499            const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1500            if (OtherMul->getNumOperands() != 2) {
1501              SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1502                                                  OtherMul->op_end());
1503              MulOps.erase(MulOps.begin()+OMulOp);
1504              InnerMul2 = getMulExpr(MulOps);
1505            }
1506            const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1507            const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1508            if (Ops.size() == 2) return OuterMul;
1509            Ops.erase(Ops.begin()+Idx);
1510            Ops.erase(Ops.begin()+OtherMulIdx-1);
1511            Ops.push_back(OuterMul);
1512            return getAddExpr(Ops);
1513          }
1514      }
1515    }
1516  }
1517
1518  // If there are any add recurrences in the operands list, see if any other
1519  // added values are loop invariant.  If so, we can fold them into the
1520  // recurrence.
1521  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1522    ++Idx;
1523
1524  // Scan over all recurrences, trying to fold loop invariants into them.
1525  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1526    // Scan all of the other operands to this add and add them to the vector if
1527    // they are loop invariant w.r.t. the recurrence.
1528    SmallVector<const SCEV *, 8> LIOps;
1529    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1530    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1531      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1532        LIOps.push_back(Ops[i]);
1533        Ops.erase(Ops.begin()+i);
1534        --i; --e;
1535      }
1536
1537    // If we found some loop invariants, fold them into the recurrence.
1538    if (!LIOps.empty()) {
1539      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1540      LIOps.push_back(AddRec->getStart());
1541
1542      SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1543                                             AddRec->op_end());
1544      AddRecOps[0] = getAddExpr(LIOps);
1545
1546      // It's tempting to propagate NUW/NSW flags here, but nuw/nsw addition
1547      // is not associative so this isn't necessarily safe.
1548      const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
1549
1550      // If all of the other operands were loop invariant, we are done.
1551      if (Ops.size() == 1) return NewRec;
1552
1553      // Otherwise, add the folded AddRec by the non-liv parts.
1554      for (unsigned i = 0;; ++i)
1555        if (Ops[i] == AddRec) {
1556          Ops[i] = NewRec;
1557          break;
1558        }
1559      return getAddExpr(Ops);
1560    }
1561
1562    // Okay, if there weren't any loop invariants to be folded, check to see if
1563    // there are multiple AddRec's with the same loop induction variable being
1564    // added together.  If so, we can fold them.
1565    for (unsigned OtherIdx = Idx+1;
1566         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1567      if (OtherIdx != Idx) {
1568        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1569        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1570          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
1571          SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(),
1572                                              AddRec->op_end());
1573          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1574            if (i >= NewOps.size()) {
1575              NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1576                            OtherAddRec->op_end());
1577              break;
1578            }
1579            NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
1580          }
1581          const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
1582
1583          if (Ops.size() == 2) return NewAddRec;
1584
1585          Ops.erase(Ops.begin()+Idx);
1586          Ops.erase(Ops.begin()+OtherIdx-1);
1587          Ops.push_back(NewAddRec);
1588          return getAddExpr(Ops);
1589        }
1590      }
1591
1592    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1593    // next one.
1594  }
1595
1596  // Okay, it looks like we really DO need an add expr.  Check to see if we
1597  // already have one, otherwise create a new one.
1598  FoldingSetNodeID ID;
1599  ID.AddInteger(scAddExpr);
1600  ID.AddInteger(Ops.size());
1601  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1602    ID.AddPointer(Ops[i]);
1603  void *IP = 0;
1604  SCEVAddExpr *S =
1605    static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1606  if (!S) {
1607    S = SCEVAllocator.Allocate<SCEVAddExpr>();
1608    new (S) SCEVAddExpr(ID, Ops);
1609    UniqueSCEVs.InsertNode(S, IP);
1610  }
1611  if (HasNUW) S->setHasNoUnsignedWrap(true);
1612  if (HasNSW) S->setHasNoSignedWrap(true);
1613  return S;
1614}
1615
1616/// getMulExpr - Get a canonical multiply expression, or something simpler if
1617/// possible.
1618const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1619                                        bool HasNUW, bool HasNSW) {
1620  assert(!Ops.empty() && "Cannot get empty mul!");
1621  if (Ops.size() == 1) return Ops[0];
1622#ifndef NDEBUG
1623  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1624    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1625           getEffectiveSCEVType(Ops[0]->getType()) &&
1626           "SCEVMulExpr operand types don't match!");
1627#endif
1628
1629  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1630  if (!HasNUW && HasNSW) {
1631    bool All = true;
1632    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1633      if (!isKnownNonNegative(Ops[i])) {
1634        All = false;
1635        break;
1636      }
1637    if (All) HasNUW = true;
1638  }
1639
1640  // Sort by complexity, this groups all similar expression types together.
1641  GroupByComplexity(Ops, LI);
1642
1643  // If there are any constants, fold them together.
1644  unsigned Idx = 0;
1645  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1646
1647    // C1*(C2+V) -> C1*C2 + C1*V
1648    if (Ops.size() == 2)
1649      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1650        if (Add->getNumOperands() == 2 &&
1651            isa<SCEVConstant>(Add->getOperand(0)))
1652          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1653                            getMulExpr(LHSC, Add->getOperand(1)));
1654
1655    ++Idx;
1656    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1657      // We found two constants, fold them together!
1658      ConstantInt *Fold = ConstantInt::get(getContext(),
1659                                           LHSC->getValue()->getValue() *
1660                                           RHSC->getValue()->getValue());
1661      Ops[0] = getConstant(Fold);
1662      Ops.erase(Ops.begin()+1);  // Erase the folded element
1663      if (Ops.size() == 1) return Ops[0];
1664      LHSC = cast<SCEVConstant>(Ops[0]);
1665    }
1666
1667    // If we are left with a constant one being multiplied, strip it off.
1668    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1669      Ops.erase(Ops.begin());
1670      --Idx;
1671    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1672      // If we have a multiply of zero, it will always be zero.
1673      return Ops[0];
1674    } else if (Ops[0]->isAllOnesValue()) {
1675      // If we have a mul by -1 of an add, try distributing the -1 among the
1676      // add operands.
1677      if (Ops.size() == 2)
1678        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1679          SmallVector<const SCEV *, 4> NewOps;
1680          bool AnyFolded = false;
1681          for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1682               I != E; ++I) {
1683            const SCEV *Mul = getMulExpr(Ops[0], *I);
1684            if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1685            NewOps.push_back(Mul);
1686          }
1687          if (AnyFolded)
1688            return getAddExpr(NewOps);
1689        }
1690    }
1691  }
1692
1693  // Skip over the add expression until we get to a multiply.
1694  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1695    ++Idx;
1696
1697  if (Ops.size() == 1)
1698    return Ops[0];
1699
1700  // If there are mul operands inline them all into this expression.
1701  if (Idx < Ops.size()) {
1702    bool DeletedMul = false;
1703    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1704      // If we have an mul, expand the mul operands onto the end of the operands
1705      // list.
1706      Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1707      Ops.erase(Ops.begin()+Idx);
1708      DeletedMul = true;
1709    }
1710
1711    // If we deleted at least one mul, we added operands to the end of the list,
1712    // and they are not necessarily sorted.  Recurse to resort and resimplify
1713    // any operands we just aquired.
1714    if (DeletedMul)
1715      return getMulExpr(Ops);
1716  }
1717
1718  // If there are any add recurrences in the operands list, see if any other
1719  // added values are loop invariant.  If so, we can fold them into the
1720  // recurrence.
1721  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1722    ++Idx;
1723
1724  // Scan over all recurrences, trying to fold loop invariants into them.
1725  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1726    // Scan all of the other operands to this mul and add them to the vector if
1727    // they are loop invariant w.r.t. the recurrence.
1728    SmallVector<const SCEV *, 8> LIOps;
1729    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1730    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1731      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1732        LIOps.push_back(Ops[i]);
1733        Ops.erase(Ops.begin()+i);
1734        --i; --e;
1735      }
1736
1737    // If we found some loop invariants, fold them into the recurrence.
1738    if (!LIOps.empty()) {
1739      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1740      SmallVector<const SCEV *, 4> NewOps;
1741      NewOps.reserve(AddRec->getNumOperands());
1742      if (LIOps.size() == 1) {
1743        const SCEV *Scale = LIOps[0];
1744        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1745          NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1746      } else {
1747        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
1748          SmallVector<const SCEV *, 4> MulOps(LIOps.begin(), LIOps.end());
1749          MulOps.push_back(AddRec->getOperand(i));
1750          NewOps.push_back(getMulExpr(MulOps));
1751        }
1752      }
1753
1754      // It's tempting to propagate the NSW flag here, but nsw multiplication
1755      // is not associative so this isn't necessarily safe.
1756      const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(),
1757                                         HasNUW && AddRec->hasNoUnsignedWrap(),
1758                                         /*HasNSW=*/false);
1759
1760      // If all of the other operands were loop invariant, we are done.
1761      if (Ops.size() == 1) return NewRec;
1762
1763      // Otherwise, multiply the folded AddRec by the non-liv parts.
1764      for (unsigned i = 0;; ++i)
1765        if (Ops[i] == AddRec) {
1766          Ops[i] = NewRec;
1767          break;
1768        }
1769      return getMulExpr(Ops);
1770    }
1771
1772    // Okay, if there weren't any loop invariants to be folded, check to see if
1773    // there are multiple AddRec's with the same loop induction variable being
1774    // multiplied together.  If so, we can fold them.
1775    for (unsigned OtherIdx = Idx+1;
1776         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1777      if (OtherIdx != Idx) {
1778        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1779        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1780          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
1781          const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1782          const SCEV *NewStart = getMulExpr(F->getStart(),
1783                                                 G->getStart());
1784          const SCEV *B = F->getStepRecurrence(*this);
1785          const SCEV *D = G->getStepRecurrence(*this);
1786          const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1787                                          getMulExpr(G, B),
1788                                          getMulExpr(B, D));
1789          const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1790                                               F->getLoop());
1791          if (Ops.size() == 2) return NewAddRec;
1792
1793          Ops.erase(Ops.begin()+Idx);
1794          Ops.erase(Ops.begin()+OtherIdx-1);
1795          Ops.push_back(NewAddRec);
1796          return getMulExpr(Ops);
1797        }
1798      }
1799
1800    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1801    // next one.
1802  }
1803
1804  // Okay, it looks like we really DO need an mul expr.  Check to see if we
1805  // already have one, otherwise create a new one.
1806  FoldingSetNodeID ID;
1807  ID.AddInteger(scMulExpr);
1808  ID.AddInteger(Ops.size());
1809  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1810    ID.AddPointer(Ops[i]);
1811  void *IP = 0;
1812  SCEVMulExpr *S =
1813    static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1814  if (!S) {
1815    S = SCEVAllocator.Allocate<SCEVMulExpr>();
1816    new (S) SCEVMulExpr(ID, Ops);
1817    UniqueSCEVs.InsertNode(S, IP);
1818  }
1819  if (HasNUW) S->setHasNoUnsignedWrap(true);
1820  if (HasNSW) S->setHasNoSignedWrap(true);
1821  return S;
1822}
1823
1824/// getUDivExpr - Get a canonical unsigned division expression, or something
1825/// simpler if possible.
1826const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1827                                         const SCEV *RHS) {
1828  assert(getEffectiveSCEVType(LHS->getType()) ==
1829         getEffectiveSCEVType(RHS->getType()) &&
1830         "SCEVUDivExpr operand types don't match!");
1831
1832  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1833    if (RHSC->getValue()->equalsInt(1))
1834      return LHS;                               // X udiv 1 --> x
1835    if (RHSC->isZero())
1836      return getIntegerSCEV(0, LHS->getType()); // value is undefined
1837
1838    // Determine if the division can be folded into the operands of
1839    // its operands.
1840    // TODO: Generalize this to non-constants by using known-bits information.
1841    const Type *Ty = LHS->getType();
1842    unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1843    unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1844    // For non-power-of-two values, effectively round the value up to the
1845    // nearest power of two.
1846    if (!RHSC->getValue()->getValue().isPowerOf2())
1847      ++MaxShiftAmt;
1848    const IntegerType *ExtTy =
1849      IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1850    // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1851    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1852      if (const SCEVConstant *Step =
1853            dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1854        if (!Step->getValue()->getValue()
1855              .urem(RHSC->getValue()->getValue()) &&
1856            getZeroExtendExpr(AR, ExtTy) ==
1857            getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1858                          getZeroExtendExpr(Step, ExtTy),
1859                          AR->getLoop())) {
1860          SmallVector<const SCEV *, 4> Operands;
1861          for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1862            Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1863          return getAddRecExpr(Operands, AR->getLoop());
1864        }
1865    // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1866    if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1867      SmallVector<const SCEV *, 4> Operands;
1868      for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1869        Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1870      if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1871        // Find an operand that's safely divisible.
1872        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1873          const SCEV *Op = M->getOperand(i);
1874          const SCEV *Div = getUDivExpr(Op, RHSC);
1875          if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1876            const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
1877            Operands = SmallVector<const SCEV *, 4>(MOperands.begin(),
1878                                                  MOperands.end());
1879            Operands[i] = Div;
1880            return getMulExpr(Operands);
1881          }
1882        }
1883    }
1884    // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1885    if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1886      SmallVector<const SCEV *, 4> Operands;
1887      for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1888        Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1889      if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1890        Operands.clear();
1891        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1892          const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
1893          if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i))
1894            break;
1895          Operands.push_back(Op);
1896        }
1897        if (Operands.size() == A->getNumOperands())
1898          return getAddExpr(Operands);
1899      }
1900    }
1901
1902    // Fold if both operands are constant.
1903    if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1904      Constant *LHSCV = LHSC->getValue();
1905      Constant *RHSCV = RHSC->getValue();
1906      return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1907                                                                 RHSCV)));
1908    }
1909  }
1910
1911  FoldingSetNodeID ID;
1912  ID.AddInteger(scUDivExpr);
1913  ID.AddPointer(LHS);
1914  ID.AddPointer(RHS);
1915  void *IP = 0;
1916  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1917  SCEV *S = SCEVAllocator.Allocate<SCEVUDivExpr>();
1918  new (S) SCEVUDivExpr(ID, LHS, RHS);
1919  UniqueSCEVs.InsertNode(S, IP);
1920  return S;
1921}
1922
1923
1924/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1925/// Simplify the expression as much as possible.
1926const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
1927                                           const SCEV *Step, const Loop *L,
1928                                           bool HasNUW, bool HasNSW) {
1929  SmallVector<const SCEV *, 4> Operands;
1930  Operands.push_back(Start);
1931  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1932    if (StepChrec->getLoop() == L) {
1933      Operands.insert(Operands.end(), StepChrec->op_begin(),
1934                      StepChrec->op_end());
1935      return getAddRecExpr(Operands, L);
1936    }
1937
1938  Operands.push_back(Step);
1939  return getAddRecExpr(Operands, L, HasNUW, HasNSW);
1940}
1941
1942/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1943/// Simplify the expression as much as possible.
1944const SCEV *
1945ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
1946                               const Loop *L,
1947                               bool HasNUW, bool HasNSW) {
1948  if (Operands.size() == 1) return Operands[0];
1949#ifndef NDEBUG
1950  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1951    assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1952           getEffectiveSCEVType(Operands[0]->getType()) &&
1953           "SCEVAddRecExpr operand types don't match!");
1954#endif
1955
1956  if (Operands.back()->isZero()) {
1957    Operands.pop_back();
1958    return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0}  -->  X
1959  }
1960
1961  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1962  if (!HasNUW && HasNSW) {
1963    bool All = true;
1964    for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1965      if (!isKnownNonNegative(Operands[i])) {
1966        All = false;
1967        break;
1968      }
1969    if (All) HasNUW = true;
1970  }
1971
1972  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
1973  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
1974    const Loop *NestedLoop = NestedAR->getLoop();
1975    if (L->contains(NestedLoop->getHeader()) ?
1976        (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
1977        (!NestedLoop->contains(L->getHeader()) &&
1978         DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
1979      SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
1980                                                  NestedAR->op_end());
1981      Operands[0] = NestedAR->getStart();
1982      // AddRecs require their operands be loop-invariant with respect to their
1983      // loops. Don't perform this transformation if it would break this
1984      // requirement.
1985      bool AllInvariant = true;
1986      for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1987        if (!Operands[i]->isLoopInvariant(L)) {
1988          AllInvariant = false;
1989          break;
1990        }
1991      if (AllInvariant) {
1992        NestedOperands[0] = getAddRecExpr(Operands, L);
1993        AllInvariant = true;
1994        for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
1995          if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
1996            AllInvariant = false;
1997            break;
1998          }
1999        if (AllInvariant)
2000          // Ok, both add recurrences are valid after the transformation.
2001          return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
2002      }
2003      // Reset Operands to its original state.
2004      Operands[0] = NestedAR;
2005    }
2006  }
2007
2008  // Okay, it looks like we really DO need an addrec expr.  Check to see if we
2009  // already have one, otherwise create a new one.
2010  FoldingSetNodeID ID;
2011  ID.AddInteger(scAddRecExpr);
2012  ID.AddInteger(Operands.size());
2013  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2014    ID.AddPointer(Operands[i]);
2015  ID.AddPointer(L);
2016  void *IP = 0;
2017  SCEVAddRecExpr *S =
2018    static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2019  if (!S) {
2020    S = SCEVAllocator.Allocate<SCEVAddRecExpr>();
2021    new (S) SCEVAddRecExpr(ID, Operands, L);
2022    UniqueSCEVs.InsertNode(S, IP);
2023  }
2024  if (HasNUW) S->setHasNoUnsignedWrap(true);
2025  if (HasNSW) S->setHasNoSignedWrap(true);
2026  return S;
2027}
2028
2029const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2030                                         const SCEV *RHS) {
2031  SmallVector<const SCEV *, 2> Ops;
2032  Ops.push_back(LHS);
2033  Ops.push_back(RHS);
2034  return getSMaxExpr(Ops);
2035}
2036
2037const SCEV *
2038ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2039  assert(!Ops.empty() && "Cannot get empty smax!");
2040  if (Ops.size() == 1) return Ops[0];
2041#ifndef NDEBUG
2042  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2043    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2044           getEffectiveSCEVType(Ops[0]->getType()) &&
2045           "SCEVSMaxExpr operand types don't match!");
2046#endif
2047
2048  // Sort by complexity, this groups all similar expression types together.
2049  GroupByComplexity(Ops, LI);
2050
2051  // If there are any constants, fold them together.
2052  unsigned Idx = 0;
2053  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2054    ++Idx;
2055    assert(Idx < Ops.size());
2056    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2057      // We found two constants, fold them together!
2058      ConstantInt *Fold = ConstantInt::get(getContext(),
2059                              APIntOps::smax(LHSC->getValue()->getValue(),
2060                                             RHSC->getValue()->getValue()));
2061      Ops[0] = getConstant(Fold);
2062      Ops.erase(Ops.begin()+1);  // Erase the folded element
2063      if (Ops.size() == 1) return Ops[0];
2064      LHSC = cast<SCEVConstant>(Ops[0]);
2065    }
2066
2067    // If we are left with a constant minimum-int, strip it off.
2068    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2069      Ops.erase(Ops.begin());
2070      --Idx;
2071    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2072      // If we have an smax with a constant maximum-int, it will always be
2073      // maximum-int.
2074      return Ops[0];
2075    }
2076  }
2077
2078  if (Ops.size() == 1) return Ops[0];
2079
2080  // Find the first SMax
2081  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2082    ++Idx;
2083
2084  // Check to see if one of the operands is an SMax. If so, expand its operands
2085  // onto our operand list, and recurse to simplify.
2086  if (Idx < Ops.size()) {
2087    bool DeletedSMax = false;
2088    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
2089      Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
2090      Ops.erase(Ops.begin()+Idx);
2091      DeletedSMax = true;
2092    }
2093
2094    if (DeletedSMax)
2095      return getSMaxExpr(Ops);
2096  }
2097
2098  // Okay, check to see if the same value occurs in the operand list twice.  If
2099  // so, delete one.  Since we sorted the list, these values are required to
2100  // be adjacent.
2101  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2102    if (Ops[i] == Ops[i+1]) {      //  X smax Y smax Y  -->  X smax Y
2103      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2104      --i; --e;
2105    }
2106
2107  if (Ops.size() == 1) return Ops[0];
2108
2109  assert(!Ops.empty() && "Reduced smax down to nothing!");
2110
2111  // Okay, it looks like we really DO need an smax expr.  Check to see if we
2112  // already have one, otherwise create a new one.
2113  FoldingSetNodeID ID;
2114  ID.AddInteger(scSMaxExpr);
2115  ID.AddInteger(Ops.size());
2116  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2117    ID.AddPointer(Ops[i]);
2118  void *IP = 0;
2119  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2120  SCEV *S = SCEVAllocator.Allocate<SCEVSMaxExpr>();
2121  new (S) SCEVSMaxExpr(ID, Ops);
2122  UniqueSCEVs.InsertNode(S, IP);
2123  return S;
2124}
2125
2126const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2127                                         const SCEV *RHS) {
2128  SmallVector<const SCEV *, 2> Ops;
2129  Ops.push_back(LHS);
2130  Ops.push_back(RHS);
2131  return getUMaxExpr(Ops);
2132}
2133
2134const SCEV *
2135ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2136  assert(!Ops.empty() && "Cannot get empty umax!");
2137  if (Ops.size() == 1) return Ops[0];
2138#ifndef NDEBUG
2139  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2140    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2141           getEffectiveSCEVType(Ops[0]->getType()) &&
2142           "SCEVUMaxExpr operand types don't match!");
2143#endif
2144
2145  // Sort by complexity, this groups all similar expression types together.
2146  GroupByComplexity(Ops, LI);
2147
2148  // If there are any constants, fold them together.
2149  unsigned Idx = 0;
2150  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2151    ++Idx;
2152    assert(Idx < Ops.size());
2153    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2154      // We found two constants, fold them together!
2155      ConstantInt *Fold = ConstantInt::get(getContext(),
2156                              APIntOps::umax(LHSC->getValue()->getValue(),
2157                                             RHSC->getValue()->getValue()));
2158      Ops[0] = getConstant(Fold);
2159      Ops.erase(Ops.begin()+1);  // Erase the folded element
2160      if (Ops.size() == 1) return Ops[0];
2161      LHSC = cast<SCEVConstant>(Ops[0]);
2162    }
2163
2164    // If we are left with a constant minimum-int, strip it off.
2165    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2166      Ops.erase(Ops.begin());
2167      --Idx;
2168    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2169      // If we have an umax with a constant maximum-int, it will always be
2170      // maximum-int.
2171      return Ops[0];
2172    }
2173  }
2174
2175  if (Ops.size() == 1) return Ops[0];
2176
2177  // Find the first UMax
2178  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2179    ++Idx;
2180
2181  // Check to see if one of the operands is a UMax. If so, expand its operands
2182  // onto our operand list, and recurse to simplify.
2183  if (Idx < Ops.size()) {
2184    bool DeletedUMax = false;
2185    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
2186      Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
2187      Ops.erase(Ops.begin()+Idx);
2188      DeletedUMax = true;
2189    }
2190
2191    if (DeletedUMax)
2192      return getUMaxExpr(Ops);
2193  }
2194
2195  // Okay, check to see if the same value occurs in the operand list twice.  If
2196  // so, delete one.  Since we sorted the list, these values are required to
2197  // be adjacent.
2198  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2199    if (Ops[i] == Ops[i+1]) {      //  X umax Y umax Y  -->  X umax Y
2200      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2201      --i; --e;
2202    }
2203
2204  if (Ops.size() == 1) return Ops[0];
2205
2206  assert(!Ops.empty() && "Reduced umax down to nothing!");
2207
2208  // Okay, it looks like we really DO need a umax expr.  Check to see if we
2209  // already have one, otherwise create a new one.
2210  FoldingSetNodeID ID;
2211  ID.AddInteger(scUMaxExpr);
2212  ID.AddInteger(Ops.size());
2213  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2214    ID.AddPointer(Ops[i]);
2215  void *IP = 0;
2216  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2217  SCEV *S = SCEVAllocator.Allocate<SCEVUMaxExpr>();
2218  new (S) SCEVUMaxExpr(ID, Ops);
2219  UniqueSCEVs.InsertNode(S, IP);
2220  return S;
2221}
2222
2223const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2224                                         const SCEV *RHS) {
2225  // ~smax(~x, ~y) == smin(x, y).
2226  return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2227}
2228
2229const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2230                                         const SCEV *RHS) {
2231  // ~umax(~x, ~y) == umin(x, y)
2232  return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2233}
2234
2235const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
2236  Constant *C = ConstantExpr::getSizeOf(AllocTy);
2237  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2238    C = ConstantFoldConstantExpression(CE, TD);
2239  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2240  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2241}
2242
2243const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2244  Constant *C = ConstantExpr::getAlignOf(AllocTy);
2245  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2246    C = ConstantFoldConstantExpression(CE, TD);
2247  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2248  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2249}
2250
2251const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2252                                             unsigned FieldNo) {
2253  Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2254  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2255    C = ConstantFoldConstantExpression(CE, TD);
2256  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2257  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2258}
2259
2260const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2261                                             Constant *FieldNo) {
2262  Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
2263  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2264    C = ConstantFoldConstantExpression(CE, TD);
2265  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
2266  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2267}
2268
2269const SCEV *ScalarEvolution::getUnknown(Value *V) {
2270  // Don't attempt to do anything other than create a SCEVUnknown object
2271  // here.  createSCEV only calls getUnknown after checking for all other
2272  // interesting possibilities, and any other code that calls getUnknown
2273  // is doing so in order to hide a value from SCEV canonicalization.
2274
2275  FoldingSetNodeID ID;
2276  ID.AddInteger(scUnknown);
2277  ID.AddPointer(V);
2278  void *IP = 0;
2279  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2280  SCEV *S = SCEVAllocator.Allocate<SCEVUnknown>();
2281  new (S) SCEVUnknown(ID, V);
2282  UniqueSCEVs.InsertNode(S, IP);
2283  return S;
2284}
2285
2286//===----------------------------------------------------------------------===//
2287//            Basic SCEV Analysis and PHI Idiom Recognition Code
2288//
2289
2290/// isSCEVable - Test if values of the given type are analyzable within
2291/// the SCEV framework. This primarily includes integer types, and it
2292/// can optionally include pointer types if the ScalarEvolution class
2293/// has access to target-specific information.
2294bool ScalarEvolution::isSCEVable(const Type *Ty) const {
2295  // Integers and pointers are always SCEVable.
2296  return Ty->isInteger() || isa<PointerType>(Ty);
2297}
2298
2299/// getTypeSizeInBits - Return the size in bits of the specified type,
2300/// for which isSCEVable must return true.
2301uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
2302  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2303
2304  // If we have a TargetData, use it!
2305  if (TD)
2306    return TD->getTypeSizeInBits(Ty);
2307
2308  // Integer types have fixed sizes.
2309  if (Ty->isInteger())
2310    return Ty->getPrimitiveSizeInBits();
2311
2312  // The only other support type is pointer. Without TargetData, conservatively
2313  // assume pointers are 64-bit.
2314  assert(isa<PointerType>(Ty) && "isSCEVable permitted a non-SCEVable type!");
2315  return 64;
2316}
2317
2318/// getEffectiveSCEVType - Return a type with the same bitwidth as
2319/// the given type and which represents how SCEV will treat the given
2320/// type, for which isSCEVable must return true. For pointer types,
2321/// this is the pointer-sized integer type.
2322const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
2323  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2324
2325  if (Ty->isInteger())
2326    return Ty;
2327
2328  // The only other support type is pointer.
2329  assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
2330  if (TD) return TD->getIntPtrType(getContext());
2331
2332  // Without TargetData, conservatively assume pointers are 64-bit.
2333  return Type::getInt64Ty(getContext());
2334}
2335
2336const SCEV *ScalarEvolution::getCouldNotCompute() {
2337  return &CouldNotCompute;
2338}
2339
2340/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2341/// expression and create a new one.
2342const SCEV *ScalarEvolution::getSCEV(Value *V) {
2343  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
2344
2345  std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V);
2346  if (I != Scalars.end()) return I->second;
2347  const SCEV *S = createSCEV(V);
2348  Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
2349  return S;
2350}
2351
2352/// getIntegerSCEV - Given a SCEVable type, create a constant for the
2353/// specified signed integer value and return a SCEV for the constant.
2354const SCEV *ScalarEvolution::getIntegerSCEV(int64_t Val, const Type *Ty) {
2355  const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
2356  return getConstant(ConstantInt::get(ITy, Val));
2357}
2358
2359/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2360///
2361const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
2362  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2363    return getConstant(
2364               cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
2365
2366  const Type *Ty = V->getType();
2367  Ty = getEffectiveSCEVType(Ty);
2368  return getMulExpr(V,
2369                  getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
2370}
2371
2372/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2373const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
2374  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2375    return getConstant(
2376                cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
2377
2378  const Type *Ty = V->getType();
2379  Ty = getEffectiveSCEVType(Ty);
2380  const SCEV *AllOnes =
2381                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
2382  return getMinusSCEV(AllOnes, V);
2383}
2384
2385/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2386///
2387const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2388                                          const SCEV *RHS) {
2389  // X - Y --> X + -Y
2390  return getAddExpr(LHS, getNegativeSCEV(RHS));
2391}
2392
2393/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2394/// input value to the specified type.  If the type must be extended, it is zero
2395/// extended.
2396const SCEV *
2397ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
2398                                         const Type *Ty) {
2399  const Type *SrcTy = V->getType();
2400  assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2401         (Ty->isInteger() || isa<PointerType>(Ty)) &&
2402         "Cannot truncate or zero extend with non-integer arguments!");
2403  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2404    return V;  // No conversion
2405  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2406    return getTruncateExpr(V, Ty);
2407  return getZeroExtendExpr(V, Ty);
2408}
2409
2410/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2411/// input value to the specified type.  If the type must be extended, it is sign
2412/// extended.
2413const SCEV *
2414ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
2415                                         const Type *Ty) {
2416  const Type *SrcTy = V->getType();
2417  assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2418         (Ty->isInteger() || isa<PointerType>(Ty)) &&
2419         "Cannot truncate or zero extend with non-integer arguments!");
2420  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2421    return V;  // No conversion
2422  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2423    return getTruncateExpr(V, Ty);
2424  return getSignExtendExpr(V, Ty);
2425}
2426
2427/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2428/// input value to the specified type.  If the type must be extended, it is zero
2429/// extended.  The conversion must not be narrowing.
2430const SCEV *
2431ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
2432  const Type *SrcTy = V->getType();
2433  assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2434         (Ty->isInteger() || isa<PointerType>(Ty)) &&
2435         "Cannot noop or zero extend with non-integer arguments!");
2436  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2437         "getNoopOrZeroExtend cannot truncate!");
2438  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2439    return V;  // No conversion
2440  return getZeroExtendExpr(V, Ty);
2441}
2442
2443/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2444/// input value to the specified type.  If the type must be extended, it is sign
2445/// extended.  The conversion must not be narrowing.
2446const SCEV *
2447ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
2448  const Type *SrcTy = V->getType();
2449  assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2450         (Ty->isInteger() || isa<PointerType>(Ty)) &&
2451         "Cannot noop or sign extend with non-integer arguments!");
2452  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2453         "getNoopOrSignExtend cannot truncate!");
2454  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2455    return V;  // No conversion
2456  return getSignExtendExpr(V, Ty);
2457}
2458
2459/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2460/// the input value to the specified type. If the type must be extended,
2461/// it is extended with unspecified bits. The conversion must not be
2462/// narrowing.
2463const SCEV *
2464ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
2465  const Type *SrcTy = V->getType();
2466  assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2467         (Ty->isInteger() || isa<PointerType>(Ty)) &&
2468         "Cannot noop or any extend with non-integer arguments!");
2469  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2470         "getNoopOrAnyExtend cannot truncate!");
2471  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2472    return V;  // No conversion
2473  return getAnyExtendExpr(V, Ty);
2474}
2475
2476/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2477/// input value to the specified type.  The conversion must not be widening.
2478const SCEV *
2479ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
2480  const Type *SrcTy = V->getType();
2481  assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2482         (Ty->isInteger() || isa<PointerType>(Ty)) &&
2483         "Cannot truncate or noop with non-integer arguments!");
2484  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2485         "getTruncateOrNoop cannot extend!");
2486  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2487    return V;  // No conversion
2488  return getTruncateExpr(V, Ty);
2489}
2490
2491/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2492/// the types using zero-extension, and then perform a umax operation
2493/// with them.
2494const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2495                                                        const SCEV *RHS) {
2496  const SCEV *PromotedLHS = LHS;
2497  const SCEV *PromotedRHS = RHS;
2498
2499  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2500    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2501  else
2502    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2503
2504  return getUMaxExpr(PromotedLHS, PromotedRHS);
2505}
2506
2507/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2508/// the types using zero-extension, and then perform a umin operation
2509/// with them.
2510const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2511                                                        const SCEV *RHS) {
2512  const SCEV *PromotedLHS = LHS;
2513  const SCEV *PromotedRHS = RHS;
2514
2515  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2516    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2517  else
2518    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2519
2520  return getUMinExpr(PromotedLHS, PromotedRHS);
2521}
2522
2523/// PushDefUseChildren - Push users of the given Instruction
2524/// onto the given Worklist.
2525static void
2526PushDefUseChildren(Instruction *I,
2527                   SmallVectorImpl<Instruction *> &Worklist) {
2528  // Push the def-use children onto the Worklist stack.
2529  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2530       UI != UE; ++UI)
2531    Worklist.push_back(cast<Instruction>(UI));
2532}
2533
2534/// ForgetSymbolicValue - This looks up computed SCEV values for all
2535/// instructions that depend on the given instruction and removes them from
2536/// the Scalars map if they reference SymName. This is used during PHI
2537/// resolution.
2538void
2539ScalarEvolution::ForgetSymbolicName(Instruction *I, const SCEV *SymName) {
2540  SmallVector<Instruction *, 16> Worklist;
2541  PushDefUseChildren(I, Worklist);
2542
2543  SmallPtrSet<Instruction *, 8> Visited;
2544  Visited.insert(I);
2545  while (!Worklist.empty()) {
2546    Instruction *I = Worklist.pop_back_val();
2547    if (!Visited.insert(I)) continue;
2548
2549    std::map<SCEVCallbackVH, const SCEV *>::iterator It =
2550      Scalars.find(static_cast<Value *>(I));
2551    if (It != Scalars.end()) {
2552      // Short-circuit the def-use traversal if the symbolic name
2553      // ceases to appear in expressions.
2554      if (!It->second->hasOperand(SymName))
2555        continue;
2556
2557      // SCEVUnknown for a PHI either means that it has an unrecognized
2558      // structure, or it's a PHI that's in the progress of being computed
2559      // by createNodeForPHI.  In the former case, additional loop trip
2560      // count information isn't going to change anything. In the later
2561      // case, createNodeForPHI will perform the necessary updates on its
2562      // own when it gets to that point.
2563      if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
2564        ValuesAtScopes.erase(It->second);
2565        Scalars.erase(It);
2566      }
2567    }
2568
2569    PushDefUseChildren(I, Worklist);
2570  }
2571}
2572
2573/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
2574/// a loop header, making it a potential recurrence, or it doesn't.
2575///
2576const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
2577  if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
2578    if (const Loop *L = LI->getLoopFor(PN->getParent()))
2579      if (L->getHeader() == PN->getParent()) {
2580        // If it lives in the loop header, it has two incoming values, one
2581        // from outside the loop, and one from inside.
2582        unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
2583        unsigned BackEdge     = IncomingEdge^1;
2584
2585        // While we are analyzing this PHI node, handle its value symbolically.
2586        const SCEV *SymbolicName = getUnknown(PN);
2587        assert(Scalars.find(PN) == Scalars.end() &&
2588               "PHI node already processed?");
2589        Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
2590
2591        // Using this symbolic name for the PHI, analyze the value coming around
2592        // the back-edge.
2593        Value *BEValueV = PN->getIncomingValue(BackEdge);
2594        const SCEV *BEValue = getSCEV(BEValueV);
2595
2596        // NOTE: If BEValue is loop invariant, we know that the PHI node just
2597        // has a special value for the first iteration of the loop.
2598
2599        // If the value coming around the backedge is an add with the symbolic
2600        // value we just inserted, then we found a simple induction variable!
2601        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
2602          // If there is a single occurrence of the symbolic value, replace it
2603          // with a recurrence.
2604          unsigned FoundIndex = Add->getNumOperands();
2605          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2606            if (Add->getOperand(i) == SymbolicName)
2607              if (FoundIndex == e) {
2608                FoundIndex = i;
2609                break;
2610              }
2611
2612          if (FoundIndex != Add->getNumOperands()) {
2613            // Create an add with everything but the specified operand.
2614            SmallVector<const SCEV *, 8> Ops;
2615            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2616              if (i != FoundIndex)
2617                Ops.push_back(Add->getOperand(i));
2618            const SCEV *Accum = getAddExpr(Ops);
2619
2620            // This is not a valid addrec if the step amount is varying each
2621            // loop iteration, but is not itself an addrec in this loop.
2622            if (Accum->isLoopInvariant(L) ||
2623                (isa<SCEVAddRecExpr>(Accum) &&
2624                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
2625              bool HasNUW = false;
2626              bool HasNSW = false;
2627
2628              // If the increment doesn't overflow, then neither the addrec nor
2629              // the post-increment will overflow.
2630              if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2631                if (OBO->hasNoUnsignedWrap())
2632                  HasNUW = true;
2633                if (OBO->hasNoSignedWrap())
2634                  HasNSW = true;
2635              }
2636
2637              const SCEV *StartVal =
2638                getSCEV(PN->getIncomingValue(IncomingEdge));
2639              const SCEV *PHISCEV =
2640                getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
2641
2642              // Since the no-wrap flags are on the increment, they apply to the
2643              // post-incremented value as well.
2644              if (Accum->isLoopInvariant(L))
2645                (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2646                                    Accum, L, HasNUW, HasNSW);
2647
2648              // Okay, for the entire analysis of this edge we assumed the PHI
2649              // to be symbolic.  We now need to go back and purge all of the
2650              // entries for the scalars that use the symbolic expression.
2651              ForgetSymbolicName(PN, SymbolicName);
2652              Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
2653              return PHISCEV;
2654            }
2655          }
2656        } else if (const SCEVAddRecExpr *AddRec =
2657                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
2658          // Otherwise, this could be a loop like this:
2659          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
2660          // In this case, j = {1,+,1}  and BEValue is j.
2661          // Because the other in-value of i (0) fits the evolution of BEValue
2662          // i really is an addrec evolution.
2663          if (AddRec->getLoop() == L && AddRec->isAffine()) {
2664            const SCEV *StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
2665
2666            // If StartVal = j.start - j.stride, we can use StartVal as the
2667            // initial step of the addrec evolution.
2668            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
2669                                            AddRec->getOperand(1))) {
2670              const SCEV *PHISCEV =
2671                 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
2672
2673              // Okay, for the entire analysis of this edge we assumed the PHI
2674              // to be symbolic.  We now need to go back and purge all of the
2675              // entries for the scalars that use the symbolic expression.
2676              ForgetSymbolicName(PN, SymbolicName);
2677              Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
2678              return PHISCEV;
2679            }
2680          }
2681        }
2682
2683        return SymbolicName;
2684      }
2685
2686  // It's tempting to recognize PHIs with a unique incoming value, however
2687  // this leads passes like indvars to break LCSSA form. Fortunately, such
2688  // PHIs are rare, as instcombine zaps them.
2689
2690  // If it's not a loop phi, we can't handle it yet.
2691  return getUnknown(PN);
2692}
2693
2694/// createNodeForGEP - Expand GEP instructions into add and multiply
2695/// operations. This allows them to be analyzed by regular SCEV code.
2696///
2697const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
2698
2699  bool InBounds = GEP->isInBounds();
2700  const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
2701  Value *Base = GEP->getOperand(0);
2702  // Don't attempt to analyze GEPs over unsized objects.
2703  if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2704    return getUnknown(GEP);
2705  const SCEV *TotalOffset = getIntegerSCEV(0, IntPtrTy);
2706  gep_type_iterator GTI = gep_type_begin(GEP);
2707  for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2708                                      E = GEP->op_end();
2709       I != E; ++I) {
2710    Value *Index = *I;
2711    // Compute the (potentially symbolic) offset in bytes for this index.
2712    if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2713      // For a struct, add the member offset.
2714      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2715      TotalOffset = getAddExpr(TotalOffset,
2716                               getOffsetOfExpr(STy, FieldNo),
2717                               /*HasNUW=*/false, /*HasNSW=*/InBounds);
2718    } else {
2719      // For an array, add the element offset, explicitly scaled.
2720      const SCEV *LocalOffset = getSCEV(Index);
2721      // Getelementptr indicies are signed.
2722      LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy);
2723      // Lower "inbounds" GEPs to NSW arithmetic.
2724      LocalOffset = getMulExpr(LocalOffset, getSizeOfExpr(*GTI),
2725                               /*HasNUW=*/false, /*HasNSW=*/InBounds);
2726      TotalOffset = getAddExpr(TotalOffset, LocalOffset,
2727                               /*HasNUW=*/false, /*HasNSW=*/InBounds);
2728    }
2729  }
2730  return getAddExpr(getSCEV(Base), TotalOffset,
2731                    /*HasNUW=*/false, /*HasNSW=*/InBounds);
2732}
2733
2734/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2735/// guaranteed to end in (at every loop iteration).  It is, at the same time,
2736/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
2737/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
2738uint32_t
2739ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
2740  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2741    return C->getValue()->getValue().countTrailingZeros();
2742
2743  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
2744    return std::min(GetMinTrailingZeros(T->getOperand()),
2745                    (uint32_t)getTypeSizeInBits(T->getType()));
2746
2747  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
2748    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2749    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2750             getTypeSizeInBits(E->getType()) : OpRes;
2751  }
2752
2753  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
2754    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2755    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2756             getTypeSizeInBits(E->getType()) : OpRes;
2757  }
2758
2759  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
2760    // The result is the min of all operands results.
2761    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2762    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2763      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2764    return MinOpRes;
2765  }
2766
2767  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
2768    // The result is the sum of all operands results.
2769    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2770    uint32_t BitWidth = getTypeSizeInBits(M->getType());
2771    for (unsigned i = 1, e = M->getNumOperands();
2772         SumOpRes != BitWidth && i != e; ++i)
2773      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
2774                          BitWidth);
2775    return SumOpRes;
2776  }
2777
2778  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
2779    // The result is the min of all operands results.
2780    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2781    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2782      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2783    return MinOpRes;
2784  }
2785
2786  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
2787    // The result is the min of all operands results.
2788    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2789    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2790      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2791    return MinOpRes;
2792  }
2793
2794  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
2795    // The result is the min of all operands results.
2796    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2797    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2798      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2799    return MinOpRes;
2800  }
2801
2802  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2803    // For a SCEVUnknown, ask ValueTracking.
2804    unsigned BitWidth = getTypeSizeInBits(U->getType());
2805    APInt Mask = APInt::getAllOnesValue(BitWidth);
2806    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2807    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2808    return Zeros.countTrailingOnes();
2809  }
2810
2811  // SCEVUDivExpr
2812  return 0;
2813}
2814
2815/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2816///
2817ConstantRange
2818ScalarEvolution::getUnsignedRange(const SCEV *S) {
2819
2820  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2821    return ConstantRange(C->getValue()->getValue());
2822
2823  unsigned BitWidth = getTypeSizeInBits(S->getType());
2824  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
2825
2826  // If the value has known zeros, the maximum unsigned value will have those
2827  // known zeros as well.
2828  uint32_t TZ = GetMinTrailingZeros(S);
2829  if (TZ != 0)
2830    ConservativeResult =
2831      ConstantRange(APInt::getMinValue(BitWidth),
2832                    APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
2833
2834  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2835    ConstantRange X = getUnsignedRange(Add->getOperand(0));
2836    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2837      X = X.add(getUnsignedRange(Add->getOperand(i)));
2838    return ConservativeResult.intersectWith(X);
2839  }
2840
2841  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2842    ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2843    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2844      X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
2845    return ConservativeResult.intersectWith(X);
2846  }
2847
2848  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2849    ConstantRange X = getUnsignedRange(SMax->getOperand(0));
2850    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2851      X = X.smax(getUnsignedRange(SMax->getOperand(i)));
2852    return ConservativeResult.intersectWith(X);
2853  }
2854
2855  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2856    ConstantRange X = getUnsignedRange(UMax->getOperand(0));
2857    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2858      X = X.umax(getUnsignedRange(UMax->getOperand(i)));
2859    return ConservativeResult.intersectWith(X);
2860  }
2861
2862  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2863    ConstantRange X = getUnsignedRange(UDiv->getLHS());
2864    ConstantRange Y = getUnsignedRange(UDiv->getRHS());
2865    return ConservativeResult.intersectWith(X.udiv(Y));
2866  }
2867
2868  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2869    ConstantRange X = getUnsignedRange(ZExt->getOperand());
2870    return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
2871  }
2872
2873  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2874    ConstantRange X = getUnsignedRange(SExt->getOperand());
2875    return ConservativeResult.intersectWith(X.signExtend(BitWidth));
2876  }
2877
2878  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2879    ConstantRange X = getUnsignedRange(Trunc->getOperand());
2880    return ConservativeResult.intersectWith(X.truncate(BitWidth));
2881  }
2882
2883  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
2884    // If there's no unsigned wrap, the value will never be less than its
2885    // initial value.
2886    if (AddRec->hasNoUnsignedWrap())
2887      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
2888        ConservativeResult =
2889          ConstantRange(C->getValue()->getValue(),
2890                        APInt(getTypeSizeInBits(C->getType()), 0));
2891
2892    // TODO: non-affine addrec
2893    if (AddRec->isAffine()) {
2894      const Type *Ty = AddRec->getType();
2895      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
2896      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
2897          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
2898        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
2899
2900        const SCEV *Start = AddRec->getStart();
2901        const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
2902
2903        // Check for overflow.
2904        if (!AddRec->hasNoUnsignedWrap())
2905          return ConservativeResult;
2906
2907        ConstantRange StartRange = getUnsignedRange(Start);
2908        ConstantRange EndRange = getUnsignedRange(End);
2909        APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
2910                                   EndRange.getUnsignedMin());
2911        APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
2912                                   EndRange.getUnsignedMax());
2913        if (Min.isMinValue() && Max.isMaxValue())
2914          return ConservativeResult;
2915        return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
2916      }
2917    }
2918
2919    return ConservativeResult;
2920  }
2921
2922  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2923    // For a SCEVUnknown, ask ValueTracking.
2924    unsigned BitWidth = getTypeSizeInBits(U->getType());
2925    APInt Mask = APInt::getAllOnesValue(BitWidth);
2926    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2927    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
2928    if (Ones == ~Zeros + 1)
2929      return ConservativeResult;
2930    return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
2931  }
2932
2933  return ConservativeResult;
2934}
2935
2936/// getSignedRange - Determine the signed range for a particular SCEV.
2937///
2938ConstantRange
2939ScalarEvolution::getSignedRange(const SCEV *S) {
2940
2941  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2942    return ConstantRange(C->getValue()->getValue());
2943
2944  unsigned BitWidth = getTypeSizeInBits(S->getType());
2945  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
2946
2947  // If the value has known zeros, the maximum signed value will have those
2948  // known zeros as well.
2949  uint32_t TZ = GetMinTrailingZeros(S);
2950  if (TZ != 0)
2951    ConservativeResult =
2952      ConstantRange(APInt::getSignedMinValue(BitWidth),
2953                    APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
2954
2955  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2956    ConstantRange X = getSignedRange(Add->getOperand(0));
2957    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2958      X = X.add(getSignedRange(Add->getOperand(i)));
2959    return ConservativeResult.intersectWith(X);
2960  }
2961
2962  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2963    ConstantRange X = getSignedRange(Mul->getOperand(0));
2964    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2965      X = X.multiply(getSignedRange(Mul->getOperand(i)));
2966    return ConservativeResult.intersectWith(X);
2967  }
2968
2969  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2970    ConstantRange X = getSignedRange(SMax->getOperand(0));
2971    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2972      X = X.smax(getSignedRange(SMax->getOperand(i)));
2973    return ConservativeResult.intersectWith(X);
2974  }
2975
2976  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2977    ConstantRange X = getSignedRange(UMax->getOperand(0));
2978    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2979      X = X.umax(getSignedRange(UMax->getOperand(i)));
2980    return ConservativeResult.intersectWith(X);
2981  }
2982
2983  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2984    ConstantRange X = getSignedRange(UDiv->getLHS());
2985    ConstantRange Y = getSignedRange(UDiv->getRHS());
2986    return ConservativeResult.intersectWith(X.udiv(Y));
2987  }
2988
2989  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2990    ConstantRange X = getSignedRange(ZExt->getOperand());
2991    return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
2992  }
2993
2994  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2995    ConstantRange X = getSignedRange(SExt->getOperand());
2996    return ConservativeResult.intersectWith(X.signExtend(BitWidth));
2997  }
2998
2999  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3000    ConstantRange X = getSignedRange(Trunc->getOperand());
3001    return ConservativeResult.intersectWith(X.truncate(BitWidth));
3002  }
3003
3004  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3005    // If there's no signed wrap, and all the operands have the same sign or
3006    // zero, the value won't ever change sign.
3007    if (AddRec->hasNoSignedWrap()) {
3008      bool AllNonNeg = true;
3009      bool AllNonPos = true;
3010      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3011        if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3012        if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3013      }
3014      if (AllNonNeg)
3015        ConservativeResult = ConservativeResult.intersectWith(
3016          ConstantRange(APInt(BitWidth, 0),
3017                        APInt::getSignedMinValue(BitWidth)));
3018      else if (AllNonPos)
3019        ConservativeResult = ConservativeResult.intersectWith(
3020          ConstantRange(APInt::getSignedMinValue(BitWidth),
3021                        APInt(BitWidth, 1)));
3022    }
3023
3024    // TODO: non-affine addrec
3025    if (AddRec->isAffine()) {
3026      const Type *Ty = AddRec->getType();
3027      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3028      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3029          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3030        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3031
3032        const SCEV *Start = AddRec->getStart();
3033        const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
3034
3035        // Check for overflow.
3036        if (!AddRec->hasNoSignedWrap())
3037          return ConservativeResult;
3038
3039        ConstantRange StartRange = getSignedRange(Start);
3040        ConstantRange EndRange = getSignedRange(End);
3041        APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3042                                   EndRange.getSignedMin());
3043        APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3044                                   EndRange.getSignedMax());
3045        if (Min.isMinSignedValue() && Max.isMaxSignedValue())
3046          return ConservativeResult;
3047        return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
3048      }
3049    }
3050
3051    return ConservativeResult;
3052  }
3053
3054  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3055    // For a SCEVUnknown, ask ValueTracking.
3056    if (!U->getValue()->getType()->isInteger() && !TD)
3057      return ConservativeResult;
3058    unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3059    if (NS == 1)
3060      return ConservativeResult;
3061    return ConservativeResult.intersectWith(
3062      ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
3063                    APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1));
3064  }
3065
3066  return ConservativeResult;
3067}
3068
3069/// createSCEV - We know that there is no SCEV for the specified value.
3070/// Analyze the expression.
3071///
3072const SCEV *ScalarEvolution::createSCEV(Value *V) {
3073  if (!isSCEVable(V->getType()))
3074    return getUnknown(V);
3075
3076  unsigned Opcode = Instruction::UserOp1;
3077  if (Instruction *I = dyn_cast<Instruction>(V))
3078    Opcode = I->getOpcode();
3079  else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
3080    Opcode = CE->getOpcode();
3081  else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3082    return getConstant(CI);
3083  else if (isa<ConstantPointerNull>(V))
3084    return getIntegerSCEV(0, V->getType());
3085  else if (isa<UndefValue>(V))
3086    return getIntegerSCEV(0, V->getType());
3087  else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3088    return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
3089  else
3090    return getUnknown(V);
3091
3092  Operator *U = cast<Operator>(V);
3093  switch (Opcode) {
3094  case Instruction::Add:
3095    // Don't transfer the NSW and NUW bits from the Add instruction to the
3096    // Add expression, because the Instruction may be guarded by control
3097    // flow and the no-overflow bits may not be valid for the expression in
3098    // any context.
3099    return getAddExpr(getSCEV(U->getOperand(0)),
3100                      getSCEV(U->getOperand(1)));
3101  case Instruction::Mul:
3102    // Don't transfer the NSW and NUW bits from the Mul instruction to the
3103    // Mul expression, as with Add.
3104    return getMulExpr(getSCEV(U->getOperand(0)),
3105                      getSCEV(U->getOperand(1)));
3106  case Instruction::UDiv:
3107    return getUDivExpr(getSCEV(U->getOperand(0)),
3108                       getSCEV(U->getOperand(1)));
3109  case Instruction::Sub:
3110    return getMinusSCEV(getSCEV(U->getOperand(0)),
3111                        getSCEV(U->getOperand(1)));
3112  case Instruction::And:
3113    // For an expression like x&255 that merely masks off the high bits,
3114    // use zext(trunc(x)) as the SCEV expression.
3115    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3116      if (CI->isNullValue())
3117        return getSCEV(U->getOperand(1));
3118      if (CI->isAllOnesValue())
3119        return getSCEV(U->getOperand(0));
3120      const APInt &A = CI->getValue();
3121
3122      // Instcombine's ShrinkDemandedConstant may strip bits out of
3123      // constants, obscuring what would otherwise be a low-bits mask.
3124      // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3125      // knew about to reconstruct a low-bits mask value.
3126      unsigned LZ = A.countLeadingZeros();
3127      unsigned BitWidth = A.getBitWidth();
3128      APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3129      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3130      ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3131
3132      APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3133
3134      if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
3135        return
3136          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
3137                                IntegerType::get(getContext(), BitWidth - LZ)),
3138                            U->getType());
3139    }
3140    break;
3141
3142  case Instruction::Or:
3143    // If the RHS of the Or is a constant, we may have something like:
3144    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
3145    // optimizations will transparently handle this case.
3146    //
3147    // In order for this transformation to be safe, the LHS must be of the
3148    // form X*(2^n) and the Or constant must be less than 2^n.
3149    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3150      const SCEV *LHS = getSCEV(U->getOperand(0));
3151      const APInt &CIVal = CI->getValue();
3152      if (GetMinTrailingZeros(LHS) >=
3153          (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3154        // Build a plain add SCEV.
3155        const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3156        // If the LHS of the add was an addrec and it has no-wrap flags,
3157        // transfer the no-wrap flags, since an or won't introduce a wrap.
3158        if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3159          const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3160          if (OldAR->hasNoUnsignedWrap())
3161            const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3162          if (OldAR->hasNoSignedWrap())
3163            const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3164        }
3165        return S;
3166      }
3167    }
3168    break;
3169  case Instruction::Xor:
3170    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3171      // If the RHS of the xor is a signbit, then this is just an add.
3172      // Instcombine turns add of signbit into xor as a strength reduction step.
3173      if (CI->getValue().isSignBit())
3174        return getAddExpr(getSCEV(U->getOperand(0)),
3175                          getSCEV(U->getOperand(1)));
3176
3177      // If the RHS of xor is -1, then this is a not operation.
3178      if (CI->isAllOnesValue())
3179        return getNotSCEV(getSCEV(U->getOperand(0)));
3180
3181      // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3182      // This is a variant of the check for xor with -1, and it handles
3183      // the case where instcombine has trimmed non-demanded bits out
3184      // of an xor with -1.
3185      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3186        if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3187          if (BO->getOpcode() == Instruction::And &&
3188              LCI->getValue() == CI->getValue())
3189            if (const SCEVZeroExtendExpr *Z =
3190                  dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
3191              const Type *UTy = U->getType();
3192              const SCEV *Z0 = Z->getOperand();
3193              const Type *Z0Ty = Z0->getType();
3194              unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3195
3196              // If C is a low-bits mask, the zero extend is zerving to
3197              // mask off the high bits. Complement the operand and
3198              // re-apply the zext.
3199              if (APIntOps::isMask(Z0TySize, CI->getValue()))
3200                return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3201
3202              // If C is a single bit, it may be in the sign-bit position
3203              // before the zero-extend. In this case, represent the xor
3204              // using an add, which is equivalent, and re-apply the zext.
3205              APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3206              if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3207                  Trunc.isSignBit())
3208                return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3209                                         UTy);
3210            }
3211    }
3212    break;
3213
3214  case Instruction::Shl:
3215    // Turn shift left of a constant amount into a multiply.
3216    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3217      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3218      Constant *X = ConstantInt::get(getContext(),
3219        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
3220      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3221    }
3222    break;
3223
3224  case Instruction::LShr:
3225    // Turn logical shift right of a constant into a unsigned divide.
3226    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3227      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3228      Constant *X = ConstantInt::get(getContext(),
3229        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
3230      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3231    }
3232    break;
3233
3234  case Instruction::AShr:
3235    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3236    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
3237      if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
3238        if (L->getOpcode() == Instruction::Shl &&
3239            L->getOperand(1) == U->getOperand(1)) {
3240          unsigned BitWidth = getTypeSizeInBits(U->getType());
3241          uint64_t Amt = BitWidth - CI->getZExtValue();
3242          if (Amt == BitWidth)
3243            return getSCEV(L->getOperand(0));       // shift by zero --> noop
3244          if (Amt > BitWidth)
3245            return getIntegerSCEV(0, U->getType()); // value is undefined
3246          return
3247            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
3248                                           IntegerType::get(getContext(), Amt)),
3249                                 U->getType());
3250        }
3251    break;
3252
3253  case Instruction::Trunc:
3254    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
3255
3256  case Instruction::ZExt:
3257    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3258
3259  case Instruction::SExt:
3260    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3261
3262  case Instruction::BitCast:
3263    // BitCasts are no-op casts so we just eliminate the cast.
3264    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
3265      return getSCEV(U->getOperand(0));
3266    break;
3267
3268  // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3269  // lead to pointer expressions which cannot safely be expanded to GEPs,
3270  // because ScalarEvolution doesn't respect the GEP aliasing rules when
3271  // simplifying integer expressions.
3272
3273  case Instruction::GetElementPtr:
3274    return createNodeForGEP(cast<GEPOperator>(U));
3275
3276  case Instruction::PHI:
3277    return createNodeForPHI(cast<PHINode>(U));
3278
3279  case Instruction::Select:
3280    // This could be a smax or umax that was lowered earlier.
3281    // Try to recover it.
3282    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3283      Value *LHS = ICI->getOperand(0);
3284      Value *RHS = ICI->getOperand(1);
3285      switch (ICI->getPredicate()) {
3286      case ICmpInst::ICMP_SLT:
3287      case ICmpInst::ICMP_SLE:
3288        std::swap(LHS, RHS);
3289        // fall through
3290      case ICmpInst::ICMP_SGT:
3291      case ICmpInst::ICMP_SGE:
3292        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
3293          return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
3294        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
3295          return getSMinExpr(getSCEV(LHS), getSCEV(RHS));
3296        break;
3297      case ICmpInst::ICMP_ULT:
3298      case ICmpInst::ICMP_ULE:
3299        std::swap(LHS, RHS);
3300        // fall through
3301      case ICmpInst::ICMP_UGT:
3302      case ICmpInst::ICMP_UGE:
3303        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
3304          return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
3305        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
3306          return getUMinExpr(getSCEV(LHS), getSCEV(RHS));
3307        break;
3308      case ICmpInst::ICMP_NE:
3309        // n != 0 ? n : 1  ->  umax(n, 1)
3310        if (LHS == U->getOperand(1) &&
3311            isa<ConstantInt>(U->getOperand(2)) &&
3312            cast<ConstantInt>(U->getOperand(2))->isOne() &&
3313            isa<ConstantInt>(RHS) &&
3314            cast<ConstantInt>(RHS)->isZero())
3315          return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(2)));
3316        break;
3317      case ICmpInst::ICMP_EQ:
3318        // n == 0 ? 1 : n  ->  umax(n, 1)
3319        if (LHS == U->getOperand(2) &&
3320            isa<ConstantInt>(U->getOperand(1)) &&
3321            cast<ConstantInt>(U->getOperand(1))->isOne() &&
3322            isa<ConstantInt>(RHS) &&
3323            cast<ConstantInt>(RHS)->isZero())
3324          return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(1)));
3325        break;
3326      default:
3327        break;
3328      }
3329    }
3330
3331  default: // We cannot analyze this expression.
3332    break;
3333  }
3334
3335  return getUnknown(V);
3336}
3337
3338
3339
3340//===----------------------------------------------------------------------===//
3341//                   Iteration Count Computation Code
3342//
3343
3344/// getBackedgeTakenCount - If the specified loop has a predictable
3345/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3346/// object. The backedge-taken count is the number of times the loop header
3347/// will be branched to from within the loop. This is one less than the
3348/// trip count of the loop, since it doesn't count the first iteration,
3349/// when the header is branched to from outside the loop.
3350///
3351/// Note that it is not valid to call this method on a loop without a
3352/// loop-invariant backedge-taken count (see
3353/// hasLoopInvariantBackedgeTakenCount).
3354///
3355const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
3356  return getBackedgeTakenInfo(L).Exact;
3357}
3358
3359/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3360/// return the least SCEV value that is known never to be less than the
3361/// actual backedge taken count.
3362const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
3363  return getBackedgeTakenInfo(L).Max;
3364}
3365
3366/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3367/// onto the given Worklist.
3368static void
3369PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3370  BasicBlock *Header = L->getHeader();
3371
3372  // Push all Loop-header PHIs onto the Worklist stack.
3373  for (BasicBlock::iterator I = Header->begin();
3374       PHINode *PN = dyn_cast<PHINode>(I); ++I)
3375    Worklist.push_back(PN);
3376}
3377
3378const ScalarEvolution::BackedgeTakenInfo &
3379ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
3380  // Initially insert a CouldNotCompute for this loop. If the insertion
3381  // succeeds, procede to actually compute a backedge-taken count and
3382  // update the value. The temporary CouldNotCompute value tells SCEV
3383  // code elsewhere that it shouldn't attempt to request a new
3384  // backedge-taken count, which could result in infinite recursion.
3385  std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
3386    BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3387  if (Pair.second) {
3388    BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3389    if (BECount.Exact != getCouldNotCompute()) {
3390      assert(BECount.Exact->isLoopInvariant(L) &&
3391             BECount.Max->isLoopInvariant(L) &&
3392             "Computed backedge-taken count isn't loop invariant for loop!");
3393      ++NumTripCountsComputed;
3394
3395      // Update the value in the map.
3396      Pair.first->second = BECount;
3397    } else {
3398      if (BECount.Max != getCouldNotCompute())
3399        // Update the value in the map.
3400        Pair.first->second = BECount;
3401      if (isa<PHINode>(L->getHeader()->begin()))
3402        // Only count loops that have phi nodes as not being computable.
3403        ++NumTripCountsNotComputed;
3404    }
3405
3406    // Now that we know more about the trip count for this loop, forget any
3407    // existing SCEV values for PHI nodes in this loop since they are only
3408    // conservative estimates made without the benefit of trip count
3409    // information. This is similar to the code in forgetLoop, except that
3410    // it handles SCEVUnknown PHI nodes specially.
3411    if (BECount.hasAnyInfo()) {
3412      SmallVector<Instruction *, 16> Worklist;
3413      PushLoopPHIs(L, Worklist);
3414
3415      SmallPtrSet<Instruction *, 8> Visited;
3416      while (!Worklist.empty()) {
3417        Instruction *I = Worklist.pop_back_val();
3418        if (!Visited.insert(I)) continue;
3419
3420        std::map<SCEVCallbackVH, const SCEV *>::iterator It =
3421          Scalars.find(static_cast<Value *>(I));
3422        if (It != Scalars.end()) {
3423          // SCEVUnknown for a PHI either means that it has an unrecognized
3424          // structure, or it's a PHI that's in the progress of being computed
3425          // by createNodeForPHI.  In the former case, additional loop trip
3426          // count information isn't going to change anything. In the later
3427          // case, createNodeForPHI will perform the necessary updates on its
3428          // own when it gets to that point.
3429          if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
3430            ValuesAtScopes.erase(It->second);
3431            Scalars.erase(It);
3432          }
3433          if (PHINode *PN = dyn_cast<PHINode>(I))
3434            ConstantEvolutionLoopExitValue.erase(PN);
3435        }
3436
3437        PushDefUseChildren(I, Worklist);
3438      }
3439    }
3440  }
3441  return Pair.first->second;
3442}
3443
3444/// forgetLoop - This method should be called by the client when it has
3445/// changed a loop in a way that may effect ScalarEvolution's ability to
3446/// compute a trip count, or if the loop is deleted.
3447void ScalarEvolution::forgetLoop(const Loop *L) {
3448  // Drop any stored trip count value.
3449  BackedgeTakenCounts.erase(L);
3450
3451  // Drop information about expressions based on loop-header PHIs.
3452  SmallVector<Instruction *, 16> Worklist;
3453  PushLoopPHIs(L, Worklist);
3454
3455  SmallPtrSet<Instruction *, 8> Visited;
3456  while (!Worklist.empty()) {
3457    Instruction *I = Worklist.pop_back_val();
3458    if (!Visited.insert(I)) continue;
3459
3460    std::map<SCEVCallbackVH, const SCEV *>::iterator It =
3461      Scalars.find(static_cast<Value *>(I));
3462    if (It != Scalars.end()) {
3463      ValuesAtScopes.erase(It->second);
3464      Scalars.erase(It);
3465      if (PHINode *PN = dyn_cast<PHINode>(I))
3466        ConstantEvolutionLoopExitValue.erase(PN);
3467    }
3468
3469    PushDefUseChildren(I, Worklist);
3470  }
3471}
3472
3473/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3474/// of the specified loop will execute.
3475ScalarEvolution::BackedgeTakenInfo
3476ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
3477  SmallVector<BasicBlock *, 8> ExitingBlocks;
3478  L->getExitingBlocks(ExitingBlocks);
3479
3480  // Examine all exits and pick the most conservative values.
3481  const SCEV *BECount = getCouldNotCompute();
3482  const SCEV *MaxBECount = getCouldNotCompute();
3483  bool CouldNotComputeBECount = false;
3484  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3485    BackedgeTakenInfo NewBTI =
3486      ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
3487
3488    if (NewBTI.Exact == getCouldNotCompute()) {
3489      // We couldn't compute an exact value for this exit, so
3490      // we won't be able to compute an exact value for the loop.
3491      CouldNotComputeBECount = true;
3492      BECount = getCouldNotCompute();
3493    } else if (!CouldNotComputeBECount) {
3494      if (BECount == getCouldNotCompute())
3495        BECount = NewBTI.Exact;
3496      else
3497        BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
3498    }
3499    if (MaxBECount == getCouldNotCompute())
3500      MaxBECount = NewBTI.Max;
3501    else if (NewBTI.Max != getCouldNotCompute())
3502      MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
3503  }
3504
3505  return BackedgeTakenInfo(BECount, MaxBECount);
3506}
3507
3508/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3509/// of the specified loop will execute if it exits via the specified block.
3510ScalarEvolution::BackedgeTakenInfo
3511ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3512                                                   BasicBlock *ExitingBlock) {
3513
3514  // Okay, we've chosen an exiting block.  See what condition causes us to
3515  // exit at this block.
3516  //
3517  // FIXME: we should be able to handle switch instructions (with a single exit)
3518  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
3519  if (ExitBr == 0) return getCouldNotCompute();
3520  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
3521
3522  // At this point, we know we have a conditional branch that determines whether
3523  // the loop is exited.  However, we don't know if the branch is executed each
3524  // time through the loop.  If not, then the execution count of the branch will
3525  // not be equal to the trip count of the loop.
3526  //
3527  // Currently we check for this by checking to see if the Exit branch goes to
3528  // the loop header.  If so, we know it will always execute the same number of
3529  // times as the loop.  We also handle the case where the exit block *is* the
3530  // loop header.  This is common for un-rotated loops.
3531  //
3532  // If both of those tests fail, walk up the unique predecessor chain to the
3533  // header, stopping if there is an edge that doesn't exit the loop. If the
3534  // header is reached, the execution count of the branch will be equal to the
3535  // trip count of the loop.
3536  //
3537  //  More extensive analysis could be done to handle more cases here.
3538  //
3539  if (ExitBr->getSuccessor(0) != L->getHeader() &&
3540      ExitBr->getSuccessor(1) != L->getHeader() &&
3541      ExitBr->getParent() != L->getHeader()) {
3542    // The simple checks failed, try climbing the unique predecessor chain
3543    // up to the header.
3544    bool Ok = false;
3545    for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3546      BasicBlock *Pred = BB->getUniquePredecessor();
3547      if (!Pred)
3548        return getCouldNotCompute();
3549      TerminatorInst *PredTerm = Pred->getTerminator();
3550      for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3551        BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3552        if (PredSucc == BB)
3553          continue;
3554        // If the predecessor has a successor that isn't BB and isn't
3555        // outside the loop, assume the worst.
3556        if (L->contains(PredSucc))
3557          return getCouldNotCompute();
3558      }
3559      if (Pred == L->getHeader()) {
3560        Ok = true;
3561        break;
3562      }
3563      BB = Pred;
3564    }
3565    if (!Ok)
3566      return getCouldNotCompute();
3567  }
3568
3569  // Procede to the next level to examine the exit condition expression.
3570  return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3571                                               ExitBr->getSuccessor(0),
3572                                               ExitBr->getSuccessor(1));
3573}
3574
3575/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3576/// backedge of the specified loop will execute if its exit condition
3577/// were a conditional branch of ExitCond, TBB, and FBB.
3578ScalarEvolution::BackedgeTakenInfo
3579ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3580                                                       Value *ExitCond,
3581                                                       BasicBlock *TBB,
3582                                                       BasicBlock *FBB) {
3583  // Check if the controlling expression for this loop is an And or Or.
3584  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3585    if (BO->getOpcode() == Instruction::And) {
3586      // Recurse on the operands of the and.
3587      BackedgeTakenInfo BTI0 =
3588        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3589      BackedgeTakenInfo BTI1 =
3590        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3591      const SCEV *BECount = getCouldNotCompute();
3592      const SCEV *MaxBECount = getCouldNotCompute();
3593      if (L->contains(TBB)) {
3594        // Both conditions must be true for the loop to continue executing.
3595        // Choose the less conservative count.
3596        if (BTI0.Exact == getCouldNotCompute() ||
3597            BTI1.Exact == getCouldNotCompute())
3598          BECount = getCouldNotCompute();
3599        else
3600          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3601        if (BTI0.Max == getCouldNotCompute())
3602          MaxBECount = BTI1.Max;
3603        else if (BTI1.Max == getCouldNotCompute())
3604          MaxBECount = BTI0.Max;
3605        else
3606          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3607      } else {
3608        // Both conditions must be true for the loop to exit.
3609        assert(L->contains(FBB) && "Loop block has no successor in loop!");
3610        if (BTI0.Exact != getCouldNotCompute() &&
3611            BTI1.Exact != getCouldNotCompute())
3612          BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3613        if (BTI0.Max != getCouldNotCompute() &&
3614            BTI1.Max != getCouldNotCompute())
3615          MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3616      }
3617
3618      return BackedgeTakenInfo(BECount, MaxBECount);
3619    }
3620    if (BO->getOpcode() == Instruction::Or) {
3621      // Recurse on the operands of the or.
3622      BackedgeTakenInfo BTI0 =
3623        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3624      BackedgeTakenInfo BTI1 =
3625        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3626      const SCEV *BECount = getCouldNotCompute();
3627      const SCEV *MaxBECount = getCouldNotCompute();
3628      if (L->contains(FBB)) {
3629        // Both conditions must be false for the loop to continue executing.
3630        // Choose the less conservative count.
3631        if (BTI0.Exact == getCouldNotCompute() ||
3632            BTI1.Exact == getCouldNotCompute())
3633          BECount = getCouldNotCompute();
3634        else
3635          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3636        if (BTI0.Max == getCouldNotCompute())
3637          MaxBECount = BTI1.Max;
3638        else if (BTI1.Max == getCouldNotCompute())
3639          MaxBECount = BTI0.Max;
3640        else
3641          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3642      } else {
3643        // Both conditions must be false for the loop to exit.
3644        assert(L->contains(TBB) && "Loop block has no successor in loop!");
3645        if (BTI0.Exact != getCouldNotCompute() &&
3646            BTI1.Exact != getCouldNotCompute())
3647          BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3648        if (BTI0.Max != getCouldNotCompute() &&
3649            BTI1.Max != getCouldNotCompute())
3650          MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3651      }
3652
3653      return BackedgeTakenInfo(BECount, MaxBECount);
3654    }
3655  }
3656
3657  // With an icmp, it may be feasible to compute an exact backedge-taken count.
3658  // Procede to the next level to examine the icmp.
3659  if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3660    return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
3661
3662  // If it's not an integer or pointer comparison then compute it the hard way.
3663  return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3664}
3665
3666/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
3667/// backedge of the specified loop will execute if its exit condition
3668/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
3669ScalarEvolution::BackedgeTakenInfo
3670ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
3671                                                           ICmpInst *ExitCond,
3672                                                           BasicBlock *TBB,
3673                                                           BasicBlock *FBB) {
3674
3675  // If the condition was exit on true, convert the condition to exit on false
3676  ICmpInst::Predicate Cond;
3677  if (!L->contains(FBB))
3678    Cond = ExitCond->getPredicate();
3679  else
3680    Cond = ExitCond->getInversePredicate();
3681
3682  // Handle common loops like: for (X = "string"; *X; ++X)
3683  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
3684    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
3685      const SCEV *ItCnt =
3686        ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
3687      if (!isa<SCEVCouldNotCompute>(ItCnt)) {
3688        unsigned BitWidth = getTypeSizeInBits(ItCnt->getType());
3689        return BackedgeTakenInfo(ItCnt,
3690                                 isa<SCEVConstant>(ItCnt) ? ItCnt :
3691                                   getConstant(APInt::getMaxValue(BitWidth)-1));
3692      }
3693    }
3694
3695  const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
3696  const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
3697
3698  // Try to evaluate any dependencies out of the loop.
3699  LHS = getSCEVAtScope(LHS, L);
3700  RHS = getSCEVAtScope(RHS, L);
3701
3702  // At this point, we would like to compute how many iterations of the
3703  // loop the predicate will return true for these inputs.
3704  if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
3705    // If there is a loop-invariant, force it into the RHS.
3706    std::swap(LHS, RHS);
3707    Cond = ICmpInst::getSwappedPredicate(Cond);
3708  }
3709
3710  // If we have a comparison of a chrec against a constant, try to use value
3711  // ranges to answer this query.
3712  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
3713    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
3714      if (AddRec->getLoop() == L) {
3715        // Form the constant range.
3716        ConstantRange CompRange(
3717            ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
3718
3719        const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
3720        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
3721      }
3722
3723  switch (Cond) {
3724  case ICmpInst::ICMP_NE: {                     // while (X != Y)
3725    // Convert to: while (X-Y != 0)
3726    const SCEV *TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
3727    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
3728    break;
3729  }
3730  case ICmpInst::ICMP_EQ: {                     // while (X == Y)
3731    // Convert to: while (X-Y == 0)
3732    const SCEV *TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
3733    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
3734    break;
3735  }
3736  case ICmpInst::ICMP_SLT: {
3737    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
3738    if (BTI.hasAnyInfo()) return BTI;
3739    break;
3740  }
3741  case ICmpInst::ICMP_SGT: {
3742    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3743                                             getNotSCEV(RHS), L, true);
3744    if (BTI.hasAnyInfo()) return BTI;
3745    break;
3746  }
3747  case ICmpInst::ICMP_ULT: {
3748    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
3749    if (BTI.hasAnyInfo()) return BTI;
3750    break;
3751  }
3752  case ICmpInst::ICMP_UGT: {
3753    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3754                                             getNotSCEV(RHS), L, false);
3755    if (BTI.hasAnyInfo()) return BTI;
3756    break;
3757  }
3758  default:
3759#if 0
3760    dbgs() << "ComputeBackedgeTakenCount ";
3761    if (ExitCond->getOperand(0)->getType()->isUnsigned())
3762      dbgs() << "[unsigned] ";
3763    dbgs() << *LHS << "   "
3764         << Instruction::getOpcodeName(Instruction::ICmp)
3765         << "   " << *RHS << "\n";
3766#endif
3767    break;
3768  }
3769  return
3770    ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3771}
3772
3773static ConstantInt *
3774EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
3775                                ScalarEvolution &SE) {
3776  const SCEV *InVal = SE.getConstant(C);
3777  const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
3778  assert(isa<SCEVConstant>(Val) &&
3779         "Evaluation of SCEV at constant didn't fold correctly?");
3780  return cast<SCEVConstant>(Val)->getValue();
3781}
3782
3783/// GetAddressedElementFromGlobal - Given a global variable with an initializer
3784/// and a GEP expression (missing the pointer index) indexing into it, return
3785/// the addressed element of the initializer or null if the index expression is
3786/// invalid.
3787static Constant *
3788GetAddressedElementFromGlobal(GlobalVariable *GV,
3789                              const std::vector<ConstantInt*> &Indices) {
3790  Constant *Init = GV->getInitializer();
3791  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
3792    uint64_t Idx = Indices[i]->getZExtValue();
3793    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
3794      assert(Idx < CS->getNumOperands() && "Bad struct index!");
3795      Init = cast<Constant>(CS->getOperand(Idx));
3796    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
3797      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
3798      Init = cast<Constant>(CA->getOperand(Idx));
3799    } else if (isa<ConstantAggregateZero>(Init)) {
3800      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
3801        assert(Idx < STy->getNumElements() && "Bad struct index!");
3802        Init = Constant::getNullValue(STy->getElementType(Idx));
3803      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
3804        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
3805        Init = Constant::getNullValue(ATy->getElementType());
3806      } else {
3807        llvm_unreachable("Unknown constant aggregate type!");
3808      }
3809      return 0;
3810    } else {
3811      return 0; // Unknown initializer type
3812    }
3813  }
3814  return Init;
3815}
3816
3817/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
3818/// 'icmp op load X, cst', try to see if we can compute the backedge
3819/// execution count.
3820const SCEV *
3821ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
3822                                                LoadInst *LI,
3823                                                Constant *RHS,
3824                                                const Loop *L,
3825                                                ICmpInst::Predicate predicate) {
3826  if (LI->isVolatile()) return getCouldNotCompute();
3827
3828  // Check to see if the loaded pointer is a getelementptr of a global.
3829  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
3830  if (!GEP) return getCouldNotCompute();
3831
3832  // Make sure that it is really a constant global we are gepping, with an
3833  // initializer, and make sure the first IDX is really 0.
3834  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
3835  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
3836      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
3837      !cast<Constant>(GEP->getOperand(1))->isNullValue())
3838    return getCouldNotCompute();
3839
3840  // Okay, we allow one non-constant index into the GEP instruction.
3841  Value *VarIdx = 0;
3842  std::vector<ConstantInt*> Indexes;
3843  unsigned VarIdxNum = 0;
3844  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
3845    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
3846      Indexes.push_back(CI);
3847    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
3848      if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
3849      VarIdx = GEP->getOperand(i);
3850      VarIdxNum = i-2;
3851      Indexes.push_back(0);
3852    }
3853
3854  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
3855  // Check to see if X is a loop variant variable value now.
3856  const SCEV *Idx = getSCEV(VarIdx);
3857  Idx = getSCEVAtScope(Idx, L);
3858
3859  // We can only recognize very limited forms of loop index expressions, in
3860  // particular, only affine AddRec's like {C1,+,C2}.
3861  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
3862  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
3863      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
3864      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
3865    return getCouldNotCompute();
3866
3867  unsigned MaxSteps = MaxBruteForceIterations;
3868  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
3869    ConstantInt *ItCst = ConstantInt::get(
3870                           cast<IntegerType>(IdxExpr->getType()), IterationNum);
3871    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
3872
3873    // Form the GEP offset.
3874    Indexes[VarIdxNum] = Val;
3875
3876    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
3877    if (Result == 0) break;  // Cannot compute!
3878
3879    // Evaluate the condition for this iteration.
3880    Result = ConstantExpr::getICmp(predicate, Result, RHS);
3881    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
3882    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
3883#if 0
3884      dbgs() << "\n***\n*** Computed loop count " << *ItCst
3885             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
3886             << "***\n";
3887#endif
3888      ++NumArrayLenItCounts;
3889      return getConstant(ItCst);   // Found terminating iteration!
3890    }
3891  }
3892  return getCouldNotCompute();
3893}
3894
3895
3896/// CanConstantFold - Return true if we can constant fold an instruction of the
3897/// specified type, assuming that all operands were constants.
3898static bool CanConstantFold(const Instruction *I) {
3899  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
3900      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
3901    return true;
3902
3903  if (const CallInst *CI = dyn_cast<CallInst>(I))
3904    if (const Function *F = CI->getCalledFunction())
3905      return canConstantFoldCallTo(F);
3906  return false;
3907}
3908
3909/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
3910/// in the loop that V is derived from.  We allow arbitrary operations along the
3911/// way, but the operands of an operation must either be constants or a value
3912/// derived from a constant PHI.  If this expression does not fit with these
3913/// constraints, return null.
3914static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
3915  // If this is not an instruction, or if this is an instruction outside of the
3916  // loop, it can't be derived from a loop PHI.
3917  Instruction *I = dyn_cast<Instruction>(V);
3918  if (I == 0 || !L->contains(I)) return 0;
3919
3920  if (PHINode *PN = dyn_cast<PHINode>(I)) {
3921    if (L->getHeader() == I->getParent())
3922      return PN;
3923    else
3924      // We don't currently keep track of the control flow needed to evaluate
3925      // PHIs, so we cannot handle PHIs inside of loops.
3926      return 0;
3927  }
3928
3929  // If we won't be able to constant fold this expression even if the operands
3930  // are constants, return early.
3931  if (!CanConstantFold(I)) return 0;
3932
3933  // Otherwise, we can evaluate this instruction if all of its operands are
3934  // constant or derived from a PHI node themselves.
3935  PHINode *PHI = 0;
3936  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
3937    if (!(isa<Constant>(I->getOperand(Op)) ||
3938          isa<GlobalValue>(I->getOperand(Op)))) {
3939      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
3940      if (P == 0) return 0;  // Not evolving from PHI
3941      if (PHI == 0)
3942        PHI = P;
3943      else if (PHI != P)
3944        return 0;  // Evolving from multiple different PHIs.
3945    }
3946
3947  // This is a expression evolving from a constant PHI!
3948  return PHI;
3949}
3950
3951/// EvaluateExpression - Given an expression that passes the
3952/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
3953/// in the loop has the value PHIVal.  If we can't fold this expression for some
3954/// reason, return null.
3955static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
3956                                    const TargetData *TD) {
3957  if (isa<PHINode>(V)) return PHIVal;
3958  if (Constant *C = dyn_cast<Constant>(V)) return C;
3959  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
3960  Instruction *I = cast<Instruction>(V);
3961
3962  std::vector<Constant*> Operands;
3963  Operands.resize(I->getNumOperands());
3964
3965  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3966    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
3967    if (Operands[i] == 0) return 0;
3968  }
3969
3970  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
3971    return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
3972                                           Operands[1], TD);
3973  return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
3974                                  &Operands[0], Operands.size(), TD);
3975}
3976
3977/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
3978/// in the header of its containing loop, we know the loop executes a
3979/// constant number of times, and the PHI node is just a recurrence
3980/// involving constants, fold it.
3981Constant *
3982ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
3983                                                   const APInt &BEs,
3984                                                   const Loop *L) {
3985  std::map<PHINode*, Constant*>::iterator I =
3986    ConstantEvolutionLoopExitValue.find(PN);
3987  if (I != ConstantEvolutionLoopExitValue.end())
3988    return I->second;
3989
3990  if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
3991    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
3992
3993  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
3994
3995  // Since the loop is canonicalized, the PHI node must have two entries.  One
3996  // entry must be a constant (coming in from outside of the loop), and the
3997  // second must be derived from the same PHI.
3998  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
3999  Constant *StartCST =
4000    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4001  if (StartCST == 0)
4002    return RetVal = 0;  // Must be a constant.
4003
4004  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4005  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
4006  if (PN2 != PN)
4007    return RetVal = 0;  // Not derived from same PHI.
4008
4009  // Execute the loop symbolically to determine the exit value.
4010  if (BEs.getActiveBits() >= 32)
4011    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
4012
4013  unsigned NumIterations = BEs.getZExtValue(); // must be in range
4014  unsigned IterationNum = 0;
4015  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4016    if (IterationNum == NumIterations)
4017      return RetVal = PHIVal;  // Got exit value!
4018
4019    // Compute the value of the PHI node for the next iteration.
4020    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4021    if (NextPHI == PHIVal)
4022      return RetVal = NextPHI;  // Stopped evolving!
4023    if (NextPHI == 0)
4024      return 0;        // Couldn't evaluate!
4025    PHIVal = NextPHI;
4026  }
4027}
4028
4029/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
4030/// constant number of times (the condition evolves only from constants),
4031/// try to evaluate a few iterations of the loop until we get the exit
4032/// condition gets a value of ExitWhen (true or false).  If we cannot
4033/// evaluate the trip count of the loop, return getCouldNotCompute().
4034const SCEV *
4035ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4036                                                       Value *Cond,
4037                                                       bool ExitWhen) {
4038  PHINode *PN = getConstantEvolvingPHI(Cond, L);
4039  if (PN == 0) return getCouldNotCompute();
4040
4041  // Since the loop is canonicalized, the PHI node must have two entries.  One
4042  // entry must be a constant (coming in from outside of the loop), and the
4043  // second must be derived from the same PHI.
4044  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4045  Constant *StartCST =
4046    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4047  if (StartCST == 0) return getCouldNotCompute();  // Must be a constant.
4048
4049  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4050  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
4051  if (PN2 != PN) return getCouldNotCompute();  // Not derived from same PHI.
4052
4053  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
4054  // the loop symbolically to determine when the condition gets a value of
4055  // "ExitWhen".
4056  unsigned IterationNum = 0;
4057  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
4058  for (Constant *PHIVal = StartCST;
4059       IterationNum != MaxIterations; ++IterationNum) {
4060    ConstantInt *CondVal =
4061      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
4062
4063    // Couldn't symbolically evaluate.
4064    if (!CondVal) return getCouldNotCompute();
4065
4066    if (CondVal->getValue() == uint64_t(ExitWhen)) {
4067      ++NumBruteForceTripCountsComputed;
4068      return getConstant(Type::getInt32Ty(getContext()), IterationNum);
4069    }
4070
4071    // Compute the value of the PHI node for the next iteration.
4072    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4073    if (NextPHI == 0 || NextPHI == PHIVal)
4074      return getCouldNotCompute();// Couldn't evaluate or not making progress...
4075    PHIVal = NextPHI;
4076  }
4077
4078  // Too many iterations were needed to evaluate.
4079  return getCouldNotCompute();
4080}
4081
4082/// getSCEVAtScope - Return a SCEV expression for the specified value
4083/// at the specified scope in the program.  The L value specifies a loop
4084/// nest to evaluate the expression at, where null is the top-level or a
4085/// specified loop is immediately inside of the loop.
4086///
4087/// This method can be used to compute the exit value for a variable defined
4088/// in a loop by querying what the value will hold in the parent loop.
4089///
4090/// In the case that a relevant loop exit value cannot be computed, the
4091/// original value V is returned.
4092const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
4093  // Check to see if we've folded this expression at this loop before.
4094  std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4095  std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4096    Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4097  if (!Pair.second)
4098    return Pair.first->second ? Pair.first->second : V;
4099
4100  // Otherwise compute it.
4101  const SCEV *C = computeSCEVAtScope(V, L);
4102  ValuesAtScopes[V][L] = C;
4103  return C;
4104}
4105
4106const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
4107  if (isa<SCEVConstant>(V)) return V;
4108
4109  // If this instruction is evolved from a constant-evolving PHI, compute the
4110  // exit value from the loop without using SCEVs.
4111  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
4112    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
4113      const Loop *LI = (*this->LI)[I->getParent()];
4114      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
4115        if (PHINode *PN = dyn_cast<PHINode>(I))
4116          if (PN->getParent() == LI->getHeader()) {
4117            // Okay, there is no closed form solution for the PHI node.  Check
4118            // to see if the loop that contains it has a known backedge-taken
4119            // count.  If so, we may be able to force computation of the exit
4120            // value.
4121            const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
4122            if (const SCEVConstant *BTCC =
4123                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
4124              // Okay, we know how many times the containing loop executes.  If
4125              // this is a constant evolving PHI node, get the final value at
4126              // the specified iteration number.
4127              Constant *RV = getConstantEvolutionLoopExitValue(PN,
4128                                                   BTCC->getValue()->getValue(),
4129                                                               LI);
4130              if (RV) return getSCEV(RV);
4131            }
4132          }
4133
4134      // Okay, this is an expression that we cannot symbolically evaluate
4135      // into a SCEV.  Check to see if it's possible to symbolically evaluate
4136      // the arguments into constants, and if so, try to constant propagate the
4137      // result.  This is particularly useful for computing loop exit values.
4138      if (CanConstantFold(I)) {
4139        std::vector<Constant*> Operands;
4140        Operands.reserve(I->getNumOperands());
4141        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4142          Value *Op = I->getOperand(i);
4143          if (Constant *C = dyn_cast<Constant>(Op)) {
4144            Operands.push_back(C);
4145          } else {
4146            // If any of the operands is non-constant and if they are
4147            // non-integer and non-pointer, don't even try to analyze them
4148            // with scev techniques.
4149            if (!isSCEVable(Op->getType()))
4150              return V;
4151
4152            const SCEV *OpV = getSCEVAtScope(Op, L);
4153            if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
4154              Constant *C = SC->getValue();
4155              if (C->getType() != Op->getType())
4156                C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4157                                                                  Op->getType(),
4158                                                                  false),
4159                                          C, Op->getType());
4160              Operands.push_back(C);
4161            } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
4162              if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
4163                if (C->getType() != Op->getType())
4164                  C =
4165                    ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4166                                                                  Op->getType(),
4167                                                                  false),
4168                                          C, Op->getType());
4169                Operands.push_back(C);
4170              } else
4171                return V;
4172            } else {
4173              return V;
4174            }
4175          }
4176        }
4177
4178        Constant *C;
4179        if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4180          C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4181                                              Operands[0], Operands[1], TD);
4182        else
4183          C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4184                                       &Operands[0], Operands.size(), TD);
4185        return getSCEV(C);
4186      }
4187    }
4188
4189    // This is some other type of SCEVUnknown, just return it.
4190    return V;
4191  }
4192
4193  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
4194    // Avoid performing the look-up in the common case where the specified
4195    // expression has no loop-variant portions.
4196    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
4197      const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4198      if (OpAtScope != Comm->getOperand(i)) {
4199        // Okay, at least one of these operands is loop variant but might be
4200        // foldable.  Build a new instance of the folded commutative expression.
4201        SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4202                                            Comm->op_begin()+i);
4203        NewOps.push_back(OpAtScope);
4204
4205        for (++i; i != e; ++i) {
4206          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4207          NewOps.push_back(OpAtScope);
4208        }
4209        if (isa<SCEVAddExpr>(Comm))
4210          return getAddExpr(NewOps);
4211        if (isa<SCEVMulExpr>(Comm))
4212          return getMulExpr(NewOps);
4213        if (isa<SCEVSMaxExpr>(Comm))
4214          return getSMaxExpr(NewOps);
4215        if (isa<SCEVUMaxExpr>(Comm))
4216          return getUMaxExpr(NewOps);
4217        llvm_unreachable("Unknown commutative SCEV type!");
4218      }
4219    }
4220    // If we got here, all operands are loop invariant.
4221    return Comm;
4222  }
4223
4224  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
4225    const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4226    const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
4227    if (LHS == Div->getLHS() && RHS == Div->getRHS())
4228      return Div;   // must be loop invariant
4229    return getUDivExpr(LHS, RHS);
4230  }
4231
4232  // If this is a loop recurrence for a loop that does not contain L, then we
4233  // are dealing with the final value computed by the loop.
4234  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4235    if (!L || !AddRec->getLoop()->contains(L)) {
4236      // To evaluate this recurrence, we need to know how many times the AddRec
4237      // loop iterates.  Compute this now.
4238      const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
4239      if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
4240
4241      // Then, evaluate the AddRec.
4242      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
4243    }
4244    return AddRec;
4245  }
4246
4247  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
4248    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4249    if (Op == Cast->getOperand())
4250      return Cast;  // must be loop invariant
4251    return getZeroExtendExpr(Op, Cast->getType());
4252  }
4253
4254  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
4255    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4256    if (Op == Cast->getOperand())
4257      return Cast;  // must be loop invariant
4258    return getSignExtendExpr(Op, Cast->getType());
4259  }
4260
4261  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
4262    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4263    if (Op == Cast->getOperand())
4264      return Cast;  // must be loop invariant
4265    return getTruncateExpr(Op, Cast->getType());
4266  }
4267
4268  llvm_unreachable("Unknown SCEV type!");
4269  return 0;
4270}
4271
4272/// getSCEVAtScope - This is a convenience function which does
4273/// getSCEVAtScope(getSCEV(V), L).
4274const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
4275  return getSCEVAtScope(getSCEV(V), L);
4276}
4277
4278/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4279/// following equation:
4280///
4281///     A * X = B (mod N)
4282///
4283/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4284/// A and B isn't important.
4285///
4286/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
4287static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
4288                                               ScalarEvolution &SE) {
4289  uint32_t BW = A.getBitWidth();
4290  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4291  assert(A != 0 && "A must be non-zero.");
4292
4293  // 1. D = gcd(A, N)
4294  //
4295  // The gcd of A and N may have only one prime factor: 2. The number of
4296  // trailing zeros in A is its multiplicity
4297  uint32_t Mult2 = A.countTrailingZeros();
4298  // D = 2^Mult2
4299
4300  // 2. Check if B is divisible by D.
4301  //
4302  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4303  // is not less than multiplicity of this prime factor for D.
4304  if (B.countTrailingZeros() < Mult2)
4305    return SE.getCouldNotCompute();
4306
4307  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4308  // modulo (N / D).
4309  //
4310  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
4311  // bit width during computations.
4312  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
4313  APInt Mod(BW + 1, 0);
4314  Mod.set(BW - Mult2);  // Mod = N / D
4315  APInt I = AD.multiplicativeInverse(Mod);
4316
4317  // 4. Compute the minimum unsigned root of the equation:
4318  // I * (B / D) mod (N / D)
4319  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4320
4321  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4322  // bits.
4323  return SE.getConstant(Result.trunc(BW));
4324}
4325
4326/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4327/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
4328/// might be the same) or two SCEVCouldNotCompute objects.
4329///
4330static std::pair<const SCEV *,const SCEV *>
4331SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
4332  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
4333  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4334  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4335  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
4336
4337  // We currently can only solve this if the coefficients are constants.
4338  if (!LC || !MC || !NC) {
4339    const SCEV *CNC = SE.getCouldNotCompute();
4340    return std::make_pair(CNC, CNC);
4341  }
4342
4343  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
4344  const APInt &L = LC->getValue()->getValue();
4345  const APInt &M = MC->getValue()->getValue();
4346  const APInt &N = NC->getValue()->getValue();
4347  APInt Two(BitWidth, 2);
4348  APInt Four(BitWidth, 4);
4349
4350  {
4351    using namespace APIntOps;
4352    const APInt& C = L;
4353    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4354    // The B coefficient is M-N/2
4355    APInt B(M);
4356    B -= sdiv(N,Two);
4357
4358    // The A coefficient is N/2
4359    APInt A(N.sdiv(Two));
4360
4361    // Compute the B^2-4ac term.
4362    APInt SqrtTerm(B);
4363    SqrtTerm *= B;
4364    SqrtTerm -= Four * (A * C);
4365
4366    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4367    // integer value or else APInt::sqrt() will assert.
4368    APInt SqrtVal(SqrtTerm.sqrt());
4369
4370    // Compute the two solutions for the quadratic formula.
4371    // The divisions must be performed as signed divisions.
4372    APInt NegB(-B);
4373    APInt TwoA( A << 1 );
4374    if (TwoA.isMinValue()) {
4375      const SCEV *CNC = SE.getCouldNotCompute();
4376      return std::make_pair(CNC, CNC);
4377    }
4378
4379    LLVMContext &Context = SE.getContext();
4380
4381    ConstantInt *Solution1 =
4382      ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
4383    ConstantInt *Solution2 =
4384      ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
4385
4386    return std::make_pair(SE.getConstant(Solution1),
4387                          SE.getConstant(Solution2));
4388    } // end APIntOps namespace
4389}
4390
4391/// HowFarToZero - Return the number of times a backedge comparing the specified
4392/// value to zero will execute.  If not computable, return CouldNotCompute.
4393const SCEV *ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
4394  // If the value is a constant
4395  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4396    // If the value is already zero, the branch will execute zero times.
4397    if (C->getValue()->isZero()) return C;
4398    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4399  }
4400
4401  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
4402  if (!AddRec || AddRec->getLoop() != L)
4403    return getCouldNotCompute();
4404
4405  if (AddRec->isAffine()) {
4406    // If this is an affine expression, the execution count of this branch is
4407    // the minimum unsigned root of the following equation:
4408    //
4409    //     Start + Step*N = 0 (mod 2^BW)
4410    //
4411    // equivalent to:
4412    //
4413    //             Step*N = -Start (mod 2^BW)
4414    //
4415    // where BW is the common bit width of Start and Step.
4416
4417    // Get the initial value for the loop.
4418    const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4419                                       L->getParentLoop());
4420    const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4421                                      L->getParentLoop());
4422
4423    if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
4424      // For now we handle only constant steps.
4425
4426      // First, handle unitary steps.
4427      if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so:
4428        return getNegativeSCEV(Start);          //   N = -Start (as unsigned)
4429      if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so:
4430        return Start;                           //    N = Start (as unsigned)
4431
4432      // Then, try to solve the above equation provided that Start is constant.
4433      if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
4434        return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
4435                                            -StartC->getValue()->getValue(),
4436                                            *this);
4437    }
4438  } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
4439    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4440    // the quadratic equation to solve it.
4441    std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
4442                                                                    *this);
4443    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4444    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
4445    if (R1) {
4446#if 0
4447      dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
4448             << "  sol#2: " << *R2 << "\n";
4449#endif
4450      // Pick the smallest positive root value.
4451      if (ConstantInt *CB =
4452          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
4453                                   R1->getValue(), R2->getValue()))) {
4454        if (CB->getZExtValue() == false)
4455          std::swap(R1, R2);   // R1 is the minimum root now.
4456
4457        // We can only use this value if the chrec ends up with an exact zero
4458        // value at this index.  When solving for "X*X != 5", for example, we
4459        // should not accept a root of 2.
4460        const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
4461        if (Val->isZero())
4462          return R1;  // We found a quadratic root!
4463      }
4464    }
4465  }
4466
4467  return getCouldNotCompute();
4468}
4469
4470/// HowFarToNonZero - Return the number of times a backedge checking the
4471/// specified value for nonzero will execute.  If not computable, return
4472/// CouldNotCompute
4473const SCEV *ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
4474  // Loops that look like: while (X == 0) are very strange indeed.  We don't
4475  // handle them yet except for the trivial case.  This could be expanded in the
4476  // future as needed.
4477
4478  // If the value is a constant, check to see if it is known to be non-zero
4479  // already.  If so, the backedge will execute zero times.
4480  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4481    if (!C->getValue()->isNullValue())
4482      return getIntegerSCEV(0, C->getType());
4483    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4484  }
4485
4486  // We could implement others, but I really doubt anyone writes loops like
4487  // this, and if they did, they would already be constant folded.
4488  return getCouldNotCompute();
4489}
4490
4491/// getLoopPredecessor - If the given loop's header has exactly one unique
4492/// predecessor outside the loop, return it. Otherwise return null.
4493///
4494BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
4495  BasicBlock *Header = L->getHeader();
4496  BasicBlock *Pred = 0;
4497  for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
4498       PI != E; ++PI)
4499    if (!L->contains(*PI)) {
4500      if (Pred && Pred != *PI) return 0; // Multiple predecessors.
4501      Pred = *PI;
4502    }
4503  return Pred;
4504}
4505
4506/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4507/// (which may not be an immediate predecessor) which has exactly one
4508/// successor from which BB is reachable, or null if no such block is
4509/// found.
4510///
4511BasicBlock *
4512ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
4513  // If the block has a unique predecessor, then there is no path from the
4514  // predecessor to the block that does not go through the direct edge
4515  // from the predecessor to the block.
4516  if (BasicBlock *Pred = BB->getSinglePredecessor())
4517    return Pred;
4518
4519  // A loop's header is defined to be a block that dominates the loop.
4520  // If the header has a unique predecessor outside the loop, it must be
4521  // a block that has exactly one successor that can reach the loop.
4522  if (Loop *L = LI->getLoopFor(BB))
4523    return getLoopPredecessor(L);
4524
4525  return 0;
4526}
4527
4528/// HasSameValue - SCEV structural equivalence is usually sufficient for
4529/// testing whether two expressions are equal, however for the purposes of
4530/// looking for a condition guarding a loop, it can be useful to be a little
4531/// more general, since a front-end may have replicated the controlling
4532/// expression.
4533///
4534static bool HasSameValue(const SCEV *A, const SCEV *B) {
4535  // Quick check to see if they are the same SCEV.
4536  if (A == B) return true;
4537
4538  // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4539  // two different instructions with the same value. Check for this case.
4540  if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4541    if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4542      if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4543        if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
4544          if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
4545            return true;
4546
4547  // Otherwise assume they may have a different value.
4548  return false;
4549}
4550
4551bool ScalarEvolution::isKnownNegative(const SCEV *S) {
4552  return getSignedRange(S).getSignedMax().isNegative();
4553}
4554
4555bool ScalarEvolution::isKnownPositive(const SCEV *S) {
4556  return getSignedRange(S).getSignedMin().isStrictlyPositive();
4557}
4558
4559bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
4560  return !getSignedRange(S).getSignedMin().isNegative();
4561}
4562
4563bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
4564  return !getSignedRange(S).getSignedMax().isStrictlyPositive();
4565}
4566
4567bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
4568  return isKnownNegative(S) || isKnownPositive(S);
4569}
4570
4571bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
4572                                       const SCEV *LHS, const SCEV *RHS) {
4573
4574  if (HasSameValue(LHS, RHS))
4575    return ICmpInst::isTrueWhenEqual(Pred);
4576
4577  switch (Pred) {
4578  default:
4579    llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4580    break;
4581  case ICmpInst::ICMP_SGT:
4582    Pred = ICmpInst::ICMP_SLT;
4583    std::swap(LHS, RHS);
4584  case ICmpInst::ICMP_SLT: {
4585    ConstantRange LHSRange = getSignedRange(LHS);
4586    ConstantRange RHSRange = getSignedRange(RHS);
4587    if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
4588      return true;
4589    if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
4590      return false;
4591    break;
4592  }
4593  case ICmpInst::ICMP_SGE:
4594    Pred = ICmpInst::ICMP_SLE;
4595    std::swap(LHS, RHS);
4596  case ICmpInst::ICMP_SLE: {
4597    ConstantRange LHSRange = getSignedRange(LHS);
4598    ConstantRange RHSRange = getSignedRange(RHS);
4599    if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
4600      return true;
4601    if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
4602      return false;
4603    break;
4604  }
4605  case ICmpInst::ICMP_UGT:
4606    Pred = ICmpInst::ICMP_ULT;
4607    std::swap(LHS, RHS);
4608  case ICmpInst::ICMP_ULT: {
4609    ConstantRange LHSRange = getUnsignedRange(LHS);
4610    ConstantRange RHSRange = getUnsignedRange(RHS);
4611    if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
4612      return true;
4613    if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
4614      return false;
4615    break;
4616  }
4617  case ICmpInst::ICMP_UGE:
4618    Pred = ICmpInst::ICMP_ULE;
4619    std::swap(LHS, RHS);
4620  case ICmpInst::ICMP_ULE: {
4621    ConstantRange LHSRange = getUnsignedRange(LHS);
4622    ConstantRange RHSRange = getUnsignedRange(RHS);
4623    if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
4624      return true;
4625    if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
4626      return false;
4627    break;
4628  }
4629  case ICmpInst::ICMP_NE: {
4630    if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
4631      return true;
4632    if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
4633      return true;
4634
4635    const SCEV *Diff = getMinusSCEV(LHS, RHS);
4636    if (isKnownNonZero(Diff))
4637      return true;
4638    break;
4639  }
4640  case ICmpInst::ICMP_EQ:
4641    // The check at the top of the function catches the case where
4642    // the values are known to be equal.
4643    break;
4644  }
4645  return false;
4646}
4647
4648/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
4649/// protected by a conditional between LHS and RHS.  This is used to
4650/// to eliminate casts.
4651bool
4652ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
4653                                             ICmpInst::Predicate Pred,
4654                                             const SCEV *LHS, const SCEV *RHS) {
4655  // Interpret a null as meaning no loop, where there is obviously no guard
4656  // (interprocedural conditions notwithstanding).
4657  if (!L) return true;
4658
4659  BasicBlock *Latch = L->getLoopLatch();
4660  if (!Latch)
4661    return false;
4662
4663  BranchInst *LoopContinuePredicate =
4664    dyn_cast<BranchInst>(Latch->getTerminator());
4665  if (!LoopContinuePredicate ||
4666      LoopContinuePredicate->isUnconditional())
4667    return false;
4668
4669  return isImpliedCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS,
4670                       LoopContinuePredicate->getSuccessor(0) != L->getHeader());
4671}
4672
4673/// isLoopGuardedByCond - Test whether entry to the loop is protected
4674/// by a conditional between LHS and RHS.  This is used to help avoid max
4675/// expressions in loop trip counts, and to eliminate casts.
4676bool
4677ScalarEvolution::isLoopGuardedByCond(const Loop *L,
4678                                     ICmpInst::Predicate Pred,
4679                                     const SCEV *LHS, const SCEV *RHS) {
4680  // Interpret a null as meaning no loop, where there is obviously no guard
4681  // (interprocedural conditions notwithstanding).
4682  if (!L) return false;
4683
4684  BasicBlock *Predecessor = getLoopPredecessor(L);
4685  BasicBlock *PredecessorDest = L->getHeader();
4686
4687  // Starting at the loop predecessor, climb up the predecessor chain, as long
4688  // as there are predecessors that can be found that have unique successors
4689  // leading to the original header.
4690  for (; Predecessor;
4691       PredecessorDest = Predecessor,
4692       Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) {
4693
4694    BranchInst *LoopEntryPredicate =
4695      dyn_cast<BranchInst>(Predecessor->getTerminator());
4696    if (!LoopEntryPredicate ||
4697        LoopEntryPredicate->isUnconditional())
4698      continue;
4699
4700    if (isImpliedCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS,
4701                      LoopEntryPredicate->getSuccessor(0) != PredecessorDest))
4702      return true;
4703  }
4704
4705  return false;
4706}
4707
4708/// isImpliedCond - Test whether the condition described by Pred, LHS,
4709/// and RHS is true whenever the given Cond value evaluates to true.
4710bool ScalarEvolution::isImpliedCond(Value *CondValue,
4711                                    ICmpInst::Predicate Pred,
4712                                    const SCEV *LHS, const SCEV *RHS,
4713                                    bool Inverse) {
4714  // Recursivly handle And and Or conditions.
4715  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) {
4716    if (BO->getOpcode() == Instruction::And) {
4717      if (!Inverse)
4718        return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
4719               isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
4720    } else if (BO->getOpcode() == Instruction::Or) {
4721      if (Inverse)
4722        return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
4723               isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
4724    }
4725  }
4726
4727  ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue);
4728  if (!ICI) return false;
4729
4730  // Bail if the ICmp's operands' types are wider than the needed type
4731  // before attempting to call getSCEV on them. This avoids infinite
4732  // recursion, since the analysis of widening casts can require loop
4733  // exit condition information for overflow checking, which would
4734  // lead back here.
4735  if (getTypeSizeInBits(LHS->getType()) <
4736      getTypeSizeInBits(ICI->getOperand(0)->getType()))
4737    return false;
4738
4739  // Now that we found a conditional branch that dominates the loop, check to
4740  // see if it is the comparison we are looking for.
4741  ICmpInst::Predicate FoundPred;
4742  if (Inverse)
4743    FoundPred = ICI->getInversePredicate();
4744  else
4745    FoundPred = ICI->getPredicate();
4746
4747  const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
4748  const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
4749
4750  // Balance the types. The case where FoundLHS' type is wider than
4751  // LHS' type is checked for above.
4752  if (getTypeSizeInBits(LHS->getType()) >
4753      getTypeSizeInBits(FoundLHS->getType())) {
4754    if (CmpInst::isSigned(Pred)) {
4755      FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
4756      FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
4757    } else {
4758      FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
4759      FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
4760    }
4761  }
4762
4763  // Canonicalize the query to match the way instcombine will have
4764  // canonicalized the comparison.
4765  // First, put a constant operand on the right.
4766  if (isa<SCEVConstant>(LHS)) {
4767    std::swap(LHS, RHS);
4768    Pred = ICmpInst::getSwappedPredicate(Pred);
4769  }
4770  // Then, canonicalize comparisons with boundary cases.
4771  if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4772    const APInt &RA = RC->getValue()->getValue();
4773    switch (Pred) {
4774    default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4775    case ICmpInst::ICMP_EQ:
4776    case ICmpInst::ICMP_NE:
4777      break;
4778    case ICmpInst::ICMP_UGE:
4779      if ((RA - 1).isMinValue()) {
4780        Pred = ICmpInst::ICMP_NE;
4781        RHS = getConstant(RA - 1);
4782        break;
4783      }
4784      if (RA.isMaxValue()) {
4785        Pred = ICmpInst::ICMP_EQ;
4786        break;
4787      }
4788      if (RA.isMinValue()) return true;
4789      break;
4790    case ICmpInst::ICMP_ULE:
4791      if ((RA + 1).isMaxValue()) {
4792        Pred = ICmpInst::ICMP_NE;
4793        RHS = getConstant(RA + 1);
4794        break;
4795      }
4796      if (RA.isMinValue()) {
4797        Pred = ICmpInst::ICMP_EQ;
4798        break;
4799      }
4800      if (RA.isMaxValue()) return true;
4801      break;
4802    case ICmpInst::ICMP_SGE:
4803      if ((RA - 1).isMinSignedValue()) {
4804        Pred = ICmpInst::ICMP_NE;
4805        RHS = getConstant(RA - 1);
4806        break;
4807      }
4808      if (RA.isMaxSignedValue()) {
4809        Pred = ICmpInst::ICMP_EQ;
4810        break;
4811      }
4812      if (RA.isMinSignedValue()) return true;
4813      break;
4814    case ICmpInst::ICMP_SLE:
4815      if ((RA + 1).isMaxSignedValue()) {
4816        Pred = ICmpInst::ICMP_NE;
4817        RHS = getConstant(RA + 1);
4818        break;
4819      }
4820      if (RA.isMinSignedValue()) {
4821        Pred = ICmpInst::ICMP_EQ;
4822        break;
4823      }
4824      if (RA.isMaxSignedValue()) return true;
4825      break;
4826    case ICmpInst::ICMP_UGT:
4827      if (RA.isMinValue()) {
4828        Pred = ICmpInst::ICMP_NE;
4829        break;
4830      }
4831      if ((RA + 1).isMaxValue()) {
4832        Pred = ICmpInst::ICMP_EQ;
4833        RHS = getConstant(RA + 1);
4834        break;
4835      }
4836      if (RA.isMaxValue()) return false;
4837      break;
4838    case ICmpInst::ICMP_ULT:
4839      if (RA.isMaxValue()) {
4840        Pred = ICmpInst::ICMP_NE;
4841        break;
4842      }
4843      if ((RA - 1).isMinValue()) {
4844        Pred = ICmpInst::ICMP_EQ;
4845        RHS = getConstant(RA - 1);
4846        break;
4847      }
4848      if (RA.isMinValue()) return false;
4849      break;
4850    case ICmpInst::ICMP_SGT:
4851      if (RA.isMinSignedValue()) {
4852        Pred = ICmpInst::ICMP_NE;
4853        break;
4854      }
4855      if ((RA + 1).isMaxSignedValue()) {
4856        Pred = ICmpInst::ICMP_EQ;
4857        RHS = getConstant(RA + 1);
4858        break;
4859      }
4860      if (RA.isMaxSignedValue()) return false;
4861      break;
4862    case ICmpInst::ICMP_SLT:
4863      if (RA.isMaxSignedValue()) {
4864        Pred = ICmpInst::ICMP_NE;
4865        break;
4866      }
4867      if ((RA - 1).isMinSignedValue()) {
4868       Pred = ICmpInst::ICMP_EQ;
4869       RHS = getConstant(RA - 1);
4870       break;
4871      }
4872      if (RA.isMinSignedValue()) return false;
4873      break;
4874    }
4875  }
4876
4877  // Check to see if we can make the LHS or RHS match.
4878  if (LHS == FoundRHS || RHS == FoundLHS) {
4879    if (isa<SCEVConstant>(RHS)) {
4880      std::swap(FoundLHS, FoundRHS);
4881      FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
4882    } else {
4883      std::swap(LHS, RHS);
4884      Pred = ICmpInst::getSwappedPredicate(Pred);
4885    }
4886  }
4887
4888  // Check whether the found predicate is the same as the desired predicate.
4889  if (FoundPred == Pred)
4890    return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
4891
4892  // Check whether swapping the found predicate makes it the same as the
4893  // desired predicate.
4894  if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
4895    if (isa<SCEVConstant>(RHS))
4896      return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
4897    else
4898      return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
4899                                   RHS, LHS, FoundLHS, FoundRHS);
4900  }
4901
4902  // Check whether the actual condition is beyond sufficient.
4903  if (FoundPred == ICmpInst::ICMP_EQ)
4904    if (ICmpInst::isTrueWhenEqual(Pred))
4905      if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
4906        return true;
4907  if (Pred == ICmpInst::ICMP_NE)
4908    if (!ICmpInst::isTrueWhenEqual(FoundPred))
4909      if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
4910        return true;
4911
4912  // Otherwise assume the worst.
4913  return false;
4914}
4915
4916/// isImpliedCondOperands - Test whether the condition described by Pred,
4917/// LHS, and RHS is true whenever the condition desribed by Pred, FoundLHS,
4918/// and FoundRHS is true.
4919bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
4920                                            const SCEV *LHS, const SCEV *RHS,
4921                                            const SCEV *FoundLHS,
4922                                            const SCEV *FoundRHS) {
4923  return isImpliedCondOperandsHelper(Pred, LHS, RHS,
4924                                     FoundLHS, FoundRHS) ||
4925         // ~x < ~y --> x > y
4926         isImpliedCondOperandsHelper(Pred, LHS, RHS,
4927                                     getNotSCEV(FoundRHS),
4928                                     getNotSCEV(FoundLHS));
4929}
4930
4931/// isImpliedCondOperandsHelper - Test whether the condition described by
4932/// Pred, LHS, and RHS is true whenever the condition desribed by Pred,
4933/// FoundLHS, and FoundRHS is true.
4934bool
4935ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
4936                                             const SCEV *LHS, const SCEV *RHS,
4937                                             const SCEV *FoundLHS,
4938                                             const SCEV *FoundRHS) {
4939  switch (Pred) {
4940  default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4941  case ICmpInst::ICMP_EQ:
4942  case ICmpInst::ICMP_NE:
4943    if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
4944      return true;
4945    break;
4946  case ICmpInst::ICMP_SLT:
4947  case ICmpInst::ICMP_SLE:
4948    if (isKnownPredicate(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
4949        isKnownPredicate(ICmpInst::ICMP_SGE, RHS, FoundRHS))
4950      return true;
4951    break;
4952  case ICmpInst::ICMP_SGT:
4953  case ICmpInst::ICMP_SGE:
4954    if (isKnownPredicate(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
4955        isKnownPredicate(ICmpInst::ICMP_SLE, RHS, FoundRHS))
4956      return true;
4957    break;
4958  case ICmpInst::ICMP_ULT:
4959  case ICmpInst::ICMP_ULE:
4960    if (isKnownPredicate(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
4961        isKnownPredicate(ICmpInst::ICMP_UGE, RHS, FoundRHS))
4962      return true;
4963    break;
4964  case ICmpInst::ICMP_UGT:
4965  case ICmpInst::ICMP_UGE:
4966    if (isKnownPredicate(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
4967        isKnownPredicate(ICmpInst::ICMP_ULE, RHS, FoundRHS))
4968      return true;
4969    break;
4970  }
4971
4972  return false;
4973}
4974
4975/// getBECount - Subtract the end and start values and divide by the step,
4976/// rounding up, to get the number of times the backedge is executed. Return
4977/// CouldNotCompute if an intermediate computation overflows.
4978const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
4979                                        const SCEV *End,
4980                                        const SCEV *Step,
4981                                        bool NoWrap) {
4982  assert(!isKnownNegative(Step) &&
4983         "This code doesn't handle negative strides yet!");
4984
4985  const Type *Ty = Start->getType();
4986  const SCEV *NegOne = getIntegerSCEV(-1, Ty);
4987  const SCEV *Diff = getMinusSCEV(End, Start);
4988  const SCEV *RoundUp = getAddExpr(Step, NegOne);
4989
4990  // Add an adjustment to the difference between End and Start so that
4991  // the division will effectively round up.
4992  const SCEV *Add = getAddExpr(Diff, RoundUp);
4993
4994  if (!NoWrap) {
4995    // Check Add for unsigned overflow.
4996    // TODO: More sophisticated things could be done here.
4997    const Type *WideTy = IntegerType::get(getContext(),
4998                                          getTypeSizeInBits(Ty) + 1);
4999    const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5000    const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5001    const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5002    if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5003      return getCouldNotCompute();
5004  }
5005
5006  return getUDivExpr(Add, Step);
5007}
5008
5009/// HowManyLessThans - Return the number of times a backedge containing the
5010/// specified less-than comparison will execute.  If not computable, return
5011/// CouldNotCompute.
5012ScalarEvolution::BackedgeTakenInfo
5013ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5014                                  const Loop *L, bool isSigned) {
5015  // Only handle:  "ADDREC < LoopInvariant".
5016  if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
5017
5018  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
5019  if (!AddRec || AddRec->getLoop() != L)
5020    return getCouldNotCompute();
5021
5022  // Check to see if we have a flag which makes analysis easy.
5023  bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5024                           AddRec->hasNoUnsignedWrap();
5025
5026  if (AddRec->isAffine()) {
5027    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
5028    const SCEV *Step = AddRec->getStepRecurrence(*this);
5029
5030    if (Step->isZero())
5031      return getCouldNotCompute();
5032    if (Step->isOne()) {
5033      // With unit stride, the iteration never steps past the limit value.
5034    } else if (isKnownPositive(Step)) {
5035      // Test whether a positive iteration iteration can step past the limit
5036      // value and past the maximum value for its type in a single step.
5037      // Note that it's not sufficient to check NoWrap here, because even
5038      // though the value after a wrap is undefined, it's not undefined
5039      // behavior, so if wrap does occur, the loop could either terminate or
5040      // loop infinitely, but in either case, the loop is guaranteed to
5041      // iterate at least until the iteration where the wrapping occurs.
5042      const SCEV *One = getIntegerSCEV(1, Step->getType());
5043      if (isSigned) {
5044        APInt Max = APInt::getSignedMaxValue(BitWidth);
5045        if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5046              .slt(getSignedRange(RHS).getSignedMax()))
5047          return getCouldNotCompute();
5048      } else {
5049        APInt Max = APInt::getMaxValue(BitWidth);
5050        if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5051              .ult(getUnsignedRange(RHS).getUnsignedMax()))
5052          return getCouldNotCompute();
5053      }
5054    } else
5055      // TODO: Handle negative strides here and below.
5056      return getCouldNotCompute();
5057
5058    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5059    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
5060    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
5061    // treat m-n as signed nor unsigned due to overflow possibility.
5062
5063    // First, we get the value of the LHS in the first iteration: n
5064    const SCEV *Start = AddRec->getOperand(0);
5065
5066    // Determine the minimum constant start value.
5067    const SCEV *MinStart = getConstant(isSigned ?
5068      getSignedRange(Start).getSignedMin() :
5069      getUnsignedRange(Start).getUnsignedMin());
5070
5071    // If we know that the condition is true in order to enter the loop,
5072    // then we know that it will run exactly (m-n)/s times. Otherwise, we
5073    // only know that it will execute (max(m,n)-n)/s times. In both cases,
5074    // the division must round up.
5075    const SCEV *End = RHS;
5076    if (!isLoopGuardedByCond(L,
5077                             isSigned ? ICmpInst::ICMP_SLT :
5078                                        ICmpInst::ICMP_ULT,
5079                             getMinusSCEV(Start, Step), RHS))
5080      End = isSigned ? getSMaxExpr(RHS, Start)
5081                     : getUMaxExpr(RHS, Start);
5082
5083    // Determine the maximum constant end value.
5084    const SCEV *MaxEnd = getConstant(isSigned ?
5085      getSignedRange(End).getSignedMax() :
5086      getUnsignedRange(End).getUnsignedMax());
5087
5088    // If MaxEnd is within a step of the maximum integer value in its type,
5089    // adjust it down to the minimum value which would produce the same effect.
5090    // This allows the subsequent ceiling divison of (N+(step-1))/step to
5091    // compute the correct value.
5092    const SCEV *StepMinusOne = getMinusSCEV(Step,
5093                                            getIntegerSCEV(1, Step->getType()));
5094    MaxEnd = isSigned ?
5095      getSMinExpr(MaxEnd,
5096                  getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5097                               StepMinusOne)) :
5098      getUMinExpr(MaxEnd,
5099                  getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5100                               StepMinusOne));
5101
5102    // Finally, we subtract these two values and divide, rounding up, to get
5103    // the number of times the backedge is executed.
5104    const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
5105
5106    // The maximum backedge count is similar, except using the minimum start
5107    // value and the maximum end value.
5108    const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
5109
5110    return BackedgeTakenInfo(BECount, MaxBECount);
5111  }
5112
5113  return getCouldNotCompute();
5114}
5115
5116/// getNumIterationsInRange - Return the number of iterations of this loop that
5117/// produce values in the specified constant range.  Another way of looking at
5118/// this is that it returns the first iteration number where the value is not in
5119/// the condition, thus computing the exit count. If the iteration count can't
5120/// be computed, an instance of SCEVCouldNotCompute is returned.
5121const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
5122                                                    ScalarEvolution &SE) const {
5123  if (Range.isFullSet())  // Infinite loop.
5124    return SE.getCouldNotCompute();
5125
5126  // If the start is a non-zero constant, shift the range to simplify things.
5127  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
5128    if (!SC->getValue()->isZero()) {
5129      SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
5130      Operands[0] = SE.getIntegerSCEV(0, SC->getType());
5131      const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
5132      if (const SCEVAddRecExpr *ShiftedAddRec =
5133            dyn_cast<SCEVAddRecExpr>(Shifted))
5134        return ShiftedAddRec->getNumIterationsInRange(
5135                           Range.subtract(SC->getValue()->getValue()), SE);
5136      // This is strange and shouldn't happen.
5137      return SE.getCouldNotCompute();
5138    }
5139
5140  // The only time we can solve this is when we have all constant indices.
5141  // Otherwise, we cannot determine the overflow conditions.
5142  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5143    if (!isa<SCEVConstant>(getOperand(i)))
5144      return SE.getCouldNotCompute();
5145
5146
5147  // Okay at this point we know that all elements of the chrec are constants and
5148  // that the start element is zero.
5149
5150  // First check to see if the range contains zero.  If not, the first
5151  // iteration exits.
5152  unsigned BitWidth = SE.getTypeSizeInBits(getType());
5153  if (!Range.contains(APInt(BitWidth, 0)))
5154    return SE.getIntegerSCEV(0, getType());
5155
5156  if (isAffine()) {
5157    // If this is an affine expression then we have this situation:
5158    //   Solve {0,+,A} in Range  ===  Ax in Range
5159
5160    // We know that zero is in the range.  If A is positive then we know that
5161    // the upper value of the range must be the first possible exit value.
5162    // If A is negative then the lower of the range is the last possible loop
5163    // value.  Also note that we already checked for a full range.
5164    APInt One(BitWidth,1);
5165    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5166    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
5167
5168    // The exit value should be (End+A)/A.
5169    APInt ExitVal = (End + A).udiv(A);
5170    ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
5171
5172    // Evaluate at the exit value.  If we really did fall out of the valid
5173    // range, then we computed our trip count, otherwise wrap around or other
5174    // things must have happened.
5175    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
5176    if (Range.contains(Val->getValue()))
5177      return SE.getCouldNotCompute();  // Something strange happened
5178
5179    // Ensure that the previous value is in the range.  This is a sanity check.
5180    assert(Range.contains(
5181           EvaluateConstantChrecAtConstant(this,
5182           ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
5183           "Linear scev computation is off in a bad way!");
5184    return SE.getConstant(ExitValue);
5185  } else if (isQuadratic()) {
5186    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5187    // quadratic equation to solve it.  To do this, we must frame our problem in
5188    // terms of figuring out when zero is crossed, instead of when
5189    // Range.getUpper() is crossed.
5190    SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
5191    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
5192    const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
5193
5194    // Next, solve the constructed addrec
5195    std::pair<const SCEV *,const SCEV *> Roots =
5196      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
5197    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5198    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
5199    if (R1) {
5200      // Pick the smallest positive root value.
5201      if (ConstantInt *CB =
5202          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
5203                         R1->getValue(), R2->getValue()))) {
5204        if (CB->getZExtValue() == false)
5205          std::swap(R1, R2);   // R1 is the minimum root now.
5206
5207        // Make sure the root is not off by one.  The returned iteration should
5208        // not be in the range, but the previous one should be.  When solving
5209        // for "X*X < 5", for example, we should not return a root of 2.
5210        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
5211                                                             R1->getValue(),
5212                                                             SE);
5213        if (Range.contains(R1Val->getValue())) {
5214          // The next iteration must be out of the range...
5215          ConstantInt *NextVal =
5216                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
5217
5218          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5219          if (!Range.contains(R1Val->getValue()))
5220            return SE.getConstant(NextVal);
5221          return SE.getCouldNotCompute();  // Something strange happened
5222        }
5223
5224        // If R1 was not in the range, then it is a good return value.  Make
5225        // sure that R1-1 WAS in the range though, just in case.
5226        ConstantInt *NextVal =
5227               ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
5228        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5229        if (Range.contains(R1Val->getValue()))
5230          return R1;
5231        return SE.getCouldNotCompute();  // Something strange happened
5232      }
5233    }
5234  }
5235
5236  return SE.getCouldNotCompute();
5237}
5238
5239
5240
5241//===----------------------------------------------------------------------===//
5242//                   SCEVCallbackVH Class Implementation
5243//===----------------------------------------------------------------------===//
5244
5245void ScalarEvolution::SCEVCallbackVH::deleted() {
5246  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5247  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5248    SE->ConstantEvolutionLoopExitValue.erase(PN);
5249  SE->Scalars.erase(getValPtr());
5250  // this now dangles!
5251}
5252
5253void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
5254  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5255
5256  // Forget all the expressions associated with users of the old value,
5257  // so that future queries will recompute the expressions using the new
5258  // value.
5259  SmallVector<User *, 16> Worklist;
5260  SmallPtrSet<User *, 8> Visited;
5261  Value *Old = getValPtr();
5262  bool DeleteOld = false;
5263  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5264       UI != UE; ++UI)
5265    Worklist.push_back(*UI);
5266  while (!Worklist.empty()) {
5267    User *U = Worklist.pop_back_val();
5268    // Deleting the Old value will cause this to dangle. Postpone
5269    // that until everything else is done.
5270    if (U == Old) {
5271      DeleteOld = true;
5272      continue;
5273    }
5274    if (!Visited.insert(U))
5275      continue;
5276    if (PHINode *PN = dyn_cast<PHINode>(U))
5277      SE->ConstantEvolutionLoopExitValue.erase(PN);
5278    SE->Scalars.erase(U);
5279    for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5280         UI != UE; ++UI)
5281      Worklist.push_back(*UI);
5282  }
5283  // Delete the Old value if it (indirectly) references itself.
5284  if (DeleteOld) {
5285    if (PHINode *PN = dyn_cast<PHINode>(Old))
5286      SE->ConstantEvolutionLoopExitValue.erase(PN);
5287    SE->Scalars.erase(Old);
5288    // this now dangles!
5289  }
5290  // this may dangle!
5291}
5292
5293ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
5294  : CallbackVH(V), SE(se) {}
5295
5296//===----------------------------------------------------------------------===//
5297//                   ScalarEvolution Class Implementation
5298//===----------------------------------------------------------------------===//
5299
5300ScalarEvolution::ScalarEvolution()
5301  : FunctionPass(&ID) {
5302}
5303
5304bool ScalarEvolution::runOnFunction(Function &F) {
5305  this->F = &F;
5306  LI = &getAnalysis<LoopInfo>();
5307  DT = &getAnalysis<DominatorTree>();
5308  TD = getAnalysisIfAvailable<TargetData>();
5309  return false;
5310}
5311
5312void ScalarEvolution::releaseMemory() {
5313  Scalars.clear();
5314  BackedgeTakenCounts.clear();
5315  ConstantEvolutionLoopExitValue.clear();
5316  ValuesAtScopes.clear();
5317  UniqueSCEVs.clear();
5318  SCEVAllocator.Reset();
5319}
5320
5321void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5322  AU.setPreservesAll();
5323  AU.addRequiredTransitive<LoopInfo>();
5324  AU.addRequiredTransitive<DominatorTree>();
5325}
5326
5327bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
5328  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
5329}
5330
5331static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
5332                          const Loop *L) {
5333  // Print all inner loops first
5334  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5335    PrintLoopInfo(OS, SE, *I);
5336
5337  OS << "Loop ";
5338  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5339  OS << ": ";
5340
5341  SmallVector<BasicBlock *, 8> ExitBlocks;
5342  L->getExitBlocks(ExitBlocks);
5343  if (ExitBlocks.size() != 1)
5344    OS << "<multiple exits> ";
5345
5346  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5347    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
5348  } else {
5349    OS << "Unpredictable backedge-taken count. ";
5350  }
5351
5352  OS << "\n"
5353        "Loop ";
5354  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5355  OS << ": ";
5356
5357  if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5358    OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5359  } else {
5360    OS << "Unpredictable max backedge-taken count. ";
5361  }
5362
5363  OS << "\n";
5364}
5365
5366void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
5367  // ScalarEvolution's implementaiton of the print method is to print
5368  // out SCEV values of all instructions that are interesting. Doing
5369  // this potentially causes it to create new SCEV objects though,
5370  // which technically conflicts with the const qualifier. This isn't
5371  // observable from outside the class though, so casting away the
5372  // const isn't dangerous.
5373  ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
5374
5375  OS << "Classifying expressions for: ";
5376  WriteAsOperand(OS, F, /*PrintType=*/false);
5377  OS << "\n";
5378  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
5379    if (isSCEVable(I->getType())) {
5380      OS << *I << '\n';
5381      OS << "  -->  ";
5382      const SCEV *SV = SE.getSCEV(&*I);
5383      SV->print(OS);
5384
5385      const Loop *L = LI->getLoopFor((*I).getParent());
5386
5387      const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
5388      if (AtUse != SV) {
5389        OS << "  -->  ";
5390        AtUse->print(OS);
5391      }
5392
5393      if (L) {
5394        OS << "\t\t" "Exits: ";
5395        const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
5396        if (!ExitValue->isLoopInvariant(L)) {
5397          OS << "<<Unknown>>";
5398        } else {
5399          OS << *ExitValue;
5400        }
5401      }
5402
5403      OS << "\n";
5404    }
5405
5406  OS << "Determining loop execution counts for: ";
5407  WriteAsOperand(OS, F, /*PrintType=*/false);
5408  OS << "\n";
5409  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5410    PrintLoopInfo(OS, &SE, *I);
5411}
5412
5413