ScalarEvolution.cpp revision 34c3e36e6317b0ed448ccd2c567d5b088275fd7d
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
19//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression.  These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
30//
31// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
35// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42//  Chains of recurrences -- a method to expedite the evaluation
43//  of closed-form functions
44//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46//  On computational properties of chains of recurrences
47//  Eugene V. Zima
48//
49//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50//  Robert A. van Engelen
51//
52//  Efficient Symbolic Analysis for Optimizing Compilers
53//  Robert A. van Engelen
54//
55//  Using the chains of recurrences algebra for data dependence testing and
56//  induction variable substitution
57//  MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
61#define DEBUG_TYPE "scalar-evolution"
62#include "llvm/Analysis/ScalarEvolutionExpressions.h"
63#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
65#include "llvm/GlobalVariable.h"
66#include "llvm/GlobalAlias.h"
67#include "llvm/Instructions.h"
68#include "llvm/LLVMContext.h"
69#include "llvm/Operator.h"
70#include "llvm/Analysis/ConstantFolding.h"
71#include "llvm/Analysis/Dominators.h"
72#include "llvm/Analysis/LoopInfo.h"
73#include "llvm/Analysis/ValueTracking.h"
74#include "llvm/Assembly/Writer.h"
75#include "llvm/Target/TargetData.h"
76#include "llvm/Support/CommandLine.h"
77#include "llvm/Support/ConstantRange.h"
78#include "llvm/Support/Debug.h"
79#include "llvm/Support/ErrorHandling.h"
80#include "llvm/Support/GetElementPtrTypeIterator.h"
81#include "llvm/Support/InstIterator.h"
82#include "llvm/Support/MathExtras.h"
83#include "llvm/Support/raw_ostream.h"
84#include "llvm/ADT/Statistic.h"
85#include "llvm/ADT/STLExtras.h"
86#include "llvm/ADT/SmallPtrSet.h"
87#include <algorithm>
88using namespace llvm;
89
90STATISTIC(NumArrayLenItCounts,
91          "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93          "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95          "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97          "Number of loops with trip counts computed by force");
98
99static cl::opt<unsigned>
100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101                        cl::desc("Maximum number of iterations SCEV will "
102                                 "symbolically execute a constant "
103                                 "derived loop"),
104                        cl::init(100));
105
106static RegisterPass<ScalarEvolution>
107R("scalar-evolution", "Scalar Evolution Analysis", false, true);
108char ScalarEvolution::ID = 0;
109
110//===----------------------------------------------------------------------===//
111//                           SCEV class definitions
112//===----------------------------------------------------------------------===//
113
114//===----------------------------------------------------------------------===//
115// Implementation of the SCEV class.
116//
117
118SCEV::~SCEV() {}
119
120void SCEV::dump() const {
121  print(dbgs());
122  dbgs() << '\n';
123}
124
125bool SCEV::isZero() const {
126  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
127    return SC->getValue()->isZero();
128  return false;
129}
130
131bool SCEV::isOne() const {
132  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
133    return SC->getValue()->isOne();
134  return false;
135}
136
137bool SCEV::isAllOnesValue() const {
138  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
139    return SC->getValue()->isAllOnesValue();
140  return false;
141}
142
143SCEVCouldNotCompute::SCEVCouldNotCompute() :
144  SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
145
146bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
147  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
148  return false;
149}
150
151const Type *SCEVCouldNotCompute::getType() const {
152  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
153  return 0;
154}
155
156bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
157  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
158  return false;
159}
160
161bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
162  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
163  return false;
164}
165
166void SCEVCouldNotCompute::print(raw_ostream &OS) const {
167  OS << "***COULDNOTCOMPUTE***";
168}
169
170bool SCEVCouldNotCompute::classof(const SCEV *S) {
171  return S->getSCEVType() == scCouldNotCompute;
172}
173
174const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
175  FoldingSetNodeID ID;
176  ID.AddInteger(scConstant);
177  ID.AddPointer(V);
178  void *IP = 0;
179  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
180  SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
181  UniqueSCEVs.InsertNode(S, IP);
182  return S;
183}
184
185const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
186  return getConstant(ConstantInt::get(getContext(), Val));
187}
188
189const SCEV *
190ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
191  const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
192  return getConstant(ConstantInt::get(ITy, V, isSigned));
193}
194
195const Type *SCEVConstant::getType() const { return V->getType(); }
196
197void SCEVConstant::print(raw_ostream &OS) const {
198  WriteAsOperand(OS, V, false);
199}
200
201SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
202                           unsigned SCEVTy, const SCEV *op, const Type *ty)
203  : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
204
205bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
206  return Op->dominates(BB, DT);
207}
208
209bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
210  return Op->properlyDominates(BB, DT);
211}
212
213SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
214                                   const SCEV *op, const Type *ty)
215  : SCEVCastExpr(ID, scTruncate, op, ty) {
216  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
217         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
218         "Cannot truncate non-integer value!");
219}
220
221void SCEVTruncateExpr::print(raw_ostream &OS) const {
222  OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
223}
224
225SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
226                                       const SCEV *op, const Type *ty)
227  : SCEVCastExpr(ID, scZeroExtend, op, ty) {
228  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
229         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
230         "Cannot zero extend non-integer value!");
231}
232
233void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
234  OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
235}
236
237SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
238                                       const SCEV *op, const Type *ty)
239  : SCEVCastExpr(ID, scSignExtend, op, ty) {
240  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
241         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
242         "Cannot sign extend non-integer value!");
243}
244
245void SCEVSignExtendExpr::print(raw_ostream &OS) const {
246  OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
247}
248
249void SCEVCommutativeExpr::print(raw_ostream &OS) const {
250  const char *OpStr = getOperationStr();
251  OS << "(";
252  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
253    OS << **I;
254    if (next(I) != E)
255      OS << OpStr;
256  }
257  OS << ")";
258}
259
260bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
261  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
262    if (!getOperand(i)->dominates(BB, DT))
263      return false;
264  }
265  return true;
266}
267
268bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
269  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
270    if (!getOperand(i)->properlyDominates(BB, DT))
271      return false;
272  }
273  return true;
274}
275
276bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
277  return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
278}
279
280bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
281  return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
282}
283
284void SCEVUDivExpr::print(raw_ostream &OS) const {
285  OS << "(" << *LHS << " /u " << *RHS << ")";
286}
287
288const Type *SCEVUDivExpr::getType() const {
289  // In most cases the types of LHS and RHS will be the same, but in some
290  // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
291  // depend on the type for correctness, but handling types carefully can
292  // avoid extra casts in the SCEVExpander. The LHS is more likely to be
293  // a pointer type than the RHS, so use the RHS' type here.
294  return RHS->getType();
295}
296
297bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
298  // Add recurrences are never invariant in the function-body (null loop).
299  if (!QueryLoop)
300    return false;
301
302  // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
303  if (QueryLoop->contains(L))
304    return false;
305
306  // This recurrence is variant w.r.t. QueryLoop if any of its operands
307  // are variant.
308  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
309    if (!getOperand(i)->isLoopInvariant(QueryLoop))
310      return false;
311
312  // Otherwise it's loop-invariant.
313  return true;
314}
315
316bool
317SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
318  return DT->dominates(L->getHeader(), BB) &&
319         SCEVNAryExpr::dominates(BB, DT);
320}
321
322bool
323SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
324  // This uses a "dominates" query instead of "properly dominates" query because
325  // the instruction which produces the addrec's value is a PHI, and a PHI
326  // effectively properly dominates its entire containing block.
327  return DT->dominates(L->getHeader(), BB) &&
328         SCEVNAryExpr::properlyDominates(BB, DT);
329}
330
331void SCEVAddRecExpr::print(raw_ostream &OS) const {
332  OS << "{" << *Operands[0];
333  for (unsigned i = 1, e = NumOperands; i != e; ++i)
334    OS << ",+," << *Operands[i];
335  OS << "}<";
336  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
337  OS << ">";
338}
339
340bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
341  // All non-instruction values are loop invariant.  All instructions are loop
342  // invariant if they are not contained in the specified loop.
343  // Instructions are never considered invariant in the function body
344  // (null loop) because they are defined within the "loop".
345  if (Instruction *I = dyn_cast<Instruction>(V))
346    return L && !L->contains(I);
347  return true;
348}
349
350bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
351  if (Instruction *I = dyn_cast<Instruction>(getValue()))
352    return DT->dominates(I->getParent(), BB);
353  return true;
354}
355
356bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
357  if (Instruction *I = dyn_cast<Instruction>(getValue()))
358    return DT->properlyDominates(I->getParent(), BB);
359  return true;
360}
361
362const Type *SCEVUnknown::getType() const {
363  return V->getType();
364}
365
366bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
367  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
368    if (VCE->getOpcode() == Instruction::PtrToInt)
369      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
370        if (CE->getOpcode() == Instruction::GetElementPtr &&
371            CE->getOperand(0)->isNullValue() &&
372            CE->getNumOperands() == 2)
373          if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
374            if (CI->isOne()) {
375              AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
376                                 ->getElementType();
377              return true;
378            }
379
380  return false;
381}
382
383bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
384  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
385    if (VCE->getOpcode() == Instruction::PtrToInt)
386      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
387        if (CE->getOpcode() == Instruction::GetElementPtr &&
388            CE->getOperand(0)->isNullValue()) {
389          const Type *Ty =
390            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
391          if (const StructType *STy = dyn_cast<StructType>(Ty))
392            if (!STy->isPacked() &&
393                CE->getNumOperands() == 3 &&
394                CE->getOperand(1)->isNullValue()) {
395              if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
396                if (CI->isOne() &&
397                    STy->getNumElements() == 2 &&
398                    STy->getElementType(0)->isIntegerTy(1)) {
399                  AllocTy = STy->getElementType(1);
400                  return true;
401                }
402            }
403        }
404
405  return false;
406}
407
408bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
409  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
410    if (VCE->getOpcode() == Instruction::PtrToInt)
411      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
412        if (CE->getOpcode() == Instruction::GetElementPtr &&
413            CE->getNumOperands() == 3 &&
414            CE->getOperand(0)->isNullValue() &&
415            CE->getOperand(1)->isNullValue()) {
416          const Type *Ty =
417            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
418          // Ignore vector types here so that ScalarEvolutionExpander doesn't
419          // emit getelementptrs that index into vectors.
420          if (Ty->isStructTy() || Ty->isArrayTy()) {
421            CTy = Ty;
422            FieldNo = CE->getOperand(2);
423            return true;
424          }
425        }
426
427  return false;
428}
429
430void SCEVUnknown::print(raw_ostream &OS) const {
431  const Type *AllocTy;
432  if (isSizeOf(AllocTy)) {
433    OS << "sizeof(" << *AllocTy << ")";
434    return;
435  }
436  if (isAlignOf(AllocTy)) {
437    OS << "alignof(" << *AllocTy << ")";
438    return;
439  }
440
441  const Type *CTy;
442  Constant *FieldNo;
443  if (isOffsetOf(CTy, FieldNo)) {
444    OS << "offsetof(" << *CTy << ", ";
445    WriteAsOperand(OS, FieldNo, false);
446    OS << ")";
447    return;
448  }
449
450  // Otherwise just print it normally.
451  WriteAsOperand(OS, V, false);
452}
453
454//===----------------------------------------------------------------------===//
455//                               SCEV Utilities
456//===----------------------------------------------------------------------===//
457
458static bool CompareTypes(const Type *A, const Type *B) {
459  if (A->getTypeID() != B->getTypeID())
460    return A->getTypeID() < B->getTypeID();
461  if (const IntegerType *AI = dyn_cast<IntegerType>(A)) {
462    const IntegerType *BI = cast<IntegerType>(B);
463    return AI->getBitWidth() < BI->getBitWidth();
464  }
465  if (const PointerType *AI = dyn_cast<PointerType>(A)) {
466    const PointerType *BI = cast<PointerType>(B);
467    return CompareTypes(AI->getElementType(), BI->getElementType());
468  }
469  if (const ArrayType *AI = dyn_cast<ArrayType>(A)) {
470    const ArrayType *BI = cast<ArrayType>(B);
471    if (AI->getNumElements() != BI->getNumElements())
472      return AI->getNumElements() < BI->getNumElements();
473    return CompareTypes(AI->getElementType(), BI->getElementType());
474  }
475  if (const VectorType *AI = dyn_cast<VectorType>(A)) {
476    const VectorType *BI = cast<VectorType>(B);
477    if (AI->getNumElements() != BI->getNumElements())
478      return AI->getNumElements() < BI->getNumElements();
479    return CompareTypes(AI->getElementType(), BI->getElementType());
480  }
481  if (const StructType *AI = dyn_cast<StructType>(A)) {
482    const StructType *BI = cast<StructType>(B);
483    if (AI->getNumElements() != BI->getNumElements())
484      return AI->getNumElements() < BI->getNumElements();
485    for (unsigned i = 0, e = AI->getNumElements(); i != e; ++i)
486      if (CompareTypes(AI->getElementType(i), BI->getElementType(i)) ||
487          CompareTypes(BI->getElementType(i), AI->getElementType(i)))
488        return CompareTypes(AI->getElementType(i), BI->getElementType(i));
489  }
490  return false;
491}
492
493namespace {
494  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
495  /// than the complexity of the RHS.  This comparator is used to canonicalize
496  /// expressions.
497  class SCEVComplexityCompare {
498    LoopInfo *LI;
499  public:
500    explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
501
502    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
503      // Fast-path: SCEVs are uniqued so we can do a quick equality check.
504      if (LHS == RHS)
505        return false;
506
507      // Primarily, sort the SCEVs by their getSCEVType().
508      if (LHS->getSCEVType() != RHS->getSCEVType())
509        return LHS->getSCEVType() < RHS->getSCEVType();
510
511      // Aside from the getSCEVType() ordering, the particular ordering
512      // isn't very important except that it's beneficial to be consistent,
513      // so that (a + b) and (b + a) don't end up as different expressions.
514
515      // Sort SCEVUnknown values with some loose heuristics. TODO: This is
516      // not as complete as it could be.
517      if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
518        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
519
520        // Order pointer values after integer values. This helps SCEVExpander
521        // form GEPs.
522        if (LU->getType()->isPointerTy() && !RU->getType()->isPointerTy())
523          return false;
524        if (RU->getType()->isPointerTy() && !LU->getType()->isPointerTy())
525          return true;
526
527        // Compare getValueID values.
528        if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
529          return LU->getValue()->getValueID() < RU->getValue()->getValueID();
530
531        // Sort arguments by their position.
532        if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
533          const Argument *RA = cast<Argument>(RU->getValue());
534          return LA->getArgNo() < RA->getArgNo();
535        }
536
537        // For instructions, compare their loop depth, and their opcode.
538        // This is pretty loose.
539        if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
540          Instruction *RV = cast<Instruction>(RU->getValue());
541
542          // Compare loop depths.
543          if (LI->getLoopDepth(LV->getParent()) !=
544              LI->getLoopDepth(RV->getParent()))
545            return LI->getLoopDepth(LV->getParent()) <
546                   LI->getLoopDepth(RV->getParent());
547
548          // Compare opcodes.
549          if (LV->getOpcode() != RV->getOpcode())
550            return LV->getOpcode() < RV->getOpcode();
551
552          // Compare the number of operands.
553          if (LV->getNumOperands() != RV->getNumOperands())
554            return LV->getNumOperands() < RV->getNumOperands();
555        }
556
557        return false;
558      }
559
560      // Compare constant values.
561      if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) {
562        const SCEVConstant *RC = cast<SCEVConstant>(RHS);
563        if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth())
564          return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth();
565        return LC->getValue()->getValue().ult(RC->getValue()->getValue());
566      }
567
568      // Compare addrec loop depths.
569      if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) {
570        const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
571        if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth())
572          return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth();
573      }
574
575      // Lexicographically compare n-ary expressions.
576      if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
577        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
578        for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
579          if (i >= RC->getNumOperands())
580            return false;
581          if (operator()(LC->getOperand(i), RC->getOperand(i)))
582            return true;
583          if (operator()(RC->getOperand(i), LC->getOperand(i)))
584            return false;
585        }
586        return LC->getNumOperands() < RC->getNumOperands();
587      }
588
589      // Lexicographically compare udiv expressions.
590      if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
591        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
592        if (operator()(LC->getLHS(), RC->getLHS()))
593          return true;
594        if (operator()(RC->getLHS(), LC->getLHS()))
595          return false;
596        if (operator()(LC->getRHS(), RC->getRHS()))
597          return true;
598        if (operator()(RC->getRHS(), LC->getRHS()))
599          return false;
600        return false;
601      }
602
603      // Compare cast expressions by operand.
604      if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
605        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
606        return operator()(LC->getOperand(), RC->getOperand());
607      }
608
609      llvm_unreachable("Unknown SCEV kind!");
610      return false;
611    }
612  };
613}
614
615/// GroupByComplexity - Given a list of SCEV objects, order them by their
616/// complexity, and group objects of the same complexity together by value.
617/// When this routine is finished, we know that any duplicates in the vector are
618/// consecutive and that complexity is monotonically increasing.
619///
620/// Note that we go take special precautions to ensure that we get deterministic
621/// results from this routine.  In other words, we don't want the results of
622/// this to depend on where the addresses of various SCEV objects happened to
623/// land in memory.
624///
625static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
626                              LoopInfo *LI) {
627  if (Ops.size() < 2) return;  // Noop
628  if (Ops.size() == 2) {
629    // This is the common case, which also happens to be trivially simple.
630    // Special case it.
631    if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
632      std::swap(Ops[0], Ops[1]);
633    return;
634  }
635
636  // Do the rough sort by complexity.
637  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
638
639  // Now that we are sorted by complexity, group elements of the same
640  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
641  // be extremely short in practice.  Note that we take this approach because we
642  // do not want to depend on the addresses of the objects we are grouping.
643  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
644    const SCEV *S = Ops[i];
645    unsigned Complexity = S->getSCEVType();
646
647    // If there are any objects of the same complexity and same value as this
648    // one, group them.
649    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
650      if (Ops[j] == S) { // Found a duplicate.
651        // Move it to immediately after i'th element.
652        std::swap(Ops[i+1], Ops[j]);
653        ++i;   // no need to rescan it.
654        if (i == e-2) return;  // Done!
655      }
656    }
657  }
658}
659
660
661
662//===----------------------------------------------------------------------===//
663//                      Simple SCEV method implementations
664//===----------------------------------------------------------------------===//
665
666/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
667/// Assume, K > 0.
668static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
669                                       ScalarEvolution &SE,
670                                       const Type* ResultTy) {
671  // Handle the simplest case efficiently.
672  if (K == 1)
673    return SE.getTruncateOrZeroExtend(It, ResultTy);
674
675  // We are using the following formula for BC(It, K):
676  //
677  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
678  //
679  // Suppose, W is the bitwidth of the return value.  We must be prepared for
680  // overflow.  Hence, we must assure that the result of our computation is
681  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
682  // safe in modular arithmetic.
683  //
684  // However, this code doesn't use exactly that formula; the formula it uses
685  // is something like the following, where T is the number of factors of 2 in
686  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
687  // exponentiation:
688  //
689  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
690  //
691  // This formula is trivially equivalent to the previous formula.  However,
692  // this formula can be implemented much more efficiently.  The trick is that
693  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
694  // arithmetic.  To do exact division in modular arithmetic, all we have
695  // to do is multiply by the inverse.  Therefore, this step can be done at
696  // width W.
697  //
698  // The next issue is how to safely do the division by 2^T.  The way this
699  // is done is by doing the multiplication step at a width of at least W + T
700  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
701  // when we perform the division by 2^T (which is equivalent to a right shift
702  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
703  // truncated out after the division by 2^T.
704  //
705  // In comparison to just directly using the first formula, this technique
706  // is much more efficient; using the first formula requires W * K bits,
707  // but this formula less than W + K bits. Also, the first formula requires
708  // a division step, whereas this formula only requires multiplies and shifts.
709  //
710  // It doesn't matter whether the subtraction step is done in the calculation
711  // width or the input iteration count's width; if the subtraction overflows,
712  // the result must be zero anyway.  We prefer here to do it in the width of
713  // the induction variable because it helps a lot for certain cases; CodeGen
714  // isn't smart enough to ignore the overflow, which leads to much less
715  // efficient code if the width of the subtraction is wider than the native
716  // register width.
717  //
718  // (It's possible to not widen at all by pulling out factors of 2 before
719  // the multiplication; for example, K=2 can be calculated as
720  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
721  // extra arithmetic, so it's not an obvious win, and it gets
722  // much more complicated for K > 3.)
723
724  // Protection from insane SCEVs; this bound is conservative,
725  // but it probably doesn't matter.
726  if (K > 1000)
727    return SE.getCouldNotCompute();
728
729  unsigned W = SE.getTypeSizeInBits(ResultTy);
730
731  // Calculate K! / 2^T and T; we divide out the factors of two before
732  // multiplying for calculating K! / 2^T to avoid overflow.
733  // Other overflow doesn't matter because we only care about the bottom
734  // W bits of the result.
735  APInt OddFactorial(W, 1);
736  unsigned T = 1;
737  for (unsigned i = 3; i <= K; ++i) {
738    APInt Mult(W, i);
739    unsigned TwoFactors = Mult.countTrailingZeros();
740    T += TwoFactors;
741    Mult = Mult.lshr(TwoFactors);
742    OddFactorial *= Mult;
743  }
744
745  // We need at least W + T bits for the multiplication step
746  unsigned CalculationBits = W + T;
747
748  // Calculate 2^T, at width T+W.
749  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
750
751  // Calculate the multiplicative inverse of K! / 2^T;
752  // this multiplication factor will perform the exact division by
753  // K! / 2^T.
754  APInt Mod = APInt::getSignedMinValue(W+1);
755  APInt MultiplyFactor = OddFactorial.zext(W+1);
756  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
757  MultiplyFactor = MultiplyFactor.trunc(W);
758
759  // Calculate the product, at width T+W
760  const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
761                                                      CalculationBits);
762  const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
763  for (unsigned i = 1; i != K; ++i) {
764    const SCEV *S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
765    Dividend = SE.getMulExpr(Dividend,
766                             SE.getTruncateOrZeroExtend(S, CalculationTy));
767  }
768
769  // Divide by 2^T
770  const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
771
772  // Truncate the result, and divide by K! / 2^T.
773
774  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
775                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
776}
777
778/// evaluateAtIteration - Return the value of this chain of recurrences at
779/// the specified iteration number.  We can evaluate this recurrence by
780/// multiplying each element in the chain by the binomial coefficient
781/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
782///
783///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
784///
785/// where BC(It, k) stands for binomial coefficient.
786///
787const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
788                                                ScalarEvolution &SE) const {
789  const SCEV *Result = getStart();
790  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
791    // The computation is correct in the face of overflow provided that the
792    // multiplication is performed _after_ the evaluation of the binomial
793    // coefficient.
794    const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
795    if (isa<SCEVCouldNotCompute>(Coeff))
796      return Coeff;
797
798    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
799  }
800  return Result;
801}
802
803//===----------------------------------------------------------------------===//
804//                    SCEV Expression folder implementations
805//===----------------------------------------------------------------------===//
806
807const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
808                                             const Type *Ty) {
809  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
810         "This is not a truncating conversion!");
811  assert(isSCEVable(Ty) &&
812         "This is not a conversion to a SCEVable type!");
813  Ty = getEffectiveSCEVType(Ty);
814
815  FoldingSetNodeID ID;
816  ID.AddInteger(scTruncate);
817  ID.AddPointer(Op);
818  ID.AddPointer(Ty);
819  void *IP = 0;
820  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
821
822  // Fold if the operand is constant.
823  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
824    return getConstant(
825      cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
826
827  // trunc(trunc(x)) --> trunc(x)
828  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
829    return getTruncateExpr(ST->getOperand(), Ty);
830
831  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
832  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
833    return getTruncateOrSignExtend(SS->getOperand(), Ty);
834
835  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
836  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
837    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
838
839  // If the input value is a chrec scev, truncate the chrec's operands.
840  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
841    SmallVector<const SCEV *, 4> Operands;
842    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
843      Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
844    return getAddRecExpr(Operands, AddRec->getLoop());
845  }
846
847  // The cast wasn't folded; create an explicit cast node.
848  // Recompute the insert position, as it may have been invalidated.
849  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
850  SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
851                                                 Op, Ty);
852  UniqueSCEVs.InsertNode(S, IP);
853  return S;
854}
855
856const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
857                                               const Type *Ty) {
858  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
859         "This is not an extending conversion!");
860  assert(isSCEVable(Ty) &&
861         "This is not a conversion to a SCEVable type!");
862  Ty = getEffectiveSCEVType(Ty);
863
864  // Fold if the operand is constant.
865  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
866    const Type *IntTy = getEffectiveSCEVType(Ty);
867    Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
868    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
869    return getConstant(cast<ConstantInt>(C));
870  }
871
872  // zext(zext(x)) --> zext(x)
873  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
874    return getZeroExtendExpr(SZ->getOperand(), Ty);
875
876  // Before doing any expensive analysis, check to see if we've already
877  // computed a SCEV for this Op and Ty.
878  FoldingSetNodeID ID;
879  ID.AddInteger(scZeroExtend);
880  ID.AddPointer(Op);
881  ID.AddPointer(Ty);
882  void *IP = 0;
883  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
884
885  // If the input value is a chrec scev, and we can prove that the value
886  // did not overflow the old, smaller, value, we can zero extend all of the
887  // operands (often constants).  This allows analysis of something like
888  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
889  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
890    if (AR->isAffine()) {
891      const SCEV *Start = AR->getStart();
892      const SCEV *Step = AR->getStepRecurrence(*this);
893      unsigned BitWidth = getTypeSizeInBits(AR->getType());
894      const Loop *L = AR->getLoop();
895
896      // If we have special knowledge that this addrec won't overflow,
897      // we don't need to do any further analysis.
898      if (AR->hasNoUnsignedWrap())
899        return getAddRecExpr(getZeroExtendExpr(Start, Ty),
900                             getZeroExtendExpr(Step, Ty),
901                             L);
902
903      // Check whether the backedge-taken count is SCEVCouldNotCompute.
904      // Note that this serves two purposes: It filters out loops that are
905      // simply not analyzable, and it covers the case where this code is
906      // being called from within backedge-taken count analysis, such that
907      // attempting to ask for the backedge-taken count would likely result
908      // in infinite recursion. In the later case, the analysis code will
909      // cope with a conservative value, and it will take care to purge
910      // that value once it has finished.
911      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
912      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
913        // Manually compute the final value for AR, checking for
914        // overflow.
915
916        // Check whether the backedge-taken count can be losslessly casted to
917        // the addrec's type. The count is always unsigned.
918        const SCEV *CastedMaxBECount =
919          getTruncateOrZeroExtend(MaxBECount, Start->getType());
920        const SCEV *RecastedMaxBECount =
921          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
922        if (MaxBECount == RecastedMaxBECount) {
923          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
924          // Check whether Start+Step*MaxBECount has no unsigned overflow.
925          const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
926          const SCEV *Add = getAddExpr(Start, ZMul);
927          const SCEV *OperandExtendedAdd =
928            getAddExpr(getZeroExtendExpr(Start, WideTy),
929                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
930                                  getZeroExtendExpr(Step, WideTy)));
931          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
932            // Return the expression with the addrec on the outside.
933            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
934                                 getZeroExtendExpr(Step, Ty),
935                                 L);
936
937          // Similar to above, only this time treat the step value as signed.
938          // This covers loops that count down.
939          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
940          Add = getAddExpr(Start, SMul);
941          OperandExtendedAdd =
942            getAddExpr(getZeroExtendExpr(Start, WideTy),
943                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
944                                  getSignExtendExpr(Step, WideTy)));
945          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
946            // Return the expression with the addrec on the outside.
947            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
948                                 getSignExtendExpr(Step, Ty),
949                                 L);
950        }
951
952        // If the backedge is guarded by a comparison with the pre-inc value
953        // the addrec is safe. Also, if the entry is guarded by a comparison
954        // with the start value and the backedge is guarded by a comparison
955        // with the post-inc value, the addrec is safe.
956        if (isKnownPositive(Step)) {
957          const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
958                                      getUnsignedRange(Step).getUnsignedMax());
959          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
960              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
961               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
962                                           AR->getPostIncExpr(*this), N)))
963            // Return the expression with the addrec on the outside.
964            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
965                                 getZeroExtendExpr(Step, Ty),
966                                 L);
967        } else if (isKnownNegative(Step)) {
968          const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
969                                      getSignedRange(Step).getSignedMin());
970          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) &&
971              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) ||
972               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
973                                           AR->getPostIncExpr(*this), N)))
974            // Return the expression with the addrec on the outside.
975            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
976                                 getSignExtendExpr(Step, Ty),
977                                 L);
978        }
979      }
980    }
981
982  // The cast wasn't folded; create an explicit cast node.
983  // Recompute the insert position, as it may have been invalidated.
984  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
985  SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
986                                                   Op, Ty);
987  UniqueSCEVs.InsertNode(S, IP);
988  return S;
989}
990
991const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
992                                               const Type *Ty) {
993  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
994         "This is not an extending conversion!");
995  assert(isSCEVable(Ty) &&
996         "This is not a conversion to a SCEVable type!");
997  Ty = getEffectiveSCEVType(Ty);
998
999  // Fold if the operand is constant.
1000  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
1001    const Type *IntTy = getEffectiveSCEVType(Ty);
1002    Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
1003    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
1004    return getConstant(cast<ConstantInt>(C));
1005  }
1006
1007  // sext(sext(x)) --> sext(x)
1008  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1009    return getSignExtendExpr(SS->getOperand(), Ty);
1010
1011  // Before doing any expensive analysis, check to see if we've already
1012  // computed a SCEV for this Op and Ty.
1013  FoldingSetNodeID ID;
1014  ID.AddInteger(scSignExtend);
1015  ID.AddPointer(Op);
1016  ID.AddPointer(Ty);
1017  void *IP = 0;
1018  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1019
1020  // If the input value is a chrec scev, and we can prove that the value
1021  // did not overflow the old, smaller, value, we can sign extend all of the
1022  // operands (often constants).  This allows analysis of something like
1023  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1024  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1025    if (AR->isAffine()) {
1026      const SCEV *Start = AR->getStart();
1027      const SCEV *Step = AR->getStepRecurrence(*this);
1028      unsigned BitWidth = getTypeSizeInBits(AR->getType());
1029      const Loop *L = AR->getLoop();
1030
1031      // If we have special knowledge that this addrec won't overflow,
1032      // we don't need to do any further analysis.
1033      if (AR->hasNoSignedWrap())
1034        return getAddRecExpr(getSignExtendExpr(Start, Ty),
1035                             getSignExtendExpr(Step, Ty),
1036                             L);
1037
1038      // Check whether the backedge-taken count is SCEVCouldNotCompute.
1039      // Note that this serves two purposes: It filters out loops that are
1040      // simply not analyzable, and it covers the case where this code is
1041      // being called from within backedge-taken count analysis, such that
1042      // attempting to ask for the backedge-taken count would likely result
1043      // in infinite recursion. In the later case, the analysis code will
1044      // cope with a conservative value, and it will take care to purge
1045      // that value once it has finished.
1046      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1047      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1048        // Manually compute the final value for AR, checking for
1049        // overflow.
1050
1051        // Check whether the backedge-taken count can be losslessly casted to
1052        // the addrec's type. The count is always unsigned.
1053        const SCEV *CastedMaxBECount =
1054          getTruncateOrZeroExtend(MaxBECount, Start->getType());
1055        const SCEV *RecastedMaxBECount =
1056          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1057        if (MaxBECount == RecastedMaxBECount) {
1058          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1059          // Check whether Start+Step*MaxBECount has no signed overflow.
1060          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1061          const SCEV *Add = getAddExpr(Start, SMul);
1062          const SCEV *OperandExtendedAdd =
1063            getAddExpr(getSignExtendExpr(Start, WideTy),
1064                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1065                                  getSignExtendExpr(Step, WideTy)));
1066          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
1067            // Return the expression with the addrec on the outside.
1068            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1069                                 getSignExtendExpr(Step, Ty),
1070                                 L);
1071
1072          // Similar to above, only this time treat the step value as unsigned.
1073          // This covers loops that count up with an unsigned step.
1074          const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
1075          Add = getAddExpr(Start, UMul);
1076          OperandExtendedAdd =
1077            getAddExpr(getSignExtendExpr(Start, WideTy),
1078                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1079                                  getZeroExtendExpr(Step, WideTy)));
1080          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
1081            // Return the expression with the addrec on the outside.
1082            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1083                                 getZeroExtendExpr(Step, Ty),
1084                                 L);
1085        }
1086
1087        // If the backedge is guarded by a comparison with the pre-inc value
1088        // the addrec is safe. Also, if the entry is guarded by a comparison
1089        // with the start value and the backedge is guarded by a comparison
1090        // with the post-inc value, the addrec is safe.
1091        if (isKnownPositive(Step)) {
1092          const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1093                                      getSignedRange(Step).getSignedMax());
1094          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
1095              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
1096               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1097                                           AR->getPostIncExpr(*this), N)))
1098            // Return the expression with the addrec on the outside.
1099            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1100                                 getSignExtendExpr(Step, Ty),
1101                                 L);
1102        } else if (isKnownNegative(Step)) {
1103          const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1104                                      getSignedRange(Step).getSignedMin());
1105          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
1106              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
1107               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1108                                           AR->getPostIncExpr(*this), N)))
1109            // Return the expression with the addrec on the outside.
1110            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1111                                 getSignExtendExpr(Step, Ty),
1112                                 L);
1113        }
1114      }
1115    }
1116
1117  // The cast wasn't folded; create an explicit cast node.
1118  // Recompute the insert position, as it may have been invalidated.
1119  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1120  SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1121                                                   Op, Ty);
1122  UniqueSCEVs.InsertNode(S, IP);
1123  return S;
1124}
1125
1126/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1127/// unspecified bits out to the given type.
1128///
1129const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1130                                              const Type *Ty) {
1131  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1132         "This is not an extending conversion!");
1133  assert(isSCEVable(Ty) &&
1134         "This is not a conversion to a SCEVable type!");
1135  Ty = getEffectiveSCEVType(Ty);
1136
1137  // Sign-extend negative constants.
1138  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1139    if (SC->getValue()->getValue().isNegative())
1140      return getSignExtendExpr(Op, Ty);
1141
1142  // Peel off a truncate cast.
1143  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1144    const SCEV *NewOp = T->getOperand();
1145    if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1146      return getAnyExtendExpr(NewOp, Ty);
1147    return getTruncateOrNoop(NewOp, Ty);
1148  }
1149
1150  // Next try a zext cast. If the cast is folded, use it.
1151  const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1152  if (!isa<SCEVZeroExtendExpr>(ZExt))
1153    return ZExt;
1154
1155  // Next try a sext cast. If the cast is folded, use it.
1156  const SCEV *SExt = getSignExtendExpr(Op, Ty);
1157  if (!isa<SCEVSignExtendExpr>(SExt))
1158    return SExt;
1159
1160  // Force the cast to be folded into the operands of an addrec.
1161  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1162    SmallVector<const SCEV *, 4> Ops;
1163    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1164         I != E; ++I)
1165      Ops.push_back(getAnyExtendExpr(*I, Ty));
1166    return getAddRecExpr(Ops, AR->getLoop());
1167  }
1168
1169  // If the expression is obviously signed, use the sext cast value.
1170  if (isa<SCEVSMaxExpr>(Op))
1171    return SExt;
1172
1173  // Absent any other information, use the zext cast value.
1174  return ZExt;
1175}
1176
1177/// CollectAddOperandsWithScales - Process the given Ops list, which is
1178/// a list of operands to be added under the given scale, update the given
1179/// map. This is a helper function for getAddRecExpr. As an example of
1180/// what it does, given a sequence of operands that would form an add
1181/// expression like this:
1182///
1183///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1184///
1185/// where A and B are constants, update the map with these values:
1186///
1187///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1188///
1189/// and add 13 + A*B*29 to AccumulatedConstant.
1190/// This will allow getAddRecExpr to produce this:
1191///
1192///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1193///
1194/// This form often exposes folding opportunities that are hidden in
1195/// the original operand list.
1196///
1197/// Return true iff it appears that any interesting folding opportunities
1198/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1199/// the common case where no interesting opportunities are present, and
1200/// is also used as a check to avoid infinite recursion.
1201///
1202static bool
1203CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1204                             SmallVector<const SCEV *, 8> &NewOps,
1205                             APInt &AccumulatedConstant,
1206                             const SCEV *const *Ops, size_t NumOperands,
1207                             const APInt &Scale,
1208                             ScalarEvolution &SE) {
1209  bool Interesting = false;
1210
1211  // Iterate over the add operands.
1212  for (unsigned i = 0, e = NumOperands; i != e; ++i) {
1213    const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1214    if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1215      APInt NewScale =
1216        Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1217      if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1218        // A multiplication of a constant with another add; recurse.
1219        const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1220        Interesting |=
1221          CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1222                                       Add->op_begin(), Add->getNumOperands(),
1223                                       NewScale, SE);
1224      } else {
1225        // A multiplication of a constant with some other value. Update
1226        // the map.
1227        SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1228        const SCEV *Key = SE.getMulExpr(MulOps);
1229        std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1230          M.insert(std::make_pair(Key, NewScale));
1231        if (Pair.second) {
1232          NewOps.push_back(Pair.first->first);
1233        } else {
1234          Pair.first->second += NewScale;
1235          // The map already had an entry for this value, which may indicate
1236          // a folding opportunity.
1237          Interesting = true;
1238        }
1239      }
1240    } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1241      // Pull a buried constant out to the outside.
1242      if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1243        Interesting = true;
1244      AccumulatedConstant += Scale * C->getValue()->getValue();
1245    } else {
1246      // An ordinary operand. Update the map.
1247      std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1248        M.insert(std::make_pair(Ops[i], Scale));
1249      if (Pair.second) {
1250        NewOps.push_back(Pair.first->first);
1251      } else {
1252        Pair.first->second += Scale;
1253        // The map already had an entry for this value, which may indicate
1254        // a folding opportunity.
1255        Interesting = true;
1256      }
1257    }
1258  }
1259
1260  return Interesting;
1261}
1262
1263namespace {
1264  struct APIntCompare {
1265    bool operator()(const APInt &LHS, const APInt &RHS) const {
1266      return LHS.ult(RHS);
1267    }
1268  };
1269}
1270
1271/// getAddExpr - Get a canonical add expression, or something simpler if
1272/// possible.
1273const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1274                                        bool HasNUW, bool HasNSW) {
1275  assert(!Ops.empty() && "Cannot get empty add!");
1276  if (Ops.size() == 1) return Ops[0];
1277#ifndef NDEBUG
1278  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1279    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1280           getEffectiveSCEVType(Ops[0]->getType()) &&
1281           "SCEVAddExpr operand types don't match!");
1282#endif
1283
1284  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1285  if (!HasNUW && HasNSW) {
1286    bool All = true;
1287    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1288      if (!isKnownNonNegative(Ops[i])) {
1289        All = false;
1290        break;
1291      }
1292    if (All) HasNUW = true;
1293  }
1294
1295  // Sort by complexity, this groups all similar expression types together.
1296  GroupByComplexity(Ops, LI);
1297
1298  // If there are any constants, fold them together.
1299  unsigned Idx = 0;
1300  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1301    ++Idx;
1302    assert(Idx < Ops.size());
1303    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1304      // We found two constants, fold them together!
1305      Ops[0] = getConstant(LHSC->getValue()->getValue() +
1306                           RHSC->getValue()->getValue());
1307      if (Ops.size() == 2) return Ops[0];
1308      Ops.erase(Ops.begin()+1);  // Erase the folded element
1309      LHSC = cast<SCEVConstant>(Ops[0]);
1310    }
1311
1312    // If we are left with a constant zero being added, strip it off.
1313    if (LHSC->getValue()->isZero()) {
1314      Ops.erase(Ops.begin());
1315      --Idx;
1316    }
1317
1318    if (Ops.size() == 1) return Ops[0];
1319  }
1320
1321  // Okay, check to see if the same value occurs in the operand list twice.  If
1322  // so, merge them together into an multiply expression.  Since we sorted the
1323  // list, these values are required to be adjacent.
1324  const Type *Ty = Ops[0]->getType();
1325  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1326    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
1327      // Found a match, merge the two values into a multiply, and add any
1328      // remaining values to the result.
1329      const SCEV *Two = getIntegerSCEV(2, Ty);
1330      const SCEV *Mul = getMulExpr(Ops[i], Two);
1331      if (Ops.size() == 2)
1332        return Mul;
1333      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1334      Ops.push_back(Mul);
1335      return getAddExpr(Ops, HasNUW, HasNSW);
1336    }
1337
1338  // Check for truncates. If all the operands are truncated from the same
1339  // type, see if factoring out the truncate would permit the result to be
1340  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1341  // if the contents of the resulting outer trunc fold to something simple.
1342  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1343    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1344    const Type *DstType = Trunc->getType();
1345    const Type *SrcType = Trunc->getOperand()->getType();
1346    SmallVector<const SCEV *, 8> LargeOps;
1347    bool Ok = true;
1348    // Check all the operands to see if they can be represented in the
1349    // source type of the truncate.
1350    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1351      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1352        if (T->getOperand()->getType() != SrcType) {
1353          Ok = false;
1354          break;
1355        }
1356        LargeOps.push_back(T->getOperand());
1357      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1358        LargeOps.push_back(getAnyExtendExpr(C, SrcType));
1359      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1360        SmallVector<const SCEV *, 8> LargeMulOps;
1361        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1362          if (const SCEVTruncateExpr *T =
1363                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1364            if (T->getOperand()->getType() != SrcType) {
1365              Ok = false;
1366              break;
1367            }
1368            LargeMulOps.push_back(T->getOperand());
1369          } else if (const SCEVConstant *C =
1370                       dyn_cast<SCEVConstant>(M->getOperand(j))) {
1371            LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
1372          } else {
1373            Ok = false;
1374            break;
1375          }
1376        }
1377        if (Ok)
1378          LargeOps.push_back(getMulExpr(LargeMulOps));
1379      } else {
1380        Ok = false;
1381        break;
1382      }
1383    }
1384    if (Ok) {
1385      // Evaluate the expression in the larger type.
1386      const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
1387      // If it folds to something simple, use it. Otherwise, don't.
1388      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1389        return getTruncateExpr(Fold, DstType);
1390    }
1391  }
1392
1393  // Skip past any other cast SCEVs.
1394  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1395    ++Idx;
1396
1397  // If there are add operands they would be next.
1398  if (Idx < Ops.size()) {
1399    bool DeletedAdd = false;
1400    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1401      // If we have an add, expand the add operands onto the end of the operands
1402      // list.
1403      Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1404      Ops.erase(Ops.begin()+Idx);
1405      DeletedAdd = true;
1406    }
1407
1408    // If we deleted at least one add, we added operands to the end of the list,
1409    // and they are not necessarily sorted.  Recurse to resort and resimplify
1410    // any operands we just acquired.
1411    if (DeletedAdd)
1412      return getAddExpr(Ops);
1413  }
1414
1415  // Skip over the add expression until we get to a multiply.
1416  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1417    ++Idx;
1418
1419  // Check to see if there are any folding opportunities present with
1420  // operands multiplied by constant values.
1421  if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1422    uint64_t BitWidth = getTypeSizeInBits(Ty);
1423    DenseMap<const SCEV *, APInt> M;
1424    SmallVector<const SCEV *, 8> NewOps;
1425    APInt AccumulatedConstant(BitWidth, 0);
1426    if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1427                                     Ops.data(), Ops.size(),
1428                                     APInt(BitWidth, 1), *this)) {
1429      // Some interesting folding opportunity is present, so its worthwhile to
1430      // re-generate the operands list. Group the operands by constant scale,
1431      // to avoid multiplying by the same constant scale multiple times.
1432      std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1433      for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(),
1434           E = NewOps.end(); I != E; ++I)
1435        MulOpLists[M.find(*I)->second].push_back(*I);
1436      // Re-generate the operands list.
1437      Ops.clear();
1438      if (AccumulatedConstant != 0)
1439        Ops.push_back(getConstant(AccumulatedConstant));
1440      for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1441           I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1442        if (I->first != 0)
1443          Ops.push_back(getMulExpr(getConstant(I->first),
1444                                   getAddExpr(I->second)));
1445      if (Ops.empty())
1446        return getIntegerSCEV(0, Ty);
1447      if (Ops.size() == 1)
1448        return Ops[0];
1449      return getAddExpr(Ops);
1450    }
1451  }
1452
1453  // If we are adding something to a multiply expression, make sure the
1454  // something is not already an operand of the multiply.  If so, merge it into
1455  // the multiply.
1456  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1457    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1458    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1459      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1460      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1461        if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
1462          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1463          const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1464          if (Mul->getNumOperands() != 2) {
1465            // If the multiply has more than two operands, we must get the
1466            // Y*Z term.
1467            SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end());
1468            MulOps.erase(MulOps.begin()+MulOp);
1469            InnerMul = getMulExpr(MulOps);
1470          }
1471          const SCEV *One = getIntegerSCEV(1, Ty);
1472          const SCEV *AddOne = getAddExpr(InnerMul, One);
1473          const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]);
1474          if (Ops.size() == 2) return OuterMul;
1475          if (AddOp < Idx) {
1476            Ops.erase(Ops.begin()+AddOp);
1477            Ops.erase(Ops.begin()+Idx-1);
1478          } else {
1479            Ops.erase(Ops.begin()+Idx);
1480            Ops.erase(Ops.begin()+AddOp-1);
1481          }
1482          Ops.push_back(OuterMul);
1483          return getAddExpr(Ops);
1484        }
1485
1486      // Check this multiply against other multiplies being added together.
1487      for (unsigned OtherMulIdx = Idx+1;
1488           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1489           ++OtherMulIdx) {
1490        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1491        // If MulOp occurs in OtherMul, we can fold the two multiplies
1492        // together.
1493        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1494             OMulOp != e; ++OMulOp)
1495          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1496            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1497            const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
1498            if (Mul->getNumOperands() != 2) {
1499              SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1500                                                  Mul->op_end());
1501              MulOps.erase(MulOps.begin()+MulOp);
1502              InnerMul1 = getMulExpr(MulOps);
1503            }
1504            const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1505            if (OtherMul->getNumOperands() != 2) {
1506              SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1507                                                  OtherMul->op_end());
1508              MulOps.erase(MulOps.begin()+OMulOp);
1509              InnerMul2 = getMulExpr(MulOps);
1510            }
1511            const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1512            const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1513            if (Ops.size() == 2) return OuterMul;
1514            Ops.erase(Ops.begin()+Idx);
1515            Ops.erase(Ops.begin()+OtherMulIdx-1);
1516            Ops.push_back(OuterMul);
1517            return getAddExpr(Ops);
1518          }
1519      }
1520    }
1521  }
1522
1523  // If there are any add recurrences in the operands list, see if any other
1524  // added values are loop invariant.  If so, we can fold them into the
1525  // recurrence.
1526  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1527    ++Idx;
1528
1529  // Scan over all recurrences, trying to fold loop invariants into them.
1530  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1531    // Scan all of the other operands to this add and add them to the vector if
1532    // they are loop invariant w.r.t. the recurrence.
1533    SmallVector<const SCEV *, 8> LIOps;
1534    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1535    const Loop *AddRecLoop = AddRec->getLoop();
1536    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1537      if (Ops[i]->isLoopInvariant(AddRecLoop)) {
1538        LIOps.push_back(Ops[i]);
1539        Ops.erase(Ops.begin()+i);
1540        --i; --e;
1541      }
1542
1543    // If we found some loop invariants, fold them into the recurrence.
1544    if (!LIOps.empty()) {
1545      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1546      LIOps.push_back(AddRec->getStart());
1547
1548      SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1549                                             AddRec->op_end());
1550      AddRecOps[0] = getAddExpr(LIOps);
1551
1552      // It's tempting to propagate NUW/NSW flags here, but nuw/nsw addition
1553      // is not associative so this isn't necessarily safe.
1554      const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop);
1555
1556      // If all of the other operands were loop invariant, we are done.
1557      if (Ops.size() == 1) return NewRec;
1558
1559      // Otherwise, add the folded AddRec by the non-liv parts.
1560      for (unsigned i = 0;; ++i)
1561        if (Ops[i] == AddRec) {
1562          Ops[i] = NewRec;
1563          break;
1564        }
1565      return getAddExpr(Ops);
1566    }
1567
1568    // Okay, if there weren't any loop invariants to be folded, check to see if
1569    // there are multiple AddRec's with the same loop induction variable being
1570    // added together.  If so, we can fold them.
1571    for (unsigned OtherIdx = Idx+1;
1572         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1573      if (OtherIdx != Idx) {
1574        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1575        if (AddRecLoop == OtherAddRec->getLoop()) {
1576          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
1577          SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(),
1578                                              AddRec->op_end());
1579          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1580            if (i >= NewOps.size()) {
1581              NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1582                            OtherAddRec->op_end());
1583              break;
1584            }
1585            NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
1586          }
1587          const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRecLoop);
1588
1589          if (Ops.size() == 2) return NewAddRec;
1590
1591          Ops.erase(Ops.begin()+Idx);
1592          Ops.erase(Ops.begin()+OtherIdx-1);
1593          Ops.push_back(NewAddRec);
1594          return getAddExpr(Ops);
1595        }
1596      }
1597
1598    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1599    // next one.
1600  }
1601
1602  // Okay, it looks like we really DO need an add expr.  Check to see if we
1603  // already have one, otherwise create a new one.
1604  FoldingSetNodeID ID;
1605  ID.AddInteger(scAddExpr);
1606  ID.AddInteger(Ops.size());
1607  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1608    ID.AddPointer(Ops[i]);
1609  void *IP = 0;
1610  SCEVAddExpr *S =
1611    static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1612  if (!S) {
1613    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1614    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1615    S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1616                                        O, Ops.size());
1617    UniqueSCEVs.InsertNode(S, IP);
1618  }
1619  if (HasNUW) S->setHasNoUnsignedWrap(true);
1620  if (HasNSW) S->setHasNoSignedWrap(true);
1621  return S;
1622}
1623
1624/// getMulExpr - Get a canonical multiply expression, or something simpler if
1625/// possible.
1626const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1627                                        bool HasNUW, bool HasNSW) {
1628  assert(!Ops.empty() && "Cannot get empty mul!");
1629  if (Ops.size() == 1) return Ops[0];
1630#ifndef NDEBUG
1631  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1632    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1633           getEffectiveSCEVType(Ops[0]->getType()) &&
1634           "SCEVMulExpr operand types don't match!");
1635#endif
1636
1637  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1638  if (!HasNUW && HasNSW) {
1639    bool All = true;
1640    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1641      if (!isKnownNonNegative(Ops[i])) {
1642        All = false;
1643        break;
1644      }
1645    if (All) HasNUW = true;
1646  }
1647
1648  // Sort by complexity, this groups all similar expression types together.
1649  GroupByComplexity(Ops, LI);
1650
1651  // If there are any constants, fold them together.
1652  unsigned Idx = 0;
1653  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1654
1655    // C1*(C2+V) -> C1*C2 + C1*V
1656    if (Ops.size() == 2)
1657      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1658        if (Add->getNumOperands() == 2 &&
1659            isa<SCEVConstant>(Add->getOperand(0)))
1660          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1661                            getMulExpr(LHSC, Add->getOperand(1)));
1662
1663    ++Idx;
1664    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1665      // We found two constants, fold them together!
1666      ConstantInt *Fold = ConstantInt::get(getContext(),
1667                                           LHSC->getValue()->getValue() *
1668                                           RHSC->getValue()->getValue());
1669      Ops[0] = getConstant(Fold);
1670      Ops.erase(Ops.begin()+1);  // Erase the folded element
1671      if (Ops.size() == 1) return Ops[0];
1672      LHSC = cast<SCEVConstant>(Ops[0]);
1673    }
1674
1675    // If we are left with a constant one being multiplied, strip it off.
1676    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1677      Ops.erase(Ops.begin());
1678      --Idx;
1679    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1680      // If we have a multiply of zero, it will always be zero.
1681      return Ops[0];
1682    } else if (Ops[0]->isAllOnesValue()) {
1683      // If we have a mul by -1 of an add, try distributing the -1 among the
1684      // add operands.
1685      if (Ops.size() == 2)
1686        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1687          SmallVector<const SCEV *, 4> NewOps;
1688          bool AnyFolded = false;
1689          for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1690               I != E; ++I) {
1691            const SCEV *Mul = getMulExpr(Ops[0], *I);
1692            if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1693            NewOps.push_back(Mul);
1694          }
1695          if (AnyFolded)
1696            return getAddExpr(NewOps);
1697        }
1698    }
1699
1700    if (Ops.size() == 1)
1701      return Ops[0];
1702  }
1703
1704  // Skip over the add expression until we get to a multiply.
1705  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1706    ++Idx;
1707
1708  // If there are mul operands inline them all into this expression.
1709  if (Idx < Ops.size()) {
1710    bool DeletedMul = false;
1711    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1712      // If we have an mul, expand the mul operands onto the end of the operands
1713      // list.
1714      Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1715      Ops.erase(Ops.begin()+Idx);
1716      DeletedMul = true;
1717    }
1718
1719    // If we deleted at least one mul, we added operands to the end of the list,
1720    // and they are not necessarily sorted.  Recurse to resort and resimplify
1721    // any operands we just acquired.
1722    if (DeletedMul)
1723      return getMulExpr(Ops);
1724  }
1725
1726  // If there are any add recurrences in the operands list, see if any other
1727  // added values are loop invariant.  If so, we can fold them into the
1728  // recurrence.
1729  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1730    ++Idx;
1731
1732  // Scan over all recurrences, trying to fold loop invariants into them.
1733  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1734    // Scan all of the other operands to this mul and add them to the vector if
1735    // they are loop invariant w.r.t. the recurrence.
1736    SmallVector<const SCEV *, 8> LIOps;
1737    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1738    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1739      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1740        LIOps.push_back(Ops[i]);
1741        Ops.erase(Ops.begin()+i);
1742        --i; --e;
1743      }
1744
1745    // If we found some loop invariants, fold them into the recurrence.
1746    if (!LIOps.empty()) {
1747      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1748      SmallVector<const SCEV *, 4> NewOps;
1749      NewOps.reserve(AddRec->getNumOperands());
1750      if (LIOps.size() == 1) {
1751        const SCEV *Scale = LIOps[0];
1752        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1753          NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1754      } else {
1755        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
1756          SmallVector<const SCEV *, 4> MulOps(LIOps.begin(), LIOps.end());
1757          MulOps.push_back(AddRec->getOperand(i));
1758          NewOps.push_back(getMulExpr(MulOps));
1759        }
1760      }
1761
1762      // It's tempting to propagate the NSW flag here, but nsw multiplication
1763      // is not associative so this isn't necessarily safe.
1764      const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(),
1765                                         HasNUW && AddRec->hasNoUnsignedWrap(),
1766                                         /*HasNSW=*/false);
1767
1768      // If all of the other operands were loop invariant, we are done.
1769      if (Ops.size() == 1) return NewRec;
1770
1771      // Otherwise, multiply the folded AddRec by the non-liv parts.
1772      for (unsigned i = 0;; ++i)
1773        if (Ops[i] == AddRec) {
1774          Ops[i] = NewRec;
1775          break;
1776        }
1777      return getMulExpr(Ops);
1778    }
1779
1780    // Okay, if there weren't any loop invariants to be folded, check to see if
1781    // there are multiple AddRec's with the same loop induction variable being
1782    // multiplied together.  If so, we can fold them.
1783    for (unsigned OtherIdx = Idx+1;
1784         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1785      if (OtherIdx != Idx) {
1786        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1787        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1788          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
1789          const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1790          const SCEV *NewStart = getMulExpr(F->getStart(),
1791                                                 G->getStart());
1792          const SCEV *B = F->getStepRecurrence(*this);
1793          const SCEV *D = G->getStepRecurrence(*this);
1794          const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1795                                          getMulExpr(G, B),
1796                                          getMulExpr(B, D));
1797          const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1798                                               F->getLoop());
1799          if (Ops.size() == 2) return NewAddRec;
1800
1801          Ops.erase(Ops.begin()+Idx);
1802          Ops.erase(Ops.begin()+OtherIdx-1);
1803          Ops.push_back(NewAddRec);
1804          return getMulExpr(Ops);
1805        }
1806      }
1807
1808    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1809    // next one.
1810  }
1811
1812  // Okay, it looks like we really DO need an mul expr.  Check to see if we
1813  // already have one, otherwise create a new one.
1814  FoldingSetNodeID ID;
1815  ID.AddInteger(scMulExpr);
1816  ID.AddInteger(Ops.size());
1817  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1818    ID.AddPointer(Ops[i]);
1819  void *IP = 0;
1820  SCEVMulExpr *S =
1821    static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1822  if (!S) {
1823    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1824    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1825    S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1826                                        O, Ops.size());
1827    UniqueSCEVs.InsertNode(S, IP);
1828  }
1829  if (HasNUW) S->setHasNoUnsignedWrap(true);
1830  if (HasNSW) S->setHasNoSignedWrap(true);
1831  return S;
1832}
1833
1834/// getUDivExpr - Get a canonical unsigned division expression, or something
1835/// simpler if possible.
1836const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1837                                         const SCEV *RHS) {
1838  assert(getEffectiveSCEVType(LHS->getType()) ==
1839         getEffectiveSCEVType(RHS->getType()) &&
1840         "SCEVUDivExpr operand types don't match!");
1841
1842  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1843    if (RHSC->getValue()->equalsInt(1))
1844      return LHS;                               // X udiv 1 --> x
1845    // If the denominator is zero, the result of the udiv is undefined. Don't
1846    // try to analyze it, because the resolution chosen here may differ from
1847    // the resolution chosen in other parts of the compiler.
1848    if (!RHSC->getValue()->isZero()) {
1849      // Determine if the division can be folded into the operands of
1850      // its operands.
1851      // TODO: Generalize this to non-constants by using known-bits information.
1852      const Type *Ty = LHS->getType();
1853      unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1854      unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1855      // For non-power-of-two values, effectively round the value up to the
1856      // nearest power of two.
1857      if (!RHSC->getValue()->getValue().isPowerOf2())
1858        ++MaxShiftAmt;
1859      const IntegerType *ExtTy =
1860        IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1861      // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1862      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1863        if (const SCEVConstant *Step =
1864              dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1865          if (!Step->getValue()->getValue()
1866                .urem(RHSC->getValue()->getValue()) &&
1867              getZeroExtendExpr(AR, ExtTy) ==
1868              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1869                            getZeroExtendExpr(Step, ExtTy),
1870                            AR->getLoop())) {
1871            SmallVector<const SCEV *, 4> Operands;
1872            for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1873              Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1874            return getAddRecExpr(Operands, AR->getLoop());
1875          }
1876      // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1877      if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1878        SmallVector<const SCEV *, 4> Operands;
1879        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1880          Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1881        if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1882          // Find an operand that's safely divisible.
1883          for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1884            const SCEV *Op = M->getOperand(i);
1885            const SCEV *Div = getUDivExpr(Op, RHSC);
1886            if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1887              Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1888                                                      M->op_end());
1889              Operands[i] = Div;
1890              return getMulExpr(Operands);
1891            }
1892          }
1893      }
1894      // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1895      if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1896        SmallVector<const SCEV *, 4> Operands;
1897        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1898          Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1899        if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1900          Operands.clear();
1901          for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1902            const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
1903            if (isa<SCEVUDivExpr>(Op) ||
1904                getMulExpr(Op, RHS) != A->getOperand(i))
1905              break;
1906            Operands.push_back(Op);
1907          }
1908          if (Operands.size() == A->getNumOperands())
1909            return getAddExpr(Operands);
1910        }
1911      }
1912
1913      // Fold if both operands are constant.
1914      if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1915        Constant *LHSCV = LHSC->getValue();
1916        Constant *RHSCV = RHSC->getValue();
1917        return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1918                                                                   RHSCV)));
1919      }
1920    }
1921  }
1922
1923  FoldingSetNodeID ID;
1924  ID.AddInteger(scUDivExpr);
1925  ID.AddPointer(LHS);
1926  ID.AddPointer(RHS);
1927  void *IP = 0;
1928  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1929  SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
1930                                             LHS, RHS);
1931  UniqueSCEVs.InsertNode(S, IP);
1932  return S;
1933}
1934
1935
1936/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1937/// Simplify the expression as much as possible.
1938const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
1939                                           const SCEV *Step, const Loop *L,
1940                                           bool HasNUW, bool HasNSW) {
1941  SmallVector<const SCEV *, 4> Operands;
1942  Operands.push_back(Start);
1943  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1944    if (StepChrec->getLoop() == L) {
1945      Operands.insert(Operands.end(), StepChrec->op_begin(),
1946                      StepChrec->op_end());
1947      return getAddRecExpr(Operands, L);
1948    }
1949
1950  Operands.push_back(Step);
1951  return getAddRecExpr(Operands, L, HasNUW, HasNSW);
1952}
1953
1954/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1955/// Simplify the expression as much as possible.
1956const SCEV *
1957ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
1958                               const Loop *L,
1959                               bool HasNUW, bool HasNSW) {
1960  if (Operands.size() == 1) return Operands[0];
1961#ifndef NDEBUG
1962  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1963    assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1964           getEffectiveSCEVType(Operands[0]->getType()) &&
1965           "SCEVAddRecExpr operand types don't match!");
1966#endif
1967
1968  if (Operands.back()->isZero()) {
1969    Operands.pop_back();
1970    return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0}  -->  X
1971  }
1972
1973  // It's tempting to want to call getMaxBackedgeTakenCount count here and
1974  // use that information to infer NUW and NSW flags. However, computing a
1975  // BE count requires calling getAddRecExpr, so we may not yet have a
1976  // meaningful BE count at this point (and if we don't, we'd be stuck
1977  // with a SCEVCouldNotCompute as the cached BE count).
1978
1979  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1980  if (!HasNUW && HasNSW) {
1981    bool All = true;
1982    for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1983      if (!isKnownNonNegative(Operands[i])) {
1984        All = false;
1985        break;
1986      }
1987    if (All) HasNUW = true;
1988  }
1989
1990  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
1991  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
1992    const Loop *NestedLoop = NestedAR->getLoop();
1993    if (L->contains(NestedLoop->getHeader()) ?
1994        (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
1995        (!NestedLoop->contains(L->getHeader()) &&
1996         DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
1997      SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
1998                                                  NestedAR->op_end());
1999      Operands[0] = NestedAR->getStart();
2000      // AddRecs require their operands be loop-invariant with respect to their
2001      // loops. Don't perform this transformation if it would break this
2002      // requirement.
2003      bool AllInvariant = true;
2004      for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2005        if (!Operands[i]->isLoopInvariant(L)) {
2006          AllInvariant = false;
2007          break;
2008        }
2009      if (AllInvariant) {
2010        NestedOperands[0] = getAddRecExpr(Operands, L);
2011        AllInvariant = true;
2012        for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2013          if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
2014            AllInvariant = false;
2015            break;
2016          }
2017        if (AllInvariant)
2018          // Ok, both add recurrences are valid after the transformation.
2019          return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
2020      }
2021      // Reset Operands to its original state.
2022      Operands[0] = NestedAR;
2023    }
2024  }
2025
2026  // Okay, it looks like we really DO need an addrec expr.  Check to see if we
2027  // already have one, otherwise create a new one.
2028  FoldingSetNodeID ID;
2029  ID.AddInteger(scAddRecExpr);
2030  ID.AddInteger(Operands.size());
2031  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2032    ID.AddPointer(Operands[i]);
2033  ID.AddPointer(L);
2034  void *IP = 0;
2035  SCEVAddRecExpr *S =
2036    static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2037  if (!S) {
2038    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2039    std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2040    S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2041                                           O, Operands.size(), L);
2042    UniqueSCEVs.InsertNode(S, IP);
2043  }
2044  if (HasNUW) S->setHasNoUnsignedWrap(true);
2045  if (HasNSW) S->setHasNoSignedWrap(true);
2046  return S;
2047}
2048
2049const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2050                                         const SCEV *RHS) {
2051  SmallVector<const SCEV *, 2> Ops;
2052  Ops.push_back(LHS);
2053  Ops.push_back(RHS);
2054  return getSMaxExpr(Ops);
2055}
2056
2057const SCEV *
2058ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2059  assert(!Ops.empty() && "Cannot get empty smax!");
2060  if (Ops.size() == 1) return Ops[0];
2061#ifndef NDEBUG
2062  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2063    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2064           getEffectiveSCEVType(Ops[0]->getType()) &&
2065           "SCEVSMaxExpr operand types don't match!");
2066#endif
2067
2068  // Sort by complexity, this groups all similar expression types together.
2069  GroupByComplexity(Ops, LI);
2070
2071  // If there are any constants, fold them together.
2072  unsigned Idx = 0;
2073  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2074    ++Idx;
2075    assert(Idx < Ops.size());
2076    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2077      // We found two constants, fold them together!
2078      ConstantInt *Fold = ConstantInt::get(getContext(),
2079                              APIntOps::smax(LHSC->getValue()->getValue(),
2080                                             RHSC->getValue()->getValue()));
2081      Ops[0] = getConstant(Fold);
2082      Ops.erase(Ops.begin()+1);  // Erase the folded element
2083      if (Ops.size() == 1) return Ops[0];
2084      LHSC = cast<SCEVConstant>(Ops[0]);
2085    }
2086
2087    // If we are left with a constant minimum-int, strip it off.
2088    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2089      Ops.erase(Ops.begin());
2090      --Idx;
2091    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2092      // If we have an smax with a constant maximum-int, it will always be
2093      // maximum-int.
2094      return Ops[0];
2095    }
2096
2097    if (Ops.size() == 1) return Ops[0];
2098  }
2099
2100  // Find the first SMax
2101  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2102    ++Idx;
2103
2104  // Check to see if one of the operands is an SMax. If so, expand its operands
2105  // onto our operand list, and recurse to simplify.
2106  if (Idx < Ops.size()) {
2107    bool DeletedSMax = false;
2108    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
2109      Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
2110      Ops.erase(Ops.begin()+Idx);
2111      DeletedSMax = true;
2112    }
2113
2114    if (DeletedSMax)
2115      return getSMaxExpr(Ops);
2116  }
2117
2118  // Okay, check to see if the same value occurs in the operand list twice.  If
2119  // so, delete one.  Since we sorted the list, these values are required to
2120  // be adjacent.
2121  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2122    //  X smax Y smax Y  -->  X smax Y
2123    //  X smax Y         -->  X, if X is always greater than Y
2124    if (Ops[i] == Ops[i+1] ||
2125        isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2126      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2127      --i; --e;
2128    } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
2129      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2130      --i; --e;
2131    }
2132
2133  if (Ops.size() == 1) return Ops[0];
2134
2135  assert(!Ops.empty() && "Reduced smax down to nothing!");
2136
2137  // Okay, it looks like we really DO need an smax expr.  Check to see if we
2138  // already have one, otherwise create a new one.
2139  FoldingSetNodeID ID;
2140  ID.AddInteger(scSMaxExpr);
2141  ID.AddInteger(Ops.size());
2142  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2143    ID.AddPointer(Ops[i]);
2144  void *IP = 0;
2145  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2146  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2147  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2148  SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2149                                             O, Ops.size());
2150  UniqueSCEVs.InsertNode(S, IP);
2151  return S;
2152}
2153
2154const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2155                                         const SCEV *RHS) {
2156  SmallVector<const SCEV *, 2> Ops;
2157  Ops.push_back(LHS);
2158  Ops.push_back(RHS);
2159  return getUMaxExpr(Ops);
2160}
2161
2162const SCEV *
2163ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2164  assert(!Ops.empty() && "Cannot get empty umax!");
2165  if (Ops.size() == 1) return Ops[0];
2166#ifndef NDEBUG
2167  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2168    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2169           getEffectiveSCEVType(Ops[0]->getType()) &&
2170           "SCEVUMaxExpr operand types don't match!");
2171#endif
2172
2173  // Sort by complexity, this groups all similar expression types together.
2174  GroupByComplexity(Ops, LI);
2175
2176  // If there are any constants, fold them together.
2177  unsigned Idx = 0;
2178  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2179    ++Idx;
2180    assert(Idx < Ops.size());
2181    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2182      // We found two constants, fold them together!
2183      ConstantInt *Fold = ConstantInt::get(getContext(),
2184                              APIntOps::umax(LHSC->getValue()->getValue(),
2185                                             RHSC->getValue()->getValue()));
2186      Ops[0] = getConstant(Fold);
2187      Ops.erase(Ops.begin()+1);  // Erase the folded element
2188      if (Ops.size() == 1) return Ops[0];
2189      LHSC = cast<SCEVConstant>(Ops[0]);
2190    }
2191
2192    // If we are left with a constant minimum-int, strip it off.
2193    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2194      Ops.erase(Ops.begin());
2195      --Idx;
2196    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2197      // If we have an umax with a constant maximum-int, it will always be
2198      // maximum-int.
2199      return Ops[0];
2200    }
2201
2202    if (Ops.size() == 1) return Ops[0];
2203  }
2204
2205  // Find the first UMax
2206  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2207    ++Idx;
2208
2209  // Check to see if one of the operands is a UMax. If so, expand its operands
2210  // onto our operand list, and recurse to simplify.
2211  if (Idx < Ops.size()) {
2212    bool DeletedUMax = false;
2213    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
2214      Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
2215      Ops.erase(Ops.begin()+Idx);
2216      DeletedUMax = true;
2217    }
2218
2219    if (DeletedUMax)
2220      return getUMaxExpr(Ops);
2221  }
2222
2223  // Okay, check to see if the same value occurs in the operand list twice.  If
2224  // so, delete one.  Since we sorted the list, these values are required to
2225  // be adjacent.
2226  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2227    //  X umax Y umax Y  -->  X umax Y
2228    //  X umax Y         -->  X, if X is always greater than Y
2229    if (Ops[i] == Ops[i+1] ||
2230        isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2231      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2232      --i; --e;
2233    } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
2234      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2235      --i; --e;
2236    }
2237
2238  if (Ops.size() == 1) return Ops[0];
2239
2240  assert(!Ops.empty() && "Reduced umax down to nothing!");
2241
2242  // Okay, it looks like we really DO need a umax expr.  Check to see if we
2243  // already have one, otherwise create a new one.
2244  FoldingSetNodeID ID;
2245  ID.AddInteger(scUMaxExpr);
2246  ID.AddInteger(Ops.size());
2247  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2248    ID.AddPointer(Ops[i]);
2249  void *IP = 0;
2250  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2251  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2252  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2253  SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2254                                             O, Ops.size());
2255  UniqueSCEVs.InsertNode(S, IP);
2256  return S;
2257}
2258
2259const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2260                                         const SCEV *RHS) {
2261  // ~smax(~x, ~y) == smin(x, y).
2262  return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2263}
2264
2265const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2266                                         const SCEV *RHS) {
2267  // ~umax(~x, ~y) == umin(x, y)
2268  return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2269}
2270
2271const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
2272  // If we have TargetData, we can bypass creating a target-independent
2273  // constant expression and then folding it back into a ConstantInt.
2274  // This is just a compile-time optimization.
2275  if (TD)
2276    return getConstant(TD->getIntPtrType(getContext()),
2277                       TD->getTypeAllocSize(AllocTy));
2278
2279  Constant *C = ConstantExpr::getSizeOf(AllocTy);
2280  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2281    C = ConstantFoldConstantExpression(CE, TD);
2282  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2283  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2284}
2285
2286const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2287  Constant *C = ConstantExpr::getAlignOf(AllocTy);
2288  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2289    C = ConstantFoldConstantExpression(CE, TD);
2290  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2291  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2292}
2293
2294const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2295                                             unsigned FieldNo) {
2296  // If we have TargetData, we can bypass creating a target-independent
2297  // constant expression and then folding it back into a ConstantInt.
2298  // This is just a compile-time optimization.
2299  if (TD)
2300    return getConstant(TD->getIntPtrType(getContext()),
2301                       TD->getStructLayout(STy)->getElementOffset(FieldNo));
2302
2303  Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2304  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2305    C = ConstantFoldConstantExpression(CE, TD);
2306  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2307  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2308}
2309
2310const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2311                                             Constant *FieldNo) {
2312  Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
2313  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2314    C = ConstantFoldConstantExpression(CE, TD);
2315  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
2316  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2317}
2318
2319const SCEV *ScalarEvolution::getUnknown(Value *V) {
2320  // Don't attempt to do anything other than create a SCEVUnknown object
2321  // here.  createSCEV only calls getUnknown after checking for all other
2322  // interesting possibilities, and any other code that calls getUnknown
2323  // is doing so in order to hide a value from SCEV canonicalization.
2324
2325  FoldingSetNodeID ID;
2326  ID.AddInteger(scUnknown);
2327  ID.AddPointer(V);
2328  void *IP = 0;
2329  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2330  SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V);
2331  UniqueSCEVs.InsertNode(S, IP);
2332  return S;
2333}
2334
2335//===----------------------------------------------------------------------===//
2336//            Basic SCEV Analysis and PHI Idiom Recognition Code
2337//
2338
2339/// isSCEVable - Test if values of the given type are analyzable within
2340/// the SCEV framework. This primarily includes integer types, and it
2341/// can optionally include pointer types if the ScalarEvolution class
2342/// has access to target-specific information.
2343bool ScalarEvolution::isSCEVable(const Type *Ty) const {
2344  // Integers and pointers are always SCEVable.
2345  return Ty->isIntegerTy() || Ty->isPointerTy();
2346}
2347
2348/// getTypeSizeInBits - Return the size in bits of the specified type,
2349/// for which isSCEVable must return true.
2350uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
2351  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2352
2353  // If we have a TargetData, use it!
2354  if (TD)
2355    return TD->getTypeSizeInBits(Ty);
2356
2357  // Integer types have fixed sizes.
2358  if (Ty->isIntegerTy())
2359    return Ty->getPrimitiveSizeInBits();
2360
2361  // The only other support type is pointer. Without TargetData, conservatively
2362  // assume pointers are 64-bit.
2363  assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
2364  return 64;
2365}
2366
2367/// getEffectiveSCEVType - Return a type with the same bitwidth as
2368/// the given type and which represents how SCEV will treat the given
2369/// type, for which isSCEVable must return true. For pointer types,
2370/// this is the pointer-sized integer type.
2371const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
2372  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2373
2374  if (Ty->isIntegerTy())
2375    return Ty;
2376
2377  // The only other support type is pointer.
2378  assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
2379  if (TD) return TD->getIntPtrType(getContext());
2380
2381  // Without TargetData, conservatively assume pointers are 64-bit.
2382  return Type::getInt64Ty(getContext());
2383}
2384
2385const SCEV *ScalarEvolution::getCouldNotCompute() {
2386  return &CouldNotCompute;
2387}
2388
2389/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2390/// expression and create a new one.
2391const SCEV *ScalarEvolution::getSCEV(Value *V) {
2392  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
2393
2394  std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V);
2395  if (I != Scalars.end()) return I->second;
2396  const SCEV *S = createSCEV(V);
2397  Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
2398  return S;
2399}
2400
2401/// getIntegerSCEV - Given a SCEVable type, create a constant for the
2402/// specified signed integer value and return a SCEV for the constant.
2403const SCEV *ScalarEvolution::getIntegerSCEV(int64_t Val, const Type *Ty) {
2404  const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
2405  return getConstant(ConstantInt::get(ITy, Val));
2406}
2407
2408/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2409///
2410const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
2411  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2412    return getConstant(
2413               cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
2414
2415  const Type *Ty = V->getType();
2416  Ty = getEffectiveSCEVType(Ty);
2417  return getMulExpr(V,
2418                  getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
2419}
2420
2421/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2422const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
2423  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2424    return getConstant(
2425                cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
2426
2427  const Type *Ty = V->getType();
2428  Ty = getEffectiveSCEVType(Ty);
2429  const SCEV *AllOnes =
2430                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
2431  return getMinusSCEV(AllOnes, V);
2432}
2433
2434/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2435///
2436const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2437                                          const SCEV *RHS) {
2438  // X - Y --> X + -Y
2439  return getAddExpr(LHS, getNegativeSCEV(RHS));
2440}
2441
2442/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2443/// input value to the specified type.  If the type must be extended, it is zero
2444/// extended.
2445const SCEV *
2446ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
2447                                         const Type *Ty) {
2448  const Type *SrcTy = V->getType();
2449  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2450         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2451         "Cannot truncate or zero extend with non-integer arguments!");
2452  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2453    return V;  // No conversion
2454  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2455    return getTruncateExpr(V, Ty);
2456  return getZeroExtendExpr(V, Ty);
2457}
2458
2459/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2460/// input value to the specified type.  If the type must be extended, it is sign
2461/// extended.
2462const SCEV *
2463ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
2464                                         const Type *Ty) {
2465  const Type *SrcTy = V->getType();
2466  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2467         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2468         "Cannot truncate or zero extend with non-integer arguments!");
2469  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2470    return V;  // No conversion
2471  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2472    return getTruncateExpr(V, Ty);
2473  return getSignExtendExpr(V, Ty);
2474}
2475
2476/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2477/// input value to the specified type.  If the type must be extended, it is zero
2478/// extended.  The conversion must not be narrowing.
2479const SCEV *
2480ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
2481  const Type *SrcTy = V->getType();
2482  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2483         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2484         "Cannot noop or zero extend with non-integer arguments!");
2485  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2486         "getNoopOrZeroExtend cannot truncate!");
2487  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2488    return V;  // No conversion
2489  return getZeroExtendExpr(V, Ty);
2490}
2491
2492/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2493/// input value to the specified type.  If the type must be extended, it is sign
2494/// extended.  The conversion must not be narrowing.
2495const SCEV *
2496ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
2497  const Type *SrcTy = V->getType();
2498  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2499         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2500         "Cannot noop or sign extend with non-integer arguments!");
2501  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2502         "getNoopOrSignExtend cannot truncate!");
2503  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2504    return V;  // No conversion
2505  return getSignExtendExpr(V, Ty);
2506}
2507
2508/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2509/// the input value to the specified type. If the type must be extended,
2510/// it is extended with unspecified bits. The conversion must not be
2511/// narrowing.
2512const SCEV *
2513ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
2514  const Type *SrcTy = V->getType();
2515  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2516         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2517         "Cannot noop or any extend with non-integer arguments!");
2518  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2519         "getNoopOrAnyExtend cannot truncate!");
2520  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2521    return V;  // No conversion
2522  return getAnyExtendExpr(V, Ty);
2523}
2524
2525/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2526/// input value to the specified type.  The conversion must not be widening.
2527const SCEV *
2528ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
2529  const Type *SrcTy = V->getType();
2530  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2531         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2532         "Cannot truncate or noop with non-integer arguments!");
2533  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2534         "getTruncateOrNoop cannot extend!");
2535  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2536    return V;  // No conversion
2537  return getTruncateExpr(V, Ty);
2538}
2539
2540/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2541/// the types using zero-extension, and then perform a umax operation
2542/// with them.
2543const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2544                                                        const SCEV *RHS) {
2545  const SCEV *PromotedLHS = LHS;
2546  const SCEV *PromotedRHS = RHS;
2547
2548  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2549    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2550  else
2551    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2552
2553  return getUMaxExpr(PromotedLHS, PromotedRHS);
2554}
2555
2556/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2557/// the types using zero-extension, and then perform a umin operation
2558/// with them.
2559const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2560                                                        const SCEV *RHS) {
2561  const SCEV *PromotedLHS = LHS;
2562  const SCEV *PromotedRHS = RHS;
2563
2564  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2565    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2566  else
2567    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2568
2569  return getUMinExpr(PromotedLHS, PromotedRHS);
2570}
2571
2572/// PushDefUseChildren - Push users of the given Instruction
2573/// onto the given Worklist.
2574static void
2575PushDefUseChildren(Instruction *I,
2576                   SmallVectorImpl<Instruction *> &Worklist) {
2577  // Push the def-use children onto the Worklist stack.
2578  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2579       UI != UE; ++UI)
2580    Worklist.push_back(cast<Instruction>(UI));
2581}
2582
2583/// ForgetSymbolicValue - This looks up computed SCEV values for all
2584/// instructions that depend on the given instruction and removes them from
2585/// the Scalars map if they reference SymName. This is used during PHI
2586/// resolution.
2587void
2588ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
2589  SmallVector<Instruction *, 16> Worklist;
2590  PushDefUseChildren(PN, Worklist);
2591
2592  SmallPtrSet<Instruction *, 8> Visited;
2593  Visited.insert(PN);
2594  while (!Worklist.empty()) {
2595    Instruction *I = Worklist.pop_back_val();
2596    if (!Visited.insert(I)) continue;
2597
2598    std::map<SCEVCallbackVH, const SCEV *>::iterator It =
2599      Scalars.find(static_cast<Value *>(I));
2600    if (It != Scalars.end()) {
2601      // Short-circuit the def-use traversal if the symbolic name
2602      // ceases to appear in expressions.
2603      if (It->second != SymName && !It->second->hasOperand(SymName))
2604        continue;
2605
2606      // SCEVUnknown for a PHI either means that it has an unrecognized
2607      // structure, it's a PHI that's in the progress of being computed
2608      // by createNodeForPHI, or it's a single-value PHI. In the first case,
2609      // additional loop trip count information isn't going to change anything.
2610      // In the second case, createNodeForPHI will perform the necessary
2611      // updates on its own when it gets to that point. In the third, we do
2612      // want to forget the SCEVUnknown.
2613      if (!isa<PHINode>(I) ||
2614          !isa<SCEVUnknown>(It->second) ||
2615          (I != PN && It->second == SymName)) {
2616        ValuesAtScopes.erase(It->second);
2617        Scalars.erase(It);
2618      }
2619    }
2620
2621    PushDefUseChildren(I, Worklist);
2622  }
2623}
2624
2625/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
2626/// a loop header, making it a potential recurrence, or it doesn't.
2627///
2628const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
2629  if (const Loop *L = LI->getLoopFor(PN->getParent()))
2630    if (L->getHeader() == PN->getParent()) {
2631      // The loop may have multiple entrances or multiple exits; we can analyze
2632      // this phi as an addrec if it has a unique entry value and a unique
2633      // backedge value.
2634      Value *BEValueV = 0, *StartValueV = 0;
2635      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2636        Value *V = PN->getIncomingValue(i);
2637        if (L->contains(PN->getIncomingBlock(i))) {
2638          if (!BEValueV) {
2639            BEValueV = V;
2640          } else if (BEValueV != V) {
2641            BEValueV = 0;
2642            break;
2643          }
2644        } else if (!StartValueV) {
2645          StartValueV = V;
2646        } else if (StartValueV != V) {
2647          StartValueV = 0;
2648          break;
2649        }
2650      }
2651      if (BEValueV && StartValueV) {
2652        // While we are analyzing this PHI node, handle its value symbolically.
2653        const SCEV *SymbolicName = getUnknown(PN);
2654        assert(Scalars.find(PN) == Scalars.end() &&
2655               "PHI node already processed?");
2656        Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
2657
2658        // Using this symbolic name for the PHI, analyze the value coming around
2659        // the back-edge.
2660        const SCEV *BEValue = getSCEV(BEValueV);
2661
2662        // NOTE: If BEValue is loop invariant, we know that the PHI node just
2663        // has a special value for the first iteration of the loop.
2664
2665        // If the value coming around the backedge is an add with the symbolic
2666        // value we just inserted, then we found a simple induction variable!
2667        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
2668          // If there is a single occurrence of the symbolic value, replace it
2669          // with a recurrence.
2670          unsigned FoundIndex = Add->getNumOperands();
2671          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2672            if (Add->getOperand(i) == SymbolicName)
2673              if (FoundIndex == e) {
2674                FoundIndex = i;
2675                break;
2676              }
2677
2678          if (FoundIndex != Add->getNumOperands()) {
2679            // Create an add with everything but the specified operand.
2680            SmallVector<const SCEV *, 8> Ops;
2681            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2682              if (i != FoundIndex)
2683                Ops.push_back(Add->getOperand(i));
2684            const SCEV *Accum = getAddExpr(Ops);
2685
2686            // This is not a valid addrec if the step amount is varying each
2687            // loop iteration, but is not itself an addrec in this loop.
2688            if (Accum->isLoopInvariant(L) ||
2689                (isa<SCEVAddRecExpr>(Accum) &&
2690                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
2691              bool HasNUW = false;
2692              bool HasNSW = false;
2693
2694              // If the increment doesn't overflow, then neither the addrec nor
2695              // the post-increment will overflow.
2696              if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2697                if (OBO->hasNoUnsignedWrap())
2698                  HasNUW = true;
2699                if (OBO->hasNoSignedWrap())
2700                  HasNSW = true;
2701              }
2702
2703              const SCEV *StartVal = getSCEV(StartValueV);
2704              const SCEV *PHISCEV =
2705                getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
2706
2707              // Since the no-wrap flags are on the increment, they apply to the
2708              // post-incremented value as well.
2709              if (Accum->isLoopInvariant(L))
2710                (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2711                                    Accum, L, HasNUW, HasNSW);
2712
2713              // Okay, for the entire analysis of this edge we assumed the PHI
2714              // to be symbolic.  We now need to go back and purge all of the
2715              // entries for the scalars that use the symbolic expression.
2716              ForgetSymbolicName(PN, SymbolicName);
2717              Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
2718              return PHISCEV;
2719            }
2720          }
2721        } else if (const SCEVAddRecExpr *AddRec =
2722                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
2723          // Otherwise, this could be a loop like this:
2724          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
2725          // In this case, j = {1,+,1}  and BEValue is j.
2726          // Because the other in-value of i (0) fits the evolution of BEValue
2727          // i really is an addrec evolution.
2728          if (AddRec->getLoop() == L && AddRec->isAffine()) {
2729            const SCEV *StartVal = getSCEV(StartValueV);
2730
2731            // If StartVal = j.start - j.stride, we can use StartVal as the
2732            // initial step of the addrec evolution.
2733            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
2734                                         AddRec->getOperand(1))) {
2735              const SCEV *PHISCEV =
2736                 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
2737
2738              // Okay, for the entire analysis of this edge we assumed the PHI
2739              // to be symbolic.  We now need to go back and purge all of the
2740              // entries for the scalars that use the symbolic expression.
2741              ForgetSymbolicName(PN, SymbolicName);
2742              Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
2743              return PHISCEV;
2744            }
2745          }
2746        }
2747      }
2748    }
2749
2750  // If the PHI has a single incoming value, follow that value, unless the
2751  // PHI's incoming blocks are in a different loop, in which case doing so
2752  // risks breaking LCSSA form. Instcombine would normally zap these, but
2753  // it doesn't have DominatorTree information, so it may miss cases.
2754  if (Value *V = PN->hasConstantValue(DT)) {
2755    bool AllSameLoop = true;
2756    Loop *PNLoop = LI->getLoopFor(PN->getParent());
2757    for (size_t i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2758      if (LI->getLoopFor(PN->getIncomingBlock(i)) != PNLoop) {
2759        AllSameLoop = false;
2760        break;
2761      }
2762    if (AllSameLoop)
2763      return getSCEV(V);
2764  }
2765
2766  // If it's not a loop phi, we can't handle it yet.
2767  return getUnknown(PN);
2768}
2769
2770/// createNodeForGEP - Expand GEP instructions into add and multiply
2771/// operations. This allows them to be analyzed by regular SCEV code.
2772///
2773const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
2774
2775  bool InBounds = GEP->isInBounds();
2776  const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
2777  Value *Base = GEP->getOperand(0);
2778  // Don't attempt to analyze GEPs over unsized objects.
2779  if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2780    return getUnknown(GEP);
2781  const SCEV *TotalOffset = getIntegerSCEV(0, IntPtrTy);
2782  gep_type_iterator GTI = gep_type_begin(GEP);
2783  for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2784                                      E = GEP->op_end();
2785       I != E; ++I) {
2786    Value *Index = *I;
2787    // Compute the (potentially symbolic) offset in bytes for this index.
2788    if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2789      // For a struct, add the member offset.
2790      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2791      TotalOffset = getAddExpr(TotalOffset,
2792                               getOffsetOfExpr(STy, FieldNo),
2793                               /*HasNUW=*/false, /*HasNSW=*/InBounds);
2794    } else {
2795      // For an array, add the element offset, explicitly scaled.
2796      const SCEV *LocalOffset = getSCEV(Index);
2797      // Getelementptr indices are signed.
2798      LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy);
2799      // Lower "inbounds" GEPs to NSW arithmetic.
2800      LocalOffset = getMulExpr(LocalOffset, getSizeOfExpr(*GTI),
2801                               /*HasNUW=*/false, /*HasNSW=*/InBounds);
2802      TotalOffset = getAddExpr(TotalOffset, LocalOffset,
2803                               /*HasNUW=*/false, /*HasNSW=*/InBounds);
2804    }
2805  }
2806  return getAddExpr(getSCEV(Base), TotalOffset,
2807                    /*HasNUW=*/false, /*HasNSW=*/InBounds);
2808}
2809
2810/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2811/// guaranteed to end in (at every loop iteration).  It is, at the same time,
2812/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
2813/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
2814uint32_t
2815ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
2816  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2817    return C->getValue()->getValue().countTrailingZeros();
2818
2819  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
2820    return std::min(GetMinTrailingZeros(T->getOperand()),
2821                    (uint32_t)getTypeSizeInBits(T->getType()));
2822
2823  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
2824    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2825    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2826             getTypeSizeInBits(E->getType()) : OpRes;
2827  }
2828
2829  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
2830    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2831    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2832             getTypeSizeInBits(E->getType()) : OpRes;
2833  }
2834
2835  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
2836    // The result is the min of all operands results.
2837    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2838    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2839      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2840    return MinOpRes;
2841  }
2842
2843  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
2844    // The result is the sum of all operands results.
2845    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2846    uint32_t BitWidth = getTypeSizeInBits(M->getType());
2847    for (unsigned i = 1, e = M->getNumOperands();
2848         SumOpRes != BitWidth && i != e; ++i)
2849      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
2850                          BitWidth);
2851    return SumOpRes;
2852  }
2853
2854  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
2855    // The result is the min of all operands results.
2856    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2857    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2858      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2859    return MinOpRes;
2860  }
2861
2862  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
2863    // The result is the min of all operands results.
2864    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2865    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2866      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2867    return MinOpRes;
2868  }
2869
2870  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
2871    // The result is the min of all operands results.
2872    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2873    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2874      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2875    return MinOpRes;
2876  }
2877
2878  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2879    // For a SCEVUnknown, ask ValueTracking.
2880    unsigned BitWidth = getTypeSizeInBits(U->getType());
2881    APInt Mask = APInt::getAllOnesValue(BitWidth);
2882    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2883    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2884    return Zeros.countTrailingOnes();
2885  }
2886
2887  // SCEVUDivExpr
2888  return 0;
2889}
2890
2891/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2892///
2893ConstantRange
2894ScalarEvolution::getUnsignedRange(const SCEV *S) {
2895
2896  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2897    return ConstantRange(C->getValue()->getValue());
2898
2899  unsigned BitWidth = getTypeSizeInBits(S->getType());
2900  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
2901
2902  // If the value has known zeros, the maximum unsigned value will have those
2903  // known zeros as well.
2904  uint32_t TZ = GetMinTrailingZeros(S);
2905  if (TZ != 0)
2906    ConservativeResult =
2907      ConstantRange(APInt::getMinValue(BitWidth),
2908                    APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
2909
2910  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2911    ConstantRange X = getUnsignedRange(Add->getOperand(0));
2912    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2913      X = X.add(getUnsignedRange(Add->getOperand(i)));
2914    return ConservativeResult.intersectWith(X);
2915  }
2916
2917  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2918    ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2919    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2920      X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
2921    return ConservativeResult.intersectWith(X);
2922  }
2923
2924  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2925    ConstantRange X = getUnsignedRange(SMax->getOperand(0));
2926    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2927      X = X.smax(getUnsignedRange(SMax->getOperand(i)));
2928    return ConservativeResult.intersectWith(X);
2929  }
2930
2931  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2932    ConstantRange X = getUnsignedRange(UMax->getOperand(0));
2933    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2934      X = X.umax(getUnsignedRange(UMax->getOperand(i)));
2935    return ConservativeResult.intersectWith(X);
2936  }
2937
2938  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2939    ConstantRange X = getUnsignedRange(UDiv->getLHS());
2940    ConstantRange Y = getUnsignedRange(UDiv->getRHS());
2941    return ConservativeResult.intersectWith(X.udiv(Y));
2942  }
2943
2944  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2945    ConstantRange X = getUnsignedRange(ZExt->getOperand());
2946    return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
2947  }
2948
2949  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2950    ConstantRange X = getUnsignedRange(SExt->getOperand());
2951    return ConservativeResult.intersectWith(X.signExtend(BitWidth));
2952  }
2953
2954  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2955    ConstantRange X = getUnsignedRange(Trunc->getOperand());
2956    return ConservativeResult.intersectWith(X.truncate(BitWidth));
2957  }
2958
2959  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
2960    // If there's no unsigned wrap, the value will never be less than its
2961    // initial value.
2962    if (AddRec->hasNoUnsignedWrap())
2963      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
2964        if (!C->getValue()->isZero())
2965          ConservativeResult =
2966            ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0));
2967
2968    // TODO: non-affine addrec
2969    if (AddRec->isAffine()) {
2970      const Type *Ty = AddRec->getType();
2971      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
2972      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
2973          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
2974        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
2975
2976        const SCEV *Start = AddRec->getStart();
2977        const SCEV *Step = AddRec->getStepRecurrence(*this);
2978
2979        ConstantRange StartRange = getUnsignedRange(Start);
2980        ConstantRange StepRange = getSignedRange(Step);
2981        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
2982        ConstantRange EndRange =
2983          StartRange.add(MaxBECountRange.multiply(StepRange));
2984
2985        // Check for overflow. This must be done with ConstantRange arithmetic
2986        // because we could be called from within the ScalarEvolution overflow
2987        // checking code.
2988        ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
2989        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
2990        ConstantRange ExtMaxBECountRange =
2991          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
2992        ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
2993        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
2994            ExtEndRange)
2995          return ConservativeResult;
2996
2997        APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
2998                                   EndRange.getUnsignedMin());
2999        APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3000                                   EndRange.getUnsignedMax());
3001        if (Min.isMinValue() && Max.isMaxValue())
3002          return ConservativeResult;
3003        return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
3004      }
3005    }
3006
3007    return ConservativeResult;
3008  }
3009
3010  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3011    // For a SCEVUnknown, ask ValueTracking.
3012    APInt Mask = APInt::getAllOnesValue(BitWidth);
3013    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3014    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
3015    if (Ones == ~Zeros + 1)
3016      return ConservativeResult;
3017    return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
3018  }
3019
3020  return ConservativeResult;
3021}
3022
3023/// getSignedRange - Determine the signed range for a particular SCEV.
3024///
3025ConstantRange
3026ScalarEvolution::getSignedRange(const SCEV *S) {
3027
3028  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3029    return ConstantRange(C->getValue()->getValue());
3030
3031  unsigned BitWidth = getTypeSizeInBits(S->getType());
3032  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3033
3034  // If the value has known zeros, the maximum signed value will have those
3035  // known zeros as well.
3036  uint32_t TZ = GetMinTrailingZeros(S);
3037  if (TZ != 0)
3038    ConservativeResult =
3039      ConstantRange(APInt::getSignedMinValue(BitWidth),
3040                    APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3041
3042  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3043    ConstantRange X = getSignedRange(Add->getOperand(0));
3044    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3045      X = X.add(getSignedRange(Add->getOperand(i)));
3046    return ConservativeResult.intersectWith(X);
3047  }
3048
3049  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3050    ConstantRange X = getSignedRange(Mul->getOperand(0));
3051    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3052      X = X.multiply(getSignedRange(Mul->getOperand(i)));
3053    return ConservativeResult.intersectWith(X);
3054  }
3055
3056  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3057    ConstantRange X = getSignedRange(SMax->getOperand(0));
3058    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3059      X = X.smax(getSignedRange(SMax->getOperand(i)));
3060    return ConservativeResult.intersectWith(X);
3061  }
3062
3063  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3064    ConstantRange X = getSignedRange(UMax->getOperand(0));
3065    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3066      X = X.umax(getSignedRange(UMax->getOperand(i)));
3067    return ConservativeResult.intersectWith(X);
3068  }
3069
3070  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3071    ConstantRange X = getSignedRange(UDiv->getLHS());
3072    ConstantRange Y = getSignedRange(UDiv->getRHS());
3073    return ConservativeResult.intersectWith(X.udiv(Y));
3074  }
3075
3076  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3077    ConstantRange X = getSignedRange(ZExt->getOperand());
3078    return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
3079  }
3080
3081  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3082    ConstantRange X = getSignedRange(SExt->getOperand());
3083    return ConservativeResult.intersectWith(X.signExtend(BitWidth));
3084  }
3085
3086  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3087    ConstantRange X = getSignedRange(Trunc->getOperand());
3088    return ConservativeResult.intersectWith(X.truncate(BitWidth));
3089  }
3090
3091  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3092    // If there's no signed wrap, and all the operands have the same sign or
3093    // zero, the value won't ever change sign.
3094    if (AddRec->hasNoSignedWrap()) {
3095      bool AllNonNeg = true;
3096      bool AllNonPos = true;
3097      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3098        if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3099        if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3100      }
3101      if (AllNonNeg)
3102        ConservativeResult = ConservativeResult.intersectWith(
3103          ConstantRange(APInt(BitWidth, 0),
3104                        APInt::getSignedMinValue(BitWidth)));
3105      else if (AllNonPos)
3106        ConservativeResult = ConservativeResult.intersectWith(
3107          ConstantRange(APInt::getSignedMinValue(BitWidth),
3108                        APInt(BitWidth, 1)));
3109    }
3110
3111    // TODO: non-affine addrec
3112    if (AddRec->isAffine()) {
3113      const Type *Ty = AddRec->getType();
3114      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3115      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3116          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3117        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3118
3119        const SCEV *Start = AddRec->getStart();
3120        const SCEV *Step = AddRec->getStepRecurrence(*this);
3121
3122        ConstantRange StartRange = getSignedRange(Start);
3123        ConstantRange StepRange = getSignedRange(Step);
3124        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3125        ConstantRange EndRange =
3126          StartRange.add(MaxBECountRange.multiply(StepRange));
3127
3128        // Check for overflow. This must be done with ConstantRange arithmetic
3129        // because we could be called from within the ScalarEvolution overflow
3130        // checking code.
3131        ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3132        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3133        ConstantRange ExtMaxBECountRange =
3134          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3135        ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3136        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3137            ExtEndRange)
3138          return ConservativeResult;
3139
3140        APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3141                                   EndRange.getSignedMin());
3142        APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3143                                   EndRange.getSignedMax());
3144        if (Min.isMinSignedValue() && Max.isMaxSignedValue())
3145          return ConservativeResult;
3146        return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
3147      }
3148    }
3149
3150    return ConservativeResult;
3151  }
3152
3153  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3154    // For a SCEVUnknown, ask ValueTracking.
3155    if (!U->getValue()->getType()->isIntegerTy() && !TD)
3156      return ConservativeResult;
3157    unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3158    if (NS == 1)
3159      return ConservativeResult;
3160    return ConservativeResult.intersectWith(
3161      ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
3162                    APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1));
3163  }
3164
3165  return ConservativeResult;
3166}
3167
3168/// createSCEV - We know that there is no SCEV for the specified value.
3169/// Analyze the expression.
3170///
3171const SCEV *ScalarEvolution::createSCEV(Value *V) {
3172  if (!isSCEVable(V->getType()))
3173    return getUnknown(V);
3174
3175  unsigned Opcode = Instruction::UserOp1;
3176  if (Instruction *I = dyn_cast<Instruction>(V)) {
3177    Opcode = I->getOpcode();
3178
3179    // Don't attempt to analyze instructions in blocks that aren't
3180    // reachable. Such instructions don't matter, and they aren't required
3181    // to obey basic rules for definitions dominating uses which this
3182    // analysis depends on.
3183    if (!DT->isReachableFromEntry(I->getParent()))
3184      return getUnknown(V);
3185  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
3186    Opcode = CE->getOpcode();
3187  else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3188    return getConstant(CI);
3189  else if (isa<ConstantPointerNull>(V))
3190    return getIntegerSCEV(0, V->getType());
3191  else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3192    return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
3193  else
3194    return getUnknown(V);
3195
3196  Operator *U = cast<Operator>(V);
3197  switch (Opcode) {
3198  case Instruction::Add:
3199    // Don't transfer the NSW and NUW bits from the Add instruction to the
3200    // Add expression, because the Instruction may be guarded by control
3201    // flow and the no-overflow bits may not be valid for the expression in
3202    // any context.
3203    return getAddExpr(getSCEV(U->getOperand(0)),
3204                      getSCEV(U->getOperand(1)));
3205  case Instruction::Mul:
3206    // Don't transfer the NSW and NUW bits from the Mul instruction to the
3207    // Mul expression, as with Add.
3208    return getMulExpr(getSCEV(U->getOperand(0)),
3209                      getSCEV(U->getOperand(1)));
3210  case Instruction::UDiv:
3211    return getUDivExpr(getSCEV(U->getOperand(0)),
3212                       getSCEV(U->getOperand(1)));
3213  case Instruction::Sub:
3214    return getMinusSCEV(getSCEV(U->getOperand(0)),
3215                        getSCEV(U->getOperand(1)));
3216  case Instruction::And:
3217    // For an expression like x&255 that merely masks off the high bits,
3218    // use zext(trunc(x)) as the SCEV expression.
3219    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3220      if (CI->isNullValue())
3221        return getSCEV(U->getOperand(1));
3222      if (CI->isAllOnesValue())
3223        return getSCEV(U->getOperand(0));
3224      const APInt &A = CI->getValue();
3225
3226      // Instcombine's ShrinkDemandedConstant may strip bits out of
3227      // constants, obscuring what would otherwise be a low-bits mask.
3228      // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3229      // knew about to reconstruct a low-bits mask value.
3230      unsigned LZ = A.countLeadingZeros();
3231      unsigned BitWidth = A.getBitWidth();
3232      APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3233      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3234      ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3235
3236      APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3237
3238      if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
3239        return
3240          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
3241                                IntegerType::get(getContext(), BitWidth - LZ)),
3242                            U->getType());
3243    }
3244    break;
3245
3246  case Instruction::Or:
3247    // If the RHS of the Or is a constant, we may have something like:
3248    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
3249    // optimizations will transparently handle this case.
3250    //
3251    // In order for this transformation to be safe, the LHS must be of the
3252    // form X*(2^n) and the Or constant must be less than 2^n.
3253    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3254      const SCEV *LHS = getSCEV(U->getOperand(0));
3255      const APInt &CIVal = CI->getValue();
3256      if (GetMinTrailingZeros(LHS) >=
3257          (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3258        // Build a plain add SCEV.
3259        const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3260        // If the LHS of the add was an addrec and it has no-wrap flags,
3261        // transfer the no-wrap flags, since an or won't introduce a wrap.
3262        if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3263          const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3264          if (OldAR->hasNoUnsignedWrap())
3265            const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3266          if (OldAR->hasNoSignedWrap())
3267            const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3268        }
3269        return S;
3270      }
3271    }
3272    break;
3273  case Instruction::Xor:
3274    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3275      // If the RHS of the xor is a signbit, then this is just an add.
3276      // Instcombine turns add of signbit into xor as a strength reduction step.
3277      if (CI->getValue().isSignBit())
3278        return getAddExpr(getSCEV(U->getOperand(0)),
3279                          getSCEV(U->getOperand(1)));
3280
3281      // If the RHS of xor is -1, then this is a not operation.
3282      if (CI->isAllOnesValue())
3283        return getNotSCEV(getSCEV(U->getOperand(0)));
3284
3285      // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3286      // This is a variant of the check for xor with -1, and it handles
3287      // the case where instcombine has trimmed non-demanded bits out
3288      // of an xor with -1.
3289      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3290        if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3291          if (BO->getOpcode() == Instruction::And &&
3292              LCI->getValue() == CI->getValue())
3293            if (const SCEVZeroExtendExpr *Z =
3294                  dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
3295              const Type *UTy = U->getType();
3296              const SCEV *Z0 = Z->getOperand();
3297              const Type *Z0Ty = Z0->getType();
3298              unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3299
3300              // If C is a low-bits mask, the zero extend is serving to
3301              // mask off the high bits. Complement the operand and
3302              // re-apply the zext.
3303              if (APIntOps::isMask(Z0TySize, CI->getValue()))
3304                return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3305
3306              // If C is a single bit, it may be in the sign-bit position
3307              // before the zero-extend. In this case, represent the xor
3308              // using an add, which is equivalent, and re-apply the zext.
3309              APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3310              if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3311                  Trunc.isSignBit())
3312                return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3313                                         UTy);
3314            }
3315    }
3316    break;
3317
3318  case Instruction::Shl:
3319    // Turn shift left of a constant amount into a multiply.
3320    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3321      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3322
3323      // If the shift count is not less than the bitwidth, the result of
3324      // the shift is undefined. Don't try to analyze it, because the
3325      // resolution chosen here may differ from the resolution chosen in
3326      // other parts of the compiler.
3327      if (SA->getValue().uge(BitWidth))
3328        break;
3329
3330      Constant *X = ConstantInt::get(getContext(),
3331        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3332      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3333    }
3334    break;
3335
3336  case Instruction::LShr:
3337    // Turn logical shift right of a constant into a unsigned divide.
3338    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3339      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3340
3341      // If the shift count is not less than the bitwidth, the result of
3342      // the shift is undefined. Don't try to analyze it, because the
3343      // resolution chosen here may differ from the resolution chosen in
3344      // other parts of the compiler.
3345      if (SA->getValue().uge(BitWidth))
3346        break;
3347
3348      Constant *X = ConstantInt::get(getContext(),
3349        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3350      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3351    }
3352    break;
3353
3354  case Instruction::AShr:
3355    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3356    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
3357      if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
3358        if (L->getOpcode() == Instruction::Shl &&
3359            L->getOperand(1) == U->getOperand(1)) {
3360          uint64_t BitWidth = getTypeSizeInBits(U->getType());
3361
3362          // If the shift count is not less than the bitwidth, the result of
3363          // the shift is undefined. Don't try to analyze it, because the
3364          // resolution chosen here may differ from the resolution chosen in
3365          // other parts of the compiler.
3366          if (CI->getValue().uge(BitWidth))
3367            break;
3368
3369          uint64_t Amt = BitWidth - CI->getZExtValue();
3370          if (Amt == BitWidth)
3371            return getSCEV(L->getOperand(0));       // shift by zero --> noop
3372          return
3373            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
3374                                              IntegerType::get(getContext(),
3375                                                               Amt)),
3376                              U->getType());
3377        }
3378    break;
3379
3380  case Instruction::Trunc:
3381    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
3382
3383  case Instruction::ZExt:
3384    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3385
3386  case Instruction::SExt:
3387    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3388
3389  case Instruction::BitCast:
3390    // BitCasts are no-op casts so we just eliminate the cast.
3391    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
3392      return getSCEV(U->getOperand(0));
3393    break;
3394
3395  // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3396  // lead to pointer expressions which cannot safely be expanded to GEPs,
3397  // because ScalarEvolution doesn't respect the GEP aliasing rules when
3398  // simplifying integer expressions.
3399
3400  case Instruction::GetElementPtr:
3401    return createNodeForGEP(cast<GEPOperator>(U));
3402
3403  case Instruction::PHI:
3404    return createNodeForPHI(cast<PHINode>(U));
3405
3406  case Instruction::Select:
3407    // This could be a smax or umax that was lowered earlier.
3408    // Try to recover it.
3409    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3410      Value *LHS = ICI->getOperand(0);
3411      Value *RHS = ICI->getOperand(1);
3412      switch (ICI->getPredicate()) {
3413      case ICmpInst::ICMP_SLT:
3414      case ICmpInst::ICMP_SLE:
3415        std::swap(LHS, RHS);
3416        // fall through
3417      case ICmpInst::ICMP_SGT:
3418      case ICmpInst::ICMP_SGE:
3419        // a >s b ? a+x : b+x  ->  smax(a, b)+x
3420        // a >s b ? b+x : a+x  ->  smin(a, b)+x
3421        if (LHS->getType() == U->getType()) {
3422          const SCEV *LS = getSCEV(LHS);
3423          const SCEV *RS = getSCEV(RHS);
3424          const SCEV *LA = getSCEV(U->getOperand(1));
3425          const SCEV *RA = getSCEV(U->getOperand(2));
3426          const SCEV *LDiff = getMinusSCEV(LA, LS);
3427          const SCEV *RDiff = getMinusSCEV(RA, RS);
3428          if (LDiff == RDiff)
3429            return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3430          LDiff = getMinusSCEV(LA, RS);
3431          RDiff = getMinusSCEV(RA, LS);
3432          if (LDiff == RDiff)
3433            return getAddExpr(getSMinExpr(LS, RS), LDiff);
3434        }
3435        break;
3436      case ICmpInst::ICMP_ULT:
3437      case ICmpInst::ICMP_ULE:
3438        std::swap(LHS, RHS);
3439        // fall through
3440      case ICmpInst::ICMP_UGT:
3441      case ICmpInst::ICMP_UGE:
3442        // a >u b ? a+x : b+x  ->  umax(a, b)+x
3443        // a >u b ? b+x : a+x  ->  umin(a, b)+x
3444        if (LHS->getType() == U->getType()) {
3445          const SCEV *LS = getSCEV(LHS);
3446          const SCEV *RS = getSCEV(RHS);
3447          const SCEV *LA = getSCEV(U->getOperand(1));
3448          const SCEV *RA = getSCEV(U->getOperand(2));
3449          const SCEV *LDiff = getMinusSCEV(LA, LS);
3450          const SCEV *RDiff = getMinusSCEV(RA, RS);
3451          if (LDiff == RDiff)
3452            return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3453          LDiff = getMinusSCEV(LA, RS);
3454          RDiff = getMinusSCEV(RA, LS);
3455          if (LDiff == RDiff)
3456            return getAddExpr(getUMinExpr(LS, RS), LDiff);
3457        }
3458        break;
3459      case ICmpInst::ICMP_NE:
3460        // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
3461        if (LHS->getType() == U->getType() &&
3462            isa<ConstantInt>(RHS) &&
3463            cast<ConstantInt>(RHS)->isZero()) {
3464          const SCEV *One = getConstant(LHS->getType(), 1);
3465          const SCEV *LS = getSCEV(LHS);
3466          const SCEV *LA = getSCEV(U->getOperand(1));
3467          const SCEV *RA = getSCEV(U->getOperand(2));
3468          const SCEV *LDiff = getMinusSCEV(LA, LS);
3469          const SCEV *RDiff = getMinusSCEV(RA, One);
3470          if (LDiff == RDiff)
3471            return getAddExpr(getUMaxExpr(LS, One), LDiff);
3472        }
3473        break;
3474      case ICmpInst::ICMP_EQ:
3475        // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
3476        if (LHS->getType() == U->getType() &&
3477            isa<ConstantInt>(RHS) &&
3478            cast<ConstantInt>(RHS)->isZero()) {
3479          const SCEV *One = getConstant(LHS->getType(), 1);
3480          const SCEV *LS = getSCEV(LHS);
3481          const SCEV *LA = getSCEV(U->getOperand(1));
3482          const SCEV *RA = getSCEV(U->getOperand(2));
3483          const SCEV *LDiff = getMinusSCEV(LA, One);
3484          const SCEV *RDiff = getMinusSCEV(RA, LS);
3485          if (LDiff == RDiff)
3486            return getAddExpr(getUMaxExpr(LS, One), LDiff);
3487        }
3488        break;
3489      default:
3490        break;
3491      }
3492    }
3493
3494  default: // We cannot analyze this expression.
3495    break;
3496  }
3497
3498  return getUnknown(V);
3499}
3500
3501
3502
3503//===----------------------------------------------------------------------===//
3504//                   Iteration Count Computation Code
3505//
3506
3507/// getBackedgeTakenCount - If the specified loop has a predictable
3508/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3509/// object. The backedge-taken count is the number of times the loop header
3510/// will be branched to from within the loop. This is one less than the
3511/// trip count of the loop, since it doesn't count the first iteration,
3512/// when the header is branched to from outside the loop.
3513///
3514/// Note that it is not valid to call this method on a loop without a
3515/// loop-invariant backedge-taken count (see
3516/// hasLoopInvariantBackedgeTakenCount).
3517///
3518const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
3519  return getBackedgeTakenInfo(L).Exact;
3520}
3521
3522/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3523/// return the least SCEV value that is known never to be less than the
3524/// actual backedge taken count.
3525const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
3526  return getBackedgeTakenInfo(L).Max;
3527}
3528
3529/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3530/// onto the given Worklist.
3531static void
3532PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3533  BasicBlock *Header = L->getHeader();
3534
3535  // Push all Loop-header PHIs onto the Worklist stack.
3536  for (BasicBlock::iterator I = Header->begin();
3537       PHINode *PN = dyn_cast<PHINode>(I); ++I)
3538    Worklist.push_back(PN);
3539}
3540
3541const ScalarEvolution::BackedgeTakenInfo &
3542ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
3543  // Initially insert a CouldNotCompute for this loop. If the insertion
3544  // succeeds, proceed to actually compute a backedge-taken count and
3545  // update the value. The temporary CouldNotCompute value tells SCEV
3546  // code elsewhere that it shouldn't attempt to request a new
3547  // backedge-taken count, which could result in infinite recursion.
3548  std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
3549    BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3550  if (Pair.second) {
3551    BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3552    if (BECount.Exact != getCouldNotCompute()) {
3553      assert(BECount.Exact->isLoopInvariant(L) &&
3554             BECount.Max->isLoopInvariant(L) &&
3555             "Computed backedge-taken count isn't loop invariant for loop!");
3556      ++NumTripCountsComputed;
3557
3558      // Update the value in the map.
3559      Pair.first->second = BECount;
3560    } else {
3561      if (BECount.Max != getCouldNotCompute())
3562        // Update the value in the map.
3563        Pair.first->second = BECount;
3564      if (isa<PHINode>(L->getHeader()->begin()))
3565        // Only count loops that have phi nodes as not being computable.
3566        ++NumTripCountsNotComputed;
3567    }
3568
3569    // Now that we know more about the trip count for this loop, forget any
3570    // existing SCEV values for PHI nodes in this loop since they are only
3571    // conservative estimates made without the benefit of trip count
3572    // information. This is similar to the code in forgetLoop, except that
3573    // it handles SCEVUnknown PHI nodes specially.
3574    if (BECount.hasAnyInfo()) {
3575      SmallVector<Instruction *, 16> Worklist;
3576      PushLoopPHIs(L, Worklist);
3577
3578      SmallPtrSet<Instruction *, 8> Visited;
3579      while (!Worklist.empty()) {
3580        Instruction *I = Worklist.pop_back_val();
3581        if (!Visited.insert(I)) continue;
3582
3583        std::map<SCEVCallbackVH, const SCEV *>::iterator It =
3584          Scalars.find(static_cast<Value *>(I));
3585        if (It != Scalars.end()) {
3586          // SCEVUnknown for a PHI either means that it has an unrecognized
3587          // structure, or it's a PHI that's in the progress of being computed
3588          // by createNodeForPHI.  In the former case, additional loop trip
3589          // count information isn't going to change anything. In the later
3590          // case, createNodeForPHI will perform the necessary updates on its
3591          // own when it gets to that point.
3592          if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
3593            ValuesAtScopes.erase(It->second);
3594            Scalars.erase(It);
3595          }
3596          if (PHINode *PN = dyn_cast<PHINode>(I))
3597            ConstantEvolutionLoopExitValue.erase(PN);
3598        }
3599
3600        PushDefUseChildren(I, Worklist);
3601      }
3602    }
3603  }
3604  return Pair.first->second;
3605}
3606
3607/// forgetLoop - This method should be called by the client when it has
3608/// changed a loop in a way that may effect ScalarEvolution's ability to
3609/// compute a trip count, or if the loop is deleted.
3610void ScalarEvolution::forgetLoop(const Loop *L) {
3611  // Drop any stored trip count value.
3612  BackedgeTakenCounts.erase(L);
3613
3614  // Drop information about expressions based on loop-header PHIs.
3615  SmallVector<Instruction *, 16> Worklist;
3616  PushLoopPHIs(L, Worklist);
3617
3618  SmallPtrSet<Instruction *, 8> Visited;
3619  while (!Worklist.empty()) {
3620    Instruction *I = Worklist.pop_back_val();
3621    if (!Visited.insert(I)) continue;
3622
3623    std::map<SCEVCallbackVH, const SCEV *>::iterator It =
3624      Scalars.find(static_cast<Value *>(I));
3625    if (It != Scalars.end()) {
3626      ValuesAtScopes.erase(It->second);
3627      Scalars.erase(It);
3628      if (PHINode *PN = dyn_cast<PHINode>(I))
3629        ConstantEvolutionLoopExitValue.erase(PN);
3630    }
3631
3632    PushDefUseChildren(I, Worklist);
3633  }
3634}
3635
3636/// forgetValue - This method should be called by the client when it has
3637/// changed a value in a way that may effect its value, or which may
3638/// disconnect it from a def-use chain linking it to a loop.
3639void ScalarEvolution::forgetValue(Value *V) {
3640  Instruction *I = dyn_cast<Instruction>(V);
3641  if (!I) return;
3642
3643  // Drop information about expressions based on loop-header PHIs.
3644  SmallVector<Instruction *, 16> Worklist;
3645  Worklist.push_back(I);
3646
3647  SmallPtrSet<Instruction *, 8> Visited;
3648  while (!Worklist.empty()) {
3649    I = Worklist.pop_back_val();
3650    if (!Visited.insert(I)) continue;
3651
3652    std::map<SCEVCallbackVH, const SCEV *>::iterator It =
3653      Scalars.find(static_cast<Value *>(I));
3654    if (It != Scalars.end()) {
3655      ValuesAtScopes.erase(It->second);
3656      Scalars.erase(It);
3657      if (PHINode *PN = dyn_cast<PHINode>(I))
3658        ConstantEvolutionLoopExitValue.erase(PN);
3659    }
3660
3661    PushDefUseChildren(I, Worklist);
3662  }
3663}
3664
3665/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3666/// of the specified loop will execute.
3667ScalarEvolution::BackedgeTakenInfo
3668ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
3669  SmallVector<BasicBlock *, 8> ExitingBlocks;
3670  L->getExitingBlocks(ExitingBlocks);
3671
3672  // Examine all exits and pick the most conservative values.
3673  const SCEV *BECount = getCouldNotCompute();
3674  const SCEV *MaxBECount = getCouldNotCompute();
3675  bool CouldNotComputeBECount = false;
3676  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3677    BackedgeTakenInfo NewBTI =
3678      ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
3679
3680    if (NewBTI.Exact == getCouldNotCompute()) {
3681      // We couldn't compute an exact value for this exit, so
3682      // we won't be able to compute an exact value for the loop.
3683      CouldNotComputeBECount = true;
3684      BECount = getCouldNotCompute();
3685    } else if (!CouldNotComputeBECount) {
3686      if (BECount == getCouldNotCompute())
3687        BECount = NewBTI.Exact;
3688      else
3689        BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
3690    }
3691    if (MaxBECount == getCouldNotCompute())
3692      MaxBECount = NewBTI.Max;
3693    else if (NewBTI.Max != getCouldNotCompute())
3694      MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
3695  }
3696
3697  return BackedgeTakenInfo(BECount, MaxBECount);
3698}
3699
3700/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3701/// of the specified loop will execute if it exits via the specified block.
3702ScalarEvolution::BackedgeTakenInfo
3703ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3704                                                   BasicBlock *ExitingBlock) {
3705
3706  // Okay, we've chosen an exiting block.  See what condition causes us to
3707  // exit at this block.
3708  //
3709  // FIXME: we should be able to handle switch instructions (with a single exit)
3710  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
3711  if (ExitBr == 0) return getCouldNotCompute();
3712  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
3713
3714  // At this point, we know we have a conditional branch that determines whether
3715  // the loop is exited.  However, we don't know if the branch is executed each
3716  // time through the loop.  If not, then the execution count of the branch will
3717  // not be equal to the trip count of the loop.
3718  //
3719  // Currently we check for this by checking to see if the Exit branch goes to
3720  // the loop header.  If so, we know it will always execute the same number of
3721  // times as the loop.  We also handle the case where the exit block *is* the
3722  // loop header.  This is common for un-rotated loops.
3723  //
3724  // If both of those tests fail, walk up the unique predecessor chain to the
3725  // header, stopping if there is an edge that doesn't exit the loop. If the
3726  // header is reached, the execution count of the branch will be equal to the
3727  // trip count of the loop.
3728  //
3729  //  More extensive analysis could be done to handle more cases here.
3730  //
3731  if (ExitBr->getSuccessor(0) != L->getHeader() &&
3732      ExitBr->getSuccessor(1) != L->getHeader() &&
3733      ExitBr->getParent() != L->getHeader()) {
3734    // The simple checks failed, try climbing the unique predecessor chain
3735    // up to the header.
3736    bool Ok = false;
3737    for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3738      BasicBlock *Pred = BB->getUniquePredecessor();
3739      if (!Pred)
3740        return getCouldNotCompute();
3741      TerminatorInst *PredTerm = Pred->getTerminator();
3742      for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3743        BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3744        if (PredSucc == BB)
3745          continue;
3746        // If the predecessor has a successor that isn't BB and isn't
3747        // outside the loop, assume the worst.
3748        if (L->contains(PredSucc))
3749          return getCouldNotCompute();
3750      }
3751      if (Pred == L->getHeader()) {
3752        Ok = true;
3753        break;
3754      }
3755      BB = Pred;
3756    }
3757    if (!Ok)
3758      return getCouldNotCompute();
3759  }
3760
3761  // Proceed to the next level to examine the exit condition expression.
3762  return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3763                                               ExitBr->getSuccessor(0),
3764                                               ExitBr->getSuccessor(1));
3765}
3766
3767/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3768/// backedge of the specified loop will execute if its exit condition
3769/// were a conditional branch of ExitCond, TBB, and FBB.
3770ScalarEvolution::BackedgeTakenInfo
3771ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3772                                                       Value *ExitCond,
3773                                                       BasicBlock *TBB,
3774                                                       BasicBlock *FBB) {
3775  // Check if the controlling expression for this loop is an And or Or.
3776  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3777    if (BO->getOpcode() == Instruction::And) {
3778      // Recurse on the operands of the and.
3779      BackedgeTakenInfo BTI0 =
3780        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3781      BackedgeTakenInfo BTI1 =
3782        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3783      const SCEV *BECount = getCouldNotCompute();
3784      const SCEV *MaxBECount = getCouldNotCompute();
3785      if (L->contains(TBB)) {
3786        // Both conditions must be true for the loop to continue executing.
3787        // Choose the less conservative count.
3788        if (BTI0.Exact == getCouldNotCompute() ||
3789            BTI1.Exact == getCouldNotCompute())
3790          BECount = getCouldNotCompute();
3791        else
3792          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3793        if (BTI0.Max == getCouldNotCompute())
3794          MaxBECount = BTI1.Max;
3795        else if (BTI1.Max == getCouldNotCompute())
3796          MaxBECount = BTI0.Max;
3797        else
3798          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3799      } else {
3800        // Both conditions must be true for the loop to exit.
3801        assert(L->contains(FBB) && "Loop block has no successor in loop!");
3802        if (BTI0.Exact != getCouldNotCompute() &&
3803            BTI1.Exact != getCouldNotCompute())
3804          BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3805        if (BTI0.Max != getCouldNotCompute() &&
3806            BTI1.Max != getCouldNotCompute())
3807          MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3808      }
3809
3810      return BackedgeTakenInfo(BECount, MaxBECount);
3811    }
3812    if (BO->getOpcode() == Instruction::Or) {
3813      // Recurse on the operands of the or.
3814      BackedgeTakenInfo BTI0 =
3815        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3816      BackedgeTakenInfo BTI1 =
3817        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3818      const SCEV *BECount = getCouldNotCompute();
3819      const SCEV *MaxBECount = getCouldNotCompute();
3820      if (L->contains(FBB)) {
3821        // Both conditions must be false for the loop to continue executing.
3822        // Choose the less conservative count.
3823        if (BTI0.Exact == getCouldNotCompute() ||
3824            BTI1.Exact == getCouldNotCompute())
3825          BECount = getCouldNotCompute();
3826        else
3827          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3828        if (BTI0.Max == getCouldNotCompute())
3829          MaxBECount = BTI1.Max;
3830        else if (BTI1.Max == getCouldNotCompute())
3831          MaxBECount = BTI0.Max;
3832        else
3833          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3834      } else {
3835        // Both conditions must be false for the loop to exit.
3836        assert(L->contains(TBB) && "Loop block has no successor in loop!");
3837        if (BTI0.Exact != getCouldNotCompute() &&
3838            BTI1.Exact != getCouldNotCompute())
3839          BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3840        if (BTI0.Max != getCouldNotCompute() &&
3841            BTI1.Max != getCouldNotCompute())
3842          MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3843      }
3844
3845      return BackedgeTakenInfo(BECount, MaxBECount);
3846    }
3847  }
3848
3849  // With an icmp, it may be feasible to compute an exact backedge-taken count.
3850  // Proceed to the next level to examine the icmp.
3851  if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3852    return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
3853
3854  // Check for a constant condition. These are normally stripped out by
3855  // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
3856  // preserve the CFG and is temporarily leaving constant conditions
3857  // in place.
3858  if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
3859    if (L->contains(FBB) == !CI->getZExtValue())
3860      // The backedge is always taken.
3861      return getCouldNotCompute();
3862    else
3863      // The backedge is never taken.
3864      return getIntegerSCEV(0, CI->getType());
3865  }
3866
3867  // If it's not an integer or pointer comparison then compute it the hard way.
3868  return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3869}
3870
3871/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
3872/// backedge of the specified loop will execute if its exit condition
3873/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
3874ScalarEvolution::BackedgeTakenInfo
3875ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
3876                                                           ICmpInst *ExitCond,
3877                                                           BasicBlock *TBB,
3878                                                           BasicBlock *FBB) {
3879
3880  // If the condition was exit on true, convert the condition to exit on false
3881  ICmpInst::Predicate Cond;
3882  if (!L->contains(FBB))
3883    Cond = ExitCond->getPredicate();
3884  else
3885    Cond = ExitCond->getInversePredicate();
3886
3887  // Handle common loops like: for (X = "string"; *X; ++X)
3888  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
3889    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
3890      BackedgeTakenInfo ItCnt =
3891        ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
3892      if (ItCnt.hasAnyInfo())
3893        return ItCnt;
3894    }
3895
3896  const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
3897  const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
3898
3899  // Try to evaluate any dependencies out of the loop.
3900  LHS = getSCEVAtScope(LHS, L);
3901  RHS = getSCEVAtScope(RHS, L);
3902
3903  // At this point, we would like to compute how many iterations of the
3904  // loop the predicate will return true for these inputs.
3905  if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
3906    // If there is a loop-invariant, force it into the RHS.
3907    std::swap(LHS, RHS);
3908    Cond = ICmpInst::getSwappedPredicate(Cond);
3909  }
3910
3911  // Simplify the operands before analyzing them.
3912  (void)SimplifyICmpOperands(Cond, LHS, RHS);
3913
3914  // If we have a comparison of a chrec against a constant, try to use value
3915  // ranges to answer this query.
3916  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
3917    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
3918      if (AddRec->getLoop() == L) {
3919        // Form the constant range.
3920        ConstantRange CompRange(
3921            ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
3922
3923        const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
3924        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
3925      }
3926
3927  switch (Cond) {
3928  case ICmpInst::ICMP_NE: {                     // while (X != Y)
3929    // Convert to: while (X-Y != 0)
3930    BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L);
3931    if (BTI.hasAnyInfo()) return BTI;
3932    break;
3933  }
3934  case ICmpInst::ICMP_EQ: {                     // while (X == Y)
3935    // Convert to: while (X-Y == 0)
3936    BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
3937    if (BTI.hasAnyInfo()) return BTI;
3938    break;
3939  }
3940  case ICmpInst::ICMP_SLT: {
3941    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
3942    if (BTI.hasAnyInfo()) return BTI;
3943    break;
3944  }
3945  case ICmpInst::ICMP_SGT: {
3946    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3947                                             getNotSCEV(RHS), L, true);
3948    if (BTI.hasAnyInfo()) return BTI;
3949    break;
3950  }
3951  case ICmpInst::ICMP_ULT: {
3952    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
3953    if (BTI.hasAnyInfo()) return BTI;
3954    break;
3955  }
3956  case ICmpInst::ICMP_UGT: {
3957    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3958                                             getNotSCEV(RHS), L, false);
3959    if (BTI.hasAnyInfo()) return BTI;
3960    break;
3961  }
3962  default:
3963#if 0
3964    dbgs() << "ComputeBackedgeTakenCount ";
3965    if (ExitCond->getOperand(0)->getType()->isUnsigned())
3966      dbgs() << "[unsigned] ";
3967    dbgs() << *LHS << "   "
3968         << Instruction::getOpcodeName(Instruction::ICmp)
3969         << "   " << *RHS << "\n";
3970#endif
3971    break;
3972  }
3973  return
3974    ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3975}
3976
3977static ConstantInt *
3978EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
3979                                ScalarEvolution &SE) {
3980  const SCEV *InVal = SE.getConstant(C);
3981  const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
3982  assert(isa<SCEVConstant>(Val) &&
3983         "Evaluation of SCEV at constant didn't fold correctly?");
3984  return cast<SCEVConstant>(Val)->getValue();
3985}
3986
3987/// GetAddressedElementFromGlobal - Given a global variable with an initializer
3988/// and a GEP expression (missing the pointer index) indexing into it, return
3989/// the addressed element of the initializer or null if the index expression is
3990/// invalid.
3991static Constant *
3992GetAddressedElementFromGlobal(GlobalVariable *GV,
3993                              const std::vector<ConstantInt*> &Indices) {
3994  Constant *Init = GV->getInitializer();
3995  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
3996    uint64_t Idx = Indices[i]->getZExtValue();
3997    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
3998      assert(Idx < CS->getNumOperands() && "Bad struct index!");
3999      Init = cast<Constant>(CS->getOperand(Idx));
4000    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4001      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
4002      Init = cast<Constant>(CA->getOperand(Idx));
4003    } else if (isa<ConstantAggregateZero>(Init)) {
4004      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
4005        assert(Idx < STy->getNumElements() && "Bad struct index!");
4006        Init = Constant::getNullValue(STy->getElementType(Idx));
4007      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4008        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
4009        Init = Constant::getNullValue(ATy->getElementType());
4010      } else {
4011        llvm_unreachable("Unknown constant aggregate type!");
4012      }
4013      return 0;
4014    } else {
4015      return 0; // Unknown initializer type
4016    }
4017  }
4018  return Init;
4019}
4020
4021/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4022/// 'icmp op load X, cst', try to see if we can compute the backedge
4023/// execution count.
4024ScalarEvolution::BackedgeTakenInfo
4025ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4026                                                LoadInst *LI,
4027                                                Constant *RHS,
4028                                                const Loop *L,
4029                                                ICmpInst::Predicate predicate) {
4030  if (LI->isVolatile()) return getCouldNotCompute();
4031
4032  // Check to see if the loaded pointer is a getelementptr of a global.
4033  // TODO: Use SCEV instead of manually grubbing with GEPs.
4034  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
4035  if (!GEP) return getCouldNotCompute();
4036
4037  // Make sure that it is really a constant global we are gepping, with an
4038  // initializer, and make sure the first IDX is really 0.
4039  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
4040  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
4041      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4042      !cast<Constant>(GEP->getOperand(1))->isNullValue())
4043    return getCouldNotCompute();
4044
4045  // Okay, we allow one non-constant index into the GEP instruction.
4046  Value *VarIdx = 0;
4047  std::vector<ConstantInt*> Indexes;
4048  unsigned VarIdxNum = 0;
4049  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4050    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4051      Indexes.push_back(CI);
4052    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
4053      if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
4054      VarIdx = GEP->getOperand(i);
4055      VarIdxNum = i-2;
4056      Indexes.push_back(0);
4057    }
4058
4059  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4060  // Check to see if X is a loop variant variable value now.
4061  const SCEV *Idx = getSCEV(VarIdx);
4062  Idx = getSCEVAtScope(Idx, L);
4063
4064  // We can only recognize very limited forms of loop index expressions, in
4065  // particular, only affine AddRec's like {C1,+,C2}.
4066  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
4067  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
4068      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4069      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
4070    return getCouldNotCompute();
4071
4072  unsigned MaxSteps = MaxBruteForceIterations;
4073  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
4074    ConstantInt *ItCst = ConstantInt::get(
4075                           cast<IntegerType>(IdxExpr->getType()), IterationNum);
4076    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
4077
4078    // Form the GEP offset.
4079    Indexes[VarIdxNum] = Val;
4080
4081    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
4082    if (Result == 0) break;  // Cannot compute!
4083
4084    // Evaluate the condition for this iteration.
4085    Result = ConstantExpr::getICmp(predicate, Result, RHS);
4086    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
4087    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
4088#if 0
4089      dbgs() << "\n***\n*** Computed loop count " << *ItCst
4090             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4091             << "***\n";
4092#endif
4093      ++NumArrayLenItCounts;
4094      return getConstant(ItCst);   // Found terminating iteration!
4095    }
4096  }
4097  return getCouldNotCompute();
4098}
4099
4100
4101/// CanConstantFold - Return true if we can constant fold an instruction of the
4102/// specified type, assuming that all operands were constants.
4103static bool CanConstantFold(const Instruction *I) {
4104  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
4105      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4106    return true;
4107
4108  if (const CallInst *CI = dyn_cast<CallInst>(I))
4109    if (const Function *F = CI->getCalledFunction())
4110      return canConstantFoldCallTo(F);
4111  return false;
4112}
4113
4114/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4115/// in the loop that V is derived from.  We allow arbitrary operations along the
4116/// way, but the operands of an operation must either be constants or a value
4117/// derived from a constant PHI.  If this expression does not fit with these
4118/// constraints, return null.
4119static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4120  // If this is not an instruction, or if this is an instruction outside of the
4121  // loop, it can't be derived from a loop PHI.
4122  Instruction *I = dyn_cast<Instruction>(V);
4123  if (I == 0 || !L->contains(I)) return 0;
4124
4125  if (PHINode *PN = dyn_cast<PHINode>(I)) {
4126    if (L->getHeader() == I->getParent())
4127      return PN;
4128    else
4129      // We don't currently keep track of the control flow needed to evaluate
4130      // PHIs, so we cannot handle PHIs inside of loops.
4131      return 0;
4132  }
4133
4134  // If we won't be able to constant fold this expression even if the operands
4135  // are constants, return early.
4136  if (!CanConstantFold(I)) return 0;
4137
4138  // Otherwise, we can evaluate this instruction if all of its operands are
4139  // constant or derived from a PHI node themselves.
4140  PHINode *PHI = 0;
4141  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
4142    if (!(isa<Constant>(I->getOperand(Op)) ||
4143          isa<GlobalValue>(I->getOperand(Op)))) {
4144      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4145      if (P == 0) return 0;  // Not evolving from PHI
4146      if (PHI == 0)
4147        PHI = P;
4148      else if (PHI != P)
4149        return 0;  // Evolving from multiple different PHIs.
4150    }
4151
4152  // This is a expression evolving from a constant PHI!
4153  return PHI;
4154}
4155
4156/// EvaluateExpression - Given an expression that passes the
4157/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4158/// in the loop has the value PHIVal.  If we can't fold this expression for some
4159/// reason, return null.
4160static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4161                                    const TargetData *TD) {
4162  if (isa<PHINode>(V)) return PHIVal;
4163  if (Constant *C = dyn_cast<Constant>(V)) return C;
4164  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
4165  Instruction *I = cast<Instruction>(V);
4166
4167  std::vector<Constant*> Operands;
4168  Operands.resize(I->getNumOperands());
4169
4170  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4171    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
4172    if (Operands[i] == 0) return 0;
4173  }
4174
4175  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4176    return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
4177                                           Operands[1], TD);
4178  return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4179                                  &Operands[0], Operands.size(), TD);
4180}
4181
4182/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4183/// in the header of its containing loop, we know the loop executes a
4184/// constant number of times, and the PHI node is just a recurrence
4185/// involving constants, fold it.
4186Constant *
4187ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
4188                                                   const APInt &BEs,
4189                                                   const Loop *L) {
4190  std::map<PHINode*, Constant*>::iterator I =
4191    ConstantEvolutionLoopExitValue.find(PN);
4192  if (I != ConstantEvolutionLoopExitValue.end())
4193    return I->second;
4194
4195  if (BEs.ugt(MaxBruteForceIterations))
4196    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
4197
4198  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4199
4200  // Since the loop is canonicalized, the PHI node must have two entries.  One
4201  // entry must be a constant (coming in from outside of the loop), and the
4202  // second must be derived from the same PHI.
4203  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4204  Constant *StartCST =
4205    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4206  if (StartCST == 0)
4207    return RetVal = 0;  // Must be a constant.
4208
4209  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4210  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
4211  if (PN2 != PN)
4212    return RetVal = 0;  // Not derived from same PHI.
4213
4214  // Execute the loop symbolically to determine the exit value.
4215  if (BEs.getActiveBits() >= 32)
4216    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
4217
4218  unsigned NumIterations = BEs.getZExtValue(); // must be in range
4219  unsigned IterationNum = 0;
4220  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4221    if (IterationNum == NumIterations)
4222      return RetVal = PHIVal;  // Got exit value!
4223
4224    // Compute the value of the PHI node for the next iteration.
4225    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4226    if (NextPHI == PHIVal)
4227      return RetVal = NextPHI;  // Stopped evolving!
4228    if (NextPHI == 0)
4229      return 0;        // Couldn't evaluate!
4230    PHIVal = NextPHI;
4231  }
4232}
4233
4234/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
4235/// constant number of times (the condition evolves only from constants),
4236/// try to evaluate a few iterations of the loop until we get the exit
4237/// condition gets a value of ExitWhen (true or false).  If we cannot
4238/// evaluate the trip count of the loop, return getCouldNotCompute().
4239const SCEV *
4240ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4241                                                       Value *Cond,
4242                                                       bool ExitWhen) {
4243  PHINode *PN = getConstantEvolvingPHI(Cond, L);
4244  if (PN == 0) return getCouldNotCompute();
4245
4246  // Since the loop is canonicalized, the PHI node must have two entries.  One
4247  // entry must be a constant (coming in from outside of the loop), and the
4248  // second must be derived from the same PHI.
4249  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4250  Constant *StartCST =
4251    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4252  if (StartCST == 0) return getCouldNotCompute();  // Must be a constant.
4253
4254  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4255  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
4256  if (PN2 != PN) return getCouldNotCompute();  // Not derived from same PHI.
4257
4258  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
4259  // the loop symbolically to determine when the condition gets a value of
4260  // "ExitWhen".
4261  unsigned IterationNum = 0;
4262  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
4263  for (Constant *PHIVal = StartCST;
4264       IterationNum != MaxIterations; ++IterationNum) {
4265    ConstantInt *CondVal =
4266      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
4267
4268    // Couldn't symbolically evaluate.
4269    if (!CondVal) return getCouldNotCompute();
4270
4271    if (CondVal->getValue() == uint64_t(ExitWhen)) {
4272      ++NumBruteForceTripCountsComputed;
4273      return getConstant(Type::getInt32Ty(getContext()), IterationNum);
4274    }
4275
4276    // Compute the value of the PHI node for the next iteration.
4277    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4278    if (NextPHI == 0 || NextPHI == PHIVal)
4279      return getCouldNotCompute();// Couldn't evaluate or not making progress...
4280    PHIVal = NextPHI;
4281  }
4282
4283  // Too many iterations were needed to evaluate.
4284  return getCouldNotCompute();
4285}
4286
4287/// getSCEVAtScope - Return a SCEV expression for the specified value
4288/// at the specified scope in the program.  The L value specifies a loop
4289/// nest to evaluate the expression at, where null is the top-level or a
4290/// specified loop is immediately inside of the loop.
4291///
4292/// This method can be used to compute the exit value for a variable defined
4293/// in a loop by querying what the value will hold in the parent loop.
4294///
4295/// In the case that a relevant loop exit value cannot be computed, the
4296/// original value V is returned.
4297const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
4298  // Check to see if we've folded this expression at this loop before.
4299  std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4300  std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4301    Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4302  if (!Pair.second)
4303    return Pair.first->second ? Pair.first->second : V;
4304
4305  // Otherwise compute it.
4306  const SCEV *C = computeSCEVAtScope(V, L);
4307  ValuesAtScopes[V][L] = C;
4308  return C;
4309}
4310
4311const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
4312  if (isa<SCEVConstant>(V)) return V;
4313
4314  // If this instruction is evolved from a constant-evolving PHI, compute the
4315  // exit value from the loop without using SCEVs.
4316  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
4317    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
4318      const Loop *LI = (*this->LI)[I->getParent()];
4319      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
4320        if (PHINode *PN = dyn_cast<PHINode>(I))
4321          if (PN->getParent() == LI->getHeader()) {
4322            // Okay, there is no closed form solution for the PHI node.  Check
4323            // to see if the loop that contains it has a known backedge-taken
4324            // count.  If so, we may be able to force computation of the exit
4325            // value.
4326            const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
4327            if (const SCEVConstant *BTCC =
4328                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
4329              // Okay, we know how many times the containing loop executes.  If
4330              // this is a constant evolving PHI node, get the final value at
4331              // the specified iteration number.
4332              Constant *RV = getConstantEvolutionLoopExitValue(PN,
4333                                                   BTCC->getValue()->getValue(),
4334                                                               LI);
4335              if (RV) return getSCEV(RV);
4336            }
4337          }
4338
4339      // Okay, this is an expression that we cannot symbolically evaluate
4340      // into a SCEV.  Check to see if it's possible to symbolically evaluate
4341      // the arguments into constants, and if so, try to constant propagate the
4342      // result.  This is particularly useful for computing loop exit values.
4343      if (CanConstantFold(I)) {
4344        std::vector<Constant*> Operands;
4345        Operands.reserve(I->getNumOperands());
4346        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4347          Value *Op = I->getOperand(i);
4348          if (Constant *C = dyn_cast<Constant>(Op)) {
4349            Operands.push_back(C);
4350          } else {
4351            // If any of the operands is non-constant and if they are
4352            // non-integer and non-pointer, don't even try to analyze them
4353            // with scev techniques.
4354            if (!isSCEVable(Op->getType()))
4355              return V;
4356
4357            const SCEV *OpV = getSCEVAtScope(Op, L);
4358            if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
4359              Constant *C = SC->getValue();
4360              if (C->getType() != Op->getType())
4361                C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4362                                                                  Op->getType(),
4363                                                                  false),
4364                                          C, Op->getType());
4365              Operands.push_back(C);
4366            } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
4367              if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
4368                if (C->getType() != Op->getType())
4369                  C =
4370                    ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4371                                                                  Op->getType(),
4372                                                                  false),
4373                                          C, Op->getType());
4374                Operands.push_back(C);
4375              } else
4376                return V;
4377            } else {
4378              return V;
4379            }
4380          }
4381        }
4382
4383        Constant *C = 0;
4384        if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4385          C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4386                                              Operands[0], Operands[1], TD);
4387        else
4388          C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4389                                       &Operands[0], Operands.size(), TD);
4390        if (C)
4391          return getSCEV(C);
4392      }
4393    }
4394
4395    // This is some other type of SCEVUnknown, just return it.
4396    return V;
4397  }
4398
4399  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
4400    // Avoid performing the look-up in the common case where the specified
4401    // expression has no loop-variant portions.
4402    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
4403      const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4404      if (OpAtScope != Comm->getOperand(i)) {
4405        // Okay, at least one of these operands is loop variant but might be
4406        // foldable.  Build a new instance of the folded commutative expression.
4407        SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4408                                            Comm->op_begin()+i);
4409        NewOps.push_back(OpAtScope);
4410
4411        for (++i; i != e; ++i) {
4412          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4413          NewOps.push_back(OpAtScope);
4414        }
4415        if (isa<SCEVAddExpr>(Comm))
4416          return getAddExpr(NewOps);
4417        if (isa<SCEVMulExpr>(Comm))
4418          return getMulExpr(NewOps);
4419        if (isa<SCEVSMaxExpr>(Comm))
4420          return getSMaxExpr(NewOps);
4421        if (isa<SCEVUMaxExpr>(Comm))
4422          return getUMaxExpr(NewOps);
4423        llvm_unreachable("Unknown commutative SCEV type!");
4424      }
4425    }
4426    // If we got here, all operands are loop invariant.
4427    return Comm;
4428  }
4429
4430  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
4431    const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4432    const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
4433    if (LHS == Div->getLHS() && RHS == Div->getRHS())
4434      return Div;   // must be loop invariant
4435    return getUDivExpr(LHS, RHS);
4436  }
4437
4438  // If this is a loop recurrence for a loop that does not contain L, then we
4439  // are dealing with the final value computed by the loop.
4440  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4441    if (!L || !AddRec->getLoop()->contains(L)) {
4442      // To evaluate this recurrence, we need to know how many times the AddRec
4443      // loop iterates.  Compute this now.
4444      const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
4445      if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
4446
4447      // Then, evaluate the AddRec.
4448      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
4449    }
4450    return AddRec;
4451  }
4452
4453  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
4454    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4455    if (Op == Cast->getOperand())
4456      return Cast;  // must be loop invariant
4457    return getZeroExtendExpr(Op, Cast->getType());
4458  }
4459
4460  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
4461    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4462    if (Op == Cast->getOperand())
4463      return Cast;  // must be loop invariant
4464    return getSignExtendExpr(Op, Cast->getType());
4465  }
4466
4467  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
4468    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4469    if (Op == Cast->getOperand())
4470      return Cast;  // must be loop invariant
4471    return getTruncateExpr(Op, Cast->getType());
4472  }
4473
4474  llvm_unreachable("Unknown SCEV type!");
4475  return 0;
4476}
4477
4478/// getSCEVAtScope - This is a convenience function which does
4479/// getSCEVAtScope(getSCEV(V), L).
4480const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
4481  return getSCEVAtScope(getSCEV(V), L);
4482}
4483
4484/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4485/// following equation:
4486///
4487///     A * X = B (mod N)
4488///
4489/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4490/// A and B isn't important.
4491///
4492/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
4493static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
4494                                               ScalarEvolution &SE) {
4495  uint32_t BW = A.getBitWidth();
4496  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4497  assert(A != 0 && "A must be non-zero.");
4498
4499  // 1. D = gcd(A, N)
4500  //
4501  // The gcd of A and N may have only one prime factor: 2. The number of
4502  // trailing zeros in A is its multiplicity
4503  uint32_t Mult2 = A.countTrailingZeros();
4504  // D = 2^Mult2
4505
4506  // 2. Check if B is divisible by D.
4507  //
4508  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4509  // is not less than multiplicity of this prime factor for D.
4510  if (B.countTrailingZeros() < Mult2)
4511    return SE.getCouldNotCompute();
4512
4513  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4514  // modulo (N / D).
4515  //
4516  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
4517  // bit width during computations.
4518  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
4519  APInt Mod(BW + 1, 0);
4520  Mod.set(BW - Mult2);  // Mod = N / D
4521  APInt I = AD.multiplicativeInverse(Mod);
4522
4523  // 4. Compute the minimum unsigned root of the equation:
4524  // I * (B / D) mod (N / D)
4525  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4526
4527  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4528  // bits.
4529  return SE.getConstant(Result.trunc(BW));
4530}
4531
4532/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4533/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
4534/// might be the same) or two SCEVCouldNotCompute objects.
4535///
4536static std::pair<const SCEV *,const SCEV *>
4537SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
4538  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
4539  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4540  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4541  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
4542
4543  // We currently can only solve this if the coefficients are constants.
4544  if (!LC || !MC || !NC) {
4545    const SCEV *CNC = SE.getCouldNotCompute();
4546    return std::make_pair(CNC, CNC);
4547  }
4548
4549  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
4550  const APInt &L = LC->getValue()->getValue();
4551  const APInt &M = MC->getValue()->getValue();
4552  const APInt &N = NC->getValue()->getValue();
4553  APInt Two(BitWidth, 2);
4554  APInt Four(BitWidth, 4);
4555
4556  {
4557    using namespace APIntOps;
4558    const APInt& C = L;
4559    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4560    // The B coefficient is M-N/2
4561    APInt B(M);
4562    B -= sdiv(N,Two);
4563
4564    // The A coefficient is N/2
4565    APInt A(N.sdiv(Two));
4566
4567    // Compute the B^2-4ac term.
4568    APInt SqrtTerm(B);
4569    SqrtTerm *= B;
4570    SqrtTerm -= Four * (A * C);
4571
4572    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4573    // integer value or else APInt::sqrt() will assert.
4574    APInt SqrtVal(SqrtTerm.sqrt());
4575
4576    // Compute the two solutions for the quadratic formula.
4577    // The divisions must be performed as signed divisions.
4578    APInt NegB(-B);
4579    APInt TwoA( A << 1 );
4580    if (TwoA.isMinValue()) {
4581      const SCEV *CNC = SE.getCouldNotCompute();
4582      return std::make_pair(CNC, CNC);
4583    }
4584
4585    LLVMContext &Context = SE.getContext();
4586
4587    ConstantInt *Solution1 =
4588      ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
4589    ConstantInt *Solution2 =
4590      ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
4591
4592    return std::make_pair(SE.getConstant(Solution1),
4593                          SE.getConstant(Solution2));
4594    } // end APIntOps namespace
4595}
4596
4597/// HowFarToZero - Return the number of times a backedge comparing the specified
4598/// value to zero will execute.  If not computable, return CouldNotCompute.
4599ScalarEvolution::BackedgeTakenInfo
4600ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
4601  // If the value is a constant
4602  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4603    // If the value is already zero, the branch will execute zero times.
4604    if (C->getValue()->isZero()) return C;
4605    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4606  }
4607
4608  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
4609  if (!AddRec || AddRec->getLoop() != L)
4610    return getCouldNotCompute();
4611
4612  if (AddRec->isAffine()) {
4613    // If this is an affine expression, the execution count of this branch is
4614    // the minimum unsigned root of the following equation:
4615    //
4616    //     Start + Step*N = 0 (mod 2^BW)
4617    //
4618    // equivalent to:
4619    //
4620    //             Step*N = -Start (mod 2^BW)
4621    //
4622    // where BW is the common bit width of Start and Step.
4623
4624    // Get the initial value for the loop.
4625    const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4626                                       L->getParentLoop());
4627    const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4628                                      L->getParentLoop());
4629
4630    if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
4631      // For now we handle only constant steps.
4632
4633      // First, handle unitary steps.
4634      if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so:
4635        return getNegativeSCEV(Start);          //   N = -Start (as unsigned)
4636      if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so:
4637        return Start;                           //    N = Start (as unsigned)
4638
4639      // Then, try to solve the above equation provided that Start is constant.
4640      if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
4641        return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
4642                                            -StartC->getValue()->getValue(),
4643                                            *this);
4644    }
4645  } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
4646    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4647    // the quadratic equation to solve it.
4648    std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
4649                                                                    *this);
4650    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4651    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
4652    if (R1) {
4653#if 0
4654      dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
4655             << "  sol#2: " << *R2 << "\n";
4656#endif
4657      // Pick the smallest positive root value.
4658      if (ConstantInt *CB =
4659          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
4660                                   R1->getValue(), R2->getValue()))) {
4661        if (CB->getZExtValue() == false)
4662          std::swap(R1, R2);   // R1 is the minimum root now.
4663
4664        // We can only use this value if the chrec ends up with an exact zero
4665        // value at this index.  When solving for "X*X != 5", for example, we
4666        // should not accept a root of 2.
4667        const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
4668        if (Val->isZero())
4669          return R1;  // We found a quadratic root!
4670      }
4671    }
4672  }
4673
4674  return getCouldNotCompute();
4675}
4676
4677/// HowFarToNonZero - Return the number of times a backedge checking the
4678/// specified value for nonzero will execute.  If not computable, return
4679/// CouldNotCompute
4680ScalarEvolution::BackedgeTakenInfo
4681ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
4682  // Loops that look like: while (X == 0) are very strange indeed.  We don't
4683  // handle them yet except for the trivial case.  This could be expanded in the
4684  // future as needed.
4685
4686  // If the value is a constant, check to see if it is known to be non-zero
4687  // already.  If so, the backedge will execute zero times.
4688  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4689    if (!C->getValue()->isNullValue())
4690      return getIntegerSCEV(0, C->getType());
4691    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4692  }
4693
4694  // We could implement others, but I really doubt anyone writes loops like
4695  // this, and if they did, they would already be constant folded.
4696  return getCouldNotCompute();
4697}
4698
4699/// getLoopPredecessor - If the given loop's header has exactly one unique
4700/// predecessor outside the loop, return it. Otherwise return null.
4701/// This is less strict that the loop "preheader" concept, which requires
4702/// the predecessor to have only one single successor.
4703///
4704BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
4705  BasicBlock *Header = L->getHeader();
4706  BasicBlock *Pred = 0;
4707  for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
4708       PI != E; ++PI)
4709    if (!L->contains(*PI)) {
4710      if (Pred && Pred != *PI) return 0; // Multiple predecessors.
4711      Pred = *PI;
4712    }
4713  return Pred;
4714}
4715
4716/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4717/// (which may not be an immediate predecessor) which has exactly one
4718/// successor from which BB is reachable, or null if no such block is
4719/// found.
4720///
4721std::pair<BasicBlock *, BasicBlock *>
4722ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
4723  // If the block has a unique predecessor, then there is no path from the
4724  // predecessor to the block that does not go through the direct edge
4725  // from the predecessor to the block.
4726  if (BasicBlock *Pred = BB->getSinglePredecessor())
4727    return std::make_pair(Pred, BB);
4728
4729  // A loop's header is defined to be a block that dominates the loop.
4730  // If the header has a unique predecessor outside the loop, it must be
4731  // a block that has exactly one successor that can reach the loop.
4732  if (Loop *L = LI->getLoopFor(BB))
4733    return std::make_pair(getLoopPredecessor(L), L->getHeader());
4734
4735  return std::pair<BasicBlock *, BasicBlock *>();
4736}
4737
4738/// HasSameValue - SCEV structural equivalence is usually sufficient for
4739/// testing whether two expressions are equal, however for the purposes of
4740/// looking for a condition guarding a loop, it can be useful to be a little
4741/// more general, since a front-end may have replicated the controlling
4742/// expression.
4743///
4744static bool HasSameValue(const SCEV *A, const SCEV *B) {
4745  // Quick check to see if they are the same SCEV.
4746  if (A == B) return true;
4747
4748  // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4749  // two different instructions with the same value. Check for this case.
4750  if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4751    if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4752      if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4753        if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
4754          if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
4755            return true;
4756
4757  // Otherwise assume they may have a different value.
4758  return false;
4759}
4760
4761/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
4762/// predicate Pred. Return true iff any changes were made.
4763///
4764bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
4765                                           const SCEV *&LHS, const SCEV *&RHS) {
4766  bool Changed = false;
4767
4768  // Canonicalize a constant to the right side.
4769  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
4770    // Check for both operands constant.
4771    if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
4772      if (ConstantExpr::getICmp(Pred,
4773                                LHSC->getValue(),
4774                                RHSC->getValue())->isNullValue())
4775        goto trivially_false;
4776      else
4777        goto trivially_true;
4778    }
4779    // Otherwise swap the operands to put the constant on the right.
4780    std::swap(LHS, RHS);
4781    Pred = ICmpInst::getSwappedPredicate(Pred);
4782    Changed = true;
4783  }
4784
4785  // If we're comparing an addrec with a value which is loop-invariant in the
4786  // addrec's loop, put the addrec on the left. Also make a dominance check,
4787  // as both operands could be addrecs loop-invariant in each other's loop.
4788  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
4789    const Loop *L = AR->getLoop();
4790    if (LHS->isLoopInvariant(L) && LHS->properlyDominates(L->getHeader(), DT)) {
4791      std::swap(LHS, RHS);
4792      Pred = ICmpInst::getSwappedPredicate(Pred);
4793      Changed = true;
4794    }
4795  }
4796
4797  // If there's a constant operand, canonicalize comparisons with boundary
4798  // cases, and canonicalize *-or-equal comparisons to regular comparisons.
4799  if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4800    const APInt &RA = RC->getValue()->getValue();
4801    switch (Pred) {
4802    default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4803    case ICmpInst::ICMP_EQ:
4804    case ICmpInst::ICMP_NE:
4805      break;
4806    case ICmpInst::ICMP_UGE:
4807      if ((RA - 1).isMinValue()) {
4808        Pred = ICmpInst::ICMP_NE;
4809        RHS = getConstant(RA - 1);
4810        Changed = true;
4811        break;
4812      }
4813      if (RA.isMaxValue()) {
4814        Pred = ICmpInst::ICMP_EQ;
4815        Changed = true;
4816        break;
4817      }
4818      if (RA.isMinValue()) goto trivially_true;
4819
4820      Pred = ICmpInst::ICMP_UGT;
4821      RHS = getConstant(RA - 1);
4822      Changed = true;
4823      break;
4824    case ICmpInst::ICMP_ULE:
4825      if ((RA + 1).isMaxValue()) {
4826        Pred = ICmpInst::ICMP_NE;
4827        RHS = getConstant(RA + 1);
4828        Changed = true;
4829        break;
4830      }
4831      if (RA.isMinValue()) {
4832        Pred = ICmpInst::ICMP_EQ;
4833        Changed = true;
4834        break;
4835      }
4836      if (RA.isMaxValue()) goto trivially_true;
4837
4838      Pred = ICmpInst::ICMP_ULT;
4839      RHS = getConstant(RA + 1);
4840      Changed = true;
4841      break;
4842    case ICmpInst::ICMP_SGE:
4843      if ((RA - 1).isMinSignedValue()) {
4844        Pred = ICmpInst::ICMP_NE;
4845        RHS = getConstant(RA - 1);
4846        Changed = true;
4847        break;
4848      }
4849      if (RA.isMaxSignedValue()) {
4850        Pred = ICmpInst::ICMP_EQ;
4851        Changed = true;
4852        break;
4853      }
4854      if (RA.isMinSignedValue()) goto trivially_true;
4855
4856      Pred = ICmpInst::ICMP_SGT;
4857      RHS = getConstant(RA - 1);
4858      Changed = true;
4859      break;
4860    case ICmpInst::ICMP_SLE:
4861      if ((RA + 1).isMaxSignedValue()) {
4862        Pred = ICmpInst::ICMP_NE;
4863        RHS = getConstant(RA + 1);
4864        Changed = true;
4865        break;
4866      }
4867      if (RA.isMinSignedValue()) {
4868        Pred = ICmpInst::ICMP_EQ;
4869        Changed = true;
4870        break;
4871      }
4872      if (RA.isMaxSignedValue()) goto trivially_true;
4873
4874      Pred = ICmpInst::ICMP_SLT;
4875      RHS = getConstant(RA + 1);
4876      Changed = true;
4877      break;
4878    case ICmpInst::ICMP_UGT:
4879      if (RA.isMinValue()) {
4880        Pred = ICmpInst::ICMP_NE;
4881        Changed = true;
4882        break;
4883      }
4884      if ((RA + 1).isMaxValue()) {
4885        Pred = ICmpInst::ICMP_EQ;
4886        RHS = getConstant(RA + 1);
4887        Changed = true;
4888        break;
4889      }
4890      if (RA.isMaxValue()) goto trivially_false;
4891      break;
4892    case ICmpInst::ICMP_ULT:
4893      if (RA.isMaxValue()) {
4894        Pred = ICmpInst::ICMP_NE;
4895        Changed = true;
4896        break;
4897      }
4898      if ((RA - 1).isMinValue()) {
4899        Pred = ICmpInst::ICMP_EQ;
4900        RHS = getConstant(RA - 1);
4901        Changed = true;
4902        break;
4903      }
4904      if (RA.isMinValue()) goto trivially_false;
4905      break;
4906    case ICmpInst::ICMP_SGT:
4907      if (RA.isMinSignedValue()) {
4908        Pred = ICmpInst::ICMP_NE;
4909        Changed = true;
4910        break;
4911      }
4912      if ((RA + 1).isMaxSignedValue()) {
4913        Pred = ICmpInst::ICMP_EQ;
4914        RHS = getConstant(RA + 1);
4915        Changed = true;
4916        break;
4917      }
4918      if (RA.isMaxSignedValue()) goto trivially_false;
4919      break;
4920    case ICmpInst::ICMP_SLT:
4921      if (RA.isMaxSignedValue()) {
4922        Pred = ICmpInst::ICMP_NE;
4923        Changed = true;
4924        break;
4925      }
4926      if ((RA - 1).isMinSignedValue()) {
4927       Pred = ICmpInst::ICMP_EQ;
4928       RHS = getConstant(RA - 1);
4929        Changed = true;
4930       break;
4931      }
4932      if (RA.isMinSignedValue()) goto trivially_false;
4933      break;
4934    }
4935  }
4936
4937  // Check for obvious equality.
4938  if (HasSameValue(LHS, RHS)) {
4939    if (ICmpInst::isTrueWhenEqual(Pred))
4940      goto trivially_true;
4941    if (ICmpInst::isFalseWhenEqual(Pred))
4942      goto trivially_false;
4943  }
4944
4945  // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
4946  // adding or subtracting 1 from one of the operands.
4947  switch (Pred) {
4948  case ICmpInst::ICMP_SLE:
4949    if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
4950      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
4951                       /*HasNUW=*/false, /*HasNSW=*/true);
4952      Pred = ICmpInst::ICMP_SLT;
4953      Changed = true;
4954    } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
4955      LHS = getAddExpr(getConstant(RHS->getType(), -1, true), LHS,
4956                       /*HasNUW=*/false, /*HasNSW=*/true);
4957      Pred = ICmpInst::ICMP_SLT;
4958      Changed = true;
4959    }
4960    break;
4961  case ICmpInst::ICMP_SGE:
4962    if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
4963      RHS = getAddExpr(getConstant(RHS->getType(), -1, true), RHS,
4964                       /*HasNUW=*/false, /*HasNSW=*/true);
4965      Pred = ICmpInst::ICMP_SGT;
4966      Changed = true;
4967    } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
4968      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
4969                       /*HasNUW=*/false, /*HasNSW=*/true);
4970      Pred = ICmpInst::ICMP_SGT;
4971      Changed = true;
4972    }
4973    break;
4974  case ICmpInst::ICMP_ULE:
4975    if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
4976      RHS = getAddExpr(getConstant(RHS->getType(), 1, false), RHS,
4977                       /*HasNUW=*/true, /*HasNSW=*/false);
4978      Pred = ICmpInst::ICMP_ULT;
4979      Changed = true;
4980    } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
4981      LHS = getAddExpr(getConstant(RHS->getType(), -1, false), LHS,
4982                       /*HasNUW=*/true, /*HasNSW=*/false);
4983      Pred = ICmpInst::ICMP_ULT;
4984      Changed = true;
4985    }
4986    break;
4987  case ICmpInst::ICMP_UGE:
4988    if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
4989      RHS = getAddExpr(getConstant(RHS->getType(), -1, false), RHS,
4990                       /*HasNUW=*/true, /*HasNSW=*/false);
4991      Pred = ICmpInst::ICMP_UGT;
4992      Changed = true;
4993    } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
4994      LHS = getAddExpr(getConstant(RHS->getType(), 1, false), LHS,
4995                       /*HasNUW=*/true, /*HasNSW=*/false);
4996      Pred = ICmpInst::ICMP_UGT;
4997      Changed = true;
4998    }
4999    break;
5000  default:
5001    break;
5002  }
5003
5004  // TODO: More simplifications are possible here.
5005
5006  return Changed;
5007
5008trivially_true:
5009  // Return 0 == 0.
5010  LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5011  Pred = ICmpInst::ICMP_EQ;
5012  return true;
5013
5014trivially_false:
5015  // Return 0 != 0.
5016  LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5017  Pred = ICmpInst::ICMP_NE;
5018  return true;
5019}
5020
5021bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5022  return getSignedRange(S).getSignedMax().isNegative();
5023}
5024
5025bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5026  return getSignedRange(S).getSignedMin().isStrictlyPositive();
5027}
5028
5029bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5030  return !getSignedRange(S).getSignedMin().isNegative();
5031}
5032
5033bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5034  return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5035}
5036
5037bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5038  return isKnownNegative(S) || isKnownPositive(S);
5039}
5040
5041bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5042                                       const SCEV *LHS, const SCEV *RHS) {
5043  // Canonicalize the inputs first.
5044  (void)SimplifyICmpOperands(Pred, LHS, RHS);
5045
5046  // If LHS or RHS is an addrec, check to see if the condition is true in
5047  // every iteration of the loop.
5048  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5049    if (isLoopEntryGuardedByCond(
5050          AR->getLoop(), Pred, AR->getStart(), RHS) &&
5051        isLoopBackedgeGuardedByCond(
5052          AR->getLoop(), Pred,
5053          getAddExpr(AR, AR->getStepRecurrence(*this)), RHS))
5054      return true;
5055  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5056    if (isLoopEntryGuardedByCond(
5057          AR->getLoop(), Pred, LHS, AR->getStart()) &&
5058        isLoopBackedgeGuardedByCond(
5059          AR->getLoop(), Pred,
5060          LHS, getAddExpr(AR, AR->getStepRecurrence(*this))))
5061      return true;
5062
5063  // Otherwise see what can be done with known constant ranges.
5064  return isKnownPredicateWithRanges(Pred, LHS, RHS);
5065}
5066
5067bool
5068ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5069                                            const SCEV *LHS, const SCEV *RHS) {
5070  if (HasSameValue(LHS, RHS))
5071    return ICmpInst::isTrueWhenEqual(Pred);
5072
5073  // This code is split out from isKnownPredicate because it is called from
5074  // within isLoopEntryGuardedByCond.
5075  switch (Pred) {
5076  default:
5077    llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5078    break;
5079  case ICmpInst::ICMP_SGT:
5080    Pred = ICmpInst::ICMP_SLT;
5081    std::swap(LHS, RHS);
5082  case ICmpInst::ICMP_SLT: {
5083    ConstantRange LHSRange = getSignedRange(LHS);
5084    ConstantRange RHSRange = getSignedRange(RHS);
5085    if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5086      return true;
5087    if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5088      return false;
5089    break;
5090  }
5091  case ICmpInst::ICMP_SGE:
5092    Pred = ICmpInst::ICMP_SLE;
5093    std::swap(LHS, RHS);
5094  case ICmpInst::ICMP_SLE: {
5095    ConstantRange LHSRange = getSignedRange(LHS);
5096    ConstantRange RHSRange = getSignedRange(RHS);
5097    if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5098      return true;
5099    if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5100      return false;
5101    break;
5102  }
5103  case ICmpInst::ICMP_UGT:
5104    Pred = ICmpInst::ICMP_ULT;
5105    std::swap(LHS, RHS);
5106  case ICmpInst::ICMP_ULT: {
5107    ConstantRange LHSRange = getUnsignedRange(LHS);
5108    ConstantRange RHSRange = getUnsignedRange(RHS);
5109    if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5110      return true;
5111    if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5112      return false;
5113    break;
5114  }
5115  case ICmpInst::ICMP_UGE:
5116    Pred = ICmpInst::ICMP_ULE;
5117    std::swap(LHS, RHS);
5118  case ICmpInst::ICMP_ULE: {
5119    ConstantRange LHSRange = getUnsignedRange(LHS);
5120    ConstantRange RHSRange = getUnsignedRange(RHS);
5121    if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5122      return true;
5123    if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5124      return false;
5125    break;
5126  }
5127  case ICmpInst::ICMP_NE: {
5128    if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5129      return true;
5130    if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5131      return true;
5132
5133    const SCEV *Diff = getMinusSCEV(LHS, RHS);
5134    if (isKnownNonZero(Diff))
5135      return true;
5136    break;
5137  }
5138  case ICmpInst::ICMP_EQ:
5139    // The check at the top of the function catches the case where
5140    // the values are known to be equal.
5141    break;
5142  }
5143  return false;
5144}
5145
5146/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5147/// protected by a conditional between LHS and RHS.  This is used to
5148/// to eliminate casts.
5149bool
5150ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5151                                             ICmpInst::Predicate Pred,
5152                                             const SCEV *LHS, const SCEV *RHS) {
5153  // Interpret a null as meaning no loop, where there is obviously no guard
5154  // (interprocedural conditions notwithstanding).
5155  if (!L) return true;
5156
5157  BasicBlock *Latch = L->getLoopLatch();
5158  if (!Latch)
5159    return false;
5160
5161  BranchInst *LoopContinuePredicate =
5162    dyn_cast<BranchInst>(Latch->getTerminator());
5163  if (!LoopContinuePredicate ||
5164      LoopContinuePredicate->isUnconditional())
5165    return false;
5166
5167  return isImpliedCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS,
5168                       LoopContinuePredicate->getSuccessor(0) != L->getHeader());
5169}
5170
5171/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
5172/// by a conditional between LHS and RHS.  This is used to help avoid max
5173/// expressions in loop trip counts, and to eliminate casts.
5174bool
5175ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5176                                          ICmpInst::Predicate Pred,
5177                                          const SCEV *LHS, const SCEV *RHS) {
5178  // Interpret a null as meaning no loop, where there is obviously no guard
5179  // (interprocedural conditions notwithstanding).
5180  if (!L) return false;
5181
5182  // Starting at the loop predecessor, climb up the predecessor chain, as long
5183  // as there are predecessors that can be found that have unique successors
5184  // leading to the original header.
5185  for (std::pair<BasicBlock *, BasicBlock *>
5186         Pair(getLoopPredecessor(L), L->getHeader());
5187       Pair.first;
5188       Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
5189
5190    BranchInst *LoopEntryPredicate =
5191      dyn_cast<BranchInst>(Pair.first->getTerminator());
5192    if (!LoopEntryPredicate ||
5193        LoopEntryPredicate->isUnconditional())
5194      continue;
5195
5196    if (isImpliedCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS,
5197                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
5198      return true;
5199  }
5200
5201  return false;
5202}
5203
5204/// isImpliedCond - Test whether the condition described by Pred, LHS,
5205/// and RHS is true whenever the given Cond value evaluates to true.
5206bool ScalarEvolution::isImpliedCond(Value *CondValue,
5207                                    ICmpInst::Predicate Pred,
5208                                    const SCEV *LHS, const SCEV *RHS,
5209                                    bool Inverse) {
5210  // Recursively handle And and Or conditions.
5211  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) {
5212    if (BO->getOpcode() == Instruction::And) {
5213      if (!Inverse)
5214        return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
5215               isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
5216    } else if (BO->getOpcode() == Instruction::Or) {
5217      if (Inverse)
5218        return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
5219               isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
5220    }
5221  }
5222
5223  ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue);
5224  if (!ICI) return false;
5225
5226  // Bail if the ICmp's operands' types are wider than the needed type
5227  // before attempting to call getSCEV on them. This avoids infinite
5228  // recursion, since the analysis of widening casts can require loop
5229  // exit condition information for overflow checking, which would
5230  // lead back here.
5231  if (getTypeSizeInBits(LHS->getType()) <
5232      getTypeSizeInBits(ICI->getOperand(0)->getType()))
5233    return false;
5234
5235  // Now that we found a conditional branch that dominates the loop, check to
5236  // see if it is the comparison we are looking for.
5237  ICmpInst::Predicate FoundPred;
5238  if (Inverse)
5239    FoundPred = ICI->getInversePredicate();
5240  else
5241    FoundPred = ICI->getPredicate();
5242
5243  const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5244  const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
5245
5246  // Balance the types. The case where FoundLHS' type is wider than
5247  // LHS' type is checked for above.
5248  if (getTypeSizeInBits(LHS->getType()) >
5249      getTypeSizeInBits(FoundLHS->getType())) {
5250    if (CmpInst::isSigned(Pred)) {
5251      FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5252      FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5253    } else {
5254      FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5255      FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5256    }
5257  }
5258
5259  // Canonicalize the query to match the way instcombine will have
5260  // canonicalized the comparison.
5261  if (SimplifyICmpOperands(Pred, LHS, RHS))
5262    if (LHS == RHS)
5263      return CmpInst::isTrueWhenEqual(Pred);
5264  if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5265    if (FoundLHS == FoundRHS)
5266      return CmpInst::isFalseWhenEqual(Pred);
5267
5268  // Check to see if we can make the LHS or RHS match.
5269  if (LHS == FoundRHS || RHS == FoundLHS) {
5270    if (isa<SCEVConstant>(RHS)) {
5271      std::swap(FoundLHS, FoundRHS);
5272      FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5273    } else {
5274      std::swap(LHS, RHS);
5275      Pred = ICmpInst::getSwappedPredicate(Pred);
5276    }
5277  }
5278
5279  // Check whether the found predicate is the same as the desired predicate.
5280  if (FoundPred == Pred)
5281    return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5282
5283  // Check whether swapping the found predicate makes it the same as the
5284  // desired predicate.
5285  if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5286    if (isa<SCEVConstant>(RHS))
5287      return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5288    else
5289      return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5290                                   RHS, LHS, FoundLHS, FoundRHS);
5291  }
5292
5293  // Check whether the actual condition is beyond sufficient.
5294  if (FoundPred == ICmpInst::ICMP_EQ)
5295    if (ICmpInst::isTrueWhenEqual(Pred))
5296      if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5297        return true;
5298  if (Pred == ICmpInst::ICMP_NE)
5299    if (!ICmpInst::isTrueWhenEqual(FoundPred))
5300      if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5301        return true;
5302
5303  // Otherwise assume the worst.
5304  return false;
5305}
5306
5307/// isImpliedCondOperands - Test whether the condition described by Pred,
5308/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
5309/// and FoundRHS is true.
5310bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5311                                            const SCEV *LHS, const SCEV *RHS,
5312                                            const SCEV *FoundLHS,
5313                                            const SCEV *FoundRHS) {
5314  return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5315                                     FoundLHS, FoundRHS) ||
5316         // ~x < ~y --> x > y
5317         isImpliedCondOperandsHelper(Pred, LHS, RHS,
5318                                     getNotSCEV(FoundRHS),
5319                                     getNotSCEV(FoundLHS));
5320}
5321
5322/// isImpliedCondOperandsHelper - Test whether the condition described by
5323/// Pred, LHS, and RHS is true whenever the condition described by Pred,
5324/// FoundLHS, and FoundRHS is true.
5325bool
5326ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5327                                             const SCEV *LHS, const SCEV *RHS,
5328                                             const SCEV *FoundLHS,
5329                                             const SCEV *FoundRHS) {
5330  switch (Pred) {
5331  default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5332  case ICmpInst::ICMP_EQ:
5333  case ICmpInst::ICMP_NE:
5334    if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5335      return true;
5336    break;
5337  case ICmpInst::ICMP_SLT:
5338  case ICmpInst::ICMP_SLE:
5339    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5340        isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
5341      return true;
5342    break;
5343  case ICmpInst::ICMP_SGT:
5344  case ICmpInst::ICMP_SGE:
5345    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5346        isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
5347      return true;
5348    break;
5349  case ICmpInst::ICMP_ULT:
5350  case ICmpInst::ICMP_ULE:
5351    if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5352        isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
5353      return true;
5354    break;
5355  case ICmpInst::ICMP_UGT:
5356  case ICmpInst::ICMP_UGE:
5357    if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5358        isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
5359      return true;
5360    break;
5361  }
5362
5363  return false;
5364}
5365
5366/// getBECount - Subtract the end and start values and divide by the step,
5367/// rounding up, to get the number of times the backedge is executed. Return
5368/// CouldNotCompute if an intermediate computation overflows.
5369const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
5370                                        const SCEV *End,
5371                                        const SCEV *Step,
5372                                        bool NoWrap) {
5373  assert(!isKnownNegative(Step) &&
5374         "This code doesn't handle negative strides yet!");
5375
5376  const Type *Ty = Start->getType();
5377  const SCEV *NegOne = getIntegerSCEV(-1, Ty);
5378  const SCEV *Diff = getMinusSCEV(End, Start);
5379  const SCEV *RoundUp = getAddExpr(Step, NegOne);
5380
5381  // Add an adjustment to the difference between End and Start so that
5382  // the division will effectively round up.
5383  const SCEV *Add = getAddExpr(Diff, RoundUp);
5384
5385  if (!NoWrap) {
5386    // Check Add for unsigned overflow.
5387    // TODO: More sophisticated things could be done here.
5388    const Type *WideTy = IntegerType::get(getContext(),
5389                                          getTypeSizeInBits(Ty) + 1);
5390    const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5391    const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5392    const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5393    if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5394      return getCouldNotCompute();
5395  }
5396
5397  return getUDivExpr(Add, Step);
5398}
5399
5400/// HowManyLessThans - Return the number of times a backedge containing the
5401/// specified less-than comparison will execute.  If not computable, return
5402/// CouldNotCompute.
5403ScalarEvolution::BackedgeTakenInfo
5404ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5405                                  const Loop *L, bool isSigned) {
5406  // Only handle:  "ADDREC < LoopInvariant".
5407  if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
5408
5409  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
5410  if (!AddRec || AddRec->getLoop() != L)
5411    return getCouldNotCompute();
5412
5413  // Check to see if we have a flag which makes analysis easy.
5414  bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5415                           AddRec->hasNoUnsignedWrap();
5416
5417  if (AddRec->isAffine()) {
5418    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
5419    const SCEV *Step = AddRec->getStepRecurrence(*this);
5420
5421    if (Step->isZero())
5422      return getCouldNotCompute();
5423    if (Step->isOne()) {
5424      // With unit stride, the iteration never steps past the limit value.
5425    } else if (isKnownPositive(Step)) {
5426      // Test whether a positive iteration can step past the limit
5427      // value and past the maximum value for its type in a single step.
5428      // Note that it's not sufficient to check NoWrap here, because even
5429      // though the value after a wrap is undefined, it's not undefined
5430      // behavior, so if wrap does occur, the loop could either terminate or
5431      // loop infinitely, but in either case, the loop is guaranteed to
5432      // iterate at least until the iteration where the wrapping occurs.
5433      const SCEV *One = getIntegerSCEV(1, Step->getType());
5434      if (isSigned) {
5435        APInt Max = APInt::getSignedMaxValue(BitWidth);
5436        if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5437              .slt(getSignedRange(RHS).getSignedMax()))
5438          return getCouldNotCompute();
5439      } else {
5440        APInt Max = APInt::getMaxValue(BitWidth);
5441        if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5442              .ult(getUnsignedRange(RHS).getUnsignedMax()))
5443          return getCouldNotCompute();
5444      }
5445    } else
5446      // TODO: Handle negative strides here and below.
5447      return getCouldNotCompute();
5448
5449    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5450    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
5451    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
5452    // treat m-n as signed nor unsigned due to overflow possibility.
5453
5454    // First, we get the value of the LHS in the first iteration: n
5455    const SCEV *Start = AddRec->getOperand(0);
5456
5457    // Determine the minimum constant start value.
5458    const SCEV *MinStart = getConstant(isSigned ?
5459      getSignedRange(Start).getSignedMin() :
5460      getUnsignedRange(Start).getUnsignedMin());
5461
5462    // If we know that the condition is true in order to enter the loop,
5463    // then we know that it will run exactly (m-n)/s times. Otherwise, we
5464    // only know that it will execute (max(m,n)-n)/s times. In both cases,
5465    // the division must round up.
5466    const SCEV *End = RHS;
5467    if (!isLoopEntryGuardedByCond(L,
5468                                  isSigned ? ICmpInst::ICMP_SLT :
5469                                             ICmpInst::ICMP_ULT,
5470                                  getMinusSCEV(Start, Step), RHS))
5471      End = isSigned ? getSMaxExpr(RHS, Start)
5472                     : getUMaxExpr(RHS, Start);
5473
5474    // Determine the maximum constant end value.
5475    const SCEV *MaxEnd = getConstant(isSigned ?
5476      getSignedRange(End).getSignedMax() :
5477      getUnsignedRange(End).getUnsignedMax());
5478
5479    // If MaxEnd is within a step of the maximum integer value in its type,
5480    // adjust it down to the minimum value which would produce the same effect.
5481    // This allows the subsequent ceiling division of (N+(step-1))/step to
5482    // compute the correct value.
5483    const SCEV *StepMinusOne = getMinusSCEV(Step,
5484                                            getIntegerSCEV(1, Step->getType()));
5485    MaxEnd = isSigned ?
5486      getSMinExpr(MaxEnd,
5487                  getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5488                               StepMinusOne)) :
5489      getUMinExpr(MaxEnd,
5490                  getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5491                               StepMinusOne));
5492
5493    // Finally, we subtract these two values and divide, rounding up, to get
5494    // the number of times the backedge is executed.
5495    const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
5496
5497    // The maximum backedge count is similar, except using the minimum start
5498    // value and the maximum end value.
5499    const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
5500
5501    return BackedgeTakenInfo(BECount, MaxBECount);
5502  }
5503
5504  return getCouldNotCompute();
5505}
5506
5507/// getNumIterationsInRange - Return the number of iterations of this loop that
5508/// produce values in the specified constant range.  Another way of looking at
5509/// this is that it returns the first iteration number where the value is not in
5510/// the condition, thus computing the exit count. If the iteration count can't
5511/// be computed, an instance of SCEVCouldNotCompute is returned.
5512const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
5513                                                    ScalarEvolution &SE) const {
5514  if (Range.isFullSet())  // Infinite loop.
5515    return SE.getCouldNotCompute();
5516
5517  // If the start is a non-zero constant, shift the range to simplify things.
5518  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
5519    if (!SC->getValue()->isZero()) {
5520      SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
5521      Operands[0] = SE.getIntegerSCEV(0, SC->getType());
5522      const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
5523      if (const SCEVAddRecExpr *ShiftedAddRec =
5524            dyn_cast<SCEVAddRecExpr>(Shifted))
5525        return ShiftedAddRec->getNumIterationsInRange(
5526                           Range.subtract(SC->getValue()->getValue()), SE);
5527      // This is strange and shouldn't happen.
5528      return SE.getCouldNotCompute();
5529    }
5530
5531  // The only time we can solve this is when we have all constant indices.
5532  // Otherwise, we cannot determine the overflow conditions.
5533  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5534    if (!isa<SCEVConstant>(getOperand(i)))
5535      return SE.getCouldNotCompute();
5536
5537
5538  // Okay at this point we know that all elements of the chrec are constants and
5539  // that the start element is zero.
5540
5541  // First check to see if the range contains zero.  If not, the first
5542  // iteration exits.
5543  unsigned BitWidth = SE.getTypeSizeInBits(getType());
5544  if (!Range.contains(APInt(BitWidth, 0)))
5545    return SE.getIntegerSCEV(0, getType());
5546
5547  if (isAffine()) {
5548    // If this is an affine expression then we have this situation:
5549    //   Solve {0,+,A} in Range  ===  Ax in Range
5550
5551    // We know that zero is in the range.  If A is positive then we know that
5552    // the upper value of the range must be the first possible exit value.
5553    // If A is negative then the lower of the range is the last possible loop
5554    // value.  Also note that we already checked for a full range.
5555    APInt One(BitWidth,1);
5556    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5557    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
5558
5559    // The exit value should be (End+A)/A.
5560    APInt ExitVal = (End + A).udiv(A);
5561    ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
5562
5563    // Evaluate at the exit value.  If we really did fall out of the valid
5564    // range, then we computed our trip count, otherwise wrap around or other
5565    // things must have happened.
5566    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
5567    if (Range.contains(Val->getValue()))
5568      return SE.getCouldNotCompute();  // Something strange happened
5569
5570    // Ensure that the previous value is in the range.  This is a sanity check.
5571    assert(Range.contains(
5572           EvaluateConstantChrecAtConstant(this,
5573           ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
5574           "Linear scev computation is off in a bad way!");
5575    return SE.getConstant(ExitValue);
5576  } else if (isQuadratic()) {
5577    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5578    // quadratic equation to solve it.  To do this, we must frame our problem in
5579    // terms of figuring out when zero is crossed, instead of when
5580    // Range.getUpper() is crossed.
5581    SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
5582    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
5583    const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
5584
5585    // Next, solve the constructed addrec
5586    std::pair<const SCEV *,const SCEV *> Roots =
5587      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
5588    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5589    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
5590    if (R1) {
5591      // Pick the smallest positive root value.
5592      if (ConstantInt *CB =
5593          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
5594                         R1->getValue(), R2->getValue()))) {
5595        if (CB->getZExtValue() == false)
5596          std::swap(R1, R2);   // R1 is the minimum root now.
5597
5598        // Make sure the root is not off by one.  The returned iteration should
5599        // not be in the range, but the previous one should be.  When solving
5600        // for "X*X < 5", for example, we should not return a root of 2.
5601        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
5602                                                             R1->getValue(),
5603                                                             SE);
5604        if (Range.contains(R1Val->getValue())) {
5605          // The next iteration must be out of the range...
5606          ConstantInt *NextVal =
5607                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
5608
5609          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5610          if (!Range.contains(R1Val->getValue()))
5611            return SE.getConstant(NextVal);
5612          return SE.getCouldNotCompute();  // Something strange happened
5613        }
5614
5615        // If R1 was not in the range, then it is a good return value.  Make
5616        // sure that R1-1 WAS in the range though, just in case.
5617        ConstantInt *NextVal =
5618               ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
5619        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5620        if (Range.contains(R1Val->getValue()))
5621          return R1;
5622        return SE.getCouldNotCompute();  // Something strange happened
5623      }
5624    }
5625  }
5626
5627  return SE.getCouldNotCompute();
5628}
5629
5630
5631
5632//===----------------------------------------------------------------------===//
5633//                   SCEVCallbackVH Class Implementation
5634//===----------------------------------------------------------------------===//
5635
5636void ScalarEvolution::SCEVCallbackVH::deleted() {
5637  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5638  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5639    SE->ConstantEvolutionLoopExitValue.erase(PN);
5640  SE->Scalars.erase(getValPtr());
5641  // this now dangles!
5642}
5643
5644void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
5645  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5646
5647  // Forget all the expressions associated with users of the old value,
5648  // so that future queries will recompute the expressions using the new
5649  // value.
5650  SmallVector<User *, 16> Worklist;
5651  SmallPtrSet<User *, 8> Visited;
5652  Value *Old = getValPtr();
5653  bool DeleteOld = false;
5654  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5655       UI != UE; ++UI)
5656    Worklist.push_back(*UI);
5657  while (!Worklist.empty()) {
5658    User *U = Worklist.pop_back_val();
5659    // Deleting the Old value will cause this to dangle. Postpone
5660    // that until everything else is done.
5661    if (U == Old) {
5662      DeleteOld = true;
5663      continue;
5664    }
5665    if (!Visited.insert(U))
5666      continue;
5667    if (PHINode *PN = dyn_cast<PHINode>(U))
5668      SE->ConstantEvolutionLoopExitValue.erase(PN);
5669    SE->Scalars.erase(U);
5670    for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5671         UI != UE; ++UI)
5672      Worklist.push_back(*UI);
5673  }
5674  // Delete the Old value if it (indirectly) references itself.
5675  if (DeleteOld) {
5676    if (PHINode *PN = dyn_cast<PHINode>(Old))
5677      SE->ConstantEvolutionLoopExitValue.erase(PN);
5678    SE->Scalars.erase(Old);
5679    // this now dangles!
5680  }
5681  // this may dangle!
5682}
5683
5684ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
5685  : CallbackVH(V), SE(se) {}
5686
5687//===----------------------------------------------------------------------===//
5688//                   ScalarEvolution Class Implementation
5689//===----------------------------------------------------------------------===//
5690
5691ScalarEvolution::ScalarEvolution()
5692  : FunctionPass(&ID) {
5693}
5694
5695bool ScalarEvolution::runOnFunction(Function &F) {
5696  this->F = &F;
5697  LI = &getAnalysis<LoopInfo>();
5698  TD = getAnalysisIfAvailable<TargetData>();
5699  DT = &getAnalysis<DominatorTree>();
5700  return false;
5701}
5702
5703void ScalarEvolution::releaseMemory() {
5704  Scalars.clear();
5705  BackedgeTakenCounts.clear();
5706  ConstantEvolutionLoopExitValue.clear();
5707  ValuesAtScopes.clear();
5708  UniqueSCEVs.clear();
5709  SCEVAllocator.Reset();
5710}
5711
5712void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5713  AU.setPreservesAll();
5714  AU.addRequiredTransitive<LoopInfo>();
5715  AU.addRequiredTransitive<DominatorTree>();
5716}
5717
5718bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
5719  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
5720}
5721
5722static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
5723                          const Loop *L) {
5724  // Print all inner loops first
5725  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5726    PrintLoopInfo(OS, SE, *I);
5727
5728  OS << "Loop ";
5729  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5730  OS << ": ";
5731
5732  SmallVector<BasicBlock *, 8> ExitBlocks;
5733  L->getExitBlocks(ExitBlocks);
5734  if (ExitBlocks.size() != 1)
5735    OS << "<multiple exits> ";
5736
5737  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5738    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
5739  } else {
5740    OS << "Unpredictable backedge-taken count. ";
5741  }
5742
5743  OS << "\n"
5744        "Loop ";
5745  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5746  OS << ": ";
5747
5748  if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5749    OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5750  } else {
5751    OS << "Unpredictable max backedge-taken count. ";
5752  }
5753
5754  OS << "\n";
5755}
5756
5757void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
5758  // ScalarEvolution's implementation of the print method is to print
5759  // out SCEV values of all instructions that are interesting. Doing
5760  // this potentially causes it to create new SCEV objects though,
5761  // which technically conflicts with the const qualifier. This isn't
5762  // observable from outside the class though, so casting away the
5763  // const isn't dangerous.
5764  ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
5765
5766  OS << "Classifying expressions for: ";
5767  WriteAsOperand(OS, F, /*PrintType=*/false);
5768  OS << "\n";
5769  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
5770    if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
5771      OS << *I << '\n';
5772      OS << "  -->  ";
5773      const SCEV *SV = SE.getSCEV(&*I);
5774      SV->print(OS);
5775
5776      const Loop *L = LI->getLoopFor((*I).getParent());
5777
5778      const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
5779      if (AtUse != SV) {
5780        OS << "  -->  ";
5781        AtUse->print(OS);
5782      }
5783
5784      if (L) {
5785        OS << "\t\t" "Exits: ";
5786        const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
5787        if (!ExitValue->isLoopInvariant(L)) {
5788          OS << "<<Unknown>>";
5789        } else {
5790          OS << *ExitValue;
5791        }
5792      }
5793
5794      OS << "\n";
5795    }
5796
5797  OS << "Determining loop execution counts for: ";
5798  WriteAsOperand(OS, F, /*PrintType=*/false);
5799  OS << "\n";
5800  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5801    PrintLoopInfo(OS, &SE, *I);
5802}
5803
5804