ScalarEvolution.cpp revision 4c7f1caadc6fdad54dd9f502224236f7e73cc6a8
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
19//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression.  These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
30//
31// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
35// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42//  Chains of recurrences -- a method to expedite the evaluation
43//  of closed-form functions
44//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46//  On computational properties of chains of recurrences
47//  Eugene V. Zima
48//
49//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50//  Robert A. van Engelen
51//
52//  Efficient Symbolic Analysis for Optimizing Compilers
53//  Robert A. van Engelen
54//
55//  Using the chains of recurrences algebra for data dependence testing and
56//  induction variable substitution
57//  MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
61#define DEBUG_TYPE "scalar-evolution"
62#include "llvm/Analysis/ScalarEvolutionExpressions.h"
63#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
65#include "llvm/GlobalVariable.h"
66#include "llvm/GlobalAlias.h"
67#include "llvm/Instructions.h"
68#include "llvm/LLVMContext.h"
69#include "llvm/Operator.h"
70#include "llvm/Analysis/ConstantFolding.h"
71#include "llvm/Analysis/Dominators.h"
72#include "llvm/Analysis/InstructionSimplify.h"
73#include "llvm/Analysis/LoopInfo.h"
74#include "llvm/Analysis/ValueTracking.h"
75#include "llvm/Assembly/Writer.h"
76#include "llvm/Target/TargetData.h"
77#include "llvm/Support/CommandLine.h"
78#include "llvm/Support/ConstantRange.h"
79#include "llvm/Support/Debug.h"
80#include "llvm/Support/ErrorHandling.h"
81#include "llvm/Support/GetElementPtrTypeIterator.h"
82#include "llvm/Support/InstIterator.h"
83#include "llvm/Support/MathExtras.h"
84#include "llvm/Support/raw_ostream.h"
85#include "llvm/ADT/Statistic.h"
86#include "llvm/ADT/STLExtras.h"
87#include "llvm/ADT/SmallPtrSet.h"
88#include <algorithm>
89using namespace llvm;
90
91STATISTIC(NumArrayLenItCounts,
92          "Number of trip counts computed with array length");
93STATISTIC(NumTripCountsComputed,
94          "Number of loops with predictable loop counts");
95STATISTIC(NumTripCountsNotComputed,
96          "Number of loops without predictable loop counts");
97STATISTIC(NumBruteForceTripCountsComputed,
98          "Number of loops with trip counts computed by force");
99
100static cl::opt<unsigned>
101MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
102                        cl::desc("Maximum number of iterations SCEV will "
103                                 "symbolically execute a constant "
104                                 "derived loop"),
105                        cl::init(100));
106
107INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
108                "Scalar Evolution Analysis", false, true)
109INITIALIZE_PASS_DEPENDENCY(LoopInfo)
110INITIALIZE_PASS_DEPENDENCY(DominatorTree)
111INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
112                "Scalar Evolution Analysis", false, true)
113char ScalarEvolution::ID = 0;
114
115//===----------------------------------------------------------------------===//
116//                           SCEV class definitions
117//===----------------------------------------------------------------------===//
118
119//===----------------------------------------------------------------------===//
120// Implementation of the SCEV class.
121//
122
123void SCEV::dump() const {
124  print(dbgs());
125  dbgs() << '\n';
126}
127
128void SCEV::print(raw_ostream &OS) const {
129  switch (getSCEVType()) {
130  case scConstant:
131    WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
132    return;
133  case scTruncate: {
134    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
135    const SCEV *Op = Trunc->getOperand();
136    OS << "(trunc " << *Op->getType() << " " << *Op << " to "
137       << *Trunc->getType() << ")";
138    return;
139  }
140  case scZeroExtend: {
141    const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
142    const SCEV *Op = ZExt->getOperand();
143    OS << "(zext " << *Op->getType() << " " << *Op << " to "
144       << *ZExt->getType() << ")";
145    return;
146  }
147  case scSignExtend: {
148    const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
149    const SCEV *Op = SExt->getOperand();
150    OS << "(sext " << *Op->getType() << " " << *Op << " to "
151       << *SExt->getType() << ")";
152    return;
153  }
154  case scAddRecExpr: {
155    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
156    OS << "{" << *AR->getOperand(0);
157    for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
158      OS << ",+," << *AR->getOperand(i);
159    OS << "}<";
160    if (AR->getNoWrapFlags(FlagNUW))
161      OS << "nuw><";
162    if (AR->getNoWrapFlags(FlagNSW))
163      OS << "nsw><";
164    if (AR->getNoWrapFlags(FlagNW) &&
165        !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
166      OS << "nw><";
167    WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
168    OS << ">";
169    return;
170  }
171  case scAddExpr:
172  case scMulExpr:
173  case scUMaxExpr:
174  case scSMaxExpr: {
175    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
176    const char *OpStr = 0;
177    switch (NAry->getSCEVType()) {
178    case scAddExpr: OpStr = " + "; break;
179    case scMulExpr: OpStr = " * "; break;
180    case scUMaxExpr: OpStr = " umax "; break;
181    case scSMaxExpr: OpStr = " smax "; break;
182    }
183    OS << "(";
184    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
185         I != E; ++I) {
186      OS << **I;
187      if (llvm::next(I) != E)
188        OS << OpStr;
189    }
190    OS << ")";
191    return;
192  }
193  case scUDivExpr: {
194    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
195    OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
196    return;
197  }
198  case scUnknown: {
199    const SCEVUnknown *U = cast<SCEVUnknown>(this);
200    Type *AllocTy;
201    if (U->isSizeOf(AllocTy)) {
202      OS << "sizeof(" << *AllocTy << ")";
203      return;
204    }
205    if (U->isAlignOf(AllocTy)) {
206      OS << "alignof(" << *AllocTy << ")";
207      return;
208    }
209
210    Type *CTy;
211    Constant *FieldNo;
212    if (U->isOffsetOf(CTy, FieldNo)) {
213      OS << "offsetof(" << *CTy << ", ";
214      WriteAsOperand(OS, FieldNo, false);
215      OS << ")";
216      return;
217    }
218
219    // Otherwise just print it normally.
220    WriteAsOperand(OS, U->getValue(), false);
221    return;
222  }
223  case scCouldNotCompute:
224    OS << "***COULDNOTCOMPUTE***";
225    return;
226  default: break;
227  }
228  llvm_unreachable("Unknown SCEV kind!");
229}
230
231Type *SCEV::getType() const {
232  switch (getSCEVType()) {
233  case scConstant:
234    return cast<SCEVConstant>(this)->getType();
235  case scTruncate:
236  case scZeroExtend:
237  case scSignExtend:
238    return cast<SCEVCastExpr>(this)->getType();
239  case scAddRecExpr:
240  case scMulExpr:
241  case scUMaxExpr:
242  case scSMaxExpr:
243    return cast<SCEVNAryExpr>(this)->getType();
244  case scAddExpr:
245    return cast<SCEVAddExpr>(this)->getType();
246  case scUDivExpr:
247    return cast<SCEVUDivExpr>(this)->getType();
248  case scUnknown:
249    return cast<SCEVUnknown>(this)->getType();
250  case scCouldNotCompute:
251    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
252    return 0;
253  default: break;
254  }
255  llvm_unreachable("Unknown SCEV kind!");
256  return 0;
257}
258
259bool SCEV::isZero() const {
260  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
261    return SC->getValue()->isZero();
262  return false;
263}
264
265bool SCEV::isOne() const {
266  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
267    return SC->getValue()->isOne();
268  return false;
269}
270
271bool SCEV::isAllOnesValue() const {
272  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
273    return SC->getValue()->isAllOnesValue();
274  return false;
275}
276
277SCEVCouldNotCompute::SCEVCouldNotCompute() :
278  SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
279
280bool SCEVCouldNotCompute::classof(const SCEV *S) {
281  return S->getSCEVType() == scCouldNotCompute;
282}
283
284const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
285  FoldingSetNodeID ID;
286  ID.AddInteger(scConstant);
287  ID.AddPointer(V);
288  void *IP = 0;
289  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
290  SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
291  UniqueSCEVs.InsertNode(S, IP);
292  return S;
293}
294
295const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
296  return getConstant(ConstantInt::get(getContext(), Val));
297}
298
299const SCEV *
300ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
301  IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
302  return getConstant(ConstantInt::get(ITy, V, isSigned));
303}
304
305SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
306                           unsigned SCEVTy, const SCEV *op, Type *ty)
307  : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
308
309SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
310                                   const SCEV *op, Type *ty)
311  : SCEVCastExpr(ID, scTruncate, op, ty) {
312  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
313         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
314         "Cannot truncate non-integer value!");
315}
316
317SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
318                                       const SCEV *op, Type *ty)
319  : SCEVCastExpr(ID, scZeroExtend, op, ty) {
320  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
321         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
322         "Cannot zero extend non-integer value!");
323}
324
325SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
326                                       const SCEV *op, Type *ty)
327  : SCEVCastExpr(ID, scSignExtend, op, ty) {
328  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
329         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
330         "Cannot sign extend non-integer value!");
331}
332
333void SCEVUnknown::deleted() {
334  // Clear this SCEVUnknown from various maps.
335  SE->forgetMemoizedResults(this);
336
337  // Remove this SCEVUnknown from the uniquing map.
338  SE->UniqueSCEVs.RemoveNode(this);
339
340  // Release the value.
341  setValPtr(0);
342}
343
344void SCEVUnknown::allUsesReplacedWith(Value *New) {
345  // Clear this SCEVUnknown from various maps.
346  SE->forgetMemoizedResults(this);
347
348  // Remove this SCEVUnknown from the uniquing map.
349  SE->UniqueSCEVs.RemoveNode(this);
350
351  // Update this SCEVUnknown to point to the new value. This is needed
352  // because there may still be outstanding SCEVs which still point to
353  // this SCEVUnknown.
354  setValPtr(New);
355}
356
357bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
358  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
359    if (VCE->getOpcode() == Instruction::PtrToInt)
360      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
361        if (CE->getOpcode() == Instruction::GetElementPtr &&
362            CE->getOperand(0)->isNullValue() &&
363            CE->getNumOperands() == 2)
364          if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
365            if (CI->isOne()) {
366              AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
367                                 ->getElementType();
368              return true;
369            }
370
371  return false;
372}
373
374bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
375  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
376    if (VCE->getOpcode() == Instruction::PtrToInt)
377      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
378        if (CE->getOpcode() == Instruction::GetElementPtr &&
379            CE->getOperand(0)->isNullValue()) {
380          Type *Ty =
381            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
382          if (StructType *STy = dyn_cast<StructType>(Ty))
383            if (!STy->isPacked() &&
384                CE->getNumOperands() == 3 &&
385                CE->getOperand(1)->isNullValue()) {
386              if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
387                if (CI->isOne() &&
388                    STy->getNumElements() == 2 &&
389                    STy->getElementType(0)->isIntegerTy(1)) {
390                  AllocTy = STy->getElementType(1);
391                  return true;
392                }
393            }
394        }
395
396  return false;
397}
398
399bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
400  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
401    if (VCE->getOpcode() == Instruction::PtrToInt)
402      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
403        if (CE->getOpcode() == Instruction::GetElementPtr &&
404            CE->getNumOperands() == 3 &&
405            CE->getOperand(0)->isNullValue() &&
406            CE->getOperand(1)->isNullValue()) {
407          Type *Ty =
408            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
409          // Ignore vector types here so that ScalarEvolutionExpander doesn't
410          // emit getelementptrs that index into vectors.
411          if (Ty->isStructTy() || Ty->isArrayTy()) {
412            CTy = Ty;
413            FieldNo = CE->getOperand(2);
414            return true;
415          }
416        }
417
418  return false;
419}
420
421//===----------------------------------------------------------------------===//
422//                               SCEV Utilities
423//===----------------------------------------------------------------------===//
424
425namespace {
426  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
427  /// than the complexity of the RHS.  This comparator is used to canonicalize
428  /// expressions.
429  class SCEVComplexityCompare {
430    const LoopInfo *const LI;
431  public:
432    explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
433
434    // Return true or false if LHS is less than, or at least RHS, respectively.
435    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
436      return compare(LHS, RHS) < 0;
437    }
438
439    // Return negative, zero, or positive, if LHS is less than, equal to, or
440    // greater than RHS, respectively. A three-way result allows recursive
441    // comparisons to be more efficient.
442    int compare(const SCEV *LHS, const SCEV *RHS) const {
443      // Fast-path: SCEVs are uniqued so we can do a quick equality check.
444      if (LHS == RHS)
445        return 0;
446
447      // Primarily, sort the SCEVs by their getSCEVType().
448      unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
449      if (LType != RType)
450        return (int)LType - (int)RType;
451
452      // Aside from the getSCEVType() ordering, the particular ordering
453      // isn't very important except that it's beneficial to be consistent,
454      // so that (a + b) and (b + a) don't end up as different expressions.
455      switch (LType) {
456      case scUnknown: {
457        const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
458        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
459
460        // Sort SCEVUnknown values with some loose heuristics. TODO: This is
461        // not as complete as it could be.
462        const Value *LV = LU->getValue(), *RV = RU->getValue();
463
464        // Order pointer values after integer values. This helps SCEVExpander
465        // form GEPs.
466        bool LIsPointer = LV->getType()->isPointerTy(),
467             RIsPointer = RV->getType()->isPointerTy();
468        if (LIsPointer != RIsPointer)
469          return (int)LIsPointer - (int)RIsPointer;
470
471        // Compare getValueID values.
472        unsigned LID = LV->getValueID(),
473                 RID = RV->getValueID();
474        if (LID != RID)
475          return (int)LID - (int)RID;
476
477        // Sort arguments by their position.
478        if (const Argument *LA = dyn_cast<Argument>(LV)) {
479          const Argument *RA = cast<Argument>(RV);
480          unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
481          return (int)LArgNo - (int)RArgNo;
482        }
483
484        // For instructions, compare their loop depth, and their operand
485        // count.  This is pretty loose.
486        if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
487          const Instruction *RInst = cast<Instruction>(RV);
488
489          // Compare loop depths.
490          const BasicBlock *LParent = LInst->getParent(),
491                           *RParent = RInst->getParent();
492          if (LParent != RParent) {
493            unsigned LDepth = LI->getLoopDepth(LParent),
494                     RDepth = LI->getLoopDepth(RParent);
495            if (LDepth != RDepth)
496              return (int)LDepth - (int)RDepth;
497          }
498
499          // Compare the number of operands.
500          unsigned LNumOps = LInst->getNumOperands(),
501                   RNumOps = RInst->getNumOperands();
502          return (int)LNumOps - (int)RNumOps;
503        }
504
505        return 0;
506      }
507
508      case scConstant: {
509        const SCEVConstant *LC = cast<SCEVConstant>(LHS);
510        const SCEVConstant *RC = cast<SCEVConstant>(RHS);
511
512        // Compare constant values.
513        const APInt &LA = LC->getValue()->getValue();
514        const APInt &RA = RC->getValue()->getValue();
515        unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
516        if (LBitWidth != RBitWidth)
517          return (int)LBitWidth - (int)RBitWidth;
518        return LA.ult(RA) ? -1 : 1;
519      }
520
521      case scAddRecExpr: {
522        const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
523        const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
524
525        // Compare addrec loop depths.
526        const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
527        if (LLoop != RLoop) {
528          unsigned LDepth = LLoop->getLoopDepth(),
529                   RDepth = RLoop->getLoopDepth();
530          if (LDepth != RDepth)
531            return (int)LDepth - (int)RDepth;
532        }
533
534        // Addrec complexity grows with operand count.
535        unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
536        if (LNumOps != RNumOps)
537          return (int)LNumOps - (int)RNumOps;
538
539        // Lexicographically compare.
540        for (unsigned i = 0; i != LNumOps; ++i) {
541          long X = compare(LA->getOperand(i), RA->getOperand(i));
542          if (X != 0)
543            return X;
544        }
545
546        return 0;
547      }
548
549      case scAddExpr:
550      case scMulExpr:
551      case scSMaxExpr:
552      case scUMaxExpr: {
553        const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
554        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
555
556        // Lexicographically compare n-ary expressions.
557        unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
558        for (unsigned i = 0; i != LNumOps; ++i) {
559          if (i >= RNumOps)
560            return 1;
561          long X = compare(LC->getOperand(i), RC->getOperand(i));
562          if (X != 0)
563            return X;
564        }
565        return (int)LNumOps - (int)RNumOps;
566      }
567
568      case scUDivExpr: {
569        const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
570        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
571
572        // Lexicographically compare udiv expressions.
573        long X = compare(LC->getLHS(), RC->getLHS());
574        if (X != 0)
575          return X;
576        return compare(LC->getRHS(), RC->getRHS());
577      }
578
579      case scTruncate:
580      case scZeroExtend:
581      case scSignExtend: {
582        const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
583        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
584
585        // Compare cast expressions by operand.
586        return compare(LC->getOperand(), RC->getOperand());
587      }
588
589      default:
590        break;
591      }
592
593      llvm_unreachable("Unknown SCEV kind!");
594      return 0;
595    }
596  };
597}
598
599/// GroupByComplexity - Given a list of SCEV objects, order them by their
600/// complexity, and group objects of the same complexity together by value.
601/// When this routine is finished, we know that any duplicates in the vector are
602/// consecutive and that complexity is monotonically increasing.
603///
604/// Note that we go take special precautions to ensure that we get deterministic
605/// results from this routine.  In other words, we don't want the results of
606/// this to depend on where the addresses of various SCEV objects happened to
607/// land in memory.
608///
609static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
610                              LoopInfo *LI) {
611  if (Ops.size() < 2) return;  // Noop
612  if (Ops.size() == 2) {
613    // This is the common case, which also happens to be trivially simple.
614    // Special case it.
615    const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
616    if (SCEVComplexityCompare(LI)(RHS, LHS))
617      std::swap(LHS, RHS);
618    return;
619  }
620
621  // Do the rough sort by complexity.
622  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
623
624  // Now that we are sorted by complexity, group elements of the same
625  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
626  // be extremely short in practice.  Note that we take this approach because we
627  // do not want to depend on the addresses of the objects we are grouping.
628  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
629    const SCEV *S = Ops[i];
630    unsigned Complexity = S->getSCEVType();
631
632    // If there are any objects of the same complexity and same value as this
633    // one, group them.
634    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
635      if (Ops[j] == S) { // Found a duplicate.
636        // Move it to immediately after i'th element.
637        std::swap(Ops[i+1], Ops[j]);
638        ++i;   // no need to rescan it.
639        if (i == e-2) return;  // Done!
640      }
641    }
642  }
643}
644
645
646
647//===----------------------------------------------------------------------===//
648//                      Simple SCEV method implementations
649//===----------------------------------------------------------------------===//
650
651/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
652/// Assume, K > 0.
653static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
654                                       ScalarEvolution &SE,
655                                       Type *ResultTy) {
656  // Handle the simplest case efficiently.
657  if (K == 1)
658    return SE.getTruncateOrZeroExtend(It, ResultTy);
659
660  // We are using the following formula for BC(It, K):
661  //
662  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
663  //
664  // Suppose, W is the bitwidth of the return value.  We must be prepared for
665  // overflow.  Hence, we must assure that the result of our computation is
666  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
667  // safe in modular arithmetic.
668  //
669  // However, this code doesn't use exactly that formula; the formula it uses
670  // is something like the following, where T is the number of factors of 2 in
671  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
672  // exponentiation:
673  //
674  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
675  //
676  // This formula is trivially equivalent to the previous formula.  However,
677  // this formula can be implemented much more efficiently.  The trick is that
678  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
679  // arithmetic.  To do exact division in modular arithmetic, all we have
680  // to do is multiply by the inverse.  Therefore, this step can be done at
681  // width W.
682  //
683  // The next issue is how to safely do the division by 2^T.  The way this
684  // is done is by doing the multiplication step at a width of at least W + T
685  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
686  // when we perform the division by 2^T (which is equivalent to a right shift
687  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
688  // truncated out after the division by 2^T.
689  //
690  // In comparison to just directly using the first formula, this technique
691  // is much more efficient; using the first formula requires W * K bits,
692  // but this formula less than W + K bits. Also, the first formula requires
693  // a division step, whereas this formula only requires multiplies and shifts.
694  //
695  // It doesn't matter whether the subtraction step is done in the calculation
696  // width or the input iteration count's width; if the subtraction overflows,
697  // the result must be zero anyway.  We prefer here to do it in the width of
698  // the induction variable because it helps a lot for certain cases; CodeGen
699  // isn't smart enough to ignore the overflow, which leads to much less
700  // efficient code if the width of the subtraction is wider than the native
701  // register width.
702  //
703  // (It's possible to not widen at all by pulling out factors of 2 before
704  // the multiplication; for example, K=2 can be calculated as
705  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
706  // extra arithmetic, so it's not an obvious win, and it gets
707  // much more complicated for K > 3.)
708
709  // Protection from insane SCEVs; this bound is conservative,
710  // but it probably doesn't matter.
711  if (K > 1000)
712    return SE.getCouldNotCompute();
713
714  unsigned W = SE.getTypeSizeInBits(ResultTy);
715
716  // Calculate K! / 2^T and T; we divide out the factors of two before
717  // multiplying for calculating K! / 2^T to avoid overflow.
718  // Other overflow doesn't matter because we only care about the bottom
719  // W bits of the result.
720  APInt OddFactorial(W, 1);
721  unsigned T = 1;
722  for (unsigned i = 3; i <= K; ++i) {
723    APInt Mult(W, i);
724    unsigned TwoFactors = Mult.countTrailingZeros();
725    T += TwoFactors;
726    Mult = Mult.lshr(TwoFactors);
727    OddFactorial *= Mult;
728  }
729
730  // We need at least W + T bits for the multiplication step
731  unsigned CalculationBits = W + T;
732
733  // Calculate 2^T, at width T+W.
734  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
735
736  // Calculate the multiplicative inverse of K! / 2^T;
737  // this multiplication factor will perform the exact division by
738  // K! / 2^T.
739  APInt Mod = APInt::getSignedMinValue(W+1);
740  APInt MultiplyFactor = OddFactorial.zext(W+1);
741  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
742  MultiplyFactor = MultiplyFactor.trunc(W);
743
744  // Calculate the product, at width T+W
745  IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
746                                                      CalculationBits);
747  const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
748  for (unsigned i = 1; i != K; ++i) {
749    const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
750    Dividend = SE.getMulExpr(Dividend,
751                             SE.getTruncateOrZeroExtend(S, CalculationTy));
752  }
753
754  // Divide by 2^T
755  const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
756
757  // Truncate the result, and divide by K! / 2^T.
758
759  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
760                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
761}
762
763/// evaluateAtIteration - Return the value of this chain of recurrences at
764/// the specified iteration number.  We can evaluate this recurrence by
765/// multiplying each element in the chain by the binomial coefficient
766/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
767///
768///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
769///
770/// where BC(It, k) stands for binomial coefficient.
771///
772const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
773                                                ScalarEvolution &SE) const {
774  const SCEV *Result = getStart();
775  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
776    // The computation is correct in the face of overflow provided that the
777    // multiplication is performed _after_ the evaluation of the binomial
778    // coefficient.
779    const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
780    if (isa<SCEVCouldNotCompute>(Coeff))
781      return Coeff;
782
783    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
784  }
785  return Result;
786}
787
788//===----------------------------------------------------------------------===//
789//                    SCEV Expression folder implementations
790//===----------------------------------------------------------------------===//
791
792const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
793                                             Type *Ty) {
794  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
795         "This is not a truncating conversion!");
796  assert(isSCEVable(Ty) &&
797         "This is not a conversion to a SCEVable type!");
798  Ty = getEffectiveSCEVType(Ty);
799
800  FoldingSetNodeID ID;
801  ID.AddInteger(scTruncate);
802  ID.AddPointer(Op);
803  ID.AddPointer(Ty);
804  void *IP = 0;
805  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
806
807  // Fold if the operand is constant.
808  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
809    return getConstant(
810      cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
811                                               getEffectiveSCEVType(Ty))));
812
813  // trunc(trunc(x)) --> trunc(x)
814  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
815    return getTruncateExpr(ST->getOperand(), Ty);
816
817  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
818  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
819    return getTruncateOrSignExtend(SS->getOperand(), Ty);
820
821  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
822  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
823    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
824
825  // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
826  // eliminate all the truncates.
827  if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
828    SmallVector<const SCEV *, 4> Operands;
829    bool hasTrunc = false;
830    for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
831      const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
832      hasTrunc = isa<SCEVTruncateExpr>(S);
833      Operands.push_back(S);
834    }
835    if (!hasTrunc)
836      return getAddExpr(Operands);
837    UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
838  }
839
840  // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
841  // eliminate all the truncates.
842  if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
843    SmallVector<const SCEV *, 4> Operands;
844    bool hasTrunc = false;
845    for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
846      const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
847      hasTrunc = isa<SCEVTruncateExpr>(S);
848      Operands.push_back(S);
849    }
850    if (!hasTrunc)
851      return getMulExpr(Operands);
852    UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
853  }
854
855  // If the input value is a chrec scev, truncate the chrec's operands.
856  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
857    SmallVector<const SCEV *, 4> Operands;
858    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
859      Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
860    return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
861  }
862
863  // As a special case, fold trunc(undef) to undef. We don't want to
864  // know too much about SCEVUnknowns, but this special case is handy
865  // and harmless.
866  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
867    if (isa<UndefValue>(U->getValue()))
868      return getSCEV(UndefValue::get(Ty));
869
870  // The cast wasn't folded; create an explicit cast node. We can reuse
871  // the existing insert position since if we get here, we won't have
872  // made any changes which would invalidate it.
873  SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
874                                                 Op, Ty);
875  UniqueSCEVs.InsertNode(S, IP);
876  return S;
877}
878
879const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
880                                               Type *Ty) {
881  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
882         "This is not an extending conversion!");
883  assert(isSCEVable(Ty) &&
884         "This is not a conversion to a SCEVable type!");
885  Ty = getEffectiveSCEVType(Ty);
886
887  // Fold if the operand is constant.
888  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
889    return getConstant(
890      cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
891                                              getEffectiveSCEVType(Ty))));
892
893  // zext(zext(x)) --> zext(x)
894  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
895    return getZeroExtendExpr(SZ->getOperand(), Ty);
896
897  // Before doing any expensive analysis, check to see if we've already
898  // computed a SCEV for this Op and Ty.
899  FoldingSetNodeID ID;
900  ID.AddInteger(scZeroExtend);
901  ID.AddPointer(Op);
902  ID.AddPointer(Ty);
903  void *IP = 0;
904  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
905
906  // zext(trunc(x)) --> zext(x) or x or trunc(x)
907  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
908    // It's possible the bits taken off by the truncate were all zero bits. If
909    // so, we should be able to simplify this further.
910    const SCEV *X = ST->getOperand();
911    ConstantRange CR = getUnsignedRange(X);
912    unsigned TruncBits = getTypeSizeInBits(ST->getType());
913    unsigned NewBits = getTypeSizeInBits(Ty);
914    if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
915            CR.zextOrTrunc(NewBits)))
916      return getTruncateOrZeroExtend(X, Ty);
917  }
918
919  // If the input value is a chrec scev, and we can prove that the value
920  // did not overflow the old, smaller, value, we can zero extend all of the
921  // operands (often constants).  This allows analysis of something like
922  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
923  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
924    if (AR->isAffine()) {
925      const SCEV *Start = AR->getStart();
926      const SCEV *Step = AR->getStepRecurrence(*this);
927      unsigned BitWidth = getTypeSizeInBits(AR->getType());
928      const Loop *L = AR->getLoop();
929
930      // If we have special knowledge that this addrec won't overflow,
931      // we don't need to do any further analysis.
932      if (AR->getNoWrapFlags(SCEV::FlagNUW))
933        return getAddRecExpr(getZeroExtendExpr(Start, Ty),
934                             getZeroExtendExpr(Step, Ty),
935                             L, AR->getNoWrapFlags());
936
937      // Check whether the backedge-taken count is SCEVCouldNotCompute.
938      // Note that this serves two purposes: It filters out loops that are
939      // simply not analyzable, and it covers the case where this code is
940      // being called from within backedge-taken count analysis, such that
941      // attempting to ask for the backedge-taken count would likely result
942      // in infinite recursion. In the later case, the analysis code will
943      // cope with a conservative value, and it will take care to purge
944      // that value once it has finished.
945      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
946      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
947        // Manually compute the final value for AR, checking for
948        // overflow.
949
950        // Check whether the backedge-taken count can be losslessly casted to
951        // the addrec's type. The count is always unsigned.
952        const SCEV *CastedMaxBECount =
953          getTruncateOrZeroExtend(MaxBECount, Start->getType());
954        const SCEV *RecastedMaxBECount =
955          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
956        if (MaxBECount == RecastedMaxBECount) {
957          Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
958          // Check whether Start+Step*MaxBECount has no unsigned overflow.
959          const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
960          const SCEV *Add = getAddExpr(Start, ZMul);
961          const SCEV *OperandExtendedAdd =
962            getAddExpr(getZeroExtendExpr(Start, WideTy),
963                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
964                                  getZeroExtendExpr(Step, WideTy)));
965          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) {
966            // Cache knowledge of AR NUW, which is propagated to this AddRec.
967            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
968            // Return the expression with the addrec on the outside.
969            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
970                                 getZeroExtendExpr(Step, Ty),
971                                 L, AR->getNoWrapFlags());
972          }
973          // Similar to above, only this time treat the step value as signed.
974          // This covers loops that count down.
975          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
976          Add = getAddExpr(Start, SMul);
977          OperandExtendedAdd =
978            getAddExpr(getZeroExtendExpr(Start, WideTy),
979                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
980                                  getSignExtendExpr(Step, WideTy)));
981          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) {
982            // Cache knowledge of AR NW, which is propagated to this AddRec.
983            // Negative step causes unsigned wrap, but it still can't self-wrap.
984            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
985            // Return the expression with the addrec on the outside.
986            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
987                                 getSignExtendExpr(Step, Ty),
988                                 L, AR->getNoWrapFlags());
989          }
990        }
991
992        // If the backedge is guarded by a comparison with the pre-inc value
993        // the addrec is safe. Also, if the entry is guarded by a comparison
994        // with the start value and the backedge is guarded by a comparison
995        // with the post-inc value, the addrec is safe.
996        if (isKnownPositive(Step)) {
997          const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
998                                      getUnsignedRange(Step).getUnsignedMax());
999          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1000              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1001               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1002                                           AR->getPostIncExpr(*this), N))) {
1003            // Cache knowledge of AR NUW, which is propagated to this AddRec.
1004            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1005            // Return the expression with the addrec on the outside.
1006            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1007                                 getZeroExtendExpr(Step, Ty),
1008                                 L, AR->getNoWrapFlags());
1009          }
1010        } else if (isKnownNegative(Step)) {
1011          const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1012                                      getSignedRange(Step).getSignedMin());
1013          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1014              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1015               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1016                                           AR->getPostIncExpr(*this), N))) {
1017            // Cache knowledge of AR NW, which is propagated to this AddRec.
1018            // Negative step causes unsigned wrap, but it still can't self-wrap.
1019            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1020            // Return the expression with the addrec on the outside.
1021            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1022                                 getSignExtendExpr(Step, Ty),
1023                                 L, AR->getNoWrapFlags());
1024          }
1025        }
1026      }
1027    }
1028
1029  // The cast wasn't folded; create an explicit cast node.
1030  // Recompute the insert position, as it may have been invalidated.
1031  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1032  SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1033                                                   Op, Ty);
1034  UniqueSCEVs.InsertNode(S, IP);
1035  return S;
1036}
1037
1038// Get the limit of a recurrence such that incrementing by Step cannot cause
1039// signed overflow as long as the value of the recurrence within the loop does
1040// not exceed this limit before incrementing.
1041static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1042                                           ICmpInst::Predicate *Pred,
1043                                           ScalarEvolution *SE) {
1044  unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1045  if (SE->isKnownPositive(Step)) {
1046    *Pred = ICmpInst::ICMP_SLT;
1047    return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1048                           SE->getSignedRange(Step).getSignedMax());
1049  }
1050  if (SE->isKnownNegative(Step)) {
1051    *Pred = ICmpInst::ICMP_SGT;
1052    return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1053                       SE->getSignedRange(Step).getSignedMin());
1054  }
1055  return 0;
1056}
1057
1058// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1059// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1060// or postincrement sibling. This allows normalizing a sign extended AddRec as
1061// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1062// result, the expression "Step + sext(PreIncAR)" is congruent with
1063// "sext(PostIncAR)"
1064static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
1065                                            Type *Ty,
1066                                            ScalarEvolution *SE) {
1067  const Loop *L = AR->getLoop();
1068  const SCEV *Start = AR->getStart();
1069  const SCEV *Step = AR->getStepRecurrence(*SE);
1070
1071  // Check for a simple looking step prior to loop entry.
1072  const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1073  if (!SA)
1074    return 0;
1075
1076  // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1077  // subtraction is expensive. For this purpose, perform a quick and dirty
1078  // difference, by checking for Step in the operand list.
1079  SmallVector<const SCEV *, 4> DiffOps;
1080  for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end();
1081       I != E; ++I) {
1082    if (*I != Step)
1083      DiffOps.push_back(*I);
1084  }
1085  if (DiffOps.size() == SA->getNumOperands())
1086    return 0;
1087
1088  // This is a postinc AR. Check for overflow on the preinc recurrence using the
1089  // same three conditions that getSignExtendedExpr checks.
1090
1091  // 1. NSW flags on the step increment.
1092  const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
1093  const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1094    SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1095
1096  if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
1097    return PreStart;
1098
1099  // 2. Direct overflow check on the step operation's expression.
1100  unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1101  Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1102  const SCEV *OperandExtendedStart =
1103    SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1104                   SE->getSignExtendExpr(Step, WideTy));
1105  if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1106    // Cache knowledge of PreAR NSW.
1107    if (PreAR)
1108      const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1109    // FIXME: this optimization needs a unit test
1110    DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1111    return PreStart;
1112  }
1113
1114  // 3. Loop precondition.
1115  ICmpInst::Predicate Pred;
1116  const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1117
1118  if (OverflowLimit &&
1119      SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
1120    return PreStart;
1121  }
1122  return 0;
1123}
1124
1125// Get the normalized sign-extended expression for this AddRec's Start.
1126static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
1127                                            Type *Ty,
1128                                            ScalarEvolution *SE) {
1129  const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1130  if (!PreStart)
1131    return SE->getSignExtendExpr(AR->getStart(), Ty);
1132
1133  return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1134                        SE->getSignExtendExpr(PreStart, Ty));
1135}
1136
1137const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1138                                               Type *Ty) {
1139  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1140         "This is not an extending conversion!");
1141  assert(isSCEVable(Ty) &&
1142         "This is not a conversion to a SCEVable type!");
1143  Ty = getEffectiveSCEVType(Ty);
1144
1145  // Fold if the operand is constant.
1146  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1147    return getConstant(
1148      cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1149                                              getEffectiveSCEVType(Ty))));
1150
1151  // sext(sext(x)) --> sext(x)
1152  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1153    return getSignExtendExpr(SS->getOperand(), Ty);
1154
1155  // sext(zext(x)) --> zext(x)
1156  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1157    return getZeroExtendExpr(SZ->getOperand(), Ty);
1158
1159  // Before doing any expensive analysis, check to see if we've already
1160  // computed a SCEV for this Op and Ty.
1161  FoldingSetNodeID ID;
1162  ID.AddInteger(scSignExtend);
1163  ID.AddPointer(Op);
1164  ID.AddPointer(Ty);
1165  void *IP = 0;
1166  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1167
1168  // If the input value is provably positive, build a zext instead.
1169  if (isKnownNonNegative(Op))
1170    return getZeroExtendExpr(Op, Ty);
1171
1172  // sext(trunc(x)) --> sext(x) or x or trunc(x)
1173  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1174    // It's possible the bits taken off by the truncate were all sign bits. If
1175    // so, we should be able to simplify this further.
1176    const SCEV *X = ST->getOperand();
1177    ConstantRange CR = getSignedRange(X);
1178    unsigned TruncBits = getTypeSizeInBits(ST->getType());
1179    unsigned NewBits = getTypeSizeInBits(Ty);
1180    if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1181            CR.sextOrTrunc(NewBits)))
1182      return getTruncateOrSignExtend(X, Ty);
1183  }
1184
1185  // If the input value is a chrec scev, and we can prove that the value
1186  // did not overflow the old, smaller, value, we can sign extend all of the
1187  // operands (often constants).  This allows analysis of something like
1188  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1189  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1190    if (AR->isAffine()) {
1191      const SCEV *Start = AR->getStart();
1192      const SCEV *Step = AR->getStepRecurrence(*this);
1193      unsigned BitWidth = getTypeSizeInBits(AR->getType());
1194      const Loop *L = AR->getLoop();
1195
1196      // If we have special knowledge that this addrec won't overflow,
1197      // we don't need to do any further analysis.
1198      if (AR->getNoWrapFlags(SCEV::FlagNSW))
1199        return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1200                             getSignExtendExpr(Step, Ty),
1201                             L, SCEV::FlagNSW);
1202
1203      // Check whether the backedge-taken count is SCEVCouldNotCompute.
1204      // Note that this serves two purposes: It filters out loops that are
1205      // simply not analyzable, and it covers the case where this code is
1206      // being called from within backedge-taken count analysis, such that
1207      // attempting to ask for the backedge-taken count would likely result
1208      // in infinite recursion. In the later case, the analysis code will
1209      // cope with a conservative value, and it will take care to purge
1210      // that value once it has finished.
1211      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1212      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1213        // Manually compute the final value for AR, checking for
1214        // overflow.
1215
1216        // Check whether the backedge-taken count can be losslessly casted to
1217        // the addrec's type. The count is always unsigned.
1218        const SCEV *CastedMaxBECount =
1219          getTruncateOrZeroExtend(MaxBECount, Start->getType());
1220        const SCEV *RecastedMaxBECount =
1221          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1222        if (MaxBECount == RecastedMaxBECount) {
1223          Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1224          // Check whether Start+Step*MaxBECount has no signed overflow.
1225          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1226          const SCEV *Add = getAddExpr(Start, SMul);
1227          const SCEV *OperandExtendedAdd =
1228            getAddExpr(getSignExtendExpr(Start, WideTy),
1229                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1230                                  getSignExtendExpr(Step, WideTy)));
1231          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) {
1232            // Cache knowledge of AR NSW, which is propagated to this AddRec.
1233            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1234            // Return the expression with the addrec on the outside.
1235            return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1236                                 getSignExtendExpr(Step, Ty),
1237                                 L, AR->getNoWrapFlags());
1238          }
1239          // Similar to above, only this time treat the step value as unsigned.
1240          // This covers loops that count up with an unsigned step.
1241          const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
1242          Add = getAddExpr(Start, UMul);
1243          OperandExtendedAdd =
1244            getAddExpr(getSignExtendExpr(Start, WideTy),
1245                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1246                                  getZeroExtendExpr(Step, WideTy)));
1247          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) {
1248            // Cache knowledge of AR NSW, which is propagated to this AddRec.
1249            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1250            // Return the expression with the addrec on the outside.
1251            return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1252                                 getZeroExtendExpr(Step, Ty),
1253                                 L, AR->getNoWrapFlags());
1254          }
1255        }
1256
1257        // If the backedge is guarded by a comparison with the pre-inc value
1258        // the addrec is safe. Also, if the entry is guarded by a comparison
1259        // with the start value and the backedge is guarded by a comparison
1260        // with the post-inc value, the addrec is safe.
1261        ICmpInst::Predicate Pred;
1262        const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1263        if (OverflowLimit &&
1264            (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1265             (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1266              isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1267                                          OverflowLimit)))) {
1268          // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1269          const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1270          return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1271                               getSignExtendExpr(Step, Ty),
1272                               L, AR->getNoWrapFlags());
1273        }
1274      }
1275    }
1276
1277  // The cast wasn't folded; create an explicit cast node.
1278  // Recompute the insert position, as it may have been invalidated.
1279  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1280  SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1281                                                   Op, Ty);
1282  UniqueSCEVs.InsertNode(S, IP);
1283  return S;
1284}
1285
1286/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1287/// unspecified bits out to the given type.
1288///
1289const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1290                                              Type *Ty) {
1291  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1292         "This is not an extending conversion!");
1293  assert(isSCEVable(Ty) &&
1294         "This is not a conversion to a SCEVable type!");
1295  Ty = getEffectiveSCEVType(Ty);
1296
1297  // Sign-extend negative constants.
1298  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1299    if (SC->getValue()->getValue().isNegative())
1300      return getSignExtendExpr(Op, Ty);
1301
1302  // Peel off a truncate cast.
1303  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1304    const SCEV *NewOp = T->getOperand();
1305    if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1306      return getAnyExtendExpr(NewOp, Ty);
1307    return getTruncateOrNoop(NewOp, Ty);
1308  }
1309
1310  // Next try a zext cast. If the cast is folded, use it.
1311  const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1312  if (!isa<SCEVZeroExtendExpr>(ZExt))
1313    return ZExt;
1314
1315  // Next try a sext cast. If the cast is folded, use it.
1316  const SCEV *SExt = getSignExtendExpr(Op, Ty);
1317  if (!isa<SCEVSignExtendExpr>(SExt))
1318    return SExt;
1319
1320  // Force the cast to be folded into the operands of an addrec.
1321  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1322    SmallVector<const SCEV *, 4> Ops;
1323    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1324         I != E; ++I)
1325      Ops.push_back(getAnyExtendExpr(*I, Ty));
1326    return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
1327  }
1328
1329  // As a special case, fold anyext(undef) to undef. We don't want to
1330  // know too much about SCEVUnknowns, but this special case is handy
1331  // and harmless.
1332  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1333    if (isa<UndefValue>(U->getValue()))
1334      return getSCEV(UndefValue::get(Ty));
1335
1336  // If the expression is obviously signed, use the sext cast value.
1337  if (isa<SCEVSMaxExpr>(Op))
1338    return SExt;
1339
1340  // Absent any other information, use the zext cast value.
1341  return ZExt;
1342}
1343
1344/// CollectAddOperandsWithScales - Process the given Ops list, which is
1345/// a list of operands to be added under the given scale, update the given
1346/// map. This is a helper function for getAddRecExpr. As an example of
1347/// what it does, given a sequence of operands that would form an add
1348/// expression like this:
1349///
1350///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1351///
1352/// where A and B are constants, update the map with these values:
1353///
1354///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1355///
1356/// and add 13 + A*B*29 to AccumulatedConstant.
1357/// This will allow getAddRecExpr to produce this:
1358///
1359///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1360///
1361/// This form often exposes folding opportunities that are hidden in
1362/// the original operand list.
1363///
1364/// Return true iff it appears that any interesting folding opportunities
1365/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1366/// the common case where no interesting opportunities are present, and
1367/// is also used as a check to avoid infinite recursion.
1368///
1369static bool
1370CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1371                             SmallVector<const SCEV *, 8> &NewOps,
1372                             APInt &AccumulatedConstant,
1373                             const SCEV *const *Ops, size_t NumOperands,
1374                             const APInt &Scale,
1375                             ScalarEvolution &SE) {
1376  bool Interesting = false;
1377
1378  // Iterate over the add operands. They are sorted, with constants first.
1379  unsigned i = 0;
1380  while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1381    ++i;
1382    // Pull a buried constant out to the outside.
1383    if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1384      Interesting = true;
1385    AccumulatedConstant += Scale * C->getValue()->getValue();
1386  }
1387
1388  // Next comes everything else. We're especially interested in multiplies
1389  // here, but they're in the middle, so just visit the rest with one loop.
1390  for (; i != NumOperands; ++i) {
1391    const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1392    if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1393      APInt NewScale =
1394        Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1395      if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1396        // A multiplication of a constant with another add; recurse.
1397        const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1398        Interesting |=
1399          CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1400                                       Add->op_begin(), Add->getNumOperands(),
1401                                       NewScale, SE);
1402      } else {
1403        // A multiplication of a constant with some other value. Update
1404        // the map.
1405        SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1406        const SCEV *Key = SE.getMulExpr(MulOps);
1407        std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1408          M.insert(std::make_pair(Key, NewScale));
1409        if (Pair.second) {
1410          NewOps.push_back(Pair.first->first);
1411        } else {
1412          Pair.first->second += NewScale;
1413          // The map already had an entry for this value, which may indicate
1414          // a folding opportunity.
1415          Interesting = true;
1416        }
1417      }
1418    } else {
1419      // An ordinary operand. Update the map.
1420      std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1421        M.insert(std::make_pair(Ops[i], Scale));
1422      if (Pair.second) {
1423        NewOps.push_back(Pair.first->first);
1424      } else {
1425        Pair.first->second += Scale;
1426        // The map already had an entry for this value, which may indicate
1427        // a folding opportunity.
1428        Interesting = true;
1429      }
1430    }
1431  }
1432
1433  return Interesting;
1434}
1435
1436namespace {
1437  struct APIntCompare {
1438    bool operator()(const APInt &LHS, const APInt &RHS) const {
1439      return LHS.ult(RHS);
1440    }
1441  };
1442}
1443
1444/// getAddExpr - Get a canonical add expression, or something simpler if
1445/// possible.
1446const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1447                                        SCEV::NoWrapFlags Flags) {
1448  assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1449         "only nuw or nsw allowed");
1450  assert(!Ops.empty() && "Cannot get empty add!");
1451  if (Ops.size() == 1) return Ops[0];
1452#ifndef NDEBUG
1453  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1454  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1455    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1456           "SCEVAddExpr operand types don't match!");
1457#endif
1458
1459  // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1460  // And vice-versa.
1461  int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1462  SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1463  if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
1464    bool All = true;
1465    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1466         E = Ops.end(); I != E; ++I)
1467      if (!isKnownNonNegative(*I)) {
1468        All = false;
1469        break;
1470      }
1471    if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1472  }
1473
1474  // Sort by complexity, this groups all similar expression types together.
1475  GroupByComplexity(Ops, LI);
1476
1477  // If there are any constants, fold them together.
1478  unsigned Idx = 0;
1479  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1480    ++Idx;
1481    assert(Idx < Ops.size());
1482    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1483      // We found two constants, fold them together!
1484      Ops[0] = getConstant(LHSC->getValue()->getValue() +
1485                           RHSC->getValue()->getValue());
1486      if (Ops.size() == 2) return Ops[0];
1487      Ops.erase(Ops.begin()+1);  // Erase the folded element
1488      LHSC = cast<SCEVConstant>(Ops[0]);
1489    }
1490
1491    // If we are left with a constant zero being added, strip it off.
1492    if (LHSC->getValue()->isZero()) {
1493      Ops.erase(Ops.begin());
1494      --Idx;
1495    }
1496
1497    if (Ops.size() == 1) return Ops[0];
1498  }
1499
1500  // Okay, check to see if the same value occurs in the operand list more than
1501  // once.  If so, merge them together into an multiply expression.  Since we
1502  // sorted the list, these values are required to be adjacent.
1503  Type *Ty = Ops[0]->getType();
1504  bool FoundMatch = false;
1505  for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
1506    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
1507      // Scan ahead to count how many equal operands there are.
1508      unsigned Count = 2;
1509      while (i+Count != e && Ops[i+Count] == Ops[i])
1510        ++Count;
1511      // Merge the values into a multiply.
1512      const SCEV *Scale = getConstant(Ty, Count);
1513      const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1514      if (Ops.size() == Count)
1515        return Mul;
1516      Ops[i] = Mul;
1517      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
1518      --i; e -= Count - 1;
1519      FoundMatch = true;
1520    }
1521  if (FoundMatch)
1522    return getAddExpr(Ops, Flags);
1523
1524  // Check for truncates. If all the operands are truncated from the same
1525  // type, see if factoring out the truncate would permit the result to be
1526  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1527  // if the contents of the resulting outer trunc fold to something simple.
1528  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1529    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1530    Type *DstType = Trunc->getType();
1531    Type *SrcType = Trunc->getOperand()->getType();
1532    SmallVector<const SCEV *, 8> LargeOps;
1533    bool Ok = true;
1534    // Check all the operands to see if they can be represented in the
1535    // source type of the truncate.
1536    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1537      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1538        if (T->getOperand()->getType() != SrcType) {
1539          Ok = false;
1540          break;
1541        }
1542        LargeOps.push_back(T->getOperand());
1543      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1544        LargeOps.push_back(getAnyExtendExpr(C, SrcType));
1545      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1546        SmallVector<const SCEV *, 8> LargeMulOps;
1547        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1548          if (const SCEVTruncateExpr *T =
1549                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1550            if (T->getOperand()->getType() != SrcType) {
1551              Ok = false;
1552              break;
1553            }
1554            LargeMulOps.push_back(T->getOperand());
1555          } else if (const SCEVConstant *C =
1556                       dyn_cast<SCEVConstant>(M->getOperand(j))) {
1557            LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
1558          } else {
1559            Ok = false;
1560            break;
1561          }
1562        }
1563        if (Ok)
1564          LargeOps.push_back(getMulExpr(LargeMulOps));
1565      } else {
1566        Ok = false;
1567        break;
1568      }
1569    }
1570    if (Ok) {
1571      // Evaluate the expression in the larger type.
1572      const SCEV *Fold = getAddExpr(LargeOps, Flags);
1573      // If it folds to something simple, use it. Otherwise, don't.
1574      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1575        return getTruncateExpr(Fold, DstType);
1576    }
1577  }
1578
1579  // Skip past any other cast SCEVs.
1580  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1581    ++Idx;
1582
1583  // If there are add operands they would be next.
1584  if (Idx < Ops.size()) {
1585    bool DeletedAdd = false;
1586    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1587      // If we have an add, expand the add operands onto the end of the operands
1588      // list.
1589      Ops.erase(Ops.begin()+Idx);
1590      Ops.append(Add->op_begin(), Add->op_end());
1591      DeletedAdd = true;
1592    }
1593
1594    // If we deleted at least one add, we added operands to the end of the list,
1595    // and they are not necessarily sorted.  Recurse to resort and resimplify
1596    // any operands we just acquired.
1597    if (DeletedAdd)
1598      return getAddExpr(Ops);
1599  }
1600
1601  // Skip over the add expression until we get to a multiply.
1602  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1603    ++Idx;
1604
1605  // Check to see if there are any folding opportunities present with
1606  // operands multiplied by constant values.
1607  if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1608    uint64_t BitWidth = getTypeSizeInBits(Ty);
1609    DenseMap<const SCEV *, APInt> M;
1610    SmallVector<const SCEV *, 8> NewOps;
1611    APInt AccumulatedConstant(BitWidth, 0);
1612    if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1613                                     Ops.data(), Ops.size(),
1614                                     APInt(BitWidth, 1), *this)) {
1615      // Some interesting folding opportunity is present, so its worthwhile to
1616      // re-generate the operands list. Group the operands by constant scale,
1617      // to avoid multiplying by the same constant scale multiple times.
1618      std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1619      for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
1620           E = NewOps.end(); I != E; ++I)
1621        MulOpLists[M.find(*I)->second].push_back(*I);
1622      // Re-generate the operands list.
1623      Ops.clear();
1624      if (AccumulatedConstant != 0)
1625        Ops.push_back(getConstant(AccumulatedConstant));
1626      for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1627           I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1628        if (I->first != 0)
1629          Ops.push_back(getMulExpr(getConstant(I->first),
1630                                   getAddExpr(I->second)));
1631      if (Ops.empty())
1632        return getConstant(Ty, 0);
1633      if (Ops.size() == 1)
1634        return Ops[0];
1635      return getAddExpr(Ops);
1636    }
1637  }
1638
1639  // If we are adding something to a multiply expression, make sure the
1640  // something is not already an operand of the multiply.  If so, merge it into
1641  // the multiply.
1642  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1643    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1644    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1645      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1646      if (isa<SCEVConstant>(MulOpSCEV))
1647        continue;
1648      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1649        if (MulOpSCEV == Ops[AddOp]) {
1650          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1651          const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1652          if (Mul->getNumOperands() != 2) {
1653            // If the multiply has more than two operands, we must get the
1654            // Y*Z term.
1655            SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1656                                                Mul->op_begin()+MulOp);
1657            MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1658            InnerMul = getMulExpr(MulOps);
1659          }
1660          const SCEV *One = getConstant(Ty, 1);
1661          const SCEV *AddOne = getAddExpr(One, InnerMul);
1662          const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
1663          if (Ops.size() == 2) return OuterMul;
1664          if (AddOp < Idx) {
1665            Ops.erase(Ops.begin()+AddOp);
1666            Ops.erase(Ops.begin()+Idx-1);
1667          } else {
1668            Ops.erase(Ops.begin()+Idx);
1669            Ops.erase(Ops.begin()+AddOp-1);
1670          }
1671          Ops.push_back(OuterMul);
1672          return getAddExpr(Ops);
1673        }
1674
1675      // Check this multiply against other multiplies being added together.
1676      for (unsigned OtherMulIdx = Idx+1;
1677           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1678           ++OtherMulIdx) {
1679        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1680        // If MulOp occurs in OtherMul, we can fold the two multiplies
1681        // together.
1682        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1683             OMulOp != e; ++OMulOp)
1684          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1685            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1686            const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
1687            if (Mul->getNumOperands() != 2) {
1688              SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1689                                                  Mul->op_begin()+MulOp);
1690              MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1691              InnerMul1 = getMulExpr(MulOps);
1692            }
1693            const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1694            if (OtherMul->getNumOperands() != 2) {
1695              SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1696                                                  OtherMul->op_begin()+OMulOp);
1697              MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
1698              InnerMul2 = getMulExpr(MulOps);
1699            }
1700            const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1701            const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1702            if (Ops.size() == 2) return OuterMul;
1703            Ops.erase(Ops.begin()+Idx);
1704            Ops.erase(Ops.begin()+OtherMulIdx-1);
1705            Ops.push_back(OuterMul);
1706            return getAddExpr(Ops);
1707          }
1708      }
1709    }
1710  }
1711
1712  // If there are any add recurrences in the operands list, see if any other
1713  // added values are loop invariant.  If so, we can fold them into the
1714  // recurrence.
1715  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1716    ++Idx;
1717
1718  // Scan over all recurrences, trying to fold loop invariants into them.
1719  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1720    // Scan all of the other operands to this add and add them to the vector if
1721    // they are loop invariant w.r.t. the recurrence.
1722    SmallVector<const SCEV *, 8> LIOps;
1723    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1724    const Loop *AddRecLoop = AddRec->getLoop();
1725    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1726      if (isLoopInvariant(Ops[i], AddRecLoop)) {
1727        LIOps.push_back(Ops[i]);
1728        Ops.erase(Ops.begin()+i);
1729        --i; --e;
1730      }
1731
1732    // If we found some loop invariants, fold them into the recurrence.
1733    if (!LIOps.empty()) {
1734      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1735      LIOps.push_back(AddRec->getStart());
1736
1737      SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1738                                             AddRec->op_end());
1739      AddRecOps[0] = getAddExpr(LIOps);
1740
1741      // Build the new addrec. Propagate the NUW and NSW flags if both the
1742      // outer add and the inner addrec are guaranteed to have no overflow.
1743      // Always propagate NW.
1744      Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
1745      const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
1746
1747      // If all of the other operands were loop invariant, we are done.
1748      if (Ops.size() == 1) return NewRec;
1749
1750      // Otherwise, add the folded AddRec by the non-invariant parts.
1751      for (unsigned i = 0;; ++i)
1752        if (Ops[i] == AddRec) {
1753          Ops[i] = NewRec;
1754          break;
1755        }
1756      return getAddExpr(Ops);
1757    }
1758
1759    // Okay, if there weren't any loop invariants to be folded, check to see if
1760    // there are multiple AddRec's with the same loop induction variable being
1761    // added together.  If so, we can fold them.
1762    for (unsigned OtherIdx = Idx+1;
1763         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1764         ++OtherIdx)
1765      if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1766        // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
1767        SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1768                                               AddRec->op_end());
1769        for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1770             ++OtherIdx)
1771          if (const SCEVAddRecExpr *OtherAddRec =
1772                dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1773            if (OtherAddRec->getLoop() == AddRecLoop) {
1774              for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1775                   i != e; ++i) {
1776                if (i >= AddRecOps.size()) {
1777                  AddRecOps.append(OtherAddRec->op_begin()+i,
1778                                   OtherAddRec->op_end());
1779                  break;
1780                }
1781                AddRecOps[i] = getAddExpr(AddRecOps[i],
1782                                          OtherAddRec->getOperand(i));
1783              }
1784              Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1785            }
1786        // Step size has changed, so we cannot guarantee no self-wraparound.
1787        Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
1788        return getAddExpr(Ops);
1789      }
1790
1791    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1792    // next one.
1793  }
1794
1795  // Okay, it looks like we really DO need an add expr.  Check to see if we
1796  // already have one, otherwise create a new one.
1797  FoldingSetNodeID ID;
1798  ID.AddInteger(scAddExpr);
1799  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1800    ID.AddPointer(Ops[i]);
1801  void *IP = 0;
1802  SCEVAddExpr *S =
1803    static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1804  if (!S) {
1805    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1806    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1807    S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1808                                        O, Ops.size());
1809    UniqueSCEVs.InsertNode(S, IP);
1810  }
1811  S->setNoWrapFlags(Flags);
1812  return S;
1813}
1814
1815static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
1816  uint64_t k = i*j;
1817  if (j > 1 && k / j != i) Overflow = true;
1818  return k;
1819}
1820
1821/// Compute the result of "n choose k", the binomial coefficient.  If an
1822/// intermediate computation overflows, Overflow will be set and the return will
1823/// be garbage. Overflow is not cleared on absense of overflow.
1824static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
1825  // We use the multiplicative formula:
1826  //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
1827  // At each iteration, we take the n-th term of the numeral and divide by the
1828  // (k-n)th term of the denominator.  This division will always produce an
1829  // integral result, and helps reduce the chance of overflow in the
1830  // intermediate computations. However, we can still overflow even when the
1831  // final result would fit.
1832
1833  if (n == 0 || n == k) return 1;
1834  if (k > n) return 0;
1835
1836  if (k > n/2)
1837    k = n-k;
1838
1839  uint64_t r = 1;
1840  for (uint64_t i = 1; i <= k; ++i) {
1841    r = umul_ov(r, n-(i-1), Overflow);
1842    r /= i;
1843  }
1844  return r;
1845}
1846
1847/// getMulExpr - Get a canonical multiply expression, or something simpler if
1848/// possible.
1849const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1850                                        SCEV::NoWrapFlags Flags) {
1851  assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
1852         "only nuw or nsw allowed");
1853  assert(!Ops.empty() && "Cannot get empty mul!");
1854  if (Ops.size() == 1) return Ops[0];
1855#ifndef NDEBUG
1856  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1857  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1858    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1859           "SCEVMulExpr operand types don't match!");
1860#endif
1861
1862  // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1863  // And vice-versa.
1864  int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1865  SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1866  if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
1867    bool All = true;
1868    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1869         E = Ops.end(); I != E; ++I)
1870      if (!isKnownNonNegative(*I)) {
1871        All = false;
1872        break;
1873      }
1874    if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1875  }
1876
1877  // Sort by complexity, this groups all similar expression types together.
1878  GroupByComplexity(Ops, LI);
1879
1880  // If there are any constants, fold them together.
1881  unsigned Idx = 0;
1882  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1883
1884    // C1*(C2+V) -> C1*C2 + C1*V
1885    if (Ops.size() == 2)
1886      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1887        if (Add->getNumOperands() == 2 &&
1888            isa<SCEVConstant>(Add->getOperand(0)))
1889          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1890                            getMulExpr(LHSC, Add->getOperand(1)));
1891
1892    ++Idx;
1893    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1894      // We found two constants, fold them together!
1895      ConstantInt *Fold = ConstantInt::get(getContext(),
1896                                           LHSC->getValue()->getValue() *
1897                                           RHSC->getValue()->getValue());
1898      Ops[0] = getConstant(Fold);
1899      Ops.erase(Ops.begin()+1);  // Erase the folded element
1900      if (Ops.size() == 1) return Ops[0];
1901      LHSC = cast<SCEVConstant>(Ops[0]);
1902    }
1903
1904    // If we are left with a constant one being multiplied, strip it off.
1905    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1906      Ops.erase(Ops.begin());
1907      --Idx;
1908    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1909      // If we have a multiply of zero, it will always be zero.
1910      return Ops[0];
1911    } else if (Ops[0]->isAllOnesValue()) {
1912      // If we have a mul by -1 of an add, try distributing the -1 among the
1913      // add operands.
1914      if (Ops.size() == 2) {
1915        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1916          SmallVector<const SCEV *, 4> NewOps;
1917          bool AnyFolded = false;
1918          for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
1919                 E = Add->op_end(); I != E; ++I) {
1920            const SCEV *Mul = getMulExpr(Ops[0], *I);
1921            if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1922            NewOps.push_back(Mul);
1923          }
1924          if (AnyFolded)
1925            return getAddExpr(NewOps);
1926        }
1927        else if (const SCEVAddRecExpr *
1928                 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
1929          // Negation preserves a recurrence's no self-wrap property.
1930          SmallVector<const SCEV *, 4> Operands;
1931          for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
1932                 E = AddRec->op_end(); I != E; ++I) {
1933            Operands.push_back(getMulExpr(Ops[0], *I));
1934          }
1935          return getAddRecExpr(Operands, AddRec->getLoop(),
1936                               AddRec->getNoWrapFlags(SCEV::FlagNW));
1937        }
1938      }
1939    }
1940
1941    if (Ops.size() == 1)
1942      return Ops[0];
1943  }
1944
1945  // Skip over the add expression until we get to a multiply.
1946  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1947    ++Idx;
1948
1949  // If there are mul operands inline them all into this expression.
1950  if (Idx < Ops.size()) {
1951    bool DeletedMul = false;
1952    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1953      // If we have an mul, expand the mul operands onto the end of the operands
1954      // list.
1955      Ops.erase(Ops.begin()+Idx);
1956      Ops.append(Mul->op_begin(), Mul->op_end());
1957      DeletedMul = true;
1958    }
1959
1960    // If we deleted at least one mul, we added operands to the end of the list,
1961    // and they are not necessarily sorted.  Recurse to resort and resimplify
1962    // any operands we just acquired.
1963    if (DeletedMul)
1964      return getMulExpr(Ops);
1965  }
1966
1967  // If there are any add recurrences in the operands list, see if any other
1968  // added values are loop invariant.  If so, we can fold them into the
1969  // recurrence.
1970  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1971    ++Idx;
1972
1973  // Scan over all recurrences, trying to fold loop invariants into them.
1974  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1975    // Scan all of the other operands to this mul and add them to the vector if
1976    // they are loop invariant w.r.t. the recurrence.
1977    SmallVector<const SCEV *, 8> LIOps;
1978    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1979    const Loop *AddRecLoop = AddRec->getLoop();
1980    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1981      if (isLoopInvariant(Ops[i], AddRecLoop)) {
1982        LIOps.push_back(Ops[i]);
1983        Ops.erase(Ops.begin()+i);
1984        --i; --e;
1985      }
1986
1987    // If we found some loop invariants, fold them into the recurrence.
1988    if (!LIOps.empty()) {
1989      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1990      SmallVector<const SCEV *, 4> NewOps;
1991      NewOps.reserve(AddRec->getNumOperands());
1992      const SCEV *Scale = getMulExpr(LIOps);
1993      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1994        NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1995
1996      // Build the new addrec. Propagate the NUW and NSW flags if both the
1997      // outer mul and the inner addrec are guaranteed to have no overflow.
1998      //
1999      // No self-wrap cannot be guaranteed after changing the step size, but
2000      // will be inferred if either NUW or NSW is true.
2001      Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2002      const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
2003
2004      // If all of the other operands were loop invariant, we are done.
2005      if (Ops.size() == 1) return NewRec;
2006
2007      // Otherwise, multiply the folded AddRec by the non-invariant parts.
2008      for (unsigned i = 0;; ++i)
2009        if (Ops[i] == AddRec) {
2010          Ops[i] = NewRec;
2011          break;
2012        }
2013      return getMulExpr(Ops);
2014    }
2015
2016    // Okay, if there weren't any loop invariants to be folded, check to see if
2017    // there are multiple AddRec's with the same loop induction variable being
2018    // multiplied together.  If so, we can fold them.
2019    for (unsigned OtherIdx = Idx+1;
2020         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2021         ++OtherIdx) {
2022      if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2023        // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2024        // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2025        //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2026        //   ]]],+,...up to x=2n}.
2027        // Note that the arguments to choose() are always integers with values
2028        // known at compile time, never SCEV objects.
2029        //
2030        // The implementation avoids pointless extra computations when the two
2031        // addrec's are of different length (mathematically, it's equivalent to
2032        // an infinite stream of zeros on the right).
2033        bool OpsModified = false;
2034        for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2035             ++OtherIdx)
2036          if (const SCEVAddRecExpr *OtherAddRec =
2037                dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
2038            if (OtherAddRec->getLoop() == AddRecLoop) {
2039              bool Overflow = false;
2040              Type *Ty = AddRec->getType();
2041              bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2042              SmallVector<const SCEV*, 7> AddRecOps;
2043              for (int x = 0, xe = AddRec->getNumOperands() +
2044                     OtherAddRec->getNumOperands() - 1;
2045                   x != xe && !Overflow; ++x) {
2046                const SCEV *Term = getConstant(Ty, 0);
2047                for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2048                  uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2049                  for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2050                         ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2051                       z < ze && !Overflow; ++z) {
2052                    uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2053                    uint64_t Coeff;
2054                    if (LargerThan64Bits)
2055                      Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2056                    else
2057                      Coeff = Coeff1*Coeff2;
2058                    const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2059                    const SCEV *Term1 = AddRec->getOperand(y-z);
2060                    const SCEV *Term2 = OtherAddRec->getOperand(z);
2061                    Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
2062                  }
2063                }
2064                AddRecOps.push_back(Term);
2065              }
2066              if (!Overflow) {
2067                const SCEV *NewAddRec = getAddRecExpr(AddRecOps,
2068                                                      AddRec->getLoop(),
2069                                                      SCEV::FlagAnyWrap);
2070                if (Ops.size() == 2) return NewAddRec;
2071                Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
2072                Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2073                OpsModified = true;
2074              }
2075            }
2076        if (OpsModified)
2077          return getMulExpr(Ops);
2078      }
2079    }
2080
2081    // Otherwise couldn't fold anything into this recurrence.  Move onto the
2082    // next one.
2083  }
2084
2085  // Okay, it looks like we really DO need an mul expr.  Check to see if we
2086  // already have one, otherwise create a new one.
2087  FoldingSetNodeID ID;
2088  ID.AddInteger(scMulExpr);
2089  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2090    ID.AddPointer(Ops[i]);
2091  void *IP = 0;
2092  SCEVMulExpr *S =
2093    static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2094  if (!S) {
2095    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2096    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2097    S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2098                                        O, Ops.size());
2099    UniqueSCEVs.InsertNode(S, IP);
2100  }
2101  S->setNoWrapFlags(Flags);
2102  return S;
2103}
2104
2105/// getUDivExpr - Get a canonical unsigned division expression, or something
2106/// simpler if possible.
2107const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2108                                         const SCEV *RHS) {
2109  assert(getEffectiveSCEVType(LHS->getType()) ==
2110         getEffectiveSCEVType(RHS->getType()) &&
2111         "SCEVUDivExpr operand types don't match!");
2112
2113  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2114    if (RHSC->getValue()->equalsInt(1))
2115      return LHS;                               // X udiv 1 --> x
2116    // If the denominator is zero, the result of the udiv is undefined. Don't
2117    // try to analyze it, because the resolution chosen here may differ from
2118    // the resolution chosen in other parts of the compiler.
2119    if (!RHSC->getValue()->isZero()) {
2120      // Determine if the division can be folded into the operands of
2121      // its operands.
2122      // TODO: Generalize this to non-constants by using known-bits information.
2123      Type *Ty = LHS->getType();
2124      unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
2125      unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
2126      // For non-power-of-two values, effectively round the value up to the
2127      // nearest power of two.
2128      if (!RHSC->getValue()->getValue().isPowerOf2())
2129        ++MaxShiftAmt;
2130      IntegerType *ExtTy =
2131        IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
2132      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2133        if (const SCEVConstant *Step =
2134            dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2135          // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2136          const APInt &StepInt = Step->getValue()->getValue();
2137          const APInt &DivInt = RHSC->getValue()->getValue();
2138          if (!StepInt.urem(DivInt) &&
2139              getZeroExtendExpr(AR, ExtTy) ==
2140              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2141                            getZeroExtendExpr(Step, ExtTy),
2142                            AR->getLoop(), SCEV::FlagAnyWrap)) {
2143            SmallVector<const SCEV *, 4> Operands;
2144            for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2145              Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
2146            return getAddRecExpr(Operands, AR->getLoop(),
2147                                 SCEV::FlagNW);
2148          }
2149          /// Get a canonical UDivExpr for a recurrence.
2150          /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2151          // We can currently only fold X%N if X is constant.
2152          const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2153          if (StartC && !DivInt.urem(StepInt) &&
2154              getZeroExtendExpr(AR, ExtTy) ==
2155              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2156                            getZeroExtendExpr(Step, ExtTy),
2157                            AR->getLoop(), SCEV::FlagAnyWrap)) {
2158            const APInt &StartInt = StartC->getValue()->getValue();
2159            const APInt &StartRem = StartInt.urem(StepInt);
2160            if (StartRem != 0)
2161              LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2162                                  AR->getLoop(), SCEV::FlagNW);
2163          }
2164        }
2165      // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2166      if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2167        SmallVector<const SCEV *, 4> Operands;
2168        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2169          Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2170        if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2171          // Find an operand that's safely divisible.
2172          for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2173            const SCEV *Op = M->getOperand(i);
2174            const SCEV *Div = getUDivExpr(Op, RHSC);
2175            if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2176              Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2177                                                      M->op_end());
2178              Operands[i] = Div;
2179              return getMulExpr(Operands);
2180            }
2181          }
2182      }
2183      // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2184      if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
2185        SmallVector<const SCEV *, 4> Operands;
2186        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2187          Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2188        if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2189          Operands.clear();
2190          for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2191            const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2192            if (isa<SCEVUDivExpr>(Op) ||
2193                getMulExpr(Op, RHS) != A->getOperand(i))
2194              break;
2195            Operands.push_back(Op);
2196          }
2197          if (Operands.size() == A->getNumOperands())
2198            return getAddExpr(Operands);
2199        }
2200      }
2201
2202      // Fold if both operands are constant.
2203      if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2204        Constant *LHSCV = LHSC->getValue();
2205        Constant *RHSCV = RHSC->getValue();
2206        return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2207                                                                   RHSCV)));
2208      }
2209    }
2210  }
2211
2212  FoldingSetNodeID ID;
2213  ID.AddInteger(scUDivExpr);
2214  ID.AddPointer(LHS);
2215  ID.AddPointer(RHS);
2216  void *IP = 0;
2217  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2218  SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2219                                             LHS, RHS);
2220  UniqueSCEVs.InsertNode(S, IP);
2221  return S;
2222}
2223
2224
2225/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2226/// Simplify the expression as much as possible.
2227const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2228                                           const Loop *L,
2229                                           SCEV::NoWrapFlags Flags) {
2230  SmallVector<const SCEV *, 4> Operands;
2231  Operands.push_back(Start);
2232  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2233    if (StepChrec->getLoop() == L) {
2234      Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2235      return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
2236    }
2237
2238  Operands.push_back(Step);
2239  return getAddRecExpr(Operands, L, Flags);
2240}
2241
2242/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2243/// Simplify the expression as much as possible.
2244const SCEV *
2245ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2246                               const Loop *L, SCEV::NoWrapFlags Flags) {
2247  if (Operands.size() == 1) return Operands[0];
2248#ifndef NDEBUG
2249  Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2250  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2251    assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2252           "SCEVAddRecExpr operand types don't match!");
2253  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2254    assert(isLoopInvariant(Operands[i], L) &&
2255           "SCEVAddRecExpr operand is not loop-invariant!");
2256#endif
2257
2258  if (Operands.back()->isZero()) {
2259    Operands.pop_back();
2260    return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
2261  }
2262
2263  // It's tempting to want to call getMaxBackedgeTakenCount count here and
2264  // use that information to infer NUW and NSW flags. However, computing a
2265  // BE count requires calling getAddRecExpr, so we may not yet have a
2266  // meaningful BE count at this point (and if we don't, we'd be stuck
2267  // with a SCEVCouldNotCompute as the cached BE count).
2268
2269  // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2270  // And vice-versa.
2271  int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2272  SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2273  if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
2274    bool All = true;
2275    for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2276         E = Operands.end(); I != E; ++I)
2277      if (!isKnownNonNegative(*I)) {
2278        All = false;
2279        break;
2280      }
2281    if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2282  }
2283
2284  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2285  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2286    const Loop *NestedLoop = NestedAR->getLoop();
2287    if (L->contains(NestedLoop) ?
2288        (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
2289        (!NestedLoop->contains(L) &&
2290         DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
2291      SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2292                                                  NestedAR->op_end());
2293      Operands[0] = NestedAR->getStart();
2294      // AddRecs require their operands be loop-invariant with respect to their
2295      // loops. Don't perform this transformation if it would break this
2296      // requirement.
2297      bool AllInvariant = true;
2298      for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2299        if (!isLoopInvariant(Operands[i], L)) {
2300          AllInvariant = false;
2301          break;
2302        }
2303      if (AllInvariant) {
2304        // Create a recurrence for the outer loop with the same step size.
2305        //
2306        // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2307        // inner recurrence has the same property.
2308        SCEV::NoWrapFlags OuterFlags =
2309          maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
2310
2311        NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
2312        AllInvariant = true;
2313        for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2314          if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
2315            AllInvariant = false;
2316            break;
2317          }
2318        if (AllInvariant) {
2319          // Ok, both add recurrences are valid after the transformation.
2320          //
2321          // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2322          // the outer recurrence has the same property.
2323          SCEV::NoWrapFlags InnerFlags =
2324            maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
2325          return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2326        }
2327      }
2328      // Reset Operands to its original state.
2329      Operands[0] = NestedAR;
2330    }
2331  }
2332
2333  // Okay, it looks like we really DO need an addrec expr.  Check to see if we
2334  // already have one, otherwise create a new one.
2335  FoldingSetNodeID ID;
2336  ID.AddInteger(scAddRecExpr);
2337  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2338    ID.AddPointer(Operands[i]);
2339  ID.AddPointer(L);
2340  void *IP = 0;
2341  SCEVAddRecExpr *S =
2342    static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2343  if (!S) {
2344    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2345    std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2346    S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2347                                           O, Operands.size(), L);
2348    UniqueSCEVs.InsertNode(S, IP);
2349  }
2350  S->setNoWrapFlags(Flags);
2351  return S;
2352}
2353
2354const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2355                                         const SCEV *RHS) {
2356  SmallVector<const SCEV *, 2> Ops;
2357  Ops.push_back(LHS);
2358  Ops.push_back(RHS);
2359  return getSMaxExpr(Ops);
2360}
2361
2362const SCEV *
2363ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2364  assert(!Ops.empty() && "Cannot get empty smax!");
2365  if (Ops.size() == 1) return Ops[0];
2366#ifndef NDEBUG
2367  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2368  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2369    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2370           "SCEVSMaxExpr operand types don't match!");
2371#endif
2372
2373  // Sort by complexity, this groups all similar expression types together.
2374  GroupByComplexity(Ops, LI);
2375
2376  // If there are any constants, fold them together.
2377  unsigned Idx = 0;
2378  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2379    ++Idx;
2380    assert(Idx < Ops.size());
2381    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2382      // We found two constants, fold them together!
2383      ConstantInt *Fold = ConstantInt::get(getContext(),
2384                              APIntOps::smax(LHSC->getValue()->getValue(),
2385                                             RHSC->getValue()->getValue()));
2386      Ops[0] = getConstant(Fold);
2387      Ops.erase(Ops.begin()+1);  // Erase the folded element
2388      if (Ops.size() == 1) return Ops[0];
2389      LHSC = cast<SCEVConstant>(Ops[0]);
2390    }
2391
2392    // If we are left with a constant minimum-int, strip it off.
2393    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2394      Ops.erase(Ops.begin());
2395      --Idx;
2396    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2397      // If we have an smax with a constant maximum-int, it will always be
2398      // maximum-int.
2399      return Ops[0];
2400    }
2401
2402    if (Ops.size() == 1) return Ops[0];
2403  }
2404
2405  // Find the first SMax
2406  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2407    ++Idx;
2408
2409  // Check to see if one of the operands is an SMax. If so, expand its operands
2410  // onto our operand list, and recurse to simplify.
2411  if (Idx < Ops.size()) {
2412    bool DeletedSMax = false;
2413    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
2414      Ops.erase(Ops.begin()+Idx);
2415      Ops.append(SMax->op_begin(), SMax->op_end());
2416      DeletedSMax = true;
2417    }
2418
2419    if (DeletedSMax)
2420      return getSMaxExpr(Ops);
2421  }
2422
2423  // Okay, check to see if the same value occurs in the operand list twice.  If
2424  // so, delete one.  Since we sorted the list, these values are required to
2425  // be adjacent.
2426  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2427    //  X smax Y smax Y  -->  X smax Y
2428    //  X smax Y         -->  X, if X is always greater than Y
2429    if (Ops[i] == Ops[i+1] ||
2430        isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2431      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2432      --i; --e;
2433    } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
2434      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2435      --i; --e;
2436    }
2437
2438  if (Ops.size() == 1) return Ops[0];
2439
2440  assert(!Ops.empty() && "Reduced smax down to nothing!");
2441
2442  // Okay, it looks like we really DO need an smax expr.  Check to see if we
2443  // already have one, otherwise create a new one.
2444  FoldingSetNodeID ID;
2445  ID.AddInteger(scSMaxExpr);
2446  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2447    ID.AddPointer(Ops[i]);
2448  void *IP = 0;
2449  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2450  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2451  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2452  SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2453                                             O, Ops.size());
2454  UniqueSCEVs.InsertNode(S, IP);
2455  return S;
2456}
2457
2458const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2459                                         const SCEV *RHS) {
2460  SmallVector<const SCEV *, 2> Ops;
2461  Ops.push_back(LHS);
2462  Ops.push_back(RHS);
2463  return getUMaxExpr(Ops);
2464}
2465
2466const SCEV *
2467ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2468  assert(!Ops.empty() && "Cannot get empty umax!");
2469  if (Ops.size() == 1) return Ops[0];
2470#ifndef NDEBUG
2471  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2472  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2473    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2474           "SCEVUMaxExpr operand types don't match!");
2475#endif
2476
2477  // Sort by complexity, this groups all similar expression types together.
2478  GroupByComplexity(Ops, LI);
2479
2480  // If there are any constants, fold them together.
2481  unsigned Idx = 0;
2482  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2483    ++Idx;
2484    assert(Idx < Ops.size());
2485    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2486      // We found two constants, fold them together!
2487      ConstantInt *Fold = ConstantInt::get(getContext(),
2488                              APIntOps::umax(LHSC->getValue()->getValue(),
2489                                             RHSC->getValue()->getValue()));
2490      Ops[0] = getConstant(Fold);
2491      Ops.erase(Ops.begin()+1);  // Erase the folded element
2492      if (Ops.size() == 1) return Ops[0];
2493      LHSC = cast<SCEVConstant>(Ops[0]);
2494    }
2495
2496    // If we are left with a constant minimum-int, strip it off.
2497    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2498      Ops.erase(Ops.begin());
2499      --Idx;
2500    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2501      // If we have an umax with a constant maximum-int, it will always be
2502      // maximum-int.
2503      return Ops[0];
2504    }
2505
2506    if (Ops.size() == 1) return Ops[0];
2507  }
2508
2509  // Find the first UMax
2510  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2511    ++Idx;
2512
2513  // Check to see if one of the operands is a UMax. If so, expand its operands
2514  // onto our operand list, and recurse to simplify.
2515  if (Idx < Ops.size()) {
2516    bool DeletedUMax = false;
2517    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
2518      Ops.erase(Ops.begin()+Idx);
2519      Ops.append(UMax->op_begin(), UMax->op_end());
2520      DeletedUMax = true;
2521    }
2522
2523    if (DeletedUMax)
2524      return getUMaxExpr(Ops);
2525  }
2526
2527  // Okay, check to see if the same value occurs in the operand list twice.  If
2528  // so, delete one.  Since we sorted the list, these values are required to
2529  // be adjacent.
2530  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2531    //  X umax Y umax Y  -->  X umax Y
2532    //  X umax Y         -->  X, if X is always greater than Y
2533    if (Ops[i] == Ops[i+1] ||
2534        isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2535      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2536      --i; --e;
2537    } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
2538      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2539      --i; --e;
2540    }
2541
2542  if (Ops.size() == 1) return Ops[0];
2543
2544  assert(!Ops.empty() && "Reduced umax down to nothing!");
2545
2546  // Okay, it looks like we really DO need a umax expr.  Check to see if we
2547  // already have one, otherwise create a new one.
2548  FoldingSetNodeID ID;
2549  ID.AddInteger(scUMaxExpr);
2550  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2551    ID.AddPointer(Ops[i]);
2552  void *IP = 0;
2553  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2554  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2555  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2556  SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2557                                             O, Ops.size());
2558  UniqueSCEVs.InsertNode(S, IP);
2559  return S;
2560}
2561
2562const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2563                                         const SCEV *RHS) {
2564  // ~smax(~x, ~y) == smin(x, y).
2565  return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2566}
2567
2568const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2569                                         const SCEV *RHS) {
2570  // ~umax(~x, ~y) == umin(x, y)
2571  return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2572}
2573
2574const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy) {
2575  // If we have TargetData, we can bypass creating a target-independent
2576  // constant expression and then folding it back into a ConstantInt.
2577  // This is just a compile-time optimization.
2578  if (TD)
2579    return getConstant(TD->getIntPtrType(getContext()),
2580                       TD->getTypeAllocSize(AllocTy));
2581
2582  Constant *C = ConstantExpr::getSizeOf(AllocTy);
2583  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2584    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2585      C = Folded;
2586  Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2587  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2588}
2589
2590const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) {
2591  Constant *C = ConstantExpr::getAlignOf(AllocTy);
2592  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2593    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2594      C = Folded;
2595  Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2596  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2597}
2598
2599const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy,
2600                                             unsigned FieldNo) {
2601  // If we have TargetData, we can bypass creating a target-independent
2602  // constant expression and then folding it back into a ConstantInt.
2603  // This is just a compile-time optimization.
2604  if (TD)
2605    return getConstant(TD->getIntPtrType(getContext()),
2606                       TD->getStructLayout(STy)->getElementOffset(FieldNo));
2607
2608  Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2609  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2610    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2611      C = Folded;
2612  Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2613  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2614}
2615
2616const SCEV *ScalarEvolution::getOffsetOfExpr(Type *CTy,
2617                                             Constant *FieldNo) {
2618  Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
2619  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2620    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2621      C = Folded;
2622  Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
2623  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2624}
2625
2626const SCEV *ScalarEvolution::getUnknown(Value *V) {
2627  // Don't attempt to do anything other than create a SCEVUnknown object
2628  // here.  createSCEV only calls getUnknown after checking for all other
2629  // interesting possibilities, and any other code that calls getUnknown
2630  // is doing so in order to hide a value from SCEV canonicalization.
2631
2632  FoldingSetNodeID ID;
2633  ID.AddInteger(scUnknown);
2634  ID.AddPointer(V);
2635  void *IP = 0;
2636  if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2637    assert(cast<SCEVUnknown>(S)->getValue() == V &&
2638           "Stale SCEVUnknown in uniquing map!");
2639    return S;
2640  }
2641  SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2642                                            FirstUnknown);
2643  FirstUnknown = cast<SCEVUnknown>(S);
2644  UniqueSCEVs.InsertNode(S, IP);
2645  return S;
2646}
2647
2648//===----------------------------------------------------------------------===//
2649//            Basic SCEV Analysis and PHI Idiom Recognition Code
2650//
2651
2652/// isSCEVable - Test if values of the given type are analyzable within
2653/// the SCEV framework. This primarily includes integer types, and it
2654/// can optionally include pointer types if the ScalarEvolution class
2655/// has access to target-specific information.
2656bool ScalarEvolution::isSCEVable(Type *Ty) const {
2657  // Integers and pointers are always SCEVable.
2658  return Ty->isIntegerTy() || Ty->isPointerTy();
2659}
2660
2661/// getTypeSizeInBits - Return the size in bits of the specified type,
2662/// for which isSCEVable must return true.
2663uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
2664  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2665
2666  // If we have a TargetData, use it!
2667  if (TD)
2668    return TD->getTypeSizeInBits(Ty);
2669
2670  // Integer types have fixed sizes.
2671  if (Ty->isIntegerTy())
2672    return Ty->getPrimitiveSizeInBits();
2673
2674  // The only other support type is pointer. Without TargetData, conservatively
2675  // assume pointers are 64-bit.
2676  assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
2677  return 64;
2678}
2679
2680/// getEffectiveSCEVType - Return a type with the same bitwidth as
2681/// the given type and which represents how SCEV will treat the given
2682/// type, for which isSCEVable must return true. For pointer types,
2683/// this is the pointer-sized integer type.
2684Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
2685  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2686
2687  if (Ty->isIntegerTy())
2688    return Ty;
2689
2690  // The only other support type is pointer.
2691  assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
2692  if (TD) return TD->getIntPtrType(getContext());
2693
2694  // Without TargetData, conservatively assume pointers are 64-bit.
2695  return Type::getInt64Ty(getContext());
2696}
2697
2698const SCEV *ScalarEvolution::getCouldNotCompute() {
2699  return &CouldNotCompute;
2700}
2701
2702/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2703/// expression and create a new one.
2704const SCEV *ScalarEvolution::getSCEV(Value *V) {
2705  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
2706
2707  ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2708  if (I != ValueExprMap.end()) return I->second;
2709  const SCEV *S = createSCEV(V);
2710
2711  // The process of creating a SCEV for V may have caused other SCEVs
2712  // to have been created, so it's necessary to insert the new entry
2713  // from scratch, rather than trying to remember the insert position
2714  // above.
2715  ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
2716  return S;
2717}
2718
2719/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2720///
2721const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
2722  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2723    return getConstant(
2724               cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
2725
2726  Type *Ty = V->getType();
2727  Ty = getEffectiveSCEVType(Ty);
2728  return getMulExpr(V,
2729                  getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
2730}
2731
2732/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2733const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
2734  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2735    return getConstant(
2736                cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
2737
2738  Type *Ty = V->getType();
2739  Ty = getEffectiveSCEVType(Ty);
2740  const SCEV *AllOnes =
2741                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
2742  return getMinusSCEV(AllOnes, V);
2743}
2744
2745/// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
2746const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
2747                                          SCEV::NoWrapFlags Flags) {
2748  assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
2749
2750  // Fast path: X - X --> 0.
2751  if (LHS == RHS)
2752    return getConstant(LHS->getType(), 0);
2753
2754  // X - Y --> X + -Y
2755  return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
2756}
2757
2758/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2759/// input value to the specified type.  If the type must be extended, it is zero
2760/// extended.
2761const SCEV *
2762ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
2763  Type *SrcTy = V->getType();
2764  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2765         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2766         "Cannot truncate or zero extend with non-integer arguments!");
2767  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2768    return V;  // No conversion
2769  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2770    return getTruncateExpr(V, Ty);
2771  return getZeroExtendExpr(V, Ty);
2772}
2773
2774/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2775/// input value to the specified type.  If the type must be extended, it is sign
2776/// extended.
2777const SCEV *
2778ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
2779                                         Type *Ty) {
2780  Type *SrcTy = V->getType();
2781  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2782         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2783         "Cannot truncate or zero extend with non-integer arguments!");
2784  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2785    return V;  // No conversion
2786  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2787    return getTruncateExpr(V, Ty);
2788  return getSignExtendExpr(V, Ty);
2789}
2790
2791/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2792/// input value to the specified type.  If the type must be extended, it is zero
2793/// extended.  The conversion must not be narrowing.
2794const SCEV *
2795ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
2796  Type *SrcTy = V->getType();
2797  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2798         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2799         "Cannot noop or zero extend with non-integer arguments!");
2800  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2801         "getNoopOrZeroExtend cannot truncate!");
2802  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2803    return V;  // No conversion
2804  return getZeroExtendExpr(V, Ty);
2805}
2806
2807/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2808/// input value to the specified type.  If the type must be extended, it is sign
2809/// extended.  The conversion must not be narrowing.
2810const SCEV *
2811ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
2812  Type *SrcTy = V->getType();
2813  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2814         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2815         "Cannot noop or sign extend with non-integer arguments!");
2816  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2817         "getNoopOrSignExtend cannot truncate!");
2818  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2819    return V;  // No conversion
2820  return getSignExtendExpr(V, Ty);
2821}
2822
2823/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2824/// the input value to the specified type. If the type must be extended,
2825/// it is extended with unspecified bits. The conversion must not be
2826/// narrowing.
2827const SCEV *
2828ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
2829  Type *SrcTy = V->getType();
2830  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2831         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2832         "Cannot noop or any extend with non-integer arguments!");
2833  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2834         "getNoopOrAnyExtend cannot truncate!");
2835  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2836    return V;  // No conversion
2837  return getAnyExtendExpr(V, Ty);
2838}
2839
2840/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2841/// input value to the specified type.  The conversion must not be widening.
2842const SCEV *
2843ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
2844  Type *SrcTy = V->getType();
2845  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2846         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2847         "Cannot truncate or noop with non-integer arguments!");
2848  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2849         "getTruncateOrNoop cannot extend!");
2850  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2851    return V;  // No conversion
2852  return getTruncateExpr(V, Ty);
2853}
2854
2855/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2856/// the types using zero-extension, and then perform a umax operation
2857/// with them.
2858const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2859                                                        const SCEV *RHS) {
2860  const SCEV *PromotedLHS = LHS;
2861  const SCEV *PromotedRHS = RHS;
2862
2863  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2864    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2865  else
2866    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2867
2868  return getUMaxExpr(PromotedLHS, PromotedRHS);
2869}
2870
2871/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2872/// the types using zero-extension, and then perform a umin operation
2873/// with them.
2874const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2875                                                        const SCEV *RHS) {
2876  const SCEV *PromotedLHS = LHS;
2877  const SCEV *PromotedRHS = RHS;
2878
2879  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2880    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2881  else
2882    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2883
2884  return getUMinExpr(PromotedLHS, PromotedRHS);
2885}
2886
2887/// getPointerBase - Transitively follow the chain of pointer-type operands
2888/// until reaching a SCEV that does not have a single pointer operand. This
2889/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
2890/// but corner cases do exist.
2891const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
2892  // A pointer operand may evaluate to a nonpointer expression, such as null.
2893  if (!V->getType()->isPointerTy())
2894    return V;
2895
2896  if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
2897    return getPointerBase(Cast->getOperand());
2898  }
2899  else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
2900    const SCEV *PtrOp = 0;
2901    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
2902         I != E; ++I) {
2903      if ((*I)->getType()->isPointerTy()) {
2904        // Cannot find the base of an expression with multiple pointer operands.
2905        if (PtrOp)
2906          return V;
2907        PtrOp = *I;
2908      }
2909    }
2910    if (!PtrOp)
2911      return V;
2912    return getPointerBase(PtrOp);
2913  }
2914  return V;
2915}
2916
2917/// PushDefUseChildren - Push users of the given Instruction
2918/// onto the given Worklist.
2919static void
2920PushDefUseChildren(Instruction *I,
2921                   SmallVectorImpl<Instruction *> &Worklist) {
2922  // Push the def-use children onto the Worklist stack.
2923  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2924       UI != UE; ++UI)
2925    Worklist.push_back(cast<Instruction>(*UI));
2926}
2927
2928/// ForgetSymbolicValue - This looks up computed SCEV values for all
2929/// instructions that depend on the given instruction and removes them from
2930/// the ValueExprMapType map if they reference SymName. This is used during PHI
2931/// resolution.
2932void
2933ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
2934  SmallVector<Instruction *, 16> Worklist;
2935  PushDefUseChildren(PN, Worklist);
2936
2937  SmallPtrSet<Instruction *, 8> Visited;
2938  Visited.insert(PN);
2939  while (!Worklist.empty()) {
2940    Instruction *I = Worklist.pop_back_val();
2941    if (!Visited.insert(I)) continue;
2942
2943    ValueExprMapType::iterator It =
2944      ValueExprMap.find(static_cast<Value *>(I));
2945    if (It != ValueExprMap.end()) {
2946      const SCEV *Old = It->second;
2947
2948      // Short-circuit the def-use traversal if the symbolic name
2949      // ceases to appear in expressions.
2950      if (Old != SymName && !hasOperand(Old, SymName))
2951        continue;
2952
2953      // SCEVUnknown for a PHI either means that it has an unrecognized
2954      // structure, it's a PHI that's in the progress of being computed
2955      // by createNodeForPHI, or it's a single-value PHI. In the first case,
2956      // additional loop trip count information isn't going to change anything.
2957      // In the second case, createNodeForPHI will perform the necessary
2958      // updates on its own when it gets to that point. In the third, we do
2959      // want to forget the SCEVUnknown.
2960      if (!isa<PHINode>(I) ||
2961          !isa<SCEVUnknown>(Old) ||
2962          (I != PN && Old == SymName)) {
2963        forgetMemoizedResults(Old);
2964        ValueExprMap.erase(It);
2965      }
2966    }
2967
2968    PushDefUseChildren(I, Worklist);
2969  }
2970}
2971
2972/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
2973/// a loop header, making it a potential recurrence, or it doesn't.
2974///
2975const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
2976  if (const Loop *L = LI->getLoopFor(PN->getParent()))
2977    if (L->getHeader() == PN->getParent()) {
2978      // The loop may have multiple entrances or multiple exits; we can analyze
2979      // this phi as an addrec if it has a unique entry value and a unique
2980      // backedge value.
2981      Value *BEValueV = 0, *StartValueV = 0;
2982      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2983        Value *V = PN->getIncomingValue(i);
2984        if (L->contains(PN->getIncomingBlock(i))) {
2985          if (!BEValueV) {
2986            BEValueV = V;
2987          } else if (BEValueV != V) {
2988            BEValueV = 0;
2989            break;
2990          }
2991        } else if (!StartValueV) {
2992          StartValueV = V;
2993        } else if (StartValueV != V) {
2994          StartValueV = 0;
2995          break;
2996        }
2997      }
2998      if (BEValueV && StartValueV) {
2999        // While we are analyzing this PHI node, handle its value symbolically.
3000        const SCEV *SymbolicName = getUnknown(PN);
3001        assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
3002               "PHI node already processed?");
3003        ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
3004
3005        // Using this symbolic name for the PHI, analyze the value coming around
3006        // the back-edge.
3007        const SCEV *BEValue = getSCEV(BEValueV);
3008
3009        // NOTE: If BEValue is loop invariant, we know that the PHI node just
3010        // has a special value for the first iteration of the loop.
3011
3012        // If the value coming around the backedge is an add with the symbolic
3013        // value we just inserted, then we found a simple induction variable!
3014        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
3015          // If there is a single occurrence of the symbolic value, replace it
3016          // with a recurrence.
3017          unsigned FoundIndex = Add->getNumOperands();
3018          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3019            if (Add->getOperand(i) == SymbolicName)
3020              if (FoundIndex == e) {
3021                FoundIndex = i;
3022                break;
3023              }
3024
3025          if (FoundIndex != Add->getNumOperands()) {
3026            // Create an add with everything but the specified operand.
3027            SmallVector<const SCEV *, 8> Ops;
3028            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3029              if (i != FoundIndex)
3030                Ops.push_back(Add->getOperand(i));
3031            const SCEV *Accum = getAddExpr(Ops);
3032
3033            // This is not a valid addrec if the step amount is varying each
3034            // loop iteration, but is not itself an addrec in this loop.
3035            if (isLoopInvariant(Accum, L) ||
3036                (isa<SCEVAddRecExpr>(Accum) &&
3037                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
3038              SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
3039
3040              // If the increment doesn't overflow, then neither the addrec nor
3041              // the post-increment will overflow.
3042              if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3043                if (OBO->hasNoUnsignedWrap())
3044                  Flags = setFlags(Flags, SCEV::FlagNUW);
3045                if (OBO->hasNoSignedWrap())
3046                  Flags = setFlags(Flags, SCEV::FlagNSW);
3047              } else if (const GEPOperator *GEP =
3048                         dyn_cast<GEPOperator>(BEValueV)) {
3049                // If the increment is an inbounds GEP, then we know the address
3050                // space cannot be wrapped around. We cannot make any guarantee
3051                // about signed or unsigned overflow because pointers are
3052                // unsigned but we may have a negative index from the base
3053                // pointer.
3054                if (GEP->isInBounds())
3055                  Flags = setFlags(Flags, SCEV::FlagNW);
3056              }
3057
3058              const SCEV *StartVal = getSCEV(StartValueV);
3059              const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
3060
3061              // Since the no-wrap flags are on the increment, they apply to the
3062              // post-incremented value as well.
3063              if (isLoopInvariant(Accum, L))
3064                (void)getAddRecExpr(getAddExpr(StartVal, Accum),
3065                                    Accum, L, Flags);
3066
3067              // Okay, for the entire analysis of this edge we assumed the PHI
3068              // to be symbolic.  We now need to go back and purge all of the
3069              // entries for the scalars that use the symbolic expression.
3070              ForgetSymbolicName(PN, SymbolicName);
3071              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3072              return PHISCEV;
3073            }
3074          }
3075        } else if (const SCEVAddRecExpr *AddRec =
3076                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
3077          // Otherwise, this could be a loop like this:
3078          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
3079          // In this case, j = {1,+,1}  and BEValue is j.
3080          // Because the other in-value of i (0) fits the evolution of BEValue
3081          // i really is an addrec evolution.
3082          if (AddRec->getLoop() == L && AddRec->isAffine()) {
3083            const SCEV *StartVal = getSCEV(StartValueV);
3084
3085            // If StartVal = j.start - j.stride, we can use StartVal as the
3086            // initial step of the addrec evolution.
3087            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
3088                                         AddRec->getOperand(1))) {
3089              // FIXME: For constant StartVal, we should be able to infer
3090              // no-wrap flags.
3091              const SCEV *PHISCEV =
3092                getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3093                              SCEV::FlagAnyWrap);
3094
3095              // Okay, for the entire analysis of this edge we assumed the PHI
3096              // to be symbolic.  We now need to go back and purge all of the
3097              // entries for the scalars that use the symbolic expression.
3098              ForgetSymbolicName(PN, SymbolicName);
3099              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3100              return PHISCEV;
3101            }
3102          }
3103        }
3104      }
3105    }
3106
3107  // If the PHI has a single incoming value, follow that value, unless the
3108  // PHI's incoming blocks are in a different loop, in which case doing so
3109  // risks breaking LCSSA form. Instcombine would normally zap these, but
3110  // it doesn't have DominatorTree information, so it may miss cases.
3111  if (Value *V = SimplifyInstruction(PN, TD, DT))
3112    if (LI->replacementPreservesLCSSAForm(PN, V))
3113      return getSCEV(V);
3114
3115  // If it's not a loop phi, we can't handle it yet.
3116  return getUnknown(PN);
3117}
3118
3119/// createNodeForGEP - Expand GEP instructions into add and multiply
3120/// operations. This allows them to be analyzed by regular SCEV code.
3121///
3122const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
3123
3124  // Don't blindly transfer the inbounds flag from the GEP instruction to the
3125  // Add expression, because the Instruction may be guarded by control flow
3126  // and the no-overflow bits may not be valid for the expression in any
3127  // context.
3128  bool isInBounds = GEP->isInBounds();
3129
3130  Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
3131  Value *Base = GEP->getOperand(0);
3132  // Don't attempt to analyze GEPs over unsized objects.
3133  if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
3134    return getUnknown(GEP);
3135  const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
3136  gep_type_iterator GTI = gep_type_begin(GEP);
3137  for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
3138                                      E = GEP->op_end();
3139       I != E; ++I) {
3140    Value *Index = *I;
3141    // Compute the (potentially symbolic) offset in bytes for this index.
3142    if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
3143      // For a struct, add the member offset.
3144      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
3145      const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
3146
3147      // Add the field offset to the running total offset.
3148      TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3149    } else {
3150      // For an array, add the element offset, explicitly scaled.
3151      const SCEV *ElementSize = getSizeOfExpr(*GTI);
3152      const SCEV *IndexS = getSCEV(Index);
3153      // Getelementptr indices are signed.
3154      IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3155
3156      // Multiply the index by the element size to compute the element offset.
3157      const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize,
3158                                           isInBounds ? SCEV::FlagNSW :
3159                                           SCEV::FlagAnyWrap);
3160
3161      // Add the element offset to the running total offset.
3162      TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3163    }
3164  }
3165
3166  // Get the SCEV for the GEP base.
3167  const SCEV *BaseS = getSCEV(Base);
3168
3169  // Add the total offset from all the GEP indices to the base.
3170  return getAddExpr(BaseS, TotalOffset,
3171                    isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap);
3172}
3173
3174/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3175/// guaranteed to end in (at every loop iteration).  It is, at the same time,
3176/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
3177/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
3178uint32_t
3179ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
3180  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3181    return C->getValue()->getValue().countTrailingZeros();
3182
3183  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
3184    return std::min(GetMinTrailingZeros(T->getOperand()),
3185                    (uint32_t)getTypeSizeInBits(T->getType()));
3186
3187  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
3188    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3189    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3190             getTypeSizeInBits(E->getType()) : OpRes;
3191  }
3192
3193  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
3194    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3195    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3196             getTypeSizeInBits(E->getType()) : OpRes;
3197  }
3198
3199  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
3200    // The result is the min of all operands results.
3201    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
3202    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
3203      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
3204    return MinOpRes;
3205  }
3206
3207  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
3208    // The result is the sum of all operands results.
3209    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3210    uint32_t BitWidth = getTypeSizeInBits(M->getType());
3211    for (unsigned i = 1, e = M->getNumOperands();
3212         SumOpRes != BitWidth && i != e; ++i)
3213      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
3214                          BitWidth);
3215    return SumOpRes;
3216  }
3217
3218  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
3219    // The result is the min of all operands results.
3220    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
3221    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
3222      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
3223    return MinOpRes;
3224  }
3225
3226  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
3227    // The result is the min of all operands results.
3228    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
3229    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3230      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3231    return MinOpRes;
3232  }
3233
3234  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
3235    // The result is the min of all operands results.
3236    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
3237    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3238      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3239    return MinOpRes;
3240  }
3241
3242  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3243    // For a SCEVUnknown, ask ValueTracking.
3244    unsigned BitWidth = getTypeSizeInBits(U->getType());
3245    APInt Mask = APInt::getAllOnesValue(BitWidth);
3246    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3247    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
3248    return Zeros.countTrailingOnes();
3249  }
3250
3251  // SCEVUDivExpr
3252  return 0;
3253}
3254
3255/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3256///
3257ConstantRange
3258ScalarEvolution::getUnsignedRange(const SCEV *S) {
3259  // See if we've computed this range already.
3260  DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3261  if (I != UnsignedRanges.end())
3262    return I->second;
3263
3264  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3265    return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
3266
3267  unsigned BitWidth = getTypeSizeInBits(S->getType());
3268  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3269
3270  // If the value has known zeros, the maximum unsigned value will have those
3271  // known zeros as well.
3272  uint32_t TZ = GetMinTrailingZeros(S);
3273  if (TZ != 0)
3274    ConservativeResult =
3275      ConstantRange(APInt::getMinValue(BitWidth),
3276                    APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3277
3278  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3279    ConstantRange X = getUnsignedRange(Add->getOperand(0));
3280    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3281      X = X.add(getUnsignedRange(Add->getOperand(i)));
3282    return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
3283  }
3284
3285  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3286    ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3287    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3288      X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
3289    return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
3290  }
3291
3292  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3293    ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3294    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3295      X = X.smax(getUnsignedRange(SMax->getOperand(i)));
3296    return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
3297  }
3298
3299  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3300    ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3301    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3302      X = X.umax(getUnsignedRange(UMax->getOperand(i)));
3303    return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
3304  }
3305
3306  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3307    ConstantRange X = getUnsignedRange(UDiv->getLHS());
3308    ConstantRange Y = getUnsignedRange(UDiv->getRHS());
3309    return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
3310  }
3311
3312  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3313    ConstantRange X = getUnsignedRange(ZExt->getOperand());
3314    return setUnsignedRange(ZExt,
3315      ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3316  }
3317
3318  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3319    ConstantRange X = getUnsignedRange(SExt->getOperand());
3320    return setUnsignedRange(SExt,
3321      ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3322  }
3323
3324  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3325    ConstantRange X = getUnsignedRange(Trunc->getOperand());
3326    return setUnsignedRange(Trunc,
3327      ConservativeResult.intersectWith(X.truncate(BitWidth)));
3328  }
3329
3330  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3331    // If there's no unsigned wrap, the value will never be less than its
3332    // initial value.
3333    if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
3334      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
3335        if (!C->getValue()->isZero())
3336          ConservativeResult =
3337            ConservativeResult.intersectWith(
3338              ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
3339
3340    // TODO: non-affine addrec
3341    if (AddRec->isAffine()) {
3342      Type *Ty = AddRec->getType();
3343      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3344      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3345          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3346        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3347
3348        const SCEV *Start = AddRec->getStart();
3349        const SCEV *Step = AddRec->getStepRecurrence(*this);
3350
3351        ConstantRange StartRange = getUnsignedRange(Start);
3352        ConstantRange StepRange = getSignedRange(Step);
3353        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3354        ConstantRange EndRange =
3355          StartRange.add(MaxBECountRange.multiply(StepRange));
3356
3357        // Check for overflow. This must be done with ConstantRange arithmetic
3358        // because we could be called from within the ScalarEvolution overflow
3359        // checking code.
3360        ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3361        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3362        ConstantRange ExtMaxBECountRange =
3363          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3364        ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3365        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3366            ExtEndRange)
3367          return setUnsignedRange(AddRec, ConservativeResult);
3368
3369        APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3370                                   EndRange.getUnsignedMin());
3371        APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3372                                   EndRange.getUnsignedMax());
3373        if (Min.isMinValue() && Max.isMaxValue())
3374          return setUnsignedRange(AddRec, ConservativeResult);
3375        return setUnsignedRange(AddRec,
3376          ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3377      }
3378    }
3379
3380    return setUnsignedRange(AddRec, ConservativeResult);
3381  }
3382
3383  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3384    // For a SCEVUnknown, ask ValueTracking.
3385    APInt Mask = APInt::getAllOnesValue(BitWidth);
3386    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3387    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
3388    if (Ones == ~Zeros + 1)
3389      return setUnsignedRange(U, ConservativeResult);
3390    return setUnsignedRange(U,
3391      ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
3392  }
3393
3394  return setUnsignedRange(S, ConservativeResult);
3395}
3396
3397/// getSignedRange - Determine the signed range for a particular SCEV.
3398///
3399ConstantRange
3400ScalarEvolution::getSignedRange(const SCEV *S) {
3401  // See if we've computed this range already.
3402  DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3403  if (I != SignedRanges.end())
3404    return I->second;
3405
3406  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3407    return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
3408
3409  unsigned BitWidth = getTypeSizeInBits(S->getType());
3410  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3411
3412  // If the value has known zeros, the maximum signed value will have those
3413  // known zeros as well.
3414  uint32_t TZ = GetMinTrailingZeros(S);
3415  if (TZ != 0)
3416    ConservativeResult =
3417      ConstantRange(APInt::getSignedMinValue(BitWidth),
3418                    APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3419
3420  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3421    ConstantRange X = getSignedRange(Add->getOperand(0));
3422    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3423      X = X.add(getSignedRange(Add->getOperand(i)));
3424    return setSignedRange(Add, ConservativeResult.intersectWith(X));
3425  }
3426
3427  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3428    ConstantRange X = getSignedRange(Mul->getOperand(0));
3429    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3430      X = X.multiply(getSignedRange(Mul->getOperand(i)));
3431    return setSignedRange(Mul, ConservativeResult.intersectWith(X));
3432  }
3433
3434  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3435    ConstantRange X = getSignedRange(SMax->getOperand(0));
3436    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3437      X = X.smax(getSignedRange(SMax->getOperand(i)));
3438    return setSignedRange(SMax, ConservativeResult.intersectWith(X));
3439  }
3440
3441  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3442    ConstantRange X = getSignedRange(UMax->getOperand(0));
3443    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3444      X = X.umax(getSignedRange(UMax->getOperand(i)));
3445    return setSignedRange(UMax, ConservativeResult.intersectWith(X));
3446  }
3447
3448  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3449    ConstantRange X = getSignedRange(UDiv->getLHS());
3450    ConstantRange Y = getSignedRange(UDiv->getRHS());
3451    return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
3452  }
3453
3454  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3455    ConstantRange X = getSignedRange(ZExt->getOperand());
3456    return setSignedRange(ZExt,
3457      ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3458  }
3459
3460  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3461    ConstantRange X = getSignedRange(SExt->getOperand());
3462    return setSignedRange(SExt,
3463      ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3464  }
3465
3466  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3467    ConstantRange X = getSignedRange(Trunc->getOperand());
3468    return setSignedRange(Trunc,
3469      ConservativeResult.intersectWith(X.truncate(BitWidth)));
3470  }
3471
3472  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3473    // If there's no signed wrap, and all the operands have the same sign or
3474    // zero, the value won't ever change sign.
3475    if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
3476      bool AllNonNeg = true;
3477      bool AllNonPos = true;
3478      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3479        if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3480        if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3481      }
3482      if (AllNonNeg)
3483        ConservativeResult = ConservativeResult.intersectWith(
3484          ConstantRange(APInt(BitWidth, 0),
3485                        APInt::getSignedMinValue(BitWidth)));
3486      else if (AllNonPos)
3487        ConservativeResult = ConservativeResult.intersectWith(
3488          ConstantRange(APInt::getSignedMinValue(BitWidth),
3489                        APInt(BitWidth, 1)));
3490    }
3491
3492    // TODO: non-affine addrec
3493    if (AddRec->isAffine()) {
3494      Type *Ty = AddRec->getType();
3495      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3496      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3497          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3498        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3499
3500        const SCEV *Start = AddRec->getStart();
3501        const SCEV *Step = AddRec->getStepRecurrence(*this);
3502
3503        ConstantRange StartRange = getSignedRange(Start);
3504        ConstantRange StepRange = getSignedRange(Step);
3505        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3506        ConstantRange EndRange =
3507          StartRange.add(MaxBECountRange.multiply(StepRange));
3508
3509        // Check for overflow. This must be done with ConstantRange arithmetic
3510        // because we could be called from within the ScalarEvolution overflow
3511        // checking code.
3512        ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3513        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3514        ConstantRange ExtMaxBECountRange =
3515          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3516        ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3517        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3518            ExtEndRange)
3519          return setSignedRange(AddRec, ConservativeResult);
3520
3521        APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3522                                   EndRange.getSignedMin());
3523        APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3524                                   EndRange.getSignedMax());
3525        if (Min.isMinSignedValue() && Max.isMaxSignedValue())
3526          return setSignedRange(AddRec, ConservativeResult);
3527        return setSignedRange(AddRec,
3528          ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3529      }
3530    }
3531
3532    return setSignedRange(AddRec, ConservativeResult);
3533  }
3534
3535  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3536    // For a SCEVUnknown, ask ValueTracking.
3537    if (!U->getValue()->getType()->isIntegerTy() && !TD)
3538      return setSignedRange(U, ConservativeResult);
3539    unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3540    if (NS == 1)
3541      return setSignedRange(U, ConservativeResult);
3542    return setSignedRange(U, ConservativeResult.intersectWith(
3543      ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
3544                    APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
3545  }
3546
3547  return setSignedRange(S, ConservativeResult);
3548}
3549
3550/// createSCEV - We know that there is no SCEV for the specified value.
3551/// Analyze the expression.
3552///
3553const SCEV *ScalarEvolution::createSCEV(Value *V) {
3554  if (!isSCEVable(V->getType()))
3555    return getUnknown(V);
3556
3557  unsigned Opcode = Instruction::UserOp1;
3558  if (Instruction *I = dyn_cast<Instruction>(V)) {
3559    Opcode = I->getOpcode();
3560
3561    // Don't attempt to analyze instructions in blocks that aren't
3562    // reachable. Such instructions don't matter, and they aren't required
3563    // to obey basic rules for definitions dominating uses which this
3564    // analysis depends on.
3565    if (!DT->isReachableFromEntry(I->getParent()))
3566      return getUnknown(V);
3567  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
3568    Opcode = CE->getOpcode();
3569  else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3570    return getConstant(CI);
3571  else if (isa<ConstantPointerNull>(V))
3572    return getConstant(V->getType(), 0);
3573  else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3574    return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
3575  else
3576    return getUnknown(V);
3577
3578  Operator *U = cast<Operator>(V);
3579  switch (Opcode) {
3580  case Instruction::Add: {
3581    // The simple thing to do would be to just call getSCEV on both operands
3582    // and call getAddExpr with the result. However if we're looking at a
3583    // bunch of things all added together, this can be quite inefficient,
3584    // because it leads to N-1 getAddExpr calls for N ultimate operands.
3585    // Instead, gather up all the operands and make a single getAddExpr call.
3586    // LLVM IR canonical form means we need only traverse the left operands.
3587    SmallVector<const SCEV *, 4> AddOps;
3588    AddOps.push_back(getSCEV(U->getOperand(1)));
3589    for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3590      unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3591      if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3592        break;
3593      U = cast<Operator>(Op);
3594      const SCEV *Op1 = getSCEV(U->getOperand(1));
3595      if (Opcode == Instruction::Sub)
3596        AddOps.push_back(getNegativeSCEV(Op1));
3597      else
3598        AddOps.push_back(Op1);
3599    }
3600    AddOps.push_back(getSCEV(U->getOperand(0)));
3601    SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
3602    OverflowingBinaryOperator *OBO = cast<OverflowingBinaryOperator>(V);
3603    if (OBO->hasNoSignedWrap())
3604      setFlags(Flags, SCEV::FlagNSW);
3605    if (OBO->hasNoUnsignedWrap())
3606      setFlags(Flags, SCEV::FlagNUW);
3607    return getAddExpr(AddOps, Flags);
3608  }
3609  case Instruction::Mul: {
3610    // See the Add code above.
3611    SmallVector<const SCEV *, 4> MulOps;
3612    MulOps.push_back(getSCEV(U->getOperand(1)));
3613    for (Value *Op = U->getOperand(0);
3614         Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3615         Op = U->getOperand(0)) {
3616      U = cast<Operator>(Op);
3617      MulOps.push_back(getSCEV(U->getOperand(1)));
3618    }
3619    MulOps.push_back(getSCEV(U->getOperand(0)));
3620    return getMulExpr(MulOps);
3621  }
3622  case Instruction::UDiv:
3623    return getUDivExpr(getSCEV(U->getOperand(0)),
3624                       getSCEV(U->getOperand(1)));
3625  case Instruction::Sub:
3626    return getMinusSCEV(getSCEV(U->getOperand(0)),
3627                        getSCEV(U->getOperand(1)));
3628  case Instruction::And:
3629    // For an expression like x&255 that merely masks off the high bits,
3630    // use zext(trunc(x)) as the SCEV expression.
3631    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3632      if (CI->isNullValue())
3633        return getSCEV(U->getOperand(1));
3634      if (CI->isAllOnesValue())
3635        return getSCEV(U->getOperand(0));
3636      const APInt &A = CI->getValue();
3637
3638      // Instcombine's ShrinkDemandedConstant may strip bits out of
3639      // constants, obscuring what would otherwise be a low-bits mask.
3640      // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3641      // knew about to reconstruct a low-bits mask value.
3642      unsigned LZ = A.countLeadingZeros();
3643      unsigned BitWidth = A.getBitWidth();
3644      APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3645      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3646      ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3647
3648      APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3649
3650      if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
3651        return
3652          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
3653                                IntegerType::get(getContext(), BitWidth - LZ)),
3654                            U->getType());
3655    }
3656    break;
3657
3658  case Instruction::Or:
3659    // If the RHS of the Or is a constant, we may have something like:
3660    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
3661    // optimizations will transparently handle this case.
3662    //
3663    // In order for this transformation to be safe, the LHS must be of the
3664    // form X*(2^n) and the Or constant must be less than 2^n.
3665    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3666      const SCEV *LHS = getSCEV(U->getOperand(0));
3667      const APInt &CIVal = CI->getValue();
3668      if (GetMinTrailingZeros(LHS) >=
3669          (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3670        // Build a plain add SCEV.
3671        const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3672        // If the LHS of the add was an addrec and it has no-wrap flags,
3673        // transfer the no-wrap flags, since an or won't introduce a wrap.
3674        if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3675          const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3676          const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
3677            OldAR->getNoWrapFlags());
3678        }
3679        return S;
3680      }
3681    }
3682    break;
3683  case Instruction::Xor:
3684    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3685      // If the RHS of the xor is a signbit, then this is just an add.
3686      // Instcombine turns add of signbit into xor as a strength reduction step.
3687      if (CI->getValue().isSignBit())
3688        return getAddExpr(getSCEV(U->getOperand(0)),
3689                          getSCEV(U->getOperand(1)));
3690
3691      // If the RHS of xor is -1, then this is a not operation.
3692      if (CI->isAllOnesValue())
3693        return getNotSCEV(getSCEV(U->getOperand(0)));
3694
3695      // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3696      // This is a variant of the check for xor with -1, and it handles
3697      // the case where instcombine has trimmed non-demanded bits out
3698      // of an xor with -1.
3699      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3700        if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3701          if (BO->getOpcode() == Instruction::And &&
3702              LCI->getValue() == CI->getValue())
3703            if (const SCEVZeroExtendExpr *Z =
3704                  dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
3705              Type *UTy = U->getType();
3706              const SCEV *Z0 = Z->getOperand();
3707              Type *Z0Ty = Z0->getType();
3708              unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3709
3710              // If C is a low-bits mask, the zero extend is serving to
3711              // mask off the high bits. Complement the operand and
3712              // re-apply the zext.
3713              if (APIntOps::isMask(Z0TySize, CI->getValue()))
3714                return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3715
3716              // If C is a single bit, it may be in the sign-bit position
3717              // before the zero-extend. In this case, represent the xor
3718              // using an add, which is equivalent, and re-apply the zext.
3719              APInt Trunc = CI->getValue().trunc(Z0TySize);
3720              if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3721                  Trunc.isSignBit())
3722                return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3723                                         UTy);
3724            }
3725    }
3726    break;
3727
3728  case Instruction::Shl:
3729    // Turn shift left of a constant amount into a multiply.
3730    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3731      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3732
3733      // If the shift count is not less than the bitwidth, the result of
3734      // the shift is undefined. Don't try to analyze it, because the
3735      // resolution chosen here may differ from the resolution chosen in
3736      // other parts of the compiler.
3737      if (SA->getValue().uge(BitWidth))
3738        break;
3739
3740      Constant *X = ConstantInt::get(getContext(),
3741        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3742      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3743    }
3744    break;
3745
3746  case Instruction::LShr:
3747    // Turn logical shift right of a constant into a unsigned divide.
3748    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3749      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3750
3751      // If the shift count is not less than the bitwidth, the result of
3752      // the shift is undefined. Don't try to analyze it, because the
3753      // resolution chosen here may differ from the resolution chosen in
3754      // other parts of the compiler.
3755      if (SA->getValue().uge(BitWidth))
3756        break;
3757
3758      Constant *X = ConstantInt::get(getContext(),
3759        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3760      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3761    }
3762    break;
3763
3764  case Instruction::AShr:
3765    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3766    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
3767      if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
3768        if (L->getOpcode() == Instruction::Shl &&
3769            L->getOperand(1) == U->getOperand(1)) {
3770          uint64_t BitWidth = getTypeSizeInBits(U->getType());
3771
3772          // If the shift count is not less than the bitwidth, the result of
3773          // the shift is undefined. Don't try to analyze it, because the
3774          // resolution chosen here may differ from the resolution chosen in
3775          // other parts of the compiler.
3776          if (CI->getValue().uge(BitWidth))
3777            break;
3778
3779          uint64_t Amt = BitWidth - CI->getZExtValue();
3780          if (Amt == BitWidth)
3781            return getSCEV(L->getOperand(0));       // shift by zero --> noop
3782          return
3783            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
3784                                              IntegerType::get(getContext(),
3785                                                               Amt)),
3786                              U->getType());
3787        }
3788    break;
3789
3790  case Instruction::Trunc:
3791    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
3792
3793  case Instruction::ZExt:
3794    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3795
3796  case Instruction::SExt:
3797    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3798
3799  case Instruction::BitCast:
3800    // BitCasts are no-op casts so we just eliminate the cast.
3801    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
3802      return getSCEV(U->getOperand(0));
3803    break;
3804
3805  // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3806  // lead to pointer expressions which cannot safely be expanded to GEPs,
3807  // because ScalarEvolution doesn't respect the GEP aliasing rules when
3808  // simplifying integer expressions.
3809
3810  case Instruction::GetElementPtr:
3811    return createNodeForGEP(cast<GEPOperator>(U));
3812
3813  case Instruction::PHI:
3814    return createNodeForPHI(cast<PHINode>(U));
3815
3816  case Instruction::Select:
3817    // This could be a smax or umax that was lowered earlier.
3818    // Try to recover it.
3819    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3820      Value *LHS = ICI->getOperand(0);
3821      Value *RHS = ICI->getOperand(1);
3822      switch (ICI->getPredicate()) {
3823      case ICmpInst::ICMP_SLT:
3824      case ICmpInst::ICMP_SLE:
3825        std::swap(LHS, RHS);
3826        // fall through
3827      case ICmpInst::ICMP_SGT:
3828      case ICmpInst::ICMP_SGE:
3829        // a >s b ? a+x : b+x  ->  smax(a, b)+x
3830        // a >s b ? b+x : a+x  ->  smin(a, b)+x
3831        if (LHS->getType() == U->getType()) {
3832          const SCEV *LS = getSCEV(LHS);
3833          const SCEV *RS = getSCEV(RHS);
3834          const SCEV *LA = getSCEV(U->getOperand(1));
3835          const SCEV *RA = getSCEV(U->getOperand(2));
3836          const SCEV *LDiff = getMinusSCEV(LA, LS);
3837          const SCEV *RDiff = getMinusSCEV(RA, RS);
3838          if (LDiff == RDiff)
3839            return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3840          LDiff = getMinusSCEV(LA, RS);
3841          RDiff = getMinusSCEV(RA, LS);
3842          if (LDiff == RDiff)
3843            return getAddExpr(getSMinExpr(LS, RS), LDiff);
3844        }
3845        break;
3846      case ICmpInst::ICMP_ULT:
3847      case ICmpInst::ICMP_ULE:
3848        std::swap(LHS, RHS);
3849        // fall through
3850      case ICmpInst::ICMP_UGT:
3851      case ICmpInst::ICMP_UGE:
3852        // a >u b ? a+x : b+x  ->  umax(a, b)+x
3853        // a >u b ? b+x : a+x  ->  umin(a, b)+x
3854        if (LHS->getType() == U->getType()) {
3855          const SCEV *LS = getSCEV(LHS);
3856          const SCEV *RS = getSCEV(RHS);
3857          const SCEV *LA = getSCEV(U->getOperand(1));
3858          const SCEV *RA = getSCEV(U->getOperand(2));
3859          const SCEV *LDiff = getMinusSCEV(LA, LS);
3860          const SCEV *RDiff = getMinusSCEV(RA, RS);
3861          if (LDiff == RDiff)
3862            return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3863          LDiff = getMinusSCEV(LA, RS);
3864          RDiff = getMinusSCEV(RA, LS);
3865          if (LDiff == RDiff)
3866            return getAddExpr(getUMinExpr(LS, RS), LDiff);
3867        }
3868        break;
3869      case ICmpInst::ICMP_NE:
3870        // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
3871        if (LHS->getType() == U->getType() &&
3872            isa<ConstantInt>(RHS) &&
3873            cast<ConstantInt>(RHS)->isZero()) {
3874          const SCEV *One = getConstant(LHS->getType(), 1);
3875          const SCEV *LS = getSCEV(LHS);
3876          const SCEV *LA = getSCEV(U->getOperand(1));
3877          const SCEV *RA = getSCEV(U->getOperand(2));
3878          const SCEV *LDiff = getMinusSCEV(LA, LS);
3879          const SCEV *RDiff = getMinusSCEV(RA, One);
3880          if (LDiff == RDiff)
3881            return getAddExpr(getUMaxExpr(One, LS), LDiff);
3882        }
3883        break;
3884      case ICmpInst::ICMP_EQ:
3885        // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
3886        if (LHS->getType() == U->getType() &&
3887            isa<ConstantInt>(RHS) &&
3888            cast<ConstantInt>(RHS)->isZero()) {
3889          const SCEV *One = getConstant(LHS->getType(), 1);
3890          const SCEV *LS = getSCEV(LHS);
3891          const SCEV *LA = getSCEV(U->getOperand(1));
3892          const SCEV *RA = getSCEV(U->getOperand(2));
3893          const SCEV *LDiff = getMinusSCEV(LA, One);
3894          const SCEV *RDiff = getMinusSCEV(RA, LS);
3895          if (LDiff == RDiff)
3896            return getAddExpr(getUMaxExpr(One, LS), LDiff);
3897        }
3898        break;
3899      default:
3900        break;
3901      }
3902    }
3903
3904  default: // We cannot analyze this expression.
3905    break;
3906  }
3907
3908  return getUnknown(V);
3909}
3910
3911
3912
3913//===----------------------------------------------------------------------===//
3914//                   Iteration Count Computation Code
3915//
3916
3917/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
3918/// normal unsigned value, if possible. Returns 0 if the trip count is unknown
3919/// or not constant. Will also return 0 if the maximum trip count is very large
3920/// (>= 2^32)
3921unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
3922                                                    BasicBlock *ExitBlock) {
3923  const SCEVConstant *ExitCount =
3924    dyn_cast<SCEVConstant>(getExitCount(L, ExitBlock));
3925  if (!ExitCount)
3926    return 0;
3927
3928  ConstantInt *ExitConst = ExitCount->getValue();
3929
3930  // Guard against huge trip counts.
3931  if (ExitConst->getValue().getActiveBits() > 32)
3932    return 0;
3933
3934  // In case of integer overflow, this returns 0, which is correct.
3935  return ((unsigned)ExitConst->getZExtValue()) + 1;
3936}
3937
3938/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
3939/// trip count of this loop as a normal unsigned value, if possible. This
3940/// means that the actual trip count is always a multiple of the returned
3941/// value (don't forget the trip count could very well be zero as well!).
3942///
3943/// Returns 1 if the trip count is unknown or not guaranteed to be the
3944/// multiple of a constant (which is also the case if the trip count is simply
3945/// constant, use getSmallConstantTripCount for that case), Will also return 1
3946/// if the trip count is very large (>= 2^32).
3947unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
3948                                                       BasicBlock *ExitBlock) {
3949  const SCEV *ExitCount = getExitCount(L, ExitBlock);
3950  if (ExitCount == getCouldNotCompute())
3951    return 1;
3952
3953  // Get the trip count from the BE count by adding 1.
3954  const SCEV *TCMul = getAddExpr(ExitCount,
3955                                 getConstant(ExitCount->getType(), 1));
3956  // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
3957  // to factor simple cases.
3958  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
3959    TCMul = Mul->getOperand(0);
3960
3961  const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
3962  if (!MulC)
3963    return 1;
3964
3965  ConstantInt *Result = MulC->getValue();
3966
3967  // Guard against huge trip counts.
3968  if (!Result || Result->getValue().getActiveBits() > 32)
3969    return 1;
3970
3971  return (unsigned)Result->getZExtValue();
3972}
3973
3974// getExitCount - Get the expression for the number of loop iterations for which
3975// this loop is guaranteed not to exit via ExitintBlock. Otherwise return
3976// SCEVCouldNotCompute.
3977const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
3978  return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
3979}
3980
3981/// getBackedgeTakenCount - If the specified loop has a predictable
3982/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3983/// object. The backedge-taken count is the number of times the loop header
3984/// will be branched to from within the loop. This is one less than the
3985/// trip count of the loop, since it doesn't count the first iteration,
3986/// when the header is branched to from outside the loop.
3987///
3988/// Note that it is not valid to call this method on a loop without a
3989/// loop-invariant backedge-taken count (see
3990/// hasLoopInvariantBackedgeTakenCount).
3991///
3992const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
3993  return getBackedgeTakenInfo(L).getExact(this);
3994}
3995
3996/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3997/// return the least SCEV value that is known never to be less than the
3998/// actual backedge taken count.
3999const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
4000  return getBackedgeTakenInfo(L).getMax(this);
4001}
4002
4003/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4004/// onto the given Worklist.
4005static void
4006PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4007  BasicBlock *Header = L->getHeader();
4008
4009  // Push all Loop-header PHIs onto the Worklist stack.
4010  for (BasicBlock::iterator I = Header->begin();
4011       PHINode *PN = dyn_cast<PHINode>(I); ++I)
4012    Worklist.push_back(PN);
4013}
4014
4015const ScalarEvolution::BackedgeTakenInfo &
4016ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
4017  // Initially insert an invalid entry for this loop. If the insertion
4018  // succeeds, proceed to actually compute a backedge-taken count and
4019  // update the value. The temporary CouldNotCompute value tells SCEV
4020  // code elsewhere that it shouldn't attempt to request a new
4021  // backedge-taken count, which could result in infinite recursion.
4022  std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
4023    BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
4024  if (!Pair.second)
4025    return Pair.first->second;
4026
4027  // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4028  // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4029  // must be cleared in this scope.
4030  BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4031
4032  if (Result.getExact(this) != getCouldNotCompute()) {
4033    assert(isLoopInvariant(Result.getExact(this), L) &&
4034           isLoopInvariant(Result.getMax(this), L) &&
4035           "Computed backedge-taken count isn't loop invariant for loop!");
4036    ++NumTripCountsComputed;
4037  }
4038  else if (Result.getMax(this) == getCouldNotCompute() &&
4039           isa<PHINode>(L->getHeader()->begin())) {
4040    // Only count loops that have phi nodes as not being computable.
4041    ++NumTripCountsNotComputed;
4042  }
4043
4044  // Now that we know more about the trip count for this loop, forget any
4045  // existing SCEV values for PHI nodes in this loop since they are only
4046  // conservative estimates made without the benefit of trip count
4047  // information. This is similar to the code in forgetLoop, except that
4048  // it handles SCEVUnknown PHI nodes specially.
4049  if (Result.hasAnyInfo()) {
4050    SmallVector<Instruction *, 16> Worklist;
4051    PushLoopPHIs(L, Worklist);
4052
4053    SmallPtrSet<Instruction *, 8> Visited;
4054    while (!Worklist.empty()) {
4055      Instruction *I = Worklist.pop_back_val();
4056      if (!Visited.insert(I)) continue;
4057
4058      ValueExprMapType::iterator It =
4059        ValueExprMap.find(static_cast<Value *>(I));
4060      if (It != ValueExprMap.end()) {
4061        const SCEV *Old = It->second;
4062
4063        // SCEVUnknown for a PHI either means that it has an unrecognized
4064        // structure, or it's a PHI that's in the progress of being computed
4065        // by createNodeForPHI.  In the former case, additional loop trip
4066        // count information isn't going to change anything. In the later
4067        // case, createNodeForPHI will perform the necessary updates on its
4068        // own when it gets to that point.
4069        if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4070          forgetMemoizedResults(Old);
4071          ValueExprMap.erase(It);
4072        }
4073        if (PHINode *PN = dyn_cast<PHINode>(I))
4074          ConstantEvolutionLoopExitValue.erase(PN);
4075      }
4076
4077      PushDefUseChildren(I, Worklist);
4078    }
4079  }
4080
4081  // Re-lookup the insert position, since the call to
4082  // ComputeBackedgeTakenCount above could result in a
4083  // recusive call to getBackedgeTakenInfo (on a different
4084  // loop), which would invalidate the iterator computed
4085  // earlier.
4086  return BackedgeTakenCounts.find(L)->second = Result;
4087}
4088
4089/// forgetLoop - This method should be called by the client when it has
4090/// changed a loop in a way that may effect ScalarEvolution's ability to
4091/// compute a trip count, or if the loop is deleted.
4092void ScalarEvolution::forgetLoop(const Loop *L) {
4093  // Drop any stored trip count value.
4094  DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4095    BackedgeTakenCounts.find(L);
4096  if (BTCPos != BackedgeTakenCounts.end()) {
4097    BTCPos->second.clear();
4098    BackedgeTakenCounts.erase(BTCPos);
4099  }
4100
4101  // Drop information about expressions based on loop-header PHIs.
4102  SmallVector<Instruction *, 16> Worklist;
4103  PushLoopPHIs(L, Worklist);
4104
4105  SmallPtrSet<Instruction *, 8> Visited;
4106  while (!Worklist.empty()) {
4107    Instruction *I = Worklist.pop_back_val();
4108    if (!Visited.insert(I)) continue;
4109
4110    ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
4111    if (It != ValueExprMap.end()) {
4112      forgetMemoizedResults(It->second);
4113      ValueExprMap.erase(It);
4114      if (PHINode *PN = dyn_cast<PHINode>(I))
4115        ConstantEvolutionLoopExitValue.erase(PN);
4116    }
4117
4118    PushDefUseChildren(I, Worklist);
4119  }
4120
4121  // Forget all contained loops too, to avoid dangling entries in the
4122  // ValuesAtScopes map.
4123  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4124    forgetLoop(*I);
4125}
4126
4127/// forgetValue - This method should be called by the client when it has
4128/// changed a value in a way that may effect its value, or which may
4129/// disconnect it from a def-use chain linking it to a loop.
4130void ScalarEvolution::forgetValue(Value *V) {
4131  Instruction *I = dyn_cast<Instruction>(V);
4132  if (!I) return;
4133
4134  // Drop information about expressions based on loop-header PHIs.
4135  SmallVector<Instruction *, 16> Worklist;
4136  Worklist.push_back(I);
4137
4138  SmallPtrSet<Instruction *, 8> Visited;
4139  while (!Worklist.empty()) {
4140    I = Worklist.pop_back_val();
4141    if (!Visited.insert(I)) continue;
4142
4143    ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
4144    if (It != ValueExprMap.end()) {
4145      forgetMemoizedResults(It->second);
4146      ValueExprMap.erase(It);
4147      if (PHINode *PN = dyn_cast<PHINode>(I))
4148        ConstantEvolutionLoopExitValue.erase(PN);
4149    }
4150
4151    PushDefUseChildren(I, Worklist);
4152  }
4153}
4154
4155/// getExact - Get the exact loop backedge taken count considering all loop
4156/// exits. If all exits are computable, this is the minimum computed count.
4157const SCEV *
4158ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4159  // If any exits were not computable, the loop is not computable.
4160  if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4161
4162  // We need at least one computable exit.
4163  if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
4164  assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4165
4166  const SCEV *BECount = 0;
4167  for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4168       ENT != 0; ENT = ENT->getNextExit()) {
4169
4170    assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4171
4172    if (!BECount)
4173      BECount = ENT->ExactNotTaken;
4174    else
4175      BECount = SE->getUMinFromMismatchedTypes(BECount, ENT->ExactNotTaken);
4176  }
4177  assert(BECount && "Invalid not taken count for loop exit");
4178  return BECount;
4179}
4180
4181/// getExact - Get the exact not taken count for this loop exit.
4182const SCEV *
4183ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
4184                                             ScalarEvolution *SE) const {
4185  for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4186       ENT != 0; ENT = ENT->getNextExit()) {
4187
4188    if (ENT->ExitingBlock == ExitingBlock)
4189      return ENT->ExactNotTaken;
4190  }
4191  return SE->getCouldNotCompute();
4192}
4193
4194/// getMax - Get the max backedge taken count for the loop.
4195const SCEV *
4196ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4197  return Max ? Max : SE->getCouldNotCompute();
4198}
4199
4200/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4201/// computable exit into a persistent ExitNotTakenInfo array.
4202ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4203  SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4204  bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4205
4206  if (!Complete)
4207    ExitNotTaken.setIncomplete();
4208
4209  unsigned NumExits = ExitCounts.size();
4210  if (NumExits == 0) return;
4211
4212  ExitNotTaken.ExitingBlock = ExitCounts[0].first;
4213  ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4214  if (NumExits == 1) return;
4215
4216  // Handle the rare case of multiple computable exits.
4217  ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4218
4219  ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4220  for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4221    PrevENT->setNextExit(ENT);
4222    ENT->ExitingBlock = ExitCounts[i].first;
4223    ENT->ExactNotTaken = ExitCounts[i].second;
4224  }
4225}
4226
4227/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4228void ScalarEvolution::BackedgeTakenInfo::clear() {
4229  ExitNotTaken.ExitingBlock = 0;
4230  ExitNotTaken.ExactNotTaken = 0;
4231  delete[] ExitNotTaken.getNextExit();
4232}
4233
4234/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4235/// of the specified loop will execute.
4236ScalarEvolution::BackedgeTakenInfo
4237ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
4238  SmallVector<BasicBlock *, 8> ExitingBlocks;
4239  L->getExitingBlocks(ExitingBlocks);
4240
4241  // Examine all exits and pick the most conservative values.
4242  const SCEV *MaxBECount = getCouldNotCompute();
4243  bool CouldComputeBECount = true;
4244  SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
4245  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
4246    ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]);
4247    if (EL.Exact == getCouldNotCompute())
4248      // We couldn't compute an exact value for this exit, so
4249      // we won't be able to compute an exact value for the loop.
4250      CouldComputeBECount = false;
4251    else
4252      ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact));
4253
4254    if (MaxBECount == getCouldNotCompute())
4255      MaxBECount = EL.Max;
4256    else if (EL.Max != getCouldNotCompute())
4257      MaxBECount = getUMinFromMismatchedTypes(MaxBECount, EL.Max);
4258  }
4259
4260  return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
4261}
4262
4263/// ComputeExitLimit - Compute the number of times the backedge of the specified
4264/// loop will execute if it exits via the specified block.
4265ScalarEvolution::ExitLimit
4266ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
4267
4268  // Okay, we've chosen an exiting block.  See what condition causes us to
4269  // exit at this block.
4270  //
4271  // FIXME: we should be able to handle switch instructions (with a single exit)
4272  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
4273  if (ExitBr == 0) return getCouldNotCompute();
4274  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
4275
4276  // At this point, we know we have a conditional branch that determines whether
4277  // the loop is exited.  However, we don't know if the branch is executed each
4278  // time through the loop.  If not, then the execution count of the branch will
4279  // not be equal to the trip count of the loop.
4280  //
4281  // Currently we check for this by checking to see if the Exit branch goes to
4282  // the loop header.  If so, we know it will always execute the same number of
4283  // times as the loop.  We also handle the case where the exit block *is* the
4284  // loop header.  This is common for un-rotated loops.
4285  //
4286  // If both of those tests fail, walk up the unique predecessor chain to the
4287  // header, stopping if there is an edge that doesn't exit the loop. If the
4288  // header is reached, the execution count of the branch will be equal to the
4289  // trip count of the loop.
4290  //
4291  //  More extensive analysis could be done to handle more cases here.
4292  //
4293  if (ExitBr->getSuccessor(0) != L->getHeader() &&
4294      ExitBr->getSuccessor(1) != L->getHeader() &&
4295      ExitBr->getParent() != L->getHeader()) {
4296    // The simple checks failed, try climbing the unique predecessor chain
4297    // up to the header.
4298    bool Ok = false;
4299    for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
4300      BasicBlock *Pred = BB->getUniquePredecessor();
4301      if (!Pred)
4302        return getCouldNotCompute();
4303      TerminatorInst *PredTerm = Pred->getTerminator();
4304      for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4305        BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4306        if (PredSucc == BB)
4307          continue;
4308        // If the predecessor has a successor that isn't BB and isn't
4309        // outside the loop, assume the worst.
4310        if (L->contains(PredSucc))
4311          return getCouldNotCompute();
4312      }
4313      if (Pred == L->getHeader()) {
4314        Ok = true;
4315        break;
4316      }
4317      BB = Pred;
4318    }
4319    if (!Ok)
4320      return getCouldNotCompute();
4321  }
4322
4323  // Proceed to the next level to examine the exit condition expression.
4324  return ComputeExitLimitFromCond(L, ExitBr->getCondition(),
4325                                  ExitBr->getSuccessor(0),
4326                                  ExitBr->getSuccessor(1));
4327}
4328
4329/// ComputeExitLimitFromCond - Compute the number of times the
4330/// backedge of the specified loop will execute if its exit condition
4331/// were a conditional branch of ExitCond, TBB, and FBB.
4332ScalarEvolution::ExitLimit
4333ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4334                                          Value *ExitCond,
4335                                          BasicBlock *TBB,
4336                                          BasicBlock *FBB) {
4337  // Check if the controlling expression for this loop is an And or Or.
4338  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4339    if (BO->getOpcode() == Instruction::And) {
4340      // Recurse on the operands of the and.
4341      ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4342      ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
4343      const SCEV *BECount = getCouldNotCompute();
4344      const SCEV *MaxBECount = getCouldNotCompute();
4345      if (L->contains(TBB)) {
4346        // Both conditions must be true for the loop to continue executing.
4347        // Choose the less conservative count.
4348        if (EL0.Exact == getCouldNotCompute() ||
4349            EL1.Exact == getCouldNotCompute())
4350          BECount = getCouldNotCompute();
4351        else
4352          BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4353        if (EL0.Max == getCouldNotCompute())
4354          MaxBECount = EL1.Max;
4355        else if (EL1.Max == getCouldNotCompute())
4356          MaxBECount = EL0.Max;
4357        else
4358          MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
4359      } else {
4360        // Both conditions must be true at the same time for the loop to exit.
4361        // For now, be conservative.
4362        assert(L->contains(FBB) && "Loop block has no successor in loop!");
4363        if (EL0.Max == EL1.Max)
4364          MaxBECount = EL0.Max;
4365        if (EL0.Exact == EL1.Exact)
4366          BECount = EL0.Exact;
4367      }
4368
4369      return ExitLimit(BECount, MaxBECount);
4370    }
4371    if (BO->getOpcode() == Instruction::Or) {
4372      // Recurse on the operands of the or.
4373      ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4374      ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
4375      const SCEV *BECount = getCouldNotCompute();
4376      const SCEV *MaxBECount = getCouldNotCompute();
4377      if (L->contains(FBB)) {
4378        // Both conditions must be false for the loop to continue executing.
4379        // Choose the less conservative count.
4380        if (EL0.Exact == getCouldNotCompute() ||
4381            EL1.Exact == getCouldNotCompute())
4382          BECount = getCouldNotCompute();
4383        else
4384          BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4385        if (EL0.Max == getCouldNotCompute())
4386          MaxBECount = EL1.Max;
4387        else if (EL1.Max == getCouldNotCompute())
4388          MaxBECount = EL0.Max;
4389        else
4390          MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
4391      } else {
4392        // Both conditions must be false at the same time for the loop to exit.
4393        // For now, be conservative.
4394        assert(L->contains(TBB) && "Loop block has no successor in loop!");
4395        if (EL0.Max == EL1.Max)
4396          MaxBECount = EL0.Max;
4397        if (EL0.Exact == EL1.Exact)
4398          BECount = EL0.Exact;
4399      }
4400
4401      return ExitLimit(BECount, MaxBECount);
4402    }
4403  }
4404
4405  // With an icmp, it may be feasible to compute an exact backedge-taken count.
4406  // Proceed to the next level to examine the icmp.
4407  if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
4408    return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB);
4409
4410  // Check for a constant condition. These are normally stripped out by
4411  // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4412  // preserve the CFG and is temporarily leaving constant conditions
4413  // in place.
4414  if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4415    if (L->contains(FBB) == !CI->getZExtValue())
4416      // The backedge is always taken.
4417      return getCouldNotCompute();
4418    else
4419      // The backedge is never taken.
4420      return getConstant(CI->getType(), 0);
4421  }
4422
4423  // If it's not an integer or pointer comparison then compute it the hard way.
4424  return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
4425}
4426
4427/// ComputeExitLimitFromICmp - Compute the number of times the
4428/// backedge of the specified loop will execute if its exit condition
4429/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4430ScalarEvolution::ExitLimit
4431ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
4432                                          ICmpInst *ExitCond,
4433                                          BasicBlock *TBB,
4434                                          BasicBlock *FBB) {
4435
4436  // If the condition was exit on true, convert the condition to exit on false
4437  ICmpInst::Predicate Cond;
4438  if (!L->contains(FBB))
4439    Cond = ExitCond->getPredicate();
4440  else
4441    Cond = ExitCond->getInversePredicate();
4442
4443  // Handle common loops like: for (X = "string"; *X; ++X)
4444  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4445    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
4446      ExitLimit ItCnt =
4447        ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
4448      if (ItCnt.hasAnyInfo())
4449        return ItCnt;
4450    }
4451
4452  const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4453  const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
4454
4455  // Try to evaluate any dependencies out of the loop.
4456  LHS = getSCEVAtScope(LHS, L);
4457  RHS = getSCEVAtScope(RHS, L);
4458
4459  // At this point, we would like to compute how many iterations of the
4460  // loop the predicate will return true for these inputs.
4461  if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
4462    // If there is a loop-invariant, force it into the RHS.
4463    std::swap(LHS, RHS);
4464    Cond = ICmpInst::getSwappedPredicate(Cond);
4465  }
4466
4467  // Simplify the operands before analyzing them.
4468  (void)SimplifyICmpOperands(Cond, LHS, RHS);
4469
4470  // If we have a comparison of a chrec against a constant, try to use value
4471  // ranges to answer this query.
4472  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4473    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
4474      if (AddRec->getLoop() == L) {
4475        // Form the constant range.
4476        ConstantRange CompRange(
4477            ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
4478
4479        const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
4480        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
4481      }
4482
4483  switch (Cond) {
4484  case ICmpInst::ICMP_NE: {                     // while (X != Y)
4485    // Convert to: while (X-Y != 0)
4486    ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L);
4487    if (EL.hasAnyInfo()) return EL;
4488    break;
4489  }
4490  case ICmpInst::ICMP_EQ: {                     // while (X == Y)
4491    // Convert to: while (X-Y == 0)
4492    ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4493    if (EL.hasAnyInfo()) return EL;
4494    break;
4495  }
4496  case ICmpInst::ICMP_SLT: {
4497    ExitLimit EL = HowManyLessThans(LHS, RHS, L, true);
4498    if (EL.hasAnyInfo()) return EL;
4499    break;
4500  }
4501  case ICmpInst::ICMP_SGT: {
4502    ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
4503                                             getNotSCEV(RHS), L, true);
4504    if (EL.hasAnyInfo()) return EL;
4505    break;
4506  }
4507  case ICmpInst::ICMP_ULT: {
4508    ExitLimit EL = HowManyLessThans(LHS, RHS, L, false);
4509    if (EL.hasAnyInfo()) return EL;
4510    break;
4511  }
4512  case ICmpInst::ICMP_UGT: {
4513    ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
4514                                             getNotSCEV(RHS), L, false);
4515    if (EL.hasAnyInfo()) return EL;
4516    break;
4517  }
4518  default:
4519#if 0
4520    dbgs() << "ComputeBackedgeTakenCount ";
4521    if (ExitCond->getOperand(0)->getType()->isUnsigned())
4522      dbgs() << "[unsigned] ";
4523    dbgs() << *LHS << "   "
4524         << Instruction::getOpcodeName(Instruction::ICmp)
4525         << "   " << *RHS << "\n";
4526#endif
4527    break;
4528  }
4529  return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
4530}
4531
4532static ConstantInt *
4533EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4534                                ScalarEvolution &SE) {
4535  const SCEV *InVal = SE.getConstant(C);
4536  const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
4537  assert(isa<SCEVConstant>(Val) &&
4538         "Evaluation of SCEV at constant didn't fold correctly?");
4539  return cast<SCEVConstant>(Val)->getValue();
4540}
4541
4542/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4543/// and a GEP expression (missing the pointer index) indexing into it, return
4544/// the addressed element of the initializer or null if the index expression is
4545/// invalid.
4546static Constant *
4547GetAddressedElementFromGlobal(GlobalVariable *GV,
4548                              const std::vector<ConstantInt*> &Indices) {
4549  Constant *Init = GV->getInitializer();
4550  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
4551    uint64_t Idx = Indices[i]->getZExtValue();
4552    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4553      assert(Idx < CS->getNumOperands() && "Bad struct index!");
4554      Init = cast<Constant>(CS->getOperand(Idx));
4555    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4556      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
4557      Init = cast<Constant>(CA->getOperand(Idx));
4558    } else if (isa<ConstantAggregateZero>(Init)) {
4559      if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
4560        assert(Idx < STy->getNumElements() && "Bad struct index!");
4561        Init = Constant::getNullValue(STy->getElementType(Idx));
4562      } else if (ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4563        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
4564        Init = Constant::getNullValue(ATy->getElementType());
4565      } else {
4566        llvm_unreachable("Unknown constant aggregate type!");
4567      }
4568      return 0;
4569    } else {
4570      return 0; // Unknown initializer type
4571    }
4572  }
4573  return Init;
4574}
4575
4576/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
4577/// 'icmp op load X, cst', try to see if we can compute the backedge
4578/// execution count.
4579ScalarEvolution::ExitLimit
4580ScalarEvolution::ComputeLoadConstantCompareExitLimit(
4581  LoadInst *LI,
4582  Constant *RHS,
4583  const Loop *L,
4584  ICmpInst::Predicate predicate) {
4585
4586  if (LI->isVolatile()) return getCouldNotCompute();
4587
4588  // Check to see if the loaded pointer is a getelementptr of a global.
4589  // TODO: Use SCEV instead of manually grubbing with GEPs.
4590  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
4591  if (!GEP) return getCouldNotCompute();
4592
4593  // Make sure that it is really a constant global we are gepping, with an
4594  // initializer, and make sure the first IDX is really 0.
4595  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
4596  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
4597      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4598      !cast<Constant>(GEP->getOperand(1))->isNullValue())
4599    return getCouldNotCompute();
4600
4601  // Okay, we allow one non-constant index into the GEP instruction.
4602  Value *VarIdx = 0;
4603  std::vector<ConstantInt*> Indexes;
4604  unsigned VarIdxNum = 0;
4605  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4606    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4607      Indexes.push_back(CI);
4608    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
4609      if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
4610      VarIdx = GEP->getOperand(i);
4611      VarIdxNum = i-2;
4612      Indexes.push_back(0);
4613    }
4614
4615  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4616  // Check to see if X is a loop variant variable value now.
4617  const SCEV *Idx = getSCEV(VarIdx);
4618  Idx = getSCEVAtScope(Idx, L);
4619
4620  // We can only recognize very limited forms of loop index expressions, in
4621  // particular, only affine AddRec's like {C1,+,C2}.
4622  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
4623  if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
4624      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4625      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
4626    return getCouldNotCompute();
4627
4628  unsigned MaxSteps = MaxBruteForceIterations;
4629  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
4630    ConstantInt *ItCst = ConstantInt::get(
4631                           cast<IntegerType>(IdxExpr->getType()), IterationNum);
4632    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
4633
4634    // Form the GEP offset.
4635    Indexes[VarIdxNum] = Val;
4636
4637    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
4638    if (Result == 0) break;  // Cannot compute!
4639
4640    // Evaluate the condition for this iteration.
4641    Result = ConstantExpr::getICmp(predicate, Result, RHS);
4642    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
4643    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
4644#if 0
4645      dbgs() << "\n***\n*** Computed loop count " << *ItCst
4646             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4647             << "***\n";
4648#endif
4649      ++NumArrayLenItCounts;
4650      return getConstant(ItCst);   // Found terminating iteration!
4651    }
4652  }
4653  return getCouldNotCompute();
4654}
4655
4656
4657/// CanConstantFold - Return true if we can constant fold an instruction of the
4658/// specified type, assuming that all operands were constants.
4659static bool CanConstantFold(const Instruction *I) {
4660  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
4661      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4662    return true;
4663
4664  if (const CallInst *CI = dyn_cast<CallInst>(I))
4665    if (const Function *F = CI->getCalledFunction())
4666      return canConstantFoldCallTo(F);
4667  return false;
4668}
4669
4670/// Determine whether this instruction can constant evolve within this loop
4671/// assuming its operands can all constant evolve.
4672static bool canConstantEvolve(Instruction *I, const Loop *L) {
4673  // An instruction outside of the loop can't be derived from a loop PHI.
4674  if (!L->contains(I)) return false;
4675
4676  if (isa<PHINode>(I)) {
4677    if (L->getHeader() == I->getParent())
4678      return true;
4679    else
4680      // We don't currently keep track of the control flow needed to evaluate
4681      // PHIs, so we cannot handle PHIs inside of loops.
4682      return false;
4683  }
4684
4685  // If we won't be able to constant fold this expression even if the operands
4686  // are constants, bail early.
4687  return CanConstantFold(I);
4688}
4689
4690/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
4691/// recursing through each instruction operand until reaching a loop header phi.
4692static PHINode *
4693getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
4694                               DenseMap<Instruction *, PHINode *> &PHIMap) {
4695
4696  // Otherwise, we can evaluate this instruction if all of its operands are
4697  // constant or derived from a PHI node themselves.
4698  PHINode *PHI = 0;
4699  for (Instruction::op_iterator OpI = UseInst->op_begin(),
4700         OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
4701
4702    if (isa<Constant>(*OpI)) continue;
4703
4704    Instruction *OpInst = dyn_cast<Instruction>(*OpI);
4705    if (!OpInst || !canConstantEvolve(OpInst, L)) return 0;
4706
4707    PHINode *P = dyn_cast<PHINode>(OpInst);
4708    if (!P)
4709      // If this operand is already visited, reuse the prior result.
4710      // We may have P != PHI if this is the deepest point at which the
4711      // inconsistent paths meet.
4712      P = PHIMap.lookup(OpInst);
4713    if (!P) {
4714      // Recurse and memoize the results, whether a phi is found or not.
4715      // This recursive call invalidates pointers into PHIMap.
4716      P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
4717      PHIMap[OpInst] = P;
4718    }
4719    if (P == 0) return 0;        // Not evolving from PHI
4720    if (PHI && PHI != P) return 0;  // Evolving from multiple different PHIs.
4721    PHI = P;
4722  }
4723  // This is a expression evolving from a constant PHI!
4724  return PHI;
4725}
4726
4727/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4728/// in the loop that V is derived from.  We allow arbitrary operations along the
4729/// way, but the operands of an operation must either be constants or a value
4730/// derived from a constant PHI.  If this expression does not fit with these
4731/// constraints, return null.
4732static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4733  Instruction *I = dyn_cast<Instruction>(V);
4734  if (I == 0 || !canConstantEvolve(I, L)) return 0;
4735
4736  if (PHINode *PN = dyn_cast<PHINode>(I)) {
4737    return PN;
4738  }
4739
4740  // Record non-constant instructions contained by the loop.
4741  DenseMap<Instruction *, PHINode *> PHIMap;
4742  return getConstantEvolvingPHIOperands(I, L, PHIMap);
4743}
4744
4745/// EvaluateExpression - Given an expression that passes the
4746/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4747/// in the loop has the value PHIVal.  If we can't fold this expression for some
4748/// reason, return null.
4749static Constant *EvaluateExpression(Value *V, const Loop *L,
4750                                    DenseMap<Instruction *, Constant *> &Vals,
4751                                    const TargetData *TD) {
4752  // Convenient constant check, but redundant for recursive calls.
4753  if (Constant *C = dyn_cast<Constant>(V)) return C;
4754
4755  Instruction *I = cast<Instruction>(V);
4756  if (Constant *C = Vals.lookup(I)) return C;
4757
4758  assert(!isa<PHINode>(I) && "loop header phis should be mapped to constant");
4759  assert(canConstantEvolve(I, L) && "cannot evaluate expression in this loop");
4760  (void)L;
4761
4762  std::vector<Constant*> Operands(I->getNumOperands());
4763
4764  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4765    Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
4766    if (!Operand) {
4767      Operands[i] = dyn_cast<Constant>(I->getOperand(i));
4768      if (!Operands[i]) return 0;
4769      continue;
4770    }
4771    Constant *C = EvaluateExpression(Operand, L, Vals, TD);
4772    Vals[Operand] = C;
4773    if (!C) return 0;
4774    Operands[i] = C;
4775  }
4776
4777  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4778    return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
4779                                           Operands[1], TD);
4780  return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD);
4781}
4782
4783/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4784/// in the header of its containing loop, we know the loop executes a
4785/// constant number of times, and the PHI node is just a recurrence
4786/// involving constants, fold it.
4787Constant *
4788ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
4789                                                   const APInt &BEs,
4790                                                   const Loop *L) {
4791  DenseMap<PHINode*, Constant*>::const_iterator I =
4792    ConstantEvolutionLoopExitValue.find(PN);
4793  if (I != ConstantEvolutionLoopExitValue.end())
4794    return I->second;
4795
4796  if (BEs.ugt(MaxBruteForceIterations))
4797    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
4798
4799  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4800
4801  // FIXME: Nick's fix for PR11034 will seed constants for multiple header phis.
4802  DenseMap<Instruction *, Constant *> CurrentIterVals;
4803
4804  // Since the loop is canonicalized, the PHI node must have two entries.  One
4805  // entry must be a constant (coming in from outside of the loop), and the
4806  // second must be derived from the same PHI.
4807  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4808  Constant *StartCST =
4809    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4810  if (StartCST == 0)
4811    return RetVal = 0;  // Must be a constant.
4812  CurrentIterVals[PN] = StartCST;
4813
4814  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4815  if (getConstantEvolvingPHI(BEValue, L) != PN &&
4816      !isa<Constant>(BEValue))
4817    return RetVal = 0;  // Not derived from same PHI.
4818
4819  // Execute the loop symbolically to determine the exit value.
4820  if (BEs.getActiveBits() >= 32)
4821    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
4822
4823  unsigned NumIterations = BEs.getZExtValue(); // must be in range
4824  unsigned IterationNum = 0;
4825  for (; ; ++IterationNum) {
4826    if (IterationNum == NumIterations)
4827      return RetVal = CurrentIterVals[PN];  // Got exit value!
4828
4829    // Compute the value of the PHI node for the next iteration.
4830    // EvaluateExpression adds non-phi values to the CurrentIterVals map.
4831    Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD);
4832    if (NextPHI == CurrentIterVals[PN])
4833      return RetVal = NextPHI;  // Stopped evolving!
4834    if (NextPHI == 0)
4835      return 0;        // Couldn't evaluate!
4836    DenseMap<Instruction *, Constant *> NextIterVals;
4837    NextIterVals[PN] = NextPHI;
4838    CurrentIterVals.swap(NextIterVals);
4839  }
4840}
4841
4842/// ComputeExitCountExhaustively - If the loop is known to execute a
4843/// constant number of times (the condition evolves only from constants),
4844/// try to evaluate a few iterations of the loop until we get the exit
4845/// condition gets a value of ExitWhen (true or false).  If we cannot
4846/// evaluate the trip count of the loop, return getCouldNotCompute().
4847const SCEV * ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
4848                                                           Value *Cond,
4849                                                           bool ExitWhen) {
4850  PHINode *PN = getConstantEvolvingPHI(Cond, L);
4851  if (PN == 0) return getCouldNotCompute();
4852
4853  // If the loop is canonicalized, the PHI will have exactly two entries.
4854  // That's the only form we support here.
4855  if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4856
4857  // One entry must be a constant (coming in from outside of the loop), and the
4858  // second must be derived from the same PHI.
4859  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4860  Constant *StartCST =
4861    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4862  if (StartCST == 0) return getCouldNotCompute();  // Must be a constant.
4863
4864  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4865  if (getConstantEvolvingPHI(BEValue, L) != PN &&
4866      !isa<Constant>(BEValue))
4867    return getCouldNotCompute();  // Not derived from same PHI.
4868
4869  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
4870  // the loop symbolically to determine when the condition gets a value of
4871  // "ExitWhen".
4872  unsigned IterationNum = 0;
4873  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
4874  for (Constant *PHIVal = StartCST;
4875       IterationNum != MaxIterations; ++IterationNum) {
4876    DenseMap<Instruction *, Constant *> PHIValMap;
4877    PHIValMap[PN] = PHIVal;
4878    ConstantInt *CondVal =
4879      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, PHIValMap, TD));
4880
4881    // Couldn't symbolically evaluate.
4882    if (!CondVal) return getCouldNotCompute();
4883
4884    if (CondVal->getValue() == uint64_t(ExitWhen)) {
4885      ++NumBruteForceTripCountsComputed;
4886      return getConstant(Type::getInt32Ty(getContext()), IterationNum);
4887    }
4888
4889    // Compute the value of the PHI node for the next iteration.
4890    Constant *NextPHI = EvaluateExpression(BEValue, L, PHIValMap, TD);
4891    if (NextPHI == 0 || NextPHI == PHIVal)
4892      return getCouldNotCompute();// Couldn't evaluate or not making progress...
4893    PHIVal = NextPHI;
4894  }
4895
4896  // Too many iterations were needed to evaluate.
4897  return getCouldNotCompute();
4898}
4899
4900/// getSCEVAtScope - Return a SCEV expression for the specified value
4901/// at the specified scope in the program.  The L value specifies a loop
4902/// nest to evaluate the expression at, where null is the top-level or a
4903/// specified loop is immediately inside of the loop.
4904///
4905/// This method can be used to compute the exit value for a variable defined
4906/// in a loop by querying what the value will hold in the parent loop.
4907///
4908/// In the case that a relevant loop exit value cannot be computed, the
4909/// original value V is returned.
4910const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
4911  // Check to see if we've folded this expression at this loop before.
4912  std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4913  std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4914    Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4915  if (!Pair.second)
4916    return Pair.first->second ? Pair.first->second : V;
4917
4918  // Otherwise compute it.
4919  const SCEV *C = computeSCEVAtScope(V, L);
4920  ValuesAtScopes[V][L] = C;
4921  return C;
4922}
4923
4924const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
4925  if (isa<SCEVConstant>(V)) return V;
4926
4927  // If this instruction is evolved from a constant-evolving PHI, compute the
4928  // exit value from the loop without using SCEVs.
4929  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
4930    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
4931      const Loop *LI = (*this->LI)[I->getParent()];
4932      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
4933        if (PHINode *PN = dyn_cast<PHINode>(I))
4934          if (PN->getParent() == LI->getHeader()) {
4935            // Okay, there is no closed form solution for the PHI node.  Check
4936            // to see if the loop that contains it has a known backedge-taken
4937            // count.  If so, we may be able to force computation of the exit
4938            // value.
4939            const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
4940            if (const SCEVConstant *BTCC =
4941                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
4942              // Okay, we know how many times the containing loop executes.  If
4943              // this is a constant evolving PHI node, get the final value at
4944              // the specified iteration number.
4945              Constant *RV = getConstantEvolutionLoopExitValue(PN,
4946                                                   BTCC->getValue()->getValue(),
4947                                                               LI);
4948              if (RV) return getSCEV(RV);
4949            }
4950          }
4951
4952      // Okay, this is an expression that we cannot symbolically evaluate
4953      // into a SCEV.  Check to see if it's possible to symbolically evaluate
4954      // the arguments into constants, and if so, try to constant propagate the
4955      // result.  This is particularly useful for computing loop exit values.
4956      if (CanConstantFold(I)) {
4957        SmallVector<Constant *, 4> Operands;
4958        bool MadeImprovement = false;
4959        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4960          Value *Op = I->getOperand(i);
4961          if (Constant *C = dyn_cast<Constant>(Op)) {
4962            Operands.push_back(C);
4963            continue;
4964          }
4965
4966          // If any of the operands is non-constant and if they are
4967          // non-integer and non-pointer, don't even try to analyze them
4968          // with scev techniques.
4969          if (!isSCEVable(Op->getType()))
4970            return V;
4971
4972          const SCEV *OrigV = getSCEV(Op);
4973          const SCEV *OpV = getSCEVAtScope(OrigV, L);
4974          MadeImprovement |= OrigV != OpV;
4975
4976          Constant *C = 0;
4977          if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4978            C = SC->getValue();
4979          if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4980            C = dyn_cast<Constant>(SU->getValue());
4981          if (!C) return V;
4982          if (C->getType() != Op->getType())
4983            C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4984                                                              Op->getType(),
4985                                                              false),
4986                                      C, Op->getType());
4987          Operands.push_back(C);
4988        }
4989
4990        // Check to see if getSCEVAtScope actually made an improvement.
4991        if (MadeImprovement) {
4992          Constant *C = 0;
4993          if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4994            C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4995                                                Operands[0], Operands[1], TD);
4996          else
4997            C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4998                                         Operands, TD);
4999          if (!C) return V;
5000          return getSCEV(C);
5001        }
5002      }
5003    }
5004
5005    // This is some other type of SCEVUnknown, just return it.
5006    return V;
5007  }
5008
5009  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
5010    // Avoid performing the look-up in the common case where the specified
5011    // expression has no loop-variant portions.
5012    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
5013      const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
5014      if (OpAtScope != Comm->getOperand(i)) {
5015        // Okay, at least one of these operands is loop variant but might be
5016        // foldable.  Build a new instance of the folded commutative expression.
5017        SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5018                                            Comm->op_begin()+i);
5019        NewOps.push_back(OpAtScope);
5020
5021        for (++i; i != e; ++i) {
5022          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
5023          NewOps.push_back(OpAtScope);
5024        }
5025        if (isa<SCEVAddExpr>(Comm))
5026          return getAddExpr(NewOps);
5027        if (isa<SCEVMulExpr>(Comm))
5028          return getMulExpr(NewOps);
5029        if (isa<SCEVSMaxExpr>(Comm))
5030          return getSMaxExpr(NewOps);
5031        if (isa<SCEVUMaxExpr>(Comm))
5032          return getUMaxExpr(NewOps);
5033        llvm_unreachable("Unknown commutative SCEV type!");
5034      }
5035    }
5036    // If we got here, all operands are loop invariant.
5037    return Comm;
5038  }
5039
5040  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
5041    const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5042    const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
5043    if (LHS == Div->getLHS() && RHS == Div->getRHS())
5044      return Div;   // must be loop invariant
5045    return getUDivExpr(LHS, RHS);
5046  }
5047
5048  // If this is a loop recurrence for a loop that does not contain L, then we
5049  // are dealing with the final value computed by the loop.
5050  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
5051    // First, attempt to evaluate each operand.
5052    // Avoid performing the look-up in the common case where the specified
5053    // expression has no loop-variant portions.
5054    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5055      const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5056      if (OpAtScope == AddRec->getOperand(i))
5057        continue;
5058
5059      // Okay, at least one of these operands is loop variant but might be
5060      // foldable.  Build a new instance of the folded commutative expression.
5061      SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5062                                          AddRec->op_begin()+i);
5063      NewOps.push_back(OpAtScope);
5064      for (++i; i != e; ++i)
5065        NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5066
5067      const SCEV *FoldedRec =
5068        getAddRecExpr(NewOps, AddRec->getLoop(),
5069                      AddRec->getNoWrapFlags(SCEV::FlagNW));
5070      AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
5071      // The addrec may be folded to a nonrecurrence, for example, if the
5072      // induction variable is multiplied by zero after constant folding. Go
5073      // ahead and return the folded value.
5074      if (!AddRec)
5075        return FoldedRec;
5076      break;
5077    }
5078
5079    // If the scope is outside the addrec's loop, evaluate it by using the
5080    // loop exit value of the addrec.
5081    if (!AddRec->getLoop()->contains(L)) {
5082      // To evaluate this recurrence, we need to know how many times the AddRec
5083      // loop iterates.  Compute this now.
5084      const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
5085      if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
5086
5087      // Then, evaluate the AddRec.
5088      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
5089    }
5090
5091    return AddRec;
5092  }
5093
5094  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
5095    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5096    if (Op == Cast->getOperand())
5097      return Cast;  // must be loop invariant
5098    return getZeroExtendExpr(Op, Cast->getType());
5099  }
5100
5101  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
5102    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5103    if (Op == Cast->getOperand())
5104      return Cast;  // must be loop invariant
5105    return getSignExtendExpr(Op, Cast->getType());
5106  }
5107
5108  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
5109    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5110    if (Op == Cast->getOperand())
5111      return Cast;  // must be loop invariant
5112    return getTruncateExpr(Op, Cast->getType());
5113  }
5114
5115  llvm_unreachable("Unknown SCEV type!");
5116  return 0;
5117}
5118
5119/// getSCEVAtScope - This is a convenience function which does
5120/// getSCEVAtScope(getSCEV(V), L).
5121const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
5122  return getSCEVAtScope(getSCEV(V), L);
5123}
5124
5125/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5126/// following equation:
5127///
5128///     A * X = B (mod N)
5129///
5130/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5131/// A and B isn't important.
5132///
5133/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
5134static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
5135                                               ScalarEvolution &SE) {
5136  uint32_t BW = A.getBitWidth();
5137  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5138  assert(A != 0 && "A must be non-zero.");
5139
5140  // 1. D = gcd(A, N)
5141  //
5142  // The gcd of A and N may have only one prime factor: 2. The number of
5143  // trailing zeros in A is its multiplicity
5144  uint32_t Mult2 = A.countTrailingZeros();
5145  // D = 2^Mult2
5146
5147  // 2. Check if B is divisible by D.
5148  //
5149  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5150  // is not less than multiplicity of this prime factor for D.
5151  if (B.countTrailingZeros() < Mult2)
5152    return SE.getCouldNotCompute();
5153
5154  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5155  // modulo (N / D).
5156  //
5157  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
5158  // bit width during computations.
5159  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
5160  APInt Mod(BW + 1, 0);
5161  Mod.setBit(BW - Mult2);  // Mod = N / D
5162  APInt I = AD.multiplicativeInverse(Mod);
5163
5164  // 4. Compute the minimum unsigned root of the equation:
5165  // I * (B / D) mod (N / D)
5166  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5167
5168  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5169  // bits.
5170  return SE.getConstant(Result.trunc(BW));
5171}
5172
5173/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5174/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
5175/// might be the same) or two SCEVCouldNotCompute objects.
5176///
5177static std::pair<const SCEV *,const SCEV *>
5178SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
5179  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
5180  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5181  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5182  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
5183
5184  // We currently can only solve this if the coefficients are constants.
5185  if (!LC || !MC || !NC) {
5186    const SCEV *CNC = SE.getCouldNotCompute();
5187    return std::make_pair(CNC, CNC);
5188  }
5189
5190  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
5191  const APInt &L = LC->getValue()->getValue();
5192  const APInt &M = MC->getValue()->getValue();
5193  const APInt &N = NC->getValue()->getValue();
5194  APInt Two(BitWidth, 2);
5195  APInt Four(BitWidth, 4);
5196
5197  {
5198    using namespace APIntOps;
5199    const APInt& C = L;
5200    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5201    // The B coefficient is M-N/2
5202    APInt B(M);
5203    B -= sdiv(N,Two);
5204
5205    // The A coefficient is N/2
5206    APInt A(N.sdiv(Two));
5207
5208    // Compute the B^2-4ac term.
5209    APInt SqrtTerm(B);
5210    SqrtTerm *= B;
5211    SqrtTerm -= Four * (A * C);
5212
5213    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5214    // integer value or else APInt::sqrt() will assert.
5215    APInt SqrtVal(SqrtTerm.sqrt());
5216
5217    // Compute the two solutions for the quadratic formula.
5218    // The divisions must be performed as signed divisions.
5219    APInt NegB(-B);
5220    APInt TwoA(A << 1);
5221    if (TwoA.isMinValue()) {
5222      const SCEV *CNC = SE.getCouldNotCompute();
5223      return std::make_pair(CNC, CNC);
5224    }
5225
5226    LLVMContext &Context = SE.getContext();
5227
5228    ConstantInt *Solution1 =
5229      ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
5230    ConstantInt *Solution2 =
5231      ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
5232
5233    return std::make_pair(SE.getConstant(Solution1),
5234                          SE.getConstant(Solution2));
5235  } // end APIntOps namespace
5236}
5237
5238/// HowFarToZero - Return the number of times a backedge comparing the specified
5239/// value to zero will execute.  If not computable, return CouldNotCompute.
5240///
5241/// This is only used for loops with a "x != y" exit test. The exit condition is
5242/// now expressed as a single expression, V = x-y. So the exit test is
5243/// effectively V != 0.  We know and take advantage of the fact that this
5244/// expression only being used in a comparison by zero context.
5245ScalarEvolution::ExitLimit
5246ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
5247  // If the value is a constant
5248  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
5249    // If the value is already zero, the branch will execute zero times.
5250    if (C->getValue()->isZero()) return C;
5251    return getCouldNotCompute();  // Otherwise it will loop infinitely.
5252  }
5253
5254  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
5255  if (!AddRec || AddRec->getLoop() != L)
5256    return getCouldNotCompute();
5257
5258  // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
5259  // the quadratic equation to solve it.
5260  if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
5261    std::pair<const SCEV *,const SCEV *> Roots =
5262      SolveQuadraticEquation(AddRec, *this);
5263    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5264    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
5265    if (R1 && R2) {
5266#if 0
5267      dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
5268             << "  sol#2: " << *R2 << "\n";
5269#endif
5270      // Pick the smallest positive root value.
5271      if (ConstantInt *CB =
5272          dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
5273                                                      R1->getValue(),
5274                                                      R2->getValue()))) {
5275        if (CB->getZExtValue() == false)
5276          std::swap(R1, R2);   // R1 is the minimum root now.
5277
5278        // We can only use this value if the chrec ends up with an exact zero
5279        // value at this index.  When solving for "X*X != 5", for example, we
5280        // should not accept a root of 2.
5281        const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
5282        if (Val->isZero())
5283          return R1;  // We found a quadratic root!
5284      }
5285    }
5286    return getCouldNotCompute();
5287  }
5288
5289  // Otherwise we can only handle this if it is affine.
5290  if (!AddRec->isAffine())
5291    return getCouldNotCompute();
5292
5293  // If this is an affine expression, the execution count of this branch is
5294  // the minimum unsigned root of the following equation:
5295  //
5296  //     Start + Step*N = 0 (mod 2^BW)
5297  //
5298  // equivalent to:
5299  //
5300  //             Step*N = -Start (mod 2^BW)
5301  //
5302  // where BW is the common bit width of Start and Step.
5303
5304  // Get the initial value for the loop.
5305  const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
5306  const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
5307
5308  // For now we handle only constant steps.
5309  //
5310  // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
5311  // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
5312  // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
5313  // We have not yet seen any such cases.
5314  const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
5315  if (StepC == 0)
5316    return getCouldNotCompute();
5317
5318  // For positive steps (counting up until unsigned overflow):
5319  //   N = -Start/Step (as unsigned)
5320  // For negative steps (counting down to zero):
5321  //   N = Start/-Step
5322  // First compute the unsigned distance from zero in the direction of Step.
5323  bool CountDown = StepC->getValue()->getValue().isNegative();
5324  const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
5325
5326  // Handle unitary steps, which cannot wraparound.
5327  // 1*N = -Start; -1*N = Start (mod 2^BW), so:
5328  //   N = Distance (as unsigned)
5329  if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
5330    ConstantRange CR = getUnsignedRange(Start);
5331    const SCEV *MaxBECount;
5332    if (!CountDown && CR.getUnsignedMin().isMinValue())
5333      // When counting up, the worst starting value is 1, not 0.
5334      MaxBECount = CR.getUnsignedMax().isMinValue()
5335        ? getConstant(APInt::getMinValue(CR.getBitWidth()))
5336        : getConstant(APInt::getMaxValue(CR.getBitWidth()));
5337    else
5338      MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
5339                                         : -CR.getUnsignedMin());
5340    return ExitLimit(Distance, MaxBECount);
5341  }
5342
5343  // If the recurrence is known not to wraparound, unsigned divide computes the
5344  // back edge count. We know that the value will either become zero (and thus
5345  // the loop terminates), that the loop will terminate through some other exit
5346  // condition first, or that the loop has undefined behavior.  This means
5347  // we can't "miss" the exit value, even with nonunit stride.
5348  //
5349  // FIXME: Prove that loops always exhibits *acceptable* undefined
5350  // behavior. Loops must exhibit defined behavior until a wrapped value is
5351  // actually used. So the trip count computed by udiv could be smaller than the
5352  // number of well-defined iterations.
5353  if (AddRec->getNoWrapFlags(SCEV::FlagNW))
5354    // FIXME: We really want an "isexact" bit for udiv.
5355    return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
5356
5357  // Then, try to solve the above equation provided that Start is constant.
5358  if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
5359    return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
5360                                        -StartC->getValue()->getValue(),
5361                                        *this);
5362  return getCouldNotCompute();
5363}
5364
5365/// HowFarToNonZero - Return the number of times a backedge checking the
5366/// specified value for nonzero will execute.  If not computable, return
5367/// CouldNotCompute
5368ScalarEvolution::ExitLimit
5369ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
5370  // Loops that look like: while (X == 0) are very strange indeed.  We don't
5371  // handle them yet except for the trivial case.  This could be expanded in the
5372  // future as needed.
5373
5374  // If the value is a constant, check to see if it is known to be non-zero
5375  // already.  If so, the backedge will execute zero times.
5376  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
5377    if (!C->getValue()->isNullValue())
5378      return getConstant(C->getType(), 0);
5379    return getCouldNotCompute();  // Otherwise it will loop infinitely.
5380  }
5381
5382  // We could implement others, but I really doubt anyone writes loops like
5383  // this, and if they did, they would already be constant folded.
5384  return getCouldNotCompute();
5385}
5386
5387/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
5388/// (which may not be an immediate predecessor) which has exactly one
5389/// successor from which BB is reachable, or null if no such block is
5390/// found.
5391///
5392std::pair<BasicBlock *, BasicBlock *>
5393ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
5394  // If the block has a unique predecessor, then there is no path from the
5395  // predecessor to the block that does not go through the direct edge
5396  // from the predecessor to the block.
5397  if (BasicBlock *Pred = BB->getSinglePredecessor())
5398    return std::make_pair(Pred, BB);
5399
5400  // A loop's header is defined to be a block that dominates the loop.
5401  // If the header has a unique predecessor outside the loop, it must be
5402  // a block that has exactly one successor that can reach the loop.
5403  if (Loop *L = LI->getLoopFor(BB))
5404    return std::make_pair(L->getLoopPredecessor(), L->getHeader());
5405
5406  return std::pair<BasicBlock *, BasicBlock *>();
5407}
5408
5409/// HasSameValue - SCEV structural equivalence is usually sufficient for
5410/// testing whether two expressions are equal, however for the purposes of
5411/// looking for a condition guarding a loop, it can be useful to be a little
5412/// more general, since a front-end may have replicated the controlling
5413/// expression.
5414///
5415static bool HasSameValue(const SCEV *A, const SCEV *B) {
5416  // Quick check to see if they are the same SCEV.
5417  if (A == B) return true;
5418
5419  // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5420  // two different instructions with the same value. Check for this case.
5421  if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5422    if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5423      if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5424        if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
5425          if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
5426            return true;
5427
5428  // Otherwise assume they may have a different value.
5429  return false;
5430}
5431
5432/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
5433/// predicate Pred. Return true iff any changes were made.
5434///
5435bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
5436                                           const SCEV *&LHS, const SCEV *&RHS) {
5437  bool Changed = false;
5438
5439  // Canonicalize a constant to the right side.
5440  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5441    // Check for both operands constant.
5442    if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5443      if (ConstantExpr::getICmp(Pred,
5444                                LHSC->getValue(),
5445                                RHSC->getValue())->isNullValue())
5446        goto trivially_false;
5447      else
5448        goto trivially_true;
5449    }
5450    // Otherwise swap the operands to put the constant on the right.
5451    std::swap(LHS, RHS);
5452    Pred = ICmpInst::getSwappedPredicate(Pred);
5453    Changed = true;
5454  }
5455
5456  // If we're comparing an addrec with a value which is loop-invariant in the
5457  // addrec's loop, put the addrec on the left. Also make a dominance check,
5458  // as both operands could be addrecs loop-invariant in each other's loop.
5459  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5460    const Loop *L = AR->getLoop();
5461    if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
5462      std::swap(LHS, RHS);
5463      Pred = ICmpInst::getSwappedPredicate(Pred);
5464      Changed = true;
5465    }
5466  }
5467
5468  // If there's a constant operand, canonicalize comparisons with boundary
5469  // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5470  if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5471    const APInt &RA = RC->getValue()->getValue();
5472    switch (Pred) {
5473    default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5474    case ICmpInst::ICMP_EQ:
5475    case ICmpInst::ICMP_NE:
5476      break;
5477    case ICmpInst::ICMP_UGE:
5478      if ((RA - 1).isMinValue()) {
5479        Pred = ICmpInst::ICMP_NE;
5480        RHS = getConstant(RA - 1);
5481        Changed = true;
5482        break;
5483      }
5484      if (RA.isMaxValue()) {
5485        Pred = ICmpInst::ICMP_EQ;
5486        Changed = true;
5487        break;
5488      }
5489      if (RA.isMinValue()) goto trivially_true;
5490
5491      Pred = ICmpInst::ICMP_UGT;
5492      RHS = getConstant(RA - 1);
5493      Changed = true;
5494      break;
5495    case ICmpInst::ICMP_ULE:
5496      if ((RA + 1).isMaxValue()) {
5497        Pred = ICmpInst::ICMP_NE;
5498        RHS = getConstant(RA + 1);
5499        Changed = true;
5500        break;
5501      }
5502      if (RA.isMinValue()) {
5503        Pred = ICmpInst::ICMP_EQ;
5504        Changed = true;
5505        break;
5506      }
5507      if (RA.isMaxValue()) goto trivially_true;
5508
5509      Pred = ICmpInst::ICMP_ULT;
5510      RHS = getConstant(RA + 1);
5511      Changed = true;
5512      break;
5513    case ICmpInst::ICMP_SGE:
5514      if ((RA - 1).isMinSignedValue()) {
5515        Pred = ICmpInst::ICMP_NE;
5516        RHS = getConstant(RA - 1);
5517        Changed = true;
5518        break;
5519      }
5520      if (RA.isMaxSignedValue()) {
5521        Pred = ICmpInst::ICMP_EQ;
5522        Changed = true;
5523        break;
5524      }
5525      if (RA.isMinSignedValue()) goto trivially_true;
5526
5527      Pred = ICmpInst::ICMP_SGT;
5528      RHS = getConstant(RA - 1);
5529      Changed = true;
5530      break;
5531    case ICmpInst::ICMP_SLE:
5532      if ((RA + 1).isMaxSignedValue()) {
5533        Pred = ICmpInst::ICMP_NE;
5534        RHS = getConstant(RA + 1);
5535        Changed = true;
5536        break;
5537      }
5538      if (RA.isMinSignedValue()) {
5539        Pred = ICmpInst::ICMP_EQ;
5540        Changed = true;
5541        break;
5542      }
5543      if (RA.isMaxSignedValue()) goto trivially_true;
5544
5545      Pred = ICmpInst::ICMP_SLT;
5546      RHS = getConstant(RA + 1);
5547      Changed = true;
5548      break;
5549    case ICmpInst::ICMP_UGT:
5550      if (RA.isMinValue()) {
5551        Pred = ICmpInst::ICMP_NE;
5552        Changed = true;
5553        break;
5554      }
5555      if ((RA + 1).isMaxValue()) {
5556        Pred = ICmpInst::ICMP_EQ;
5557        RHS = getConstant(RA + 1);
5558        Changed = true;
5559        break;
5560      }
5561      if (RA.isMaxValue()) goto trivially_false;
5562      break;
5563    case ICmpInst::ICMP_ULT:
5564      if (RA.isMaxValue()) {
5565        Pred = ICmpInst::ICMP_NE;
5566        Changed = true;
5567        break;
5568      }
5569      if ((RA - 1).isMinValue()) {
5570        Pred = ICmpInst::ICMP_EQ;
5571        RHS = getConstant(RA - 1);
5572        Changed = true;
5573        break;
5574      }
5575      if (RA.isMinValue()) goto trivially_false;
5576      break;
5577    case ICmpInst::ICMP_SGT:
5578      if (RA.isMinSignedValue()) {
5579        Pred = ICmpInst::ICMP_NE;
5580        Changed = true;
5581        break;
5582      }
5583      if ((RA + 1).isMaxSignedValue()) {
5584        Pred = ICmpInst::ICMP_EQ;
5585        RHS = getConstant(RA + 1);
5586        Changed = true;
5587        break;
5588      }
5589      if (RA.isMaxSignedValue()) goto trivially_false;
5590      break;
5591    case ICmpInst::ICMP_SLT:
5592      if (RA.isMaxSignedValue()) {
5593        Pred = ICmpInst::ICMP_NE;
5594        Changed = true;
5595        break;
5596      }
5597      if ((RA - 1).isMinSignedValue()) {
5598       Pred = ICmpInst::ICMP_EQ;
5599       RHS = getConstant(RA - 1);
5600        Changed = true;
5601       break;
5602      }
5603      if (RA.isMinSignedValue()) goto trivially_false;
5604      break;
5605    }
5606  }
5607
5608  // Check for obvious equality.
5609  if (HasSameValue(LHS, RHS)) {
5610    if (ICmpInst::isTrueWhenEqual(Pred))
5611      goto trivially_true;
5612    if (ICmpInst::isFalseWhenEqual(Pred))
5613      goto trivially_false;
5614  }
5615
5616  // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5617  // adding or subtracting 1 from one of the operands.
5618  switch (Pred) {
5619  case ICmpInst::ICMP_SLE:
5620    if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5621      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5622                       SCEV::FlagNSW);
5623      Pred = ICmpInst::ICMP_SLT;
5624      Changed = true;
5625    } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
5626      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5627                       SCEV::FlagNSW);
5628      Pred = ICmpInst::ICMP_SLT;
5629      Changed = true;
5630    }
5631    break;
5632  case ICmpInst::ICMP_SGE:
5633    if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
5634      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5635                       SCEV::FlagNSW);
5636      Pred = ICmpInst::ICMP_SGT;
5637      Changed = true;
5638    } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5639      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5640                       SCEV::FlagNSW);
5641      Pred = ICmpInst::ICMP_SGT;
5642      Changed = true;
5643    }
5644    break;
5645  case ICmpInst::ICMP_ULE:
5646    if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
5647      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5648                       SCEV::FlagNUW);
5649      Pred = ICmpInst::ICMP_ULT;
5650      Changed = true;
5651    } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
5652      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5653                       SCEV::FlagNUW);
5654      Pred = ICmpInst::ICMP_ULT;
5655      Changed = true;
5656    }
5657    break;
5658  case ICmpInst::ICMP_UGE:
5659    if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
5660      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5661                       SCEV::FlagNUW);
5662      Pred = ICmpInst::ICMP_UGT;
5663      Changed = true;
5664    } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
5665      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5666                       SCEV::FlagNUW);
5667      Pred = ICmpInst::ICMP_UGT;
5668      Changed = true;
5669    }
5670    break;
5671  default:
5672    break;
5673  }
5674
5675  // TODO: More simplifications are possible here.
5676
5677  return Changed;
5678
5679trivially_true:
5680  // Return 0 == 0.
5681  LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
5682  Pred = ICmpInst::ICMP_EQ;
5683  return true;
5684
5685trivially_false:
5686  // Return 0 != 0.
5687  LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
5688  Pred = ICmpInst::ICMP_NE;
5689  return true;
5690}
5691
5692bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5693  return getSignedRange(S).getSignedMax().isNegative();
5694}
5695
5696bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5697  return getSignedRange(S).getSignedMin().isStrictlyPositive();
5698}
5699
5700bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5701  return !getSignedRange(S).getSignedMin().isNegative();
5702}
5703
5704bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5705  return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5706}
5707
5708bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5709  return isKnownNegative(S) || isKnownPositive(S);
5710}
5711
5712bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5713                                       const SCEV *LHS, const SCEV *RHS) {
5714  // Canonicalize the inputs first.
5715  (void)SimplifyICmpOperands(Pred, LHS, RHS);
5716
5717  // If LHS or RHS is an addrec, check to see if the condition is true in
5718  // every iteration of the loop.
5719  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5720    if (isLoopEntryGuardedByCond(
5721          AR->getLoop(), Pred, AR->getStart(), RHS) &&
5722        isLoopBackedgeGuardedByCond(
5723          AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
5724      return true;
5725  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5726    if (isLoopEntryGuardedByCond(
5727          AR->getLoop(), Pred, LHS, AR->getStart()) &&
5728        isLoopBackedgeGuardedByCond(
5729          AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
5730      return true;
5731
5732  // Otherwise see what can be done with known constant ranges.
5733  return isKnownPredicateWithRanges(Pred, LHS, RHS);
5734}
5735
5736bool
5737ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5738                                            const SCEV *LHS, const SCEV *RHS) {
5739  if (HasSameValue(LHS, RHS))
5740    return ICmpInst::isTrueWhenEqual(Pred);
5741
5742  // This code is split out from isKnownPredicate because it is called from
5743  // within isLoopEntryGuardedByCond.
5744  switch (Pred) {
5745  default:
5746    llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5747    break;
5748  case ICmpInst::ICMP_SGT:
5749    Pred = ICmpInst::ICMP_SLT;
5750    std::swap(LHS, RHS);
5751  case ICmpInst::ICMP_SLT: {
5752    ConstantRange LHSRange = getSignedRange(LHS);
5753    ConstantRange RHSRange = getSignedRange(RHS);
5754    if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5755      return true;
5756    if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5757      return false;
5758    break;
5759  }
5760  case ICmpInst::ICMP_SGE:
5761    Pred = ICmpInst::ICMP_SLE;
5762    std::swap(LHS, RHS);
5763  case ICmpInst::ICMP_SLE: {
5764    ConstantRange LHSRange = getSignedRange(LHS);
5765    ConstantRange RHSRange = getSignedRange(RHS);
5766    if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5767      return true;
5768    if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5769      return false;
5770    break;
5771  }
5772  case ICmpInst::ICMP_UGT:
5773    Pred = ICmpInst::ICMP_ULT;
5774    std::swap(LHS, RHS);
5775  case ICmpInst::ICMP_ULT: {
5776    ConstantRange LHSRange = getUnsignedRange(LHS);
5777    ConstantRange RHSRange = getUnsignedRange(RHS);
5778    if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5779      return true;
5780    if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5781      return false;
5782    break;
5783  }
5784  case ICmpInst::ICMP_UGE:
5785    Pred = ICmpInst::ICMP_ULE;
5786    std::swap(LHS, RHS);
5787  case ICmpInst::ICMP_ULE: {
5788    ConstantRange LHSRange = getUnsignedRange(LHS);
5789    ConstantRange RHSRange = getUnsignedRange(RHS);
5790    if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5791      return true;
5792    if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5793      return false;
5794    break;
5795  }
5796  case ICmpInst::ICMP_NE: {
5797    if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5798      return true;
5799    if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5800      return true;
5801
5802    const SCEV *Diff = getMinusSCEV(LHS, RHS);
5803    if (isKnownNonZero(Diff))
5804      return true;
5805    break;
5806  }
5807  case ICmpInst::ICMP_EQ:
5808    // The check at the top of the function catches the case where
5809    // the values are known to be equal.
5810    break;
5811  }
5812  return false;
5813}
5814
5815/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5816/// protected by a conditional between LHS and RHS.  This is used to
5817/// to eliminate casts.
5818bool
5819ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5820                                             ICmpInst::Predicate Pred,
5821                                             const SCEV *LHS, const SCEV *RHS) {
5822  // Interpret a null as meaning no loop, where there is obviously no guard
5823  // (interprocedural conditions notwithstanding).
5824  if (!L) return true;
5825
5826  BasicBlock *Latch = L->getLoopLatch();
5827  if (!Latch)
5828    return false;
5829
5830  BranchInst *LoopContinuePredicate =
5831    dyn_cast<BranchInst>(Latch->getTerminator());
5832  if (!LoopContinuePredicate ||
5833      LoopContinuePredicate->isUnconditional())
5834    return false;
5835
5836  return isImpliedCond(Pred, LHS, RHS,
5837                       LoopContinuePredicate->getCondition(),
5838                       LoopContinuePredicate->getSuccessor(0) != L->getHeader());
5839}
5840
5841/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
5842/// by a conditional between LHS and RHS.  This is used to help avoid max
5843/// expressions in loop trip counts, and to eliminate casts.
5844bool
5845ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5846                                          ICmpInst::Predicate Pred,
5847                                          const SCEV *LHS, const SCEV *RHS) {
5848  // Interpret a null as meaning no loop, where there is obviously no guard
5849  // (interprocedural conditions notwithstanding).
5850  if (!L) return false;
5851
5852  // Starting at the loop predecessor, climb up the predecessor chain, as long
5853  // as there are predecessors that can be found that have unique successors
5854  // leading to the original header.
5855  for (std::pair<BasicBlock *, BasicBlock *>
5856         Pair(L->getLoopPredecessor(), L->getHeader());
5857       Pair.first;
5858       Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
5859
5860    BranchInst *LoopEntryPredicate =
5861      dyn_cast<BranchInst>(Pair.first->getTerminator());
5862    if (!LoopEntryPredicate ||
5863        LoopEntryPredicate->isUnconditional())
5864      continue;
5865
5866    if (isImpliedCond(Pred, LHS, RHS,
5867                      LoopEntryPredicate->getCondition(),
5868                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
5869      return true;
5870  }
5871
5872  return false;
5873}
5874
5875/// isImpliedCond - Test whether the condition described by Pred, LHS,
5876/// and RHS is true whenever the given Cond value evaluates to true.
5877bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
5878                                    const SCEV *LHS, const SCEV *RHS,
5879                                    Value *FoundCondValue,
5880                                    bool Inverse) {
5881  // Recursively handle And and Or conditions.
5882  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
5883    if (BO->getOpcode() == Instruction::And) {
5884      if (!Inverse)
5885        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5886               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
5887    } else if (BO->getOpcode() == Instruction::Or) {
5888      if (Inverse)
5889        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5890               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
5891    }
5892  }
5893
5894  ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
5895  if (!ICI) return false;
5896
5897  // Bail if the ICmp's operands' types are wider than the needed type
5898  // before attempting to call getSCEV on them. This avoids infinite
5899  // recursion, since the analysis of widening casts can require loop
5900  // exit condition information for overflow checking, which would
5901  // lead back here.
5902  if (getTypeSizeInBits(LHS->getType()) <
5903      getTypeSizeInBits(ICI->getOperand(0)->getType()))
5904    return false;
5905
5906  // Now that we found a conditional branch that dominates the loop, check to
5907  // see if it is the comparison we are looking for.
5908  ICmpInst::Predicate FoundPred;
5909  if (Inverse)
5910    FoundPred = ICI->getInversePredicate();
5911  else
5912    FoundPred = ICI->getPredicate();
5913
5914  const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5915  const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
5916
5917  // Balance the types. The case where FoundLHS' type is wider than
5918  // LHS' type is checked for above.
5919  if (getTypeSizeInBits(LHS->getType()) >
5920      getTypeSizeInBits(FoundLHS->getType())) {
5921    if (CmpInst::isSigned(Pred)) {
5922      FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5923      FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5924    } else {
5925      FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5926      FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5927    }
5928  }
5929
5930  // Canonicalize the query to match the way instcombine will have
5931  // canonicalized the comparison.
5932  if (SimplifyICmpOperands(Pred, LHS, RHS))
5933    if (LHS == RHS)
5934      return CmpInst::isTrueWhenEqual(Pred);
5935  if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5936    if (FoundLHS == FoundRHS)
5937      return CmpInst::isFalseWhenEqual(Pred);
5938
5939  // Check to see if we can make the LHS or RHS match.
5940  if (LHS == FoundRHS || RHS == FoundLHS) {
5941    if (isa<SCEVConstant>(RHS)) {
5942      std::swap(FoundLHS, FoundRHS);
5943      FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5944    } else {
5945      std::swap(LHS, RHS);
5946      Pred = ICmpInst::getSwappedPredicate(Pred);
5947    }
5948  }
5949
5950  // Check whether the found predicate is the same as the desired predicate.
5951  if (FoundPred == Pred)
5952    return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5953
5954  // Check whether swapping the found predicate makes it the same as the
5955  // desired predicate.
5956  if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5957    if (isa<SCEVConstant>(RHS))
5958      return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5959    else
5960      return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5961                                   RHS, LHS, FoundLHS, FoundRHS);
5962  }
5963
5964  // Check whether the actual condition is beyond sufficient.
5965  if (FoundPred == ICmpInst::ICMP_EQ)
5966    if (ICmpInst::isTrueWhenEqual(Pred))
5967      if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5968        return true;
5969  if (Pred == ICmpInst::ICMP_NE)
5970    if (!ICmpInst::isTrueWhenEqual(FoundPred))
5971      if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5972        return true;
5973
5974  // Otherwise assume the worst.
5975  return false;
5976}
5977
5978/// isImpliedCondOperands - Test whether the condition described by Pred,
5979/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
5980/// and FoundRHS is true.
5981bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5982                                            const SCEV *LHS, const SCEV *RHS,
5983                                            const SCEV *FoundLHS,
5984                                            const SCEV *FoundRHS) {
5985  return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5986                                     FoundLHS, FoundRHS) ||
5987         // ~x < ~y --> x > y
5988         isImpliedCondOperandsHelper(Pred, LHS, RHS,
5989                                     getNotSCEV(FoundRHS),
5990                                     getNotSCEV(FoundLHS));
5991}
5992
5993/// isImpliedCondOperandsHelper - Test whether the condition described by
5994/// Pred, LHS, and RHS is true whenever the condition described by Pred,
5995/// FoundLHS, and FoundRHS is true.
5996bool
5997ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5998                                             const SCEV *LHS, const SCEV *RHS,
5999                                             const SCEV *FoundLHS,
6000                                             const SCEV *FoundRHS) {
6001  switch (Pred) {
6002  default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6003  case ICmpInst::ICMP_EQ:
6004  case ICmpInst::ICMP_NE:
6005    if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
6006      return true;
6007    break;
6008  case ICmpInst::ICMP_SLT:
6009  case ICmpInst::ICMP_SLE:
6010    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
6011        isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
6012      return true;
6013    break;
6014  case ICmpInst::ICMP_SGT:
6015  case ICmpInst::ICMP_SGE:
6016    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
6017        isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
6018      return true;
6019    break;
6020  case ICmpInst::ICMP_ULT:
6021  case ICmpInst::ICMP_ULE:
6022    if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
6023        isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
6024      return true;
6025    break;
6026  case ICmpInst::ICMP_UGT:
6027  case ICmpInst::ICMP_UGE:
6028    if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
6029        isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
6030      return true;
6031    break;
6032  }
6033
6034  return false;
6035}
6036
6037/// getBECount - Subtract the end and start values and divide by the step,
6038/// rounding up, to get the number of times the backedge is executed. Return
6039/// CouldNotCompute if an intermediate computation overflows.
6040const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
6041                                        const SCEV *End,
6042                                        const SCEV *Step,
6043                                        bool NoWrap) {
6044  assert(!isKnownNegative(Step) &&
6045         "This code doesn't handle negative strides yet!");
6046
6047  Type *Ty = Start->getType();
6048
6049  // When Start == End, we have an exact BECount == 0. Short-circuit this case
6050  // here because SCEV may not be able to determine that the unsigned division
6051  // after rounding is zero.
6052  if (Start == End)
6053    return getConstant(Ty, 0);
6054
6055  const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
6056  const SCEV *Diff = getMinusSCEV(End, Start);
6057  const SCEV *RoundUp = getAddExpr(Step, NegOne);
6058
6059  // Add an adjustment to the difference between End and Start so that
6060  // the division will effectively round up.
6061  const SCEV *Add = getAddExpr(Diff, RoundUp);
6062
6063  if (!NoWrap) {
6064    // Check Add for unsigned overflow.
6065    // TODO: More sophisticated things could be done here.
6066    Type *WideTy = IntegerType::get(getContext(),
6067                                          getTypeSizeInBits(Ty) + 1);
6068    const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
6069    const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
6070    const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
6071    if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
6072      return getCouldNotCompute();
6073  }
6074
6075  return getUDivExpr(Add, Step);
6076}
6077
6078/// HowManyLessThans - Return the number of times a backedge containing the
6079/// specified less-than comparison will execute.  If not computable, return
6080/// CouldNotCompute.
6081ScalarEvolution::ExitLimit
6082ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
6083                                  const Loop *L, bool isSigned) {
6084  // Only handle:  "ADDREC < LoopInvariant".
6085  if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
6086
6087  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
6088  if (!AddRec || AddRec->getLoop() != L)
6089    return getCouldNotCompute();
6090
6091  // Check to see if we have a flag which makes analysis easy.
6092  bool NoWrap = isSigned ? AddRec->getNoWrapFlags(SCEV::FlagNSW) :
6093                           AddRec->getNoWrapFlags(SCEV::FlagNUW);
6094
6095  if (AddRec->isAffine()) {
6096    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
6097    const SCEV *Step = AddRec->getStepRecurrence(*this);
6098
6099    if (Step->isZero())
6100      return getCouldNotCompute();
6101    if (Step->isOne()) {
6102      // With unit stride, the iteration never steps past the limit value.
6103    } else if (isKnownPositive(Step)) {
6104      // Test whether a positive iteration can step past the limit
6105      // value and past the maximum value for its type in a single step.
6106      // Note that it's not sufficient to check NoWrap here, because even
6107      // though the value after a wrap is undefined, it's not undefined
6108      // behavior, so if wrap does occur, the loop could either terminate or
6109      // loop infinitely, but in either case, the loop is guaranteed to
6110      // iterate at least until the iteration where the wrapping occurs.
6111      const SCEV *One = getConstant(Step->getType(), 1);
6112      if (isSigned) {
6113        APInt Max = APInt::getSignedMaxValue(BitWidth);
6114        if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
6115              .slt(getSignedRange(RHS).getSignedMax()))
6116          return getCouldNotCompute();
6117      } else {
6118        APInt Max = APInt::getMaxValue(BitWidth);
6119        if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
6120              .ult(getUnsignedRange(RHS).getUnsignedMax()))
6121          return getCouldNotCompute();
6122      }
6123    } else
6124      // TODO: Handle negative strides here and below.
6125      return getCouldNotCompute();
6126
6127    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
6128    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
6129    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
6130    // treat m-n as signed nor unsigned due to overflow possibility.
6131
6132    // First, we get the value of the LHS in the first iteration: n
6133    const SCEV *Start = AddRec->getOperand(0);
6134
6135    // Determine the minimum constant start value.
6136    const SCEV *MinStart = getConstant(isSigned ?
6137      getSignedRange(Start).getSignedMin() :
6138      getUnsignedRange(Start).getUnsignedMin());
6139
6140    // If we know that the condition is true in order to enter the loop,
6141    // then we know that it will run exactly (m-n)/s times. Otherwise, we
6142    // only know that it will execute (max(m,n)-n)/s times. In both cases,
6143    // the division must round up.
6144    const SCEV *End = RHS;
6145    if (!isLoopEntryGuardedByCond(L,
6146                                  isSigned ? ICmpInst::ICMP_SLT :
6147                                             ICmpInst::ICMP_ULT,
6148                                  getMinusSCEV(Start, Step), RHS))
6149      End = isSigned ? getSMaxExpr(RHS, Start)
6150                     : getUMaxExpr(RHS, Start);
6151
6152    // Determine the maximum constant end value.
6153    const SCEV *MaxEnd = getConstant(isSigned ?
6154      getSignedRange(End).getSignedMax() :
6155      getUnsignedRange(End).getUnsignedMax());
6156
6157    // If MaxEnd is within a step of the maximum integer value in its type,
6158    // adjust it down to the minimum value which would produce the same effect.
6159    // This allows the subsequent ceiling division of (N+(step-1))/step to
6160    // compute the correct value.
6161    const SCEV *StepMinusOne = getMinusSCEV(Step,
6162                                            getConstant(Step->getType(), 1));
6163    MaxEnd = isSigned ?
6164      getSMinExpr(MaxEnd,
6165                  getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
6166                               StepMinusOne)) :
6167      getUMinExpr(MaxEnd,
6168                  getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
6169                               StepMinusOne));
6170
6171    // Finally, we subtract these two values and divide, rounding up, to get
6172    // the number of times the backedge is executed.
6173    const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
6174
6175    // The maximum backedge count is similar, except using the minimum start
6176    // value and the maximum end value.
6177    // If we already have an exact constant BECount, use it instead.
6178    const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount
6179      : getBECount(MinStart, MaxEnd, Step, NoWrap);
6180
6181    // If the stride is nonconstant, and NoWrap == true, then
6182    // getBECount(MinStart, MaxEnd) may not compute. This would result in an
6183    // exact BECount and invalid MaxBECount, which should be avoided to catch
6184    // more optimization opportunities.
6185    if (isa<SCEVCouldNotCompute>(MaxBECount))
6186      MaxBECount = BECount;
6187
6188    return ExitLimit(BECount, MaxBECount);
6189  }
6190
6191  return getCouldNotCompute();
6192}
6193
6194/// getNumIterationsInRange - Return the number of iterations of this loop that
6195/// produce values in the specified constant range.  Another way of looking at
6196/// this is that it returns the first iteration number where the value is not in
6197/// the condition, thus computing the exit count. If the iteration count can't
6198/// be computed, an instance of SCEVCouldNotCompute is returned.
6199const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
6200                                                    ScalarEvolution &SE) const {
6201  if (Range.isFullSet())  // Infinite loop.
6202    return SE.getCouldNotCompute();
6203
6204  // If the start is a non-zero constant, shift the range to simplify things.
6205  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
6206    if (!SC->getValue()->isZero()) {
6207      SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
6208      Operands[0] = SE.getConstant(SC->getType(), 0);
6209      const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
6210                                             getNoWrapFlags(FlagNW));
6211      if (const SCEVAddRecExpr *ShiftedAddRec =
6212            dyn_cast<SCEVAddRecExpr>(Shifted))
6213        return ShiftedAddRec->getNumIterationsInRange(
6214                           Range.subtract(SC->getValue()->getValue()), SE);
6215      // This is strange and shouldn't happen.
6216      return SE.getCouldNotCompute();
6217    }
6218
6219  // The only time we can solve this is when we have all constant indices.
6220  // Otherwise, we cannot determine the overflow conditions.
6221  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6222    if (!isa<SCEVConstant>(getOperand(i)))
6223      return SE.getCouldNotCompute();
6224
6225
6226  // Okay at this point we know that all elements of the chrec are constants and
6227  // that the start element is zero.
6228
6229  // First check to see if the range contains zero.  If not, the first
6230  // iteration exits.
6231  unsigned BitWidth = SE.getTypeSizeInBits(getType());
6232  if (!Range.contains(APInt(BitWidth, 0)))
6233    return SE.getConstant(getType(), 0);
6234
6235  if (isAffine()) {
6236    // If this is an affine expression then we have this situation:
6237    //   Solve {0,+,A} in Range  ===  Ax in Range
6238
6239    // We know that zero is in the range.  If A is positive then we know that
6240    // the upper value of the range must be the first possible exit value.
6241    // If A is negative then the lower of the range is the last possible loop
6242    // value.  Also note that we already checked for a full range.
6243    APInt One(BitWidth,1);
6244    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
6245    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
6246
6247    // The exit value should be (End+A)/A.
6248    APInt ExitVal = (End + A).udiv(A);
6249    ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
6250
6251    // Evaluate at the exit value.  If we really did fall out of the valid
6252    // range, then we computed our trip count, otherwise wrap around or other
6253    // things must have happened.
6254    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
6255    if (Range.contains(Val->getValue()))
6256      return SE.getCouldNotCompute();  // Something strange happened
6257
6258    // Ensure that the previous value is in the range.  This is a sanity check.
6259    assert(Range.contains(
6260           EvaluateConstantChrecAtConstant(this,
6261           ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
6262           "Linear scev computation is off in a bad way!");
6263    return SE.getConstant(ExitValue);
6264  } else if (isQuadratic()) {
6265    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
6266    // quadratic equation to solve it.  To do this, we must frame our problem in
6267    // terms of figuring out when zero is crossed, instead of when
6268    // Range.getUpper() is crossed.
6269    SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
6270    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
6271    const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
6272                                             // getNoWrapFlags(FlagNW)
6273                                             FlagAnyWrap);
6274
6275    // Next, solve the constructed addrec
6276    std::pair<const SCEV *,const SCEV *> Roots =
6277      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
6278    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6279    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
6280    if (R1) {
6281      // Pick the smallest positive root value.
6282      if (ConstantInt *CB =
6283          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
6284                         R1->getValue(), R2->getValue()))) {
6285        if (CB->getZExtValue() == false)
6286          std::swap(R1, R2);   // R1 is the minimum root now.
6287
6288        // Make sure the root is not off by one.  The returned iteration should
6289        // not be in the range, but the previous one should be.  When solving
6290        // for "X*X < 5", for example, we should not return a root of 2.
6291        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
6292                                                             R1->getValue(),
6293                                                             SE);
6294        if (Range.contains(R1Val->getValue())) {
6295          // The next iteration must be out of the range...
6296          ConstantInt *NextVal =
6297                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
6298
6299          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
6300          if (!Range.contains(R1Val->getValue()))
6301            return SE.getConstant(NextVal);
6302          return SE.getCouldNotCompute();  // Something strange happened
6303        }
6304
6305        // If R1 was not in the range, then it is a good return value.  Make
6306        // sure that R1-1 WAS in the range though, just in case.
6307        ConstantInt *NextVal =
6308               ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
6309        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
6310        if (Range.contains(R1Val->getValue()))
6311          return R1;
6312        return SE.getCouldNotCompute();  // Something strange happened
6313      }
6314    }
6315  }
6316
6317  return SE.getCouldNotCompute();
6318}
6319
6320
6321
6322//===----------------------------------------------------------------------===//
6323//                   SCEVCallbackVH Class Implementation
6324//===----------------------------------------------------------------------===//
6325
6326void ScalarEvolution::SCEVCallbackVH::deleted() {
6327  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
6328  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
6329    SE->ConstantEvolutionLoopExitValue.erase(PN);
6330  SE->ValueExprMap.erase(getValPtr());
6331  // this now dangles!
6332}
6333
6334void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
6335  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
6336
6337  // Forget all the expressions associated with users of the old value,
6338  // so that future queries will recompute the expressions using the new
6339  // value.
6340  Value *Old = getValPtr();
6341  SmallVector<User *, 16> Worklist;
6342  SmallPtrSet<User *, 8> Visited;
6343  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
6344       UI != UE; ++UI)
6345    Worklist.push_back(*UI);
6346  while (!Worklist.empty()) {
6347    User *U = Worklist.pop_back_val();
6348    // Deleting the Old value will cause this to dangle. Postpone
6349    // that until everything else is done.
6350    if (U == Old)
6351      continue;
6352    if (!Visited.insert(U))
6353      continue;
6354    if (PHINode *PN = dyn_cast<PHINode>(U))
6355      SE->ConstantEvolutionLoopExitValue.erase(PN);
6356    SE->ValueExprMap.erase(U);
6357    for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
6358         UI != UE; ++UI)
6359      Worklist.push_back(*UI);
6360  }
6361  // Delete the Old value.
6362  if (PHINode *PN = dyn_cast<PHINode>(Old))
6363    SE->ConstantEvolutionLoopExitValue.erase(PN);
6364  SE->ValueExprMap.erase(Old);
6365  // this now dangles!
6366}
6367
6368ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
6369  : CallbackVH(V), SE(se) {}
6370
6371//===----------------------------------------------------------------------===//
6372//                   ScalarEvolution Class Implementation
6373//===----------------------------------------------------------------------===//
6374
6375ScalarEvolution::ScalarEvolution()
6376  : FunctionPass(ID), FirstUnknown(0) {
6377  initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
6378}
6379
6380bool ScalarEvolution::runOnFunction(Function &F) {
6381  this->F = &F;
6382  LI = &getAnalysis<LoopInfo>();
6383  TD = getAnalysisIfAvailable<TargetData>();
6384  DT = &getAnalysis<DominatorTree>();
6385  return false;
6386}
6387
6388void ScalarEvolution::releaseMemory() {
6389  // Iterate through all the SCEVUnknown instances and call their
6390  // destructors, so that they release their references to their values.
6391  for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
6392    U->~SCEVUnknown();
6393  FirstUnknown = 0;
6394
6395  ValueExprMap.clear();
6396
6397  // Free any extra memory created for ExitNotTakenInfo in the unlikely event
6398  // that a loop had multiple computable exits.
6399  for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
6400         BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
6401       I != E; ++I) {
6402    I->second.clear();
6403  }
6404
6405  BackedgeTakenCounts.clear();
6406  ConstantEvolutionLoopExitValue.clear();
6407  ValuesAtScopes.clear();
6408  LoopDispositions.clear();
6409  BlockDispositions.clear();
6410  UnsignedRanges.clear();
6411  SignedRanges.clear();
6412  UniqueSCEVs.clear();
6413  SCEVAllocator.Reset();
6414}
6415
6416void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
6417  AU.setPreservesAll();
6418  AU.addRequiredTransitive<LoopInfo>();
6419  AU.addRequiredTransitive<DominatorTree>();
6420}
6421
6422bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
6423  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
6424}
6425
6426static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
6427                          const Loop *L) {
6428  // Print all inner loops first
6429  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
6430    PrintLoopInfo(OS, SE, *I);
6431
6432  OS << "Loop ";
6433  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6434  OS << ": ";
6435
6436  SmallVector<BasicBlock *, 8> ExitBlocks;
6437  L->getExitBlocks(ExitBlocks);
6438  if (ExitBlocks.size() != 1)
6439    OS << "<multiple exits> ";
6440
6441  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
6442    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
6443  } else {
6444    OS << "Unpredictable backedge-taken count. ";
6445  }
6446
6447  OS << "\n"
6448        "Loop ";
6449  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6450  OS << ": ";
6451
6452  if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
6453    OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
6454  } else {
6455    OS << "Unpredictable max backedge-taken count. ";
6456  }
6457
6458  OS << "\n";
6459}
6460
6461void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
6462  // ScalarEvolution's implementation of the print method is to print
6463  // out SCEV values of all instructions that are interesting. Doing
6464  // this potentially causes it to create new SCEV objects though,
6465  // which technically conflicts with the const qualifier. This isn't
6466  // observable from outside the class though, so casting away the
6467  // const isn't dangerous.
6468  ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
6469
6470  OS << "Classifying expressions for: ";
6471  WriteAsOperand(OS, F, /*PrintType=*/false);
6472  OS << "\n";
6473  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
6474    if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
6475      OS << *I << '\n';
6476      OS << "  -->  ";
6477      const SCEV *SV = SE.getSCEV(&*I);
6478      SV->print(OS);
6479
6480      const Loop *L = LI->getLoopFor((*I).getParent());
6481
6482      const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
6483      if (AtUse != SV) {
6484        OS << "  -->  ";
6485        AtUse->print(OS);
6486      }
6487
6488      if (L) {
6489        OS << "\t\t" "Exits: ";
6490        const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
6491        if (!SE.isLoopInvariant(ExitValue, L)) {
6492          OS << "<<Unknown>>";
6493        } else {
6494          OS << *ExitValue;
6495        }
6496      }
6497
6498      OS << "\n";
6499    }
6500
6501  OS << "Determining loop execution counts for: ";
6502  WriteAsOperand(OS, F, /*PrintType=*/false);
6503  OS << "\n";
6504  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
6505    PrintLoopInfo(OS, &SE, *I);
6506}
6507
6508ScalarEvolution::LoopDisposition
6509ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
6510  std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
6511  std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
6512    Values.insert(std::make_pair(L, LoopVariant));
6513  if (!Pair.second)
6514    return Pair.first->second;
6515
6516  LoopDisposition D = computeLoopDisposition(S, L);
6517  return LoopDispositions[S][L] = D;
6518}
6519
6520ScalarEvolution::LoopDisposition
6521ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
6522  switch (S->getSCEVType()) {
6523  case scConstant:
6524    return LoopInvariant;
6525  case scTruncate:
6526  case scZeroExtend:
6527  case scSignExtend:
6528    return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
6529  case scAddRecExpr: {
6530    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6531
6532    // If L is the addrec's loop, it's computable.
6533    if (AR->getLoop() == L)
6534      return LoopComputable;
6535
6536    // Add recurrences are never invariant in the function-body (null loop).
6537    if (!L)
6538      return LoopVariant;
6539
6540    // This recurrence is variant w.r.t. L if L contains AR's loop.
6541    if (L->contains(AR->getLoop()))
6542      return LoopVariant;
6543
6544    // This recurrence is invariant w.r.t. L if AR's loop contains L.
6545    if (AR->getLoop()->contains(L))
6546      return LoopInvariant;
6547
6548    // This recurrence is variant w.r.t. L if any of its operands
6549    // are variant.
6550    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
6551         I != E; ++I)
6552      if (!isLoopInvariant(*I, L))
6553        return LoopVariant;
6554
6555    // Otherwise it's loop-invariant.
6556    return LoopInvariant;
6557  }
6558  case scAddExpr:
6559  case scMulExpr:
6560  case scUMaxExpr:
6561  case scSMaxExpr: {
6562    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6563    bool HasVarying = false;
6564    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6565         I != E; ++I) {
6566      LoopDisposition D = getLoopDisposition(*I, L);
6567      if (D == LoopVariant)
6568        return LoopVariant;
6569      if (D == LoopComputable)
6570        HasVarying = true;
6571    }
6572    return HasVarying ? LoopComputable : LoopInvariant;
6573  }
6574  case scUDivExpr: {
6575    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6576    LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
6577    if (LD == LoopVariant)
6578      return LoopVariant;
6579    LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
6580    if (RD == LoopVariant)
6581      return LoopVariant;
6582    return (LD == LoopInvariant && RD == LoopInvariant) ?
6583           LoopInvariant : LoopComputable;
6584  }
6585  case scUnknown:
6586    // All non-instruction values are loop invariant.  All instructions are loop
6587    // invariant if they are not contained in the specified loop.
6588    // Instructions are never considered invariant in the function body
6589    // (null loop) because they are defined within the "loop".
6590    if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
6591      return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
6592    return LoopInvariant;
6593  case scCouldNotCompute:
6594    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6595    return LoopVariant;
6596  default: break;
6597  }
6598  llvm_unreachable("Unknown SCEV kind!");
6599  return LoopVariant;
6600}
6601
6602bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
6603  return getLoopDisposition(S, L) == LoopInvariant;
6604}
6605
6606bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6607  return getLoopDisposition(S, L) == LoopComputable;
6608}
6609
6610ScalarEvolution::BlockDisposition
6611ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6612  std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
6613  std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
6614    Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
6615  if (!Pair.second)
6616    return Pair.first->second;
6617
6618  BlockDisposition D = computeBlockDisposition(S, BB);
6619  return BlockDispositions[S][BB] = D;
6620}
6621
6622ScalarEvolution::BlockDisposition
6623ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6624  switch (S->getSCEVType()) {
6625  case scConstant:
6626    return ProperlyDominatesBlock;
6627  case scTruncate:
6628  case scZeroExtend:
6629  case scSignExtend:
6630    return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
6631  case scAddRecExpr: {
6632    // This uses a "dominates" query instead of "properly dominates" query
6633    // to test for proper dominance too, because the instruction which
6634    // produces the addrec's value is a PHI, and a PHI effectively properly
6635    // dominates its entire containing block.
6636    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6637    if (!DT->dominates(AR->getLoop()->getHeader(), BB))
6638      return DoesNotDominateBlock;
6639  }
6640  // FALL THROUGH into SCEVNAryExpr handling.
6641  case scAddExpr:
6642  case scMulExpr:
6643  case scUMaxExpr:
6644  case scSMaxExpr: {
6645    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6646    bool Proper = true;
6647    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6648         I != E; ++I) {
6649      BlockDisposition D = getBlockDisposition(*I, BB);
6650      if (D == DoesNotDominateBlock)
6651        return DoesNotDominateBlock;
6652      if (D == DominatesBlock)
6653        Proper = false;
6654    }
6655    return Proper ? ProperlyDominatesBlock : DominatesBlock;
6656  }
6657  case scUDivExpr: {
6658    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6659    const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6660    BlockDisposition LD = getBlockDisposition(LHS, BB);
6661    if (LD == DoesNotDominateBlock)
6662      return DoesNotDominateBlock;
6663    BlockDisposition RD = getBlockDisposition(RHS, BB);
6664    if (RD == DoesNotDominateBlock)
6665      return DoesNotDominateBlock;
6666    return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6667      ProperlyDominatesBlock : DominatesBlock;
6668  }
6669  case scUnknown:
6670    if (Instruction *I =
6671          dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6672      if (I->getParent() == BB)
6673        return DominatesBlock;
6674      if (DT->properlyDominates(I->getParent(), BB))
6675        return ProperlyDominatesBlock;
6676      return DoesNotDominateBlock;
6677    }
6678    return ProperlyDominatesBlock;
6679  case scCouldNotCompute:
6680    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6681    return DoesNotDominateBlock;
6682  default: break;
6683  }
6684  llvm_unreachable("Unknown SCEV kind!");
6685  return DoesNotDominateBlock;
6686}
6687
6688bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
6689  return getBlockDisposition(S, BB) >= DominatesBlock;
6690}
6691
6692bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
6693  return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
6694}
6695
6696bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
6697  switch (S->getSCEVType()) {
6698  case scConstant:
6699    return false;
6700  case scTruncate:
6701  case scZeroExtend:
6702  case scSignExtend: {
6703    const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S);
6704    const SCEV *CastOp = Cast->getOperand();
6705    return Op == CastOp || hasOperand(CastOp, Op);
6706  }
6707  case scAddRecExpr:
6708  case scAddExpr:
6709  case scMulExpr:
6710  case scUMaxExpr:
6711  case scSMaxExpr: {
6712    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6713    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6714         I != E; ++I) {
6715      const SCEV *NAryOp = *I;
6716      if (NAryOp == Op || hasOperand(NAryOp, Op))
6717        return true;
6718    }
6719    return false;
6720  }
6721  case scUDivExpr: {
6722    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6723    const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6724    return LHS == Op || hasOperand(LHS, Op) ||
6725           RHS == Op || hasOperand(RHS, Op);
6726  }
6727  case scUnknown:
6728    return false;
6729  case scCouldNotCompute:
6730    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6731    return false;
6732  default: break;
6733  }
6734  llvm_unreachable("Unknown SCEV kind!");
6735  return false;
6736}
6737
6738void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
6739  ValuesAtScopes.erase(S);
6740  LoopDispositions.erase(S);
6741  BlockDispositions.erase(S);
6742  UnsignedRanges.erase(S);
6743  SignedRanges.erase(S);
6744}
6745