ScalarEvolution.cpp revision 5aa20212cc8dd1008d05915bf23dd02143fc5de9
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle.  These classes are reference counted, managed by the SCEVHandle
18// class.  We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression.  These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
36// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43//  Chains of recurrences -- a method to expedite the evaluation
44//  of closed-form functions
45//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47//  On computational properties of chains of recurrences
48//  Eugene V. Zima
49//
50//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51//  Robert A. van Engelen
52//
53//  Efficient Symbolic Analysis for Optimizing Compilers
54//  Robert A. van Engelen
55//
56//  Using the chains of recurrences algebra for data dependence testing and
57//  induction variable substitution
58//  MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
62#include "llvm/Analysis/ScalarEvolutionExpressions.h"
63#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
65#include "llvm/Instructions.h"
66#include "llvm/Type.h"
67#include "llvm/Value.h"
68#include "llvm/Analysis/LoopInfo.h"
69#include "llvm/Assembly/Writer.h"
70#include "llvm/Transforms/Scalar.h"
71#include "llvm/Transforms/Utils/Local.h"
72#include "llvm/Support/CFG.h"
73#include "llvm/Support/ConstantRange.h"
74#include "llvm/Support/InstIterator.h"
75#include "Support/CommandLine.h"
76#include "Support/Statistic.h"
77#include <cmath>
78using namespace llvm;
79
80namespace {
81  RegisterAnalysis<ScalarEvolution>
82  R("scalar-evolution", "Scalar Evolution Analysis");
83
84  Statistic<>
85  NumBruteForceEvaluations("scalar-evolution",
86                           "Number of brute force evaluations needed to calculate high-order polynomial exit values");
87  Statistic<>
88  NumTripCountsComputed("scalar-evolution",
89                        "Number of loops with predictable loop counts");
90  Statistic<>
91  NumTripCountsNotComputed("scalar-evolution",
92                           "Number of loops without predictable loop counts");
93  Statistic<>
94  NumBruteForceTripCountsComputed("scalar-evolution",
95                        "Number of loops with trip counts computed by force");
96
97  cl::opt<unsigned>
98  MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
99                          cl::desc("Maximum number of iterations SCEV will symbolically execute a constant derived loop"),
100                          cl::init(100));
101}
102
103//===----------------------------------------------------------------------===//
104//                           SCEV class definitions
105//===----------------------------------------------------------------------===//
106
107//===----------------------------------------------------------------------===//
108// Implementation of the SCEV class.
109//
110SCEV::~SCEV() {}
111void SCEV::dump() const {
112  print(std::cerr);
113}
114
115/// getValueRange - Return the tightest constant bounds that this value is
116/// known to have.  This method is only valid on integer SCEV objects.
117ConstantRange SCEV::getValueRange() const {
118  const Type *Ty = getType();
119  assert(Ty->isInteger() && "Can't get range for a non-integer SCEV!");
120  Ty = Ty->getUnsignedVersion();
121  // Default to a full range if no better information is available.
122  return ConstantRange(getType());
123}
124
125
126SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
127
128bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
129  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
130  return false;
131}
132
133const Type *SCEVCouldNotCompute::getType() const {
134  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
135  return 0;
136}
137
138bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
139  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
140  return false;
141}
142
143void SCEVCouldNotCompute::print(std::ostream &OS) const {
144  OS << "***COULDNOTCOMPUTE***";
145}
146
147bool SCEVCouldNotCompute::classof(const SCEV *S) {
148  return S->getSCEVType() == scCouldNotCompute;
149}
150
151
152// SCEVConstants - Only allow the creation of one SCEVConstant for any
153// particular value.  Don't use a SCEVHandle here, or else the object will
154// never be deleted!
155static std::map<ConstantInt*, SCEVConstant*> SCEVConstants;
156
157
158SCEVConstant::~SCEVConstant() {
159  SCEVConstants.erase(V);
160}
161
162SCEVHandle SCEVConstant::get(ConstantInt *V) {
163  // Make sure that SCEVConstant instances are all unsigned.
164  if (V->getType()->isSigned()) {
165    const Type *NewTy = V->getType()->getUnsignedVersion();
166    V = cast<ConstantUInt>(ConstantExpr::getCast(V, NewTy));
167  }
168
169  SCEVConstant *&R = SCEVConstants[V];
170  if (R == 0) R = new SCEVConstant(V);
171  return R;
172}
173
174ConstantRange SCEVConstant::getValueRange() const {
175  return ConstantRange(V);
176}
177
178const Type *SCEVConstant::getType() const { return V->getType(); }
179
180void SCEVConstant::print(std::ostream &OS) const {
181  WriteAsOperand(OS, V, false);
182}
183
184// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
185// particular input.  Don't use a SCEVHandle here, or else the object will
186// never be deleted!
187static std::map<std::pair<SCEV*, const Type*>, SCEVTruncateExpr*> SCEVTruncates;
188
189SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
190  : SCEV(scTruncate), Op(op), Ty(ty) {
191  assert(Op->getType()->isInteger() && Ty->isInteger() &&
192         Ty->isUnsigned() &&
193         "Cannot truncate non-integer value!");
194  assert(Op->getType()->getPrimitiveSize() > Ty->getPrimitiveSize() &&
195         "This is not a truncating conversion!");
196}
197
198SCEVTruncateExpr::~SCEVTruncateExpr() {
199  SCEVTruncates.erase(std::make_pair(Op, Ty));
200}
201
202ConstantRange SCEVTruncateExpr::getValueRange() const {
203  return getOperand()->getValueRange().truncate(getType());
204}
205
206void SCEVTruncateExpr::print(std::ostream &OS) const {
207  OS << "(truncate " << *Op << " to " << *Ty << ")";
208}
209
210// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
211// particular input.  Don't use a SCEVHandle here, or else the object will never
212// be deleted!
213static std::map<std::pair<SCEV*, const Type*>,
214                SCEVZeroExtendExpr*> SCEVZeroExtends;
215
216SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
217  : SCEV(scTruncate), Op(Op), Ty(ty) {
218  assert(Op->getType()->isInteger() && Ty->isInteger() &&
219         Ty->isUnsigned() &&
220         "Cannot zero extend non-integer value!");
221  assert(Op->getType()->getPrimitiveSize() < Ty->getPrimitiveSize() &&
222         "This is not an extending conversion!");
223}
224
225SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
226  SCEVZeroExtends.erase(std::make_pair(Op, Ty));
227}
228
229ConstantRange SCEVZeroExtendExpr::getValueRange() const {
230  return getOperand()->getValueRange().zeroExtend(getType());
231}
232
233void SCEVZeroExtendExpr::print(std::ostream &OS) const {
234  OS << "(zeroextend " << *Op << " to " << *Ty << ")";
235}
236
237// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
238// particular input.  Don't use a SCEVHandle here, or else the object will never
239// be deleted!
240static std::map<std::pair<unsigned, std::vector<SCEV*> >,
241                SCEVCommutativeExpr*> SCEVCommExprs;
242
243SCEVCommutativeExpr::~SCEVCommutativeExpr() {
244  SCEVCommExprs.erase(std::make_pair(getSCEVType(),
245                                     std::vector<SCEV*>(Operands.begin(),
246                                                        Operands.end())));
247}
248
249void SCEVCommutativeExpr::print(std::ostream &OS) const {
250  assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
251  const char *OpStr = getOperationStr();
252  OS << "(" << *Operands[0];
253  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
254    OS << OpStr << *Operands[i];
255  OS << ")";
256}
257
258// SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
259// input.  Don't use a SCEVHandle here, or else the object will never be
260// deleted!
261static std::map<std::pair<SCEV*, SCEV*>, SCEVUDivExpr*> SCEVUDivs;
262
263SCEVUDivExpr::~SCEVUDivExpr() {
264  SCEVUDivs.erase(std::make_pair(LHS, RHS));
265}
266
267void SCEVUDivExpr::print(std::ostream &OS) const {
268  OS << "(" << *LHS << " /u " << *RHS << ")";
269}
270
271const Type *SCEVUDivExpr::getType() const {
272  const Type *Ty = LHS->getType();
273  if (Ty->isSigned()) Ty = Ty->getUnsignedVersion();
274  return Ty;
275}
276
277// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
278// particular input.  Don't use a SCEVHandle here, or else the object will never
279// be deleted!
280static std::map<std::pair<const Loop *, std::vector<SCEV*> >,
281                SCEVAddRecExpr*> SCEVAddRecExprs;
282
283SCEVAddRecExpr::~SCEVAddRecExpr() {
284  SCEVAddRecExprs.erase(std::make_pair(L,
285                                       std::vector<SCEV*>(Operands.begin(),
286                                                          Operands.end())));
287}
288
289bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
290  // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
291  // contain L.
292  return !QueryLoop->contains(L->getHeader());
293}
294
295
296void SCEVAddRecExpr::print(std::ostream &OS) const {
297  OS << "{" << *Operands[0];
298  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
299    OS << ",+," << *Operands[i];
300  OS << "}<" << L->getHeader()->getName() + ">";
301}
302
303// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
304// value.  Don't use a SCEVHandle here, or else the object will never be
305// deleted!
306static std::map<Value*, SCEVUnknown*> SCEVUnknowns;
307
308SCEVUnknown::~SCEVUnknown() { SCEVUnknowns.erase(V); }
309
310bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
311  // All non-instruction values are loop invariant.  All instructions are loop
312  // invariant if they are not contained in the specified loop.
313  if (Instruction *I = dyn_cast<Instruction>(V))
314    return !L->contains(I->getParent());
315  return true;
316}
317
318const Type *SCEVUnknown::getType() const {
319  return V->getType();
320}
321
322void SCEVUnknown::print(std::ostream &OS) const {
323  WriteAsOperand(OS, V, false);
324}
325
326//===----------------------------------------------------------------------===//
327//                               SCEV Utilities
328//===----------------------------------------------------------------------===//
329
330namespace {
331  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
332  /// than the complexity of the RHS.  This comparator is used to canonicalize
333  /// expressions.
334  struct SCEVComplexityCompare {
335    bool operator()(SCEV *LHS, SCEV *RHS) {
336      return LHS->getSCEVType() < RHS->getSCEVType();
337    }
338  };
339}
340
341/// GroupByComplexity - Given a list of SCEV objects, order them by their
342/// complexity, and group objects of the same complexity together by value.
343/// When this routine is finished, we know that any duplicates in the vector are
344/// consecutive and that complexity is monotonically increasing.
345///
346/// Note that we go take special precautions to ensure that we get determinstic
347/// results from this routine.  In other words, we don't want the results of
348/// this to depend on where the addresses of various SCEV objects happened to
349/// land in memory.
350///
351static void GroupByComplexity(std::vector<SCEVHandle> &Ops) {
352  if (Ops.size() < 2) return;  // Noop
353  if (Ops.size() == 2) {
354    // This is the common case, which also happens to be trivially simple.
355    // Special case it.
356    if (Ops[0]->getSCEVType() > Ops[1]->getSCEVType())
357      std::swap(Ops[0], Ops[1]);
358    return;
359  }
360
361  // Do the rough sort by complexity.
362  std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());
363
364  // Now that we are sorted by complexity, group elements of the same
365  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
366  // be extremely short in practice.  Note that we take this approach because we
367  // do not want to depend on the addresses of the objects we are grouping.
368  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
369    SCEV *S = Ops[i];
370    unsigned Complexity = S->getSCEVType();
371
372    // If there are any objects of the same complexity and same value as this
373    // one, group them.
374    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
375      if (Ops[j] == S) { // Found a duplicate.
376        // Move it to immediately after i'th element.
377        std::swap(Ops[i+1], Ops[j]);
378        ++i;   // no need to rescan it.
379        if (i == e-2) return;  // Done!
380      }
381    }
382  }
383}
384
385
386
387//===----------------------------------------------------------------------===//
388//                      Simple SCEV method implementations
389//===----------------------------------------------------------------------===//
390
391/// getIntegerSCEV - Given an integer or FP type, create a constant for the
392/// specified signed integer value and return a SCEV for the constant.
393SCEVHandle SCEVUnknown::getIntegerSCEV(int Val, const Type *Ty) {
394  Constant *C;
395  if (Val == 0)
396    C = Constant::getNullValue(Ty);
397  else if (Ty->isFloatingPoint())
398    C = ConstantFP::get(Ty, Val);
399  else if (Ty->isSigned())
400    C = ConstantSInt::get(Ty, Val);
401  else {
402    C = ConstantSInt::get(Ty->getSignedVersion(), Val);
403    C = ConstantExpr::getCast(C, Ty);
404  }
405  return SCEVUnknown::get(C);
406}
407
408/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
409/// input value to the specified type.  If the type must be extended, it is zero
410/// extended.
411static SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty) {
412  const Type *SrcTy = V->getType();
413  assert(SrcTy->isInteger() && Ty->isInteger() &&
414         "Cannot truncate or zero extend with non-integer arguments!");
415  if (SrcTy->getPrimitiveSize() == Ty->getPrimitiveSize())
416    return V;  // No conversion
417  if (SrcTy->getPrimitiveSize() > Ty->getPrimitiveSize())
418    return SCEVTruncateExpr::get(V, Ty);
419  return SCEVZeroExtendExpr::get(V, Ty);
420}
421
422/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
423///
424static SCEVHandle getNegativeSCEV(const SCEVHandle &V) {
425  if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
426    return SCEVUnknown::get(ConstantExpr::getNeg(VC->getValue()));
427
428  return SCEVMulExpr::get(V, SCEVUnknown::getIntegerSCEV(-1, V->getType()));
429}
430
431/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
432///
433static SCEVHandle getMinusSCEV(const SCEVHandle &LHS, const SCEVHandle &RHS) {
434  // X - Y --> X + -Y
435  return SCEVAddExpr::get(LHS, getNegativeSCEV(RHS));
436}
437
438
439/// Binomial - Evaluate N!/((N-M)!*M!)  .  Note that N is often large and M is
440/// often very small, so we try to reduce the number of N! terms we need to
441/// evaluate by evaluating this as  (N!/(N-M)!)/M!
442static ConstantInt *Binomial(ConstantInt *N, unsigned M) {
443  uint64_t NVal = N->getRawValue();
444  uint64_t FirstTerm = 1;
445  for (unsigned i = 0; i != M; ++i)
446    FirstTerm *= NVal-i;
447
448  unsigned MFactorial = 1;
449  for (; M; --M)
450    MFactorial *= M;
451
452  Constant *Result = ConstantUInt::get(Type::ULongTy, FirstTerm/MFactorial);
453  Result = ConstantExpr::getCast(Result, N->getType());
454  assert(isa<ConstantInt>(Result) && "Cast of integer not folded??");
455  return cast<ConstantInt>(Result);
456}
457
458/// PartialFact - Compute V!/(V-NumSteps)!
459static SCEVHandle PartialFact(SCEVHandle V, unsigned NumSteps) {
460  // Handle this case efficiently, it is common to have constant iteration
461  // counts while computing loop exit values.
462  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
463    uint64_t Val = SC->getValue()->getRawValue();
464    uint64_t Result = 1;
465    for (; NumSteps; --NumSteps)
466      Result *= Val-(NumSteps-1);
467    Constant *Res = ConstantUInt::get(Type::ULongTy, Result);
468    return SCEVUnknown::get(ConstantExpr::getCast(Res, V->getType()));
469  }
470
471  const Type *Ty = V->getType();
472  if (NumSteps == 0)
473    return SCEVUnknown::getIntegerSCEV(1, Ty);
474
475  SCEVHandle Result = V;
476  for (unsigned i = 1; i != NumSteps; ++i)
477    Result = SCEVMulExpr::get(Result, getMinusSCEV(V,
478                                          SCEVUnknown::getIntegerSCEV(i, Ty)));
479  return Result;
480}
481
482
483/// evaluateAtIteration - Return the value of this chain of recurrences at
484/// the specified iteration number.  We can evaluate this recurrence by
485/// multiplying each element in the chain by the binomial coefficient
486/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
487///
488///   A*choose(It, 0) + B*choose(It, 1) + C*choose(It, 2) + D*choose(It, 3)
489///
490/// FIXME/VERIFY: I don't trust that this is correct in the face of overflow.
491/// Is the binomial equation safe using modular arithmetic??
492///
493SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It) const {
494  SCEVHandle Result = getStart();
495  int Divisor = 1;
496  const Type *Ty = It->getType();
497  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
498    SCEVHandle BC = PartialFact(It, i);
499    Divisor *= i;
500    SCEVHandle Val = SCEVUDivExpr::get(SCEVMulExpr::get(BC, getOperand(i)),
501                                       SCEVUnknown::getIntegerSCEV(Divisor,Ty));
502    Result = SCEVAddExpr::get(Result, Val);
503  }
504  return Result;
505}
506
507
508//===----------------------------------------------------------------------===//
509//                    SCEV Expression folder implementations
510//===----------------------------------------------------------------------===//
511
512SCEVHandle SCEVTruncateExpr::get(const SCEVHandle &Op, const Type *Ty) {
513  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
514    return SCEVUnknown::get(ConstantExpr::getCast(SC->getValue(), Ty));
515
516  // If the input value is a chrec scev made out of constants, truncate
517  // all of the constants.
518  if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
519    std::vector<SCEVHandle> Operands;
520    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
521      // FIXME: This should allow truncation of other expression types!
522      if (isa<SCEVConstant>(AddRec->getOperand(i)))
523        Operands.push_back(get(AddRec->getOperand(i), Ty));
524      else
525        break;
526    if (Operands.size() == AddRec->getNumOperands())
527      return SCEVAddRecExpr::get(Operands, AddRec->getLoop());
528  }
529
530  SCEVTruncateExpr *&Result = SCEVTruncates[std::make_pair(Op, Ty)];
531  if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
532  return Result;
533}
534
535SCEVHandle SCEVZeroExtendExpr::get(const SCEVHandle &Op, const Type *Ty) {
536  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
537    return SCEVUnknown::get(ConstantExpr::getCast(SC->getValue(), Ty));
538
539  // FIXME: If the input value is a chrec scev, and we can prove that the value
540  // did not overflow the old, smaller, value, we can zero extend all of the
541  // operands (often constants).  This would allow analysis of something like
542  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
543
544  SCEVZeroExtendExpr *&Result = SCEVZeroExtends[std::make_pair(Op, Ty)];
545  if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
546  return Result;
547}
548
549// get - Get a canonical add expression, or something simpler if possible.
550SCEVHandle SCEVAddExpr::get(std::vector<SCEVHandle> &Ops) {
551  assert(!Ops.empty() && "Cannot get empty add!");
552  if (Ops.size() == 1) return Ops[0];
553
554  // Sort by complexity, this groups all similar expression types together.
555  GroupByComplexity(Ops);
556
557  // If there are any constants, fold them together.
558  unsigned Idx = 0;
559  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
560    ++Idx;
561    assert(Idx < Ops.size());
562    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
563      // We found two constants, fold them together!
564      Constant *Fold = ConstantExpr::getAdd(LHSC->getValue(), RHSC->getValue());
565      if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
566        Ops[0] = SCEVConstant::get(CI);
567        Ops.erase(Ops.begin()+1);  // Erase the folded element
568        if (Ops.size() == 1) return Ops[0];
569      } else {
570        // If we couldn't fold the expression, move to the next constant.  Note
571        // that this is impossible to happen in practice because we always
572        // constant fold constant ints to constant ints.
573        ++Idx;
574      }
575    }
576
577    // If we are left with a constant zero being added, strip it off.
578    if (cast<SCEVConstant>(Ops[0])->getValue()->isNullValue()) {
579      Ops.erase(Ops.begin());
580      --Idx;
581    }
582  }
583
584  if (Ops.size() == 1) return Ops[0];
585
586  // Okay, check to see if the same value occurs in the operand list twice.  If
587  // so, merge them together into an multiply expression.  Since we sorted the
588  // list, these values are required to be adjacent.
589  const Type *Ty = Ops[0]->getType();
590  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
591    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
592      // Found a match, merge the two values into a multiply, and add any
593      // remaining values to the result.
594      SCEVHandle Two = SCEVUnknown::getIntegerSCEV(2, Ty);
595      SCEVHandle Mul = SCEVMulExpr::get(Ops[i], Two);
596      if (Ops.size() == 2)
597        return Mul;
598      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
599      Ops.push_back(Mul);
600      return SCEVAddExpr::get(Ops);
601    }
602
603  // Okay, now we know the first non-constant operand.  If there are add
604  // operands they would be next.
605  if (Idx < Ops.size()) {
606    bool DeletedAdd = false;
607    while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
608      // If we have an add, expand the add operands onto the end of the operands
609      // list.
610      Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
611      Ops.erase(Ops.begin()+Idx);
612      DeletedAdd = true;
613    }
614
615    // If we deleted at least one add, we added operands to the end of the list,
616    // and they are not necessarily sorted.  Recurse to resort and resimplify
617    // any operands we just aquired.
618    if (DeletedAdd)
619      return get(Ops);
620  }
621
622  // Skip over the add expression until we get to a multiply.
623  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
624    ++Idx;
625
626  // If we are adding something to a multiply expression, make sure the
627  // something is not already an operand of the multiply.  If so, merge it into
628  // the multiply.
629  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
630    SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
631    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
632      SCEV *MulOpSCEV = Mul->getOperand(MulOp);
633      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
634        if (MulOpSCEV == Ops[AddOp] &&
635            (Mul->getNumOperands() != 2 || !isa<SCEVConstant>(MulOpSCEV))) {
636          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
637          SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
638          if (Mul->getNumOperands() != 2) {
639            // If the multiply has more than two operands, we must get the
640            // Y*Z term.
641            std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
642            MulOps.erase(MulOps.begin()+MulOp);
643            InnerMul = SCEVMulExpr::get(MulOps);
644          }
645          SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, Ty);
646          SCEVHandle AddOne = SCEVAddExpr::get(InnerMul, One);
647          SCEVHandle OuterMul = SCEVMulExpr::get(AddOne, Ops[AddOp]);
648          if (Ops.size() == 2) return OuterMul;
649          if (AddOp < Idx) {
650            Ops.erase(Ops.begin()+AddOp);
651            Ops.erase(Ops.begin()+Idx-1);
652          } else {
653            Ops.erase(Ops.begin()+Idx);
654            Ops.erase(Ops.begin()+AddOp-1);
655          }
656          Ops.push_back(OuterMul);
657          return SCEVAddExpr::get(Ops);
658        }
659
660      // Check this multiply against other multiplies being added together.
661      for (unsigned OtherMulIdx = Idx+1;
662           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
663           ++OtherMulIdx) {
664        SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
665        // If MulOp occurs in OtherMul, we can fold the two multiplies
666        // together.
667        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
668             OMulOp != e; ++OMulOp)
669          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
670            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
671            SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
672            if (Mul->getNumOperands() != 2) {
673              std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
674              MulOps.erase(MulOps.begin()+MulOp);
675              InnerMul1 = SCEVMulExpr::get(MulOps);
676            }
677            SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
678            if (OtherMul->getNumOperands() != 2) {
679              std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
680                                             OtherMul->op_end());
681              MulOps.erase(MulOps.begin()+OMulOp);
682              InnerMul2 = SCEVMulExpr::get(MulOps);
683            }
684            SCEVHandle InnerMulSum = SCEVAddExpr::get(InnerMul1,InnerMul2);
685            SCEVHandle OuterMul = SCEVMulExpr::get(MulOpSCEV, InnerMulSum);
686            if (Ops.size() == 2) return OuterMul;
687            Ops.erase(Ops.begin()+Idx);
688            Ops.erase(Ops.begin()+OtherMulIdx-1);
689            Ops.push_back(OuterMul);
690            return SCEVAddExpr::get(Ops);
691          }
692      }
693    }
694  }
695
696  // If there are any add recurrences in the operands list, see if any other
697  // added values are loop invariant.  If so, we can fold them into the
698  // recurrence.
699  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
700    ++Idx;
701
702  // Scan over all recurrences, trying to fold loop invariants into them.
703  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
704    // Scan all of the other operands to this add and add them to the vector if
705    // they are loop invariant w.r.t. the recurrence.
706    std::vector<SCEVHandle> LIOps;
707    SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
708    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
709      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
710        LIOps.push_back(Ops[i]);
711        Ops.erase(Ops.begin()+i);
712        --i; --e;
713      }
714
715    // If we found some loop invariants, fold them into the recurrence.
716    if (!LIOps.empty()) {
717      //  NLI + LI + { Start,+,Step}  -->  NLI + { LI+Start,+,Step }
718      LIOps.push_back(AddRec->getStart());
719
720      std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
721      AddRecOps[0] = SCEVAddExpr::get(LIOps);
722
723      SCEVHandle NewRec = SCEVAddRecExpr::get(AddRecOps, AddRec->getLoop());
724      // If all of the other operands were loop invariant, we are done.
725      if (Ops.size() == 1) return NewRec;
726
727      // Otherwise, add the folded AddRec by the non-liv parts.
728      for (unsigned i = 0;; ++i)
729        if (Ops[i] == AddRec) {
730          Ops[i] = NewRec;
731          break;
732        }
733      return SCEVAddExpr::get(Ops);
734    }
735
736    // Okay, if there weren't any loop invariants to be folded, check to see if
737    // there are multiple AddRec's with the same loop induction variable being
738    // added together.  If so, we can fold them.
739    for (unsigned OtherIdx = Idx+1;
740         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
741      if (OtherIdx != Idx) {
742        SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
743        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
744          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
745          std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
746          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
747            if (i >= NewOps.size()) {
748              NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
749                            OtherAddRec->op_end());
750              break;
751            }
752            NewOps[i] = SCEVAddExpr::get(NewOps[i], OtherAddRec->getOperand(i));
753          }
754          SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
755
756          if (Ops.size() == 2) return NewAddRec;
757
758          Ops.erase(Ops.begin()+Idx);
759          Ops.erase(Ops.begin()+OtherIdx-1);
760          Ops.push_back(NewAddRec);
761          return SCEVAddExpr::get(Ops);
762        }
763      }
764
765    // Otherwise couldn't fold anything into this recurrence.  Move onto the
766    // next one.
767  }
768
769  // Okay, it looks like we really DO need an add expr.  Check to see if we
770  // already have one, otherwise create a new one.
771  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
772  SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scAddExpr,
773                                                              SCEVOps)];
774  if (Result == 0) Result = new SCEVAddExpr(Ops);
775  return Result;
776}
777
778
779SCEVHandle SCEVMulExpr::get(std::vector<SCEVHandle> &Ops) {
780  assert(!Ops.empty() && "Cannot get empty mul!");
781
782  // Sort by complexity, this groups all similar expression types together.
783  GroupByComplexity(Ops);
784
785  // If there are any constants, fold them together.
786  unsigned Idx = 0;
787  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
788
789    // C1*(C2+V) -> C1*C2 + C1*V
790    if (Ops.size() == 2)
791      if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
792        if (Add->getNumOperands() == 2 &&
793            isa<SCEVConstant>(Add->getOperand(0)))
794          return SCEVAddExpr::get(SCEVMulExpr::get(LHSC, Add->getOperand(0)),
795                                  SCEVMulExpr::get(LHSC, Add->getOperand(1)));
796
797
798    ++Idx;
799    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
800      // We found two constants, fold them together!
801      Constant *Fold = ConstantExpr::getMul(LHSC->getValue(), RHSC->getValue());
802      if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
803        Ops[0] = SCEVConstant::get(CI);
804        Ops.erase(Ops.begin()+1);  // Erase the folded element
805        if (Ops.size() == 1) return Ops[0];
806      } else {
807        // If we couldn't fold the expression, move to the next constant.  Note
808        // that this is impossible to happen in practice because we always
809        // constant fold constant ints to constant ints.
810        ++Idx;
811      }
812    }
813
814    // If we are left with a constant one being multiplied, strip it off.
815    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
816      Ops.erase(Ops.begin());
817      --Idx;
818    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isNullValue()) {
819      // If we have a multiply of zero, it will always be zero.
820      return Ops[0];
821    }
822  }
823
824  // Skip over the add expression until we get to a multiply.
825  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
826    ++Idx;
827
828  if (Ops.size() == 1)
829    return Ops[0];
830
831  // If there are mul operands inline them all into this expression.
832  if (Idx < Ops.size()) {
833    bool DeletedMul = false;
834    while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
835      // If we have an mul, expand the mul operands onto the end of the operands
836      // list.
837      Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
838      Ops.erase(Ops.begin()+Idx);
839      DeletedMul = true;
840    }
841
842    // If we deleted at least one mul, we added operands to the end of the list,
843    // and they are not necessarily sorted.  Recurse to resort and resimplify
844    // any operands we just aquired.
845    if (DeletedMul)
846      return get(Ops);
847  }
848
849  // If there are any add recurrences in the operands list, see if any other
850  // added values are loop invariant.  If so, we can fold them into the
851  // recurrence.
852  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
853    ++Idx;
854
855  // Scan over all recurrences, trying to fold loop invariants into them.
856  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
857    // Scan all of the other operands to this mul and add them to the vector if
858    // they are loop invariant w.r.t. the recurrence.
859    std::vector<SCEVHandle> LIOps;
860    SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
861    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
862      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
863        LIOps.push_back(Ops[i]);
864        Ops.erase(Ops.begin()+i);
865        --i; --e;
866      }
867
868    // If we found some loop invariants, fold them into the recurrence.
869    if (!LIOps.empty()) {
870      //  NLI * LI * { Start,+,Step}  -->  NLI * { LI*Start,+,LI*Step }
871      std::vector<SCEVHandle> NewOps;
872      NewOps.reserve(AddRec->getNumOperands());
873      if (LIOps.size() == 1) {
874        SCEV *Scale = LIOps[0];
875        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
876          NewOps.push_back(SCEVMulExpr::get(Scale, AddRec->getOperand(i)));
877      } else {
878        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
879          std::vector<SCEVHandle> MulOps(LIOps);
880          MulOps.push_back(AddRec->getOperand(i));
881          NewOps.push_back(SCEVMulExpr::get(MulOps));
882        }
883      }
884
885      SCEVHandle NewRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
886
887      // If all of the other operands were loop invariant, we are done.
888      if (Ops.size() == 1) return NewRec;
889
890      // Otherwise, multiply the folded AddRec by the non-liv parts.
891      for (unsigned i = 0;; ++i)
892        if (Ops[i] == AddRec) {
893          Ops[i] = NewRec;
894          break;
895        }
896      return SCEVMulExpr::get(Ops);
897    }
898
899    // Okay, if there weren't any loop invariants to be folded, check to see if
900    // there are multiple AddRec's with the same loop induction variable being
901    // multiplied together.  If so, we can fold them.
902    for (unsigned OtherIdx = Idx+1;
903         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
904      if (OtherIdx != Idx) {
905        SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
906        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
907          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
908          SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
909          SCEVHandle NewStart = SCEVMulExpr::get(F->getStart(),
910                                                 G->getStart());
911          SCEVHandle B = F->getStepRecurrence();
912          SCEVHandle D = G->getStepRecurrence();
913          SCEVHandle NewStep = SCEVAddExpr::get(SCEVMulExpr::get(F, D),
914                                                SCEVMulExpr::get(G, B),
915                                                SCEVMulExpr::get(B, D));
916          SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewStart, NewStep,
917                                                     F->getLoop());
918          if (Ops.size() == 2) return NewAddRec;
919
920          Ops.erase(Ops.begin()+Idx);
921          Ops.erase(Ops.begin()+OtherIdx-1);
922          Ops.push_back(NewAddRec);
923          return SCEVMulExpr::get(Ops);
924        }
925      }
926
927    // Otherwise couldn't fold anything into this recurrence.  Move onto the
928    // next one.
929  }
930
931  // Okay, it looks like we really DO need an mul expr.  Check to see if we
932  // already have one, otherwise create a new one.
933  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
934  SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scMulExpr,
935                                                              SCEVOps)];
936  if (Result == 0) Result = new SCEVMulExpr(Ops);
937  return Result;
938}
939
940SCEVHandle SCEVUDivExpr::get(const SCEVHandle &LHS, const SCEVHandle &RHS) {
941  if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
942    if (RHSC->getValue()->equalsInt(1))
943      return LHS;                            // X /u 1 --> x
944    if (RHSC->getValue()->isAllOnesValue())
945      return getNegativeSCEV(LHS);           // X /u -1  -->  -x
946
947    if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
948      Constant *LHSCV = LHSC->getValue();
949      Constant *RHSCV = RHSC->getValue();
950      if (LHSCV->getType()->isSigned())
951        LHSCV = ConstantExpr::getCast(LHSCV,
952                                      LHSCV->getType()->getUnsignedVersion());
953      if (RHSCV->getType()->isSigned())
954        RHSCV = ConstantExpr::getCast(RHSCV, LHSCV->getType());
955      return SCEVUnknown::get(ConstantExpr::getDiv(LHSCV, RHSCV));
956    }
957  }
958
959  // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
960
961  SCEVUDivExpr *&Result = SCEVUDivs[std::make_pair(LHS, RHS)];
962  if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
963  return Result;
964}
965
966
967/// SCEVAddRecExpr::get - Get a add recurrence expression for the
968/// specified loop.  Simplify the expression as much as possible.
969SCEVHandle SCEVAddRecExpr::get(const SCEVHandle &Start,
970                               const SCEVHandle &Step, const Loop *L) {
971  std::vector<SCEVHandle> Operands;
972  Operands.push_back(Start);
973  if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
974    if (StepChrec->getLoop() == L) {
975      Operands.insert(Operands.end(), StepChrec->op_begin(),
976                      StepChrec->op_end());
977      return get(Operands, L);
978    }
979
980  Operands.push_back(Step);
981  return get(Operands, L);
982}
983
984/// SCEVAddRecExpr::get - Get a add recurrence expression for the
985/// specified loop.  Simplify the expression as much as possible.
986SCEVHandle SCEVAddRecExpr::get(std::vector<SCEVHandle> &Operands,
987                               const Loop *L) {
988  if (Operands.size() == 1) return Operands[0];
989
990  if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Operands.back()))
991    if (StepC->getValue()->isNullValue()) {
992      Operands.pop_back();
993      return get(Operands, L);             // { X,+,0 }  -->  X
994    }
995
996  SCEVAddRecExpr *&Result =
997    SCEVAddRecExprs[std::make_pair(L, std::vector<SCEV*>(Operands.begin(),
998                                                         Operands.end()))];
999  if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1000  return Result;
1001}
1002
1003SCEVHandle SCEVUnknown::get(Value *V) {
1004  if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
1005    return SCEVConstant::get(CI);
1006  SCEVUnknown *&Result = SCEVUnknowns[V];
1007  if (Result == 0) Result = new SCEVUnknown(V);
1008  return Result;
1009}
1010
1011
1012//===----------------------------------------------------------------------===//
1013//             ScalarEvolutionsImpl Definition and Implementation
1014//===----------------------------------------------------------------------===//
1015//
1016/// ScalarEvolutionsImpl - This class implements the main driver for the scalar
1017/// evolution code.
1018///
1019namespace {
1020  struct ScalarEvolutionsImpl {
1021    /// F - The function we are analyzing.
1022    ///
1023    Function &F;
1024
1025    /// LI - The loop information for the function we are currently analyzing.
1026    ///
1027    LoopInfo &LI;
1028
1029    /// UnknownValue - This SCEV is used to represent unknown trip counts and
1030    /// things.
1031    SCEVHandle UnknownValue;
1032
1033    /// Scalars - This is a cache of the scalars we have analyzed so far.
1034    ///
1035    std::map<Value*, SCEVHandle> Scalars;
1036
1037    /// IterationCounts - Cache the iteration count of the loops for this
1038    /// function as they are computed.
1039    std::map<const Loop*, SCEVHandle> IterationCounts;
1040
1041    /// ConstantEvolutionLoopExitValue - This map contains entries for all of
1042    /// the PHI instructions that we attempt to compute constant evolutions for.
1043    /// This allows us to avoid potentially expensive recomputation of these
1044    /// properties.  An instruction maps to null if we are unable to compute its
1045    /// exit value.
1046    std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
1047
1048  public:
1049    ScalarEvolutionsImpl(Function &f, LoopInfo &li)
1050      : F(f), LI(li), UnknownValue(new SCEVCouldNotCompute()) {}
1051
1052    /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1053    /// expression and create a new one.
1054    SCEVHandle getSCEV(Value *V);
1055
1056    /// getSCEVAtScope - Compute the value of the specified expression within
1057    /// the indicated loop (which may be null to indicate in no loop).  If the
1058    /// expression cannot be evaluated, return UnknownValue itself.
1059    SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L);
1060
1061
1062    /// hasLoopInvariantIterationCount - Return true if the specified loop has
1063    /// an analyzable loop-invariant iteration count.
1064    bool hasLoopInvariantIterationCount(const Loop *L);
1065
1066    /// getIterationCount - If the specified loop has a predictable iteration
1067    /// count, return it.  Note that it is not valid to call this method on a
1068    /// loop without a loop-invariant iteration count.
1069    SCEVHandle getIterationCount(const Loop *L);
1070
1071    /// deleteInstructionFromRecords - This method should be called by the
1072    /// client before it removes an instruction from the program, to make sure
1073    /// that no dangling references are left around.
1074    void deleteInstructionFromRecords(Instruction *I);
1075
1076  private:
1077    /// createSCEV - We know that there is no SCEV for the specified value.
1078    /// Analyze the expression.
1079    SCEVHandle createSCEV(Value *V);
1080    SCEVHandle createNodeForCast(CastInst *CI);
1081
1082    /// createNodeForPHI - Provide the special handling we need to analyze PHI
1083    /// SCEVs.
1084    SCEVHandle createNodeForPHI(PHINode *PN);
1085    void UpdatePHIUserScalarEntries(Instruction *I, PHINode *PN,
1086                                    std::set<Instruction*> &UpdatedInsts);
1087
1088    /// ComputeIterationCount - Compute the number of times the specified loop
1089    /// will iterate.
1090    SCEVHandle ComputeIterationCount(const Loop *L);
1091
1092    /// ComputeIterationCountExhaustively - If the trip is known to execute a
1093    /// constant number of times (the condition evolves only from constants),
1094    /// try to evaluate a few iterations of the loop until we get the exit
1095    /// condition gets a value of ExitWhen (true or false).  If we cannot
1096    /// evaluate the trip count of the loop, return UnknownValue.
1097    SCEVHandle ComputeIterationCountExhaustively(const Loop *L, Value *Cond,
1098                                                 bool ExitWhen);
1099
1100    /// HowFarToZero - Return the number of times a backedge comparing the
1101    /// specified value to zero will execute.  If not computable, return
1102    /// UnknownValue
1103    SCEVHandle HowFarToZero(SCEV *V, const Loop *L);
1104
1105    /// HowFarToNonZero - Return the number of times a backedge checking the
1106    /// specified value for nonzero will execute.  If not computable, return
1107    /// UnknownValue
1108    SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L);
1109
1110    /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1111    /// in the header of its containing loop, we know the loop executes a
1112    /// constant number of times, and the PHI node is just a recurrence
1113    /// involving constants, fold it.
1114    Constant *getConstantEvolutionLoopExitValue(PHINode *PN, uint64_t Its,
1115                                                const Loop *L);
1116  };
1117}
1118
1119//===----------------------------------------------------------------------===//
1120//            Basic SCEV Analysis and PHI Idiom Recognition Code
1121//
1122
1123/// deleteInstructionFromRecords - This method should be called by the
1124/// client before it removes an instruction from the program, to make sure
1125/// that no dangling references are left around.
1126void ScalarEvolutionsImpl::deleteInstructionFromRecords(Instruction *I) {
1127  Scalars.erase(I);
1128  if (PHINode *PN = dyn_cast<PHINode>(I))
1129    ConstantEvolutionLoopExitValue.erase(PN);
1130}
1131
1132
1133/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1134/// expression and create a new one.
1135SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) {
1136  assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!");
1137
1138  std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V);
1139  if (I != Scalars.end()) return I->second;
1140  SCEVHandle S = createSCEV(V);
1141  Scalars.insert(std::make_pair(V, S));
1142  return S;
1143}
1144
1145
1146/// UpdatePHIUserScalarEntries - After PHI node analysis, we have a bunch of
1147/// entries in the scalar map that refer to the "symbolic" PHI value instead of
1148/// the recurrence value.  After we resolve the PHI we must loop over all of the
1149/// using instructions that have scalar map entries and update them.
1150void ScalarEvolutionsImpl::UpdatePHIUserScalarEntries(Instruction *I,
1151                                                      PHINode *PN,
1152                                        std::set<Instruction*> &UpdatedInsts) {
1153  std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I);
1154  if (SI == Scalars.end()) return;   // This scalar wasn't previous processed.
1155  if (UpdatedInsts.insert(I).second) {
1156    Scalars.erase(SI);                 // Remove the old entry
1157    getSCEV(I);                        // Calculate the new entry
1158
1159    for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1160         UI != E; ++UI)
1161      UpdatePHIUserScalarEntries(cast<Instruction>(*UI), PN, UpdatedInsts);
1162  }
1163}
1164
1165
1166/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
1167/// a loop header, making it a potential recurrence, or it doesn't.
1168///
1169SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) {
1170  if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
1171    if (const Loop *L = LI.getLoopFor(PN->getParent()))
1172      if (L->getHeader() == PN->getParent()) {
1173        // If it lives in the loop header, it has two incoming values, one
1174        // from outside the loop, and one from inside.
1175        unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1176        unsigned BackEdge     = IncomingEdge^1;
1177
1178        // While we are analyzing this PHI node, handle its value symbolically.
1179        SCEVHandle SymbolicName = SCEVUnknown::get(PN);
1180        assert(Scalars.find(PN) == Scalars.end() &&
1181               "PHI node already processed?");
1182        Scalars.insert(std::make_pair(PN, SymbolicName));
1183
1184        // Using this symbolic name for the PHI, analyze the value coming around
1185        // the back-edge.
1186        SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1187
1188        // NOTE: If BEValue is loop invariant, we know that the PHI node just
1189        // has a special value for the first iteration of the loop.
1190
1191        // If the value coming around the backedge is an add with the symbolic
1192        // value we just inserted, then we found a simple induction variable!
1193        if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
1194          // If there is a single occurrence of the symbolic value, replace it
1195          // with a recurrence.
1196          unsigned FoundIndex = Add->getNumOperands();
1197          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1198            if (Add->getOperand(i) == SymbolicName)
1199              if (FoundIndex == e) {
1200                FoundIndex = i;
1201                break;
1202              }
1203
1204          if (FoundIndex != Add->getNumOperands()) {
1205            // Create an add with everything but the specified operand.
1206            std::vector<SCEVHandle> Ops;
1207            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1208              if (i != FoundIndex)
1209                Ops.push_back(Add->getOperand(i));
1210            SCEVHandle Accum = SCEVAddExpr::get(Ops);
1211
1212            // This is not a valid addrec if the step amount is varying each
1213            // loop iteration, but is not itself an addrec in this loop.
1214            if (Accum->isLoopInvariant(L) ||
1215                (isa<SCEVAddRecExpr>(Accum) &&
1216                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1217              SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1218              SCEVHandle PHISCEV  = SCEVAddRecExpr::get(StartVal, Accum, L);
1219
1220              // Okay, for the entire analysis of this edge we assumed the PHI
1221              // to be symbolic.  We now need to go back and update all of the
1222              // entries for the scalars that use the PHI (except for the PHI
1223              // itself) to use the new analyzed value instead of the "symbolic"
1224              // value.
1225              Scalars.find(PN)->second = PHISCEV;       // Update the PHI value
1226              std::set<Instruction*> UpdatedInsts;
1227              UpdatedInsts.insert(PN);
1228              for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
1229                   UI != E; ++UI)
1230                UpdatePHIUserScalarEntries(cast<Instruction>(*UI), PN,
1231                                           UpdatedInsts);
1232              return PHISCEV;
1233            }
1234          }
1235        }
1236
1237        return SymbolicName;
1238      }
1239
1240  // If it's not a loop phi, we can't handle it yet.
1241  return SCEVUnknown::get(PN);
1242}
1243
1244/// createNodeForCast - Handle the various forms of casts that we support.
1245///
1246SCEVHandle ScalarEvolutionsImpl::createNodeForCast(CastInst *CI) {
1247  const Type *SrcTy = CI->getOperand(0)->getType();
1248  const Type *DestTy = CI->getType();
1249
1250  // If this is a noop cast (ie, conversion from int to uint), ignore it.
1251  if (SrcTy->isLosslesslyConvertibleTo(DestTy))
1252    return getSCEV(CI->getOperand(0));
1253
1254  if (SrcTy->isInteger() && DestTy->isInteger()) {
1255    // Otherwise, if this is a truncating integer cast, we can represent this
1256    // cast.
1257    if (SrcTy->getPrimitiveSize() > DestTy->getPrimitiveSize())
1258      return SCEVTruncateExpr::get(getSCEV(CI->getOperand(0)),
1259                                   CI->getType()->getUnsignedVersion());
1260    if (SrcTy->isUnsigned() &&
1261        SrcTy->getPrimitiveSize() > DestTy->getPrimitiveSize())
1262      return SCEVZeroExtendExpr::get(getSCEV(CI->getOperand(0)),
1263                                     CI->getType()->getUnsignedVersion());
1264  }
1265
1266  // If this is an sign or zero extending cast and we can prove that the value
1267  // will never overflow, we could do similar transformations.
1268
1269  // Otherwise, we can't handle this cast!
1270  return SCEVUnknown::get(CI);
1271}
1272
1273
1274/// createSCEV - We know that there is no SCEV for the specified value.
1275/// Analyze the expression.
1276///
1277SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) {
1278  if (Instruction *I = dyn_cast<Instruction>(V)) {
1279    switch (I->getOpcode()) {
1280    case Instruction::Add:
1281      return SCEVAddExpr::get(getSCEV(I->getOperand(0)),
1282                              getSCEV(I->getOperand(1)));
1283    case Instruction::Mul:
1284      return SCEVMulExpr::get(getSCEV(I->getOperand(0)),
1285                              getSCEV(I->getOperand(1)));
1286    case Instruction::Div:
1287      if (V->getType()->isInteger() && V->getType()->isUnsigned())
1288        return SCEVUDivExpr::get(getSCEV(I->getOperand(0)),
1289                                 getSCEV(I->getOperand(1)));
1290      break;
1291
1292    case Instruction::Sub:
1293      return getMinusSCEV(getSCEV(I->getOperand(0)), getSCEV(I->getOperand(1)));
1294
1295    case Instruction::Shl:
1296      // Turn shift left of a constant amount into a multiply.
1297      if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1298        Constant *X = ConstantInt::get(V->getType(), 1);
1299        X = ConstantExpr::getShl(X, SA);
1300        return SCEVMulExpr::get(getSCEV(I->getOperand(0)), getSCEV(X));
1301      }
1302      break;
1303
1304    case Instruction::Shr:
1305      if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1)))
1306        if (V->getType()->isUnsigned()) {
1307          Constant *X = ConstantInt::get(V->getType(), 1);
1308          X = ConstantExpr::getShl(X, SA);
1309          return SCEVUDivExpr::get(getSCEV(I->getOperand(0)), getSCEV(X));
1310        }
1311      break;
1312
1313    case Instruction::Cast:
1314      return createNodeForCast(cast<CastInst>(I));
1315
1316    case Instruction::PHI:
1317      return createNodeForPHI(cast<PHINode>(I));
1318
1319    default: // We cannot analyze this expression.
1320      break;
1321    }
1322  }
1323
1324  return SCEVUnknown::get(V);
1325}
1326
1327
1328
1329//===----------------------------------------------------------------------===//
1330//                   Iteration Count Computation Code
1331//
1332
1333/// getIterationCount - If the specified loop has a predictable iteration
1334/// count, return it.  Note that it is not valid to call this method on a
1335/// loop without a loop-invariant iteration count.
1336SCEVHandle ScalarEvolutionsImpl::getIterationCount(const Loop *L) {
1337  std::map<const Loop*, SCEVHandle>::iterator I = IterationCounts.find(L);
1338  if (I == IterationCounts.end()) {
1339    SCEVHandle ItCount = ComputeIterationCount(L);
1340    I = IterationCounts.insert(std::make_pair(L, ItCount)).first;
1341    if (ItCount != UnknownValue) {
1342      assert(ItCount->isLoopInvariant(L) &&
1343             "Computed trip count isn't loop invariant for loop!");
1344      ++NumTripCountsComputed;
1345    } else if (isa<PHINode>(L->getHeader()->begin())) {
1346      // Only count loops that have phi nodes as not being computable.
1347      ++NumTripCountsNotComputed;
1348    }
1349  }
1350  return I->second;
1351}
1352
1353/// ComputeIterationCount - Compute the number of times the specified loop
1354/// will iterate.
1355SCEVHandle ScalarEvolutionsImpl::ComputeIterationCount(const Loop *L) {
1356  // If the loop has a non-one exit block count, we can't analyze it.
1357  std::vector<BasicBlock*> ExitBlocks;
1358  L->getExitBlocks(ExitBlocks);
1359  if (ExitBlocks.size() != 1) return UnknownValue;
1360
1361  // Okay, there is one exit block.  Try to find the condition that causes the
1362  // loop to be exited.
1363  BasicBlock *ExitBlock = ExitBlocks[0];
1364
1365  BasicBlock *ExitingBlock = 0;
1366  for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
1367       PI != E; ++PI)
1368    if (L->contains(*PI)) {
1369      if (ExitingBlock == 0)
1370        ExitingBlock = *PI;
1371      else
1372        return UnknownValue;   // More than one block exiting!
1373    }
1374  assert(ExitingBlock && "No exits from loop, something is broken!");
1375
1376  // Okay, we've computed the exiting block.  See what condition causes us to
1377  // exit.
1378  //
1379  // FIXME: we should be able to handle switch instructions (with a single exit)
1380  // FIXME: We should handle cast of int to bool as well
1381  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1382  if (ExitBr == 0) return UnknownValue;
1383  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
1384  SetCondInst *ExitCond = dyn_cast<SetCondInst>(ExitBr->getCondition());
1385  if (ExitCond == 0)  // Not a setcc
1386    return ComputeIterationCountExhaustively(L, ExitBr->getCondition(),
1387                                          ExitBr->getSuccessor(0) == ExitBlock);
1388
1389  SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
1390  SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
1391
1392  // Try to evaluate any dependencies out of the loop.
1393  SCEVHandle Tmp = getSCEVAtScope(LHS, L);
1394  if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
1395  Tmp = getSCEVAtScope(RHS, L);
1396  if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
1397
1398  // If the condition was exit on true, convert the condition to exit on false.
1399  Instruction::BinaryOps Cond;
1400  if (ExitBr->getSuccessor(1) == ExitBlock)
1401    Cond = ExitCond->getOpcode();
1402  else
1403    Cond = ExitCond->getInverseCondition();
1404
1405  // At this point, we would like to compute how many iterations of the loop the
1406  // predicate will return true for these inputs.
1407  if (isa<SCEVConstant>(LHS) && !isa<SCEVConstant>(RHS)) {
1408    // If there is a constant, force it into the RHS.
1409    std::swap(LHS, RHS);
1410    Cond = SetCondInst::getSwappedCondition(Cond);
1411  }
1412
1413  // FIXME: think about handling pointer comparisons!  i.e.:
1414  // while (P != P+100) ++P;
1415
1416  // If we have a comparison of a chrec against a constant, try to use value
1417  // ranges to answer this query.
1418  if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
1419    if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
1420      if (AddRec->getLoop() == L) {
1421        // Form the comparison range using the constant of the correct type so
1422        // that the ConstantRange class knows to do a signed or unsigned
1423        // comparison.
1424        ConstantInt *CompVal = RHSC->getValue();
1425        const Type *RealTy = ExitCond->getOperand(0)->getType();
1426        CompVal = dyn_cast<ConstantInt>(ConstantExpr::getCast(CompVal, RealTy));
1427        if (CompVal) {
1428          // Form the constant range.
1429          ConstantRange CompRange(Cond, CompVal);
1430
1431          // Now that we have it, if it's signed, convert it to an unsigned
1432          // range.
1433          if (CompRange.getLower()->getType()->isSigned()) {
1434            const Type *NewTy = RHSC->getValue()->getType();
1435            Constant *NewL = ConstantExpr::getCast(CompRange.getLower(), NewTy);
1436            Constant *NewU = ConstantExpr::getCast(CompRange.getUpper(), NewTy);
1437            CompRange = ConstantRange(NewL, NewU);
1438          }
1439
1440          SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange);
1441          if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
1442        }
1443      }
1444
1445  switch (Cond) {
1446  case Instruction::SetNE:                     // while (X != Y)
1447    // Convert to: while (X-Y != 0)
1448    if (LHS->getType()->isInteger()) {
1449      SCEVHandle TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
1450      if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1451    }
1452    break;
1453  case Instruction::SetEQ:
1454    // Convert to: while (X-Y == 0)           // while (X == Y)
1455    if (LHS->getType()->isInteger()) {
1456      SCEVHandle TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
1457      if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1458    }
1459    break;
1460  default:
1461#if 0
1462    std::cerr << "ComputeIterationCount ";
1463    if (ExitCond->getOperand(0)->getType()->isUnsigned())
1464      std::cerr << "[unsigned] ";
1465    std::cerr << *LHS << "   "
1466              << Instruction::getOpcodeName(Cond) << "   " << *RHS << "\n";
1467#endif
1468    break;
1469  }
1470
1471  return ComputeIterationCountExhaustively(L, ExitCond,
1472                                         ExitBr->getSuccessor(0) == ExitBlock);
1473}
1474
1475/// CanConstantFold - Return true if we can constant fold an instruction of the
1476/// specified type, assuming that all operands were constants.
1477static bool CanConstantFold(const Instruction *I) {
1478  if (isa<BinaryOperator>(I) || isa<ShiftInst>(I) ||
1479      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
1480    return true;
1481
1482  if (const CallInst *CI = dyn_cast<CallInst>(I))
1483    if (const Function *F = CI->getCalledFunction())
1484      return canConstantFoldCallTo((Function*)F);  // FIXME: elim cast
1485  return false;
1486}
1487
1488/// ConstantFold - Constant fold an instruction of the specified type with the
1489/// specified constant operands.  This function may modify the operands vector.
1490static Constant *ConstantFold(const Instruction *I,
1491                              std::vector<Constant*> &Operands) {
1492  if (isa<BinaryOperator>(I) || isa<ShiftInst>(I))
1493    return ConstantExpr::get(I->getOpcode(), Operands[0], Operands[1]);
1494
1495  switch (I->getOpcode()) {
1496  case Instruction::Cast:
1497    return ConstantExpr::getCast(Operands[0], I->getType());
1498  case Instruction::Select:
1499    return ConstantExpr::getSelect(Operands[0], Operands[1], Operands[2]);
1500  case Instruction::Call:
1501    if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Operands[0])) {
1502      Operands.erase(Operands.begin());
1503      return ConstantFoldCall(cast<Function>(CPR->getValue()), Operands);
1504    }
1505
1506    return 0;
1507  case Instruction::GetElementPtr:
1508    Constant *Base = Operands[0];
1509    Operands.erase(Operands.begin());
1510    return ConstantExpr::getGetElementPtr(Base, Operands);
1511  }
1512  return 0;
1513}
1514
1515
1516/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
1517/// in the loop that V is derived from.  We allow arbitrary operations along the
1518/// way, but the operands of an operation must either be constants or a value
1519/// derived from a constant PHI.  If this expression does not fit with these
1520/// constraints, return null.
1521static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
1522  // If this is not an instruction, or if this is an instruction outside of the
1523  // loop, it can't be derived from a loop PHI.
1524  Instruction *I = dyn_cast<Instruction>(V);
1525  if (I == 0 || !L->contains(I->getParent())) return 0;
1526
1527  if (PHINode *PN = dyn_cast<PHINode>(I))
1528    if (L->getHeader() == I->getParent())
1529      return PN;
1530    else
1531      // We don't currently keep track of the control flow needed to evaluate
1532      // PHIs, so we cannot handle PHIs inside of loops.
1533      return 0;
1534
1535  // If we won't be able to constant fold this expression even if the operands
1536  // are constants, return early.
1537  if (!CanConstantFold(I)) return 0;
1538
1539  // Otherwise, we can evaluate this instruction if all of its operands are
1540  // constant or derived from a PHI node themselves.
1541  PHINode *PHI = 0;
1542  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
1543    if (!(isa<Constant>(I->getOperand(Op)) ||
1544          isa<GlobalValue>(I->getOperand(Op)))) {
1545      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
1546      if (P == 0) return 0;  // Not evolving from PHI
1547      if (PHI == 0)
1548        PHI = P;
1549      else if (PHI != P)
1550        return 0;  // Evolving from multiple different PHIs.
1551    }
1552
1553  // This is a expression evolving from a constant PHI!
1554  return PHI;
1555}
1556
1557/// EvaluateExpression - Given an expression that passes the
1558/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
1559/// in the loop has the value PHIVal.  If we can't fold this expression for some
1560/// reason, return null.
1561static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
1562  if (isa<PHINode>(V)) return PHIVal;
1563  if (Constant *C = dyn_cast<Constant>(V)) return C;
1564  if (GlobalValue *GV = dyn_cast<GlobalValue>(V))
1565    return ConstantPointerRef::get(GV);
1566  Instruction *I = cast<Instruction>(V);
1567
1568  std::vector<Constant*> Operands;
1569  Operands.resize(I->getNumOperands());
1570
1571  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
1572    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
1573    if (Operands[i] == 0) return 0;
1574  }
1575
1576  return ConstantFold(I, Operands);
1577}
1578
1579/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1580/// in the header of its containing loop, we know the loop executes a
1581/// constant number of times, and the PHI node is just a recurrence
1582/// involving constants, fold it.
1583Constant *ScalarEvolutionsImpl::
1584getConstantEvolutionLoopExitValue(PHINode *PN, uint64_t Its, const Loop *L) {
1585  std::map<PHINode*, Constant*>::iterator I =
1586    ConstantEvolutionLoopExitValue.find(PN);
1587  if (I != ConstantEvolutionLoopExitValue.end())
1588    return I->second;
1589
1590  if (Its > MaxBruteForceIterations)
1591    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
1592
1593  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
1594
1595  // Since the loop is canonicalized, the PHI node must have two entries.  One
1596  // entry must be a constant (coming in from outside of the loop), and the
1597  // second must be derived from the same PHI.
1598  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
1599  Constant *StartCST =
1600    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
1601  if (StartCST == 0)
1602    return RetVal = 0;  // Must be a constant.
1603
1604  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
1605  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
1606  if (PN2 != PN)
1607    return RetVal = 0;  // Not derived from same PHI.
1608
1609  // Execute the loop symbolically to determine the exit value.
1610  unsigned IterationNum = 0;
1611  unsigned NumIterations = Its;
1612  if (NumIterations != Its)
1613    return RetVal = 0;  // More than 2^32 iterations??
1614
1615  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
1616    if (IterationNum == NumIterations)
1617      return RetVal = PHIVal;  // Got exit value!
1618
1619    // Compute the value of the PHI node for the next iteration.
1620    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
1621    if (NextPHI == PHIVal)
1622      return RetVal = NextPHI;  // Stopped evolving!
1623    if (NextPHI == 0)
1624      return 0;        // Couldn't evaluate!
1625    PHIVal = NextPHI;
1626  }
1627}
1628
1629/// ComputeIterationCountExhaustively - If the trip is known to execute a
1630/// constant number of times (the condition evolves only from constants),
1631/// try to evaluate a few iterations of the loop until we get the exit
1632/// condition gets a value of ExitWhen (true or false).  If we cannot
1633/// evaluate the trip count of the loop, return UnknownValue.
1634SCEVHandle ScalarEvolutionsImpl::
1635ComputeIterationCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
1636  PHINode *PN = getConstantEvolvingPHI(Cond, L);
1637  if (PN == 0) return UnknownValue;
1638
1639  // Since the loop is canonicalized, the PHI node must have two entries.  One
1640  // entry must be a constant (coming in from outside of the loop), and the
1641  // second must be derived from the same PHI.
1642  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
1643  Constant *StartCST =
1644    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
1645  if (StartCST == 0) return UnknownValue;  // Must be a constant.
1646
1647  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
1648  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
1649  if (PN2 != PN) return UnknownValue;  // Not derived from same PHI.
1650
1651  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
1652  // the loop symbolically to determine when the condition gets a value of
1653  // "ExitWhen".
1654  unsigned IterationNum = 0;
1655  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
1656  for (Constant *PHIVal = StartCST;
1657       IterationNum != MaxIterations; ++IterationNum) {
1658    ConstantBool *CondVal =
1659      dyn_cast_or_null<ConstantBool>(EvaluateExpression(Cond, PHIVal));
1660    if (!CondVal) return UnknownValue;     // Couldn't symbolically evaluate.
1661
1662    if (CondVal->getValue() == ExitWhen) {
1663      ConstantEvolutionLoopExitValue[PN] = PHIVal;
1664      ++NumBruteForceTripCountsComputed;
1665      return SCEVConstant::get(ConstantUInt::get(Type::UIntTy, IterationNum));
1666    }
1667
1668    // Compute the value of the PHI node for the next iteration.
1669    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
1670    if (NextPHI == 0 || NextPHI == PHIVal)
1671      return UnknownValue;  // Couldn't evaluate or not making progress...
1672    PHIVal = NextPHI;
1673  }
1674
1675  // Too many iterations were needed to evaluate.
1676  return UnknownValue;
1677}
1678
1679/// getSCEVAtScope - Compute the value of the specified expression within the
1680/// indicated loop (which may be null to indicate in no loop).  If the
1681/// expression cannot be evaluated, return UnknownValue.
1682SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) {
1683  // FIXME: this should be turned into a virtual method on SCEV!
1684
1685  if (isa<SCEVConstant>(V)) return V;
1686
1687  // If this instruction is evolves from a constant-evolving PHI, compute the
1688  // exit value from the loop without using SCEVs.
1689  if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
1690    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
1691      const Loop *LI = this->LI[I->getParent()];
1692      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
1693        if (PHINode *PN = dyn_cast<PHINode>(I))
1694          if (PN->getParent() == LI->getHeader()) {
1695            // Okay, there is no closed form solution for the PHI node.  Check
1696            // to see if the loop that contains it has a known iteration count.
1697            // If so, we may be able to force computation of the exit value.
1698            SCEVHandle IterationCount = getIterationCount(LI);
1699            if (SCEVConstant *ICC = dyn_cast<SCEVConstant>(IterationCount)) {
1700              // Okay, we know how many times the containing loop executes.  If
1701              // this is a constant evolving PHI node, get the final value at
1702              // the specified iteration number.
1703              Constant *RV = getConstantEvolutionLoopExitValue(PN,
1704                                               ICC->getValue()->getRawValue(),
1705                                                               LI);
1706              if (RV) return SCEVUnknown::get(RV);
1707            }
1708          }
1709
1710      // Okay, this is a some expression that we cannot symbolically evaluate
1711      // into a SCEV.  Check to see if it's possible to symbolically evaluate
1712      // the arguments into constants, and if see, try to constant propagate the
1713      // result.  This is particularly useful for computing loop exit values.
1714      if (CanConstantFold(I)) {
1715        std::vector<Constant*> Operands;
1716        Operands.reserve(I->getNumOperands());
1717        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
1718          Value *Op = I->getOperand(i);
1719          if (Constant *C = dyn_cast<Constant>(Op)) {
1720            Operands.push_back(C);
1721          } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Op)) {
1722            Operands.push_back(ConstantPointerRef::get(GV));
1723          } else {
1724            SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
1725            if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
1726              Operands.push_back(ConstantExpr::getCast(SC->getValue(),
1727                                                       Op->getType()));
1728            else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
1729              if (Constant *C = dyn_cast<Constant>(SU->getValue()))
1730                Operands.push_back(ConstantExpr::getCast(C, Op->getType()));
1731              else
1732                return V;
1733            } else {
1734              return V;
1735            }
1736          }
1737        }
1738        return SCEVUnknown::get(ConstantFold(I, Operands));
1739      }
1740    }
1741
1742    // This is some other type of SCEVUnknown, just return it.
1743    return V;
1744  }
1745
1746  if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
1747    // Avoid performing the look-up in the common case where the specified
1748    // expression has no loop-variant portions.
1749    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
1750      SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
1751      if (OpAtScope != Comm->getOperand(i)) {
1752        if (OpAtScope == UnknownValue) return UnknownValue;
1753        // Okay, at least one of these operands is loop variant but might be
1754        // foldable.  Build a new instance of the folded commutative expression.
1755        std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
1756        NewOps.push_back(OpAtScope);
1757
1758        for (++i; i != e; ++i) {
1759          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
1760          if (OpAtScope == UnknownValue) return UnknownValue;
1761          NewOps.push_back(OpAtScope);
1762        }
1763        if (isa<SCEVAddExpr>(Comm))
1764          return SCEVAddExpr::get(NewOps);
1765        assert(isa<SCEVMulExpr>(Comm) && "Only know about add and mul!");
1766        return SCEVMulExpr::get(NewOps);
1767      }
1768    }
1769    // If we got here, all operands are loop invariant.
1770    return Comm;
1771  }
1772
1773  if (SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(V)) {
1774    SCEVHandle LHS = getSCEVAtScope(UDiv->getLHS(), L);
1775    if (LHS == UnknownValue) return LHS;
1776    SCEVHandle RHS = getSCEVAtScope(UDiv->getRHS(), L);
1777    if (RHS == UnknownValue) return RHS;
1778    if (LHS == UDiv->getLHS() && RHS == UDiv->getRHS())
1779      return UDiv;   // must be loop invariant
1780    return SCEVUDivExpr::get(LHS, RHS);
1781  }
1782
1783  // If this is a loop recurrence for a loop that does not contain L, then we
1784  // are dealing with the final value computed by the loop.
1785  if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
1786    if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
1787      // To evaluate this recurrence, we need to know how many times the AddRec
1788      // loop iterates.  Compute this now.
1789      SCEVHandle IterationCount = getIterationCount(AddRec->getLoop());
1790      if (IterationCount == UnknownValue) return UnknownValue;
1791      IterationCount = getTruncateOrZeroExtend(IterationCount,
1792                                               AddRec->getType());
1793
1794      // If the value is affine, simplify the expression evaluation to just
1795      // Start + Step*IterationCount.
1796      if (AddRec->isAffine())
1797        return SCEVAddExpr::get(AddRec->getStart(),
1798                                SCEVMulExpr::get(IterationCount,
1799                                                 AddRec->getOperand(1)));
1800
1801      // Otherwise, evaluate it the hard way.
1802      return AddRec->evaluateAtIteration(IterationCount);
1803    }
1804    return UnknownValue;
1805  }
1806
1807  //assert(0 && "Unknown SCEV type!");
1808  return UnknownValue;
1809}
1810
1811
1812/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
1813/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
1814/// might be the same) or two SCEVCouldNotCompute objects.
1815///
1816static std::pair<SCEVHandle,SCEVHandle>
1817SolveQuadraticEquation(const SCEVAddRecExpr *AddRec) {
1818  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
1819  SCEVConstant *L = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
1820  SCEVConstant *M = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
1821  SCEVConstant *N = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
1822
1823  // We currently can only solve this if the coefficients are constants.
1824  if (!L || !M || !N) {
1825    SCEV *CNC = new SCEVCouldNotCompute();
1826    return std::make_pair(CNC, CNC);
1827  }
1828
1829  Constant *Two = ConstantInt::get(L->getValue()->getType(), 2);
1830
1831  // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
1832  Constant *C = L->getValue();
1833  // The B coefficient is M-N/2
1834  Constant *B = ConstantExpr::getSub(M->getValue(),
1835                                     ConstantExpr::getDiv(N->getValue(),
1836                                                          Two));
1837  // The A coefficient is N/2
1838  Constant *A = ConstantExpr::getDiv(N->getValue(), Two);
1839
1840  // Compute the B^2-4ac term.
1841  Constant *SqrtTerm =
1842    ConstantExpr::getMul(ConstantInt::get(C->getType(), 4),
1843                         ConstantExpr::getMul(A, C));
1844  SqrtTerm = ConstantExpr::getSub(ConstantExpr::getMul(B, B), SqrtTerm);
1845
1846  // Compute floor(sqrt(B^2-4ac))
1847  ConstantUInt *SqrtVal =
1848    cast<ConstantUInt>(ConstantExpr::getCast(SqrtTerm,
1849                                   SqrtTerm->getType()->getUnsignedVersion()));
1850  uint64_t SqrtValV = SqrtVal->getValue();
1851  uint64_t SqrtValV2 = (uint64_t)sqrt(SqrtValV);
1852  // The square root might not be precise for arbitrary 64-bit integer
1853  // values.  Do some sanity checks to ensure it's correct.
1854  if (SqrtValV2*SqrtValV2 > SqrtValV ||
1855      (SqrtValV2+1)*(SqrtValV2+1) <= SqrtValV) {
1856    SCEV *CNC = new SCEVCouldNotCompute();
1857    return std::make_pair(CNC, CNC);
1858  }
1859
1860  SqrtVal = ConstantUInt::get(Type::ULongTy, SqrtValV2);
1861  SqrtTerm = ConstantExpr::getCast(SqrtVal, SqrtTerm->getType());
1862
1863  Constant *NegB = ConstantExpr::getNeg(B);
1864  Constant *TwoA = ConstantExpr::getMul(A, Two);
1865
1866  // The divisions must be performed as signed divisions.
1867  const Type *SignedTy = NegB->getType()->getSignedVersion();
1868  NegB = ConstantExpr::getCast(NegB, SignedTy);
1869  TwoA = ConstantExpr::getCast(TwoA, SignedTy);
1870  SqrtTerm = ConstantExpr::getCast(SqrtTerm, SignedTy);
1871
1872  Constant *Solution1 =
1873    ConstantExpr::getDiv(ConstantExpr::getAdd(NegB, SqrtTerm), TwoA);
1874  Constant *Solution2 =
1875    ConstantExpr::getDiv(ConstantExpr::getSub(NegB, SqrtTerm), TwoA);
1876  return std::make_pair(SCEVUnknown::get(Solution1),
1877                        SCEVUnknown::get(Solution2));
1878}
1879
1880/// HowFarToZero - Return the number of times a backedge comparing the specified
1881/// value to zero will execute.  If not computable, return UnknownValue
1882SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) {
1883  // If the value is a constant
1884  if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
1885    // If the value is already zero, the branch will execute zero times.
1886    if (C->getValue()->isNullValue()) return C;
1887    return UnknownValue;  // Otherwise it will loop infinitely.
1888  }
1889
1890  SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
1891  if (!AddRec || AddRec->getLoop() != L)
1892    return UnknownValue;
1893
1894  if (AddRec->isAffine()) {
1895    // If this is an affine expression the execution count of this branch is
1896    // equal to:
1897    //
1898    //     (0 - Start/Step)    iff   Start % Step == 0
1899    //
1900    // Get the initial value for the loop.
1901    SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
1902    SCEVHandle Step = AddRec->getOperand(1);
1903
1904    Step = getSCEVAtScope(Step, L->getParentLoop());
1905
1906    // Figure out if Start % Step == 0.
1907    // FIXME: We should add DivExpr and RemExpr operations to our AST.
1908    if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
1909      if (StepC->getValue()->equalsInt(1))      // N % 1 == 0
1910        return getNegativeSCEV(Start);  // 0 - Start/1 == -Start
1911      if (StepC->getValue()->isAllOnesValue())  // N % -1 == 0
1912        return Start;                   // 0 - Start/-1 == Start
1913
1914      // Check to see if Start is divisible by SC with no remainder.
1915      if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
1916        ConstantInt *StartCC = StartC->getValue();
1917        Constant *StartNegC = ConstantExpr::getNeg(StartCC);
1918        Constant *Rem = ConstantExpr::getRem(StartNegC, StepC->getValue());
1919        if (Rem->isNullValue()) {
1920          Constant *Result =ConstantExpr::getDiv(StartNegC,StepC->getValue());
1921          return SCEVUnknown::get(Result);
1922        }
1923      }
1924    }
1925  } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
1926    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
1927    // the quadratic equation to solve it.
1928    std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec);
1929    SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
1930    SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
1931    if (R1) {
1932#if 0
1933      std::cerr << "HFTZ: " << *V << " - sol#1: " << *R1
1934                << "  sol#2: " << *R2 << "\n";
1935#endif
1936      // Pick the smallest positive root value.
1937      assert(R1->getType()->isUnsigned()&&"Didn't canonicalize to unsigned?");
1938      if (ConstantBool *CB =
1939          dyn_cast<ConstantBool>(ConstantExpr::getSetLT(R1->getValue(),
1940                                                        R2->getValue()))) {
1941        if (CB != ConstantBool::True)
1942          std::swap(R1, R2);   // R1 is the minimum root now.
1943
1944        // We can only use this value if the chrec ends up with an exact zero
1945        // value at this index.  When solving for "X*X != 5", for example, we
1946        // should not accept a root of 2.
1947        SCEVHandle Val = AddRec->evaluateAtIteration(R1);
1948        if (SCEVConstant *EvalVal = dyn_cast<SCEVConstant>(Val))
1949          if (EvalVal->getValue()->isNullValue())
1950            return R1;  // We found a quadratic root!
1951      }
1952    }
1953  }
1954
1955  return UnknownValue;
1956}
1957
1958/// HowFarToNonZero - Return the number of times a backedge checking the
1959/// specified value for nonzero will execute.  If not computable, return
1960/// UnknownValue
1961SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) {
1962  // Loops that look like: while (X == 0) are very strange indeed.  We don't
1963  // handle them yet except for the trivial case.  This could be expanded in the
1964  // future as needed.
1965
1966  // If the value is a constant, check to see if it is known to be non-zero
1967  // already.  If so, the backedge will execute zero times.
1968  if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
1969    Constant *Zero = Constant::getNullValue(C->getValue()->getType());
1970    Constant *NonZero = ConstantExpr::getSetNE(C->getValue(), Zero);
1971    if (NonZero == ConstantBool::True)
1972      return getSCEV(Zero);
1973    return UnknownValue;  // Otherwise it will loop infinitely.
1974  }
1975
1976  // We could implement others, but I really doubt anyone writes loops like
1977  // this, and if they did, they would already be constant folded.
1978  return UnknownValue;
1979}
1980
1981static ConstantInt *
1982EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, Constant *C) {
1983  SCEVHandle InVal = SCEVConstant::get(cast<ConstantInt>(C));
1984  SCEVHandle Val = AddRec->evaluateAtIteration(InVal);
1985  assert(isa<SCEVConstant>(Val) &&
1986         "Evaluation of SCEV at constant didn't fold correctly?");
1987  return cast<SCEVConstant>(Val)->getValue();
1988}
1989
1990
1991/// getNumIterationsInRange - Return the number of iterations of this loop that
1992/// produce values in the specified constant range.  Another way of looking at
1993/// this is that it returns the first iteration number where the value is not in
1994/// the condition, thus computing the exit count. If the iteration count can't
1995/// be computed, an instance of SCEVCouldNotCompute is returned.
1996SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range) const {
1997  if (Range.isFullSet())  // Infinite loop.
1998    return new SCEVCouldNotCompute();
1999
2000  // If the start is a non-zero constant, shift the range to simplify things.
2001  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
2002    if (!SC->getValue()->isNullValue()) {
2003      std::vector<SCEVHandle> Operands(op_begin(), op_end());
2004      Operands[0] = SCEVUnknown::getIntegerSCEV(0, SC->getType());
2005      SCEVHandle Shifted = SCEVAddRecExpr::get(Operands, getLoop());
2006      if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
2007        return ShiftedAddRec->getNumIterationsInRange(
2008                                              Range.subtract(SC->getValue()));
2009      // This is strange and shouldn't happen.
2010      return new SCEVCouldNotCompute();
2011    }
2012
2013  // The only time we can solve this is when we have all constant indices.
2014  // Otherwise, we cannot determine the overflow conditions.
2015  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2016    if (!isa<SCEVConstant>(getOperand(i)))
2017      return new SCEVCouldNotCompute();
2018
2019
2020  // Okay at this point we know that all elements of the chrec are constants and
2021  // that the start element is zero.
2022
2023  // First check to see if the range contains zero.  If not, the first
2024  // iteration exits.
2025  ConstantInt *Zero = ConstantInt::get(getType(), 0);
2026  if (!Range.contains(Zero)) return SCEVConstant::get(Zero);
2027
2028  if (isAffine()) {
2029    // If this is an affine expression then we have this situation:
2030    //   Solve {0,+,A} in Range  ===  Ax in Range
2031
2032    // Since we know that zero is in the range, we know that the upper value of
2033    // the range must be the first possible exit value.  Also note that we
2034    // already checked for a full range.
2035    ConstantInt *Upper = cast<ConstantInt>(Range.getUpper());
2036    ConstantInt *A     = cast<SCEVConstant>(getOperand(1))->getValue();
2037    ConstantInt *One   = ConstantInt::get(getType(), 1);
2038
2039    // The exit value should be (Upper+A-1)/A.
2040    Constant *ExitValue = Upper;
2041    if (A != One) {
2042      ExitValue = ConstantExpr::getSub(ConstantExpr::getAdd(Upper, A), One);
2043      ExitValue = ConstantExpr::getDiv(ExitValue, A);
2044    }
2045    assert(isa<ConstantInt>(ExitValue) &&
2046           "Constant folding of integers not implemented?");
2047
2048    // Evaluate at the exit value.  If we really did fall out of the valid
2049    // range, then we computed our trip count, otherwise wrap around or other
2050    // things must have happened.
2051    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue);
2052    if (Range.contains(Val))
2053      return new SCEVCouldNotCompute();  // Something strange happened
2054
2055    // Ensure that the previous value is in the range.  This is a sanity check.
2056    assert(Range.contains(EvaluateConstantChrecAtConstant(this,
2057                              ConstantExpr::getSub(ExitValue, One))) &&
2058           "Linear scev computation is off in a bad way!");
2059    return SCEVConstant::get(cast<ConstantInt>(ExitValue));
2060  } else if (isQuadratic()) {
2061    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
2062    // quadratic equation to solve it.  To do this, we must frame our problem in
2063    // terms of figuring out when zero is crossed, instead of when
2064    // Range.getUpper() is crossed.
2065    std::vector<SCEVHandle> NewOps(op_begin(), op_end());
2066    NewOps[0] = getNegativeSCEV(SCEVUnknown::get(Range.getUpper()));
2067    SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, getLoop());
2068
2069    // Next, solve the constructed addrec
2070    std::pair<SCEVHandle,SCEVHandle> Roots =
2071      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec));
2072    SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2073    SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2074    if (R1) {
2075      // Pick the smallest positive root value.
2076      assert(R1->getType()->isUnsigned() && "Didn't canonicalize to unsigned?");
2077      if (ConstantBool *CB =
2078          dyn_cast<ConstantBool>(ConstantExpr::getSetLT(R1->getValue(),
2079                                                        R2->getValue()))) {
2080        if (CB != ConstantBool::True)
2081          std::swap(R1, R2);   // R1 is the minimum root now.
2082
2083        // Make sure the root is not off by one.  The returned iteration should
2084        // not be in the range, but the previous one should be.  When solving
2085        // for "X*X < 5", for example, we should not return a root of 2.
2086        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
2087                                                             R1->getValue());
2088        if (Range.contains(R1Val)) {
2089          // The next iteration must be out of the range...
2090          Constant *NextVal =
2091            ConstantExpr::getAdd(R1->getValue(),
2092                                 ConstantInt::get(R1->getType(), 1));
2093
2094          R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
2095          if (!Range.contains(R1Val))
2096            return SCEVUnknown::get(NextVal);
2097          return new SCEVCouldNotCompute();  // Something strange happened
2098        }
2099
2100        // If R1 was not in the range, then it is a good return value.  Make
2101        // sure that R1-1 WAS in the range though, just in case.
2102        Constant *NextVal =
2103          ConstantExpr::getSub(R1->getValue(),
2104                               ConstantInt::get(R1->getType(), 1));
2105        R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
2106        if (Range.contains(R1Val))
2107          return R1;
2108        return new SCEVCouldNotCompute();  // Something strange happened
2109      }
2110    }
2111  }
2112
2113  // Fallback, if this is a general polynomial, figure out the progression
2114  // through brute force: evaluate until we find an iteration that fails the
2115  // test.  This is likely to be slow, but getting an accurate trip count is
2116  // incredibly important, we will be able to simplify the exit test a lot, and
2117  // we are almost guaranteed to get a trip count in this case.
2118  ConstantInt *TestVal = ConstantInt::get(getType(), 0);
2119  ConstantInt *One     = ConstantInt::get(getType(), 1);
2120  ConstantInt *EndVal  = TestVal;  // Stop when we wrap around.
2121  do {
2122    ++NumBruteForceEvaluations;
2123    SCEVHandle Val = evaluateAtIteration(SCEVConstant::get(TestVal));
2124    if (!isa<SCEVConstant>(Val))  // This shouldn't happen.
2125      return new SCEVCouldNotCompute();
2126
2127    // Check to see if we found the value!
2128    if (!Range.contains(cast<SCEVConstant>(Val)->getValue()))
2129      return SCEVConstant::get(TestVal);
2130
2131    // Increment to test the next index.
2132    TestVal = cast<ConstantInt>(ConstantExpr::getAdd(TestVal, One));
2133  } while (TestVal != EndVal);
2134
2135  return new SCEVCouldNotCompute();
2136}
2137
2138
2139
2140//===----------------------------------------------------------------------===//
2141//                   ScalarEvolution Class Implementation
2142//===----------------------------------------------------------------------===//
2143
2144bool ScalarEvolution::runOnFunction(Function &F) {
2145  Impl = new ScalarEvolutionsImpl(F, getAnalysis<LoopInfo>());
2146  return false;
2147}
2148
2149void ScalarEvolution::releaseMemory() {
2150  delete (ScalarEvolutionsImpl*)Impl;
2151  Impl = 0;
2152}
2153
2154void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
2155  AU.setPreservesAll();
2156  AU.addRequiredID(LoopSimplifyID);
2157  AU.addRequiredTransitive<LoopInfo>();
2158}
2159
2160SCEVHandle ScalarEvolution::getSCEV(Value *V) const {
2161  return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V);
2162}
2163
2164SCEVHandle ScalarEvolution::getIterationCount(const Loop *L) const {
2165  return ((ScalarEvolutionsImpl*)Impl)->getIterationCount(L);
2166}
2167
2168bool ScalarEvolution::hasLoopInvariantIterationCount(const Loop *L) const {
2169  return !isa<SCEVCouldNotCompute>(getIterationCount(L));
2170}
2171
2172SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const {
2173  return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L);
2174}
2175
2176void ScalarEvolution::deleteInstructionFromRecords(Instruction *I) const {
2177  return ((ScalarEvolutionsImpl*)Impl)->deleteInstructionFromRecords(I);
2178}
2179
2180static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE,
2181                          const Loop *L) {
2182  // Print all inner loops first
2183  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
2184    PrintLoopInfo(OS, SE, *I);
2185
2186  std::cerr << "Loop " << L->getHeader()->getName() << ": ";
2187
2188  std::vector<BasicBlock*> ExitBlocks;
2189  L->getExitBlocks(ExitBlocks);
2190  if (ExitBlocks.size() != 1)
2191    std::cerr << "<multiple exits> ";
2192
2193  if (SE->hasLoopInvariantIterationCount(L)) {
2194    std::cerr << *SE->getIterationCount(L) << " iterations! ";
2195  } else {
2196    std::cerr << "Unpredictable iteration count. ";
2197  }
2198
2199  std::cerr << "\n";
2200}
2201
2202void ScalarEvolution::print(std::ostream &OS) const {
2203  Function &F = ((ScalarEvolutionsImpl*)Impl)->F;
2204  LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI;
2205
2206  OS << "Classifying expressions for: " << F.getName() << "\n";
2207  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
2208    if (I->getType()->isInteger()) {
2209      OS << *I;
2210      OS << "  --> ";
2211      SCEVHandle SV = getSCEV(&*I);
2212      SV->print(OS);
2213      OS << "\t\t";
2214
2215      if ((*I).getType()->isIntegral()) {
2216        ConstantRange Bounds = SV->getValueRange();
2217        if (!Bounds.isFullSet())
2218          OS << "Bounds: " << Bounds << " ";
2219      }
2220
2221      if (const Loop *L = LI.getLoopFor((*I).getParent())) {
2222        OS << "Exits: ";
2223        SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop());
2224        if (isa<SCEVCouldNotCompute>(ExitValue)) {
2225          OS << "<<Unknown>>";
2226        } else {
2227          OS << *ExitValue;
2228        }
2229      }
2230
2231
2232      OS << "\n";
2233    }
2234
2235  OS << "Determining loop execution counts for: " << F.getName() << "\n";
2236  for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
2237    PrintLoopInfo(OS, this, *I);
2238}
2239
2240