ScalarEvolution.cpp revision 5e5dd68c7f5115c245745c496ab3e4cd338a181c
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
19//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression.  These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
30//
31// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
35// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42//  Chains of recurrences -- a method to expedite the evaluation
43//  of closed-form functions
44//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46//  On computational properties of chains of recurrences
47//  Eugene V. Zima
48//
49//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50//  Robert A. van Engelen
51//
52//  Efficient Symbolic Analysis for Optimizing Compilers
53//  Robert A. van Engelen
54//
55//  Using the chains of recurrences algebra for data dependence testing and
56//  induction variable substitution
57//  MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
61#define DEBUG_TYPE "scalar-evolution"
62#include "llvm/Analysis/ScalarEvolutionExpressions.h"
63#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
65#include "llvm/GlobalVariable.h"
66#include "llvm/GlobalAlias.h"
67#include "llvm/Instructions.h"
68#include "llvm/LLVMContext.h"
69#include "llvm/Operator.h"
70#include "llvm/Analysis/ConstantFolding.h"
71#include "llvm/Analysis/Dominators.h"
72#include "llvm/Analysis/LoopInfo.h"
73#include "llvm/Analysis/ValueTracking.h"
74#include "llvm/Assembly/Writer.h"
75#include "llvm/Target/TargetData.h"
76#include "llvm/Support/CommandLine.h"
77#include "llvm/Support/ConstantRange.h"
78#include "llvm/Support/Debug.h"
79#include "llvm/Support/ErrorHandling.h"
80#include "llvm/Support/GetElementPtrTypeIterator.h"
81#include "llvm/Support/InstIterator.h"
82#include "llvm/Support/MathExtras.h"
83#include "llvm/Support/raw_ostream.h"
84#include "llvm/ADT/Statistic.h"
85#include "llvm/ADT/STLExtras.h"
86#include "llvm/ADT/SmallPtrSet.h"
87#include <algorithm>
88using namespace llvm;
89
90STATISTIC(NumArrayLenItCounts,
91          "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93          "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95          "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97          "Number of loops with trip counts computed by force");
98
99static cl::opt<unsigned>
100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101                        cl::desc("Maximum number of iterations SCEV will "
102                                 "symbolically execute a constant "
103                                 "derived loop"),
104                        cl::init(100));
105
106static RegisterPass<ScalarEvolution>
107R("scalar-evolution", "Scalar Evolution Analysis", false, true);
108char ScalarEvolution::ID = 0;
109
110//===----------------------------------------------------------------------===//
111//                           SCEV class definitions
112//===----------------------------------------------------------------------===//
113
114//===----------------------------------------------------------------------===//
115// Implementation of the SCEV class.
116//
117
118SCEV::~SCEV() {}
119
120void SCEV::dump() const {
121  print(dbgs());
122  dbgs() << '\n';
123}
124
125bool SCEV::isZero() const {
126  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
127    return SC->getValue()->isZero();
128  return false;
129}
130
131bool SCEV::isOne() const {
132  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
133    return SC->getValue()->isOne();
134  return false;
135}
136
137bool SCEV::isAllOnesValue() const {
138  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
139    return SC->getValue()->isAllOnesValue();
140  return false;
141}
142
143SCEVCouldNotCompute::SCEVCouldNotCompute() :
144  SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
145
146bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
147  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
148  return false;
149}
150
151const Type *SCEVCouldNotCompute::getType() const {
152  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
153  return 0;
154}
155
156bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
157  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
158  return false;
159}
160
161bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
162  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
163  return false;
164}
165
166void SCEVCouldNotCompute::print(raw_ostream &OS) const {
167  OS << "***COULDNOTCOMPUTE***";
168}
169
170bool SCEVCouldNotCompute::classof(const SCEV *S) {
171  return S->getSCEVType() == scCouldNotCompute;
172}
173
174const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
175  FoldingSetNodeID ID;
176  ID.AddInteger(scConstant);
177  ID.AddPointer(V);
178  void *IP = 0;
179  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
180  SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
181  UniqueSCEVs.InsertNode(S, IP);
182  return S;
183}
184
185const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
186  return getConstant(ConstantInt::get(getContext(), Val));
187}
188
189const SCEV *
190ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
191  const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
192  return getConstant(ConstantInt::get(ITy, V, isSigned));
193}
194
195const Type *SCEVConstant::getType() const { return V->getType(); }
196
197void SCEVConstant::print(raw_ostream &OS) const {
198  WriteAsOperand(OS, V, false);
199}
200
201SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
202                           unsigned SCEVTy, const SCEV *op, const Type *ty)
203  : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
204
205bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
206  return Op->dominates(BB, DT);
207}
208
209bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
210  return Op->properlyDominates(BB, DT);
211}
212
213SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
214                                   const SCEV *op, const Type *ty)
215  : SCEVCastExpr(ID, scTruncate, op, ty) {
216  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
217         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
218         "Cannot truncate non-integer value!");
219}
220
221void SCEVTruncateExpr::print(raw_ostream &OS) const {
222  OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
223}
224
225SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
226                                       const SCEV *op, const Type *ty)
227  : SCEVCastExpr(ID, scZeroExtend, op, ty) {
228  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
229         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
230         "Cannot zero extend non-integer value!");
231}
232
233void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
234  OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
235}
236
237SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
238                                       const SCEV *op, const Type *ty)
239  : SCEVCastExpr(ID, scSignExtend, op, ty) {
240  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
241         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
242         "Cannot sign extend non-integer value!");
243}
244
245void SCEVSignExtendExpr::print(raw_ostream &OS) const {
246  OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
247}
248
249void SCEVCommutativeExpr::print(raw_ostream &OS) const {
250  const char *OpStr = getOperationStr();
251  OS << "(";
252  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
253    OS << **I;
254    if (next(I) != E)
255      OS << OpStr;
256  }
257  OS << ")";
258}
259
260bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
261  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
262    if (!getOperand(i)->dominates(BB, DT))
263      return false;
264  }
265  return true;
266}
267
268bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
269  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
270    if (!getOperand(i)->properlyDominates(BB, DT))
271      return false;
272  }
273  return true;
274}
275
276bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
277  return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
278}
279
280bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
281  return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
282}
283
284void SCEVUDivExpr::print(raw_ostream &OS) const {
285  OS << "(" << *LHS << " /u " << *RHS << ")";
286}
287
288const Type *SCEVUDivExpr::getType() const {
289  // In most cases the types of LHS and RHS will be the same, but in some
290  // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
291  // depend on the type for correctness, but handling types carefully can
292  // avoid extra casts in the SCEVExpander. The LHS is more likely to be
293  // a pointer type than the RHS, so use the RHS' type here.
294  return RHS->getType();
295}
296
297bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
298  // Add recurrences are never invariant in the function-body (null loop).
299  if (!QueryLoop)
300    return false;
301
302  // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
303  if (QueryLoop->contains(L))
304    return false;
305
306  // This recurrence is variant w.r.t. QueryLoop if any of its operands
307  // are variant.
308  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
309    if (!getOperand(i)->isLoopInvariant(QueryLoop))
310      return false;
311
312  // Otherwise it's loop-invariant.
313  return true;
314}
315
316bool
317SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
318  return DT->dominates(L->getHeader(), BB) &&
319         SCEVNAryExpr::dominates(BB, DT);
320}
321
322bool
323SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
324  // This uses a "dominates" query instead of "properly dominates" query because
325  // the instruction which produces the addrec's value is a PHI, and a PHI
326  // effectively properly dominates its entire containing block.
327  return DT->dominates(L->getHeader(), BB) &&
328         SCEVNAryExpr::properlyDominates(BB, DT);
329}
330
331void SCEVAddRecExpr::print(raw_ostream &OS) const {
332  OS << "{" << *Operands[0];
333  for (unsigned i = 1, e = NumOperands; i != e; ++i)
334    OS << ",+," << *Operands[i];
335  OS << "}<";
336  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
337  OS << ">";
338}
339
340bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
341  // All non-instruction values are loop invariant.  All instructions are loop
342  // invariant if they are not contained in the specified loop.
343  // Instructions are never considered invariant in the function body
344  // (null loop) because they are defined within the "loop".
345  if (Instruction *I = dyn_cast<Instruction>(V))
346    return L && !L->contains(I);
347  return true;
348}
349
350bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
351  if (Instruction *I = dyn_cast<Instruction>(getValue()))
352    return DT->dominates(I->getParent(), BB);
353  return true;
354}
355
356bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
357  if (Instruction *I = dyn_cast<Instruction>(getValue()))
358    return DT->properlyDominates(I->getParent(), BB);
359  return true;
360}
361
362const Type *SCEVUnknown::getType() const {
363  return V->getType();
364}
365
366bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
367  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
368    if (VCE->getOpcode() == Instruction::PtrToInt)
369      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
370        if (CE->getOpcode() == Instruction::GetElementPtr &&
371            CE->getOperand(0)->isNullValue() &&
372            CE->getNumOperands() == 2)
373          if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
374            if (CI->isOne()) {
375              AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
376                                 ->getElementType();
377              return true;
378            }
379
380  return false;
381}
382
383bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
384  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
385    if (VCE->getOpcode() == Instruction::PtrToInt)
386      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
387        if (CE->getOpcode() == Instruction::GetElementPtr &&
388            CE->getOperand(0)->isNullValue()) {
389          const Type *Ty =
390            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
391          if (const StructType *STy = dyn_cast<StructType>(Ty))
392            if (!STy->isPacked() &&
393                CE->getNumOperands() == 3 &&
394                CE->getOperand(1)->isNullValue()) {
395              if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
396                if (CI->isOne() &&
397                    STy->getNumElements() == 2 &&
398                    STy->getElementType(0)->isIntegerTy(1)) {
399                  AllocTy = STy->getElementType(1);
400                  return true;
401                }
402            }
403        }
404
405  return false;
406}
407
408bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
409  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
410    if (VCE->getOpcode() == Instruction::PtrToInt)
411      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
412        if (CE->getOpcode() == Instruction::GetElementPtr &&
413            CE->getNumOperands() == 3 &&
414            CE->getOperand(0)->isNullValue() &&
415            CE->getOperand(1)->isNullValue()) {
416          const Type *Ty =
417            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
418          // Ignore vector types here so that ScalarEvolutionExpander doesn't
419          // emit getelementptrs that index into vectors.
420          if (Ty->isStructTy() || Ty->isArrayTy()) {
421            CTy = Ty;
422            FieldNo = CE->getOperand(2);
423            return true;
424          }
425        }
426
427  return false;
428}
429
430void SCEVUnknown::print(raw_ostream &OS) const {
431  const Type *AllocTy;
432  if (isSizeOf(AllocTy)) {
433    OS << "sizeof(" << *AllocTy << ")";
434    return;
435  }
436  if (isAlignOf(AllocTy)) {
437    OS << "alignof(" << *AllocTy << ")";
438    return;
439  }
440
441  const Type *CTy;
442  Constant *FieldNo;
443  if (isOffsetOf(CTy, FieldNo)) {
444    OS << "offsetof(" << *CTy << ", ";
445    WriteAsOperand(OS, FieldNo, false);
446    OS << ")";
447    return;
448  }
449
450  // Otherwise just print it normally.
451  WriteAsOperand(OS, V, false);
452}
453
454//===----------------------------------------------------------------------===//
455//                               SCEV Utilities
456//===----------------------------------------------------------------------===//
457
458static bool CompareTypes(const Type *A, const Type *B) {
459  if (A->getTypeID() != B->getTypeID())
460    return A->getTypeID() < B->getTypeID();
461  if (const IntegerType *AI = dyn_cast<IntegerType>(A)) {
462    const IntegerType *BI = cast<IntegerType>(B);
463    return AI->getBitWidth() < BI->getBitWidth();
464  }
465  if (const PointerType *AI = dyn_cast<PointerType>(A)) {
466    const PointerType *BI = cast<PointerType>(B);
467    return CompareTypes(AI->getElementType(), BI->getElementType());
468  }
469  if (const ArrayType *AI = dyn_cast<ArrayType>(A)) {
470    const ArrayType *BI = cast<ArrayType>(B);
471    if (AI->getNumElements() != BI->getNumElements())
472      return AI->getNumElements() < BI->getNumElements();
473    return CompareTypes(AI->getElementType(), BI->getElementType());
474  }
475  if (const VectorType *AI = dyn_cast<VectorType>(A)) {
476    const VectorType *BI = cast<VectorType>(B);
477    if (AI->getNumElements() != BI->getNumElements())
478      return AI->getNumElements() < BI->getNumElements();
479    return CompareTypes(AI->getElementType(), BI->getElementType());
480  }
481  if (const StructType *AI = dyn_cast<StructType>(A)) {
482    const StructType *BI = cast<StructType>(B);
483    if (AI->getNumElements() != BI->getNumElements())
484      return AI->getNumElements() < BI->getNumElements();
485    for (unsigned i = 0, e = AI->getNumElements(); i != e; ++i)
486      if (CompareTypes(AI->getElementType(i), BI->getElementType(i)) ||
487          CompareTypes(BI->getElementType(i), AI->getElementType(i)))
488        return CompareTypes(AI->getElementType(i), BI->getElementType(i));
489  }
490  return false;
491}
492
493namespace {
494  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
495  /// than the complexity of the RHS.  This comparator is used to canonicalize
496  /// expressions.
497  class SCEVComplexityCompare {
498    LoopInfo *LI;
499  public:
500    explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
501
502    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
503      // Fast-path: SCEVs are uniqued so we can do a quick equality check.
504      if (LHS == RHS)
505        return false;
506
507      // Primarily, sort the SCEVs by their getSCEVType().
508      unsigned LST = LHS->getSCEVType();
509      unsigned RST = RHS->getSCEVType();
510      if (LST != RST)
511        return LST < RST;
512
513      // Then, pick an arbitrary sort. Use the profiling data for speed.
514      const FoldingSetNodeIDRef &L = LHS->getProfile();
515      const FoldingSetNodeIDRef &R = RHS->getProfile();
516      size_t LSize = L.getSize();
517      size_t RSize = R.getSize();
518      if (LSize != RSize)
519        return LSize < RSize;
520      return memcmp(L.getData(), R.getData(),
521                    LSize * sizeof(*L.getData())) < 0;
522    }
523  };
524}
525
526/// GroupByComplexity - Given a list of SCEV objects, order them by their
527/// complexity, and group objects of the same complexity together by value.
528/// When this routine is finished, we know that any duplicates in the vector are
529/// consecutive and that complexity is monotonically increasing.
530///
531/// Note that we go take special precautions to ensure that we get deterministic
532/// results from this routine.  In other words, we don't want the results of
533/// this to depend on where the addresses of various SCEV objects happened to
534/// land in memory.
535///
536static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
537                              LoopInfo *LI) {
538  if (Ops.size() < 2) return;  // Noop
539
540  SCEVComplexityCompare Comp(LI);
541
542  if (Ops.size() == 2) {
543    // This is the common case, which also happens to be trivially simple.
544    // Special case it.
545    if (Comp(Ops[1], Ops[0]))
546      std::swap(Ops[0], Ops[1]);
547    return;
548  }
549
550  std::stable_sort(Ops.begin(), Ops.end(), Comp);
551}
552
553
554
555//===----------------------------------------------------------------------===//
556//                      Simple SCEV method implementations
557//===----------------------------------------------------------------------===//
558
559/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
560/// Assume, K > 0.
561static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
562                                       ScalarEvolution &SE,
563                                       const Type* ResultTy) {
564  // Handle the simplest case efficiently.
565  if (K == 1)
566    return SE.getTruncateOrZeroExtend(It, ResultTy);
567
568  // We are using the following formula for BC(It, K):
569  //
570  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
571  //
572  // Suppose, W is the bitwidth of the return value.  We must be prepared for
573  // overflow.  Hence, we must assure that the result of our computation is
574  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
575  // safe in modular arithmetic.
576  //
577  // However, this code doesn't use exactly that formula; the formula it uses
578  // is something like the following, where T is the number of factors of 2 in
579  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
580  // exponentiation:
581  //
582  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
583  //
584  // This formula is trivially equivalent to the previous formula.  However,
585  // this formula can be implemented much more efficiently.  The trick is that
586  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
587  // arithmetic.  To do exact division in modular arithmetic, all we have
588  // to do is multiply by the inverse.  Therefore, this step can be done at
589  // width W.
590  //
591  // The next issue is how to safely do the division by 2^T.  The way this
592  // is done is by doing the multiplication step at a width of at least W + T
593  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
594  // when we perform the division by 2^T (which is equivalent to a right shift
595  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
596  // truncated out after the division by 2^T.
597  //
598  // In comparison to just directly using the first formula, this technique
599  // is much more efficient; using the first formula requires W * K bits,
600  // but this formula less than W + K bits. Also, the first formula requires
601  // a division step, whereas this formula only requires multiplies and shifts.
602  //
603  // It doesn't matter whether the subtraction step is done in the calculation
604  // width or the input iteration count's width; if the subtraction overflows,
605  // the result must be zero anyway.  We prefer here to do it in the width of
606  // the induction variable because it helps a lot for certain cases; CodeGen
607  // isn't smart enough to ignore the overflow, which leads to much less
608  // efficient code if the width of the subtraction is wider than the native
609  // register width.
610  //
611  // (It's possible to not widen at all by pulling out factors of 2 before
612  // the multiplication; for example, K=2 can be calculated as
613  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
614  // extra arithmetic, so it's not an obvious win, and it gets
615  // much more complicated for K > 3.)
616
617  // Protection from insane SCEVs; this bound is conservative,
618  // but it probably doesn't matter.
619  if (K > 1000)
620    return SE.getCouldNotCompute();
621
622  unsigned W = SE.getTypeSizeInBits(ResultTy);
623
624  // Calculate K! / 2^T and T; we divide out the factors of two before
625  // multiplying for calculating K! / 2^T to avoid overflow.
626  // Other overflow doesn't matter because we only care about the bottom
627  // W bits of the result.
628  APInt OddFactorial(W, 1);
629  unsigned T = 1;
630  for (unsigned i = 3; i <= K; ++i) {
631    APInt Mult(W, i);
632    unsigned TwoFactors = Mult.countTrailingZeros();
633    T += TwoFactors;
634    Mult = Mult.lshr(TwoFactors);
635    OddFactorial *= Mult;
636  }
637
638  // We need at least W + T bits for the multiplication step
639  unsigned CalculationBits = W + T;
640
641  // Calculate 2^T, at width T+W.
642  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
643
644  // Calculate the multiplicative inverse of K! / 2^T;
645  // this multiplication factor will perform the exact division by
646  // K! / 2^T.
647  APInt Mod = APInt::getSignedMinValue(W+1);
648  APInt MultiplyFactor = OddFactorial.zext(W+1);
649  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
650  MultiplyFactor = MultiplyFactor.trunc(W);
651
652  // Calculate the product, at width T+W
653  const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
654                                                      CalculationBits);
655  const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
656  for (unsigned i = 1; i != K; ++i) {
657    const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
658    Dividend = SE.getMulExpr(Dividend,
659                             SE.getTruncateOrZeroExtend(S, CalculationTy));
660  }
661
662  // Divide by 2^T
663  const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
664
665  // Truncate the result, and divide by K! / 2^T.
666
667  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
668                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
669}
670
671/// evaluateAtIteration - Return the value of this chain of recurrences at
672/// the specified iteration number.  We can evaluate this recurrence by
673/// multiplying each element in the chain by the binomial coefficient
674/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
675///
676///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
677///
678/// where BC(It, k) stands for binomial coefficient.
679///
680const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
681                                                ScalarEvolution &SE) const {
682  const SCEV *Result = getStart();
683  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
684    // The computation is correct in the face of overflow provided that the
685    // multiplication is performed _after_ the evaluation of the binomial
686    // coefficient.
687    const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
688    if (isa<SCEVCouldNotCompute>(Coeff))
689      return Coeff;
690
691    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
692  }
693  return Result;
694}
695
696//===----------------------------------------------------------------------===//
697//                    SCEV Expression folder implementations
698//===----------------------------------------------------------------------===//
699
700const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
701                                             const Type *Ty) {
702  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
703         "This is not a truncating conversion!");
704  assert(isSCEVable(Ty) &&
705         "This is not a conversion to a SCEVable type!");
706  Ty = getEffectiveSCEVType(Ty);
707
708  FoldingSetNodeID ID;
709  ID.AddInteger(scTruncate);
710  ID.AddPointer(Op);
711  ID.AddPointer(Ty);
712  void *IP = 0;
713  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
714
715  // Fold if the operand is constant.
716  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
717    return getConstant(
718      cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
719
720  // trunc(trunc(x)) --> trunc(x)
721  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
722    return getTruncateExpr(ST->getOperand(), Ty);
723
724  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
725  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
726    return getTruncateOrSignExtend(SS->getOperand(), Ty);
727
728  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
729  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
730    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
731
732  // If the input value is a chrec scev, truncate the chrec's operands.
733  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
734    SmallVector<const SCEV *, 4> Operands;
735    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
736      Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
737    return getAddRecExpr(Operands, AddRec->getLoop());
738  }
739
740  // The cast wasn't folded; create an explicit cast node.
741  // Recompute the insert position, as it may have been invalidated.
742  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
743  SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
744                                                 Op, Ty);
745  UniqueSCEVs.InsertNode(S, IP);
746  return S;
747}
748
749const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
750                                               const Type *Ty) {
751  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
752         "This is not an extending conversion!");
753  assert(isSCEVable(Ty) &&
754         "This is not a conversion to a SCEVable type!");
755  Ty = getEffectiveSCEVType(Ty);
756
757  // Fold if the operand is constant.
758  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
759    const Type *IntTy = getEffectiveSCEVType(Ty);
760    Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
761    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
762    return getConstant(cast<ConstantInt>(C));
763  }
764
765  // zext(zext(x)) --> zext(x)
766  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
767    return getZeroExtendExpr(SZ->getOperand(), Ty);
768
769  // Before doing any expensive analysis, check to see if we've already
770  // computed a SCEV for this Op and Ty.
771  FoldingSetNodeID ID;
772  ID.AddInteger(scZeroExtend);
773  ID.AddPointer(Op);
774  ID.AddPointer(Ty);
775  void *IP = 0;
776  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
777
778  // If the input value is a chrec scev, and we can prove that the value
779  // did not overflow the old, smaller, value, we can zero extend all of the
780  // operands (often constants).  This allows analysis of something like
781  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
782  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
783    if (AR->isAffine()) {
784      const SCEV *Start = AR->getStart();
785      const SCEV *Step = AR->getStepRecurrence(*this);
786      unsigned BitWidth = getTypeSizeInBits(AR->getType());
787      const Loop *L = AR->getLoop();
788
789      // If we have special knowledge that this addrec won't overflow,
790      // we don't need to do any further analysis.
791      if (AR->hasNoUnsignedWrap())
792        return getAddRecExpr(getZeroExtendExpr(Start, Ty),
793                             getZeroExtendExpr(Step, Ty),
794                             L);
795
796      // Check whether the backedge-taken count is SCEVCouldNotCompute.
797      // Note that this serves two purposes: It filters out loops that are
798      // simply not analyzable, and it covers the case where this code is
799      // being called from within backedge-taken count analysis, such that
800      // attempting to ask for the backedge-taken count would likely result
801      // in infinite recursion. In the later case, the analysis code will
802      // cope with a conservative value, and it will take care to purge
803      // that value once it has finished.
804      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
805      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
806        // Manually compute the final value for AR, checking for
807        // overflow.
808
809        // Check whether the backedge-taken count can be losslessly casted to
810        // the addrec's type. The count is always unsigned.
811        const SCEV *CastedMaxBECount =
812          getTruncateOrZeroExtend(MaxBECount, Start->getType());
813        const SCEV *RecastedMaxBECount =
814          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
815        if (MaxBECount == RecastedMaxBECount) {
816          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
817          // Check whether Start+Step*MaxBECount has no unsigned overflow.
818          const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
819          const SCEV *Add = getAddExpr(Start, ZMul);
820          const SCEV *OperandExtendedAdd =
821            getAddExpr(getZeroExtendExpr(Start, WideTy),
822                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
823                                  getZeroExtendExpr(Step, WideTy)));
824          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
825            // Return the expression with the addrec on the outside.
826            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
827                                 getZeroExtendExpr(Step, Ty),
828                                 L);
829
830          // Similar to above, only this time treat the step value as signed.
831          // This covers loops that count down.
832          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
833          Add = getAddExpr(Start, SMul);
834          OperandExtendedAdd =
835            getAddExpr(getZeroExtendExpr(Start, WideTy),
836                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
837                                  getSignExtendExpr(Step, WideTy)));
838          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
839            // Return the expression with the addrec on the outside.
840            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
841                                 getSignExtendExpr(Step, Ty),
842                                 L);
843        }
844
845        // If the backedge is guarded by a comparison with the pre-inc value
846        // the addrec is safe. Also, if the entry is guarded by a comparison
847        // with the start value and the backedge is guarded by a comparison
848        // with the post-inc value, the addrec is safe.
849        if (isKnownPositive(Step)) {
850          const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
851                                      getUnsignedRange(Step).getUnsignedMax());
852          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
853              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
854               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
855                                           AR->getPostIncExpr(*this), N)))
856            // Return the expression with the addrec on the outside.
857            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
858                                 getZeroExtendExpr(Step, Ty),
859                                 L);
860        } else if (isKnownNegative(Step)) {
861          const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
862                                      getSignedRange(Step).getSignedMin());
863          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
864              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
865               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
866                                           AR->getPostIncExpr(*this), N)))
867            // Return the expression with the addrec on the outside.
868            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
869                                 getSignExtendExpr(Step, Ty),
870                                 L);
871        }
872      }
873    }
874
875  // The cast wasn't folded; create an explicit cast node.
876  // Recompute the insert position, as it may have been invalidated.
877  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
878  SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
879                                                   Op, Ty);
880  UniqueSCEVs.InsertNode(S, IP);
881  return S;
882}
883
884const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
885                                               const Type *Ty) {
886  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
887         "This is not an extending conversion!");
888  assert(isSCEVable(Ty) &&
889         "This is not a conversion to a SCEVable type!");
890  Ty = getEffectiveSCEVType(Ty);
891
892  // Fold if the operand is constant.
893  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
894    const Type *IntTy = getEffectiveSCEVType(Ty);
895    Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
896    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
897    return getConstant(cast<ConstantInt>(C));
898  }
899
900  // sext(sext(x)) --> sext(x)
901  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
902    return getSignExtendExpr(SS->getOperand(), Ty);
903
904  // Before doing any expensive analysis, check to see if we've already
905  // computed a SCEV for this Op and Ty.
906  FoldingSetNodeID ID;
907  ID.AddInteger(scSignExtend);
908  ID.AddPointer(Op);
909  ID.AddPointer(Ty);
910  void *IP = 0;
911  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
912
913  // If the input value is a chrec scev, and we can prove that the value
914  // did not overflow the old, smaller, value, we can sign extend all of the
915  // operands (often constants).  This allows analysis of something like
916  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
917  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
918    if (AR->isAffine()) {
919      const SCEV *Start = AR->getStart();
920      const SCEV *Step = AR->getStepRecurrence(*this);
921      unsigned BitWidth = getTypeSizeInBits(AR->getType());
922      const Loop *L = AR->getLoop();
923
924      // If we have special knowledge that this addrec won't overflow,
925      // we don't need to do any further analysis.
926      if (AR->hasNoSignedWrap())
927        return getAddRecExpr(getSignExtendExpr(Start, Ty),
928                             getSignExtendExpr(Step, Ty),
929                             L);
930
931      // Check whether the backedge-taken count is SCEVCouldNotCompute.
932      // Note that this serves two purposes: It filters out loops that are
933      // simply not analyzable, and it covers the case where this code is
934      // being called from within backedge-taken count analysis, such that
935      // attempting to ask for the backedge-taken count would likely result
936      // in infinite recursion. In the later case, the analysis code will
937      // cope with a conservative value, and it will take care to purge
938      // that value once it has finished.
939      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
940      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
941        // Manually compute the final value for AR, checking for
942        // overflow.
943
944        // Check whether the backedge-taken count can be losslessly casted to
945        // the addrec's type. The count is always unsigned.
946        const SCEV *CastedMaxBECount =
947          getTruncateOrZeroExtend(MaxBECount, Start->getType());
948        const SCEV *RecastedMaxBECount =
949          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
950        if (MaxBECount == RecastedMaxBECount) {
951          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
952          // Check whether Start+Step*MaxBECount has no signed overflow.
953          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
954          const SCEV *Add = getAddExpr(Start, SMul);
955          const SCEV *OperandExtendedAdd =
956            getAddExpr(getSignExtendExpr(Start, WideTy),
957                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
958                                  getSignExtendExpr(Step, WideTy)));
959          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
960            // Return the expression with the addrec on the outside.
961            return getAddRecExpr(getSignExtendExpr(Start, Ty),
962                                 getSignExtendExpr(Step, Ty),
963                                 L);
964
965          // Similar to above, only this time treat the step value as unsigned.
966          // This covers loops that count up with an unsigned step.
967          const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
968          Add = getAddExpr(Start, UMul);
969          OperandExtendedAdd =
970            getAddExpr(getSignExtendExpr(Start, WideTy),
971                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
972                                  getZeroExtendExpr(Step, WideTy)));
973          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
974            // Return the expression with the addrec on the outside.
975            return getAddRecExpr(getSignExtendExpr(Start, Ty),
976                                 getZeroExtendExpr(Step, Ty),
977                                 L);
978        }
979
980        // If the backedge is guarded by a comparison with the pre-inc value
981        // the addrec is safe. Also, if the entry is guarded by a comparison
982        // with the start value and the backedge is guarded by a comparison
983        // with the post-inc value, the addrec is safe.
984        if (isKnownPositive(Step)) {
985          const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
986                                      getSignedRange(Step).getSignedMax());
987          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
988              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
989               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
990                                           AR->getPostIncExpr(*this), N)))
991            // Return the expression with the addrec on the outside.
992            return getAddRecExpr(getSignExtendExpr(Start, Ty),
993                                 getSignExtendExpr(Step, Ty),
994                                 L);
995        } else if (isKnownNegative(Step)) {
996          const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
997                                      getSignedRange(Step).getSignedMin());
998          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
999              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
1000               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1001                                           AR->getPostIncExpr(*this), N)))
1002            // Return the expression with the addrec on the outside.
1003            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1004                                 getSignExtendExpr(Step, Ty),
1005                                 L);
1006        }
1007      }
1008    }
1009
1010  // The cast wasn't folded; create an explicit cast node.
1011  // Recompute the insert position, as it may have been invalidated.
1012  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1013  SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1014                                                   Op, Ty);
1015  UniqueSCEVs.InsertNode(S, IP);
1016  return S;
1017}
1018
1019/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1020/// unspecified bits out to the given type.
1021///
1022const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1023                                              const Type *Ty) {
1024  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1025         "This is not an extending conversion!");
1026  assert(isSCEVable(Ty) &&
1027         "This is not a conversion to a SCEVable type!");
1028  Ty = getEffectiveSCEVType(Ty);
1029
1030  // Sign-extend negative constants.
1031  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1032    if (SC->getValue()->getValue().isNegative())
1033      return getSignExtendExpr(Op, Ty);
1034
1035  // Peel off a truncate cast.
1036  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1037    const SCEV *NewOp = T->getOperand();
1038    if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1039      return getAnyExtendExpr(NewOp, Ty);
1040    return getTruncateOrNoop(NewOp, Ty);
1041  }
1042
1043  // Next try a zext cast. If the cast is folded, use it.
1044  const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1045  if (!isa<SCEVZeroExtendExpr>(ZExt))
1046    return ZExt;
1047
1048  // Next try a sext cast. If the cast is folded, use it.
1049  const SCEV *SExt = getSignExtendExpr(Op, Ty);
1050  if (!isa<SCEVSignExtendExpr>(SExt))
1051    return SExt;
1052
1053  // Force the cast to be folded into the operands of an addrec.
1054  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1055    SmallVector<const SCEV *, 4> Ops;
1056    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1057         I != E; ++I)
1058      Ops.push_back(getAnyExtendExpr(*I, Ty));
1059    return getAddRecExpr(Ops, AR->getLoop());
1060  }
1061
1062  // If the expression is obviously signed, use the sext cast value.
1063  if (isa<SCEVSMaxExpr>(Op))
1064    return SExt;
1065
1066  // Absent any other information, use the zext cast value.
1067  return ZExt;
1068}
1069
1070/// CollectAddOperandsWithScales - Process the given Ops list, which is
1071/// a list of operands to be added under the given scale, update the given
1072/// map. This is a helper function for getAddRecExpr. As an example of
1073/// what it does, given a sequence of operands that would form an add
1074/// expression like this:
1075///
1076///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1077///
1078/// where A and B are constants, update the map with these values:
1079///
1080///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1081///
1082/// and add 13 + A*B*29 to AccumulatedConstant.
1083/// This will allow getAddRecExpr to produce this:
1084///
1085///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1086///
1087/// This form often exposes folding opportunities that are hidden in
1088/// the original operand list.
1089///
1090/// Return true iff it appears that any interesting folding opportunities
1091/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1092/// the common case where no interesting opportunities are present, and
1093/// is also used as a check to avoid infinite recursion.
1094///
1095static bool
1096CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1097                             SmallVector<const SCEV *, 8> &NewOps,
1098                             APInt &AccumulatedConstant,
1099                             const SCEV *const *Ops, size_t NumOperands,
1100                             const APInt &Scale,
1101                             ScalarEvolution &SE) {
1102  bool Interesting = false;
1103
1104  // Iterate over the add operands. They are sorted, with constants first.
1105  unsigned i = 0;
1106  while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1107    ++i;
1108    // Pull a buried constant out to the outside.
1109    if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1110      Interesting = true;
1111    AccumulatedConstant += Scale * C->getValue()->getValue();
1112  }
1113
1114  // Next comes everything else. We're especially interested in multiplies
1115  // here, but they're in the middle, so just visit the rest with one loop.
1116  for (; i != NumOperands; ++i) {
1117    const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1118    if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1119      APInt NewScale =
1120        Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1121      if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1122        // A multiplication of a constant with another add; recurse.
1123        const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1124        Interesting |=
1125          CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1126                                       Add->op_begin(), Add->getNumOperands(),
1127                                       NewScale, SE);
1128      } else {
1129        // A multiplication of a constant with some other value. Update
1130        // the map.
1131        SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1132        const SCEV *Key = SE.getMulExpr(MulOps);
1133        std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1134          M.insert(std::make_pair(Key, NewScale));
1135        if (Pair.second) {
1136          NewOps.push_back(Pair.first->first);
1137        } else {
1138          Pair.first->second += NewScale;
1139          // The map already had an entry for this value, which may indicate
1140          // a folding opportunity.
1141          Interesting = true;
1142        }
1143      }
1144    } else {
1145      // An ordinary operand. Update the map.
1146      std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1147        M.insert(std::make_pair(Ops[i], Scale));
1148      if (Pair.second) {
1149        NewOps.push_back(Pair.first->first);
1150      } else {
1151        Pair.first->second += Scale;
1152        // The map already had an entry for this value, which may indicate
1153        // a folding opportunity.
1154        Interesting = true;
1155      }
1156    }
1157  }
1158
1159  return Interesting;
1160}
1161
1162namespace {
1163  struct APIntCompare {
1164    bool operator()(const APInt &LHS, const APInt &RHS) const {
1165      return LHS.ult(RHS);
1166    }
1167  };
1168}
1169
1170/// getAddExpr - Get a canonical add expression, or something simpler if
1171/// possible.
1172const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1173                                        bool HasNUW, bool HasNSW) {
1174  assert(!Ops.empty() && "Cannot get empty add!");
1175  if (Ops.size() == 1) return Ops[0];
1176#ifndef NDEBUG
1177  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1178  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1179    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1180           "SCEVAddExpr operand types don't match!");
1181#endif
1182
1183  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1184  if (!HasNUW && HasNSW) {
1185    bool All = true;
1186    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1187      if (!isKnownNonNegative(Ops[i])) {
1188        All = false;
1189        break;
1190      }
1191    if (All) HasNUW = true;
1192  }
1193
1194  // Sort by complexity, this groups all similar expression types together.
1195  GroupByComplexity(Ops, LI);
1196
1197  // If there are any constants, fold them together.
1198  unsigned Idx = 0;
1199  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1200    ++Idx;
1201    assert(Idx < Ops.size());
1202    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1203      // We found two constants, fold them together!
1204      Ops[0] = getConstant(LHSC->getValue()->getValue() +
1205                           RHSC->getValue()->getValue());
1206      if (Ops.size() == 2) return Ops[0];
1207      Ops.erase(Ops.begin()+1);  // Erase the folded element
1208      LHSC = cast<SCEVConstant>(Ops[0]);
1209    }
1210
1211    // If we are left with a constant zero being added, strip it off.
1212    if (LHSC->getValue()->isZero()) {
1213      Ops.erase(Ops.begin());
1214      --Idx;
1215    }
1216
1217    if (Ops.size() == 1) return Ops[0];
1218  }
1219
1220  // Okay, check to see if the same value occurs in the operand list twice.  If
1221  // so, merge them together into an multiply expression.  Since we sorted the
1222  // list, these values are required to be adjacent.
1223  const Type *Ty = Ops[0]->getType();
1224  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1225    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
1226      // Found a match, merge the two values into a multiply, and add any
1227      // remaining values to the result.
1228      const SCEV *Two = getConstant(Ty, 2);
1229      const SCEV *Mul = getMulExpr(Ops[i], Two);
1230      if (Ops.size() == 2)
1231        return Mul;
1232      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1233      Ops.push_back(Mul);
1234      return getAddExpr(Ops, HasNUW, HasNSW);
1235    }
1236
1237  // Check for truncates. If all the operands are truncated from the same
1238  // type, see if factoring out the truncate would permit the result to be
1239  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1240  // if the contents of the resulting outer trunc fold to something simple.
1241  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1242    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1243    const Type *DstType = Trunc->getType();
1244    const Type *SrcType = Trunc->getOperand()->getType();
1245    SmallVector<const SCEV *, 8> LargeOps;
1246    bool Ok = true;
1247    // Check all the operands to see if they can be represented in the
1248    // source type of the truncate.
1249    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1250      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1251        if (T->getOperand()->getType() != SrcType) {
1252          Ok = false;
1253          break;
1254        }
1255        LargeOps.push_back(T->getOperand());
1256      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1257        LargeOps.push_back(getAnyExtendExpr(C, SrcType));
1258      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1259        SmallVector<const SCEV *, 8> LargeMulOps;
1260        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1261          if (const SCEVTruncateExpr *T =
1262                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1263            if (T->getOperand()->getType() != SrcType) {
1264              Ok = false;
1265              break;
1266            }
1267            LargeMulOps.push_back(T->getOperand());
1268          } else if (const SCEVConstant *C =
1269                       dyn_cast<SCEVConstant>(M->getOperand(j))) {
1270            LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
1271          } else {
1272            Ok = false;
1273            break;
1274          }
1275        }
1276        if (Ok)
1277          LargeOps.push_back(getMulExpr(LargeMulOps));
1278      } else {
1279        Ok = false;
1280        break;
1281      }
1282    }
1283    if (Ok) {
1284      // Evaluate the expression in the larger type.
1285      const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
1286      // If it folds to something simple, use it. Otherwise, don't.
1287      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1288        return getTruncateExpr(Fold, DstType);
1289    }
1290  }
1291
1292  // Skip past any other cast SCEVs.
1293  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1294    ++Idx;
1295
1296  // If there are add operands they would be next.
1297  if (Idx < Ops.size()) {
1298    bool DeletedAdd = false;
1299    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1300      // If we have an add, expand the add operands onto the end of the operands
1301      // list.
1302      Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1303      Ops.erase(Ops.begin()+Idx);
1304      DeletedAdd = true;
1305    }
1306
1307    // If we deleted at least one add, we added operands to the end of the list,
1308    // and they are not necessarily sorted.  Recurse to resort and resimplify
1309    // any operands we just acquired.
1310    if (DeletedAdd)
1311      return getAddExpr(Ops);
1312  }
1313
1314  // Skip over the add expression until we get to a multiply.
1315  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1316    ++Idx;
1317
1318  // Check to see if there are any folding opportunities present with
1319  // operands multiplied by constant values.
1320  if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1321    uint64_t BitWidth = getTypeSizeInBits(Ty);
1322    DenseMap<const SCEV *, APInt> M;
1323    SmallVector<const SCEV *, 8> NewOps;
1324    APInt AccumulatedConstant(BitWidth, 0);
1325    if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1326                                     Ops.data(), Ops.size(),
1327                                     APInt(BitWidth, 1), *this)) {
1328      // Some interesting folding opportunity is present, so its worthwhile to
1329      // re-generate the operands list. Group the operands by constant scale,
1330      // to avoid multiplying by the same constant scale multiple times.
1331      std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1332      for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(),
1333           E = NewOps.end(); I != E; ++I)
1334        MulOpLists[M.find(*I)->second].push_back(*I);
1335      // Re-generate the operands list.
1336      Ops.clear();
1337      if (AccumulatedConstant != 0)
1338        Ops.push_back(getConstant(AccumulatedConstant));
1339      for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1340           I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1341        if (I->first != 0)
1342          Ops.push_back(getMulExpr(getConstant(I->first),
1343                                   getAddExpr(I->second)));
1344      if (Ops.empty())
1345        return getConstant(Ty, 0);
1346      if (Ops.size() == 1)
1347        return Ops[0];
1348      return getAddExpr(Ops);
1349    }
1350  }
1351
1352  // If we are adding something to a multiply expression, make sure the
1353  // something is not already an operand of the multiply.  If so, merge it into
1354  // the multiply.
1355  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1356    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1357    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1358      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1359      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1360        if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
1361          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1362          const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1363          if (Mul->getNumOperands() != 2) {
1364            // If the multiply has more than two operands, we must get the
1365            // Y*Z term.
1366            SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end());
1367            MulOps.erase(MulOps.begin()+MulOp);
1368            InnerMul = getMulExpr(MulOps);
1369          }
1370          const SCEV *One = getConstant(Ty, 1);
1371          const SCEV *AddOne = getAddExpr(InnerMul, One);
1372          const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]);
1373          if (Ops.size() == 2) return OuterMul;
1374          if (AddOp < Idx) {
1375            Ops.erase(Ops.begin()+AddOp);
1376            Ops.erase(Ops.begin()+Idx-1);
1377          } else {
1378            Ops.erase(Ops.begin()+Idx);
1379            Ops.erase(Ops.begin()+AddOp-1);
1380          }
1381          Ops.push_back(OuterMul);
1382          return getAddExpr(Ops);
1383        }
1384
1385      // Check this multiply against other multiplies being added together.
1386      for (unsigned OtherMulIdx = Idx+1;
1387           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1388           ++OtherMulIdx) {
1389        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1390        // If MulOp occurs in OtherMul, we can fold the two multiplies
1391        // together.
1392        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1393             OMulOp != e; ++OMulOp)
1394          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1395            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1396            const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
1397            if (Mul->getNumOperands() != 2) {
1398              SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1399                                                  Mul->op_end());
1400              MulOps.erase(MulOps.begin()+MulOp);
1401              InnerMul1 = getMulExpr(MulOps);
1402            }
1403            const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1404            if (OtherMul->getNumOperands() != 2) {
1405              SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1406                                                  OtherMul->op_end());
1407              MulOps.erase(MulOps.begin()+OMulOp);
1408              InnerMul2 = getMulExpr(MulOps);
1409            }
1410            const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1411            const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1412            if (Ops.size() == 2) return OuterMul;
1413            Ops.erase(Ops.begin()+Idx);
1414            Ops.erase(Ops.begin()+OtherMulIdx-1);
1415            Ops.push_back(OuterMul);
1416            return getAddExpr(Ops);
1417          }
1418      }
1419    }
1420  }
1421
1422  // If there are any add recurrences in the operands list, see if any other
1423  // added values are loop invariant.  If so, we can fold them into the
1424  // recurrence.
1425  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1426    ++Idx;
1427
1428  // Scan over all recurrences, trying to fold loop invariants into them.
1429  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1430    // Scan all of the other operands to this add and add them to the vector if
1431    // they are loop invariant w.r.t. the recurrence.
1432    SmallVector<const SCEV *, 8> LIOps;
1433    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1434    const Loop *AddRecLoop = AddRec->getLoop();
1435    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1436      if (Ops[i]->isLoopInvariant(AddRecLoop)) {
1437        LIOps.push_back(Ops[i]);
1438        Ops.erase(Ops.begin()+i);
1439        --i; --e;
1440      }
1441
1442    // If we found some loop invariants, fold them into the recurrence.
1443    if (!LIOps.empty()) {
1444      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1445      LIOps.push_back(AddRec->getStart());
1446
1447      SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1448                                             AddRec->op_end());
1449      AddRecOps[0] = getAddExpr(LIOps);
1450
1451      // It's tempting to propagate NUW/NSW flags here, but nuw/nsw addition
1452      // is not associative so this isn't necessarily safe.
1453      const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop);
1454
1455      // If all of the other operands were loop invariant, we are done.
1456      if (Ops.size() == 1) return NewRec;
1457
1458      // Otherwise, add the folded AddRec by the non-liv parts.
1459      for (unsigned i = 0;; ++i)
1460        if (Ops[i] == AddRec) {
1461          Ops[i] = NewRec;
1462          break;
1463        }
1464      return getAddExpr(Ops);
1465    }
1466
1467    // Okay, if there weren't any loop invariants to be folded, check to see if
1468    // there are multiple AddRec's with the same loop induction variable being
1469    // added together.  If so, we can fold them.
1470    for (unsigned OtherIdx = Idx+1;
1471         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1472      if (OtherIdx != Idx) {
1473        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1474        if (AddRecLoop == OtherAddRec->getLoop()) {
1475          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
1476          SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(),
1477                                              AddRec->op_end());
1478          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1479            if (i >= NewOps.size()) {
1480              NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1481                            OtherAddRec->op_end());
1482              break;
1483            }
1484            NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
1485          }
1486          const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRecLoop);
1487
1488          if (Ops.size() == 2) return NewAddRec;
1489
1490          Ops.erase(Ops.begin()+Idx);
1491          Ops.erase(Ops.begin()+OtherIdx-1);
1492          Ops.push_back(NewAddRec);
1493          return getAddExpr(Ops);
1494        }
1495      }
1496
1497    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1498    // next one.
1499  }
1500
1501  // Okay, it looks like we really DO need an add expr.  Check to see if we
1502  // already have one, otherwise create a new one.
1503  FoldingSetNodeID ID;
1504  ID.AddInteger(scAddExpr);
1505  ID.AddInteger(Ops.size());
1506  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1507    ID.AddPointer(Ops[i]);
1508  void *IP = 0;
1509  SCEVAddExpr *S =
1510    static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1511  if (!S) {
1512    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1513    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1514    S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1515                                        O, Ops.size());
1516    UniqueSCEVs.InsertNode(S, IP);
1517  }
1518  if (HasNUW) S->setHasNoUnsignedWrap(true);
1519  if (HasNSW) S->setHasNoSignedWrap(true);
1520  return S;
1521}
1522
1523/// getMulExpr - Get a canonical multiply expression, or something simpler if
1524/// possible.
1525const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1526                                        bool HasNUW, bool HasNSW) {
1527  assert(!Ops.empty() && "Cannot get empty mul!");
1528  if (Ops.size() == 1) return Ops[0];
1529#ifndef NDEBUG
1530  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1531    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1532           getEffectiveSCEVType(Ops[0]->getType()) &&
1533           "SCEVMulExpr operand types don't match!");
1534#endif
1535
1536  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1537  if (!HasNUW && HasNSW) {
1538    bool All = true;
1539    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1540      if (!isKnownNonNegative(Ops[i])) {
1541        All = false;
1542        break;
1543      }
1544    if (All) HasNUW = true;
1545  }
1546
1547  // Sort by complexity, this groups all similar expression types together.
1548  GroupByComplexity(Ops, LI);
1549
1550  // If there are any constants, fold them together.
1551  unsigned Idx = 0;
1552  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1553
1554    // C1*(C2+V) -> C1*C2 + C1*V
1555    if (Ops.size() == 2)
1556      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1557        if (Add->getNumOperands() == 2 &&
1558            isa<SCEVConstant>(Add->getOperand(0)))
1559          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1560                            getMulExpr(LHSC, Add->getOperand(1)));
1561
1562    ++Idx;
1563    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1564      // We found two constants, fold them together!
1565      ConstantInt *Fold = ConstantInt::get(getContext(),
1566                                           LHSC->getValue()->getValue() *
1567                                           RHSC->getValue()->getValue());
1568      Ops[0] = getConstant(Fold);
1569      Ops.erase(Ops.begin()+1);  // Erase the folded element
1570      if (Ops.size() == 1) return Ops[0];
1571      LHSC = cast<SCEVConstant>(Ops[0]);
1572    }
1573
1574    // If we are left with a constant one being multiplied, strip it off.
1575    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1576      Ops.erase(Ops.begin());
1577      --Idx;
1578    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1579      // If we have a multiply of zero, it will always be zero.
1580      return Ops[0];
1581    } else if (Ops[0]->isAllOnesValue()) {
1582      // If we have a mul by -1 of an add, try distributing the -1 among the
1583      // add operands.
1584      if (Ops.size() == 2)
1585        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1586          SmallVector<const SCEV *, 4> NewOps;
1587          bool AnyFolded = false;
1588          for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1589               I != E; ++I) {
1590            const SCEV *Mul = getMulExpr(Ops[0], *I);
1591            if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1592            NewOps.push_back(Mul);
1593          }
1594          if (AnyFolded)
1595            return getAddExpr(NewOps);
1596        }
1597    }
1598
1599    if (Ops.size() == 1)
1600      return Ops[0];
1601  }
1602
1603  // Skip over the add expression until we get to a multiply.
1604  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1605    ++Idx;
1606
1607  // If there are mul operands inline them all into this expression.
1608  if (Idx < Ops.size()) {
1609    bool DeletedMul = false;
1610    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1611      // If we have an mul, expand the mul operands onto the end of the operands
1612      // list.
1613      Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1614      Ops.erase(Ops.begin()+Idx);
1615      DeletedMul = true;
1616    }
1617
1618    // If we deleted at least one mul, we added operands to the end of the list,
1619    // and they are not necessarily sorted.  Recurse to resort and resimplify
1620    // any operands we just acquired.
1621    if (DeletedMul)
1622      return getMulExpr(Ops);
1623  }
1624
1625  // If there are any add recurrences in the operands list, see if any other
1626  // added values are loop invariant.  If so, we can fold them into the
1627  // recurrence.
1628  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1629    ++Idx;
1630
1631  // Scan over all recurrences, trying to fold loop invariants into them.
1632  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1633    // Scan all of the other operands to this mul and add them to the vector if
1634    // they are loop invariant w.r.t. the recurrence.
1635    SmallVector<const SCEV *, 8> LIOps;
1636    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1637    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1638      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1639        LIOps.push_back(Ops[i]);
1640        Ops.erase(Ops.begin()+i);
1641        --i; --e;
1642      }
1643
1644    // If we found some loop invariants, fold them into the recurrence.
1645    if (!LIOps.empty()) {
1646      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1647      SmallVector<const SCEV *, 4> NewOps;
1648      NewOps.reserve(AddRec->getNumOperands());
1649      if (LIOps.size() == 1) {
1650        const SCEV *Scale = LIOps[0];
1651        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1652          NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1653      } else {
1654        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
1655          SmallVector<const SCEV *, 4> MulOps(LIOps.begin(), LIOps.end());
1656          MulOps.push_back(AddRec->getOperand(i));
1657          NewOps.push_back(getMulExpr(MulOps));
1658        }
1659      }
1660
1661      // It's tempting to propagate the NSW flag here, but nsw multiplication
1662      // is not associative so this isn't necessarily safe.
1663      const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(),
1664                                         HasNUW && AddRec->hasNoUnsignedWrap(),
1665                                         /*HasNSW=*/false);
1666
1667      // If all of the other operands were loop invariant, we are done.
1668      if (Ops.size() == 1) return NewRec;
1669
1670      // Otherwise, multiply the folded AddRec by the non-liv parts.
1671      for (unsigned i = 0;; ++i)
1672        if (Ops[i] == AddRec) {
1673          Ops[i] = NewRec;
1674          break;
1675        }
1676      return getMulExpr(Ops);
1677    }
1678
1679    // Okay, if there weren't any loop invariants to be folded, check to see if
1680    // there are multiple AddRec's with the same loop induction variable being
1681    // multiplied together.  If so, we can fold them.
1682    for (unsigned OtherIdx = Idx+1;
1683         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1684      if (OtherIdx != Idx) {
1685        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1686        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1687          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
1688          const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1689          const SCEV *NewStart = getMulExpr(F->getStart(),
1690                                                 G->getStart());
1691          const SCEV *B = F->getStepRecurrence(*this);
1692          const SCEV *D = G->getStepRecurrence(*this);
1693          const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1694                                          getMulExpr(G, B),
1695                                          getMulExpr(B, D));
1696          const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1697                                               F->getLoop());
1698          if (Ops.size() == 2) return NewAddRec;
1699
1700          Ops.erase(Ops.begin()+Idx);
1701          Ops.erase(Ops.begin()+OtherIdx-1);
1702          Ops.push_back(NewAddRec);
1703          return getMulExpr(Ops);
1704        }
1705      }
1706
1707    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1708    // next one.
1709  }
1710
1711  // Okay, it looks like we really DO need an mul expr.  Check to see if we
1712  // already have one, otherwise create a new one.
1713  FoldingSetNodeID ID;
1714  ID.AddInteger(scMulExpr);
1715  ID.AddInteger(Ops.size());
1716  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1717    ID.AddPointer(Ops[i]);
1718  void *IP = 0;
1719  SCEVMulExpr *S =
1720    static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1721  if (!S) {
1722    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1723    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1724    S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1725                                        O, Ops.size());
1726    UniqueSCEVs.InsertNode(S, IP);
1727  }
1728  if (HasNUW) S->setHasNoUnsignedWrap(true);
1729  if (HasNSW) S->setHasNoSignedWrap(true);
1730  return S;
1731}
1732
1733/// getUDivExpr - Get a canonical unsigned division expression, or something
1734/// simpler if possible.
1735const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1736                                         const SCEV *RHS) {
1737  assert(getEffectiveSCEVType(LHS->getType()) ==
1738         getEffectiveSCEVType(RHS->getType()) &&
1739         "SCEVUDivExpr operand types don't match!");
1740
1741  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1742    if (RHSC->getValue()->equalsInt(1))
1743      return LHS;                               // X udiv 1 --> x
1744    // If the denominator is zero, the result of the udiv is undefined. Don't
1745    // try to analyze it, because the resolution chosen here may differ from
1746    // the resolution chosen in other parts of the compiler.
1747    if (!RHSC->getValue()->isZero()) {
1748      // Determine if the division can be folded into the operands of
1749      // its operands.
1750      // TODO: Generalize this to non-constants by using known-bits information.
1751      const Type *Ty = LHS->getType();
1752      unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1753      unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1754      // For non-power-of-two values, effectively round the value up to the
1755      // nearest power of two.
1756      if (!RHSC->getValue()->getValue().isPowerOf2())
1757        ++MaxShiftAmt;
1758      const IntegerType *ExtTy =
1759        IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1760      // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1761      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1762        if (const SCEVConstant *Step =
1763              dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1764          if (!Step->getValue()->getValue()
1765                .urem(RHSC->getValue()->getValue()) &&
1766              getZeroExtendExpr(AR, ExtTy) ==
1767              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1768                            getZeroExtendExpr(Step, ExtTy),
1769                            AR->getLoop())) {
1770            SmallVector<const SCEV *, 4> Operands;
1771            for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1772              Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1773            return getAddRecExpr(Operands, AR->getLoop());
1774          }
1775      // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1776      if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1777        SmallVector<const SCEV *, 4> Operands;
1778        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1779          Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1780        if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1781          // Find an operand that's safely divisible.
1782          for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1783            const SCEV *Op = M->getOperand(i);
1784            const SCEV *Div = getUDivExpr(Op, RHSC);
1785            if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1786              Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1787                                                      M->op_end());
1788              Operands[i] = Div;
1789              return getMulExpr(Operands);
1790            }
1791          }
1792      }
1793      // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1794      if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1795        SmallVector<const SCEV *, 4> Operands;
1796        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1797          Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1798        if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1799          Operands.clear();
1800          for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1801            const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
1802            if (isa<SCEVUDivExpr>(Op) ||
1803                getMulExpr(Op, RHS) != A->getOperand(i))
1804              break;
1805            Operands.push_back(Op);
1806          }
1807          if (Operands.size() == A->getNumOperands())
1808            return getAddExpr(Operands);
1809        }
1810      }
1811
1812      // Fold if both operands are constant.
1813      if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1814        Constant *LHSCV = LHSC->getValue();
1815        Constant *RHSCV = RHSC->getValue();
1816        return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1817                                                                   RHSCV)));
1818      }
1819    }
1820  }
1821
1822  FoldingSetNodeID ID;
1823  ID.AddInteger(scUDivExpr);
1824  ID.AddPointer(LHS);
1825  ID.AddPointer(RHS);
1826  void *IP = 0;
1827  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1828  SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
1829                                             LHS, RHS);
1830  UniqueSCEVs.InsertNode(S, IP);
1831  return S;
1832}
1833
1834
1835/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1836/// Simplify the expression as much as possible.
1837const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
1838                                           const SCEV *Step, const Loop *L,
1839                                           bool HasNUW, bool HasNSW) {
1840  SmallVector<const SCEV *, 4> Operands;
1841  Operands.push_back(Start);
1842  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1843    if (StepChrec->getLoop() == L) {
1844      Operands.insert(Operands.end(), StepChrec->op_begin(),
1845                      StepChrec->op_end());
1846      return getAddRecExpr(Operands, L);
1847    }
1848
1849  Operands.push_back(Step);
1850  return getAddRecExpr(Operands, L, HasNUW, HasNSW);
1851}
1852
1853/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1854/// Simplify the expression as much as possible.
1855const SCEV *
1856ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
1857                               const Loop *L,
1858                               bool HasNUW, bool HasNSW) {
1859  if (Operands.size() == 1) return Operands[0];
1860#ifndef NDEBUG
1861  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1862    assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1863           getEffectiveSCEVType(Operands[0]->getType()) &&
1864           "SCEVAddRecExpr operand types don't match!");
1865#endif
1866
1867  if (Operands.back()->isZero()) {
1868    Operands.pop_back();
1869    return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0}  -->  X
1870  }
1871
1872  // It's tempting to want to call getMaxBackedgeTakenCount count here and
1873  // use that information to infer NUW and NSW flags. However, computing a
1874  // BE count requires calling getAddRecExpr, so we may not yet have a
1875  // meaningful BE count at this point (and if we don't, we'd be stuck
1876  // with a SCEVCouldNotCompute as the cached BE count).
1877
1878  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1879  if (!HasNUW && HasNSW) {
1880    bool All = true;
1881    for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1882      if (!isKnownNonNegative(Operands[i])) {
1883        All = false;
1884        break;
1885      }
1886    if (All) HasNUW = true;
1887  }
1888
1889  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
1890  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
1891    const Loop *NestedLoop = NestedAR->getLoop();
1892    if (L->contains(NestedLoop->getHeader()) ?
1893        (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
1894        (!NestedLoop->contains(L->getHeader()) &&
1895         DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
1896      SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
1897                                                  NestedAR->op_end());
1898      Operands[0] = NestedAR->getStart();
1899      // AddRecs require their operands be loop-invariant with respect to their
1900      // loops. Don't perform this transformation if it would break this
1901      // requirement.
1902      bool AllInvariant = true;
1903      for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1904        if (!Operands[i]->isLoopInvariant(L)) {
1905          AllInvariant = false;
1906          break;
1907        }
1908      if (AllInvariant) {
1909        NestedOperands[0] = getAddRecExpr(Operands, L);
1910        AllInvariant = true;
1911        for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
1912          if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
1913            AllInvariant = false;
1914            break;
1915          }
1916        if (AllInvariant)
1917          // Ok, both add recurrences are valid after the transformation.
1918          return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
1919      }
1920      // Reset Operands to its original state.
1921      Operands[0] = NestedAR;
1922    }
1923  }
1924
1925  // Okay, it looks like we really DO need an addrec expr.  Check to see if we
1926  // already have one, otherwise create a new one.
1927  FoldingSetNodeID ID;
1928  ID.AddInteger(scAddRecExpr);
1929  ID.AddInteger(Operands.size());
1930  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1931    ID.AddPointer(Operands[i]);
1932  ID.AddPointer(L);
1933  void *IP = 0;
1934  SCEVAddRecExpr *S =
1935    static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1936  if (!S) {
1937    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
1938    std::uninitialized_copy(Operands.begin(), Operands.end(), O);
1939    S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
1940                                           O, Operands.size(), L);
1941    UniqueSCEVs.InsertNode(S, IP);
1942  }
1943  if (HasNUW) S->setHasNoUnsignedWrap(true);
1944  if (HasNSW) S->setHasNoSignedWrap(true);
1945  return S;
1946}
1947
1948const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
1949                                         const SCEV *RHS) {
1950  SmallVector<const SCEV *, 2> Ops;
1951  Ops.push_back(LHS);
1952  Ops.push_back(RHS);
1953  return getSMaxExpr(Ops);
1954}
1955
1956const SCEV *
1957ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
1958  assert(!Ops.empty() && "Cannot get empty smax!");
1959  if (Ops.size() == 1) return Ops[0];
1960#ifndef NDEBUG
1961  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1962    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1963           getEffectiveSCEVType(Ops[0]->getType()) &&
1964           "SCEVSMaxExpr operand types don't match!");
1965#endif
1966
1967  // Sort by complexity, this groups all similar expression types together.
1968  GroupByComplexity(Ops, LI);
1969
1970  // If there are any constants, fold them together.
1971  unsigned Idx = 0;
1972  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1973    ++Idx;
1974    assert(Idx < Ops.size());
1975    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1976      // We found two constants, fold them together!
1977      ConstantInt *Fold = ConstantInt::get(getContext(),
1978                              APIntOps::smax(LHSC->getValue()->getValue(),
1979                                             RHSC->getValue()->getValue()));
1980      Ops[0] = getConstant(Fold);
1981      Ops.erase(Ops.begin()+1);  // Erase the folded element
1982      if (Ops.size() == 1) return Ops[0];
1983      LHSC = cast<SCEVConstant>(Ops[0]);
1984    }
1985
1986    // If we are left with a constant minimum-int, strip it off.
1987    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1988      Ops.erase(Ops.begin());
1989      --Idx;
1990    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
1991      // If we have an smax with a constant maximum-int, it will always be
1992      // maximum-int.
1993      return Ops[0];
1994    }
1995
1996    if (Ops.size() == 1) return Ops[0];
1997  }
1998
1999  // Find the first SMax
2000  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2001    ++Idx;
2002
2003  // Check to see if one of the operands is an SMax. If so, expand its operands
2004  // onto our operand list, and recurse to simplify.
2005  if (Idx < Ops.size()) {
2006    bool DeletedSMax = false;
2007    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
2008      Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
2009      Ops.erase(Ops.begin()+Idx);
2010      DeletedSMax = true;
2011    }
2012
2013    if (DeletedSMax)
2014      return getSMaxExpr(Ops);
2015  }
2016
2017  // Okay, check to see if the same value occurs in the operand list twice.  If
2018  // so, delete one.  Since we sorted the list, these values are required to
2019  // be adjacent.
2020  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2021    //  X smax Y smax Y  -->  X smax Y
2022    //  X smax Y         -->  X, if X is always greater than Y
2023    if (Ops[i] == Ops[i+1] ||
2024        isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2025      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2026      --i; --e;
2027    } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
2028      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2029      --i; --e;
2030    }
2031
2032  if (Ops.size() == 1) return Ops[0];
2033
2034  assert(!Ops.empty() && "Reduced smax down to nothing!");
2035
2036  // Okay, it looks like we really DO need an smax expr.  Check to see if we
2037  // already have one, otherwise create a new one.
2038  FoldingSetNodeID ID;
2039  ID.AddInteger(scSMaxExpr);
2040  ID.AddInteger(Ops.size());
2041  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2042    ID.AddPointer(Ops[i]);
2043  void *IP = 0;
2044  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2045  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2046  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2047  SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2048                                             O, Ops.size());
2049  UniqueSCEVs.InsertNode(S, IP);
2050  return S;
2051}
2052
2053const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2054                                         const SCEV *RHS) {
2055  SmallVector<const SCEV *, 2> Ops;
2056  Ops.push_back(LHS);
2057  Ops.push_back(RHS);
2058  return getUMaxExpr(Ops);
2059}
2060
2061const SCEV *
2062ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2063  assert(!Ops.empty() && "Cannot get empty umax!");
2064  if (Ops.size() == 1) return Ops[0];
2065#ifndef NDEBUG
2066  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2067    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2068           getEffectiveSCEVType(Ops[0]->getType()) &&
2069           "SCEVUMaxExpr operand types don't match!");
2070#endif
2071
2072  // Sort by complexity, this groups all similar expression types together.
2073  GroupByComplexity(Ops, LI);
2074
2075  // If there are any constants, fold them together.
2076  unsigned Idx = 0;
2077  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2078    ++Idx;
2079    assert(Idx < Ops.size());
2080    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2081      // We found two constants, fold them together!
2082      ConstantInt *Fold = ConstantInt::get(getContext(),
2083                              APIntOps::umax(LHSC->getValue()->getValue(),
2084                                             RHSC->getValue()->getValue()));
2085      Ops[0] = getConstant(Fold);
2086      Ops.erase(Ops.begin()+1);  // Erase the folded element
2087      if (Ops.size() == 1) return Ops[0];
2088      LHSC = cast<SCEVConstant>(Ops[0]);
2089    }
2090
2091    // If we are left with a constant minimum-int, strip it off.
2092    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2093      Ops.erase(Ops.begin());
2094      --Idx;
2095    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2096      // If we have an umax with a constant maximum-int, it will always be
2097      // maximum-int.
2098      return Ops[0];
2099    }
2100
2101    if (Ops.size() == 1) return Ops[0];
2102  }
2103
2104  // Find the first UMax
2105  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2106    ++Idx;
2107
2108  // Check to see if one of the operands is a UMax. If so, expand its operands
2109  // onto our operand list, and recurse to simplify.
2110  if (Idx < Ops.size()) {
2111    bool DeletedUMax = false;
2112    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
2113      Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
2114      Ops.erase(Ops.begin()+Idx);
2115      DeletedUMax = true;
2116    }
2117
2118    if (DeletedUMax)
2119      return getUMaxExpr(Ops);
2120  }
2121
2122  // Okay, check to see if the same value occurs in the operand list twice.  If
2123  // so, delete one.  Since we sorted the list, these values are required to
2124  // be adjacent.
2125  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2126    //  X umax Y umax Y  -->  X umax Y
2127    //  X umax Y         -->  X, if X is always greater than Y
2128    if (Ops[i] == Ops[i+1] ||
2129        isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2130      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2131      --i; --e;
2132    } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
2133      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2134      --i; --e;
2135    }
2136
2137  if (Ops.size() == 1) return Ops[0];
2138
2139  assert(!Ops.empty() && "Reduced umax down to nothing!");
2140
2141  // Okay, it looks like we really DO need a umax expr.  Check to see if we
2142  // already have one, otherwise create a new one.
2143  FoldingSetNodeID ID;
2144  ID.AddInteger(scUMaxExpr);
2145  ID.AddInteger(Ops.size());
2146  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2147    ID.AddPointer(Ops[i]);
2148  void *IP = 0;
2149  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2150  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2151  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2152  SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2153                                             O, Ops.size());
2154  UniqueSCEVs.InsertNode(S, IP);
2155  return S;
2156}
2157
2158const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2159                                         const SCEV *RHS) {
2160  // ~smax(~x, ~y) == smin(x, y).
2161  return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2162}
2163
2164const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2165                                         const SCEV *RHS) {
2166  // ~umax(~x, ~y) == umin(x, y)
2167  return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2168}
2169
2170const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
2171  // If we have TargetData, we can bypass creating a target-independent
2172  // constant expression and then folding it back into a ConstantInt.
2173  // This is just a compile-time optimization.
2174  if (TD)
2175    return getConstant(TD->getIntPtrType(getContext()),
2176                       TD->getTypeAllocSize(AllocTy));
2177
2178  Constant *C = ConstantExpr::getSizeOf(AllocTy);
2179  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2180    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2181      C = Folded;
2182  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2183  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2184}
2185
2186const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2187  Constant *C = ConstantExpr::getAlignOf(AllocTy);
2188  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2189    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2190      C = Folded;
2191  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2192  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2193}
2194
2195const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2196                                             unsigned FieldNo) {
2197  // If we have TargetData, we can bypass creating a target-independent
2198  // constant expression and then folding it back into a ConstantInt.
2199  // This is just a compile-time optimization.
2200  if (TD)
2201    return getConstant(TD->getIntPtrType(getContext()),
2202                       TD->getStructLayout(STy)->getElementOffset(FieldNo));
2203
2204  Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2205  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2206    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2207      C = Folded;
2208  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2209  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2210}
2211
2212const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2213                                             Constant *FieldNo) {
2214  Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
2215  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2216    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2217      C = Folded;
2218  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
2219  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2220}
2221
2222const SCEV *ScalarEvolution::getUnknown(Value *V) {
2223  // Don't attempt to do anything other than create a SCEVUnknown object
2224  // here.  createSCEV only calls getUnknown after checking for all other
2225  // interesting possibilities, and any other code that calls getUnknown
2226  // is doing so in order to hide a value from SCEV canonicalization.
2227
2228  FoldingSetNodeID ID;
2229  ID.AddInteger(scUnknown);
2230  ID.AddPointer(V);
2231  void *IP = 0;
2232  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2233  SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V);
2234  UniqueSCEVs.InsertNode(S, IP);
2235  return S;
2236}
2237
2238//===----------------------------------------------------------------------===//
2239//            Basic SCEV Analysis and PHI Idiom Recognition Code
2240//
2241
2242/// isSCEVable - Test if values of the given type are analyzable within
2243/// the SCEV framework. This primarily includes integer types, and it
2244/// can optionally include pointer types if the ScalarEvolution class
2245/// has access to target-specific information.
2246bool ScalarEvolution::isSCEVable(const Type *Ty) const {
2247  // Integers and pointers are always SCEVable.
2248  return Ty->isIntegerTy() || Ty->isPointerTy();
2249}
2250
2251/// getTypeSizeInBits - Return the size in bits of the specified type,
2252/// for which isSCEVable must return true.
2253uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
2254  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2255
2256  // If we have a TargetData, use it!
2257  if (TD)
2258    return TD->getTypeSizeInBits(Ty);
2259
2260  // Integer types have fixed sizes.
2261  if (Ty->isIntegerTy())
2262    return Ty->getPrimitiveSizeInBits();
2263
2264  // The only other support type is pointer. Without TargetData, conservatively
2265  // assume pointers are 64-bit.
2266  assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
2267  return 64;
2268}
2269
2270/// getEffectiveSCEVType - Return a type with the same bitwidth as
2271/// the given type and which represents how SCEV will treat the given
2272/// type, for which isSCEVable must return true. For pointer types,
2273/// this is the pointer-sized integer type.
2274const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
2275  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2276
2277  if (Ty->isIntegerTy())
2278    return Ty;
2279
2280  // The only other support type is pointer.
2281  assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
2282  if (TD) return TD->getIntPtrType(getContext());
2283
2284  // Without TargetData, conservatively assume pointers are 64-bit.
2285  return Type::getInt64Ty(getContext());
2286}
2287
2288const SCEV *ScalarEvolution::getCouldNotCompute() {
2289  return &CouldNotCompute;
2290}
2291
2292/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2293/// expression and create a new one.
2294const SCEV *ScalarEvolution::getSCEV(Value *V) {
2295  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
2296
2297  std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V);
2298  if (I != Scalars.end()) return I->second;
2299  const SCEV *S = createSCEV(V);
2300  Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
2301  return S;
2302}
2303
2304/// getIntegerSCEV - Given a SCEVable type, create a constant for the
2305/// specified signed integer value and return a SCEV for the constant.
2306const SCEV *ScalarEvolution::getIntegerSCEV(int64_t Val, const Type *Ty) {
2307  const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
2308  return getConstant(ConstantInt::get(ITy, Val));
2309}
2310
2311/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2312///
2313const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
2314  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2315    return getConstant(
2316               cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
2317
2318  const Type *Ty = V->getType();
2319  Ty = getEffectiveSCEVType(Ty);
2320  return getMulExpr(V,
2321                  getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
2322}
2323
2324/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2325const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
2326  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2327    return getConstant(
2328                cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
2329
2330  const Type *Ty = V->getType();
2331  Ty = getEffectiveSCEVType(Ty);
2332  const SCEV *AllOnes =
2333                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
2334  return getMinusSCEV(AllOnes, V);
2335}
2336
2337/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2338///
2339const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2340                                          const SCEV *RHS) {
2341  // X - Y --> X + -Y
2342  return getAddExpr(LHS, getNegativeSCEV(RHS));
2343}
2344
2345/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2346/// input value to the specified type.  If the type must be extended, it is zero
2347/// extended.
2348const SCEV *
2349ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
2350                                         const Type *Ty) {
2351  const Type *SrcTy = V->getType();
2352  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2353         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2354         "Cannot truncate or zero extend with non-integer arguments!");
2355  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2356    return V;  // No conversion
2357  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2358    return getTruncateExpr(V, Ty);
2359  return getZeroExtendExpr(V, Ty);
2360}
2361
2362/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2363/// input value to the specified type.  If the type must be extended, it is sign
2364/// extended.
2365const SCEV *
2366ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
2367                                         const Type *Ty) {
2368  const Type *SrcTy = V->getType();
2369  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2370         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2371         "Cannot truncate or zero extend with non-integer arguments!");
2372  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2373    return V;  // No conversion
2374  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2375    return getTruncateExpr(V, Ty);
2376  return getSignExtendExpr(V, Ty);
2377}
2378
2379/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2380/// input value to the specified type.  If the type must be extended, it is zero
2381/// extended.  The conversion must not be narrowing.
2382const SCEV *
2383ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
2384  const Type *SrcTy = V->getType();
2385  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2386         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2387         "Cannot noop or zero extend with non-integer arguments!");
2388  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2389         "getNoopOrZeroExtend cannot truncate!");
2390  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2391    return V;  // No conversion
2392  return getZeroExtendExpr(V, Ty);
2393}
2394
2395/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2396/// input value to the specified type.  If the type must be extended, it is sign
2397/// extended.  The conversion must not be narrowing.
2398const SCEV *
2399ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
2400  const Type *SrcTy = V->getType();
2401  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2402         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2403         "Cannot noop or sign extend with non-integer arguments!");
2404  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2405         "getNoopOrSignExtend cannot truncate!");
2406  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2407    return V;  // No conversion
2408  return getSignExtendExpr(V, Ty);
2409}
2410
2411/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2412/// the input value to the specified type. If the type must be extended,
2413/// it is extended with unspecified bits. The conversion must not be
2414/// narrowing.
2415const SCEV *
2416ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
2417  const Type *SrcTy = V->getType();
2418  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2419         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2420         "Cannot noop or any extend with non-integer arguments!");
2421  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2422         "getNoopOrAnyExtend cannot truncate!");
2423  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2424    return V;  // No conversion
2425  return getAnyExtendExpr(V, Ty);
2426}
2427
2428/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2429/// input value to the specified type.  The conversion must not be widening.
2430const SCEV *
2431ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
2432  const Type *SrcTy = V->getType();
2433  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2434         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2435         "Cannot truncate or noop with non-integer arguments!");
2436  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2437         "getTruncateOrNoop cannot extend!");
2438  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2439    return V;  // No conversion
2440  return getTruncateExpr(V, Ty);
2441}
2442
2443/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2444/// the types using zero-extension, and then perform a umax operation
2445/// with them.
2446const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2447                                                        const SCEV *RHS) {
2448  const SCEV *PromotedLHS = LHS;
2449  const SCEV *PromotedRHS = RHS;
2450
2451  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2452    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2453  else
2454    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2455
2456  return getUMaxExpr(PromotedLHS, PromotedRHS);
2457}
2458
2459/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2460/// the types using zero-extension, and then perform a umin operation
2461/// with them.
2462const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2463                                                        const SCEV *RHS) {
2464  const SCEV *PromotedLHS = LHS;
2465  const SCEV *PromotedRHS = RHS;
2466
2467  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2468    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2469  else
2470    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2471
2472  return getUMinExpr(PromotedLHS, PromotedRHS);
2473}
2474
2475/// PushDefUseChildren - Push users of the given Instruction
2476/// onto the given Worklist.
2477static void
2478PushDefUseChildren(Instruction *I,
2479                   SmallVectorImpl<Instruction *> &Worklist) {
2480  // Push the def-use children onto the Worklist stack.
2481  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2482       UI != UE; ++UI)
2483    Worklist.push_back(cast<Instruction>(UI));
2484}
2485
2486/// ForgetSymbolicValue - This looks up computed SCEV values for all
2487/// instructions that depend on the given instruction and removes them from
2488/// the Scalars map if they reference SymName. This is used during PHI
2489/// resolution.
2490void
2491ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
2492  SmallVector<Instruction *, 16> Worklist;
2493  PushDefUseChildren(PN, Worklist);
2494
2495  SmallPtrSet<Instruction *, 8> Visited;
2496  Visited.insert(PN);
2497  while (!Worklist.empty()) {
2498    Instruction *I = Worklist.pop_back_val();
2499    if (!Visited.insert(I)) continue;
2500
2501    std::map<SCEVCallbackVH, const SCEV *>::iterator It =
2502      Scalars.find(static_cast<Value *>(I));
2503    if (It != Scalars.end()) {
2504      // Short-circuit the def-use traversal if the symbolic name
2505      // ceases to appear in expressions.
2506      if (It->second != SymName && !It->second->hasOperand(SymName))
2507        continue;
2508
2509      // SCEVUnknown for a PHI either means that it has an unrecognized
2510      // structure, it's a PHI that's in the progress of being computed
2511      // by createNodeForPHI, or it's a single-value PHI. In the first case,
2512      // additional loop trip count information isn't going to change anything.
2513      // In the second case, createNodeForPHI will perform the necessary
2514      // updates on its own when it gets to that point. In the third, we do
2515      // want to forget the SCEVUnknown.
2516      if (!isa<PHINode>(I) ||
2517          !isa<SCEVUnknown>(It->second) ||
2518          (I != PN && It->second == SymName)) {
2519        ValuesAtScopes.erase(It->second);
2520        Scalars.erase(It);
2521      }
2522    }
2523
2524    PushDefUseChildren(I, Worklist);
2525  }
2526}
2527
2528/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
2529/// a loop header, making it a potential recurrence, or it doesn't.
2530///
2531const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
2532  if (const Loop *L = LI->getLoopFor(PN->getParent()))
2533    if (L->getHeader() == PN->getParent()) {
2534      // The loop may have multiple entrances or multiple exits; we can analyze
2535      // this phi as an addrec if it has a unique entry value and a unique
2536      // backedge value.
2537      Value *BEValueV = 0, *StartValueV = 0;
2538      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2539        Value *V = PN->getIncomingValue(i);
2540        if (L->contains(PN->getIncomingBlock(i))) {
2541          if (!BEValueV) {
2542            BEValueV = V;
2543          } else if (BEValueV != V) {
2544            BEValueV = 0;
2545            break;
2546          }
2547        } else if (!StartValueV) {
2548          StartValueV = V;
2549        } else if (StartValueV != V) {
2550          StartValueV = 0;
2551          break;
2552        }
2553      }
2554      if (BEValueV && StartValueV) {
2555        // While we are analyzing this PHI node, handle its value symbolically.
2556        const SCEV *SymbolicName = getUnknown(PN);
2557        assert(Scalars.find(PN) == Scalars.end() &&
2558               "PHI node already processed?");
2559        Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
2560
2561        // Using this symbolic name for the PHI, analyze the value coming around
2562        // the back-edge.
2563        const SCEV *BEValue = getSCEV(BEValueV);
2564
2565        // NOTE: If BEValue is loop invariant, we know that the PHI node just
2566        // has a special value for the first iteration of the loop.
2567
2568        // If the value coming around the backedge is an add with the symbolic
2569        // value we just inserted, then we found a simple induction variable!
2570        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
2571          // If there is a single occurrence of the symbolic value, replace it
2572          // with a recurrence.
2573          unsigned FoundIndex = Add->getNumOperands();
2574          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2575            if (Add->getOperand(i) == SymbolicName)
2576              if (FoundIndex == e) {
2577                FoundIndex = i;
2578                break;
2579              }
2580
2581          if (FoundIndex != Add->getNumOperands()) {
2582            // Create an add with everything but the specified operand.
2583            SmallVector<const SCEV *, 8> Ops;
2584            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2585              if (i != FoundIndex)
2586                Ops.push_back(Add->getOperand(i));
2587            const SCEV *Accum = getAddExpr(Ops);
2588
2589            // This is not a valid addrec if the step amount is varying each
2590            // loop iteration, but is not itself an addrec in this loop.
2591            if (Accum->isLoopInvariant(L) ||
2592                (isa<SCEVAddRecExpr>(Accum) &&
2593                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
2594              bool HasNUW = false;
2595              bool HasNSW = false;
2596
2597              // If the increment doesn't overflow, then neither the addrec nor
2598              // the post-increment will overflow.
2599              if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2600                if (OBO->hasNoUnsignedWrap())
2601                  HasNUW = true;
2602                if (OBO->hasNoSignedWrap())
2603                  HasNSW = true;
2604              }
2605
2606              const SCEV *StartVal = getSCEV(StartValueV);
2607              const SCEV *PHISCEV =
2608                getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
2609
2610              // Since the no-wrap flags are on the increment, they apply to the
2611              // post-incremented value as well.
2612              if (Accum->isLoopInvariant(L))
2613                (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2614                                    Accum, L, HasNUW, HasNSW);
2615
2616              // Okay, for the entire analysis of this edge we assumed the PHI
2617              // to be symbolic.  We now need to go back and purge all of the
2618              // entries for the scalars that use the symbolic expression.
2619              ForgetSymbolicName(PN, SymbolicName);
2620              Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
2621              return PHISCEV;
2622            }
2623          }
2624        } else if (const SCEVAddRecExpr *AddRec =
2625                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
2626          // Otherwise, this could be a loop like this:
2627          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
2628          // In this case, j = {1,+,1}  and BEValue is j.
2629          // Because the other in-value of i (0) fits the evolution of BEValue
2630          // i really is an addrec evolution.
2631          if (AddRec->getLoop() == L && AddRec->isAffine()) {
2632            const SCEV *StartVal = getSCEV(StartValueV);
2633
2634            // If StartVal = j.start - j.stride, we can use StartVal as the
2635            // initial step of the addrec evolution.
2636            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
2637                                         AddRec->getOperand(1))) {
2638              const SCEV *PHISCEV =
2639                 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
2640
2641              // Okay, for the entire analysis of this edge we assumed the PHI
2642              // to be symbolic.  We now need to go back and purge all of the
2643              // entries for the scalars that use the symbolic expression.
2644              ForgetSymbolicName(PN, SymbolicName);
2645              Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
2646              return PHISCEV;
2647            }
2648          }
2649        }
2650      }
2651    }
2652
2653  // If the PHI has a single incoming value, follow that value, unless the
2654  // PHI's incoming blocks are in a different loop, in which case doing so
2655  // risks breaking LCSSA form. Instcombine would normally zap these, but
2656  // it doesn't have DominatorTree information, so it may miss cases.
2657  if (Value *V = PN->hasConstantValue(DT)) {
2658    bool AllSameLoop = true;
2659    Loop *PNLoop = LI->getLoopFor(PN->getParent());
2660    for (size_t i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2661      if (LI->getLoopFor(PN->getIncomingBlock(i)) != PNLoop) {
2662        AllSameLoop = false;
2663        break;
2664      }
2665    if (AllSameLoop)
2666      return getSCEV(V);
2667  }
2668
2669  // If it's not a loop phi, we can't handle it yet.
2670  return getUnknown(PN);
2671}
2672
2673/// createNodeForGEP - Expand GEP instructions into add and multiply
2674/// operations. This allows them to be analyzed by regular SCEV code.
2675///
2676const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
2677
2678  bool InBounds = GEP->isInBounds();
2679  const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
2680  Value *Base = GEP->getOperand(0);
2681  // Don't attempt to analyze GEPs over unsized objects.
2682  if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2683    return getUnknown(GEP);
2684  const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
2685  gep_type_iterator GTI = gep_type_begin(GEP);
2686  for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2687                                      E = GEP->op_end();
2688       I != E; ++I) {
2689    Value *Index = *I;
2690    // Compute the (potentially symbolic) offset in bytes for this index.
2691    if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2692      // For a struct, add the member offset.
2693      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2694      TotalOffset = getAddExpr(TotalOffset,
2695                               getOffsetOfExpr(STy, FieldNo),
2696                               /*HasNUW=*/false, /*HasNSW=*/InBounds);
2697    } else {
2698      // For an array, add the element offset, explicitly scaled.
2699      const SCEV *LocalOffset = getSCEV(Index);
2700      // Getelementptr indices are signed.
2701      LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy);
2702      // Lower "inbounds" GEPs to NSW arithmetic.
2703      LocalOffset = getMulExpr(LocalOffset, getSizeOfExpr(*GTI),
2704                               /*HasNUW=*/false, /*HasNSW=*/InBounds);
2705      TotalOffset = getAddExpr(TotalOffset, LocalOffset,
2706                               /*HasNUW=*/false, /*HasNSW=*/InBounds);
2707    }
2708  }
2709  return getAddExpr(getSCEV(Base), TotalOffset,
2710                    /*HasNUW=*/false, /*HasNSW=*/InBounds);
2711}
2712
2713/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2714/// guaranteed to end in (at every loop iteration).  It is, at the same time,
2715/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
2716/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
2717uint32_t
2718ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
2719  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2720    return C->getValue()->getValue().countTrailingZeros();
2721
2722  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
2723    return std::min(GetMinTrailingZeros(T->getOperand()),
2724                    (uint32_t)getTypeSizeInBits(T->getType()));
2725
2726  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
2727    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2728    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2729             getTypeSizeInBits(E->getType()) : OpRes;
2730  }
2731
2732  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
2733    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2734    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2735             getTypeSizeInBits(E->getType()) : OpRes;
2736  }
2737
2738  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
2739    // The result is the min of all operands results.
2740    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2741    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2742      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2743    return MinOpRes;
2744  }
2745
2746  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
2747    // The result is the sum of all operands results.
2748    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2749    uint32_t BitWidth = getTypeSizeInBits(M->getType());
2750    for (unsigned i = 1, e = M->getNumOperands();
2751         SumOpRes != BitWidth && i != e; ++i)
2752      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
2753                          BitWidth);
2754    return SumOpRes;
2755  }
2756
2757  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
2758    // The result is the min of all operands results.
2759    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2760    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2761      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2762    return MinOpRes;
2763  }
2764
2765  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
2766    // The result is the min of all operands results.
2767    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2768    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2769      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2770    return MinOpRes;
2771  }
2772
2773  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
2774    // The result is the min of all operands results.
2775    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2776    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2777      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2778    return MinOpRes;
2779  }
2780
2781  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2782    // For a SCEVUnknown, ask ValueTracking.
2783    unsigned BitWidth = getTypeSizeInBits(U->getType());
2784    APInt Mask = APInt::getAllOnesValue(BitWidth);
2785    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2786    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2787    return Zeros.countTrailingOnes();
2788  }
2789
2790  // SCEVUDivExpr
2791  return 0;
2792}
2793
2794/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2795///
2796ConstantRange
2797ScalarEvolution::getUnsignedRange(const SCEV *S) {
2798
2799  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2800    return ConstantRange(C->getValue()->getValue());
2801
2802  unsigned BitWidth = getTypeSizeInBits(S->getType());
2803  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
2804
2805  // If the value has known zeros, the maximum unsigned value will have those
2806  // known zeros as well.
2807  uint32_t TZ = GetMinTrailingZeros(S);
2808  if (TZ != 0)
2809    ConservativeResult =
2810      ConstantRange(APInt::getMinValue(BitWidth),
2811                    APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
2812
2813  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2814    ConstantRange X = getUnsignedRange(Add->getOperand(0));
2815    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2816      X = X.add(getUnsignedRange(Add->getOperand(i)));
2817    return ConservativeResult.intersectWith(X);
2818  }
2819
2820  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2821    ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2822    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2823      X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
2824    return ConservativeResult.intersectWith(X);
2825  }
2826
2827  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2828    ConstantRange X = getUnsignedRange(SMax->getOperand(0));
2829    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2830      X = X.smax(getUnsignedRange(SMax->getOperand(i)));
2831    return ConservativeResult.intersectWith(X);
2832  }
2833
2834  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2835    ConstantRange X = getUnsignedRange(UMax->getOperand(0));
2836    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2837      X = X.umax(getUnsignedRange(UMax->getOperand(i)));
2838    return ConservativeResult.intersectWith(X);
2839  }
2840
2841  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2842    ConstantRange X = getUnsignedRange(UDiv->getLHS());
2843    ConstantRange Y = getUnsignedRange(UDiv->getRHS());
2844    return ConservativeResult.intersectWith(X.udiv(Y));
2845  }
2846
2847  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2848    ConstantRange X = getUnsignedRange(ZExt->getOperand());
2849    return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
2850  }
2851
2852  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2853    ConstantRange X = getUnsignedRange(SExt->getOperand());
2854    return ConservativeResult.intersectWith(X.signExtend(BitWidth));
2855  }
2856
2857  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2858    ConstantRange X = getUnsignedRange(Trunc->getOperand());
2859    return ConservativeResult.intersectWith(X.truncate(BitWidth));
2860  }
2861
2862  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
2863    // If there's no unsigned wrap, the value will never be less than its
2864    // initial value.
2865    if (AddRec->hasNoUnsignedWrap())
2866      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
2867        if (!C->getValue()->isZero())
2868          ConservativeResult =
2869            ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0));
2870
2871    // TODO: non-affine addrec
2872    if (AddRec->isAffine()) {
2873      const Type *Ty = AddRec->getType();
2874      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
2875      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
2876          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
2877        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
2878
2879        const SCEV *Start = AddRec->getStart();
2880        const SCEV *Step = AddRec->getStepRecurrence(*this);
2881
2882        ConstantRange StartRange = getUnsignedRange(Start);
2883        ConstantRange StepRange = getSignedRange(Step);
2884        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
2885        ConstantRange EndRange =
2886          StartRange.add(MaxBECountRange.multiply(StepRange));
2887
2888        // Check for overflow. This must be done with ConstantRange arithmetic
2889        // because we could be called from within the ScalarEvolution overflow
2890        // checking code.
2891        ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
2892        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
2893        ConstantRange ExtMaxBECountRange =
2894          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
2895        ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
2896        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
2897            ExtEndRange)
2898          return ConservativeResult;
2899
2900        APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
2901                                   EndRange.getUnsignedMin());
2902        APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
2903                                   EndRange.getUnsignedMax());
2904        if (Min.isMinValue() && Max.isMaxValue())
2905          return ConservativeResult;
2906        return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
2907      }
2908    }
2909
2910    return ConservativeResult;
2911  }
2912
2913  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2914    // For a SCEVUnknown, ask ValueTracking.
2915    APInt Mask = APInt::getAllOnesValue(BitWidth);
2916    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2917    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
2918    if (Ones == ~Zeros + 1)
2919      return ConservativeResult;
2920    return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
2921  }
2922
2923  return ConservativeResult;
2924}
2925
2926/// getSignedRange - Determine the signed range for a particular SCEV.
2927///
2928ConstantRange
2929ScalarEvolution::getSignedRange(const SCEV *S) {
2930
2931  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2932    return ConstantRange(C->getValue()->getValue());
2933
2934  unsigned BitWidth = getTypeSizeInBits(S->getType());
2935  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
2936
2937  // If the value has known zeros, the maximum signed value will have those
2938  // known zeros as well.
2939  uint32_t TZ = GetMinTrailingZeros(S);
2940  if (TZ != 0)
2941    ConservativeResult =
2942      ConstantRange(APInt::getSignedMinValue(BitWidth),
2943                    APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
2944
2945  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2946    ConstantRange X = getSignedRange(Add->getOperand(0));
2947    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2948      X = X.add(getSignedRange(Add->getOperand(i)));
2949    return ConservativeResult.intersectWith(X);
2950  }
2951
2952  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2953    ConstantRange X = getSignedRange(Mul->getOperand(0));
2954    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2955      X = X.multiply(getSignedRange(Mul->getOperand(i)));
2956    return ConservativeResult.intersectWith(X);
2957  }
2958
2959  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2960    ConstantRange X = getSignedRange(SMax->getOperand(0));
2961    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2962      X = X.smax(getSignedRange(SMax->getOperand(i)));
2963    return ConservativeResult.intersectWith(X);
2964  }
2965
2966  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2967    ConstantRange X = getSignedRange(UMax->getOperand(0));
2968    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2969      X = X.umax(getSignedRange(UMax->getOperand(i)));
2970    return ConservativeResult.intersectWith(X);
2971  }
2972
2973  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2974    ConstantRange X = getSignedRange(UDiv->getLHS());
2975    ConstantRange Y = getSignedRange(UDiv->getRHS());
2976    return ConservativeResult.intersectWith(X.udiv(Y));
2977  }
2978
2979  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2980    ConstantRange X = getSignedRange(ZExt->getOperand());
2981    return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
2982  }
2983
2984  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2985    ConstantRange X = getSignedRange(SExt->getOperand());
2986    return ConservativeResult.intersectWith(X.signExtend(BitWidth));
2987  }
2988
2989  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2990    ConstantRange X = getSignedRange(Trunc->getOperand());
2991    return ConservativeResult.intersectWith(X.truncate(BitWidth));
2992  }
2993
2994  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
2995    // If there's no signed wrap, and all the operands have the same sign or
2996    // zero, the value won't ever change sign.
2997    if (AddRec->hasNoSignedWrap()) {
2998      bool AllNonNeg = true;
2999      bool AllNonPos = true;
3000      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3001        if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3002        if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3003      }
3004      if (AllNonNeg)
3005        ConservativeResult = ConservativeResult.intersectWith(
3006          ConstantRange(APInt(BitWidth, 0),
3007                        APInt::getSignedMinValue(BitWidth)));
3008      else if (AllNonPos)
3009        ConservativeResult = ConservativeResult.intersectWith(
3010          ConstantRange(APInt::getSignedMinValue(BitWidth),
3011                        APInt(BitWidth, 1)));
3012    }
3013
3014    // TODO: non-affine addrec
3015    if (AddRec->isAffine()) {
3016      const Type *Ty = AddRec->getType();
3017      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3018      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3019          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3020        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3021
3022        const SCEV *Start = AddRec->getStart();
3023        const SCEV *Step = AddRec->getStepRecurrence(*this);
3024
3025        ConstantRange StartRange = getSignedRange(Start);
3026        ConstantRange StepRange = getSignedRange(Step);
3027        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3028        ConstantRange EndRange =
3029          StartRange.add(MaxBECountRange.multiply(StepRange));
3030
3031        // Check for overflow. This must be done with ConstantRange arithmetic
3032        // because we could be called from within the ScalarEvolution overflow
3033        // checking code.
3034        ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3035        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3036        ConstantRange ExtMaxBECountRange =
3037          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3038        ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3039        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3040            ExtEndRange)
3041          return ConservativeResult;
3042
3043        APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3044                                   EndRange.getSignedMin());
3045        APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3046                                   EndRange.getSignedMax());
3047        if (Min.isMinSignedValue() && Max.isMaxSignedValue())
3048          return ConservativeResult;
3049        return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
3050      }
3051    }
3052
3053    return ConservativeResult;
3054  }
3055
3056  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3057    // For a SCEVUnknown, ask ValueTracking.
3058    if (!U->getValue()->getType()->isIntegerTy() && !TD)
3059      return ConservativeResult;
3060    unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3061    if (NS == 1)
3062      return ConservativeResult;
3063    return ConservativeResult.intersectWith(
3064      ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
3065                    APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1));
3066  }
3067
3068  return ConservativeResult;
3069}
3070
3071/// createSCEV - We know that there is no SCEV for the specified value.
3072/// Analyze the expression.
3073///
3074const SCEV *ScalarEvolution::createSCEV(Value *V) {
3075  if (!isSCEVable(V->getType()))
3076    return getUnknown(V);
3077
3078  unsigned Opcode = Instruction::UserOp1;
3079  if (Instruction *I = dyn_cast<Instruction>(V)) {
3080    Opcode = I->getOpcode();
3081
3082    // Don't attempt to analyze instructions in blocks that aren't
3083    // reachable. Such instructions don't matter, and they aren't required
3084    // to obey basic rules for definitions dominating uses which this
3085    // analysis depends on.
3086    if (!DT->isReachableFromEntry(I->getParent()))
3087      return getUnknown(V);
3088  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
3089    Opcode = CE->getOpcode();
3090  else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3091    return getConstant(CI);
3092  else if (isa<ConstantPointerNull>(V))
3093    return getConstant(V->getType(), 0);
3094  else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3095    return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
3096  else
3097    return getUnknown(V);
3098
3099  Operator *U = cast<Operator>(V);
3100  switch (Opcode) {
3101  case Instruction::Add:
3102    // Don't transfer the NSW and NUW bits from the Add instruction to the
3103    // Add expression, because the Instruction may be guarded by control
3104    // flow and the no-overflow bits may not be valid for the expression in
3105    // any context.
3106    return getAddExpr(getSCEV(U->getOperand(0)),
3107                      getSCEV(U->getOperand(1)));
3108  case Instruction::Mul:
3109    // Don't transfer the NSW and NUW bits from the Mul instruction to the
3110    // Mul expression, as with Add.
3111    return getMulExpr(getSCEV(U->getOperand(0)),
3112                      getSCEV(U->getOperand(1)));
3113  case Instruction::UDiv:
3114    return getUDivExpr(getSCEV(U->getOperand(0)),
3115                       getSCEV(U->getOperand(1)));
3116  case Instruction::Sub:
3117    return getMinusSCEV(getSCEV(U->getOperand(0)),
3118                        getSCEV(U->getOperand(1)));
3119  case Instruction::And:
3120    // For an expression like x&255 that merely masks off the high bits,
3121    // use zext(trunc(x)) as the SCEV expression.
3122    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3123      if (CI->isNullValue())
3124        return getSCEV(U->getOperand(1));
3125      if (CI->isAllOnesValue())
3126        return getSCEV(U->getOperand(0));
3127      const APInt &A = CI->getValue();
3128
3129      // Instcombine's ShrinkDemandedConstant may strip bits out of
3130      // constants, obscuring what would otherwise be a low-bits mask.
3131      // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3132      // knew about to reconstruct a low-bits mask value.
3133      unsigned LZ = A.countLeadingZeros();
3134      unsigned BitWidth = A.getBitWidth();
3135      APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3136      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3137      ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3138
3139      APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3140
3141      if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
3142        return
3143          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
3144                                IntegerType::get(getContext(), BitWidth - LZ)),
3145                            U->getType());
3146    }
3147    break;
3148
3149  case Instruction::Or:
3150    // If the RHS of the Or is a constant, we may have something like:
3151    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
3152    // optimizations will transparently handle this case.
3153    //
3154    // In order for this transformation to be safe, the LHS must be of the
3155    // form X*(2^n) and the Or constant must be less than 2^n.
3156    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3157      const SCEV *LHS = getSCEV(U->getOperand(0));
3158      const APInt &CIVal = CI->getValue();
3159      if (GetMinTrailingZeros(LHS) >=
3160          (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3161        // Build a plain add SCEV.
3162        const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3163        // If the LHS of the add was an addrec and it has no-wrap flags,
3164        // transfer the no-wrap flags, since an or won't introduce a wrap.
3165        if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3166          const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3167          if (OldAR->hasNoUnsignedWrap())
3168            const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3169          if (OldAR->hasNoSignedWrap())
3170            const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3171        }
3172        return S;
3173      }
3174    }
3175    break;
3176  case Instruction::Xor:
3177    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3178      // If the RHS of the xor is a signbit, then this is just an add.
3179      // Instcombine turns add of signbit into xor as a strength reduction step.
3180      if (CI->getValue().isSignBit())
3181        return getAddExpr(getSCEV(U->getOperand(0)),
3182                          getSCEV(U->getOperand(1)));
3183
3184      // If the RHS of xor is -1, then this is a not operation.
3185      if (CI->isAllOnesValue())
3186        return getNotSCEV(getSCEV(U->getOperand(0)));
3187
3188      // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3189      // This is a variant of the check for xor with -1, and it handles
3190      // the case where instcombine has trimmed non-demanded bits out
3191      // of an xor with -1.
3192      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3193        if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3194          if (BO->getOpcode() == Instruction::And &&
3195              LCI->getValue() == CI->getValue())
3196            if (const SCEVZeroExtendExpr *Z =
3197                  dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
3198              const Type *UTy = U->getType();
3199              const SCEV *Z0 = Z->getOperand();
3200              const Type *Z0Ty = Z0->getType();
3201              unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3202
3203              // If C is a low-bits mask, the zero extend is serving to
3204              // mask off the high bits. Complement the operand and
3205              // re-apply the zext.
3206              if (APIntOps::isMask(Z0TySize, CI->getValue()))
3207                return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3208
3209              // If C is a single bit, it may be in the sign-bit position
3210              // before the zero-extend. In this case, represent the xor
3211              // using an add, which is equivalent, and re-apply the zext.
3212              APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3213              if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3214                  Trunc.isSignBit())
3215                return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3216                                         UTy);
3217            }
3218    }
3219    break;
3220
3221  case Instruction::Shl:
3222    // Turn shift left of a constant amount into a multiply.
3223    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3224      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3225
3226      // If the shift count is not less than the bitwidth, the result of
3227      // the shift is undefined. Don't try to analyze it, because the
3228      // resolution chosen here may differ from the resolution chosen in
3229      // other parts of the compiler.
3230      if (SA->getValue().uge(BitWidth))
3231        break;
3232
3233      Constant *X = ConstantInt::get(getContext(),
3234        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3235      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3236    }
3237    break;
3238
3239  case Instruction::LShr:
3240    // Turn logical shift right of a constant into a unsigned divide.
3241    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3242      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3243
3244      // If the shift count is not less than the bitwidth, the result of
3245      // the shift is undefined. Don't try to analyze it, because the
3246      // resolution chosen here may differ from the resolution chosen in
3247      // other parts of the compiler.
3248      if (SA->getValue().uge(BitWidth))
3249        break;
3250
3251      Constant *X = ConstantInt::get(getContext(),
3252        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3253      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3254    }
3255    break;
3256
3257  case Instruction::AShr:
3258    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3259    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
3260      if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
3261        if (L->getOpcode() == Instruction::Shl &&
3262            L->getOperand(1) == U->getOperand(1)) {
3263          uint64_t BitWidth = getTypeSizeInBits(U->getType());
3264
3265          // If the shift count is not less than the bitwidth, the result of
3266          // the shift is undefined. Don't try to analyze it, because the
3267          // resolution chosen here may differ from the resolution chosen in
3268          // other parts of the compiler.
3269          if (CI->getValue().uge(BitWidth))
3270            break;
3271
3272          uint64_t Amt = BitWidth - CI->getZExtValue();
3273          if (Amt == BitWidth)
3274            return getSCEV(L->getOperand(0));       // shift by zero --> noop
3275          return
3276            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
3277                                              IntegerType::get(getContext(),
3278                                                               Amt)),
3279                              U->getType());
3280        }
3281    break;
3282
3283  case Instruction::Trunc:
3284    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
3285
3286  case Instruction::ZExt:
3287    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3288
3289  case Instruction::SExt:
3290    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3291
3292  case Instruction::BitCast:
3293    // BitCasts are no-op casts so we just eliminate the cast.
3294    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
3295      return getSCEV(U->getOperand(0));
3296    break;
3297
3298  // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3299  // lead to pointer expressions which cannot safely be expanded to GEPs,
3300  // because ScalarEvolution doesn't respect the GEP aliasing rules when
3301  // simplifying integer expressions.
3302
3303  case Instruction::GetElementPtr:
3304    return createNodeForGEP(cast<GEPOperator>(U));
3305
3306  case Instruction::PHI:
3307    return createNodeForPHI(cast<PHINode>(U));
3308
3309  case Instruction::Select:
3310    // This could be a smax or umax that was lowered earlier.
3311    // Try to recover it.
3312    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3313      Value *LHS = ICI->getOperand(0);
3314      Value *RHS = ICI->getOperand(1);
3315      switch (ICI->getPredicate()) {
3316      case ICmpInst::ICMP_SLT:
3317      case ICmpInst::ICMP_SLE:
3318        std::swap(LHS, RHS);
3319        // fall through
3320      case ICmpInst::ICMP_SGT:
3321      case ICmpInst::ICMP_SGE:
3322        // a >s b ? a+x : b+x  ->  smax(a, b)+x
3323        // a >s b ? b+x : a+x  ->  smin(a, b)+x
3324        if (LHS->getType() == U->getType()) {
3325          const SCEV *LS = getSCEV(LHS);
3326          const SCEV *RS = getSCEV(RHS);
3327          const SCEV *LA = getSCEV(U->getOperand(1));
3328          const SCEV *RA = getSCEV(U->getOperand(2));
3329          const SCEV *LDiff = getMinusSCEV(LA, LS);
3330          const SCEV *RDiff = getMinusSCEV(RA, RS);
3331          if (LDiff == RDiff)
3332            return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3333          LDiff = getMinusSCEV(LA, RS);
3334          RDiff = getMinusSCEV(RA, LS);
3335          if (LDiff == RDiff)
3336            return getAddExpr(getSMinExpr(LS, RS), LDiff);
3337        }
3338        break;
3339      case ICmpInst::ICMP_ULT:
3340      case ICmpInst::ICMP_ULE:
3341        std::swap(LHS, RHS);
3342        // fall through
3343      case ICmpInst::ICMP_UGT:
3344      case ICmpInst::ICMP_UGE:
3345        // a >u b ? a+x : b+x  ->  umax(a, b)+x
3346        // a >u b ? b+x : a+x  ->  umin(a, b)+x
3347        if (LHS->getType() == U->getType()) {
3348          const SCEV *LS = getSCEV(LHS);
3349          const SCEV *RS = getSCEV(RHS);
3350          const SCEV *LA = getSCEV(U->getOperand(1));
3351          const SCEV *RA = getSCEV(U->getOperand(2));
3352          const SCEV *LDiff = getMinusSCEV(LA, LS);
3353          const SCEV *RDiff = getMinusSCEV(RA, RS);
3354          if (LDiff == RDiff)
3355            return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3356          LDiff = getMinusSCEV(LA, RS);
3357          RDiff = getMinusSCEV(RA, LS);
3358          if (LDiff == RDiff)
3359            return getAddExpr(getUMinExpr(LS, RS), LDiff);
3360        }
3361        break;
3362      case ICmpInst::ICMP_NE:
3363        // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
3364        if (LHS->getType() == U->getType() &&
3365            isa<ConstantInt>(RHS) &&
3366            cast<ConstantInt>(RHS)->isZero()) {
3367          const SCEV *One = getConstant(LHS->getType(), 1);
3368          const SCEV *LS = getSCEV(LHS);
3369          const SCEV *LA = getSCEV(U->getOperand(1));
3370          const SCEV *RA = getSCEV(U->getOperand(2));
3371          const SCEV *LDiff = getMinusSCEV(LA, LS);
3372          const SCEV *RDiff = getMinusSCEV(RA, One);
3373          if (LDiff == RDiff)
3374            return getAddExpr(getUMaxExpr(LS, One), LDiff);
3375        }
3376        break;
3377      case ICmpInst::ICMP_EQ:
3378        // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
3379        if (LHS->getType() == U->getType() &&
3380            isa<ConstantInt>(RHS) &&
3381            cast<ConstantInt>(RHS)->isZero()) {
3382          const SCEV *One = getConstant(LHS->getType(), 1);
3383          const SCEV *LS = getSCEV(LHS);
3384          const SCEV *LA = getSCEV(U->getOperand(1));
3385          const SCEV *RA = getSCEV(U->getOperand(2));
3386          const SCEV *LDiff = getMinusSCEV(LA, One);
3387          const SCEV *RDiff = getMinusSCEV(RA, LS);
3388          if (LDiff == RDiff)
3389            return getAddExpr(getUMaxExpr(LS, One), LDiff);
3390        }
3391        break;
3392      default:
3393        break;
3394      }
3395    }
3396
3397  default: // We cannot analyze this expression.
3398    break;
3399  }
3400
3401  return getUnknown(V);
3402}
3403
3404
3405
3406//===----------------------------------------------------------------------===//
3407//                   Iteration Count Computation Code
3408//
3409
3410/// getBackedgeTakenCount - If the specified loop has a predictable
3411/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3412/// object. The backedge-taken count is the number of times the loop header
3413/// will be branched to from within the loop. This is one less than the
3414/// trip count of the loop, since it doesn't count the first iteration,
3415/// when the header is branched to from outside the loop.
3416///
3417/// Note that it is not valid to call this method on a loop without a
3418/// loop-invariant backedge-taken count (see
3419/// hasLoopInvariantBackedgeTakenCount).
3420///
3421const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
3422  return getBackedgeTakenInfo(L).Exact;
3423}
3424
3425/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3426/// return the least SCEV value that is known never to be less than the
3427/// actual backedge taken count.
3428const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
3429  return getBackedgeTakenInfo(L).Max;
3430}
3431
3432/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3433/// onto the given Worklist.
3434static void
3435PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3436  BasicBlock *Header = L->getHeader();
3437
3438  // Push all Loop-header PHIs onto the Worklist stack.
3439  for (BasicBlock::iterator I = Header->begin();
3440       PHINode *PN = dyn_cast<PHINode>(I); ++I)
3441    Worklist.push_back(PN);
3442}
3443
3444const ScalarEvolution::BackedgeTakenInfo &
3445ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
3446  // Initially insert a CouldNotCompute for this loop. If the insertion
3447  // succeeds, proceed to actually compute a backedge-taken count and
3448  // update the value. The temporary CouldNotCompute value tells SCEV
3449  // code elsewhere that it shouldn't attempt to request a new
3450  // backedge-taken count, which could result in infinite recursion.
3451  std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
3452    BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3453  if (Pair.second) {
3454    BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3455    if (BECount.Exact != getCouldNotCompute()) {
3456      assert(BECount.Exact->isLoopInvariant(L) &&
3457             BECount.Max->isLoopInvariant(L) &&
3458             "Computed backedge-taken count isn't loop invariant for loop!");
3459      ++NumTripCountsComputed;
3460
3461      // Update the value in the map.
3462      Pair.first->second = BECount;
3463    } else {
3464      if (BECount.Max != getCouldNotCompute())
3465        // Update the value in the map.
3466        Pair.first->second = BECount;
3467      if (isa<PHINode>(L->getHeader()->begin()))
3468        // Only count loops that have phi nodes as not being computable.
3469        ++NumTripCountsNotComputed;
3470    }
3471
3472    // Now that we know more about the trip count for this loop, forget any
3473    // existing SCEV values for PHI nodes in this loop since they are only
3474    // conservative estimates made without the benefit of trip count
3475    // information. This is similar to the code in forgetLoop, except that
3476    // it handles SCEVUnknown PHI nodes specially.
3477    if (BECount.hasAnyInfo()) {
3478      SmallVector<Instruction *, 16> Worklist;
3479      PushLoopPHIs(L, Worklist);
3480
3481      SmallPtrSet<Instruction *, 8> Visited;
3482      while (!Worklist.empty()) {
3483        Instruction *I = Worklist.pop_back_val();
3484        if (!Visited.insert(I)) continue;
3485
3486        std::map<SCEVCallbackVH, const SCEV *>::iterator It =
3487          Scalars.find(static_cast<Value *>(I));
3488        if (It != Scalars.end()) {
3489          // SCEVUnknown for a PHI either means that it has an unrecognized
3490          // structure, or it's a PHI that's in the progress of being computed
3491          // by createNodeForPHI.  In the former case, additional loop trip
3492          // count information isn't going to change anything. In the later
3493          // case, createNodeForPHI will perform the necessary updates on its
3494          // own when it gets to that point.
3495          if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
3496            ValuesAtScopes.erase(It->second);
3497            Scalars.erase(It);
3498          }
3499          if (PHINode *PN = dyn_cast<PHINode>(I))
3500            ConstantEvolutionLoopExitValue.erase(PN);
3501        }
3502
3503        PushDefUseChildren(I, Worklist);
3504      }
3505    }
3506  }
3507  return Pair.first->second;
3508}
3509
3510/// forgetLoop - This method should be called by the client when it has
3511/// changed a loop in a way that may effect ScalarEvolution's ability to
3512/// compute a trip count, or if the loop is deleted.
3513void ScalarEvolution::forgetLoop(const Loop *L) {
3514  // Drop any stored trip count value.
3515  BackedgeTakenCounts.erase(L);
3516
3517  // Drop information about expressions based on loop-header PHIs.
3518  SmallVector<Instruction *, 16> Worklist;
3519  PushLoopPHIs(L, Worklist);
3520
3521  SmallPtrSet<Instruction *, 8> Visited;
3522  while (!Worklist.empty()) {
3523    Instruction *I = Worklist.pop_back_val();
3524    if (!Visited.insert(I)) continue;
3525
3526    std::map<SCEVCallbackVH, const SCEV *>::iterator It =
3527      Scalars.find(static_cast<Value *>(I));
3528    if (It != Scalars.end()) {
3529      ValuesAtScopes.erase(It->second);
3530      Scalars.erase(It);
3531      if (PHINode *PN = dyn_cast<PHINode>(I))
3532        ConstantEvolutionLoopExitValue.erase(PN);
3533    }
3534
3535    PushDefUseChildren(I, Worklist);
3536  }
3537}
3538
3539/// forgetValue - This method should be called by the client when it has
3540/// changed a value in a way that may effect its value, or which may
3541/// disconnect it from a def-use chain linking it to a loop.
3542void ScalarEvolution::forgetValue(Value *V) {
3543  Instruction *I = dyn_cast<Instruction>(V);
3544  if (!I) return;
3545
3546  // Drop information about expressions based on loop-header PHIs.
3547  SmallVector<Instruction *, 16> Worklist;
3548  Worklist.push_back(I);
3549
3550  SmallPtrSet<Instruction *, 8> Visited;
3551  while (!Worklist.empty()) {
3552    I = Worklist.pop_back_val();
3553    if (!Visited.insert(I)) continue;
3554
3555    std::map<SCEVCallbackVH, const SCEV *>::iterator It =
3556      Scalars.find(static_cast<Value *>(I));
3557    if (It != Scalars.end()) {
3558      ValuesAtScopes.erase(It->second);
3559      Scalars.erase(It);
3560      if (PHINode *PN = dyn_cast<PHINode>(I))
3561        ConstantEvolutionLoopExitValue.erase(PN);
3562    }
3563
3564    PushDefUseChildren(I, Worklist);
3565  }
3566}
3567
3568/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3569/// of the specified loop will execute.
3570ScalarEvolution::BackedgeTakenInfo
3571ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
3572  SmallVector<BasicBlock *, 8> ExitingBlocks;
3573  L->getExitingBlocks(ExitingBlocks);
3574
3575  // Examine all exits and pick the most conservative values.
3576  const SCEV *BECount = getCouldNotCompute();
3577  const SCEV *MaxBECount = getCouldNotCompute();
3578  bool CouldNotComputeBECount = false;
3579  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3580    BackedgeTakenInfo NewBTI =
3581      ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
3582
3583    if (NewBTI.Exact == getCouldNotCompute()) {
3584      // We couldn't compute an exact value for this exit, so
3585      // we won't be able to compute an exact value for the loop.
3586      CouldNotComputeBECount = true;
3587      BECount = getCouldNotCompute();
3588    } else if (!CouldNotComputeBECount) {
3589      if (BECount == getCouldNotCompute())
3590        BECount = NewBTI.Exact;
3591      else
3592        BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
3593    }
3594    if (MaxBECount == getCouldNotCompute())
3595      MaxBECount = NewBTI.Max;
3596    else if (NewBTI.Max != getCouldNotCompute())
3597      MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
3598  }
3599
3600  return BackedgeTakenInfo(BECount, MaxBECount);
3601}
3602
3603/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3604/// of the specified loop will execute if it exits via the specified block.
3605ScalarEvolution::BackedgeTakenInfo
3606ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3607                                                   BasicBlock *ExitingBlock) {
3608
3609  // Okay, we've chosen an exiting block.  See what condition causes us to
3610  // exit at this block.
3611  //
3612  // FIXME: we should be able to handle switch instructions (with a single exit)
3613  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
3614  if (ExitBr == 0) return getCouldNotCompute();
3615  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
3616
3617  // At this point, we know we have a conditional branch that determines whether
3618  // the loop is exited.  However, we don't know if the branch is executed each
3619  // time through the loop.  If not, then the execution count of the branch will
3620  // not be equal to the trip count of the loop.
3621  //
3622  // Currently we check for this by checking to see if the Exit branch goes to
3623  // the loop header.  If so, we know it will always execute the same number of
3624  // times as the loop.  We also handle the case where the exit block *is* the
3625  // loop header.  This is common for un-rotated loops.
3626  //
3627  // If both of those tests fail, walk up the unique predecessor chain to the
3628  // header, stopping if there is an edge that doesn't exit the loop. If the
3629  // header is reached, the execution count of the branch will be equal to the
3630  // trip count of the loop.
3631  //
3632  //  More extensive analysis could be done to handle more cases here.
3633  //
3634  if (ExitBr->getSuccessor(0) != L->getHeader() &&
3635      ExitBr->getSuccessor(1) != L->getHeader() &&
3636      ExitBr->getParent() != L->getHeader()) {
3637    // The simple checks failed, try climbing the unique predecessor chain
3638    // up to the header.
3639    bool Ok = false;
3640    for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3641      BasicBlock *Pred = BB->getUniquePredecessor();
3642      if (!Pred)
3643        return getCouldNotCompute();
3644      TerminatorInst *PredTerm = Pred->getTerminator();
3645      for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3646        BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3647        if (PredSucc == BB)
3648          continue;
3649        // If the predecessor has a successor that isn't BB and isn't
3650        // outside the loop, assume the worst.
3651        if (L->contains(PredSucc))
3652          return getCouldNotCompute();
3653      }
3654      if (Pred == L->getHeader()) {
3655        Ok = true;
3656        break;
3657      }
3658      BB = Pred;
3659    }
3660    if (!Ok)
3661      return getCouldNotCompute();
3662  }
3663
3664  // Proceed to the next level to examine the exit condition expression.
3665  return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3666                                               ExitBr->getSuccessor(0),
3667                                               ExitBr->getSuccessor(1));
3668}
3669
3670/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3671/// backedge of the specified loop will execute if its exit condition
3672/// were a conditional branch of ExitCond, TBB, and FBB.
3673ScalarEvolution::BackedgeTakenInfo
3674ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3675                                                       Value *ExitCond,
3676                                                       BasicBlock *TBB,
3677                                                       BasicBlock *FBB) {
3678  // Check if the controlling expression for this loop is an And or Or.
3679  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3680    if (BO->getOpcode() == Instruction::And) {
3681      // Recurse on the operands of the and.
3682      BackedgeTakenInfo BTI0 =
3683        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3684      BackedgeTakenInfo BTI1 =
3685        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3686      const SCEV *BECount = getCouldNotCompute();
3687      const SCEV *MaxBECount = getCouldNotCompute();
3688      if (L->contains(TBB)) {
3689        // Both conditions must be true for the loop to continue executing.
3690        // Choose the less conservative count.
3691        if (BTI0.Exact == getCouldNotCompute() ||
3692            BTI1.Exact == getCouldNotCompute())
3693          BECount = getCouldNotCompute();
3694        else
3695          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3696        if (BTI0.Max == getCouldNotCompute())
3697          MaxBECount = BTI1.Max;
3698        else if (BTI1.Max == getCouldNotCompute())
3699          MaxBECount = BTI0.Max;
3700        else
3701          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3702      } else {
3703        // Both conditions must be true for the loop to exit.
3704        assert(L->contains(FBB) && "Loop block has no successor in loop!");
3705        if (BTI0.Exact != getCouldNotCompute() &&
3706            BTI1.Exact != getCouldNotCompute())
3707          BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3708        if (BTI0.Max != getCouldNotCompute() &&
3709            BTI1.Max != getCouldNotCompute())
3710          MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3711      }
3712
3713      return BackedgeTakenInfo(BECount, MaxBECount);
3714    }
3715    if (BO->getOpcode() == Instruction::Or) {
3716      // Recurse on the operands of the or.
3717      BackedgeTakenInfo BTI0 =
3718        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3719      BackedgeTakenInfo BTI1 =
3720        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3721      const SCEV *BECount = getCouldNotCompute();
3722      const SCEV *MaxBECount = getCouldNotCompute();
3723      if (L->contains(FBB)) {
3724        // Both conditions must be false for the loop to continue executing.
3725        // Choose the less conservative count.
3726        if (BTI0.Exact == getCouldNotCompute() ||
3727            BTI1.Exact == getCouldNotCompute())
3728          BECount = getCouldNotCompute();
3729        else
3730          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3731        if (BTI0.Max == getCouldNotCompute())
3732          MaxBECount = BTI1.Max;
3733        else if (BTI1.Max == getCouldNotCompute())
3734          MaxBECount = BTI0.Max;
3735        else
3736          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3737      } else {
3738        // Both conditions must be false for the loop to exit.
3739        assert(L->contains(TBB) && "Loop block has no successor in loop!");
3740        if (BTI0.Exact != getCouldNotCompute() &&
3741            BTI1.Exact != getCouldNotCompute())
3742          BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3743        if (BTI0.Max != getCouldNotCompute() &&
3744            BTI1.Max != getCouldNotCompute())
3745          MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3746      }
3747
3748      return BackedgeTakenInfo(BECount, MaxBECount);
3749    }
3750  }
3751
3752  // With an icmp, it may be feasible to compute an exact backedge-taken count.
3753  // Proceed to the next level to examine the icmp.
3754  if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3755    return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
3756
3757  // Check for a constant condition. These are normally stripped out by
3758  // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
3759  // preserve the CFG and is temporarily leaving constant conditions
3760  // in place.
3761  if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
3762    if (L->contains(FBB) == !CI->getZExtValue())
3763      // The backedge is always taken.
3764      return getCouldNotCompute();
3765    else
3766      // The backedge is never taken.
3767      return getConstant(CI->getType(), 0);
3768  }
3769
3770  // If it's not an integer or pointer comparison then compute it the hard way.
3771  return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3772}
3773
3774/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
3775/// backedge of the specified loop will execute if its exit condition
3776/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
3777ScalarEvolution::BackedgeTakenInfo
3778ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
3779                                                           ICmpInst *ExitCond,
3780                                                           BasicBlock *TBB,
3781                                                           BasicBlock *FBB) {
3782
3783  // If the condition was exit on true, convert the condition to exit on false
3784  ICmpInst::Predicate Cond;
3785  if (!L->contains(FBB))
3786    Cond = ExitCond->getPredicate();
3787  else
3788    Cond = ExitCond->getInversePredicate();
3789
3790  // Handle common loops like: for (X = "string"; *X; ++X)
3791  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
3792    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
3793      BackedgeTakenInfo ItCnt =
3794        ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
3795      if (ItCnt.hasAnyInfo())
3796        return ItCnt;
3797    }
3798
3799  const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
3800  const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
3801
3802  // Try to evaluate any dependencies out of the loop.
3803  LHS = getSCEVAtScope(LHS, L);
3804  RHS = getSCEVAtScope(RHS, L);
3805
3806  // At this point, we would like to compute how many iterations of the
3807  // loop the predicate will return true for these inputs.
3808  if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
3809    // If there is a loop-invariant, force it into the RHS.
3810    std::swap(LHS, RHS);
3811    Cond = ICmpInst::getSwappedPredicate(Cond);
3812  }
3813
3814  // Simplify the operands before analyzing them.
3815  (void)SimplifyICmpOperands(Cond, LHS, RHS);
3816
3817  // If we have a comparison of a chrec against a constant, try to use value
3818  // ranges to answer this query.
3819  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
3820    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
3821      if (AddRec->getLoop() == L) {
3822        // Form the constant range.
3823        ConstantRange CompRange(
3824            ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
3825
3826        const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
3827        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
3828      }
3829
3830  switch (Cond) {
3831  case ICmpInst::ICMP_NE: {                     // while (X != Y)
3832    // Convert to: while (X-Y != 0)
3833    BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L);
3834    if (BTI.hasAnyInfo()) return BTI;
3835    break;
3836  }
3837  case ICmpInst::ICMP_EQ: {                     // while (X == Y)
3838    // Convert to: while (X-Y == 0)
3839    BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
3840    if (BTI.hasAnyInfo()) return BTI;
3841    break;
3842  }
3843  case ICmpInst::ICMP_SLT: {
3844    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
3845    if (BTI.hasAnyInfo()) return BTI;
3846    break;
3847  }
3848  case ICmpInst::ICMP_SGT: {
3849    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3850                                             getNotSCEV(RHS), L, true);
3851    if (BTI.hasAnyInfo()) return BTI;
3852    break;
3853  }
3854  case ICmpInst::ICMP_ULT: {
3855    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
3856    if (BTI.hasAnyInfo()) return BTI;
3857    break;
3858  }
3859  case ICmpInst::ICMP_UGT: {
3860    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3861                                             getNotSCEV(RHS), L, false);
3862    if (BTI.hasAnyInfo()) return BTI;
3863    break;
3864  }
3865  default:
3866#if 0
3867    dbgs() << "ComputeBackedgeTakenCount ";
3868    if (ExitCond->getOperand(0)->getType()->isUnsigned())
3869      dbgs() << "[unsigned] ";
3870    dbgs() << *LHS << "   "
3871         << Instruction::getOpcodeName(Instruction::ICmp)
3872         << "   " << *RHS << "\n";
3873#endif
3874    break;
3875  }
3876  return
3877    ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3878}
3879
3880static ConstantInt *
3881EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
3882                                ScalarEvolution &SE) {
3883  const SCEV *InVal = SE.getConstant(C);
3884  const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
3885  assert(isa<SCEVConstant>(Val) &&
3886         "Evaluation of SCEV at constant didn't fold correctly?");
3887  return cast<SCEVConstant>(Val)->getValue();
3888}
3889
3890/// GetAddressedElementFromGlobal - Given a global variable with an initializer
3891/// and a GEP expression (missing the pointer index) indexing into it, return
3892/// the addressed element of the initializer or null if the index expression is
3893/// invalid.
3894static Constant *
3895GetAddressedElementFromGlobal(GlobalVariable *GV,
3896                              const std::vector<ConstantInt*> &Indices) {
3897  Constant *Init = GV->getInitializer();
3898  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
3899    uint64_t Idx = Indices[i]->getZExtValue();
3900    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
3901      assert(Idx < CS->getNumOperands() && "Bad struct index!");
3902      Init = cast<Constant>(CS->getOperand(Idx));
3903    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
3904      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
3905      Init = cast<Constant>(CA->getOperand(Idx));
3906    } else if (isa<ConstantAggregateZero>(Init)) {
3907      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
3908        assert(Idx < STy->getNumElements() && "Bad struct index!");
3909        Init = Constant::getNullValue(STy->getElementType(Idx));
3910      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
3911        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
3912        Init = Constant::getNullValue(ATy->getElementType());
3913      } else {
3914        llvm_unreachable("Unknown constant aggregate type!");
3915      }
3916      return 0;
3917    } else {
3918      return 0; // Unknown initializer type
3919    }
3920  }
3921  return Init;
3922}
3923
3924/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
3925/// 'icmp op load X, cst', try to see if we can compute the backedge
3926/// execution count.
3927ScalarEvolution::BackedgeTakenInfo
3928ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
3929                                                LoadInst *LI,
3930                                                Constant *RHS,
3931                                                const Loop *L,
3932                                                ICmpInst::Predicate predicate) {
3933  if (LI->isVolatile()) return getCouldNotCompute();
3934
3935  // Check to see if the loaded pointer is a getelementptr of a global.
3936  // TODO: Use SCEV instead of manually grubbing with GEPs.
3937  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
3938  if (!GEP) return getCouldNotCompute();
3939
3940  // Make sure that it is really a constant global we are gepping, with an
3941  // initializer, and make sure the first IDX is really 0.
3942  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
3943  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
3944      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
3945      !cast<Constant>(GEP->getOperand(1))->isNullValue())
3946    return getCouldNotCompute();
3947
3948  // Okay, we allow one non-constant index into the GEP instruction.
3949  Value *VarIdx = 0;
3950  std::vector<ConstantInt*> Indexes;
3951  unsigned VarIdxNum = 0;
3952  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
3953    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
3954      Indexes.push_back(CI);
3955    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
3956      if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
3957      VarIdx = GEP->getOperand(i);
3958      VarIdxNum = i-2;
3959      Indexes.push_back(0);
3960    }
3961
3962  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
3963  // Check to see if X is a loop variant variable value now.
3964  const SCEV *Idx = getSCEV(VarIdx);
3965  Idx = getSCEVAtScope(Idx, L);
3966
3967  // We can only recognize very limited forms of loop index expressions, in
3968  // particular, only affine AddRec's like {C1,+,C2}.
3969  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
3970  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
3971      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
3972      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
3973    return getCouldNotCompute();
3974
3975  unsigned MaxSteps = MaxBruteForceIterations;
3976  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
3977    ConstantInt *ItCst = ConstantInt::get(
3978                           cast<IntegerType>(IdxExpr->getType()), IterationNum);
3979    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
3980
3981    // Form the GEP offset.
3982    Indexes[VarIdxNum] = Val;
3983
3984    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
3985    if (Result == 0) break;  // Cannot compute!
3986
3987    // Evaluate the condition for this iteration.
3988    Result = ConstantExpr::getICmp(predicate, Result, RHS);
3989    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
3990    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
3991#if 0
3992      dbgs() << "\n***\n*** Computed loop count " << *ItCst
3993             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
3994             << "***\n";
3995#endif
3996      ++NumArrayLenItCounts;
3997      return getConstant(ItCst);   // Found terminating iteration!
3998    }
3999  }
4000  return getCouldNotCompute();
4001}
4002
4003
4004/// CanConstantFold - Return true if we can constant fold an instruction of the
4005/// specified type, assuming that all operands were constants.
4006static bool CanConstantFold(const Instruction *I) {
4007  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
4008      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4009    return true;
4010
4011  if (const CallInst *CI = dyn_cast<CallInst>(I))
4012    if (const Function *F = CI->getCalledFunction())
4013      return canConstantFoldCallTo(F);
4014  return false;
4015}
4016
4017/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4018/// in the loop that V is derived from.  We allow arbitrary operations along the
4019/// way, but the operands of an operation must either be constants or a value
4020/// derived from a constant PHI.  If this expression does not fit with these
4021/// constraints, return null.
4022static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4023  // If this is not an instruction, or if this is an instruction outside of the
4024  // loop, it can't be derived from a loop PHI.
4025  Instruction *I = dyn_cast<Instruction>(V);
4026  if (I == 0 || !L->contains(I)) return 0;
4027
4028  if (PHINode *PN = dyn_cast<PHINode>(I)) {
4029    if (L->getHeader() == I->getParent())
4030      return PN;
4031    else
4032      // We don't currently keep track of the control flow needed to evaluate
4033      // PHIs, so we cannot handle PHIs inside of loops.
4034      return 0;
4035  }
4036
4037  // If we won't be able to constant fold this expression even if the operands
4038  // are constants, return early.
4039  if (!CanConstantFold(I)) return 0;
4040
4041  // Otherwise, we can evaluate this instruction if all of its operands are
4042  // constant or derived from a PHI node themselves.
4043  PHINode *PHI = 0;
4044  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
4045    if (!(isa<Constant>(I->getOperand(Op)) ||
4046          isa<GlobalValue>(I->getOperand(Op)))) {
4047      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4048      if (P == 0) return 0;  // Not evolving from PHI
4049      if (PHI == 0)
4050        PHI = P;
4051      else if (PHI != P)
4052        return 0;  // Evolving from multiple different PHIs.
4053    }
4054
4055  // This is a expression evolving from a constant PHI!
4056  return PHI;
4057}
4058
4059/// EvaluateExpression - Given an expression that passes the
4060/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4061/// in the loop has the value PHIVal.  If we can't fold this expression for some
4062/// reason, return null.
4063static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4064                                    const TargetData *TD) {
4065  if (isa<PHINode>(V)) return PHIVal;
4066  if (Constant *C = dyn_cast<Constant>(V)) return C;
4067  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
4068  Instruction *I = cast<Instruction>(V);
4069
4070  std::vector<Constant*> Operands;
4071  Operands.resize(I->getNumOperands());
4072
4073  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4074    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
4075    if (Operands[i] == 0) return 0;
4076  }
4077
4078  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4079    return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
4080                                           Operands[1], TD);
4081  return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4082                                  &Operands[0], Operands.size(), TD);
4083}
4084
4085/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4086/// in the header of its containing loop, we know the loop executes a
4087/// constant number of times, and the PHI node is just a recurrence
4088/// involving constants, fold it.
4089Constant *
4090ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
4091                                                   const APInt &BEs,
4092                                                   const Loop *L) {
4093  std::map<PHINode*, Constant*>::iterator I =
4094    ConstantEvolutionLoopExitValue.find(PN);
4095  if (I != ConstantEvolutionLoopExitValue.end())
4096    return I->second;
4097
4098  if (BEs.ugt(MaxBruteForceIterations))
4099    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
4100
4101  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4102
4103  // Since the loop is canonicalized, the PHI node must have two entries.  One
4104  // entry must be a constant (coming in from outside of the loop), and the
4105  // second must be derived from the same PHI.
4106  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4107  Constant *StartCST =
4108    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4109  if (StartCST == 0)
4110    return RetVal = 0;  // Must be a constant.
4111
4112  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4113  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
4114  if (PN2 != PN)
4115    return RetVal = 0;  // Not derived from same PHI.
4116
4117  // Execute the loop symbolically to determine the exit value.
4118  if (BEs.getActiveBits() >= 32)
4119    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
4120
4121  unsigned NumIterations = BEs.getZExtValue(); // must be in range
4122  unsigned IterationNum = 0;
4123  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4124    if (IterationNum == NumIterations)
4125      return RetVal = PHIVal;  // Got exit value!
4126
4127    // Compute the value of the PHI node for the next iteration.
4128    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4129    if (NextPHI == PHIVal)
4130      return RetVal = NextPHI;  // Stopped evolving!
4131    if (NextPHI == 0)
4132      return 0;        // Couldn't evaluate!
4133    PHIVal = NextPHI;
4134  }
4135}
4136
4137/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
4138/// constant number of times (the condition evolves only from constants),
4139/// try to evaluate a few iterations of the loop until we get the exit
4140/// condition gets a value of ExitWhen (true or false).  If we cannot
4141/// evaluate the trip count of the loop, return getCouldNotCompute().
4142const SCEV *
4143ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4144                                                       Value *Cond,
4145                                                       bool ExitWhen) {
4146  PHINode *PN = getConstantEvolvingPHI(Cond, L);
4147  if (PN == 0) return getCouldNotCompute();
4148
4149  // Since the loop is canonicalized, the PHI node must have two entries.  One
4150  // entry must be a constant (coming in from outside of the loop), and the
4151  // second must be derived from the same PHI.
4152  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4153  Constant *StartCST =
4154    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4155  if (StartCST == 0) return getCouldNotCompute();  // Must be a constant.
4156
4157  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4158  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
4159  if (PN2 != PN) return getCouldNotCompute();  // Not derived from same PHI.
4160
4161  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
4162  // the loop symbolically to determine when the condition gets a value of
4163  // "ExitWhen".
4164  unsigned IterationNum = 0;
4165  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
4166  for (Constant *PHIVal = StartCST;
4167       IterationNum != MaxIterations; ++IterationNum) {
4168    ConstantInt *CondVal =
4169      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
4170
4171    // Couldn't symbolically evaluate.
4172    if (!CondVal) return getCouldNotCompute();
4173
4174    if (CondVal->getValue() == uint64_t(ExitWhen)) {
4175      ++NumBruteForceTripCountsComputed;
4176      return getConstant(Type::getInt32Ty(getContext()), IterationNum);
4177    }
4178
4179    // Compute the value of the PHI node for the next iteration.
4180    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4181    if (NextPHI == 0 || NextPHI == PHIVal)
4182      return getCouldNotCompute();// Couldn't evaluate or not making progress...
4183    PHIVal = NextPHI;
4184  }
4185
4186  // Too many iterations were needed to evaluate.
4187  return getCouldNotCompute();
4188}
4189
4190/// getSCEVAtScope - Return a SCEV expression for the specified value
4191/// at the specified scope in the program.  The L value specifies a loop
4192/// nest to evaluate the expression at, where null is the top-level or a
4193/// specified loop is immediately inside of the loop.
4194///
4195/// This method can be used to compute the exit value for a variable defined
4196/// in a loop by querying what the value will hold in the parent loop.
4197///
4198/// In the case that a relevant loop exit value cannot be computed, the
4199/// original value V is returned.
4200const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
4201  // Check to see if we've folded this expression at this loop before.
4202  std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4203  std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4204    Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4205  if (!Pair.second)
4206    return Pair.first->second ? Pair.first->second : V;
4207
4208  // Otherwise compute it.
4209  const SCEV *C = computeSCEVAtScope(V, L);
4210  ValuesAtScopes[V][L] = C;
4211  return C;
4212}
4213
4214const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
4215  if (isa<SCEVConstant>(V)) return V;
4216
4217  // If this instruction is evolved from a constant-evolving PHI, compute the
4218  // exit value from the loop without using SCEVs.
4219  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
4220    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
4221      const Loop *LI = (*this->LI)[I->getParent()];
4222      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
4223        if (PHINode *PN = dyn_cast<PHINode>(I))
4224          if (PN->getParent() == LI->getHeader()) {
4225            // Okay, there is no closed form solution for the PHI node.  Check
4226            // to see if the loop that contains it has a known backedge-taken
4227            // count.  If so, we may be able to force computation of the exit
4228            // value.
4229            const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
4230            if (const SCEVConstant *BTCC =
4231                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
4232              // Okay, we know how many times the containing loop executes.  If
4233              // this is a constant evolving PHI node, get the final value at
4234              // the specified iteration number.
4235              Constant *RV = getConstantEvolutionLoopExitValue(PN,
4236                                                   BTCC->getValue()->getValue(),
4237                                                               LI);
4238              if (RV) return getSCEV(RV);
4239            }
4240          }
4241
4242      // Okay, this is an expression that we cannot symbolically evaluate
4243      // into a SCEV.  Check to see if it's possible to symbolically evaluate
4244      // the arguments into constants, and if so, try to constant propagate the
4245      // result.  This is particularly useful for computing loop exit values.
4246      if (CanConstantFold(I)) {
4247        std::vector<Constant*> Operands;
4248        Operands.reserve(I->getNumOperands());
4249        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4250          Value *Op = I->getOperand(i);
4251          if (Constant *C = dyn_cast<Constant>(Op)) {
4252            Operands.push_back(C);
4253          } else {
4254            // If any of the operands is non-constant and if they are
4255            // non-integer and non-pointer, don't even try to analyze them
4256            // with scev techniques.
4257            if (!isSCEVable(Op->getType()))
4258              return V;
4259
4260            const SCEV *OpV = getSCEVAtScope(Op, L);
4261            if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
4262              Constant *C = SC->getValue();
4263              if (C->getType() != Op->getType())
4264                C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4265                                                                  Op->getType(),
4266                                                                  false),
4267                                          C, Op->getType());
4268              Operands.push_back(C);
4269            } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
4270              if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
4271                if (C->getType() != Op->getType())
4272                  C =
4273                    ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4274                                                                  Op->getType(),
4275                                                                  false),
4276                                          C, Op->getType());
4277                Operands.push_back(C);
4278              } else
4279                return V;
4280            } else {
4281              return V;
4282            }
4283          }
4284        }
4285
4286        Constant *C = 0;
4287        if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4288          C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4289                                              Operands[0], Operands[1], TD);
4290        else
4291          C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4292                                       &Operands[0], Operands.size(), TD);
4293        if (C)
4294          return getSCEV(C);
4295      }
4296    }
4297
4298    // This is some other type of SCEVUnknown, just return it.
4299    return V;
4300  }
4301
4302  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
4303    // Avoid performing the look-up in the common case where the specified
4304    // expression has no loop-variant portions.
4305    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
4306      const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4307      if (OpAtScope != Comm->getOperand(i)) {
4308        // Okay, at least one of these operands is loop variant but might be
4309        // foldable.  Build a new instance of the folded commutative expression.
4310        SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4311                                            Comm->op_begin()+i);
4312        NewOps.push_back(OpAtScope);
4313
4314        for (++i; i != e; ++i) {
4315          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4316          NewOps.push_back(OpAtScope);
4317        }
4318        if (isa<SCEVAddExpr>(Comm))
4319          return getAddExpr(NewOps);
4320        if (isa<SCEVMulExpr>(Comm))
4321          return getMulExpr(NewOps);
4322        if (isa<SCEVSMaxExpr>(Comm))
4323          return getSMaxExpr(NewOps);
4324        if (isa<SCEVUMaxExpr>(Comm))
4325          return getUMaxExpr(NewOps);
4326        llvm_unreachable("Unknown commutative SCEV type!");
4327      }
4328    }
4329    // If we got here, all operands are loop invariant.
4330    return Comm;
4331  }
4332
4333  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
4334    const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4335    const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
4336    if (LHS == Div->getLHS() && RHS == Div->getRHS())
4337      return Div;   // must be loop invariant
4338    return getUDivExpr(LHS, RHS);
4339  }
4340
4341  // If this is a loop recurrence for a loop that does not contain L, then we
4342  // are dealing with the final value computed by the loop.
4343  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4344    if (!L || !AddRec->getLoop()->contains(L)) {
4345      // To evaluate this recurrence, we need to know how many times the AddRec
4346      // loop iterates.  Compute this now.
4347      const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
4348      if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
4349
4350      // Then, evaluate the AddRec.
4351      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
4352    }
4353    return AddRec;
4354  }
4355
4356  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
4357    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4358    if (Op == Cast->getOperand())
4359      return Cast;  // must be loop invariant
4360    return getZeroExtendExpr(Op, Cast->getType());
4361  }
4362
4363  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
4364    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4365    if (Op == Cast->getOperand())
4366      return Cast;  // must be loop invariant
4367    return getSignExtendExpr(Op, Cast->getType());
4368  }
4369
4370  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
4371    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4372    if (Op == Cast->getOperand())
4373      return Cast;  // must be loop invariant
4374    return getTruncateExpr(Op, Cast->getType());
4375  }
4376
4377  llvm_unreachable("Unknown SCEV type!");
4378  return 0;
4379}
4380
4381/// getSCEVAtScope - This is a convenience function which does
4382/// getSCEVAtScope(getSCEV(V), L).
4383const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
4384  return getSCEVAtScope(getSCEV(V), L);
4385}
4386
4387/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4388/// following equation:
4389///
4390///     A * X = B (mod N)
4391///
4392/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4393/// A and B isn't important.
4394///
4395/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
4396static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
4397                                               ScalarEvolution &SE) {
4398  uint32_t BW = A.getBitWidth();
4399  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4400  assert(A != 0 && "A must be non-zero.");
4401
4402  // 1. D = gcd(A, N)
4403  //
4404  // The gcd of A and N may have only one prime factor: 2. The number of
4405  // trailing zeros in A is its multiplicity
4406  uint32_t Mult2 = A.countTrailingZeros();
4407  // D = 2^Mult2
4408
4409  // 2. Check if B is divisible by D.
4410  //
4411  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4412  // is not less than multiplicity of this prime factor for D.
4413  if (B.countTrailingZeros() < Mult2)
4414    return SE.getCouldNotCompute();
4415
4416  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4417  // modulo (N / D).
4418  //
4419  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
4420  // bit width during computations.
4421  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
4422  APInt Mod(BW + 1, 0);
4423  Mod.set(BW - Mult2);  // Mod = N / D
4424  APInt I = AD.multiplicativeInverse(Mod);
4425
4426  // 4. Compute the minimum unsigned root of the equation:
4427  // I * (B / D) mod (N / D)
4428  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4429
4430  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4431  // bits.
4432  return SE.getConstant(Result.trunc(BW));
4433}
4434
4435/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4436/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
4437/// might be the same) or two SCEVCouldNotCompute objects.
4438///
4439static std::pair<const SCEV *,const SCEV *>
4440SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
4441  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
4442  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4443  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4444  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
4445
4446  // We currently can only solve this if the coefficients are constants.
4447  if (!LC || !MC || !NC) {
4448    const SCEV *CNC = SE.getCouldNotCompute();
4449    return std::make_pair(CNC, CNC);
4450  }
4451
4452  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
4453  const APInt &L = LC->getValue()->getValue();
4454  const APInt &M = MC->getValue()->getValue();
4455  const APInt &N = NC->getValue()->getValue();
4456  APInt Two(BitWidth, 2);
4457  APInt Four(BitWidth, 4);
4458
4459  {
4460    using namespace APIntOps;
4461    const APInt& C = L;
4462    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4463    // The B coefficient is M-N/2
4464    APInt B(M);
4465    B -= sdiv(N,Two);
4466
4467    // The A coefficient is N/2
4468    APInt A(N.sdiv(Two));
4469
4470    // Compute the B^2-4ac term.
4471    APInt SqrtTerm(B);
4472    SqrtTerm *= B;
4473    SqrtTerm -= Four * (A * C);
4474
4475    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4476    // integer value or else APInt::sqrt() will assert.
4477    APInt SqrtVal(SqrtTerm.sqrt());
4478
4479    // Compute the two solutions for the quadratic formula.
4480    // The divisions must be performed as signed divisions.
4481    APInt NegB(-B);
4482    APInt TwoA( A << 1 );
4483    if (TwoA.isMinValue()) {
4484      const SCEV *CNC = SE.getCouldNotCompute();
4485      return std::make_pair(CNC, CNC);
4486    }
4487
4488    LLVMContext &Context = SE.getContext();
4489
4490    ConstantInt *Solution1 =
4491      ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
4492    ConstantInt *Solution2 =
4493      ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
4494
4495    return std::make_pair(SE.getConstant(Solution1),
4496                          SE.getConstant(Solution2));
4497    } // end APIntOps namespace
4498}
4499
4500/// HowFarToZero - Return the number of times a backedge comparing the specified
4501/// value to zero will execute.  If not computable, return CouldNotCompute.
4502ScalarEvolution::BackedgeTakenInfo
4503ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
4504  // If the value is a constant
4505  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4506    // If the value is already zero, the branch will execute zero times.
4507    if (C->getValue()->isZero()) return C;
4508    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4509  }
4510
4511  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
4512  if (!AddRec || AddRec->getLoop() != L)
4513    return getCouldNotCompute();
4514
4515  if (AddRec->isAffine()) {
4516    // If this is an affine expression, the execution count of this branch is
4517    // the minimum unsigned root of the following equation:
4518    //
4519    //     Start + Step*N = 0 (mod 2^BW)
4520    //
4521    // equivalent to:
4522    //
4523    //             Step*N = -Start (mod 2^BW)
4524    //
4525    // where BW is the common bit width of Start and Step.
4526
4527    // Get the initial value for the loop.
4528    const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4529                                       L->getParentLoop());
4530    const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4531                                      L->getParentLoop());
4532
4533    if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
4534      // For now we handle only constant steps.
4535
4536      // First, handle unitary steps.
4537      if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so:
4538        return getNegativeSCEV(Start);          //   N = -Start (as unsigned)
4539      if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so:
4540        return Start;                           //    N = Start (as unsigned)
4541
4542      // Then, try to solve the above equation provided that Start is constant.
4543      if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
4544        return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
4545                                            -StartC->getValue()->getValue(),
4546                                            *this);
4547    }
4548  } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
4549    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4550    // the quadratic equation to solve it.
4551    std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
4552                                                                    *this);
4553    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4554    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
4555    if (R1) {
4556#if 0
4557      dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
4558             << "  sol#2: " << *R2 << "\n";
4559#endif
4560      // Pick the smallest positive root value.
4561      if (ConstantInt *CB =
4562          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
4563                                   R1->getValue(), R2->getValue()))) {
4564        if (CB->getZExtValue() == false)
4565          std::swap(R1, R2);   // R1 is the minimum root now.
4566
4567        // We can only use this value if the chrec ends up with an exact zero
4568        // value at this index.  When solving for "X*X != 5", for example, we
4569        // should not accept a root of 2.
4570        const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
4571        if (Val->isZero())
4572          return R1;  // We found a quadratic root!
4573      }
4574    }
4575  }
4576
4577  return getCouldNotCompute();
4578}
4579
4580/// HowFarToNonZero - Return the number of times a backedge checking the
4581/// specified value for nonzero will execute.  If not computable, return
4582/// CouldNotCompute
4583ScalarEvolution::BackedgeTakenInfo
4584ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
4585  // Loops that look like: while (X == 0) are very strange indeed.  We don't
4586  // handle them yet except for the trivial case.  This could be expanded in the
4587  // future as needed.
4588
4589  // If the value is a constant, check to see if it is known to be non-zero
4590  // already.  If so, the backedge will execute zero times.
4591  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4592    if (!C->getValue()->isNullValue())
4593      return getConstant(C->getType(), 0);
4594    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4595  }
4596
4597  // We could implement others, but I really doubt anyone writes loops like
4598  // this, and if they did, they would already be constant folded.
4599  return getCouldNotCompute();
4600}
4601
4602/// getLoopPredecessor - If the given loop's header has exactly one unique
4603/// predecessor outside the loop, return it. Otherwise return null.
4604/// This is less strict that the loop "preheader" concept, which requires
4605/// the predecessor to have only one single successor.
4606///
4607BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
4608  BasicBlock *Header = L->getHeader();
4609  BasicBlock *Pred = 0;
4610  for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
4611       PI != E; ++PI)
4612    if (!L->contains(*PI)) {
4613      if (Pred && Pred != *PI) return 0; // Multiple predecessors.
4614      Pred = *PI;
4615    }
4616  return Pred;
4617}
4618
4619/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4620/// (which may not be an immediate predecessor) which has exactly one
4621/// successor from which BB is reachable, or null if no such block is
4622/// found.
4623///
4624std::pair<BasicBlock *, BasicBlock *>
4625ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
4626  // If the block has a unique predecessor, then there is no path from the
4627  // predecessor to the block that does not go through the direct edge
4628  // from the predecessor to the block.
4629  if (BasicBlock *Pred = BB->getSinglePredecessor())
4630    return std::make_pair(Pred, BB);
4631
4632  // A loop's header is defined to be a block that dominates the loop.
4633  // If the header has a unique predecessor outside the loop, it must be
4634  // a block that has exactly one successor that can reach the loop.
4635  if (Loop *L = LI->getLoopFor(BB))
4636    return std::make_pair(getLoopPredecessor(L), L->getHeader());
4637
4638  return std::pair<BasicBlock *, BasicBlock *>();
4639}
4640
4641/// HasSameValue - SCEV structural equivalence is usually sufficient for
4642/// testing whether two expressions are equal, however for the purposes of
4643/// looking for a condition guarding a loop, it can be useful to be a little
4644/// more general, since a front-end may have replicated the controlling
4645/// expression.
4646///
4647static bool HasSameValue(const SCEV *A, const SCEV *B) {
4648  // Quick check to see if they are the same SCEV.
4649  if (A == B) return true;
4650
4651  // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4652  // two different instructions with the same value. Check for this case.
4653  if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4654    if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4655      if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4656        if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
4657          if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
4658            return true;
4659
4660  // Otherwise assume they may have a different value.
4661  return false;
4662}
4663
4664/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
4665/// predicate Pred. Return true iff any changes were made.
4666///
4667bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
4668                                           const SCEV *&LHS, const SCEV *&RHS) {
4669  bool Changed = false;
4670
4671  // Canonicalize a constant to the right side.
4672  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
4673    // Check for both operands constant.
4674    if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
4675      if (ConstantExpr::getICmp(Pred,
4676                                LHSC->getValue(),
4677                                RHSC->getValue())->isNullValue())
4678        goto trivially_false;
4679      else
4680        goto trivially_true;
4681    }
4682    // Otherwise swap the operands to put the constant on the right.
4683    std::swap(LHS, RHS);
4684    Pred = ICmpInst::getSwappedPredicate(Pred);
4685    Changed = true;
4686  }
4687
4688  // If we're comparing an addrec with a value which is loop-invariant in the
4689  // addrec's loop, put the addrec on the left. Also make a dominance check,
4690  // as both operands could be addrecs loop-invariant in each other's loop.
4691  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
4692    const Loop *L = AR->getLoop();
4693    if (LHS->isLoopInvariant(L) && LHS->properlyDominates(L->getHeader(), DT)) {
4694      std::swap(LHS, RHS);
4695      Pred = ICmpInst::getSwappedPredicate(Pred);
4696      Changed = true;
4697    }
4698  }
4699
4700  // If there's a constant operand, canonicalize comparisons with boundary
4701  // cases, and canonicalize *-or-equal comparisons to regular comparisons.
4702  if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4703    const APInt &RA = RC->getValue()->getValue();
4704    switch (Pred) {
4705    default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4706    case ICmpInst::ICMP_EQ:
4707    case ICmpInst::ICMP_NE:
4708      break;
4709    case ICmpInst::ICMP_UGE:
4710      if ((RA - 1).isMinValue()) {
4711        Pred = ICmpInst::ICMP_NE;
4712        RHS = getConstant(RA - 1);
4713        Changed = true;
4714        break;
4715      }
4716      if (RA.isMaxValue()) {
4717        Pred = ICmpInst::ICMP_EQ;
4718        Changed = true;
4719        break;
4720      }
4721      if (RA.isMinValue()) goto trivially_true;
4722
4723      Pred = ICmpInst::ICMP_UGT;
4724      RHS = getConstant(RA - 1);
4725      Changed = true;
4726      break;
4727    case ICmpInst::ICMP_ULE:
4728      if ((RA + 1).isMaxValue()) {
4729        Pred = ICmpInst::ICMP_NE;
4730        RHS = getConstant(RA + 1);
4731        Changed = true;
4732        break;
4733      }
4734      if (RA.isMinValue()) {
4735        Pred = ICmpInst::ICMP_EQ;
4736        Changed = true;
4737        break;
4738      }
4739      if (RA.isMaxValue()) goto trivially_true;
4740
4741      Pred = ICmpInst::ICMP_ULT;
4742      RHS = getConstant(RA + 1);
4743      Changed = true;
4744      break;
4745    case ICmpInst::ICMP_SGE:
4746      if ((RA - 1).isMinSignedValue()) {
4747        Pred = ICmpInst::ICMP_NE;
4748        RHS = getConstant(RA - 1);
4749        Changed = true;
4750        break;
4751      }
4752      if (RA.isMaxSignedValue()) {
4753        Pred = ICmpInst::ICMP_EQ;
4754        Changed = true;
4755        break;
4756      }
4757      if (RA.isMinSignedValue()) goto trivially_true;
4758
4759      Pred = ICmpInst::ICMP_SGT;
4760      RHS = getConstant(RA - 1);
4761      Changed = true;
4762      break;
4763    case ICmpInst::ICMP_SLE:
4764      if ((RA + 1).isMaxSignedValue()) {
4765        Pred = ICmpInst::ICMP_NE;
4766        RHS = getConstant(RA + 1);
4767        Changed = true;
4768        break;
4769      }
4770      if (RA.isMinSignedValue()) {
4771        Pred = ICmpInst::ICMP_EQ;
4772        Changed = true;
4773        break;
4774      }
4775      if (RA.isMaxSignedValue()) goto trivially_true;
4776
4777      Pred = ICmpInst::ICMP_SLT;
4778      RHS = getConstant(RA + 1);
4779      Changed = true;
4780      break;
4781    case ICmpInst::ICMP_UGT:
4782      if (RA.isMinValue()) {
4783        Pred = ICmpInst::ICMP_NE;
4784        Changed = true;
4785        break;
4786      }
4787      if ((RA + 1).isMaxValue()) {
4788        Pred = ICmpInst::ICMP_EQ;
4789        RHS = getConstant(RA + 1);
4790        Changed = true;
4791        break;
4792      }
4793      if (RA.isMaxValue()) goto trivially_false;
4794      break;
4795    case ICmpInst::ICMP_ULT:
4796      if (RA.isMaxValue()) {
4797        Pred = ICmpInst::ICMP_NE;
4798        Changed = true;
4799        break;
4800      }
4801      if ((RA - 1).isMinValue()) {
4802        Pred = ICmpInst::ICMP_EQ;
4803        RHS = getConstant(RA - 1);
4804        Changed = true;
4805        break;
4806      }
4807      if (RA.isMinValue()) goto trivially_false;
4808      break;
4809    case ICmpInst::ICMP_SGT:
4810      if (RA.isMinSignedValue()) {
4811        Pred = ICmpInst::ICMP_NE;
4812        Changed = true;
4813        break;
4814      }
4815      if ((RA + 1).isMaxSignedValue()) {
4816        Pred = ICmpInst::ICMP_EQ;
4817        RHS = getConstant(RA + 1);
4818        Changed = true;
4819        break;
4820      }
4821      if (RA.isMaxSignedValue()) goto trivially_false;
4822      break;
4823    case ICmpInst::ICMP_SLT:
4824      if (RA.isMaxSignedValue()) {
4825        Pred = ICmpInst::ICMP_NE;
4826        Changed = true;
4827        break;
4828      }
4829      if ((RA - 1).isMinSignedValue()) {
4830       Pred = ICmpInst::ICMP_EQ;
4831       RHS = getConstant(RA - 1);
4832        Changed = true;
4833       break;
4834      }
4835      if (RA.isMinSignedValue()) goto trivially_false;
4836      break;
4837    }
4838  }
4839
4840  // Check for obvious equality.
4841  if (HasSameValue(LHS, RHS)) {
4842    if (ICmpInst::isTrueWhenEqual(Pred))
4843      goto trivially_true;
4844    if (ICmpInst::isFalseWhenEqual(Pred))
4845      goto trivially_false;
4846  }
4847
4848  // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
4849  // adding or subtracting 1 from one of the operands.
4850  switch (Pred) {
4851  case ICmpInst::ICMP_SLE:
4852    if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
4853      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
4854                       /*HasNUW=*/false, /*HasNSW=*/true);
4855      Pred = ICmpInst::ICMP_SLT;
4856      Changed = true;
4857    } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
4858      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
4859                       /*HasNUW=*/false, /*HasNSW=*/true);
4860      Pred = ICmpInst::ICMP_SLT;
4861      Changed = true;
4862    }
4863    break;
4864  case ICmpInst::ICMP_SGE:
4865    if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
4866      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
4867                       /*HasNUW=*/false, /*HasNSW=*/true);
4868      Pred = ICmpInst::ICMP_SGT;
4869      Changed = true;
4870    } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
4871      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
4872                       /*HasNUW=*/false, /*HasNSW=*/true);
4873      Pred = ICmpInst::ICMP_SGT;
4874      Changed = true;
4875    }
4876    break;
4877  case ICmpInst::ICMP_ULE:
4878    if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
4879      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
4880                       /*HasNUW=*/true, /*HasNSW=*/false);
4881      Pred = ICmpInst::ICMP_ULT;
4882      Changed = true;
4883    } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
4884      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
4885                       /*HasNUW=*/true, /*HasNSW=*/false);
4886      Pred = ICmpInst::ICMP_ULT;
4887      Changed = true;
4888    }
4889    break;
4890  case ICmpInst::ICMP_UGE:
4891    if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
4892      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
4893                       /*HasNUW=*/true, /*HasNSW=*/false);
4894      Pred = ICmpInst::ICMP_UGT;
4895      Changed = true;
4896    } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
4897      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
4898                       /*HasNUW=*/true, /*HasNSW=*/false);
4899      Pred = ICmpInst::ICMP_UGT;
4900      Changed = true;
4901    }
4902    break;
4903  default:
4904    break;
4905  }
4906
4907  // TODO: More simplifications are possible here.
4908
4909  return Changed;
4910
4911trivially_true:
4912  // Return 0 == 0.
4913  LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
4914  Pred = ICmpInst::ICMP_EQ;
4915  return true;
4916
4917trivially_false:
4918  // Return 0 != 0.
4919  LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
4920  Pred = ICmpInst::ICMP_NE;
4921  return true;
4922}
4923
4924bool ScalarEvolution::isKnownNegative(const SCEV *S) {
4925  return getSignedRange(S).getSignedMax().isNegative();
4926}
4927
4928bool ScalarEvolution::isKnownPositive(const SCEV *S) {
4929  return getSignedRange(S).getSignedMin().isStrictlyPositive();
4930}
4931
4932bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
4933  return !getSignedRange(S).getSignedMin().isNegative();
4934}
4935
4936bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
4937  return !getSignedRange(S).getSignedMax().isStrictlyPositive();
4938}
4939
4940bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
4941  return isKnownNegative(S) || isKnownPositive(S);
4942}
4943
4944bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
4945                                       const SCEV *LHS, const SCEV *RHS) {
4946  // Canonicalize the inputs first.
4947  (void)SimplifyICmpOperands(Pred, LHS, RHS);
4948
4949  // If LHS or RHS is an addrec, check to see if the condition is true in
4950  // every iteration of the loop.
4951  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
4952    if (isLoopEntryGuardedByCond(
4953          AR->getLoop(), Pred, AR->getStart(), RHS) &&
4954        isLoopBackedgeGuardedByCond(
4955          AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
4956      return true;
4957  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
4958    if (isLoopEntryGuardedByCond(
4959          AR->getLoop(), Pred, LHS, AR->getStart()) &&
4960        isLoopBackedgeGuardedByCond(
4961          AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
4962      return true;
4963
4964  // Otherwise see what can be done with known constant ranges.
4965  return isKnownPredicateWithRanges(Pred, LHS, RHS);
4966}
4967
4968bool
4969ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
4970                                            const SCEV *LHS, const SCEV *RHS) {
4971  if (HasSameValue(LHS, RHS))
4972    return ICmpInst::isTrueWhenEqual(Pred);
4973
4974  // This code is split out from isKnownPredicate because it is called from
4975  // within isLoopEntryGuardedByCond.
4976  switch (Pred) {
4977  default:
4978    llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4979    break;
4980  case ICmpInst::ICMP_SGT:
4981    Pred = ICmpInst::ICMP_SLT;
4982    std::swap(LHS, RHS);
4983  case ICmpInst::ICMP_SLT: {
4984    ConstantRange LHSRange = getSignedRange(LHS);
4985    ConstantRange RHSRange = getSignedRange(RHS);
4986    if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
4987      return true;
4988    if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
4989      return false;
4990    break;
4991  }
4992  case ICmpInst::ICMP_SGE:
4993    Pred = ICmpInst::ICMP_SLE;
4994    std::swap(LHS, RHS);
4995  case ICmpInst::ICMP_SLE: {
4996    ConstantRange LHSRange = getSignedRange(LHS);
4997    ConstantRange RHSRange = getSignedRange(RHS);
4998    if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
4999      return true;
5000    if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5001      return false;
5002    break;
5003  }
5004  case ICmpInst::ICMP_UGT:
5005    Pred = ICmpInst::ICMP_ULT;
5006    std::swap(LHS, RHS);
5007  case ICmpInst::ICMP_ULT: {
5008    ConstantRange LHSRange = getUnsignedRange(LHS);
5009    ConstantRange RHSRange = getUnsignedRange(RHS);
5010    if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5011      return true;
5012    if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5013      return false;
5014    break;
5015  }
5016  case ICmpInst::ICMP_UGE:
5017    Pred = ICmpInst::ICMP_ULE;
5018    std::swap(LHS, RHS);
5019  case ICmpInst::ICMP_ULE: {
5020    ConstantRange LHSRange = getUnsignedRange(LHS);
5021    ConstantRange RHSRange = getUnsignedRange(RHS);
5022    if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5023      return true;
5024    if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5025      return false;
5026    break;
5027  }
5028  case ICmpInst::ICMP_NE: {
5029    if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5030      return true;
5031    if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5032      return true;
5033
5034    const SCEV *Diff = getMinusSCEV(LHS, RHS);
5035    if (isKnownNonZero(Diff))
5036      return true;
5037    break;
5038  }
5039  case ICmpInst::ICMP_EQ:
5040    // The check at the top of the function catches the case where
5041    // the values are known to be equal.
5042    break;
5043  }
5044  return false;
5045}
5046
5047/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5048/// protected by a conditional between LHS and RHS.  This is used to
5049/// to eliminate casts.
5050bool
5051ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5052                                             ICmpInst::Predicate Pred,
5053                                             const SCEV *LHS, const SCEV *RHS) {
5054  // Interpret a null as meaning no loop, where there is obviously no guard
5055  // (interprocedural conditions notwithstanding).
5056  if (!L) return true;
5057
5058  BasicBlock *Latch = L->getLoopLatch();
5059  if (!Latch)
5060    return false;
5061
5062  BranchInst *LoopContinuePredicate =
5063    dyn_cast<BranchInst>(Latch->getTerminator());
5064  if (!LoopContinuePredicate ||
5065      LoopContinuePredicate->isUnconditional())
5066    return false;
5067
5068  return isImpliedCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS,
5069                       LoopContinuePredicate->getSuccessor(0) != L->getHeader());
5070}
5071
5072/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
5073/// by a conditional between LHS and RHS.  This is used to help avoid max
5074/// expressions in loop trip counts, and to eliminate casts.
5075bool
5076ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5077                                          ICmpInst::Predicate Pred,
5078                                          const SCEV *LHS, const SCEV *RHS) {
5079  // Interpret a null as meaning no loop, where there is obviously no guard
5080  // (interprocedural conditions notwithstanding).
5081  if (!L) return false;
5082
5083  // Starting at the loop predecessor, climb up the predecessor chain, as long
5084  // as there are predecessors that can be found that have unique successors
5085  // leading to the original header.
5086  for (std::pair<BasicBlock *, BasicBlock *>
5087         Pair(getLoopPredecessor(L), L->getHeader());
5088       Pair.first;
5089       Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
5090
5091    BranchInst *LoopEntryPredicate =
5092      dyn_cast<BranchInst>(Pair.first->getTerminator());
5093    if (!LoopEntryPredicate ||
5094        LoopEntryPredicate->isUnconditional())
5095      continue;
5096
5097    if (isImpliedCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS,
5098                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
5099      return true;
5100  }
5101
5102  return false;
5103}
5104
5105/// isImpliedCond - Test whether the condition described by Pred, LHS,
5106/// and RHS is true whenever the given Cond value evaluates to true.
5107bool ScalarEvolution::isImpliedCond(Value *CondValue,
5108                                    ICmpInst::Predicate Pred,
5109                                    const SCEV *LHS, const SCEV *RHS,
5110                                    bool Inverse) {
5111  // Recursively handle And and Or conditions.
5112  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) {
5113    if (BO->getOpcode() == Instruction::And) {
5114      if (!Inverse)
5115        return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
5116               isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
5117    } else if (BO->getOpcode() == Instruction::Or) {
5118      if (Inverse)
5119        return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
5120               isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
5121    }
5122  }
5123
5124  ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue);
5125  if (!ICI) return false;
5126
5127  // Bail if the ICmp's operands' types are wider than the needed type
5128  // before attempting to call getSCEV on them. This avoids infinite
5129  // recursion, since the analysis of widening casts can require loop
5130  // exit condition information for overflow checking, which would
5131  // lead back here.
5132  if (getTypeSizeInBits(LHS->getType()) <
5133      getTypeSizeInBits(ICI->getOperand(0)->getType()))
5134    return false;
5135
5136  // Now that we found a conditional branch that dominates the loop, check to
5137  // see if it is the comparison we are looking for.
5138  ICmpInst::Predicate FoundPred;
5139  if (Inverse)
5140    FoundPred = ICI->getInversePredicate();
5141  else
5142    FoundPred = ICI->getPredicate();
5143
5144  const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5145  const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
5146
5147  // Balance the types. The case where FoundLHS' type is wider than
5148  // LHS' type is checked for above.
5149  if (getTypeSizeInBits(LHS->getType()) >
5150      getTypeSizeInBits(FoundLHS->getType())) {
5151    if (CmpInst::isSigned(Pred)) {
5152      FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5153      FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5154    } else {
5155      FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5156      FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5157    }
5158  }
5159
5160  // Canonicalize the query to match the way instcombine will have
5161  // canonicalized the comparison.
5162  if (SimplifyICmpOperands(Pred, LHS, RHS))
5163    if (LHS == RHS)
5164      return CmpInst::isTrueWhenEqual(Pred);
5165  if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5166    if (FoundLHS == FoundRHS)
5167      return CmpInst::isFalseWhenEqual(Pred);
5168
5169  // Check to see if we can make the LHS or RHS match.
5170  if (LHS == FoundRHS || RHS == FoundLHS) {
5171    if (isa<SCEVConstant>(RHS)) {
5172      std::swap(FoundLHS, FoundRHS);
5173      FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5174    } else {
5175      std::swap(LHS, RHS);
5176      Pred = ICmpInst::getSwappedPredicate(Pred);
5177    }
5178  }
5179
5180  // Check whether the found predicate is the same as the desired predicate.
5181  if (FoundPred == Pred)
5182    return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5183
5184  // Check whether swapping the found predicate makes it the same as the
5185  // desired predicate.
5186  if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5187    if (isa<SCEVConstant>(RHS))
5188      return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5189    else
5190      return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5191                                   RHS, LHS, FoundLHS, FoundRHS);
5192  }
5193
5194  // Check whether the actual condition is beyond sufficient.
5195  if (FoundPred == ICmpInst::ICMP_EQ)
5196    if (ICmpInst::isTrueWhenEqual(Pred))
5197      if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5198        return true;
5199  if (Pred == ICmpInst::ICMP_NE)
5200    if (!ICmpInst::isTrueWhenEqual(FoundPred))
5201      if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5202        return true;
5203
5204  // Otherwise assume the worst.
5205  return false;
5206}
5207
5208/// isImpliedCondOperands - Test whether the condition described by Pred,
5209/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
5210/// and FoundRHS is true.
5211bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5212                                            const SCEV *LHS, const SCEV *RHS,
5213                                            const SCEV *FoundLHS,
5214                                            const SCEV *FoundRHS) {
5215  return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5216                                     FoundLHS, FoundRHS) ||
5217         // ~x < ~y --> x > y
5218         isImpliedCondOperandsHelper(Pred, LHS, RHS,
5219                                     getNotSCEV(FoundRHS),
5220                                     getNotSCEV(FoundLHS));
5221}
5222
5223/// isImpliedCondOperandsHelper - Test whether the condition described by
5224/// Pred, LHS, and RHS is true whenever the condition described by Pred,
5225/// FoundLHS, and FoundRHS is true.
5226bool
5227ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5228                                             const SCEV *LHS, const SCEV *RHS,
5229                                             const SCEV *FoundLHS,
5230                                             const SCEV *FoundRHS) {
5231  switch (Pred) {
5232  default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5233  case ICmpInst::ICMP_EQ:
5234  case ICmpInst::ICMP_NE:
5235    if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5236      return true;
5237    break;
5238  case ICmpInst::ICMP_SLT:
5239  case ICmpInst::ICMP_SLE:
5240    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5241        isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
5242      return true;
5243    break;
5244  case ICmpInst::ICMP_SGT:
5245  case ICmpInst::ICMP_SGE:
5246    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5247        isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
5248      return true;
5249    break;
5250  case ICmpInst::ICMP_ULT:
5251  case ICmpInst::ICMP_ULE:
5252    if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5253        isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
5254      return true;
5255    break;
5256  case ICmpInst::ICMP_UGT:
5257  case ICmpInst::ICMP_UGE:
5258    if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5259        isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
5260      return true;
5261    break;
5262  }
5263
5264  return false;
5265}
5266
5267/// getBECount - Subtract the end and start values and divide by the step,
5268/// rounding up, to get the number of times the backedge is executed. Return
5269/// CouldNotCompute if an intermediate computation overflows.
5270const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
5271                                        const SCEV *End,
5272                                        const SCEV *Step,
5273                                        bool NoWrap) {
5274  assert(!isKnownNegative(Step) &&
5275         "This code doesn't handle negative strides yet!");
5276
5277  const Type *Ty = Start->getType();
5278  const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
5279  const SCEV *Diff = getMinusSCEV(End, Start);
5280  const SCEV *RoundUp = getAddExpr(Step, NegOne);
5281
5282  // Add an adjustment to the difference between End and Start so that
5283  // the division will effectively round up.
5284  const SCEV *Add = getAddExpr(Diff, RoundUp);
5285
5286  if (!NoWrap) {
5287    // Check Add for unsigned overflow.
5288    // TODO: More sophisticated things could be done here.
5289    const Type *WideTy = IntegerType::get(getContext(),
5290                                          getTypeSizeInBits(Ty) + 1);
5291    const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5292    const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5293    const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5294    if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5295      return getCouldNotCompute();
5296  }
5297
5298  return getUDivExpr(Add, Step);
5299}
5300
5301/// HowManyLessThans - Return the number of times a backedge containing the
5302/// specified less-than comparison will execute.  If not computable, return
5303/// CouldNotCompute.
5304ScalarEvolution::BackedgeTakenInfo
5305ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5306                                  const Loop *L, bool isSigned) {
5307  // Only handle:  "ADDREC < LoopInvariant".
5308  if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
5309
5310  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
5311  if (!AddRec || AddRec->getLoop() != L)
5312    return getCouldNotCompute();
5313
5314  // Check to see if we have a flag which makes analysis easy.
5315  bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5316                           AddRec->hasNoUnsignedWrap();
5317
5318  if (AddRec->isAffine()) {
5319    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
5320    const SCEV *Step = AddRec->getStepRecurrence(*this);
5321
5322    if (Step->isZero())
5323      return getCouldNotCompute();
5324    if (Step->isOne()) {
5325      // With unit stride, the iteration never steps past the limit value.
5326    } else if (isKnownPositive(Step)) {
5327      // Test whether a positive iteration can step past the limit
5328      // value and past the maximum value for its type in a single step.
5329      // Note that it's not sufficient to check NoWrap here, because even
5330      // though the value after a wrap is undefined, it's not undefined
5331      // behavior, so if wrap does occur, the loop could either terminate or
5332      // loop infinitely, but in either case, the loop is guaranteed to
5333      // iterate at least until the iteration where the wrapping occurs.
5334      const SCEV *One = getConstant(Step->getType(), 1);
5335      if (isSigned) {
5336        APInt Max = APInt::getSignedMaxValue(BitWidth);
5337        if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5338              .slt(getSignedRange(RHS).getSignedMax()))
5339          return getCouldNotCompute();
5340      } else {
5341        APInt Max = APInt::getMaxValue(BitWidth);
5342        if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5343              .ult(getUnsignedRange(RHS).getUnsignedMax()))
5344          return getCouldNotCompute();
5345      }
5346    } else
5347      // TODO: Handle negative strides here and below.
5348      return getCouldNotCompute();
5349
5350    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5351    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
5352    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
5353    // treat m-n as signed nor unsigned due to overflow possibility.
5354
5355    // First, we get the value of the LHS in the first iteration: n
5356    const SCEV *Start = AddRec->getOperand(0);
5357
5358    // Determine the minimum constant start value.
5359    const SCEV *MinStart = getConstant(isSigned ?
5360      getSignedRange(Start).getSignedMin() :
5361      getUnsignedRange(Start).getUnsignedMin());
5362
5363    // If we know that the condition is true in order to enter the loop,
5364    // then we know that it will run exactly (m-n)/s times. Otherwise, we
5365    // only know that it will execute (max(m,n)-n)/s times. In both cases,
5366    // the division must round up.
5367    const SCEV *End = RHS;
5368    if (!isLoopEntryGuardedByCond(L,
5369                                  isSigned ? ICmpInst::ICMP_SLT :
5370                                             ICmpInst::ICMP_ULT,
5371                                  getMinusSCEV(Start, Step), RHS))
5372      End = isSigned ? getSMaxExpr(RHS, Start)
5373                     : getUMaxExpr(RHS, Start);
5374
5375    // Determine the maximum constant end value.
5376    const SCEV *MaxEnd = getConstant(isSigned ?
5377      getSignedRange(End).getSignedMax() :
5378      getUnsignedRange(End).getUnsignedMax());
5379
5380    // If MaxEnd is within a step of the maximum integer value in its type,
5381    // adjust it down to the minimum value which would produce the same effect.
5382    // This allows the subsequent ceiling division of (N+(step-1))/step to
5383    // compute the correct value.
5384    const SCEV *StepMinusOne = getMinusSCEV(Step,
5385                                            getConstant(Step->getType(), 1));
5386    MaxEnd = isSigned ?
5387      getSMinExpr(MaxEnd,
5388                  getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5389                               StepMinusOne)) :
5390      getUMinExpr(MaxEnd,
5391                  getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5392                               StepMinusOne));
5393
5394    // Finally, we subtract these two values and divide, rounding up, to get
5395    // the number of times the backedge is executed.
5396    const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
5397
5398    // The maximum backedge count is similar, except using the minimum start
5399    // value and the maximum end value.
5400    const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
5401
5402    return BackedgeTakenInfo(BECount, MaxBECount);
5403  }
5404
5405  return getCouldNotCompute();
5406}
5407
5408/// getNumIterationsInRange - Return the number of iterations of this loop that
5409/// produce values in the specified constant range.  Another way of looking at
5410/// this is that it returns the first iteration number where the value is not in
5411/// the condition, thus computing the exit count. If the iteration count can't
5412/// be computed, an instance of SCEVCouldNotCompute is returned.
5413const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
5414                                                    ScalarEvolution &SE) const {
5415  if (Range.isFullSet())  // Infinite loop.
5416    return SE.getCouldNotCompute();
5417
5418  // If the start is a non-zero constant, shift the range to simplify things.
5419  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
5420    if (!SC->getValue()->isZero()) {
5421      SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
5422      Operands[0] = SE.getConstant(SC->getType(), 0);
5423      const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
5424      if (const SCEVAddRecExpr *ShiftedAddRec =
5425            dyn_cast<SCEVAddRecExpr>(Shifted))
5426        return ShiftedAddRec->getNumIterationsInRange(
5427                           Range.subtract(SC->getValue()->getValue()), SE);
5428      // This is strange and shouldn't happen.
5429      return SE.getCouldNotCompute();
5430    }
5431
5432  // The only time we can solve this is when we have all constant indices.
5433  // Otherwise, we cannot determine the overflow conditions.
5434  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5435    if (!isa<SCEVConstant>(getOperand(i)))
5436      return SE.getCouldNotCompute();
5437
5438
5439  // Okay at this point we know that all elements of the chrec are constants and
5440  // that the start element is zero.
5441
5442  // First check to see if the range contains zero.  If not, the first
5443  // iteration exits.
5444  unsigned BitWidth = SE.getTypeSizeInBits(getType());
5445  if (!Range.contains(APInt(BitWidth, 0)))
5446    return SE.getConstant(getType(), 0);
5447
5448  if (isAffine()) {
5449    // If this is an affine expression then we have this situation:
5450    //   Solve {0,+,A} in Range  ===  Ax in Range
5451
5452    // We know that zero is in the range.  If A is positive then we know that
5453    // the upper value of the range must be the first possible exit value.
5454    // If A is negative then the lower of the range is the last possible loop
5455    // value.  Also note that we already checked for a full range.
5456    APInt One(BitWidth,1);
5457    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5458    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
5459
5460    // The exit value should be (End+A)/A.
5461    APInt ExitVal = (End + A).udiv(A);
5462    ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
5463
5464    // Evaluate at the exit value.  If we really did fall out of the valid
5465    // range, then we computed our trip count, otherwise wrap around or other
5466    // things must have happened.
5467    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
5468    if (Range.contains(Val->getValue()))
5469      return SE.getCouldNotCompute();  // Something strange happened
5470
5471    // Ensure that the previous value is in the range.  This is a sanity check.
5472    assert(Range.contains(
5473           EvaluateConstantChrecAtConstant(this,
5474           ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
5475           "Linear scev computation is off in a bad way!");
5476    return SE.getConstant(ExitValue);
5477  } else if (isQuadratic()) {
5478    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5479    // quadratic equation to solve it.  To do this, we must frame our problem in
5480    // terms of figuring out when zero is crossed, instead of when
5481    // Range.getUpper() is crossed.
5482    SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
5483    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
5484    const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
5485
5486    // Next, solve the constructed addrec
5487    std::pair<const SCEV *,const SCEV *> Roots =
5488      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
5489    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5490    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
5491    if (R1) {
5492      // Pick the smallest positive root value.
5493      if (ConstantInt *CB =
5494          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
5495                         R1->getValue(), R2->getValue()))) {
5496        if (CB->getZExtValue() == false)
5497          std::swap(R1, R2);   // R1 is the minimum root now.
5498
5499        // Make sure the root is not off by one.  The returned iteration should
5500        // not be in the range, but the previous one should be.  When solving
5501        // for "X*X < 5", for example, we should not return a root of 2.
5502        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
5503                                                             R1->getValue(),
5504                                                             SE);
5505        if (Range.contains(R1Val->getValue())) {
5506          // The next iteration must be out of the range...
5507          ConstantInt *NextVal =
5508                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
5509
5510          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5511          if (!Range.contains(R1Val->getValue()))
5512            return SE.getConstant(NextVal);
5513          return SE.getCouldNotCompute();  // Something strange happened
5514        }
5515
5516        // If R1 was not in the range, then it is a good return value.  Make
5517        // sure that R1-1 WAS in the range though, just in case.
5518        ConstantInt *NextVal =
5519               ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
5520        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5521        if (Range.contains(R1Val->getValue()))
5522          return R1;
5523        return SE.getCouldNotCompute();  // Something strange happened
5524      }
5525    }
5526  }
5527
5528  return SE.getCouldNotCompute();
5529}
5530
5531
5532
5533//===----------------------------------------------------------------------===//
5534//                   SCEVCallbackVH Class Implementation
5535//===----------------------------------------------------------------------===//
5536
5537void ScalarEvolution::SCEVCallbackVH::deleted() {
5538  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5539  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5540    SE->ConstantEvolutionLoopExitValue.erase(PN);
5541  SE->Scalars.erase(getValPtr());
5542  // this now dangles!
5543}
5544
5545void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
5546  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5547
5548  // Forget all the expressions associated with users of the old value,
5549  // so that future queries will recompute the expressions using the new
5550  // value.
5551  SmallVector<User *, 16> Worklist;
5552  SmallPtrSet<User *, 8> Visited;
5553  Value *Old = getValPtr();
5554  bool DeleteOld = false;
5555  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5556       UI != UE; ++UI)
5557    Worklist.push_back(*UI);
5558  while (!Worklist.empty()) {
5559    User *U = Worklist.pop_back_val();
5560    // Deleting the Old value will cause this to dangle. Postpone
5561    // that until everything else is done.
5562    if (U == Old) {
5563      DeleteOld = true;
5564      continue;
5565    }
5566    if (!Visited.insert(U))
5567      continue;
5568    if (PHINode *PN = dyn_cast<PHINode>(U))
5569      SE->ConstantEvolutionLoopExitValue.erase(PN);
5570    SE->Scalars.erase(U);
5571    for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5572         UI != UE; ++UI)
5573      Worklist.push_back(*UI);
5574  }
5575  // Delete the Old value if it (indirectly) references itself.
5576  if (DeleteOld) {
5577    if (PHINode *PN = dyn_cast<PHINode>(Old))
5578      SE->ConstantEvolutionLoopExitValue.erase(PN);
5579    SE->Scalars.erase(Old);
5580    // this now dangles!
5581  }
5582  // this may dangle!
5583}
5584
5585ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
5586  : CallbackVH(V), SE(se) {}
5587
5588//===----------------------------------------------------------------------===//
5589//                   ScalarEvolution Class Implementation
5590//===----------------------------------------------------------------------===//
5591
5592ScalarEvolution::ScalarEvolution()
5593  : FunctionPass(&ID) {
5594}
5595
5596bool ScalarEvolution::runOnFunction(Function &F) {
5597  this->F = &F;
5598  LI = &getAnalysis<LoopInfo>();
5599  TD = getAnalysisIfAvailable<TargetData>();
5600  DT = &getAnalysis<DominatorTree>();
5601  return false;
5602}
5603
5604void ScalarEvolution::releaseMemory() {
5605  Scalars.clear();
5606  BackedgeTakenCounts.clear();
5607  ConstantEvolutionLoopExitValue.clear();
5608  ValuesAtScopes.clear();
5609  UniqueSCEVs.clear();
5610  SCEVAllocator.Reset();
5611}
5612
5613void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5614  AU.setPreservesAll();
5615  AU.addRequiredTransitive<LoopInfo>();
5616  AU.addRequiredTransitive<DominatorTree>();
5617}
5618
5619bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
5620  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
5621}
5622
5623static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
5624                          const Loop *L) {
5625  // Print all inner loops first
5626  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5627    PrintLoopInfo(OS, SE, *I);
5628
5629  OS << "Loop ";
5630  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5631  OS << ": ";
5632
5633  SmallVector<BasicBlock *, 8> ExitBlocks;
5634  L->getExitBlocks(ExitBlocks);
5635  if (ExitBlocks.size() != 1)
5636    OS << "<multiple exits> ";
5637
5638  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5639    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
5640  } else {
5641    OS << "Unpredictable backedge-taken count. ";
5642  }
5643
5644  OS << "\n"
5645        "Loop ";
5646  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5647  OS << ": ";
5648
5649  if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5650    OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5651  } else {
5652    OS << "Unpredictable max backedge-taken count. ";
5653  }
5654
5655  OS << "\n";
5656}
5657
5658void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
5659  // ScalarEvolution's implementation of the print method is to print
5660  // out SCEV values of all instructions that are interesting. Doing
5661  // this potentially causes it to create new SCEV objects though,
5662  // which technically conflicts with the const qualifier. This isn't
5663  // observable from outside the class though, so casting away the
5664  // const isn't dangerous.
5665  ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
5666
5667  OS << "Classifying expressions for: ";
5668  WriteAsOperand(OS, F, /*PrintType=*/false);
5669  OS << "\n";
5670  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
5671    if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
5672      OS << *I << '\n';
5673      OS << "  -->  ";
5674      const SCEV *SV = SE.getSCEV(&*I);
5675      SV->print(OS);
5676
5677      const Loop *L = LI->getLoopFor((*I).getParent());
5678
5679      const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
5680      if (AtUse != SV) {
5681        OS << "  -->  ";
5682        AtUse->print(OS);
5683      }
5684
5685      if (L) {
5686        OS << "\t\t" "Exits: ";
5687        const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
5688        if (!ExitValue->isLoopInvariant(L)) {
5689          OS << "<<Unknown>>";
5690        } else {
5691          OS << *ExitValue;
5692        }
5693      }
5694
5695      OS << "\n";
5696    }
5697
5698  OS << "Determining loop execution counts for: ";
5699  WriteAsOperand(OS, F, /*PrintType=*/false);
5700  OS << "\n";
5701  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5702    PrintLoopInfo(OS, &SE, *I);
5703}
5704
5705