ScalarEvolution.cpp revision 630d85a78cdebf14a6fc2a0750bf48738f26ef08
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
19//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression.  These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
30//
31// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
35// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42//  Chains of recurrences -- a method to expedite the evaluation
43//  of closed-form functions
44//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46//  On computational properties of chains of recurrences
47//  Eugene V. Zima
48//
49//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50//  Robert A. van Engelen
51//
52//  Efficient Symbolic Analysis for Optimizing Compilers
53//  Robert A. van Engelen
54//
55//  Using the chains of recurrences algebra for data dependence testing and
56//  induction variable substitution
57//  MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
61#define DEBUG_TYPE "scalar-evolution"
62#include "llvm/Analysis/ScalarEvolutionExpressions.h"
63#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
65#include "llvm/GlobalVariable.h"
66#include "llvm/GlobalAlias.h"
67#include "llvm/Instructions.h"
68#include "llvm/LLVMContext.h"
69#include "llvm/Operator.h"
70#include "llvm/Analysis/ConstantFolding.h"
71#include "llvm/Analysis/Dominators.h"
72#include "llvm/Analysis/InstructionSimplify.h"
73#include "llvm/Analysis/LoopInfo.h"
74#include "llvm/Analysis/ValueTracking.h"
75#include "llvm/Assembly/Writer.h"
76#include "llvm/Target/TargetData.h"
77#include "llvm/Support/CommandLine.h"
78#include "llvm/Support/ConstantRange.h"
79#include "llvm/Support/Debug.h"
80#include "llvm/Support/ErrorHandling.h"
81#include "llvm/Support/GetElementPtrTypeIterator.h"
82#include "llvm/Support/InstIterator.h"
83#include "llvm/Support/MathExtras.h"
84#include "llvm/Support/raw_ostream.h"
85#include "llvm/ADT/Statistic.h"
86#include "llvm/ADT/STLExtras.h"
87#include "llvm/ADT/SmallPtrSet.h"
88#include <algorithm>
89using namespace llvm;
90
91STATISTIC(NumArrayLenItCounts,
92          "Number of trip counts computed with array length");
93STATISTIC(NumTripCountsComputed,
94          "Number of loops with predictable loop counts");
95STATISTIC(NumTripCountsNotComputed,
96          "Number of loops without predictable loop counts");
97STATISTIC(NumBruteForceTripCountsComputed,
98          "Number of loops with trip counts computed by force");
99
100static cl::opt<unsigned>
101MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
102                        cl::desc("Maximum number of iterations SCEV will "
103                                 "symbolically execute a constant "
104                                 "derived loop"),
105                        cl::init(100));
106
107INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
108                "Scalar Evolution Analysis", false, true)
109INITIALIZE_PASS_DEPENDENCY(LoopInfo)
110INITIALIZE_PASS_DEPENDENCY(DominatorTree)
111INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
112                "Scalar Evolution Analysis", false, true)
113char ScalarEvolution::ID = 0;
114
115//===----------------------------------------------------------------------===//
116//                           SCEV class definitions
117//===----------------------------------------------------------------------===//
118
119//===----------------------------------------------------------------------===//
120// Implementation of the SCEV class.
121//
122
123void SCEV::dump() const {
124  print(dbgs());
125  dbgs() << '\n';
126}
127
128void SCEV::print(raw_ostream &OS) const {
129  switch (getSCEVType()) {
130  case scConstant:
131    WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
132    return;
133  case scTruncate: {
134    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
135    const SCEV *Op = Trunc->getOperand();
136    OS << "(trunc " << *Op->getType() << " " << *Op << " to "
137       << *Trunc->getType() << ")";
138    return;
139  }
140  case scZeroExtend: {
141    const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
142    const SCEV *Op = ZExt->getOperand();
143    OS << "(zext " << *Op->getType() << " " << *Op << " to "
144       << *ZExt->getType() << ")";
145    return;
146  }
147  case scSignExtend: {
148    const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
149    const SCEV *Op = SExt->getOperand();
150    OS << "(sext " << *Op->getType() << " " << *Op << " to "
151       << *SExt->getType() << ")";
152    return;
153  }
154  case scAddRecExpr: {
155    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
156    OS << "{" << *AR->getOperand(0);
157    for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
158      OS << ",+," << *AR->getOperand(i);
159    OS << "}<";
160    if (AR->hasNoUnsignedWrap())
161      OS << "nuw><";
162    if (AR->hasNoSignedWrap())
163      OS << "nsw><";
164    WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
165    OS << ">";
166    return;
167  }
168  case scAddExpr:
169  case scMulExpr:
170  case scUMaxExpr:
171  case scSMaxExpr: {
172    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
173    const char *OpStr = 0;
174    switch (NAry->getSCEVType()) {
175    case scAddExpr: OpStr = " + "; break;
176    case scMulExpr: OpStr = " * "; break;
177    case scUMaxExpr: OpStr = " umax "; break;
178    case scSMaxExpr: OpStr = " smax "; break;
179    }
180    OS << "(";
181    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
182         I != E; ++I) {
183      OS << **I;
184      if (llvm::next(I) != E)
185        OS << OpStr;
186    }
187    OS << ")";
188    return;
189  }
190  case scUDivExpr: {
191    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
192    OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
193    return;
194  }
195  case scUnknown: {
196    const SCEVUnknown *U = cast<SCEVUnknown>(this);
197    const Type *AllocTy;
198    if (U->isSizeOf(AllocTy)) {
199      OS << "sizeof(" << *AllocTy << ")";
200      return;
201    }
202    if (U->isAlignOf(AllocTy)) {
203      OS << "alignof(" << *AllocTy << ")";
204      return;
205    }
206
207    const Type *CTy;
208    Constant *FieldNo;
209    if (U->isOffsetOf(CTy, FieldNo)) {
210      OS << "offsetof(" << *CTy << ", ";
211      WriteAsOperand(OS, FieldNo, false);
212      OS << ")";
213      return;
214    }
215
216    // Otherwise just print it normally.
217    WriteAsOperand(OS, U->getValue(), false);
218    return;
219  }
220  case scCouldNotCompute:
221    OS << "***COULDNOTCOMPUTE***";
222    return;
223  default: break;
224  }
225  llvm_unreachable("Unknown SCEV kind!");
226}
227
228const Type *SCEV::getType() const {
229  switch (getSCEVType()) {
230  case scConstant:
231    return cast<SCEVConstant>(this)->getType();
232  case scTruncate:
233  case scZeroExtend:
234  case scSignExtend:
235    return cast<SCEVCastExpr>(this)->getType();
236  case scAddRecExpr:
237  case scMulExpr:
238  case scUMaxExpr:
239  case scSMaxExpr:
240    return cast<SCEVNAryExpr>(this)->getType();
241  case scAddExpr:
242    return cast<SCEVAddExpr>(this)->getType();
243  case scUDivExpr:
244    return cast<SCEVUDivExpr>(this)->getType();
245  case scUnknown:
246    return cast<SCEVUnknown>(this)->getType();
247  case scCouldNotCompute:
248    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
249    return 0;
250  default: break;
251  }
252  llvm_unreachable("Unknown SCEV kind!");
253  return 0;
254}
255
256bool SCEV::isZero() const {
257  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
258    return SC->getValue()->isZero();
259  return false;
260}
261
262bool SCEV::isOne() const {
263  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
264    return SC->getValue()->isOne();
265  return false;
266}
267
268bool SCEV::isAllOnesValue() const {
269  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
270    return SC->getValue()->isAllOnesValue();
271  return false;
272}
273
274SCEVCouldNotCompute::SCEVCouldNotCompute() :
275  SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
276
277bool SCEVCouldNotCompute::classof(const SCEV *S) {
278  return S->getSCEVType() == scCouldNotCompute;
279}
280
281const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
282  FoldingSetNodeID ID;
283  ID.AddInteger(scConstant);
284  ID.AddPointer(V);
285  void *IP = 0;
286  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
287  SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
288  UniqueSCEVs.InsertNode(S, IP);
289  return S;
290}
291
292const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
293  return getConstant(ConstantInt::get(getContext(), Val));
294}
295
296const SCEV *
297ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
298  const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
299  return getConstant(ConstantInt::get(ITy, V, isSigned));
300}
301
302SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
303                           unsigned SCEVTy, const SCEV *op, const Type *ty)
304  : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
305
306SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
307                                   const SCEV *op, const Type *ty)
308  : SCEVCastExpr(ID, scTruncate, op, ty) {
309  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
310         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
311         "Cannot truncate non-integer value!");
312}
313
314SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
315                                       const SCEV *op, const Type *ty)
316  : SCEVCastExpr(ID, scZeroExtend, op, ty) {
317  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
318         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
319         "Cannot zero extend non-integer value!");
320}
321
322SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
323                                       const SCEV *op, const Type *ty)
324  : SCEVCastExpr(ID, scSignExtend, op, ty) {
325  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
326         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
327         "Cannot sign extend non-integer value!");
328}
329
330void SCEVUnknown::deleted() {
331  // Clear this SCEVUnknown from various maps.
332  SE->forgetMemoizedResults(this);
333
334  // Remove this SCEVUnknown from the uniquing map.
335  SE->UniqueSCEVs.RemoveNode(this);
336
337  // Release the value.
338  setValPtr(0);
339}
340
341void SCEVUnknown::allUsesReplacedWith(Value *New) {
342  // Clear this SCEVUnknown from various maps.
343  SE->forgetMemoizedResults(this);
344
345  // Remove this SCEVUnknown from the uniquing map.
346  SE->UniqueSCEVs.RemoveNode(this);
347
348  // Update this SCEVUnknown to point to the new value. This is needed
349  // because there may still be outstanding SCEVs which still point to
350  // this SCEVUnknown.
351  setValPtr(New);
352}
353
354bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
355  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
356    if (VCE->getOpcode() == Instruction::PtrToInt)
357      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
358        if (CE->getOpcode() == Instruction::GetElementPtr &&
359            CE->getOperand(0)->isNullValue() &&
360            CE->getNumOperands() == 2)
361          if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
362            if (CI->isOne()) {
363              AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
364                                 ->getElementType();
365              return true;
366            }
367
368  return false;
369}
370
371bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
372  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
373    if (VCE->getOpcode() == Instruction::PtrToInt)
374      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
375        if (CE->getOpcode() == Instruction::GetElementPtr &&
376            CE->getOperand(0)->isNullValue()) {
377          const Type *Ty =
378            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
379          if (const StructType *STy = dyn_cast<StructType>(Ty))
380            if (!STy->isPacked() &&
381                CE->getNumOperands() == 3 &&
382                CE->getOperand(1)->isNullValue()) {
383              if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
384                if (CI->isOne() &&
385                    STy->getNumElements() == 2 &&
386                    STy->getElementType(0)->isIntegerTy(1)) {
387                  AllocTy = STy->getElementType(1);
388                  return true;
389                }
390            }
391        }
392
393  return false;
394}
395
396bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
397  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
398    if (VCE->getOpcode() == Instruction::PtrToInt)
399      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
400        if (CE->getOpcode() == Instruction::GetElementPtr &&
401            CE->getNumOperands() == 3 &&
402            CE->getOperand(0)->isNullValue() &&
403            CE->getOperand(1)->isNullValue()) {
404          const Type *Ty =
405            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
406          // Ignore vector types here so that ScalarEvolutionExpander doesn't
407          // emit getelementptrs that index into vectors.
408          if (Ty->isStructTy() || Ty->isArrayTy()) {
409            CTy = Ty;
410            FieldNo = CE->getOperand(2);
411            return true;
412          }
413        }
414
415  return false;
416}
417
418//===----------------------------------------------------------------------===//
419//                               SCEV Utilities
420//===----------------------------------------------------------------------===//
421
422namespace {
423  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
424  /// than the complexity of the RHS.  This comparator is used to canonicalize
425  /// expressions.
426  class SCEVComplexityCompare {
427    const LoopInfo *const LI;
428  public:
429    explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
430
431    // Return true or false if LHS is less than, or at least RHS, respectively.
432    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
433      return compare(LHS, RHS) < 0;
434    }
435
436    // Return negative, zero, or positive, if LHS is less than, equal to, or
437    // greater than RHS, respectively. A three-way result allows recursive
438    // comparisons to be more efficient.
439    int compare(const SCEV *LHS, const SCEV *RHS) const {
440      // Fast-path: SCEVs are uniqued so we can do a quick equality check.
441      if (LHS == RHS)
442        return 0;
443
444      // Primarily, sort the SCEVs by their getSCEVType().
445      unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
446      if (LType != RType)
447        return (int)LType - (int)RType;
448
449      // Aside from the getSCEVType() ordering, the particular ordering
450      // isn't very important except that it's beneficial to be consistent,
451      // so that (a + b) and (b + a) don't end up as different expressions.
452      switch (LType) {
453      case scUnknown: {
454        const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
455        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
456
457        // Sort SCEVUnknown values with some loose heuristics. TODO: This is
458        // not as complete as it could be.
459        const Value *LV = LU->getValue(), *RV = RU->getValue();
460
461        // Order pointer values after integer values. This helps SCEVExpander
462        // form GEPs.
463        bool LIsPointer = LV->getType()->isPointerTy(),
464             RIsPointer = RV->getType()->isPointerTy();
465        if (LIsPointer != RIsPointer)
466          return (int)LIsPointer - (int)RIsPointer;
467
468        // Compare getValueID values.
469        unsigned LID = LV->getValueID(),
470                 RID = RV->getValueID();
471        if (LID != RID)
472          return (int)LID - (int)RID;
473
474        // Sort arguments by their position.
475        if (const Argument *LA = dyn_cast<Argument>(LV)) {
476          const Argument *RA = cast<Argument>(RV);
477          unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
478          return (int)LArgNo - (int)RArgNo;
479        }
480
481        // For instructions, compare their loop depth, and their operand
482        // count.  This is pretty loose.
483        if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
484          const Instruction *RInst = cast<Instruction>(RV);
485
486          // Compare loop depths.
487          const BasicBlock *LParent = LInst->getParent(),
488                           *RParent = RInst->getParent();
489          if (LParent != RParent) {
490            unsigned LDepth = LI->getLoopDepth(LParent),
491                     RDepth = LI->getLoopDepth(RParent);
492            if (LDepth != RDepth)
493              return (int)LDepth - (int)RDepth;
494          }
495
496          // Compare the number of operands.
497          unsigned LNumOps = LInst->getNumOperands(),
498                   RNumOps = RInst->getNumOperands();
499          return (int)LNumOps - (int)RNumOps;
500        }
501
502        return 0;
503      }
504
505      case scConstant: {
506        const SCEVConstant *LC = cast<SCEVConstant>(LHS);
507        const SCEVConstant *RC = cast<SCEVConstant>(RHS);
508
509        // Compare constant values.
510        const APInt &LA = LC->getValue()->getValue();
511        const APInt &RA = RC->getValue()->getValue();
512        unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
513        if (LBitWidth != RBitWidth)
514          return (int)LBitWidth - (int)RBitWidth;
515        return LA.ult(RA) ? -1 : 1;
516      }
517
518      case scAddRecExpr: {
519        const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
520        const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
521
522        // Compare addrec loop depths.
523        const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
524        if (LLoop != RLoop) {
525          unsigned LDepth = LLoop->getLoopDepth(),
526                   RDepth = RLoop->getLoopDepth();
527          if (LDepth != RDepth)
528            return (int)LDepth - (int)RDepth;
529        }
530
531        // Addrec complexity grows with operand count.
532        unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
533        if (LNumOps != RNumOps)
534          return (int)LNumOps - (int)RNumOps;
535
536        // Lexicographically compare.
537        for (unsigned i = 0; i != LNumOps; ++i) {
538          long X = compare(LA->getOperand(i), RA->getOperand(i));
539          if (X != 0)
540            return X;
541        }
542
543        return 0;
544      }
545
546      case scAddExpr:
547      case scMulExpr:
548      case scSMaxExpr:
549      case scUMaxExpr: {
550        const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
551        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
552
553        // Lexicographically compare n-ary expressions.
554        unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
555        for (unsigned i = 0; i != LNumOps; ++i) {
556          if (i >= RNumOps)
557            return 1;
558          long X = compare(LC->getOperand(i), RC->getOperand(i));
559          if (X != 0)
560            return X;
561        }
562        return (int)LNumOps - (int)RNumOps;
563      }
564
565      case scUDivExpr: {
566        const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
567        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
568
569        // Lexicographically compare udiv expressions.
570        long X = compare(LC->getLHS(), RC->getLHS());
571        if (X != 0)
572          return X;
573        return compare(LC->getRHS(), RC->getRHS());
574      }
575
576      case scTruncate:
577      case scZeroExtend:
578      case scSignExtend: {
579        const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
580        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
581
582        // Compare cast expressions by operand.
583        return compare(LC->getOperand(), RC->getOperand());
584      }
585
586      default:
587        break;
588      }
589
590      llvm_unreachable("Unknown SCEV kind!");
591      return 0;
592    }
593  };
594}
595
596/// GroupByComplexity - Given a list of SCEV objects, order them by their
597/// complexity, and group objects of the same complexity together by value.
598/// When this routine is finished, we know that any duplicates in the vector are
599/// consecutive and that complexity is monotonically increasing.
600///
601/// Note that we go take special precautions to ensure that we get deterministic
602/// results from this routine.  In other words, we don't want the results of
603/// this to depend on where the addresses of various SCEV objects happened to
604/// land in memory.
605///
606static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
607                              LoopInfo *LI) {
608  if (Ops.size() < 2) return;  // Noop
609  if (Ops.size() == 2) {
610    // This is the common case, which also happens to be trivially simple.
611    // Special case it.
612    const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
613    if (SCEVComplexityCompare(LI)(RHS, LHS))
614      std::swap(LHS, RHS);
615    return;
616  }
617
618  // Do the rough sort by complexity.
619  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
620
621  // Now that we are sorted by complexity, group elements of the same
622  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
623  // be extremely short in practice.  Note that we take this approach because we
624  // do not want to depend on the addresses of the objects we are grouping.
625  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
626    const SCEV *S = Ops[i];
627    unsigned Complexity = S->getSCEVType();
628
629    // If there are any objects of the same complexity and same value as this
630    // one, group them.
631    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
632      if (Ops[j] == S) { // Found a duplicate.
633        // Move it to immediately after i'th element.
634        std::swap(Ops[i+1], Ops[j]);
635        ++i;   // no need to rescan it.
636        if (i == e-2) return;  // Done!
637      }
638    }
639  }
640}
641
642
643
644//===----------------------------------------------------------------------===//
645//                      Simple SCEV method implementations
646//===----------------------------------------------------------------------===//
647
648/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
649/// Assume, K > 0.
650static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
651                                       ScalarEvolution &SE,
652                                       const Type* ResultTy) {
653  // Handle the simplest case efficiently.
654  if (K == 1)
655    return SE.getTruncateOrZeroExtend(It, ResultTy);
656
657  // We are using the following formula for BC(It, K):
658  //
659  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
660  //
661  // Suppose, W is the bitwidth of the return value.  We must be prepared for
662  // overflow.  Hence, we must assure that the result of our computation is
663  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
664  // safe in modular arithmetic.
665  //
666  // However, this code doesn't use exactly that formula; the formula it uses
667  // is something like the following, where T is the number of factors of 2 in
668  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
669  // exponentiation:
670  //
671  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
672  //
673  // This formula is trivially equivalent to the previous formula.  However,
674  // this formula can be implemented much more efficiently.  The trick is that
675  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
676  // arithmetic.  To do exact division in modular arithmetic, all we have
677  // to do is multiply by the inverse.  Therefore, this step can be done at
678  // width W.
679  //
680  // The next issue is how to safely do the division by 2^T.  The way this
681  // is done is by doing the multiplication step at a width of at least W + T
682  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
683  // when we perform the division by 2^T (which is equivalent to a right shift
684  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
685  // truncated out after the division by 2^T.
686  //
687  // In comparison to just directly using the first formula, this technique
688  // is much more efficient; using the first formula requires W * K bits,
689  // but this formula less than W + K bits. Also, the first formula requires
690  // a division step, whereas this formula only requires multiplies and shifts.
691  //
692  // It doesn't matter whether the subtraction step is done in the calculation
693  // width or the input iteration count's width; if the subtraction overflows,
694  // the result must be zero anyway.  We prefer here to do it in the width of
695  // the induction variable because it helps a lot for certain cases; CodeGen
696  // isn't smart enough to ignore the overflow, which leads to much less
697  // efficient code if the width of the subtraction is wider than the native
698  // register width.
699  //
700  // (It's possible to not widen at all by pulling out factors of 2 before
701  // the multiplication; for example, K=2 can be calculated as
702  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
703  // extra arithmetic, so it's not an obvious win, and it gets
704  // much more complicated for K > 3.)
705
706  // Protection from insane SCEVs; this bound is conservative,
707  // but it probably doesn't matter.
708  if (K > 1000)
709    return SE.getCouldNotCompute();
710
711  unsigned W = SE.getTypeSizeInBits(ResultTy);
712
713  // Calculate K! / 2^T and T; we divide out the factors of two before
714  // multiplying for calculating K! / 2^T to avoid overflow.
715  // Other overflow doesn't matter because we only care about the bottom
716  // W bits of the result.
717  APInt OddFactorial(W, 1);
718  unsigned T = 1;
719  for (unsigned i = 3; i <= K; ++i) {
720    APInt Mult(W, i);
721    unsigned TwoFactors = Mult.countTrailingZeros();
722    T += TwoFactors;
723    Mult = Mult.lshr(TwoFactors);
724    OddFactorial *= Mult;
725  }
726
727  // We need at least W + T bits for the multiplication step
728  unsigned CalculationBits = W + T;
729
730  // Calculate 2^T, at width T+W.
731  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
732
733  // Calculate the multiplicative inverse of K! / 2^T;
734  // this multiplication factor will perform the exact division by
735  // K! / 2^T.
736  APInt Mod = APInt::getSignedMinValue(W+1);
737  APInt MultiplyFactor = OddFactorial.zext(W+1);
738  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
739  MultiplyFactor = MultiplyFactor.trunc(W);
740
741  // Calculate the product, at width T+W
742  const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
743                                                      CalculationBits);
744  const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
745  for (unsigned i = 1; i != K; ++i) {
746    const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
747    Dividend = SE.getMulExpr(Dividend,
748                             SE.getTruncateOrZeroExtend(S, CalculationTy));
749  }
750
751  // Divide by 2^T
752  const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
753
754  // Truncate the result, and divide by K! / 2^T.
755
756  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
757                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
758}
759
760/// evaluateAtIteration - Return the value of this chain of recurrences at
761/// the specified iteration number.  We can evaluate this recurrence by
762/// multiplying each element in the chain by the binomial coefficient
763/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
764///
765///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
766///
767/// where BC(It, k) stands for binomial coefficient.
768///
769const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
770                                                ScalarEvolution &SE) const {
771  const SCEV *Result = getStart();
772  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
773    // The computation is correct in the face of overflow provided that the
774    // multiplication is performed _after_ the evaluation of the binomial
775    // coefficient.
776    const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
777    if (isa<SCEVCouldNotCompute>(Coeff))
778      return Coeff;
779
780    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
781  }
782  return Result;
783}
784
785//===----------------------------------------------------------------------===//
786//                    SCEV Expression folder implementations
787//===----------------------------------------------------------------------===//
788
789const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
790                                             const Type *Ty) {
791  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
792         "This is not a truncating conversion!");
793  assert(isSCEVable(Ty) &&
794         "This is not a conversion to a SCEVable type!");
795  Ty = getEffectiveSCEVType(Ty);
796
797  FoldingSetNodeID ID;
798  ID.AddInteger(scTruncate);
799  ID.AddPointer(Op);
800  ID.AddPointer(Ty);
801  void *IP = 0;
802  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
803
804  // Fold if the operand is constant.
805  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
806    return getConstant(
807      cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
808                                               getEffectiveSCEVType(Ty))));
809
810  // trunc(trunc(x)) --> trunc(x)
811  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
812    return getTruncateExpr(ST->getOperand(), Ty);
813
814  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
815  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
816    return getTruncateOrSignExtend(SS->getOperand(), Ty);
817
818  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
819  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
820    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
821
822  // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
823  // eliminate all the truncates.
824  if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
825    SmallVector<const SCEV *, 4> Operands;
826    bool hasTrunc = false;
827    for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
828      const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
829      hasTrunc = isa<SCEVTruncateExpr>(S);
830      Operands.push_back(S);
831    }
832    if (!hasTrunc)
833      return getAddExpr(Operands, false, false);
834  }
835
836  // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
837  // eliminate all the truncates.
838  if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
839    SmallVector<const SCEV *, 4> Operands;
840    bool hasTrunc = false;
841    for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
842      const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
843      hasTrunc = isa<SCEVTruncateExpr>(S);
844      Operands.push_back(S);
845    }
846    if (!hasTrunc)
847      return getMulExpr(Operands, false, false);
848  }
849
850  // If the input value is a chrec scev, truncate the chrec's operands.
851  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
852    SmallVector<const SCEV *, 4> Operands;
853    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
854      Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
855    return getAddRecExpr(Operands, AddRec->getLoop());
856  }
857
858  // As a special case, fold trunc(undef) to undef. We don't want to
859  // know too much about SCEVUnknowns, but this special case is handy
860  // and harmless.
861  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
862    if (isa<UndefValue>(U->getValue()))
863      return getSCEV(UndefValue::get(Ty));
864
865  // The cast wasn't folded; create an explicit cast node. We can reuse
866  // the existing insert position since if we get here, we won't have
867  // made any changes which would invalidate it.
868  SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
869                                                 Op, Ty);
870  UniqueSCEVs.InsertNode(S, IP);
871  return S;
872}
873
874const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
875                                               const Type *Ty) {
876  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
877         "This is not an extending conversion!");
878  assert(isSCEVable(Ty) &&
879         "This is not a conversion to a SCEVable type!");
880  Ty = getEffectiveSCEVType(Ty);
881
882  // Fold if the operand is constant.
883  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
884    return getConstant(
885      cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
886                                              getEffectiveSCEVType(Ty))));
887
888  // zext(zext(x)) --> zext(x)
889  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
890    return getZeroExtendExpr(SZ->getOperand(), Ty);
891
892  // Before doing any expensive analysis, check to see if we've already
893  // computed a SCEV for this Op and Ty.
894  FoldingSetNodeID ID;
895  ID.AddInteger(scZeroExtend);
896  ID.AddPointer(Op);
897  ID.AddPointer(Ty);
898  void *IP = 0;
899  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
900
901  // zext(trunc(x)) --> zext(x) or x or trunc(x)
902  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
903    // It's possible the bits taken off by the truncate were all zero bits. If
904    // so, we should be able to simplify this further.
905    const SCEV *X = ST->getOperand();
906    ConstantRange CR = getUnsignedRange(X);
907    unsigned OrigBits = CR.getBitWidth();
908    unsigned TruncBits = getTypeSizeInBits(ST->getType());
909    unsigned NewBits = getTypeSizeInBits(Ty);
910    if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
911            CR.zextOrTrunc(NewBits))) {
912      if (NewBits > OrigBits) return getZeroExtendExpr(X, Ty);
913      if (NewBits < OrigBits) return getTruncateExpr(X, Ty);
914      return X;
915    }
916  }
917
918  // If the input value is a chrec scev, and we can prove that the value
919  // did not overflow the old, smaller, value, we can zero extend all of the
920  // operands (often constants).  This allows analysis of something like
921  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
922  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
923    if (AR->isAffine()) {
924      const SCEV *Start = AR->getStart();
925      const SCEV *Step = AR->getStepRecurrence(*this);
926      unsigned BitWidth = getTypeSizeInBits(AR->getType());
927      const Loop *L = AR->getLoop();
928
929      // If we have special knowledge that this addrec won't overflow,
930      // we don't need to do any further analysis.
931      if (AR->hasNoUnsignedWrap())
932        return getAddRecExpr(getZeroExtendExpr(Start, Ty),
933                             getZeroExtendExpr(Step, Ty),
934                             L);
935
936      // Check whether the backedge-taken count is SCEVCouldNotCompute.
937      // Note that this serves two purposes: It filters out loops that are
938      // simply not analyzable, and it covers the case where this code is
939      // being called from within backedge-taken count analysis, such that
940      // attempting to ask for the backedge-taken count would likely result
941      // in infinite recursion. In the later case, the analysis code will
942      // cope with a conservative value, and it will take care to purge
943      // that value once it has finished.
944      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
945      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
946        // Manually compute the final value for AR, checking for
947        // overflow.
948
949        // Check whether the backedge-taken count can be losslessly casted to
950        // the addrec's type. The count is always unsigned.
951        const SCEV *CastedMaxBECount =
952          getTruncateOrZeroExtend(MaxBECount, Start->getType());
953        const SCEV *RecastedMaxBECount =
954          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
955        if (MaxBECount == RecastedMaxBECount) {
956          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
957          // Check whether Start+Step*MaxBECount has no unsigned overflow.
958          const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
959          const SCEV *Add = getAddExpr(Start, ZMul);
960          const SCEV *OperandExtendedAdd =
961            getAddExpr(getZeroExtendExpr(Start, WideTy),
962                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
963                                  getZeroExtendExpr(Step, WideTy)));
964          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
965            // Return the expression with the addrec on the outside.
966            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
967                                 getZeroExtendExpr(Step, Ty),
968                                 L);
969
970          // Similar to above, only this time treat the step value as signed.
971          // This covers loops that count down.
972          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
973          Add = getAddExpr(Start, SMul);
974          OperandExtendedAdd =
975            getAddExpr(getZeroExtendExpr(Start, WideTy),
976                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
977                                  getSignExtendExpr(Step, WideTy)));
978          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
979            // Return the expression with the addrec on the outside.
980            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
981                                 getSignExtendExpr(Step, Ty),
982                                 L);
983        }
984
985        // If the backedge is guarded by a comparison with the pre-inc value
986        // the addrec is safe. Also, if the entry is guarded by a comparison
987        // with the start value and the backedge is guarded by a comparison
988        // with the post-inc value, the addrec is safe.
989        if (isKnownPositive(Step)) {
990          const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
991                                      getUnsignedRange(Step).getUnsignedMax());
992          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
993              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
994               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
995                                           AR->getPostIncExpr(*this), N)))
996            // Return the expression with the addrec on the outside.
997            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
998                                 getZeroExtendExpr(Step, Ty),
999                                 L);
1000        } else if (isKnownNegative(Step)) {
1001          const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1002                                      getSignedRange(Step).getSignedMin());
1003          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1004              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1005               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1006                                           AR->getPostIncExpr(*this), N)))
1007            // Return the expression with the addrec on the outside.
1008            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1009                                 getSignExtendExpr(Step, Ty),
1010                                 L);
1011        }
1012      }
1013    }
1014
1015  // The cast wasn't folded; create an explicit cast node.
1016  // Recompute the insert position, as it may have been invalidated.
1017  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1018  SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1019                                                   Op, Ty);
1020  UniqueSCEVs.InsertNode(S, IP);
1021  return S;
1022}
1023
1024const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1025                                               const Type *Ty) {
1026  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1027         "This is not an extending conversion!");
1028  assert(isSCEVable(Ty) &&
1029         "This is not a conversion to a SCEVable type!");
1030  Ty = getEffectiveSCEVType(Ty);
1031
1032  // Fold if the operand is constant.
1033  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1034    return getConstant(
1035      cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1036                                              getEffectiveSCEVType(Ty))));
1037
1038  // sext(sext(x)) --> sext(x)
1039  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1040    return getSignExtendExpr(SS->getOperand(), Ty);
1041
1042  // sext(zext(x)) --> zext(x)
1043  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1044    return getZeroExtendExpr(SZ->getOperand(), Ty);
1045
1046  // Before doing any expensive analysis, check to see if we've already
1047  // computed a SCEV for this Op and Ty.
1048  FoldingSetNodeID ID;
1049  ID.AddInteger(scSignExtend);
1050  ID.AddPointer(Op);
1051  ID.AddPointer(Ty);
1052  void *IP = 0;
1053  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1054
1055  // If the input value is provably positive, build a zext instead.
1056  if (isKnownNonNegative(Op))
1057    return getZeroExtendExpr(Op, Ty);
1058
1059  // sext(trunc(x)) --> sext(x) or x or trunc(x)
1060  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1061    // It's possible the bits taken off by the truncate were all sign bits. If
1062    // so, we should be able to simplify this further.
1063    const SCEV *X = ST->getOperand();
1064    ConstantRange CR = getSignedRange(X);
1065    unsigned OrigBits = CR.getBitWidth();
1066    unsigned TruncBits = getTypeSizeInBits(ST->getType());
1067    unsigned NewBits = getTypeSizeInBits(Ty);
1068    if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1069            CR.sextOrTrunc(NewBits))) {
1070      if (NewBits > OrigBits) return getSignExtendExpr(X, Ty);
1071      if (NewBits < OrigBits) return getTruncateExpr(X, Ty);
1072      return X;
1073    }
1074  }
1075
1076  // If the input value is a chrec scev, and we can prove that the value
1077  // did not overflow the old, smaller, value, we can sign extend all of the
1078  // operands (often constants).  This allows analysis of something like
1079  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1080  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1081    if (AR->isAffine()) {
1082      const SCEV *Start = AR->getStart();
1083      const SCEV *Step = AR->getStepRecurrence(*this);
1084      unsigned BitWidth = getTypeSizeInBits(AR->getType());
1085      const Loop *L = AR->getLoop();
1086
1087      // If we have special knowledge that this addrec won't overflow,
1088      // we don't need to do any further analysis.
1089      if (AR->hasNoSignedWrap())
1090        return getAddRecExpr(getSignExtendExpr(Start, Ty),
1091                             getSignExtendExpr(Step, Ty),
1092                             L);
1093
1094      // Check whether the backedge-taken count is SCEVCouldNotCompute.
1095      // Note that this serves two purposes: It filters out loops that are
1096      // simply not analyzable, and it covers the case where this code is
1097      // being called from within backedge-taken count analysis, such that
1098      // attempting to ask for the backedge-taken count would likely result
1099      // in infinite recursion. In the later case, the analysis code will
1100      // cope with a conservative value, and it will take care to purge
1101      // that value once it has finished.
1102      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1103      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1104        // Manually compute the final value for AR, checking for
1105        // overflow.
1106
1107        // Check whether the backedge-taken count can be losslessly casted to
1108        // the addrec's type. The count is always unsigned.
1109        const SCEV *CastedMaxBECount =
1110          getTruncateOrZeroExtend(MaxBECount, Start->getType());
1111        const SCEV *RecastedMaxBECount =
1112          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1113        if (MaxBECount == RecastedMaxBECount) {
1114          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1115          // Check whether Start+Step*MaxBECount has no signed overflow.
1116          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1117          const SCEV *Add = getAddExpr(Start, SMul);
1118          const SCEV *OperandExtendedAdd =
1119            getAddExpr(getSignExtendExpr(Start, WideTy),
1120                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1121                                  getSignExtendExpr(Step, WideTy)));
1122          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
1123            // Return the expression with the addrec on the outside.
1124            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1125                                 getSignExtendExpr(Step, Ty),
1126                                 L);
1127
1128          // Similar to above, only this time treat the step value as unsigned.
1129          // This covers loops that count up with an unsigned step.
1130          const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
1131          Add = getAddExpr(Start, UMul);
1132          OperandExtendedAdd =
1133            getAddExpr(getSignExtendExpr(Start, WideTy),
1134                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1135                                  getZeroExtendExpr(Step, WideTy)));
1136          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
1137            // Return the expression with the addrec on the outside.
1138            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1139                                 getZeroExtendExpr(Step, Ty),
1140                                 L);
1141        }
1142
1143        // If the backedge is guarded by a comparison with the pre-inc value
1144        // the addrec is safe. Also, if the entry is guarded by a comparison
1145        // with the start value and the backedge is guarded by a comparison
1146        // with the post-inc value, the addrec is safe.
1147        if (isKnownPositive(Step)) {
1148          const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1149                                      getSignedRange(Step).getSignedMax());
1150          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
1151              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
1152               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1153                                           AR->getPostIncExpr(*this), N)))
1154            // Return the expression with the addrec on the outside.
1155            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1156                                 getSignExtendExpr(Step, Ty),
1157                                 L);
1158        } else if (isKnownNegative(Step)) {
1159          const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1160                                      getSignedRange(Step).getSignedMin());
1161          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
1162              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
1163               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1164                                           AR->getPostIncExpr(*this), N)))
1165            // Return the expression with the addrec on the outside.
1166            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1167                                 getSignExtendExpr(Step, Ty),
1168                                 L);
1169        }
1170      }
1171    }
1172
1173  // The cast wasn't folded; create an explicit cast node.
1174  // Recompute the insert position, as it may have been invalidated.
1175  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1176  SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1177                                                   Op, Ty);
1178  UniqueSCEVs.InsertNode(S, IP);
1179  return S;
1180}
1181
1182/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1183/// unspecified bits out to the given type.
1184///
1185const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1186                                              const Type *Ty) {
1187  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1188         "This is not an extending conversion!");
1189  assert(isSCEVable(Ty) &&
1190         "This is not a conversion to a SCEVable type!");
1191  Ty = getEffectiveSCEVType(Ty);
1192
1193  // Sign-extend negative constants.
1194  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1195    if (SC->getValue()->getValue().isNegative())
1196      return getSignExtendExpr(Op, Ty);
1197
1198  // Peel off a truncate cast.
1199  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1200    const SCEV *NewOp = T->getOperand();
1201    if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1202      return getAnyExtendExpr(NewOp, Ty);
1203    return getTruncateOrNoop(NewOp, Ty);
1204  }
1205
1206  // Next try a zext cast. If the cast is folded, use it.
1207  const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1208  if (!isa<SCEVZeroExtendExpr>(ZExt))
1209    return ZExt;
1210
1211  // Next try a sext cast. If the cast is folded, use it.
1212  const SCEV *SExt = getSignExtendExpr(Op, Ty);
1213  if (!isa<SCEVSignExtendExpr>(SExt))
1214    return SExt;
1215
1216  // Force the cast to be folded into the operands of an addrec.
1217  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1218    SmallVector<const SCEV *, 4> Ops;
1219    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1220         I != E; ++I)
1221      Ops.push_back(getAnyExtendExpr(*I, Ty));
1222    return getAddRecExpr(Ops, AR->getLoop());
1223  }
1224
1225  // As a special case, fold anyext(undef) to undef. We don't want to
1226  // know too much about SCEVUnknowns, but this special case is handy
1227  // and harmless.
1228  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1229    if (isa<UndefValue>(U->getValue()))
1230      return getSCEV(UndefValue::get(Ty));
1231
1232  // If the expression is obviously signed, use the sext cast value.
1233  if (isa<SCEVSMaxExpr>(Op))
1234    return SExt;
1235
1236  // Absent any other information, use the zext cast value.
1237  return ZExt;
1238}
1239
1240/// CollectAddOperandsWithScales - Process the given Ops list, which is
1241/// a list of operands to be added under the given scale, update the given
1242/// map. This is a helper function for getAddRecExpr. As an example of
1243/// what it does, given a sequence of operands that would form an add
1244/// expression like this:
1245///
1246///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1247///
1248/// where A and B are constants, update the map with these values:
1249///
1250///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1251///
1252/// and add 13 + A*B*29 to AccumulatedConstant.
1253/// This will allow getAddRecExpr to produce this:
1254///
1255///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1256///
1257/// This form often exposes folding opportunities that are hidden in
1258/// the original operand list.
1259///
1260/// Return true iff it appears that any interesting folding opportunities
1261/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1262/// the common case where no interesting opportunities are present, and
1263/// is also used as a check to avoid infinite recursion.
1264///
1265static bool
1266CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1267                             SmallVector<const SCEV *, 8> &NewOps,
1268                             APInt &AccumulatedConstant,
1269                             const SCEV *const *Ops, size_t NumOperands,
1270                             const APInt &Scale,
1271                             ScalarEvolution &SE) {
1272  bool Interesting = false;
1273
1274  // Iterate over the add operands. They are sorted, with constants first.
1275  unsigned i = 0;
1276  while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1277    ++i;
1278    // Pull a buried constant out to the outside.
1279    if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1280      Interesting = true;
1281    AccumulatedConstant += Scale * C->getValue()->getValue();
1282  }
1283
1284  // Next comes everything else. We're especially interested in multiplies
1285  // here, but they're in the middle, so just visit the rest with one loop.
1286  for (; i != NumOperands; ++i) {
1287    const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1288    if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1289      APInt NewScale =
1290        Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1291      if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1292        // A multiplication of a constant with another add; recurse.
1293        const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1294        Interesting |=
1295          CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1296                                       Add->op_begin(), Add->getNumOperands(),
1297                                       NewScale, SE);
1298      } else {
1299        // A multiplication of a constant with some other value. Update
1300        // the map.
1301        SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1302        const SCEV *Key = SE.getMulExpr(MulOps);
1303        std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1304          M.insert(std::make_pair(Key, NewScale));
1305        if (Pair.second) {
1306          NewOps.push_back(Pair.first->first);
1307        } else {
1308          Pair.first->second += NewScale;
1309          // The map already had an entry for this value, which may indicate
1310          // a folding opportunity.
1311          Interesting = true;
1312        }
1313      }
1314    } else {
1315      // An ordinary operand. Update the map.
1316      std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1317        M.insert(std::make_pair(Ops[i], Scale));
1318      if (Pair.second) {
1319        NewOps.push_back(Pair.first->first);
1320      } else {
1321        Pair.first->second += Scale;
1322        // The map already had an entry for this value, which may indicate
1323        // a folding opportunity.
1324        Interesting = true;
1325      }
1326    }
1327  }
1328
1329  return Interesting;
1330}
1331
1332namespace {
1333  struct APIntCompare {
1334    bool operator()(const APInt &LHS, const APInt &RHS) const {
1335      return LHS.ult(RHS);
1336    }
1337  };
1338}
1339
1340/// getAddExpr - Get a canonical add expression, or something simpler if
1341/// possible.
1342const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1343                                        bool HasNUW, bool HasNSW) {
1344  assert(!Ops.empty() && "Cannot get empty add!");
1345  if (Ops.size() == 1) return Ops[0];
1346#ifndef NDEBUG
1347  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1348  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1349    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1350           "SCEVAddExpr operand types don't match!");
1351#endif
1352
1353  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1354  if (!HasNUW && HasNSW) {
1355    bool All = true;
1356    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1357         E = Ops.end(); I != E; ++I)
1358      if (!isKnownNonNegative(*I)) {
1359        All = false;
1360        break;
1361      }
1362    if (All) HasNUW = true;
1363  }
1364
1365  // Sort by complexity, this groups all similar expression types together.
1366  GroupByComplexity(Ops, LI);
1367
1368  // If there are any constants, fold them together.
1369  unsigned Idx = 0;
1370  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1371    ++Idx;
1372    assert(Idx < Ops.size());
1373    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1374      // We found two constants, fold them together!
1375      Ops[0] = getConstant(LHSC->getValue()->getValue() +
1376                           RHSC->getValue()->getValue());
1377      if (Ops.size() == 2) return Ops[0];
1378      Ops.erase(Ops.begin()+1);  // Erase the folded element
1379      LHSC = cast<SCEVConstant>(Ops[0]);
1380    }
1381
1382    // If we are left with a constant zero being added, strip it off.
1383    if (LHSC->getValue()->isZero()) {
1384      Ops.erase(Ops.begin());
1385      --Idx;
1386    }
1387
1388    if (Ops.size() == 1) return Ops[0];
1389  }
1390
1391  // Okay, check to see if the same value occurs in the operand list more than
1392  // once.  If so, merge them together into an multiply expression.  Since we
1393  // sorted the list, these values are required to be adjacent.
1394  const Type *Ty = Ops[0]->getType();
1395  bool FoundMatch = false;
1396  for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
1397    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
1398      // Scan ahead to count how many equal operands there are.
1399      unsigned Count = 2;
1400      while (i+Count != e && Ops[i+Count] == Ops[i])
1401        ++Count;
1402      // Merge the values into a multiply.
1403      const SCEV *Scale = getConstant(Ty, Count);
1404      const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1405      if (Ops.size() == Count)
1406        return Mul;
1407      Ops[i] = Mul;
1408      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
1409      --i; e -= Count - 1;
1410      FoundMatch = true;
1411    }
1412  if (FoundMatch)
1413    return getAddExpr(Ops, HasNUW, HasNSW);
1414
1415  // Check for truncates. If all the operands are truncated from the same
1416  // type, see if factoring out the truncate would permit the result to be
1417  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1418  // if the contents of the resulting outer trunc fold to something simple.
1419  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1420    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1421    const Type *DstType = Trunc->getType();
1422    const Type *SrcType = Trunc->getOperand()->getType();
1423    SmallVector<const SCEV *, 8> LargeOps;
1424    bool Ok = true;
1425    // Check all the operands to see if they can be represented in the
1426    // source type of the truncate.
1427    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1428      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1429        if (T->getOperand()->getType() != SrcType) {
1430          Ok = false;
1431          break;
1432        }
1433        LargeOps.push_back(T->getOperand());
1434      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1435        LargeOps.push_back(getAnyExtendExpr(C, SrcType));
1436      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1437        SmallVector<const SCEV *, 8> LargeMulOps;
1438        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1439          if (const SCEVTruncateExpr *T =
1440                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1441            if (T->getOperand()->getType() != SrcType) {
1442              Ok = false;
1443              break;
1444            }
1445            LargeMulOps.push_back(T->getOperand());
1446          } else if (const SCEVConstant *C =
1447                       dyn_cast<SCEVConstant>(M->getOperand(j))) {
1448            LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
1449          } else {
1450            Ok = false;
1451            break;
1452          }
1453        }
1454        if (Ok)
1455          LargeOps.push_back(getMulExpr(LargeMulOps));
1456      } else {
1457        Ok = false;
1458        break;
1459      }
1460    }
1461    if (Ok) {
1462      // Evaluate the expression in the larger type.
1463      const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
1464      // If it folds to something simple, use it. Otherwise, don't.
1465      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1466        return getTruncateExpr(Fold, DstType);
1467    }
1468  }
1469
1470  // Skip past any other cast SCEVs.
1471  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1472    ++Idx;
1473
1474  // If there are add operands they would be next.
1475  if (Idx < Ops.size()) {
1476    bool DeletedAdd = false;
1477    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1478      // If we have an add, expand the add operands onto the end of the operands
1479      // list.
1480      Ops.erase(Ops.begin()+Idx);
1481      Ops.append(Add->op_begin(), Add->op_end());
1482      DeletedAdd = true;
1483    }
1484
1485    // If we deleted at least one add, we added operands to the end of the list,
1486    // and they are not necessarily sorted.  Recurse to resort and resimplify
1487    // any operands we just acquired.
1488    if (DeletedAdd)
1489      return getAddExpr(Ops);
1490  }
1491
1492  // Skip over the add expression until we get to a multiply.
1493  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1494    ++Idx;
1495
1496  // Check to see if there are any folding opportunities present with
1497  // operands multiplied by constant values.
1498  if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1499    uint64_t BitWidth = getTypeSizeInBits(Ty);
1500    DenseMap<const SCEV *, APInt> M;
1501    SmallVector<const SCEV *, 8> NewOps;
1502    APInt AccumulatedConstant(BitWidth, 0);
1503    if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1504                                     Ops.data(), Ops.size(),
1505                                     APInt(BitWidth, 1), *this)) {
1506      // Some interesting folding opportunity is present, so its worthwhile to
1507      // re-generate the operands list. Group the operands by constant scale,
1508      // to avoid multiplying by the same constant scale multiple times.
1509      std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1510      for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
1511           E = NewOps.end(); I != E; ++I)
1512        MulOpLists[M.find(*I)->second].push_back(*I);
1513      // Re-generate the operands list.
1514      Ops.clear();
1515      if (AccumulatedConstant != 0)
1516        Ops.push_back(getConstant(AccumulatedConstant));
1517      for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1518           I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1519        if (I->first != 0)
1520          Ops.push_back(getMulExpr(getConstant(I->first),
1521                                   getAddExpr(I->second)));
1522      if (Ops.empty())
1523        return getConstant(Ty, 0);
1524      if (Ops.size() == 1)
1525        return Ops[0];
1526      return getAddExpr(Ops);
1527    }
1528  }
1529
1530  // If we are adding something to a multiply expression, make sure the
1531  // something is not already an operand of the multiply.  If so, merge it into
1532  // the multiply.
1533  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1534    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1535    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1536      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1537      if (isa<SCEVConstant>(MulOpSCEV))
1538        continue;
1539      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1540        if (MulOpSCEV == Ops[AddOp]) {
1541          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1542          const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1543          if (Mul->getNumOperands() != 2) {
1544            // If the multiply has more than two operands, we must get the
1545            // Y*Z term.
1546            SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1547                                                Mul->op_begin()+MulOp);
1548            MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1549            InnerMul = getMulExpr(MulOps);
1550          }
1551          const SCEV *One = getConstant(Ty, 1);
1552          const SCEV *AddOne = getAddExpr(One, InnerMul);
1553          const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
1554          if (Ops.size() == 2) return OuterMul;
1555          if (AddOp < Idx) {
1556            Ops.erase(Ops.begin()+AddOp);
1557            Ops.erase(Ops.begin()+Idx-1);
1558          } else {
1559            Ops.erase(Ops.begin()+Idx);
1560            Ops.erase(Ops.begin()+AddOp-1);
1561          }
1562          Ops.push_back(OuterMul);
1563          return getAddExpr(Ops);
1564        }
1565
1566      // Check this multiply against other multiplies being added together.
1567      for (unsigned OtherMulIdx = Idx+1;
1568           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1569           ++OtherMulIdx) {
1570        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1571        // If MulOp occurs in OtherMul, we can fold the two multiplies
1572        // together.
1573        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1574             OMulOp != e; ++OMulOp)
1575          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1576            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1577            const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
1578            if (Mul->getNumOperands() != 2) {
1579              SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1580                                                  Mul->op_begin()+MulOp);
1581              MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1582              InnerMul1 = getMulExpr(MulOps);
1583            }
1584            const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1585            if (OtherMul->getNumOperands() != 2) {
1586              SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1587                                                  OtherMul->op_begin()+OMulOp);
1588              MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
1589              InnerMul2 = getMulExpr(MulOps);
1590            }
1591            const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1592            const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1593            if (Ops.size() == 2) return OuterMul;
1594            Ops.erase(Ops.begin()+Idx);
1595            Ops.erase(Ops.begin()+OtherMulIdx-1);
1596            Ops.push_back(OuterMul);
1597            return getAddExpr(Ops);
1598          }
1599      }
1600    }
1601  }
1602
1603  // If there are any add recurrences in the operands list, see if any other
1604  // added values are loop invariant.  If so, we can fold them into the
1605  // recurrence.
1606  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1607    ++Idx;
1608
1609  // Scan over all recurrences, trying to fold loop invariants into them.
1610  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1611    // Scan all of the other operands to this add and add them to the vector if
1612    // they are loop invariant w.r.t. the recurrence.
1613    SmallVector<const SCEV *, 8> LIOps;
1614    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1615    const Loop *AddRecLoop = AddRec->getLoop();
1616    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1617      if (isLoopInvariant(Ops[i], AddRecLoop)) {
1618        LIOps.push_back(Ops[i]);
1619        Ops.erase(Ops.begin()+i);
1620        --i; --e;
1621      }
1622
1623    // If we found some loop invariants, fold them into the recurrence.
1624    if (!LIOps.empty()) {
1625      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1626      LIOps.push_back(AddRec->getStart());
1627
1628      SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1629                                             AddRec->op_end());
1630      AddRecOps[0] = getAddExpr(LIOps);
1631
1632      // Build the new addrec. Propagate the NUW and NSW flags if both the
1633      // outer add and the inner addrec are guaranteed to have no overflow.
1634      const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop,
1635                                         HasNUW && AddRec->hasNoUnsignedWrap(),
1636                                         HasNSW && AddRec->hasNoSignedWrap());
1637
1638      // If all of the other operands were loop invariant, we are done.
1639      if (Ops.size() == 1) return NewRec;
1640
1641      // Otherwise, add the folded AddRec by the non-liv parts.
1642      for (unsigned i = 0;; ++i)
1643        if (Ops[i] == AddRec) {
1644          Ops[i] = NewRec;
1645          break;
1646        }
1647      return getAddExpr(Ops);
1648    }
1649
1650    // Okay, if there weren't any loop invariants to be folded, check to see if
1651    // there are multiple AddRec's with the same loop induction variable being
1652    // added together.  If so, we can fold them.
1653    for (unsigned OtherIdx = Idx+1;
1654         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1655         ++OtherIdx)
1656      if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1657        // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
1658        SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1659                                               AddRec->op_end());
1660        for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1661             ++OtherIdx)
1662          if (const SCEVAddRecExpr *OtherAddRec =
1663                dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1664            if (OtherAddRec->getLoop() == AddRecLoop) {
1665              for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1666                   i != e; ++i) {
1667                if (i >= AddRecOps.size()) {
1668                  AddRecOps.append(OtherAddRec->op_begin()+i,
1669                                   OtherAddRec->op_end());
1670                  break;
1671                }
1672                AddRecOps[i] = getAddExpr(AddRecOps[i],
1673                                          OtherAddRec->getOperand(i));
1674              }
1675              Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1676            }
1677        Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop);
1678        return getAddExpr(Ops);
1679      }
1680
1681    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1682    // next one.
1683  }
1684
1685  // Okay, it looks like we really DO need an add expr.  Check to see if we
1686  // already have one, otherwise create a new one.
1687  FoldingSetNodeID ID;
1688  ID.AddInteger(scAddExpr);
1689  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1690    ID.AddPointer(Ops[i]);
1691  void *IP = 0;
1692  SCEVAddExpr *S =
1693    static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1694  if (!S) {
1695    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1696    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1697    S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1698                                        O, Ops.size());
1699    UniqueSCEVs.InsertNode(S, IP);
1700  }
1701  if (HasNUW) S->setHasNoUnsignedWrap(true);
1702  if (HasNSW) S->setHasNoSignedWrap(true);
1703  return S;
1704}
1705
1706/// getMulExpr - Get a canonical multiply expression, or something simpler if
1707/// possible.
1708const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1709                                        bool HasNUW, bool HasNSW) {
1710  assert(!Ops.empty() && "Cannot get empty mul!");
1711  if (Ops.size() == 1) return Ops[0];
1712#ifndef NDEBUG
1713  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1714  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1715    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1716           "SCEVMulExpr operand types don't match!");
1717#endif
1718
1719  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1720  if (!HasNUW && HasNSW) {
1721    bool All = true;
1722    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1723         E = Ops.end(); I != E; ++I)
1724      if (!isKnownNonNegative(*I)) {
1725        All = false;
1726        break;
1727      }
1728    if (All) HasNUW = true;
1729  }
1730
1731  // Sort by complexity, this groups all similar expression types together.
1732  GroupByComplexity(Ops, LI);
1733
1734  // If there are any constants, fold them together.
1735  unsigned Idx = 0;
1736  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1737
1738    // C1*(C2+V) -> C1*C2 + C1*V
1739    if (Ops.size() == 2)
1740      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1741        if (Add->getNumOperands() == 2 &&
1742            isa<SCEVConstant>(Add->getOperand(0)))
1743          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1744                            getMulExpr(LHSC, Add->getOperand(1)));
1745
1746    ++Idx;
1747    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1748      // We found two constants, fold them together!
1749      ConstantInt *Fold = ConstantInt::get(getContext(),
1750                                           LHSC->getValue()->getValue() *
1751                                           RHSC->getValue()->getValue());
1752      Ops[0] = getConstant(Fold);
1753      Ops.erase(Ops.begin()+1);  // Erase the folded element
1754      if (Ops.size() == 1) return Ops[0];
1755      LHSC = cast<SCEVConstant>(Ops[0]);
1756    }
1757
1758    // If we are left with a constant one being multiplied, strip it off.
1759    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1760      Ops.erase(Ops.begin());
1761      --Idx;
1762    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1763      // If we have a multiply of zero, it will always be zero.
1764      return Ops[0];
1765    } else if (Ops[0]->isAllOnesValue()) {
1766      // If we have a mul by -1 of an add, try distributing the -1 among the
1767      // add operands.
1768      if (Ops.size() == 2)
1769        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1770          SmallVector<const SCEV *, 4> NewOps;
1771          bool AnyFolded = false;
1772          for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1773               I != E; ++I) {
1774            const SCEV *Mul = getMulExpr(Ops[0], *I);
1775            if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1776            NewOps.push_back(Mul);
1777          }
1778          if (AnyFolded)
1779            return getAddExpr(NewOps);
1780        }
1781    }
1782
1783    if (Ops.size() == 1)
1784      return Ops[0];
1785  }
1786
1787  // Skip over the add expression until we get to a multiply.
1788  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1789    ++Idx;
1790
1791  // If there are mul operands inline them all into this expression.
1792  if (Idx < Ops.size()) {
1793    bool DeletedMul = false;
1794    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1795      // If we have an mul, expand the mul operands onto the end of the operands
1796      // list.
1797      Ops.erase(Ops.begin()+Idx);
1798      Ops.append(Mul->op_begin(), Mul->op_end());
1799      DeletedMul = true;
1800    }
1801
1802    // If we deleted at least one mul, we added operands to the end of the list,
1803    // and they are not necessarily sorted.  Recurse to resort and resimplify
1804    // any operands we just acquired.
1805    if (DeletedMul)
1806      return getMulExpr(Ops);
1807  }
1808
1809  // If there are any add recurrences in the operands list, see if any other
1810  // added values are loop invariant.  If so, we can fold them into the
1811  // recurrence.
1812  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1813    ++Idx;
1814
1815  // Scan over all recurrences, trying to fold loop invariants into them.
1816  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1817    // Scan all of the other operands to this mul and add them to the vector if
1818    // they are loop invariant w.r.t. the recurrence.
1819    SmallVector<const SCEV *, 8> LIOps;
1820    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1821    const Loop *AddRecLoop = AddRec->getLoop();
1822    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1823      if (isLoopInvariant(Ops[i], AddRecLoop)) {
1824        LIOps.push_back(Ops[i]);
1825        Ops.erase(Ops.begin()+i);
1826        --i; --e;
1827      }
1828
1829    // If we found some loop invariants, fold them into the recurrence.
1830    if (!LIOps.empty()) {
1831      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1832      SmallVector<const SCEV *, 4> NewOps;
1833      NewOps.reserve(AddRec->getNumOperands());
1834      const SCEV *Scale = getMulExpr(LIOps);
1835      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1836        NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1837
1838      // Build the new addrec. Propagate the NUW and NSW flags if both the
1839      // outer mul and the inner addrec are guaranteed to have no overflow.
1840      const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop,
1841                                         HasNUW && AddRec->hasNoUnsignedWrap(),
1842                                         HasNSW && AddRec->hasNoSignedWrap());
1843
1844      // If all of the other operands were loop invariant, we are done.
1845      if (Ops.size() == 1) return NewRec;
1846
1847      // Otherwise, multiply the folded AddRec by the non-liv parts.
1848      for (unsigned i = 0;; ++i)
1849        if (Ops[i] == AddRec) {
1850          Ops[i] = NewRec;
1851          break;
1852        }
1853      return getMulExpr(Ops);
1854    }
1855
1856    // Okay, if there weren't any loop invariants to be folded, check to see if
1857    // there are multiple AddRec's with the same loop induction variable being
1858    // multiplied together.  If so, we can fold them.
1859    for (unsigned OtherIdx = Idx+1;
1860         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1861         ++OtherIdx)
1862      if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1863        // F * G, where F = {A,+,B}<L> and G = {C,+,D}<L>  -->
1864        // {A*C,+,F*D + G*B + B*D}<L>
1865        for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1866             ++OtherIdx)
1867          if (const SCEVAddRecExpr *OtherAddRec =
1868                dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1869            if (OtherAddRec->getLoop() == AddRecLoop) {
1870              const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1871              const SCEV *NewStart = getMulExpr(F->getStart(), G->getStart());
1872              const SCEV *B = F->getStepRecurrence(*this);
1873              const SCEV *D = G->getStepRecurrence(*this);
1874              const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1875                                               getMulExpr(G, B),
1876                                               getMulExpr(B, D));
1877              const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1878                                                    F->getLoop());
1879              if (Ops.size() == 2) return NewAddRec;
1880              Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
1881              Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1882            }
1883        return getMulExpr(Ops);
1884      }
1885
1886    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1887    // next one.
1888  }
1889
1890  // Okay, it looks like we really DO need an mul expr.  Check to see if we
1891  // already have one, otherwise create a new one.
1892  FoldingSetNodeID ID;
1893  ID.AddInteger(scMulExpr);
1894  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1895    ID.AddPointer(Ops[i]);
1896  void *IP = 0;
1897  SCEVMulExpr *S =
1898    static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1899  if (!S) {
1900    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1901    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1902    S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1903                                        O, Ops.size());
1904    UniqueSCEVs.InsertNode(S, IP);
1905  }
1906  if (HasNUW) S->setHasNoUnsignedWrap(true);
1907  if (HasNSW) S->setHasNoSignedWrap(true);
1908  return S;
1909}
1910
1911/// getUDivExpr - Get a canonical unsigned division expression, or something
1912/// simpler if possible.
1913const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1914                                         const SCEV *RHS) {
1915  assert(getEffectiveSCEVType(LHS->getType()) ==
1916         getEffectiveSCEVType(RHS->getType()) &&
1917         "SCEVUDivExpr operand types don't match!");
1918
1919  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1920    if (RHSC->getValue()->equalsInt(1))
1921      return LHS;                               // X udiv 1 --> x
1922    // If the denominator is zero, the result of the udiv is undefined. Don't
1923    // try to analyze it, because the resolution chosen here may differ from
1924    // the resolution chosen in other parts of the compiler.
1925    if (!RHSC->getValue()->isZero()) {
1926      // Determine if the division can be folded into the operands of
1927      // its operands.
1928      // TODO: Generalize this to non-constants by using known-bits information.
1929      const Type *Ty = LHS->getType();
1930      unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1931      unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
1932      // For non-power-of-two values, effectively round the value up to the
1933      // nearest power of two.
1934      if (!RHSC->getValue()->getValue().isPowerOf2())
1935        ++MaxShiftAmt;
1936      const IntegerType *ExtTy =
1937        IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1938      // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1939      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1940        if (const SCEVConstant *Step =
1941              dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1942          if (!Step->getValue()->getValue()
1943                .urem(RHSC->getValue()->getValue()) &&
1944              getZeroExtendExpr(AR, ExtTy) ==
1945              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1946                            getZeroExtendExpr(Step, ExtTy),
1947                            AR->getLoop())) {
1948            SmallVector<const SCEV *, 4> Operands;
1949            for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1950              Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1951            return getAddRecExpr(Operands, AR->getLoop());
1952          }
1953      // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1954      if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1955        SmallVector<const SCEV *, 4> Operands;
1956        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1957          Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1958        if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1959          // Find an operand that's safely divisible.
1960          for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1961            const SCEV *Op = M->getOperand(i);
1962            const SCEV *Div = getUDivExpr(Op, RHSC);
1963            if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1964              Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1965                                                      M->op_end());
1966              Operands[i] = Div;
1967              return getMulExpr(Operands);
1968            }
1969          }
1970      }
1971      // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1972      if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1973        SmallVector<const SCEV *, 4> Operands;
1974        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1975          Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1976        if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1977          Operands.clear();
1978          for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1979            const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
1980            if (isa<SCEVUDivExpr>(Op) ||
1981                getMulExpr(Op, RHS) != A->getOperand(i))
1982              break;
1983            Operands.push_back(Op);
1984          }
1985          if (Operands.size() == A->getNumOperands())
1986            return getAddExpr(Operands);
1987        }
1988      }
1989
1990      // Fold if both operands are constant.
1991      if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1992        Constant *LHSCV = LHSC->getValue();
1993        Constant *RHSCV = RHSC->getValue();
1994        return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1995                                                                   RHSCV)));
1996      }
1997    }
1998  }
1999
2000  FoldingSetNodeID ID;
2001  ID.AddInteger(scUDivExpr);
2002  ID.AddPointer(LHS);
2003  ID.AddPointer(RHS);
2004  void *IP = 0;
2005  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2006  SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2007                                             LHS, RHS);
2008  UniqueSCEVs.InsertNode(S, IP);
2009  return S;
2010}
2011
2012
2013/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2014/// Simplify the expression as much as possible.
2015const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
2016                                           const SCEV *Step, const Loop *L,
2017                                           bool HasNUW, bool HasNSW) {
2018  SmallVector<const SCEV *, 4> Operands;
2019  Operands.push_back(Start);
2020  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2021    if (StepChrec->getLoop() == L) {
2022      Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2023      return getAddRecExpr(Operands, L);
2024    }
2025
2026  Operands.push_back(Step);
2027  return getAddRecExpr(Operands, L, HasNUW, HasNSW);
2028}
2029
2030/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2031/// Simplify the expression as much as possible.
2032const SCEV *
2033ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2034                               const Loop *L,
2035                               bool HasNUW, bool HasNSW) {
2036  if (Operands.size() == 1) return Operands[0];
2037#ifndef NDEBUG
2038  const Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2039  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2040    assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2041           "SCEVAddRecExpr operand types don't match!");
2042  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2043    assert(isLoopInvariant(Operands[i], L) &&
2044           "SCEVAddRecExpr operand is not loop-invariant!");
2045#endif
2046
2047  if (Operands.back()->isZero()) {
2048    Operands.pop_back();
2049    return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0}  -->  X
2050  }
2051
2052  // It's tempting to want to call getMaxBackedgeTakenCount count here and
2053  // use that information to infer NUW and NSW flags. However, computing a
2054  // BE count requires calling getAddRecExpr, so we may not yet have a
2055  // meaningful BE count at this point (and if we don't, we'd be stuck
2056  // with a SCEVCouldNotCompute as the cached BE count).
2057
2058  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
2059  if (!HasNUW && HasNSW) {
2060    bool All = true;
2061    for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2062         E = Operands.end(); I != E; ++I)
2063      if (!isKnownNonNegative(*I)) {
2064        All = false;
2065        break;
2066      }
2067    if (All) HasNUW = true;
2068  }
2069
2070  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2071  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2072    const Loop *NestedLoop = NestedAR->getLoop();
2073    if (L->contains(NestedLoop) ?
2074        (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
2075        (!NestedLoop->contains(L) &&
2076         DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
2077      SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2078                                                  NestedAR->op_end());
2079      Operands[0] = NestedAR->getStart();
2080      // AddRecs require their operands be loop-invariant with respect to their
2081      // loops. Don't perform this transformation if it would break this
2082      // requirement.
2083      bool AllInvariant = true;
2084      for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2085        if (!isLoopInvariant(Operands[i], L)) {
2086          AllInvariant = false;
2087          break;
2088        }
2089      if (AllInvariant) {
2090        NestedOperands[0] = getAddRecExpr(Operands, L);
2091        AllInvariant = true;
2092        for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2093          if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
2094            AllInvariant = false;
2095            break;
2096          }
2097        if (AllInvariant)
2098          // Ok, both add recurrences are valid after the transformation.
2099          return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
2100      }
2101      // Reset Operands to its original state.
2102      Operands[0] = NestedAR;
2103    }
2104  }
2105
2106  // Okay, it looks like we really DO need an addrec expr.  Check to see if we
2107  // already have one, otherwise create a new one.
2108  FoldingSetNodeID ID;
2109  ID.AddInteger(scAddRecExpr);
2110  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2111    ID.AddPointer(Operands[i]);
2112  ID.AddPointer(L);
2113  void *IP = 0;
2114  SCEVAddRecExpr *S =
2115    static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2116  if (!S) {
2117    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2118    std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2119    S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2120                                           O, Operands.size(), L);
2121    UniqueSCEVs.InsertNode(S, IP);
2122  }
2123  if (HasNUW) S->setHasNoUnsignedWrap(true);
2124  if (HasNSW) S->setHasNoSignedWrap(true);
2125  return S;
2126}
2127
2128const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2129                                         const SCEV *RHS) {
2130  SmallVector<const SCEV *, 2> Ops;
2131  Ops.push_back(LHS);
2132  Ops.push_back(RHS);
2133  return getSMaxExpr(Ops);
2134}
2135
2136const SCEV *
2137ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2138  assert(!Ops.empty() && "Cannot get empty smax!");
2139  if (Ops.size() == 1) return Ops[0];
2140#ifndef NDEBUG
2141  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2142  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2143    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2144           "SCEVSMaxExpr operand types don't match!");
2145#endif
2146
2147  // Sort by complexity, this groups all similar expression types together.
2148  GroupByComplexity(Ops, LI);
2149
2150  // If there are any constants, fold them together.
2151  unsigned Idx = 0;
2152  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2153    ++Idx;
2154    assert(Idx < Ops.size());
2155    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2156      // We found two constants, fold them together!
2157      ConstantInt *Fold = ConstantInt::get(getContext(),
2158                              APIntOps::smax(LHSC->getValue()->getValue(),
2159                                             RHSC->getValue()->getValue()));
2160      Ops[0] = getConstant(Fold);
2161      Ops.erase(Ops.begin()+1);  // Erase the folded element
2162      if (Ops.size() == 1) return Ops[0];
2163      LHSC = cast<SCEVConstant>(Ops[0]);
2164    }
2165
2166    // If we are left with a constant minimum-int, strip it off.
2167    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2168      Ops.erase(Ops.begin());
2169      --Idx;
2170    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2171      // If we have an smax with a constant maximum-int, it will always be
2172      // maximum-int.
2173      return Ops[0];
2174    }
2175
2176    if (Ops.size() == 1) return Ops[0];
2177  }
2178
2179  // Find the first SMax
2180  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2181    ++Idx;
2182
2183  // Check to see if one of the operands is an SMax. If so, expand its operands
2184  // onto our operand list, and recurse to simplify.
2185  if (Idx < Ops.size()) {
2186    bool DeletedSMax = false;
2187    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
2188      Ops.erase(Ops.begin()+Idx);
2189      Ops.append(SMax->op_begin(), SMax->op_end());
2190      DeletedSMax = true;
2191    }
2192
2193    if (DeletedSMax)
2194      return getSMaxExpr(Ops);
2195  }
2196
2197  // Okay, check to see if the same value occurs in the operand list twice.  If
2198  // so, delete one.  Since we sorted the list, these values are required to
2199  // be adjacent.
2200  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2201    //  X smax Y smax Y  -->  X smax Y
2202    //  X smax Y         -->  X, if X is always greater than Y
2203    if (Ops[i] == Ops[i+1] ||
2204        isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2205      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2206      --i; --e;
2207    } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
2208      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2209      --i; --e;
2210    }
2211
2212  if (Ops.size() == 1) return Ops[0];
2213
2214  assert(!Ops.empty() && "Reduced smax down to nothing!");
2215
2216  // Okay, it looks like we really DO need an smax expr.  Check to see if we
2217  // already have one, otherwise create a new one.
2218  FoldingSetNodeID ID;
2219  ID.AddInteger(scSMaxExpr);
2220  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2221    ID.AddPointer(Ops[i]);
2222  void *IP = 0;
2223  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2224  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2225  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2226  SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2227                                             O, Ops.size());
2228  UniqueSCEVs.InsertNode(S, IP);
2229  return S;
2230}
2231
2232const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2233                                         const SCEV *RHS) {
2234  SmallVector<const SCEV *, 2> Ops;
2235  Ops.push_back(LHS);
2236  Ops.push_back(RHS);
2237  return getUMaxExpr(Ops);
2238}
2239
2240const SCEV *
2241ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2242  assert(!Ops.empty() && "Cannot get empty umax!");
2243  if (Ops.size() == 1) return Ops[0];
2244#ifndef NDEBUG
2245  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2246  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2247    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2248           "SCEVUMaxExpr operand types don't match!");
2249#endif
2250
2251  // Sort by complexity, this groups all similar expression types together.
2252  GroupByComplexity(Ops, LI);
2253
2254  // If there are any constants, fold them together.
2255  unsigned Idx = 0;
2256  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2257    ++Idx;
2258    assert(Idx < Ops.size());
2259    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2260      // We found two constants, fold them together!
2261      ConstantInt *Fold = ConstantInt::get(getContext(),
2262                              APIntOps::umax(LHSC->getValue()->getValue(),
2263                                             RHSC->getValue()->getValue()));
2264      Ops[0] = getConstant(Fold);
2265      Ops.erase(Ops.begin()+1);  // Erase the folded element
2266      if (Ops.size() == 1) return Ops[0];
2267      LHSC = cast<SCEVConstant>(Ops[0]);
2268    }
2269
2270    // If we are left with a constant minimum-int, strip it off.
2271    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2272      Ops.erase(Ops.begin());
2273      --Idx;
2274    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2275      // If we have an umax with a constant maximum-int, it will always be
2276      // maximum-int.
2277      return Ops[0];
2278    }
2279
2280    if (Ops.size() == 1) return Ops[0];
2281  }
2282
2283  // Find the first UMax
2284  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2285    ++Idx;
2286
2287  // Check to see if one of the operands is a UMax. If so, expand its operands
2288  // onto our operand list, and recurse to simplify.
2289  if (Idx < Ops.size()) {
2290    bool DeletedUMax = false;
2291    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
2292      Ops.erase(Ops.begin()+Idx);
2293      Ops.append(UMax->op_begin(), UMax->op_end());
2294      DeletedUMax = true;
2295    }
2296
2297    if (DeletedUMax)
2298      return getUMaxExpr(Ops);
2299  }
2300
2301  // Okay, check to see if the same value occurs in the operand list twice.  If
2302  // so, delete one.  Since we sorted the list, these values are required to
2303  // be adjacent.
2304  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2305    //  X umax Y umax Y  -->  X umax Y
2306    //  X umax Y         -->  X, if X is always greater than Y
2307    if (Ops[i] == Ops[i+1] ||
2308        isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2309      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2310      --i; --e;
2311    } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
2312      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2313      --i; --e;
2314    }
2315
2316  if (Ops.size() == 1) return Ops[0];
2317
2318  assert(!Ops.empty() && "Reduced umax down to nothing!");
2319
2320  // Okay, it looks like we really DO need a umax expr.  Check to see if we
2321  // already have one, otherwise create a new one.
2322  FoldingSetNodeID ID;
2323  ID.AddInteger(scUMaxExpr);
2324  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2325    ID.AddPointer(Ops[i]);
2326  void *IP = 0;
2327  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2328  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2329  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2330  SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2331                                             O, Ops.size());
2332  UniqueSCEVs.InsertNode(S, IP);
2333  return S;
2334}
2335
2336const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2337                                         const SCEV *RHS) {
2338  // ~smax(~x, ~y) == smin(x, y).
2339  return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2340}
2341
2342const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2343                                         const SCEV *RHS) {
2344  // ~umax(~x, ~y) == umin(x, y)
2345  return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2346}
2347
2348const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
2349  // If we have TargetData, we can bypass creating a target-independent
2350  // constant expression and then folding it back into a ConstantInt.
2351  // This is just a compile-time optimization.
2352  if (TD)
2353    return getConstant(TD->getIntPtrType(getContext()),
2354                       TD->getTypeAllocSize(AllocTy));
2355
2356  Constant *C = ConstantExpr::getSizeOf(AllocTy);
2357  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2358    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2359      C = Folded;
2360  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2361  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2362}
2363
2364const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2365  Constant *C = ConstantExpr::getAlignOf(AllocTy);
2366  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2367    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2368      C = Folded;
2369  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2370  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2371}
2372
2373const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2374                                             unsigned FieldNo) {
2375  // If we have TargetData, we can bypass creating a target-independent
2376  // constant expression and then folding it back into a ConstantInt.
2377  // This is just a compile-time optimization.
2378  if (TD)
2379    return getConstant(TD->getIntPtrType(getContext()),
2380                       TD->getStructLayout(STy)->getElementOffset(FieldNo));
2381
2382  Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2383  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2384    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2385      C = Folded;
2386  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2387  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2388}
2389
2390const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2391                                             Constant *FieldNo) {
2392  Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
2393  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2394    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2395      C = Folded;
2396  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
2397  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2398}
2399
2400const SCEV *ScalarEvolution::getUnknown(Value *V) {
2401  // Don't attempt to do anything other than create a SCEVUnknown object
2402  // here.  createSCEV only calls getUnknown after checking for all other
2403  // interesting possibilities, and any other code that calls getUnknown
2404  // is doing so in order to hide a value from SCEV canonicalization.
2405
2406  FoldingSetNodeID ID;
2407  ID.AddInteger(scUnknown);
2408  ID.AddPointer(V);
2409  void *IP = 0;
2410  if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2411    assert(cast<SCEVUnknown>(S)->getValue() == V &&
2412           "Stale SCEVUnknown in uniquing map!");
2413    return S;
2414  }
2415  SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2416                                            FirstUnknown);
2417  FirstUnknown = cast<SCEVUnknown>(S);
2418  UniqueSCEVs.InsertNode(S, IP);
2419  return S;
2420}
2421
2422//===----------------------------------------------------------------------===//
2423//            Basic SCEV Analysis and PHI Idiom Recognition Code
2424//
2425
2426/// isSCEVable - Test if values of the given type are analyzable within
2427/// the SCEV framework. This primarily includes integer types, and it
2428/// can optionally include pointer types if the ScalarEvolution class
2429/// has access to target-specific information.
2430bool ScalarEvolution::isSCEVable(const Type *Ty) const {
2431  // Integers and pointers are always SCEVable.
2432  return Ty->isIntegerTy() || Ty->isPointerTy();
2433}
2434
2435/// getTypeSizeInBits - Return the size in bits of the specified type,
2436/// for which isSCEVable must return true.
2437uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
2438  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2439
2440  // If we have a TargetData, use it!
2441  if (TD)
2442    return TD->getTypeSizeInBits(Ty);
2443
2444  // Integer types have fixed sizes.
2445  if (Ty->isIntegerTy())
2446    return Ty->getPrimitiveSizeInBits();
2447
2448  // The only other support type is pointer. Without TargetData, conservatively
2449  // assume pointers are 64-bit.
2450  assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
2451  return 64;
2452}
2453
2454/// getEffectiveSCEVType - Return a type with the same bitwidth as
2455/// the given type and which represents how SCEV will treat the given
2456/// type, for which isSCEVable must return true. For pointer types,
2457/// this is the pointer-sized integer type.
2458const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
2459  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2460
2461  if (Ty->isIntegerTy())
2462    return Ty;
2463
2464  // The only other support type is pointer.
2465  assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
2466  if (TD) return TD->getIntPtrType(getContext());
2467
2468  // Without TargetData, conservatively assume pointers are 64-bit.
2469  return Type::getInt64Ty(getContext());
2470}
2471
2472const SCEV *ScalarEvolution::getCouldNotCompute() {
2473  return &CouldNotCompute;
2474}
2475
2476/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2477/// expression and create a new one.
2478const SCEV *ScalarEvolution::getSCEV(Value *V) {
2479  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
2480
2481  ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2482  if (I != ValueExprMap.end()) return I->second;
2483  const SCEV *S = createSCEV(V);
2484
2485  // The process of creating a SCEV for V may have caused other SCEVs
2486  // to have been created, so it's necessary to insert the new entry
2487  // from scratch, rather than trying to remember the insert position
2488  // above.
2489  ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
2490  return S;
2491}
2492
2493/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2494///
2495const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
2496  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2497    return getConstant(
2498               cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
2499
2500  const Type *Ty = V->getType();
2501  Ty = getEffectiveSCEVType(Ty);
2502  return getMulExpr(V,
2503                  getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
2504}
2505
2506/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2507const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
2508  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2509    return getConstant(
2510                cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
2511
2512  const Type *Ty = V->getType();
2513  Ty = getEffectiveSCEVType(Ty);
2514  const SCEV *AllOnes =
2515                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
2516  return getMinusSCEV(AllOnes, V);
2517}
2518
2519/// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1,
2520/// and thus the HasNUW and HasNSW bits apply to the resultant add, not
2521/// whether the sub would have overflowed.
2522const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
2523                                          bool HasNUW, bool HasNSW) {
2524  // Fast path: X - X --> 0.
2525  if (LHS == RHS)
2526    return getConstant(LHS->getType(), 0);
2527
2528  // X - Y --> X + -Y
2529  return getAddExpr(LHS, getNegativeSCEV(RHS), HasNUW, HasNSW);
2530}
2531
2532/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2533/// input value to the specified type.  If the type must be extended, it is zero
2534/// extended.
2535const SCEV *
2536ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, const Type *Ty) {
2537  const Type *SrcTy = V->getType();
2538  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2539         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2540         "Cannot truncate or zero extend with non-integer arguments!");
2541  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2542    return V;  // No conversion
2543  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2544    return getTruncateExpr(V, Ty);
2545  return getZeroExtendExpr(V, Ty);
2546}
2547
2548/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2549/// input value to the specified type.  If the type must be extended, it is sign
2550/// extended.
2551const SCEV *
2552ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
2553                                         const Type *Ty) {
2554  const Type *SrcTy = V->getType();
2555  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2556         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2557         "Cannot truncate or zero extend with non-integer arguments!");
2558  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2559    return V;  // No conversion
2560  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2561    return getTruncateExpr(V, Ty);
2562  return getSignExtendExpr(V, Ty);
2563}
2564
2565/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2566/// input value to the specified type.  If the type must be extended, it is zero
2567/// extended.  The conversion must not be narrowing.
2568const SCEV *
2569ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
2570  const Type *SrcTy = V->getType();
2571  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2572         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2573         "Cannot noop or zero extend with non-integer arguments!");
2574  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2575         "getNoopOrZeroExtend cannot truncate!");
2576  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2577    return V;  // No conversion
2578  return getZeroExtendExpr(V, Ty);
2579}
2580
2581/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2582/// input value to the specified type.  If the type must be extended, it is sign
2583/// extended.  The conversion must not be narrowing.
2584const SCEV *
2585ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
2586  const Type *SrcTy = V->getType();
2587  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2588         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2589         "Cannot noop or sign extend with non-integer arguments!");
2590  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2591         "getNoopOrSignExtend cannot truncate!");
2592  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2593    return V;  // No conversion
2594  return getSignExtendExpr(V, Ty);
2595}
2596
2597/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2598/// the input value to the specified type. If the type must be extended,
2599/// it is extended with unspecified bits. The conversion must not be
2600/// narrowing.
2601const SCEV *
2602ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
2603  const Type *SrcTy = V->getType();
2604  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2605         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2606         "Cannot noop or any extend with non-integer arguments!");
2607  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2608         "getNoopOrAnyExtend cannot truncate!");
2609  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2610    return V;  // No conversion
2611  return getAnyExtendExpr(V, Ty);
2612}
2613
2614/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2615/// input value to the specified type.  The conversion must not be widening.
2616const SCEV *
2617ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
2618  const Type *SrcTy = V->getType();
2619  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2620         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2621         "Cannot truncate or noop with non-integer arguments!");
2622  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2623         "getTruncateOrNoop cannot extend!");
2624  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2625    return V;  // No conversion
2626  return getTruncateExpr(V, Ty);
2627}
2628
2629/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2630/// the types using zero-extension, and then perform a umax operation
2631/// with them.
2632const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2633                                                        const SCEV *RHS) {
2634  const SCEV *PromotedLHS = LHS;
2635  const SCEV *PromotedRHS = RHS;
2636
2637  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2638    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2639  else
2640    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2641
2642  return getUMaxExpr(PromotedLHS, PromotedRHS);
2643}
2644
2645/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2646/// the types using zero-extension, and then perform a umin operation
2647/// with them.
2648const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2649                                                        const SCEV *RHS) {
2650  const SCEV *PromotedLHS = LHS;
2651  const SCEV *PromotedRHS = RHS;
2652
2653  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2654    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2655  else
2656    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2657
2658  return getUMinExpr(PromotedLHS, PromotedRHS);
2659}
2660
2661/// PushDefUseChildren - Push users of the given Instruction
2662/// onto the given Worklist.
2663static void
2664PushDefUseChildren(Instruction *I,
2665                   SmallVectorImpl<Instruction *> &Worklist) {
2666  // Push the def-use children onto the Worklist stack.
2667  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2668       UI != UE; ++UI)
2669    Worklist.push_back(cast<Instruction>(*UI));
2670}
2671
2672/// ForgetSymbolicValue - This looks up computed SCEV values for all
2673/// instructions that depend on the given instruction and removes them from
2674/// the ValueExprMapType map if they reference SymName. This is used during PHI
2675/// resolution.
2676void
2677ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
2678  SmallVector<Instruction *, 16> Worklist;
2679  PushDefUseChildren(PN, Worklist);
2680
2681  SmallPtrSet<Instruction *, 8> Visited;
2682  Visited.insert(PN);
2683  while (!Worklist.empty()) {
2684    Instruction *I = Worklist.pop_back_val();
2685    if (!Visited.insert(I)) continue;
2686
2687    ValueExprMapType::iterator It =
2688      ValueExprMap.find(static_cast<Value *>(I));
2689    if (It != ValueExprMap.end()) {
2690      const SCEV *Old = It->second;
2691
2692      // Short-circuit the def-use traversal if the symbolic name
2693      // ceases to appear in expressions.
2694      if (Old != SymName && !hasOperand(Old, SymName))
2695        continue;
2696
2697      // SCEVUnknown for a PHI either means that it has an unrecognized
2698      // structure, it's a PHI that's in the progress of being computed
2699      // by createNodeForPHI, or it's a single-value PHI. In the first case,
2700      // additional loop trip count information isn't going to change anything.
2701      // In the second case, createNodeForPHI will perform the necessary
2702      // updates on its own when it gets to that point. In the third, we do
2703      // want to forget the SCEVUnknown.
2704      if (!isa<PHINode>(I) ||
2705          !isa<SCEVUnknown>(Old) ||
2706          (I != PN && Old == SymName)) {
2707        forgetMemoizedResults(Old);
2708        ValueExprMap.erase(It);
2709      }
2710    }
2711
2712    PushDefUseChildren(I, Worklist);
2713  }
2714}
2715
2716/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
2717/// a loop header, making it a potential recurrence, or it doesn't.
2718///
2719const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
2720  if (const Loop *L = LI->getLoopFor(PN->getParent()))
2721    if (L->getHeader() == PN->getParent()) {
2722      // The loop may have multiple entrances or multiple exits; we can analyze
2723      // this phi as an addrec if it has a unique entry value and a unique
2724      // backedge value.
2725      Value *BEValueV = 0, *StartValueV = 0;
2726      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2727        Value *V = PN->getIncomingValue(i);
2728        if (L->contains(PN->getIncomingBlock(i))) {
2729          if (!BEValueV) {
2730            BEValueV = V;
2731          } else if (BEValueV != V) {
2732            BEValueV = 0;
2733            break;
2734          }
2735        } else if (!StartValueV) {
2736          StartValueV = V;
2737        } else if (StartValueV != V) {
2738          StartValueV = 0;
2739          break;
2740        }
2741      }
2742      if (BEValueV && StartValueV) {
2743        // While we are analyzing this PHI node, handle its value symbolically.
2744        const SCEV *SymbolicName = getUnknown(PN);
2745        assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
2746               "PHI node already processed?");
2747        ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
2748
2749        // Using this symbolic name for the PHI, analyze the value coming around
2750        // the back-edge.
2751        const SCEV *BEValue = getSCEV(BEValueV);
2752
2753        // NOTE: If BEValue is loop invariant, we know that the PHI node just
2754        // has a special value for the first iteration of the loop.
2755
2756        // If the value coming around the backedge is an add with the symbolic
2757        // value we just inserted, then we found a simple induction variable!
2758        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
2759          // If there is a single occurrence of the symbolic value, replace it
2760          // with a recurrence.
2761          unsigned FoundIndex = Add->getNumOperands();
2762          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2763            if (Add->getOperand(i) == SymbolicName)
2764              if (FoundIndex == e) {
2765                FoundIndex = i;
2766                break;
2767              }
2768
2769          if (FoundIndex != Add->getNumOperands()) {
2770            // Create an add with everything but the specified operand.
2771            SmallVector<const SCEV *, 8> Ops;
2772            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2773              if (i != FoundIndex)
2774                Ops.push_back(Add->getOperand(i));
2775            const SCEV *Accum = getAddExpr(Ops);
2776
2777            // This is not a valid addrec if the step amount is varying each
2778            // loop iteration, but is not itself an addrec in this loop.
2779            if (isLoopInvariant(Accum, L) ||
2780                (isa<SCEVAddRecExpr>(Accum) &&
2781                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
2782              bool HasNUW = false;
2783              bool HasNSW = false;
2784
2785              // If the increment doesn't overflow, then neither the addrec nor
2786              // the post-increment will overflow.
2787              if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2788                if (OBO->hasNoUnsignedWrap())
2789                  HasNUW = true;
2790                if (OBO->hasNoSignedWrap())
2791                  HasNSW = true;
2792              } else if (const GEPOperator *GEP =
2793                            dyn_cast<GEPOperator>(BEValueV)) {
2794                // If the increment is a GEP, then we know it won't perform an
2795                // unsigned overflow, because the address space cannot be
2796                // wrapped around.
2797                HasNUW |= GEP->isInBounds();
2798              }
2799
2800              const SCEV *StartVal = getSCEV(StartValueV);
2801              const SCEV *PHISCEV =
2802                getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
2803
2804              // Since the no-wrap flags are on the increment, they apply to the
2805              // post-incremented value as well.
2806              if (isLoopInvariant(Accum, L))
2807                (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2808                                    Accum, L, HasNUW, HasNSW);
2809
2810              // Okay, for the entire analysis of this edge we assumed the PHI
2811              // to be symbolic.  We now need to go back and purge all of the
2812              // entries for the scalars that use the symbolic expression.
2813              ForgetSymbolicName(PN, SymbolicName);
2814              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
2815              return PHISCEV;
2816            }
2817          }
2818        } else if (const SCEVAddRecExpr *AddRec =
2819                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
2820          // Otherwise, this could be a loop like this:
2821          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
2822          // In this case, j = {1,+,1}  and BEValue is j.
2823          // Because the other in-value of i (0) fits the evolution of BEValue
2824          // i really is an addrec evolution.
2825          if (AddRec->getLoop() == L && AddRec->isAffine()) {
2826            const SCEV *StartVal = getSCEV(StartValueV);
2827
2828            // If StartVal = j.start - j.stride, we can use StartVal as the
2829            // initial step of the addrec evolution.
2830            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
2831                                         AddRec->getOperand(1))) {
2832              const SCEV *PHISCEV =
2833                 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
2834
2835              // Okay, for the entire analysis of this edge we assumed the PHI
2836              // to be symbolic.  We now need to go back and purge all of the
2837              // entries for the scalars that use the symbolic expression.
2838              ForgetSymbolicName(PN, SymbolicName);
2839              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
2840              return PHISCEV;
2841            }
2842          }
2843        }
2844      }
2845    }
2846
2847  // If the PHI has a single incoming value, follow that value, unless the
2848  // PHI's incoming blocks are in a different loop, in which case doing so
2849  // risks breaking LCSSA form. Instcombine would normally zap these, but
2850  // it doesn't have DominatorTree information, so it may miss cases.
2851  if (Value *V = SimplifyInstruction(PN, TD, DT))
2852    if (LI->replacementPreservesLCSSAForm(PN, V))
2853      return getSCEV(V);
2854
2855  // If it's not a loop phi, we can't handle it yet.
2856  return getUnknown(PN);
2857}
2858
2859/// createNodeForGEP - Expand GEP instructions into add and multiply
2860/// operations. This allows them to be analyzed by regular SCEV code.
2861///
2862const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
2863
2864  // Don't blindly transfer the inbounds flag from the GEP instruction to the
2865  // Add expression, because the Instruction may be guarded by control flow
2866  // and the no-overflow bits may not be valid for the expression in any
2867  // context.
2868
2869  const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
2870  Value *Base = GEP->getOperand(0);
2871  // Don't attempt to analyze GEPs over unsized objects.
2872  if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2873    return getUnknown(GEP);
2874  const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
2875  gep_type_iterator GTI = gep_type_begin(GEP);
2876  for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
2877                                      E = GEP->op_end();
2878       I != E; ++I) {
2879    Value *Index = *I;
2880    // Compute the (potentially symbolic) offset in bytes for this index.
2881    if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2882      // For a struct, add the member offset.
2883      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2884      const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
2885
2886      // Add the field offset to the running total offset.
2887      TotalOffset = getAddExpr(TotalOffset, FieldOffset);
2888    } else {
2889      // For an array, add the element offset, explicitly scaled.
2890      const SCEV *ElementSize = getSizeOfExpr(*GTI);
2891      const SCEV *IndexS = getSCEV(Index);
2892      // Getelementptr indices are signed.
2893      IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
2894
2895      // Multiply the index by the element size to compute the element offset.
2896      const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize);
2897
2898      // Add the element offset to the running total offset.
2899      TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2900    }
2901  }
2902
2903  // Get the SCEV for the GEP base.
2904  const SCEV *BaseS = getSCEV(Base);
2905
2906  // Add the total offset from all the GEP indices to the base.
2907  return getAddExpr(BaseS, TotalOffset);
2908}
2909
2910/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2911/// guaranteed to end in (at every loop iteration).  It is, at the same time,
2912/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
2913/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
2914uint32_t
2915ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
2916  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2917    return C->getValue()->getValue().countTrailingZeros();
2918
2919  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
2920    return std::min(GetMinTrailingZeros(T->getOperand()),
2921                    (uint32_t)getTypeSizeInBits(T->getType()));
2922
2923  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
2924    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2925    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2926             getTypeSizeInBits(E->getType()) : OpRes;
2927  }
2928
2929  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
2930    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2931    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2932             getTypeSizeInBits(E->getType()) : OpRes;
2933  }
2934
2935  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
2936    // The result is the min of all operands results.
2937    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2938    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2939      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2940    return MinOpRes;
2941  }
2942
2943  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
2944    // The result is the sum of all operands results.
2945    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2946    uint32_t BitWidth = getTypeSizeInBits(M->getType());
2947    for (unsigned i = 1, e = M->getNumOperands();
2948         SumOpRes != BitWidth && i != e; ++i)
2949      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
2950                          BitWidth);
2951    return SumOpRes;
2952  }
2953
2954  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
2955    // The result is the min of all operands results.
2956    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2957    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2958      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2959    return MinOpRes;
2960  }
2961
2962  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
2963    // The result is the min of all operands results.
2964    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2965    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2966      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2967    return MinOpRes;
2968  }
2969
2970  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
2971    // The result is the min of all operands results.
2972    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2973    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2974      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2975    return MinOpRes;
2976  }
2977
2978  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2979    // For a SCEVUnknown, ask ValueTracking.
2980    unsigned BitWidth = getTypeSizeInBits(U->getType());
2981    APInt Mask = APInt::getAllOnesValue(BitWidth);
2982    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2983    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2984    return Zeros.countTrailingOnes();
2985  }
2986
2987  // SCEVUDivExpr
2988  return 0;
2989}
2990
2991/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2992///
2993ConstantRange
2994ScalarEvolution::getUnsignedRange(const SCEV *S) {
2995  // See if we've computed this range already.
2996  DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
2997  if (I != UnsignedRanges.end())
2998    return I->second;
2999
3000  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3001    return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
3002
3003  unsigned BitWidth = getTypeSizeInBits(S->getType());
3004  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3005
3006  // If the value has known zeros, the maximum unsigned value will have those
3007  // known zeros as well.
3008  uint32_t TZ = GetMinTrailingZeros(S);
3009  if (TZ != 0)
3010    ConservativeResult =
3011      ConstantRange(APInt::getMinValue(BitWidth),
3012                    APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3013
3014  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3015    ConstantRange X = getUnsignedRange(Add->getOperand(0));
3016    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3017      X = X.add(getUnsignedRange(Add->getOperand(i)));
3018    return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
3019  }
3020
3021  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3022    ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3023    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3024      X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
3025    return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
3026  }
3027
3028  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3029    ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3030    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3031      X = X.smax(getUnsignedRange(SMax->getOperand(i)));
3032    return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
3033  }
3034
3035  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3036    ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3037    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3038      X = X.umax(getUnsignedRange(UMax->getOperand(i)));
3039    return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
3040  }
3041
3042  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3043    ConstantRange X = getUnsignedRange(UDiv->getLHS());
3044    ConstantRange Y = getUnsignedRange(UDiv->getRHS());
3045    return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
3046  }
3047
3048  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3049    ConstantRange X = getUnsignedRange(ZExt->getOperand());
3050    return setUnsignedRange(ZExt,
3051      ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3052  }
3053
3054  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3055    ConstantRange X = getUnsignedRange(SExt->getOperand());
3056    return setUnsignedRange(SExt,
3057      ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3058  }
3059
3060  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3061    ConstantRange X = getUnsignedRange(Trunc->getOperand());
3062    return setUnsignedRange(Trunc,
3063      ConservativeResult.intersectWith(X.truncate(BitWidth)));
3064  }
3065
3066  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3067    // If there's no unsigned wrap, the value will never be less than its
3068    // initial value.
3069    if (AddRec->hasNoUnsignedWrap())
3070      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
3071        if (!C->getValue()->isZero())
3072          ConservativeResult =
3073            ConservativeResult.intersectWith(
3074              ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
3075
3076    // TODO: non-affine addrec
3077    if (AddRec->isAffine()) {
3078      const Type *Ty = AddRec->getType();
3079      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3080      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3081          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3082        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3083
3084        const SCEV *Start = AddRec->getStart();
3085        const SCEV *Step = AddRec->getStepRecurrence(*this);
3086
3087        ConstantRange StartRange = getUnsignedRange(Start);
3088        ConstantRange StepRange = getSignedRange(Step);
3089        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3090        ConstantRange EndRange =
3091          StartRange.add(MaxBECountRange.multiply(StepRange));
3092
3093        // Check for overflow. This must be done with ConstantRange arithmetic
3094        // because we could be called from within the ScalarEvolution overflow
3095        // checking code.
3096        ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3097        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3098        ConstantRange ExtMaxBECountRange =
3099          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3100        ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3101        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3102            ExtEndRange)
3103          return setUnsignedRange(AddRec, ConservativeResult);
3104
3105        APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3106                                   EndRange.getUnsignedMin());
3107        APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3108                                   EndRange.getUnsignedMax());
3109        if (Min.isMinValue() && Max.isMaxValue())
3110          return setUnsignedRange(AddRec, ConservativeResult);
3111        return setUnsignedRange(AddRec,
3112          ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3113      }
3114    }
3115
3116    return setUnsignedRange(AddRec, ConservativeResult);
3117  }
3118
3119  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3120    // For a SCEVUnknown, ask ValueTracking.
3121    APInt Mask = APInt::getAllOnesValue(BitWidth);
3122    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3123    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
3124    if (Ones == ~Zeros + 1)
3125      return setUnsignedRange(U, ConservativeResult);
3126    return setUnsignedRange(U,
3127      ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
3128  }
3129
3130  return setUnsignedRange(S, ConservativeResult);
3131}
3132
3133/// getSignedRange - Determine the signed range for a particular SCEV.
3134///
3135ConstantRange
3136ScalarEvolution::getSignedRange(const SCEV *S) {
3137  DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3138  if (I != SignedRanges.end())
3139    return I->second;
3140
3141  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3142    return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
3143
3144  unsigned BitWidth = getTypeSizeInBits(S->getType());
3145  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3146
3147  // If the value has known zeros, the maximum signed value will have those
3148  // known zeros as well.
3149  uint32_t TZ = GetMinTrailingZeros(S);
3150  if (TZ != 0)
3151    ConservativeResult =
3152      ConstantRange(APInt::getSignedMinValue(BitWidth),
3153                    APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3154
3155  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3156    ConstantRange X = getSignedRange(Add->getOperand(0));
3157    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3158      X = X.add(getSignedRange(Add->getOperand(i)));
3159    return setSignedRange(Add, ConservativeResult.intersectWith(X));
3160  }
3161
3162  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3163    ConstantRange X = getSignedRange(Mul->getOperand(0));
3164    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3165      X = X.multiply(getSignedRange(Mul->getOperand(i)));
3166    return setSignedRange(Mul, ConservativeResult.intersectWith(X));
3167  }
3168
3169  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3170    ConstantRange X = getSignedRange(SMax->getOperand(0));
3171    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3172      X = X.smax(getSignedRange(SMax->getOperand(i)));
3173    return setSignedRange(SMax, ConservativeResult.intersectWith(X));
3174  }
3175
3176  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3177    ConstantRange X = getSignedRange(UMax->getOperand(0));
3178    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3179      X = X.umax(getSignedRange(UMax->getOperand(i)));
3180    return setSignedRange(UMax, ConservativeResult.intersectWith(X));
3181  }
3182
3183  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3184    ConstantRange X = getSignedRange(UDiv->getLHS());
3185    ConstantRange Y = getSignedRange(UDiv->getRHS());
3186    return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
3187  }
3188
3189  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3190    ConstantRange X = getSignedRange(ZExt->getOperand());
3191    return setSignedRange(ZExt,
3192      ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3193  }
3194
3195  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3196    ConstantRange X = getSignedRange(SExt->getOperand());
3197    return setSignedRange(SExt,
3198      ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3199  }
3200
3201  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3202    ConstantRange X = getSignedRange(Trunc->getOperand());
3203    return setSignedRange(Trunc,
3204      ConservativeResult.intersectWith(X.truncate(BitWidth)));
3205  }
3206
3207  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3208    // If there's no signed wrap, and all the operands have the same sign or
3209    // zero, the value won't ever change sign.
3210    if (AddRec->hasNoSignedWrap()) {
3211      bool AllNonNeg = true;
3212      bool AllNonPos = true;
3213      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3214        if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3215        if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3216      }
3217      if (AllNonNeg)
3218        ConservativeResult = ConservativeResult.intersectWith(
3219          ConstantRange(APInt(BitWidth, 0),
3220                        APInt::getSignedMinValue(BitWidth)));
3221      else if (AllNonPos)
3222        ConservativeResult = ConservativeResult.intersectWith(
3223          ConstantRange(APInt::getSignedMinValue(BitWidth),
3224                        APInt(BitWidth, 1)));
3225    }
3226
3227    // TODO: non-affine addrec
3228    if (AddRec->isAffine()) {
3229      const Type *Ty = AddRec->getType();
3230      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3231      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3232          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3233        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3234
3235        const SCEV *Start = AddRec->getStart();
3236        const SCEV *Step = AddRec->getStepRecurrence(*this);
3237
3238        ConstantRange StartRange = getSignedRange(Start);
3239        ConstantRange StepRange = getSignedRange(Step);
3240        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3241        ConstantRange EndRange =
3242          StartRange.add(MaxBECountRange.multiply(StepRange));
3243
3244        // Check for overflow. This must be done with ConstantRange arithmetic
3245        // because we could be called from within the ScalarEvolution overflow
3246        // checking code.
3247        ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3248        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3249        ConstantRange ExtMaxBECountRange =
3250          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3251        ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3252        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3253            ExtEndRange)
3254          return setSignedRange(AddRec, ConservativeResult);
3255
3256        APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3257                                   EndRange.getSignedMin());
3258        APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3259                                   EndRange.getSignedMax());
3260        if (Min.isMinSignedValue() && Max.isMaxSignedValue())
3261          return setSignedRange(AddRec, ConservativeResult);
3262        return setSignedRange(AddRec,
3263          ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3264      }
3265    }
3266
3267    return setSignedRange(AddRec, ConservativeResult);
3268  }
3269
3270  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3271    // For a SCEVUnknown, ask ValueTracking.
3272    if (!U->getValue()->getType()->isIntegerTy() && !TD)
3273      return setSignedRange(U, ConservativeResult);
3274    unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3275    if (NS == 1)
3276      return setSignedRange(U, ConservativeResult);
3277    return setSignedRange(U, ConservativeResult.intersectWith(
3278      ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
3279                    APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
3280  }
3281
3282  return setSignedRange(S, ConservativeResult);
3283}
3284
3285/// createSCEV - We know that there is no SCEV for the specified value.
3286/// Analyze the expression.
3287///
3288const SCEV *ScalarEvolution::createSCEV(Value *V) {
3289  if (!isSCEVable(V->getType()))
3290    return getUnknown(V);
3291
3292  unsigned Opcode = Instruction::UserOp1;
3293  if (Instruction *I = dyn_cast<Instruction>(V)) {
3294    Opcode = I->getOpcode();
3295
3296    // Don't attempt to analyze instructions in blocks that aren't
3297    // reachable. Such instructions don't matter, and they aren't required
3298    // to obey basic rules for definitions dominating uses which this
3299    // analysis depends on.
3300    if (!DT->isReachableFromEntry(I->getParent()))
3301      return getUnknown(V);
3302  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
3303    Opcode = CE->getOpcode();
3304  else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3305    return getConstant(CI);
3306  else if (isa<ConstantPointerNull>(V))
3307    return getConstant(V->getType(), 0);
3308  else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3309    return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
3310  else
3311    return getUnknown(V);
3312
3313  Operator *U = cast<Operator>(V);
3314  switch (Opcode) {
3315  case Instruction::Add: {
3316    // The simple thing to do would be to just call getSCEV on both operands
3317    // and call getAddExpr with the result. However if we're looking at a
3318    // bunch of things all added together, this can be quite inefficient,
3319    // because it leads to N-1 getAddExpr calls for N ultimate operands.
3320    // Instead, gather up all the operands and make a single getAddExpr call.
3321    // LLVM IR canonical form means we need only traverse the left operands.
3322    SmallVector<const SCEV *, 4> AddOps;
3323    AddOps.push_back(getSCEV(U->getOperand(1)));
3324    for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3325      unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3326      if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3327        break;
3328      U = cast<Operator>(Op);
3329      const SCEV *Op1 = getSCEV(U->getOperand(1));
3330      if (Opcode == Instruction::Sub)
3331        AddOps.push_back(getNegativeSCEV(Op1));
3332      else
3333        AddOps.push_back(Op1);
3334    }
3335    AddOps.push_back(getSCEV(U->getOperand(0)));
3336    return getAddExpr(AddOps);
3337  }
3338  case Instruction::Mul: {
3339    // See the Add code above.
3340    SmallVector<const SCEV *, 4> MulOps;
3341    MulOps.push_back(getSCEV(U->getOperand(1)));
3342    for (Value *Op = U->getOperand(0);
3343         Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3344         Op = U->getOperand(0)) {
3345      U = cast<Operator>(Op);
3346      MulOps.push_back(getSCEV(U->getOperand(1)));
3347    }
3348    MulOps.push_back(getSCEV(U->getOperand(0)));
3349    return getMulExpr(MulOps);
3350  }
3351  case Instruction::UDiv:
3352    return getUDivExpr(getSCEV(U->getOperand(0)),
3353                       getSCEV(U->getOperand(1)));
3354  case Instruction::Sub:
3355    return getMinusSCEV(getSCEV(U->getOperand(0)),
3356                        getSCEV(U->getOperand(1)));
3357  case Instruction::And:
3358    // For an expression like x&255 that merely masks off the high bits,
3359    // use zext(trunc(x)) as the SCEV expression.
3360    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3361      if (CI->isNullValue())
3362        return getSCEV(U->getOperand(1));
3363      if (CI->isAllOnesValue())
3364        return getSCEV(U->getOperand(0));
3365      const APInt &A = CI->getValue();
3366
3367      // Instcombine's ShrinkDemandedConstant may strip bits out of
3368      // constants, obscuring what would otherwise be a low-bits mask.
3369      // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3370      // knew about to reconstruct a low-bits mask value.
3371      unsigned LZ = A.countLeadingZeros();
3372      unsigned BitWidth = A.getBitWidth();
3373      APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3374      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3375      ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3376
3377      APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3378
3379      if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
3380        return
3381          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
3382                                IntegerType::get(getContext(), BitWidth - LZ)),
3383                            U->getType());
3384    }
3385    break;
3386
3387  case Instruction::Or:
3388    // If the RHS of the Or is a constant, we may have something like:
3389    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
3390    // optimizations will transparently handle this case.
3391    //
3392    // In order for this transformation to be safe, the LHS must be of the
3393    // form X*(2^n) and the Or constant must be less than 2^n.
3394    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3395      const SCEV *LHS = getSCEV(U->getOperand(0));
3396      const APInt &CIVal = CI->getValue();
3397      if (GetMinTrailingZeros(LHS) >=
3398          (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3399        // Build a plain add SCEV.
3400        const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3401        // If the LHS of the add was an addrec and it has no-wrap flags,
3402        // transfer the no-wrap flags, since an or won't introduce a wrap.
3403        if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3404          const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3405          if (OldAR->hasNoUnsignedWrap())
3406            const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3407          if (OldAR->hasNoSignedWrap())
3408            const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3409        }
3410        return S;
3411      }
3412    }
3413    break;
3414  case Instruction::Xor:
3415    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3416      // If the RHS of the xor is a signbit, then this is just an add.
3417      // Instcombine turns add of signbit into xor as a strength reduction step.
3418      if (CI->getValue().isSignBit())
3419        return getAddExpr(getSCEV(U->getOperand(0)),
3420                          getSCEV(U->getOperand(1)));
3421
3422      // If the RHS of xor is -1, then this is a not operation.
3423      if (CI->isAllOnesValue())
3424        return getNotSCEV(getSCEV(U->getOperand(0)));
3425
3426      // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3427      // This is a variant of the check for xor with -1, and it handles
3428      // the case where instcombine has trimmed non-demanded bits out
3429      // of an xor with -1.
3430      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3431        if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3432          if (BO->getOpcode() == Instruction::And &&
3433              LCI->getValue() == CI->getValue())
3434            if (const SCEVZeroExtendExpr *Z =
3435                  dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
3436              const Type *UTy = U->getType();
3437              const SCEV *Z0 = Z->getOperand();
3438              const Type *Z0Ty = Z0->getType();
3439              unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3440
3441              // If C is a low-bits mask, the zero extend is serving to
3442              // mask off the high bits. Complement the operand and
3443              // re-apply the zext.
3444              if (APIntOps::isMask(Z0TySize, CI->getValue()))
3445                return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3446
3447              // If C is a single bit, it may be in the sign-bit position
3448              // before the zero-extend. In this case, represent the xor
3449              // using an add, which is equivalent, and re-apply the zext.
3450              APInt Trunc = CI->getValue().trunc(Z0TySize);
3451              if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3452                  Trunc.isSignBit())
3453                return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3454                                         UTy);
3455            }
3456    }
3457    break;
3458
3459  case Instruction::Shl:
3460    // Turn shift left of a constant amount into a multiply.
3461    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3462      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3463
3464      // If the shift count is not less than the bitwidth, the result of
3465      // the shift is undefined. Don't try to analyze it, because the
3466      // resolution chosen here may differ from the resolution chosen in
3467      // other parts of the compiler.
3468      if (SA->getValue().uge(BitWidth))
3469        break;
3470
3471      Constant *X = ConstantInt::get(getContext(),
3472        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3473      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3474    }
3475    break;
3476
3477  case Instruction::LShr:
3478    // Turn logical shift right of a constant into a unsigned divide.
3479    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3480      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3481
3482      // If the shift count is not less than the bitwidth, the result of
3483      // the shift is undefined. Don't try to analyze it, because the
3484      // resolution chosen here may differ from the resolution chosen in
3485      // other parts of the compiler.
3486      if (SA->getValue().uge(BitWidth))
3487        break;
3488
3489      Constant *X = ConstantInt::get(getContext(),
3490        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3491      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3492    }
3493    break;
3494
3495  case Instruction::AShr:
3496    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3497    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
3498      if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
3499        if (L->getOpcode() == Instruction::Shl &&
3500            L->getOperand(1) == U->getOperand(1)) {
3501          uint64_t BitWidth = getTypeSizeInBits(U->getType());
3502
3503          // If the shift count is not less than the bitwidth, the result of
3504          // the shift is undefined. Don't try to analyze it, because the
3505          // resolution chosen here may differ from the resolution chosen in
3506          // other parts of the compiler.
3507          if (CI->getValue().uge(BitWidth))
3508            break;
3509
3510          uint64_t Amt = BitWidth - CI->getZExtValue();
3511          if (Amt == BitWidth)
3512            return getSCEV(L->getOperand(0));       // shift by zero --> noop
3513          return
3514            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
3515                                              IntegerType::get(getContext(),
3516                                                               Amt)),
3517                              U->getType());
3518        }
3519    break;
3520
3521  case Instruction::Trunc:
3522    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
3523
3524  case Instruction::ZExt:
3525    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3526
3527  case Instruction::SExt:
3528    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3529
3530  case Instruction::BitCast:
3531    // BitCasts are no-op casts so we just eliminate the cast.
3532    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
3533      return getSCEV(U->getOperand(0));
3534    break;
3535
3536  // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3537  // lead to pointer expressions which cannot safely be expanded to GEPs,
3538  // because ScalarEvolution doesn't respect the GEP aliasing rules when
3539  // simplifying integer expressions.
3540
3541  case Instruction::GetElementPtr:
3542    return createNodeForGEP(cast<GEPOperator>(U));
3543
3544  case Instruction::PHI:
3545    return createNodeForPHI(cast<PHINode>(U));
3546
3547  case Instruction::Select:
3548    // This could be a smax or umax that was lowered earlier.
3549    // Try to recover it.
3550    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3551      Value *LHS = ICI->getOperand(0);
3552      Value *RHS = ICI->getOperand(1);
3553      switch (ICI->getPredicate()) {
3554      case ICmpInst::ICMP_SLT:
3555      case ICmpInst::ICMP_SLE:
3556        std::swap(LHS, RHS);
3557        // fall through
3558      case ICmpInst::ICMP_SGT:
3559      case ICmpInst::ICMP_SGE:
3560        // a >s b ? a+x : b+x  ->  smax(a, b)+x
3561        // a >s b ? b+x : a+x  ->  smin(a, b)+x
3562        if (LHS->getType() == U->getType()) {
3563          const SCEV *LS = getSCEV(LHS);
3564          const SCEV *RS = getSCEV(RHS);
3565          const SCEV *LA = getSCEV(U->getOperand(1));
3566          const SCEV *RA = getSCEV(U->getOperand(2));
3567          const SCEV *LDiff = getMinusSCEV(LA, LS);
3568          const SCEV *RDiff = getMinusSCEV(RA, RS);
3569          if (LDiff == RDiff)
3570            return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3571          LDiff = getMinusSCEV(LA, RS);
3572          RDiff = getMinusSCEV(RA, LS);
3573          if (LDiff == RDiff)
3574            return getAddExpr(getSMinExpr(LS, RS), LDiff);
3575        }
3576        break;
3577      case ICmpInst::ICMP_ULT:
3578      case ICmpInst::ICMP_ULE:
3579        std::swap(LHS, RHS);
3580        // fall through
3581      case ICmpInst::ICMP_UGT:
3582      case ICmpInst::ICMP_UGE:
3583        // a >u b ? a+x : b+x  ->  umax(a, b)+x
3584        // a >u b ? b+x : a+x  ->  umin(a, b)+x
3585        if (LHS->getType() == U->getType()) {
3586          const SCEV *LS = getSCEV(LHS);
3587          const SCEV *RS = getSCEV(RHS);
3588          const SCEV *LA = getSCEV(U->getOperand(1));
3589          const SCEV *RA = getSCEV(U->getOperand(2));
3590          const SCEV *LDiff = getMinusSCEV(LA, LS);
3591          const SCEV *RDiff = getMinusSCEV(RA, RS);
3592          if (LDiff == RDiff)
3593            return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3594          LDiff = getMinusSCEV(LA, RS);
3595          RDiff = getMinusSCEV(RA, LS);
3596          if (LDiff == RDiff)
3597            return getAddExpr(getUMinExpr(LS, RS), LDiff);
3598        }
3599        break;
3600      case ICmpInst::ICMP_NE:
3601        // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
3602        if (LHS->getType() == U->getType() &&
3603            isa<ConstantInt>(RHS) &&
3604            cast<ConstantInt>(RHS)->isZero()) {
3605          const SCEV *One = getConstant(LHS->getType(), 1);
3606          const SCEV *LS = getSCEV(LHS);
3607          const SCEV *LA = getSCEV(U->getOperand(1));
3608          const SCEV *RA = getSCEV(U->getOperand(2));
3609          const SCEV *LDiff = getMinusSCEV(LA, LS);
3610          const SCEV *RDiff = getMinusSCEV(RA, One);
3611          if (LDiff == RDiff)
3612            return getAddExpr(getUMaxExpr(One, LS), LDiff);
3613        }
3614        break;
3615      case ICmpInst::ICMP_EQ:
3616        // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
3617        if (LHS->getType() == U->getType() &&
3618            isa<ConstantInt>(RHS) &&
3619            cast<ConstantInt>(RHS)->isZero()) {
3620          const SCEV *One = getConstant(LHS->getType(), 1);
3621          const SCEV *LS = getSCEV(LHS);
3622          const SCEV *LA = getSCEV(U->getOperand(1));
3623          const SCEV *RA = getSCEV(U->getOperand(2));
3624          const SCEV *LDiff = getMinusSCEV(LA, One);
3625          const SCEV *RDiff = getMinusSCEV(RA, LS);
3626          if (LDiff == RDiff)
3627            return getAddExpr(getUMaxExpr(One, LS), LDiff);
3628        }
3629        break;
3630      default:
3631        break;
3632      }
3633    }
3634
3635  default: // We cannot analyze this expression.
3636    break;
3637  }
3638
3639  return getUnknown(V);
3640}
3641
3642
3643
3644//===----------------------------------------------------------------------===//
3645//                   Iteration Count Computation Code
3646//
3647
3648/// getBackedgeTakenCount - If the specified loop has a predictable
3649/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3650/// object. The backedge-taken count is the number of times the loop header
3651/// will be branched to from within the loop. This is one less than the
3652/// trip count of the loop, since it doesn't count the first iteration,
3653/// when the header is branched to from outside the loop.
3654///
3655/// Note that it is not valid to call this method on a loop without a
3656/// loop-invariant backedge-taken count (see
3657/// hasLoopInvariantBackedgeTakenCount).
3658///
3659const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
3660  return getBackedgeTakenInfo(L).Exact;
3661}
3662
3663/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3664/// return the least SCEV value that is known never to be less than the
3665/// actual backedge taken count.
3666const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
3667  return getBackedgeTakenInfo(L).Max;
3668}
3669
3670/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3671/// onto the given Worklist.
3672static void
3673PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3674  BasicBlock *Header = L->getHeader();
3675
3676  // Push all Loop-header PHIs onto the Worklist stack.
3677  for (BasicBlock::iterator I = Header->begin();
3678       PHINode *PN = dyn_cast<PHINode>(I); ++I)
3679    Worklist.push_back(PN);
3680}
3681
3682const ScalarEvolution::BackedgeTakenInfo &
3683ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
3684  // Initially insert a CouldNotCompute for this loop. If the insertion
3685  // succeeds, proceed to actually compute a backedge-taken count and
3686  // update the value. The temporary CouldNotCompute value tells SCEV
3687  // code elsewhere that it shouldn't attempt to request a new
3688  // backedge-taken count, which could result in infinite recursion.
3689  std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
3690    BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3691  if (!Pair.second)
3692    return Pair.first->second;
3693
3694  BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3695  if (BECount.Exact != getCouldNotCompute()) {
3696    assert(isLoopInvariant(BECount.Exact, L) &&
3697           isLoopInvariant(BECount.Max, L) &&
3698           "Computed backedge-taken count isn't loop invariant for loop!");
3699    ++NumTripCountsComputed;
3700
3701    // Update the value in the map.
3702    Pair.first->second = BECount;
3703  } else {
3704    if (BECount.Max != getCouldNotCompute())
3705      // Update the value in the map.
3706      Pair.first->second = BECount;
3707    if (isa<PHINode>(L->getHeader()->begin()))
3708      // Only count loops that have phi nodes as not being computable.
3709      ++NumTripCountsNotComputed;
3710  }
3711
3712  // Now that we know more about the trip count for this loop, forget any
3713  // existing SCEV values for PHI nodes in this loop since they are only
3714  // conservative estimates made without the benefit of trip count
3715  // information. This is similar to the code in forgetLoop, except that
3716  // it handles SCEVUnknown PHI nodes specially.
3717  if (BECount.hasAnyInfo()) {
3718    SmallVector<Instruction *, 16> Worklist;
3719    PushLoopPHIs(L, Worklist);
3720
3721    SmallPtrSet<Instruction *, 8> Visited;
3722    while (!Worklist.empty()) {
3723      Instruction *I = Worklist.pop_back_val();
3724      if (!Visited.insert(I)) continue;
3725
3726      ValueExprMapType::iterator It =
3727        ValueExprMap.find(static_cast<Value *>(I));
3728      if (It != ValueExprMap.end()) {
3729        const SCEV *Old = It->second;
3730
3731        // SCEVUnknown for a PHI either means that it has an unrecognized
3732        // structure, or it's a PHI that's in the progress of being computed
3733        // by createNodeForPHI.  In the former case, additional loop trip
3734        // count information isn't going to change anything. In the later
3735        // case, createNodeForPHI will perform the necessary updates on its
3736        // own when it gets to that point.
3737        if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
3738          forgetMemoizedResults(Old);
3739          ValueExprMap.erase(It);
3740        }
3741        if (PHINode *PN = dyn_cast<PHINode>(I))
3742          ConstantEvolutionLoopExitValue.erase(PN);
3743      }
3744
3745      PushDefUseChildren(I, Worklist);
3746    }
3747  }
3748  return Pair.first->second;
3749}
3750
3751/// forgetLoop - This method should be called by the client when it has
3752/// changed a loop in a way that may effect ScalarEvolution's ability to
3753/// compute a trip count, or if the loop is deleted.
3754void ScalarEvolution::forgetLoop(const Loop *L) {
3755  // Drop any stored trip count value.
3756  BackedgeTakenCounts.erase(L);
3757
3758  // Drop information about expressions based on loop-header PHIs.
3759  SmallVector<Instruction *, 16> Worklist;
3760  PushLoopPHIs(L, Worklist);
3761
3762  SmallPtrSet<Instruction *, 8> Visited;
3763  while (!Worklist.empty()) {
3764    Instruction *I = Worklist.pop_back_val();
3765    if (!Visited.insert(I)) continue;
3766
3767    ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3768    if (It != ValueExprMap.end()) {
3769      forgetMemoizedResults(It->second);
3770      ValueExprMap.erase(It);
3771      if (PHINode *PN = dyn_cast<PHINode>(I))
3772        ConstantEvolutionLoopExitValue.erase(PN);
3773    }
3774
3775    PushDefUseChildren(I, Worklist);
3776  }
3777
3778  // Forget all contained loops too, to avoid dangling entries in the
3779  // ValuesAtScopes map.
3780  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3781    forgetLoop(*I);
3782}
3783
3784/// forgetValue - This method should be called by the client when it has
3785/// changed a value in a way that may effect its value, or which may
3786/// disconnect it from a def-use chain linking it to a loop.
3787void ScalarEvolution::forgetValue(Value *V) {
3788  Instruction *I = dyn_cast<Instruction>(V);
3789  if (!I) return;
3790
3791  // Drop information about expressions based on loop-header PHIs.
3792  SmallVector<Instruction *, 16> Worklist;
3793  Worklist.push_back(I);
3794
3795  SmallPtrSet<Instruction *, 8> Visited;
3796  while (!Worklist.empty()) {
3797    I = Worklist.pop_back_val();
3798    if (!Visited.insert(I)) continue;
3799
3800    ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3801    if (It != ValueExprMap.end()) {
3802      forgetMemoizedResults(It->second);
3803      ValueExprMap.erase(It);
3804      if (PHINode *PN = dyn_cast<PHINode>(I))
3805        ConstantEvolutionLoopExitValue.erase(PN);
3806    }
3807
3808    PushDefUseChildren(I, Worklist);
3809  }
3810}
3811
3812/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3813/// of the specified loop will execute.
3814ScalarEvolution::BackedgeTakenInfo
3815ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
3816  SmallVector<BasicBlock *, 8> ExitingBlocks;
3817  L->getExitingBlocks(ExitingBlocks);
3818
3819  // Examine all exits and pick the most conservative values.
3820  const SCEV *BECount = getCouldNotCompute();
3821  const SCEV *MaxBECount = getCouldNotCompute();
3822  bool CouldNotComputeBECount = false;
3823  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3824    BackedgeTakenInfo NewBTI =
3825      ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
3826
3827    if (NewBTI.Exact == getCouldNotCompute()) {
3828      // We couldn't compute an exact value for this exit, so
3829      // we won't be able to compute an exact value for the loop.
3830      CouldNotComputeBECount = true;
3831      BECount = getCouldNotCompute();
3832    } else if (!CouldNotComputeBECount) {
3833      if (BECount == getCouldNotCompute())
3834        BECount = NewBTI.Exact;
3835      else
3836        BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
3837    }
3838    if (MaxBECount == getCouldNotCompute())
3839      MaxBECount = NewBTI.Max;
3840    else if (NewBTI.Max != getCouldNotCompute())
3841      MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
3842  }
3843
3844  return BackedgeTakenInfo(BECount, MaxBECount);
3845}
3846
3847/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3848/// of the specified loop will execute if it exits via the specified block.
3849ScalarEvolution::BackedgeTakenInfo
3850ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3851                                                   BasicBlock *ExitingBlock) {
3852
3853  // Okay, we've chosen an exiting block.  See what condition causes us to
3854  // exit at this block.
3855  //
3856  // FIXME: we should be able to handle switch instructions (with a single exit)
3857  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
3858  if (ExitBr == 0) return getCouldNotCompute();
3859  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
3860
3861  // At this point, we know we have a conditional branch that determines whether
3862  // the loop is exited.  However, we don't know if the branch is executed each
3863  // time through the loop.  If not, then the execution count of the branch will
3864  // not be equal to the trip count of the loop.
3865  //
3866  // Currently we check for this by checking to see if the Exit branch goes to
3867  // the loop header.  If so, we know it will always execute the same number of
3868  // times as the loop.  We also handle the case where the exit block *is* the
3869  // loop header.  This is common for un-rotated loops.
3870  //
3871  // If both of those tests fail, walk up the unique predecessor chain to the
3872  // header, stopping if there is an edge that doesn't exit the loop. If the
3873  // header is reached, the execution count of the branch will be equal to the
3874  // trip count of the loop.
3875  //
3876  //  More extensive analysis could be done to handle more cases here.
3877  //
3878  if (ExitBr->getSuccessor(0) != L->getHeader() &&
3879      ExitBr->getSuccessor(1) != L->getHeader() &&
3880      ExitBr->getParent() != L->getHeader()) {
3881    // The simple checks failed, try climbing the unique predecessor chain
3882    // up to the header.
3883    bool Ok = false;
3884    for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3885      BasicBlock *Pred = BB->getUniquePredecessor();
3886      if (!Pred)
3887        return getCouldNotCompute();
3888      TerminatorInst *PredTerm = Pred->getTerminator();
3889      for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3890        BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3891        if (PredSucc == BB)
3892          continue;
3893        // If the predecessor has a successor that isn't BB and isn't
3894        // outside the loop, assume the worst.
3895        if (L->contains(PredSucc))
3896          return getCouldNotCompute();
3897      }
3898      if (Pred == L->getHeader()) {
3899        Ok = true;
3900        break;
3901      }
3902      BB = Pred;
3903    }
3904    if (!Ok)
3905      return getCouldNotCompute();
3906  }
3907
3908  // Proceed to the next level to examine the exit condition expression.
3909  return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3910                                               ExitBr->getSuccessor(0),
3911                                               ExitBr->getSuccessor(1));
3912}
3913
3914/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3915/// backedge of the specified loop will execute if its exit condition
3916/// were a conditional branch of ExitCond, TBB, and FBB.
3917ScalarEvolution::BackedgeTakenInfo
3918ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3919                                                       Value *ExitCond,
3920                                                       BasicBlock *TBB,
3921                                                       BasicBlock *FBB) {
3922  // Check if the controlling expression for this loop is an And or Or.
3923  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3924    if (BO->getOpcode() == Instruction::And) {
3925      // Recurse on the operands of the and.
3926      BackedgeTakenInfo BTI0 =
3927        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3928      BackedgeTakenInfo BTI1 =
3929        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3930      const SCEV *BECount = getCouldNotCompute();
3931      const SCEV *MaxBECount = getCouldNotCompute();
3932      if (L->contains(TBB)) {
3933        // Both conditions must be true for the loop to continue executing.
3934        // Choose the less conservative count.
3935        if (BTI0.Exact == getCouldNotCompute() ||
3936            BTI1.Exact == getCouldNotCompute())
3937          BECount = getCouldNotCompute();
3938        else
3939          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3940        if (BTI0.Max == getCouldNotCompute())
3941          MaxBECount = BTI1.Max;
3942        else if (BTI1.Max == getCouldNotCompute())
3943          MaxBECount = BTI0.Max;
3944        else
3945          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3946      } else {
3947        // Both conditions must be true at the same time for the loop to exit.
3948        // For now, be conservative.
3949        assert(L->contains(FBB) && "Loop block has no successor in loop!");
3950        if (BTI0.Max == BTI1.Max)
3951          MaxBECount = BTI0.Max;
3952        if (BTI0.Exact == BTI1.Exact)
3953          BECount = BTI0.Exact;
3954      }
3955
3956      return BackedgeTakenInfo(BECount, MaxBECount);
3957    }
3958    if (BO->getOpcode() == Instruction::Or) {
3959      // Recurse on the operands of the or.
3960      BackedgeTakenInfo BTI0 =
3961        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3962      BackedgeTakenInfo BTI1 =
3963        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3964      const SCEV *BECount = getCouldNotCompute();
3965      const SCEV *MaxBECount = getCouldNotCompute();
3966      if (L->contains(FBB)) {
3967        // Both conditions must be false for the loop to continue executing.
3968        // Choose the less conservative count.
3969        if (BTI0.Exact == getCouldNotCompute() ||
3970            BTI1.Exact == getCouldNotCompute())
3971          BECount = getCouldNotCompute();
3972        else
3973          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3974        if (BTI0.Max == getCouldNotCompute())
3975          MaxBECount = BTI1.Max;
3976        else if (BTI1.Max == getCouldNotCompute())
3977          MaxBECount = BTI0.Max;
3978        else
3979          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3980      } else {
3981        // Both conditions must be false at the same time for the loop to exit.
3982        // For now, be conservative.
3983        assert(L->contains(TBB) && "Loop block has no successor in loop!");
3984        if (BTI0.Max == BTI1.Max)
3985          MaxBECount = BTI0.Max;
3986        if (BTI0.Exact == BTI1.Exact)
3987          BECount = BTI0.Exact;
3988      }
3989
3990      return BackedgeTakenInfo(BECount, MaxBECount);
3991    }
3992  }
3993
3994  // With an icmp, it may be feasible to compute an exact backedge-taken count.
3995  // Proceed to the next level to examine the icmp.
3996  if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3997    return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
3998
3999  // Check for a constant condition. These are normally stripped out by
4000  // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4001  // preserve the CFG and is temporarily leaving constant conditions
4002  // in place.
4003  if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4004    if (L->contains(FBB) == !CI->getZExtValue())
4005      // The backedge is always taken.
4006      return getCouldNotCompute();
4007    else
4008      // The backedge is never taken.
4009      return getConstant(CI->getType(), 0);
4010  }
4011
4012  // If it's not an integer or pointer comparison then compute it the hard way.
4013  return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
4014}
4015
4016static const SCEVAddRecExpr *
4017isSimpleUnwrappingAddRec(const SCEV *S, const Loop *L) {
4018  const SCEVAddRecExpr *SA = dyn_cast<SCEVAddRecExpr>(S);
4019
4020  // The SCEV must be an addrec of this loop.
4021  if (!SA || SA->getLoop() != L || !SA->isAffine())
4022    return 0;
4023
4024  // The SCEV must be known to not wrap in some way to be interesting.
4025  if (!SA->hasNoUnsignedWrap() && !SA->hasNoSignedWrap())
4026    return 0;
4027
4028  // The stride must be a constant so that we know if it is striding up or down.
4029  if (!isa<SCEVConstant>(SA->getOperand(1)))
4030    return 0;
4031  return SA;
4032}
4033
4034/// getMinusSCEVForExitTest - When considering an exit test for a loop with a
4035/// "x != y" exit test, we turn this into a computation that evaluates x-y != 0,
4036/// and this function returns the expression to use for x-y.  We know and take
4037/// advantage of the fact that this subtraction is only being used in a
4038/// comparison by zero context.
4039///
4040static const SCEV *getMinusSCEVForExitTest(const SCEV *LHS, const SCEV *RHS,
4041                                           const Loop *L, ScalarEvolution &SE) {
4042  // If either LHS or RHS is an AddRec SCEV (of this loop) that is known to not
4043  // wrap (either NSW or NUW), then we know that the value will either become
4044  // the other one (and thus the loop terminates), that the loop will terminate
4045  // through some other exit condition first, or that the loop has undefined
4046  // behavior.  This information is useful when the addrec has a stride that is
4047  // != 1 or -1, because it means we can't "miss" the exit value.
4048  //
4049  // In any of these three cases, it is safe to turn the exit condition into a
4050  // "counting down" AddRec (to zero) by subtracting the two inputs as normal,
4051  // but since we know that the "end cannot be missed" we can force the
4052  // resulting AddRec to be a NUW addrec.  Since it is counting down, this means
4053  // that the AddRec *cannot* pass zero.
4054
4055  // See if LHS and RHS are addrec's we can handle.
4056  const SCEVAddRecExpr *LHSA = isSimpleUnwrappingAddRec(LHS, L);
4057  const SCEVAddRecExpr *RHSA = isSimpleUnwrappingAddRec(RHS, L);
4058
4059  // If neither addrec is interesting, just return a minus.
4060  if (RHSA == 0 && LHSA == 0)
4061    return SE.getMinusSCEV(LHS, RHS);
4062
4063  // If only one of LHS and RHS are an AddRec of this loop, make sure it is LHS.
4064  if (RHSA && LHSA == 0) {
4065    // Safe because a-b === b-a for comparisons against zero.
4066    std::swap(LHS, RHS);
4067    std::swap(LHSA, RHSA);
4068  }
4069
4070  // Handle the case when only one is advancing in a non-overflowing way.
4071  if (RHSA == 0) {
4072    // If RHS is loop varying, then we can't predict when LHS will cross it.
4073    if (!SE.isLoopInvariant(RHS, L))
4074      return SE.getMinusSCEV(LHS, RHS);
4075
4076    // If LHS has a positive stride, then we compute RHS-LHS, because the loop
4077    // is counting up until it crosses RHS (which must be larger than LHS).  If
4078    // it is negative, we compute LHS-RHS because we're counting down to RHS.
4079    const ConstantInt *Stride =
4080      cast<SCEVConstant>(LHSA->getOperand(1))->getValue();
4081    if (Stride->getValue().isNegative())
4082      std::swap(LHS, RHS);
4083
4084    return SE.getMinusSCEV(RHS, LHS, true /*HasNUW*/);
4085  }
4086
4087  // If both LHS and RHS are interesting, we have something like:
4088  //  a+i*4 != b+i*8.
4089  const ConstantInt *LHSStride =
4090    cast<SCEVConstant>(LHSA->getOperand(1))->getValue();
4091  const ConstantInt *RHSStride =
4092    cast<SCEVConstant>(RHSA->getOperand(1))->getValue();
4093
4094  // If the strides are equal, then this is just a (complex) loop invariant
4095  // comparison of a and b.
4096  if (LHSStride == RHSStride)
4097    return SE.getMinusSCEV(LHSA->getStart(), RHSA->getStart());
4098
4099  // If the signs of the strides differ, then the negative stride is counting
4100  // down to the positive stride.
4101  if (LHSStride->getValue().isNegative() != RHSStride->getValue().isNegative()){
4102    if (RHSStride->getValue().isNegative())
4103      std::swap(LHS, RHS);
4104  } else {
4105    // If LHS's stride is smaller than RHS's stride, then "b" must be less than
4106    // "a" and "b" is RHS is counting up (catching up) to LHS.  This is true
4107    // whether the strides are positive or negative.
4108    if (RHSStride->getValue().slt(LHSStride->getValue()))
4109      std::swap(LHS, RHS);
4110  }
4111
4112  return SE.getMinusSCEV(LHS, RHS, true /*HasNUW*/);
4113}
4114
4115/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
4116/// backedge of the specified loop will execute if its exit condition
4117/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4118ScalarEvolution::BackedgeTakenInfo
4119ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
4120                                                           ICmpInst *ExitCond,
4121                                                           BasicBlock *TBB,
4122                                                           BasicBlock *FBB) {
4123
4124  // If the condition was exit on true, convert the condition to exit on false
4125  ICmpInst::Predicate Cond;
4126  if (!L->contains(FBB))
4127    Cond = ExitCond->getPredicate();
4128  else
4129    Cond = ExitCond->getInversePredicate();
4130
4131  // Handle common loops like: for (X = "string"; *X; ++X)
4132  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4133    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
4134      BackedgeTakenInfo ItCnt =
4135        ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
4136      if (ItCnt.hasAnyInfo())
4137        return ItCnt;
4138    }
4139
4140  const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4141  const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
4142
4143  // Try to evaluate any dependencies out of the loop.
4144  LHS = getSCEVAtScope(LHS, L);
4145  RHS = getSCEVAtScope(RHS, L);
4146
4147  // At this point, we would like to compute how many iterations of the
4148  // loop the predicate will return true for these inputs.
4149  if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
4150    // If there is a loop-invariant, force it into the RHS.
4151    std::swap(LHS, RHS);
4152    Cond = ICmpInst::getSwappedPredicate(Cond);
4153  }
4154
4155  // Simplify the operands before analyzing them.
4156  (void)SimplifyICmpOperands(Cond, LHS, RHS);
4157
4158  // If we have a comparison of a chrec against a constant, try to use value
4159  // ranges to answer this query.
4160  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4161    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
4162      if (AddRec->getLoop() == L) {
4163        // Form the constant range.
4164        ConstantRange CompRange(
4165            ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
4166
4167        const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
4168        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
4169      }
4170
4171  switch (Cond) {
4172  case ICmpInst::ICMP_NE: {                     // while (X != Y)
4173    // Convert to: while (X-Y != 0)
4174    BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEVForExitTest(LHS, RHS, L,
4175                                                                 *this), L);
4176    if (BTI.hasAnyInfo()) return BTI;
4177    break;
4178  }
4179  case ICmpInst::ICMP_EQ: {                     // while (X == Y)
4180    // Convert to: while (X-Y == 0)
4181    BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4182    if (BTI.hasAnyInfo()) return BTI;
4183    break;
4184  }
4185  case ICmpInst::ICMP_SLT: {
4186    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
4187    if (BTI.hasAnyInfo()) return BTI;
4188    break;
4189  }
4190  case ICmpInst::ICMP_SGT: {
4191    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4192                                             getNotSCEV(RHS), L, true);
4193    if (BTI.hasAnyInfo()) return BTI;
4194    break;
4195  }
4196  case ICmpInst::ICMP_ULT: {
4197    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
4198    if (BTI.hasAnyInfo()) return BTI;
4199    break;
4200  }
4201  case ICmpInst::ICMP_UGT: {
4202    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4203                                             getNotSCEV(RHS), L, false);
4204    if (BTI.hasAnyInfo()) return BTI;
4205    break;
4206  }
4207  default:
4208#if 0
4209    dbgs() << "ComputeBackedgeTakenCount ";
4210    if (ExitCond->getOperand(0)->getType()->isUnsigned())
4211      dbgs() << "[unsigned] ";
4212    dbgs() << *LHS << "   "
4213         << Instruction::getOpcodeName(Instruction::ICmp)
4214         << "   " << *RHS << "\n";
4215#endif
4216    break;
4217  }
4218  return
4219    ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
4220}
4221
4222static ConstantInt *
4223EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4224                                ScalarEvolution &SE) {
4225  const SCEV *InVal = SE.getConstant(C);
4226  const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
4227  assert(isa<SCEVConstant>(Val) &&
4228         "Evaluation of SCEV at constant didn't fold correctly?");
4229  return cast<SCEVConstant>(Val)->getValue();
4230}
4231
4232/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4233/// and a GEP expression (missing the pointer index) indexing into it, return
4234/// the addressed element of the initializer or null if the index expression is
4235/// invalid.
4236static Constant *
4237GetAddressedElementFromGlobal(GlobalVariable *GV,
4238                              const std::vector<ConstantInt*> &Indices) {
4239  Constant *Init = GV->getInitializer();
4240  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
4241    uint64_t Idx = Indices[i]->getZExtValue();
4242    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4243      assert(Idx < CS->getNumOperands() && "Bad struct index!");
4244      Init = cast<Constant>(CS->getOperand(Idx));
4245    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4246      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
4247      Init = cast<Constant>(CA->getOperand(Idx));
4248    } else if (isa<ConstantAggregateZero>(Init)) {
4249      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
4250        assert(Idx < STy->getNumElements() && "Bad struct index!");
4251        Init = Constant::getNullValue(STy->getElementType(Idx));
4252      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4253        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
4254        Init = Constant::getNullValue(ATy->getElementType());
4255      } else {
4256        llvm_unreachable("Unknown constant aggregate type!");
4257      }
4258      return 0;
4259    } else {
4260      return 0; // Unknown initializer type
4261    }
4262  }
4263  return Init;
4264}
4265
4266/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4267/// 'icmp op load X, cst', try to see if we can compute the backedge
4268/// execution count.
4269ScalarEvolution::BackedgeTakenInfo
4270ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4271                                                LoadInst *LI,
4272                                                Constant *RHS,
4273                                                const Loop *L,
4274                                                ICmpInst::Predicate predicate) {
4275  if (LI->isVolatile()) return getCouldNotCompute();
4276
4277  // Check to see if the loaded pointer is a getelementptr of a global.
4278  // TODO: Use SCEV instead of manually grubbing with GEPs.
4279  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
4280  if (!GEP) return getCouldNotCompute();
4281
4282  // Make sure that it is really a constant global we are gepping, with an
4283  // initializer, and make sure the first IDX is really 0.
4284  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
4285  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
4286      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4287      !cast<Constant>(GEP->getOperand(1))->isNullValue())
4288    return getCouldNotCompute();
4289
4290  // Okay, we allow one non-constant index into the GEP instruction.
4291  Value *VarIdx = 0;
4292  std::vector<ConstantInt*> Indexes;
4293  unsigned VarIdxNum = 0;
4294  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4295    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4296      Indexes.push_back(CI);
4297    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
4298      if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
4299      VarIdx = GEP->getOperand(i);
4300      VarIdxNum = i-2;
4301      Indexes.push_back(0);
4302    }
4303
4304  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4305  // Check to see if X is a loop variant variable value now.
4306  const SCEV *Idx = getSCEV(VarIdx);
4307  Idx = getSCEVAtScope(Idx, L);
4308
4309  // We can only recognize very limited forms of loop index expressions, in
4310  // particular, only affine AddRec's like {C1,+,C2}.
4311  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
4312  if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
4313      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4314      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
4315    return getCouldNotCompute();
4316
4317  unsigned MaxSteps = MaxBruteForceIterations;
4318  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
4319    ConstantInt *ItCst = ConstantInt::get(
4320                           cast<IntegerType>(IdxExpr->getType()), IterationNum);
4321    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
4322
4323    // Form the GEP offset.
4324    Indexes[VarIdxNum] = Val;
4325
4326    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
4327    if (Result == 0) break;  // Cannot compute!
4328
4329    // Evaluate the condition for this iteration.
4330    Result = ConstantExpr::getICmp(predicate, Result, RHS);
4331    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
4332    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
4333#if 0
4334      dbgs() << "\n***\n*** Computed loop count " << *ItCst
4335             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4336             << "***\n";
4337#endif
4338      ++NumArrayLenItCounts;
4339      return getConstant(ItCst);   // Found terminating iteration!
4340    }
4341  }
4342  return getCouldNotCompute();
4343}
4344
4345
4346/// CanConstantFold - Return true if we can constant fold an instruction of the
4347/// specified type, assuming that all operands were constants.
4348static bool CanConstantFold(const Instruction *I) {
4349  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
4350      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4351    return true;
4352
4353  if (const CallInst *CI = dyn_cast<CallInst>(I))
4354    if (const Function *F = CI->getCalledFunction())
4355      return canConstantFoldCallTo(F);
4356  return false;
4357}
4358
4359/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4360/// in the loop that V is derived from.  We allow arbitrary operations along the
4361/// way, but the operands of an operation must either be constants or a value
4362/// derived from a constant PHI.  If this expression does not fit with these
4363/// constraints, return null.
4364static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4365  // If this is not an instruction, or if this is an instruction outside of the
4366  // loop, it can't be derived from a loop PHI.
4367  Instruction *I = dyn_cast<Instruction>(V);
4368  if (I == 0 || !L->contains(I)) return 0;
4369
4370  if (PHINode *PN = dyn_cast<PHINode>(I)) {
4371    if (L->getHeader() == I->getParent())
4372      return PN;
4373    else
4374      // We don't currently keep track of the control flow needed to evaluate
4375      // PHIs, so we cannot handle PHIs inside of loops.
4376      return 0;
4377  }
4378
4379  // If we won't be able to constant fold this expression even if the operands
4380  // are constants, return early.
4381  if (!CanConstantFold(I)) return 0;
4382
4383  // Otherwise, we can evaluate this instruction if all of its operands are
4384  // constant or derived from a PHI node themselves.
4385  PHINode *PHI = 0;
4386  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
4387    if (!isa<Constant>(I->getOperand(Op))) {
4388      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4389      if (P == 0) return 0;  // Not evolving from PHI
4390      if (PHI == 0)
4391        PHI = P;
4392      else if (PHI != P)
4393        return 0;  // Evolving from multiple different PHIs.
4394    }
4395
4396  // This is a expression evolving from a constant PHI!
4397  return PHI;
4398}
4399
4400/// EvaluateExpression - Given an expression that passes the
4401/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4402/// in the loop has the value PHIVal.  If we can't fold this expression for some
4403/// reason, return null.
4404static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4405                                    const TargetData *TD) {
4406  if (isa<PHINode>(V)) return PHIVal;
4407  if (Constant *C = dyn_cast<Constant>(V)) return C;
4408  Instruction *I = cast<Instruction>(V);
4409
4410  std::vector<Constant*> Operands(I->getNumOperands());
4411
4412  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4413    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
4414    if (Operands[i] == 0) return 0;
4415  }
4416
4417  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4418    return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
4419                                           Operands[1], TD);
4420  return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4421                                  &Operands[0], Operands.size(), TD);
4422}
4423
4424/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4425/// in the header of its containing loop, we know the loop executes a
4426/// constant number of times, and the PHI node is just a recurrence
4427/// involving constants, fold it.
4428Constant *
4429ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
4430                                                   const APInt &BEs,
4431                                                   const Loop *L) {
4432  std::map<PHINode*, Constant*>::const_iterator I =
4433    ConstantEvolutionLoopExitValue.find(PN);
4434  if (I != ConstantEvolutionLoopExitValue.end())
4435    return I->second;
4436
4437  if (BEs.ugt(MaxBruteForceIterations))
4438    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
4439
4440  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4441
4442  // Since the loop is canonicalized, the PHI node must have two entries.  One
4443  // entry must be a constant (coming in from outside of the loop), and the
4444  // second must be derived from the same PHI.
4445  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4446  Constant *StartCST =
4447    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4448  if (StartCST == 0)
4449    return RetVal = 0;  // Must be a constant.
4450
4451  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4452  if (getConstantEvolvingPHI(BEValue, L) != PN &&
4453      !isa<Constant>(BEValue))
4454    return RetVal = 0;  // Not derived from same PHI.
4455
4456  // Execute the loop symbolically to determine the exit value.
4457  if (BEs.getActiveBits() >= 32)
4458    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
4459
4460  unsigned NumIterations = BEs.getZExtValue(); // must be in range
4461  unsigned IterationNum = 0;
4462  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4463    if (IterationNum == NumIterations)
4464      return RetVal = PHIVal;  // Got exit value!
4465
4466    // Compute the value of the PHI node for the next iteration.
4467    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4468    if (NextPHI == PHIVal)
4469      return RetVal = NextPHI;  // Stopped evolving!
4470    if (NextPHI == 0)
4471      return 0;        // Couldn't evaluate!
4472    PHIVal = NextPHI;
4473  }
4474}
4475
4476/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
4477/// constant number of times (the condition evolves only from constants),
4478/// try to evaluate a few iterations of the loop until we get the exit
4479/// condition gets a value of ExitWhen (true or false).  If we cannot
4480/// evaluate the trip count of the loop, return getCouldNotCompute().
4481const SCEV *
4482ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4483                                                       Value *Cond,
4484                                                       bool ExitWhen) {
4485  PHINode *PN = getConstantEvolvingPHI(Cond, L);
4486  if (PN == 0) return getCouldNotCompute();
4487
4488  // If the loop is canonicalized, the PHI will have exactly two entries.
4489  // That's the only form we support here.
4490  if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4491
4492  // One entry must be a constant (coming in from outside of the loop), and the
4493  // second must be derived from the same PHI.
4494  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4495  Constant *StartCST =
4496    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4497  if (StartCST == 0) return getCouldNotCompute();  // Must be a constant.
4498
4499  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4500  if (getConstantEvolvingPHI(BEValue, L) != PN &&
4501      !isa<Constant>(BEValue))
4502    return getCouldNotCompute();  // Not derived from same PHI.
4503
4504  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
4505  // the loop symbolically to determine when the condition gets a value of
4506  // "ExitWhen".
4507  unsigned IterationNum = 0;
4508  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
4509  for (Constant *PHIVal = StartCST;
4510       IterationNum != MaxIterations; ++IterationNum) {
4511    ConstantInt *CondVal =
4512      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
4513
4514    // Couldn't symbolically evaluate.
4515    if (!CondVal) return getCouldNotCompute();
4516
4517    if (CondVal->getValue() == uint64_t(ExitWhen)) {
4518      ++NumBruteForceTripCountsComputed;
4519      return getConstant(Type::getInt32Ty(getContext()), IterationNum);
4520    }
4521
4522    // Compute the value of the PHI node for the next iteration.
4523    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4524    if (NextPHI == 0 || NextPHI == PHIVal)
4525      return getCouldNotCompute();// Couldn't evaluate or not making progress...
4526    PHIVal = NextPHI;
4527  }
4528
4529  // Too many iterations were needed to evaluate.
4530  return getCouldNotCompute();
4531}
4532
4533/// getSCEVAtScope - Return a SCEV expression for the specified value
4534/// at the specified scope in the program.  The L value specifies a loop
4535/// nest to evaluate the expression at, where null is the top-level or a
4536/// specified loop is immediately inside of the loop.
4537///
4538/// This method can be used to compute the exit value for a variable defined
4539/// in a loop by querying what the value will hold in the parent loop.
4540///
4541/// In the case that a relevant loop exit value cannot be computed, the
4542/// original value V is returned.
4543const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
4544  // Check to see if we've folded this expression at this loop before.
4545  std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4546  std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4547    Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4548  if (!Pair.second)
4549    return Pair.first->second ? Pair.first->second : V;
4550
4551  // Otherwise compute it.
4552  const SCEV *C = computeSCEVAtScope(V, L);
4553  ValuesAtScopes[V][L] = C;
4554  return C;
4555}
4556
4557const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
4558  if (isa<SCEVConstant>(V)) return V;
4559
4560  // If this instruction is evolved from a constant-evolving PHI, compute the
4561  // exit value from the loop without using SCEVs.
4562  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
4563    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
4564      const Loop *LI = (*this->LI)[I->getParent()];
4565      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
4566        if (PHINode *PN = dyn_cast<PHINode>(I))
4567          if (PN->getParent() == LI->getHeader()) {
4568            // Okay, there is no closed form solution for the PHI node.  Check
4569            // to see if the loop that contains it has a known backedge-taken
4570            // count.  If so, we may be able to force computation of the exit
4571            // value.
4572            const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
4573            if (const SCEVConstant *BTCC =
4574                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
4575              // Okay, we know how many times the containing loop executes.  If
4576              // this is a constant evolving PHI node, get the final value at
4577              // the specified iteration number.
4578              Constant *RV = getConstantEvolutionLoopExitValue(PN,
4579                                                   BTCC->getValue()->getValue(),
4580                                                               LI);
4581              if (RV) return getSCEV(RV);
4582            }
4583          }
4584
4585      // Okay, this is an expression that we cannot symbolically evaluate
4586      // into a SCEV.  Check to see if it's possible to symbolically evaluate
4587      // the arguments into constants, and if so, try to constant propagate the
4588      // result.  This is particularly useful for computing loop exit values.
4589      if (CanConstantFold(I)) {
4590        SmallVector<Constant *, 4> Operands;
4591        bool MadeImprovement = false;
4592        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4593          Value *Op = I->getOperand(i);
4594          if (Constant *C = dyn_cast<Constant>(Op)) {
4595            Operands.push_back(C);
4596            continue;
4597          }
4598
4599          // If any of the operands is non-constant and if they are
4600          // non-integer and non-pointer, don't even try to analyze them
4601          // with scev techniques.
4602          if (!isSCEVable(Op->getType()))
4603            return V;
4604
4605          const SCEV *OrigV = getSCEV(Op);
4606          const SCEV *OpV = getSCEVAtScope(OrigV, L);
4607          MadeImprovement |= OrigV != OpV;
4608
4609          Constant *C = 0;
4610          if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4611            C = SC->getValue();
4612          if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4613            C = dyn_cast<Constant>(SU->getValue());
4614          if (!C) return V;
4615          if (C->getType() != Op->getType())
4616            C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4617                                                              Op->getType(),
4618                                                              false),
4619                                      C, Op->getType());
4620          Operands.push_back(C);
4621        }
4622
4623        // Check to see if getSCEVAtScope actually made an improvement.
4624        if (MadeImprovement) {
4625          Constant *C = 0;
4626          if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4627            C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4628                                                Operands[0], Operands[1], TD);
4629          else
4630            C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4631                                         &Operands[0], Operands.size(), TD);
4632          if (!C) return V;
4633          return getSCEV(C);
4634        }
4635      }
4636    }
4637
4638    // This is some other type of SCEVUnknown, just return it.
4639    return V;
4640  }
4641
4642  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
4643    // Avoid performing the look-up in the common case where the specified
4644    // expression has no loop-variant portions.
4645    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
4646      const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4647      if (OpAtScope != Comm->getOperand(i)) {
4648        // Okay, at least one of these operands is loop variant but might be
4649        // foldable.  Build a new instance of the folded commutative expression.
4650        SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4651                                            Comm->op_begin()+i);
4652        NewOps.push_back(OpAtScope);
4653
4654        for (++i; i != e; ++i) {
4655          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4656          NewOps.push_back(OpAtScope);
4657        }
4658        if (isa<SCEVAddExpr>(Comm))
4659          return getAddExpr(NewOps);
4660        if (isa<SCEVMulExpr>(Comm))
4661          return getMulExpr(NewOps);
4662        if (isa<SCEVSMaxExpr>(Comm))
4663          return getSMaxExpr(NewOps);
4664        if (isa<SCEVUMaxExpr>(Comm))
4665          return getUMaxExpr(NewOps);
4666        llvm_unreachable("Unknown commutative SCEV type!");
4667      }
4668    }
4669    // If we got here, all operands are loop invariant.
4670    return Comm;
4671  }
4672
4673  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
4674    const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4675    const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
4676    if (LHS == Div->getLHS() && RHS == Div->getRHS())
4677      return Div;   // must be loop invariant
4678    return getUDivExpr(LHS, RHS);
4679  }
4680
4681  // If this is a loop recurrence for a loop that does not contain L, then we
4682  // are dealing with the final value computed by the loop.
4683  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4684    // First, attempt to evaluate each operand.
4685    // Avoid performing the look-up in the common case where the specified
4686    // expression has no loop-variant portions.
4687    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4688      const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4689      if (OpAtScope == AddRec->getOperand(i))
4690        continue;
4691
4692      // Okay, at least one of these operands is loop variant but might be
4693      // foldable.  Build a new instance of the folded commutative expression.
4694      SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4695                                          AddRec->op_begin()+i);
4696      NewOps.push_back(OpAtScope);
4697      for (++i; i != e; ++i)
4698        NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4699
4700      AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop()));
4701      break;
4702    }
4703
4704    // If the scope is outside the addrec's loop, evaluate it by using the
4705    // loop exit value of the addrec.
4706    if (!AddRec->getLoop()->contains(L)) {
4707      // To evaluate this recurrence, we need to know how many times the AddRec
4708      // loop iterates.  Compute this now.
4709      const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
4710      if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
4711
4712      // Then, evaluate the AddRec.
4713      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
4714    }
4715
4716    return AddRec;
4717  }
4718
4719  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
4720    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4721    if (Op == Cast->getOperand())
4722      return Cast;  // must be loop invariant
4723    return getZeroExtendExpr(Op, Cast->getType());
4724  }
4725
4726  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
4727    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4728    if (Op == Cast->getOperand())
4729      return Cast;  // must be loop invariant
4730    return getSignExtendExpr(Op, Cast->getType());
4731  }
4732
4733  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
4734    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4735    if (Op == Cast->getOperand())
4736      return Cast;  // must be loop invariant
4737    return getTruncateExpr(Op, Cast->getType());
4738  }
4739
4740  llvm_unreachable("Unknown SCEV type!");
4741  return 0;
4742}
4743
4744/// getSCEVAtScope - This is a convenience function which does
4745/// getSCEVAtScope(getSCEV(V), L).
4746const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
4747  return getSCEVAtScope(getSCEV(V), L);
4748}
4749
4750/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4751/// following equation:
4752///
4753///     A * X = B (mod N)
4754///
4755/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4756/// A and B isn't important.
4757///
4758/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
4759static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
4760                                               ScalarEvolution &SE) {
4761  uint32_t BW = A.getBitWidth();
4762  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4763  assert(A != 0 && "A must be non-zero.");
4764
4765  // 1. D = gcd(A, N)
4766  //
4767  // The gcd of A and N may have only one prime factor: 2. The number of
4768  // trailing zeros in A is its multiplicity
4769  uint32_t Mult2 = A.countTrailingZeros();
4770  // D = 2^Mult2
4771
4772  // 2. Check if B is divisible by D.
4773  //
4774  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4775  // is not less than multiplicity of this prime factor for D.
4776  if (B.countTrailingZeros() < Mult2)
4777    return SE.getCouldNotCompute();
4778
4779  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4780  // modulo (N / D).
4781  //
4782  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
4783  // bit width during computations.
4784  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
4785  APInt Mod(BW + 1, 0);
4786  Mod.setBit(BW - Mult2);  // Mod = N / D
4787  APInt I = AD.multiplicativeInverse(Mod);
4788
4789  // 4. Compute the minimum unsigned root of the equation:
4790  // I * (B / D) mod (N / D)
4791  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4792
4793  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4794  // bits.
4795  return SE.getConstant(Result.trunc(BW));
4796}
4797
4798/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4799/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
4800/// might be the same) or two SCEVCouldNotCompute objects.
4801///
4802static std::pair<const SCEV *,const SCEV *>
4803SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
4804  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
4805  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4806  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4807  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
4808
4809  // We currently can only solve this if the coefficients are constants.
4810  if (!LC || !MC || !NC) {
4811    const SCEV *CNC = SE.getCouldNotCompute();
4812    return std::make_pair(CNC, CNC);
4813  }
4814
4815  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
4816  const APInt &L = LC->getValue()->getValue();
4817  const APInt &M = MC->getValue()->getValue();
4818  const APInt &N = NC->getValue()->getValue();
4819  APInt Two(BitWidth, 2);
4820  APInt Four(BitWidth, 4);
4821
4822  {
4823    using namespace APIntOps;
4824    const APInt& C = L;
4825    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4826    // The B coefficient is M-N/2
4827    APInt B(M);
4828    B -= sdiv(N,Two);
4829
4830    // The A coefficient is N/2
4831    APInt A(N.sdiv(Two));
4832
4833    // Compute the B^2-4ac term.
4834    APInt SqrtTerm(B);
4835    SqrtTerm *= B;
4836    SqrtTerm -= Four * (A * C);
4837
4838    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4839    // integer value or else APInt::sqrt() will assert.
4840    APInt SqrtVal(SqrtTerm.sqrt());
4841
4842    // Compute the two solutions for the quadratic formula.
4843    // The divisions must be performed as signed divisions.
4844    APInt NegB(-B);
4845    APInt TwoA( A << 1 );
4846    if (TwoA.isMinValue()) {
4847      const SCEV *CNC = SE.getCouldNotCompute();
4848      return std::make_pair(CNC, CNC);
4849    }
4850
4851    LLVMContext &Context = SE.getContext();
4852
4853    ConstantInt *Solution1 =
4854      ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
4855    ConstantInt *Solution2 =
4856      ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
4857
4858    return std::make_pair(SE.getConstant(Solution1),
4859                          SE.getConstant(Solution2));
4860    } // end APIntOps namespace
4861}
4862
4863/// HowFarToZero - Return the number of times a backedge comparing the specified
4864/// value to zero will execute.  If not computable, return CouldNotCompute.
4865ScalarEvolution::BackedgeTakenInfo
4866ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
4867  // If the value is a constant
4868  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4869    // If the value is already zero, the branch will execute zero times.
4870    if (C->getValue()->isZero()) return C;
4871    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4872  }
4873
4874  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
4875  if (!AddRec || AddRec->getLoop() != L)
4876    return getCouldNotCompute();
4877
4878  // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4879  // the quadratic equation to solve it.
4880  if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
4881    std::pair<const SCEV *,const SCEV *> Roots =
4882      SolveQuadraticEquation(AddRec, *this);
4883    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4884    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
4885    if (R1 && R2) {
4886#if 0
4887      dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
4888             << "  sol#2: " << *R2 << "\n";
4889#endif
4890      // Pick the smallest positive root value.
4891      if (ConstantInt *CB =
4892          dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
4893                                                      R1->getValue(),
4894                                                      R2->getValue()))) {
4895        if (CB->getZExtValue() == false)
4896          std::swap(R1, R2);   // R1 is the minimum root now.
4897
4898        // We can only use this value if the chrec ends up with an exact zero
4899        // value at this index.  When solving for "X*X != 5", for example, we
4900        // should not accept a root of 2.
4901        const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
4902        if (Val->isZero())
4903          return R1;  // We found a quadratic root!
4904      }
4905    }
4906    return getCouldNotCompute();
4907  }
4908
4909  // Otherwise we can only handle this if it is affine.
4910  if (!AddRec->isAffine())
4911    return getCouldNotCompute();
4912
4913  // If this is an affine expression, the execution count of this branch is
4914  // the minimum unsigned root of the following equation:
4915  //
4916  //     Start + Step*N = 0 (mod 2^BW)
4917  //
4918  // equivalent to:
4919  //
4920  //             Step*N = -Start (mod 2^BW)
4921  //
4922  // where BW is the common bit width of Start and Step.
4923
4924  // Get the initial value for the loop.
4925  const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
4926  const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
4927
4928  // If the AddRec is NUW, then (in an unsigned sense) it cannot be counting up
4929  // to wrap to 0, it must be counting down to equal 0.  Also, while counting
4930  // down, it cannot "miss" 0 (which would cause it to wrap), regardless of what
4931  // the stride is.  As such, NUW addrec's will always become zero in
4932  // "start / -stride" steps, and we know that the division is exact.
4933  if (AddRec->hasNoUnsignedWrap())
4934    // FIXME: We really want an "isexact" bit for udiv.
4935    return getUDivExpr(Start, getNegativeSCEV(Step));
4936
4937  // For now we handle only constant steps.
4938  const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
4939  if (StepC == 0)
4940    return getCouldNotCompute();
4941
4942  // First, handle unitary steps.
4943  if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so:
4944    return getNegativeSCEV(Start);          //   N = -Start (as unsigned)
4945
4946  if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so:
4947    return Start;                           //    N = Start (as unsigned)
4948
4949  // Then, try to solve the above equation provided that Start is constant.
4950  if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
4951    return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
4952                                        -StartC->getValue()->getValue(),
4953                                        *this);
4954  return getCouldNotCompute();
4955}
4956
4957/// HowFarToNonZero - Return the number of times a backedge checking the
4958/// specified value for nonzero will execute.  If not computable, return
4959/// CouldNotCompute
4960ScalarEvolution::BackedgeTakenInfo
4961ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
4962  // Loops that look like: while (X == 0) are very strange indeed.  We don't
4963  // handle them yet except for the trivial case.  This could be expanded in the
4964  // future as needed.
4965
4966  // If the value is a constant, check to see if it is known to be non-zero
4967  // already.  If so, the backedge will execute zero times.
4968  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4969    if (!C->getValue()->isNullValue())
4970      return getConstant(C->getType(), 0);
4971    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4972  }
4973
4974  // We could implement others, but I really doubt anyone writes loops like
4975  // this, and if they did, they would already be constant folded.
4976  return getCouldNotCompute();
4977}
4978
4979/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4980/// (which may not be an immediate predecessor) which has exactly one
4981/// successor from which BB is reachable, or null if no such block is
4982/// found.
4983///
4984std::pair<BasicBlock *, BasicBlock *>
4985ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
4986  // If the block has a unique predecessor, then there is no path from the
4987  // predecessor to the block that does not go through the direct edge
4988  // from the predecessor to the block.
4989  if (BasicBlock *Pred = BB->getSinglePredecessor())
4990    return std::make_pair(Pred, BB);
4991
4992  // A loop's header is defined to be a block that dominates the loop.
4993  // If the header has a unique predecessor outside the loop, it must be
4994  // a block that has exactly one successor that can reach the loop.
4995  if (Loop *L = LI->getLoopFor(BB))
4996    return std::make_pair(L->getLoopPredecessor(), L->getHeader());
4997
4998  return std::pair<BasicBlock *, BasicBlock *>();
4999}
5000
5001/// HasSameValue - SCEV structural equivalence is usually sufficient for
5002/// testing whether two expressions are equal, however for the purposes of
5003/// looking for a condition guarding a loop, it can be useful to be a little
5004/// more general, since a front-end may have replicated the controlling
5005/// expression.
5006///
5007static bool HasSameValue(const SCEV *A, const SCEV *B) {
5008  // Quick check to see if they are the same SCEV.
5009  if (A == B) return true;
5010
5011  // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5012  // two different instructions with the same value. Check for this case.
5013  if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5014    if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5015      if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5016        if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
5017          if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
5018            return true;
5019
5020  // Otherwise assume they may have a different value.
5021  return false;
5022}
5023
5024/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
5025/// predicate Pred. Return true iff any changes were made.
5026///
5027bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
5028                                           const SCEV *&LHS, const SCEV *&RHS) {
5029  bool Changed = false;
5030
5031  // Canonicalize a constant to the right side.
5032  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5033    // Check for both operands constant.
5034    if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5035      if (ConstantExpr::getICmp(Pred,
5036                                LHSC->getValue(),
5037                                RHSC->getValue())->isNullValue())
5038        goto trivially_false;
5039      else
5040        goto trivially_true;
5041    }
5042    // Otherwise swap the operands to put the constant on the right.
5043    std::swap(LHS, RHS);
5044    Pred = ICmpInst::getSwappedPredicate(Pred);
5045    Changed = true;
5046  }
5047
5048  // If we're comparing an addrec with a value which is loop-invariant in the
5049  // addrec's loop, put the addrec on the left. Also make a dominance check,
5050  // as both operands could be addrecs loop-invariant in each other's loop.
5051  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5052    const Loop *L = AR->getLoop();
5053    if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
5054      std::swap(LHS, RHS);
5055      Pred = ICmpInst::getSwappedPredicate(Pred);
5056      Changed = true;
5057    }
5058  }
5059
5060  // If there's a constant operand, canonicalize comparisons with boundary
5061  // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5062  if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5063    const APInt &RA = RC->getValue()->getValue();
5064    switch (Pred) {
5065    default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5066    case ICmpInst::ICMP_EQ:
5067    case ICmpInst::ICMP_NE:
5068      break;
5069    case ICmpInst::ICMP_UGE:
5070      if ((RA - 1).isMinValue()) {
5071        Pred = ICmpInst::ICMP_NE;
5072        RHS = getConstant(RA - 1);
5073        Changed = true;
5074        break;
5075      }
5076      if (RA.isMaxValue()) {
5077        Pred = ICmpInst::ICMP_EQ;
5078        Changed = true;
5079        break;
5080      }
5081      if (RA.isMinValue()) goto trivially_true;
5082
5083      Pred = ICmpInst::ICMP_UGT;
5084      RHS = getConstant(RA - 1);
5085      Changed = true;
5086      break;
5087    case ICmpInst::ICMP_ULE:
5088      if ((RA + 1).isMaxValue()) {
5089        Pred = ICmpInst::ICMP_NE;
5090        RHS = getConstant(RA + 1);
5091        Changed = true;
5092        break;
5093      }
5094      if (RA.isMinValue()) {
5095        Pred = ICmpInst::ICMP_EQ;
5096        Changed = true;
5097        break;
5098      }
5099      if (RA.isMaxValue()) goto trivially_true;
5100
5101      Pred = ICmpInst::ICMP_ULT;
5102      RHS = getConstant(RA + 1);
5103      Changed = true;
5104      break;
5105    case ICmpInst::ICMP_SGE:
5106      if ((RA - 1).isMinSignedValue()) {
5107        Pred = ICmpInst::ICMP_NE;
5108        RHS = getConstant(RA - 1);
5109        Changed = true;
5110        break;
5111      }
5112      if (RA.isMaxSignedValue()) {
5113        Pred = ICmpInst::ICMP_EQ;
5114        Changed = true;
5115        break;
5116      }
5117      if (RA.isMinSignedValue()) goto trivially_true;
5118
5119      Pred = ICmpInst::ICMP_SGT;
5120      RHS = getConstant(RA - 1);
5121      Changed = true;
5122      break;
5123    case ICmpInst::ICMP_SLE:
5124      if ((RA + 1).isMaxSignedValue()) {
5125        Pred = ICmpInst::ICMP_NE;
5126        RHS = getConstant(RA + 1);
5127        Changed = true;
5128        break;
5129      }
5130      if (RA.isMinSignedValue()) {
5131        Pred = ICmpInst::ICMP_EQ;
5132        Changed = true;
5133        break;
5134      }
5135      if (RA.isMaxSignedValue()) goto trivially_true;
5136
5137      Pred = ICmpInst::ICMP_SLT;
5138      RHS = getConstant(RA + 1);
5139      Changed = true;
5140      break;
5141    case ICmpInst::ICMP_UGT:
5142      if (RA.isMinValue()) {
5143        Pred = ICmpInst::ICMP_NE;
5144        Changed = true;
5145        break;
5146      }
5147      if ((RA + 1).isMaxValue()) {
5148        Pred = ICmpInst::ICMP_EQ;
5149        RHS = getConstant(RA + 1);
5150        Changed = true;
5151        break;
5152      }
5153      if (RA.isMaxValue()) goto trivially_false;
5154      break;
5155    case ICmpInst::ICMP_ULT:
5156      if (RA.isMaxValue()) {
5157        Pred = ICmpInst::ICMP_NE;
5158        Changed = true;
5159        break;
5160      }
5161      if ((RA - 1).isMinValue()) {
5162        Pred = ICmpInst::ICMP_EQ;
5163        RHS = getConstant(RA - 1);
5164        Changed = true;
5165        break;
5166      }
5167      if (RA.isMinValue()) goto trivially_false;
5168      break;
5169    case ICmpInst::ICMP_SGT:
5170      if (RA.isMinSignedValue()) {
5171        Pred = ICmpInst::ICMP_NE;
5172        Changed = true;
5173        break;
5174      }
5175      if ((RA + 1).isMaxSignedValue()) {
5176        Pred = ICmpInst::ICMP_EQ;
5177        RHS = getConstant(RA + 1);
5178        Changed = true;
5179        break;
5180      }
5181      if (RA.isMaxSignedValue()) goto trivially_false;
5182      break;
5183    case ICmpInst::ICMP_SLT:
5184      if (RA.isMaxSignedValue()) {
5185        Pred = ICmpInst::ICMP_NE;
5186        Changed = true;
5187        break;
5188      }
5189      if ((RA - 1).isMinSignedValue()) {
5190       Pred = ICmpInst::ICMP_EQ;
5191       RHS = getConstant(RA - 1);
5192        Changed = true;
5193       break;
5194      }
5195      if (RA.isMinSignedValue()) goto trivially_false;
5196      break;
5197    }
5198  }
5199
5200  // Check for obvious equality.
5201  if (HasSameValue(LHS, RHS)) {
5202    if (ICmpInst::isTrueWhenEqual(Pred))
5203      goto trivially_true;
5204    if (ICmpInst::isFalseWhenEqual(Pred))
5205      goto trivially_false;
5206  }
5207
5208  // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5209  // adding or subtracting 1 from one of the operands.
5210  switch (Pred) {
5211  case ICmpInst::ICMP_SLE:
5212    if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5213      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5214                       /*HasNUW=*/false, /*HasNSW=*/true);
5215      Pred = ICmpInst::ICMP_SLT;
5216      Changed = true;
5217    } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
5218      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5219                       /*HasNUW=*/false, /*HasNSW=*/true);
5220      Pred = ICmpInst::ICMP_SLT;
5221      Changed = true;
5222    }
5223    break;
5224  case ICmpInst::ICMP_SGE:
5225    if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
5226      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5227                       /*HasNUW=*/false, /*HasNSW=*/true);
5228      Pred = ICmpInst::ICMP_SGT;
5229      Changed = true;
5230    } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5231      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5232                       /*HasNUW=*/false, /*HasNSW=*/true);
5233      Pred = ICmpInst::ICMP_SGT;
5234      Changed = true;
5235    }
5236    break;
5237  case ICmpInst::ICMP_ULE:
5238    if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
5239      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5240                       /*HasNUW=*/true, /*HasNSW=*/false);
5241      Pred = ICmpInst::ICMP_ULT;
5242      Changed = true;
5243    } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
5244      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5245                       /*HasNUW=*/true, /*HasNSW=*/false);
5246      Pred = ICmpInst::ICMP_ULT;
5247      Changed = true;
5248    }
5249    break;
5250  case ICmpInst::ICMP_UGE:
5251    if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
5252      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5253                       /*HasNUW=*/true, /*HasNSW=*/false);
5254      Pred = ICmpInst::ICMP_UGT;
5255      Changed = true;
5256    } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
5257      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5258                       /*HasNUW=*/true, /*HasNSW=*/false);
5259      Pred = ICmpInst::ICMP_UGT;
5260      Changed = true;
5261    }
5262    break;
5263  default:
5264    break;
5265  }
5266
5267  // TODO: More simplifications are possible here.
5268
5269  return Changed;
5270
5271trivially_true:
5272  // Return 0 == 0.
5273  LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
5274  Pred = ICmpInst::ICMP_EQ;
5275  return true;
5276
5277trivially_false:
5278  // Return 0 != 0.
5279  LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
5280  Pred = ICmpInst::ICMP_NE;
5281  return true;
5282}
5283
5284bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5285  return getSignedRange(S).getSignedMax().isNegative();
5286}
5287
5288bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5289  return getSignedRange(S).getSignedMin().isStrictlyPositive();
5290}
5291
5292bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5293  return !getSignedRange(S).getSignedMin().isNegative();
5294}
5295
5296bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5297  return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5298}
5299
5300bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5301  return isKnownNegative(S) || isKnownPositive(S);
5302}
5303
5304bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5305                                       const SCEV *LHS, const SCEV *RHS) {
5306  // Canonicalize the inputs first.
5307  (void)SimplifyICmpOperands(Pred, LHS, RHS);
5308
5309  // If LHS or RHS is an addrec, check to see if the condition is true in
5310  // every iteration of the loop.
5311  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5312    if (isLoopEntryGuardedByCond(
5313          AR->getLoop(), Pred, AR->getStart(), RHS) &&
5314        isLoopBackedgeGuardedByCond(
5315          AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
5316      return true;
5317  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5318    if (isLoopEntryGuardedByCond(
5319          AR->getLoop(), Pred, LHS, AR->getStart()) &&
5320        isLoopBackedgeGuardedByCond(
5321          AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
5322      return true;
5323
5324  // Otherwise see what can be done with known constant ranges.
5325  return isKnownPredicateWithRanges(Pred, LHS, RHS);
5326}
5327
5328bool
5329ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5330                                            const SCEV *LHS, const SCEV *RHS) {
5331  if (HasSameValue(LHS, RHS))
5332    return ICmpInst::isTrueWhenEqual(Pred);
5333
5334  // This code is split out from isKnownPredicate because it is called from
5335  // within isLoopEntryGuardedByCond.
5336  switch (Pred) {
5337  default:
5338    llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5339    break;
5340  case ICmpInst::ICMP_SGT:
5341    Pred = ICmpInst::ICMP_SLT;
5342    std::swap(LHS, RHS);
5343  case ICmpInst::ICMP_SLT: {
5344    ConstantRange LHSRange = getSignedRange(LHS);
5345    ConstantRange RHSRange = getSignedRange(RHS);
5346    if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5347      return true;
5348    if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5349      return false;
5350    break;
5351  }
5352  case ICmpInst::ICMP_SGE:
5353    Pred = ICmpInst::ICMP_SLE;
5354    std::swap(LHS, RHS);
5355  case ICmpInst::ICMP_SLE: {
5356    ConstantRange LHSRange = getSignedRange(LHS);
5357    ConstantRange RHSRange = getSignedRange(RHS);
5358    if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5359      return true;
5360    if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5361      return false;
5362    break;
5363  }
5364  case ICmpInst::ICMP_UGT:
5365    Pred = ICmpInst::ICMP_ULT;
5366    std::swap(LHS, RHS);
5367  case ICmpInst::ICMP_ULT: {
5368    ConstantRange LHSRange = getUnsignedRange(LHS);
5369    ConstantRange RHSRange = getUnsignedRange(RHS);
5370    if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5371      return true;
5372    if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5373      return false;
5374    break;
5375  }
5376  case ICmpInst::ICMP_UGE:
5377    Pred = ICmpInst::ICMP_ULE;
5378    std::swap(LHS, RHS);
5379  case ICmpInst::ICMP_ULE: {
5380    ConstantRange LHSRange = getUnsignedRange(LHS);
5381    ConstantRange RHSRange = getUnsignedRange(RHS);
5382    if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5383      return true;
5384    if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5385      return false;
5386    break;
5387  }
5388  case ICmpInst::ICMP_NE: {
5389    if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5390      return true;
5391    if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5392      return true;
5393
5394    const SCEV *Diff = getMinusSCEV(LHS, RHS);
5395    if (isKnownNonZero(Diff))
5396      return true;
5397    break;
5398  }
5399  case ICmpInst::ICMP_EQ:
5400    // The check at the top of the function catches the case where
5401    // the values are known to be equal.
5402    break;
5403  }
5404  return false;
5405}
5406
5407/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5408/// protected by a conditional between LHS and RHS.  This is used to
5409/// to eliminate casts.
5410bool
5411ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5412                                             ICmpInst::Predicate Pred,
5413                                             const SCEV *LHS, const SCEV *RHS) {
5414  // Interpret a null as meaning no loop, where there is obviously no guard
5415  // (interprocedural conditions notwithstanding).
5416  if (!L) return true;
5417
5418  BasicBlock *Latch = L->getLoopLatch();
5419  if (!Latch)
5420    return false;
5421
5422  BranchInst *LoopContinuePredicate =
5423    dyn_cast<BranchInst>(Latch->getTerminator());
5424  if (!LoopContinuePredicate ||
5425      LoopContinuePredicate->isUnconditional())
5426    return false;
5427
5428  return isImpliedCond(Pred, LHS, RHS,
5429                       LoopContinuePredicate->getCondition(),
5430                       LoopContinuePredicate->getSuccessor(0) != L->getHeader());
5431}
5432
5433/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
5434/// by a conditional between LHS and RHS.  This is used to help avoid max
5435/// expressions in loop trip counts, and to eliminate casts.
5436bool
5437ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5438                                          ICmpInst::Predicate Pred,
5439                                          const SCEV *LHS, const SCEV *RHS) {
5440  // Interpret a null as meaning no loop, where there is obviously no guard
5441  // (interprocedural conditions notwithstanding).
5442  if (!L) return false;
5443
5444  // Starting at the loop predecessor, climb up the predecessor chain, as long
5445  // as there are predecessors that can be found that have unique successors
5446  // leading to the original header.
5447  for (std::pair<BasicBlock *, BasicBlock *>
5448         Pair(L->getLoopPredecessor(), L->getHeader());
5449       Pair.first;
5450       Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
5451
5452    BranchInst *LoopEntryPredicate =
5453      dyn_cast<BranchInst>(Pair.first->getTerminator());
5454    if (!LoopEntryPredicate ||
5455        LoopEntryPredicate->isUnconditional())
5456      continue;
5457
5458    if (isImpliedCond(Pred, LHS, RHS,
5459                      LoopEntryPredicate->getCondition(),
5460                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
5461      return true;
5462  }
5463
5464  return false;
5465}
5466
5467/// isImpliedCond - Test whether the condition described by Pred, LHS,
5468/// and RHS is true whenever the given Cond value evaluates to true.
5469bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
5470                                    const SCEV *LHS, const SCEV *RHS,
5471                                    Value *FoundCondValue,
5472                                    bool Inverse) {
5473  // Recursively handle And and Or conditions.
5474  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
5475    if (BO->getOpcode() == Instruction::And) {
5476      if (!Inverse)
5477        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5478               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
5479    } else if (BO->getOpcode() == Instruction::Or) {
5480      if (Inverse)
5481        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5482               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
5483    }
5484  }
5485
5486  ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
5487  if (!ICI) return false;
5488
5489  // Bail if the ICmp's operands' types are wider than the needed type
5490  // before attempting to call getSCEV on them. This avoids infinite
5491  // recursion, since the analysis of widening casts can require loop
5492  // exit condition information for overflow checking, which would
5493  // lead back here.
5494  if (getTypeSizeInBits(LHS->getType()) <
5495      getTypeSizeInBits(ICI->getOperand(0)->getType()))
5496    return false;
5497
5498  // Now that we found a conditional branch that dominates the loop, check to
5499  // see if it is the comparison we are looking for.
5500  ICmpInst::Predicate FoundPred;
5501  if (Inverse)
5502    FoundPred = ICI->getInversePredicate();
5503  else
5504    FoundPred = ICI->getPredicate();
5505
5506  const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5507  const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
5508
5509  // Balance the types. The case where FoundLHS' type is wider than
5510  // LHS' type is checked for above.
5511  if (getTypeSizeInBits(LHS->getType()) >
5512      getTypeSizeInBits(FoundLHS->getType())) {
5513    if (CmpInst::isSigned(Pred)) {
5514      FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5515      FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5516    } else {
5517      FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5518      FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5519    }
5520  }
5521
5522  // Canonicalize the query to match the way instcombine will have
5523  // canonicalized the comparison.
5524  if (SimplifyICmpOperands(Pred, LHS, RHS))
5525    if (LHS == RHS)
5526      return CmpInst::isTrueWhenEqual(Pred);
5527  if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5528    if (FoundLHS == FoundRHS)
5529      return CmpInst::isFalseWhenEqual(Pred);
5530
5531  // Check to see if we can make the LHS or RHS match.
5532  if (LHS == FoundRHS || RHS == FoundLHS) {
5533    if (isa<SCEVConstant>(RHS)) {
5534      std::swap(FoundLHS, FoundRHS);
5535      FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5536    } else {
5537      std::swap(LHS, RHS);
5538      Pred = ICmpInst::getSwappedPredicate(Pred);
5539    }
5540  }
5541
5542  // Check whether the found predicate is the same as the desired predicate.
5543  if (FoundPred == Pred)
5544    return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5545
5546  // Check whether swapping the found predicate makes it the same as the
5547  // desired predicate.
5548  if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5549    if (isa<SCEVConstant>(RHS))
5550      return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5551    else
5552      return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5553                                   RHS, LHS, FoundLHS, FoundRHS);
5554  }
5555
5556  // Check whether the actual condition is beyond sufficient.
5557  if (FoundPred == ICmpInst::ICMP_EQ)
5558    if (ICmpInst::isTrueWhenEqual(Pred))
5559      if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5560        return true;
5561  if (Pred == ICmpInst::ICMP_NE)
5562    if (!ICmpInst::isTrueWhenEqual(FoundPred))
5563      if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5564        return true;
5565
5566  // Otherwise assume the worst.
5567  return false;
5568}
5569
5570/// isImpliedCondOperands - Test whether the condition described by Pred,
5571/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
5572/// and FoundRHS is true.
5573bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5574                                            const SCEV *LHS, const SCEV *RHS,
5575                                            const SCEV *FoundLHS,
5576                                            const SCEV *FoundRHS) {
5577  return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5578                                     FoundLHS, FoundRHS) ||
5579         // ~x < ~y --> x > y
5580         isImpliedCondOperandsHelper(Pred, LHS, RHS,
5581                                     getNotSCEV(FoundRHS),
5582                                     getNotSCEV(FoundLHS));
5583}
5584
5585/// isImpliedCondOperandsHelper - Test whether the condition described by
5586/// Pred, LHS, and RHS is true whenever the condition described by Pred,
5587/// FoundLHS, and FoundRHS is true.
5588bool
5589ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5590                                             const SCEV *LHS, const SCEV *RHS,
5591                                             const SCEV *FoundLHS,
5592                                             const SCEV *FoundRHS) {
5593  switch (Pred) {
5594  default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5595  case ICmpInst::ICMP_EQ:
5596  case ICmpInst::ICMP_NE:
5597    if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5598      return true;
5599    break;
5600  case ICmpInst::ICMP_SLT:
5601  case ICmpInst::ICMP_SLE:
5602    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5603        isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
5604      return true;
5605    break;
5606  case ICmpInst::ICMP_SGT:
5607  case ICmpInst::ICMP_SGE:
5608    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5609        isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
5610      return true;
5611    break;
5612  case ICmpInst::ICMP_ULT:
5613  case ICmpInst::ICMP_ULE:
5614    if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5615        isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
5616      return true;
5617    break;
5618  case ICmpInst::ICMP_UGT:
5619  case ICmpInst::ICMP_UGE:
5620    if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5621        isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
5622      return true;
5623    break;
5624  }
5625
5626  return false;
5627}
5628
5629/// getBECount - Subtract the end and start values and divide by the step,
5630/// rounding up, to get the number of times the backedge is executed. Return
5631/// CouldNotCompute if an intermediate computation overflows.
5632const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
5633                                        const SCEV *End,
5634                                        const SCEV *Step,
5635                                        bool NoWrap) {
5636  assert(!isKnownNegative(Step) &&
5637         "This code doesn't handle negative strides yet!");
5638
5639  const Type *Ty = Start->getType();
5640  const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
5641  const SCEV *Diff = getMinusSCEV(End, Start);
5642  const SCEV *RoundUp = getAddExpr(Step, NegOne);
5643
5644  // Add an adjustment to the difference between End and Start so that
5645  // the division will effectively round up.
5646  const SCEV *Add = getAddExpr(Diff, RoundUp);
5647
5648  if (!NoWrap) {
5649    // Check Add for unsigned overflow.
5650    // TODO: More sophisticated things could be done here.
5651    const Type *WideTy = IntegerType::get(getContext(),
5652                                          getTypeSizeInBits(Ty) + 1);
5653    const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5654    const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5655    const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5656    if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5657      return getCouldNotCompute();
5658  }
5659
5660  return getUDivExpr(Add, Step);
5661}
5662
5663/// HowManyLessThans - Return the number of times a backedge containing the
5664/// specified less-than comparison will execute.  If not computable, return
5665/// CouldNotCompute.
5666ScalarEvolution::BackedgeTakenInfo
5667ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5668                                  const Loop *L, bool isSigned) {
5669  // Only handle:  "ADDREC < LoopInvariant".
5670  if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
5671
5672  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
5673  if (!AddRec || AddRec->getLoop() != L)
5674    return getCouldNotCompute();
5675
5676  // Check to see if we have a flag which makes analysis easy.
5677  bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5678                           AddRec->hasNoUnsignedWrap();
5679
5680  if (AddRec->isAffine()) {
5681    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
5682    const SCEV *Step = AddRec->getStepRecurrence(*this);
5683
5684    if (Step->isZero())
5685      return getCouldNotCompute();
5686    if (Step->isOne()) {
5687      // With unit stride, the iteration never steps past the limit value.
5688    } else if (isKnownPositive(Step)) {
5689      // Test whether a positive iteration can step past the limit
5690      // value and past the maximum value for its type in a single step.
5691      // Note that it's not sufficient to check NoWrap here, because even
5692      // though the value after a wrap is undefined, it's not undefined
5693      // behavior, so if wrap does occur, the loop could either terminate or
5694      // loop infinitely, but in either case, the loop is guaranteed to
5695      // iterate at least until the iteration where the wrapping occurs.
5696      const SCEV *One = getConstant(Step->getType(), 1);
5697      if (isSigned) {
5698        APInt Max = APInt::getSignedMaxValue(BitWidth);
5699        if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5700              .slt(getSignedRange(RHS).getSignedMax()))
5701          return getCouldNotCompute();
5702      } else {
5703        APInt Max = APInt::getMaxValue(BitWidth);
5704        if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5705              .ult(getUnsignedRange(RHS).getUnsignedMax()))
5706          return getCouldNotCompute();
5707      }
5708    } else
5709      // TODO: Handle negative strides here and below.
5710      return getCouldNotCompute();
5711
5712    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5713    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
5714    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
5715    // treat m-n as signed nor unsigned due to overflow possibility.
5716
5717    // First, we get the value of the LHS in the first iteration: n
5718    const SCEV *Start = AddRec->getOperand(0);
5719
5720    // Determine the minimum constant start value.
5721    const SCEV *MinStart = getConstant(isSigned ?
5722      getSignedRange(Start).getSignedMin() :
5723      getUnsignedRange(Start).getUnsignedMin());
5724
5725    // If we know that the condition is true in order to enter the loop,
5726    // then we know that it will run exactly (m-n)/s times. Otherwise, we
5727    // only know that it will execute (max(m,n)-n)/s times. In both cases,
5728    // the division must round up.
5729    const SCEV *End = RHS;
5730    if (!isLoopEntryGuardedByCond(L,
5731                                  isSigned ? ICmpInst::ICMP_SLT :
5732                                             ICmpInst::ICMP_ULT,
5733                                  getMinusSCEV(Start, Step), RHS))
5734      End = isSigned ? getSMaxExpr(RHS, Start)
5735                     : getUMaxExpr(RHS, Start);
5736
5737    // Determine the maximum constant end value.
5738    const SCEV *MaxEnd = getConstant(isSigned ?
5739      getSignedRange(End).getSignedMax() :
5740      getUnsignedRange(End).getUnsignedMax());
5741
5742    // If MaxEnd is within a step of the maximum integer value in its type,
5743    // adjust it down to the minimum value which would produce the same effect.
5744    // This allows the subsequent ceiling division of (N+(step-1))/step to
5745    // compute the correct value.
5746    const SCEV *StepMinusOne = getMinusSCEV(Step,
5747                                            getConstant(Step->getType(), 1));
5748    MaxEnd = isSigned ?
5749      getSMinExpr(MaxEnd,
5750                  getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5751                               StepMinusOne)) :
5752      getUMinExpr(MaxEnd,
5753                  getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5754                               StepMinusOne));
5755
5756    // Finally, we subtract these two values and divide, rounding up, to get
5757    // the number of times the backedge is executed.
5758    const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
5759
5760    // The maximum backedge count is similar, except using the minimum start
5761    // value and the maximum end value.
5762    const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
5763
5764    return BackedgeTakenInfo(BECount, MaxBECount);
5765  }
5766
5767  return getCouldNotCompute();
5768}
5769
5770/// getNumIterationsInRange - Return the number of iterations of this loop that
5771/// produce values in the specified constant range.  Another way of looking at
5772/// this is that it returns the first iteration number where the value is not in
5773/// the condition, thus computing the exit count. If the iteration count can't
5774/// be computed, an instance of SCEVCouldNotCompute is returned.
5775const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
5776                                                    ScalarEvolution &SE) const {
5777  if (Range.isFullSet())  // Infinite loop.
5778    return SE.getCouldNotCompute();
5779
5780  // If the start is a non-zero constant, shift the range to simplify things.
5781  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
5782    if (!SC->getValue()->isZero()) {
5783      SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
5784      Operands[0] = SE.getConstant(SC->getType(), 0);
5785      const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
5786      if (const SCEVAddRecExpr *ShiftedAddRec =
5787            dyn_cast<SCEVAddRecExpr>(Shifted))
5788        return ShiftedAddRec->getNumIterationsInRange(
5789                           Range.subtract(SC->getValue()->getValue()), SE);
5790      // This is strange and shouldn't happen.
5791      return SE.getCouldNotCompute();
5792    }
5793
5794  // The only time we can solve this is when we have all constant indices.
5795  // Otherwise, we cannot determine the overflow conditions.
5796  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5797    if (!isa<SCEVConstant>(getOperand(i)))
5798      return SE.getCouldNotCompute();
5799
5800
5801  // Okay at this point we know that all elements of the chrec are constants and
5802  // that the start element is zero.
5803
5804  // First check to see if the range contains zero.  If not, the first
5805  // iteration exits.
5806  unsigned BitWidth = SE.getTypeSizeInBits(getType());
5807  if (!Range.contains(APInt(BitWidth, 0)))
5808    return SE.getConstant(getType(), 0);
5809
5810  if (isAffine()) {
5811    // If this is an affine expression then we have this situation:
5812    //   Solve {0,+,A} in Range  ===  Ax in Range
5813
5814    // We know that zero is in the range.  If A is positive then we know that
5815    // the upper value of the range must be the first possible exit value.
5816    // If A is negative then the lower of the range is the last possible loop
5817    // value.  Also note that we already checked for a full range.
5818    APInt One(BitWidth,1);
5819    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5820    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
5821
5822    // The exit value should be (End+A)/A.
5823    APInt ExitVal = (End + A).udiv(A);
5824    ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
5825
5826    // Evaluate at the exit value.  If we really did fall out of the valid
5827    // range, then we computed our trip count, otherwise wrap around or other
5828    // things must have happened.
5829    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
5830    if (Range.contains(Val->getValue()))
5831      return SE.getCouldNotCompute();  // Something strange happened
5832
5833    // Ensure that the previous value is in the range.  This is a sanity check.
5834    assert(Range.contains(
5835           EvaluateConstantChrecAtConstant(this,
5836           ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
5837           "Linear scev computation is off in a bad way!");
5838    return SE.getConstant(ExitValue);
5839  } else if (isQuadratic()) {
5840    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5841    // quadratic equation to solve it.  To do this, we must frame our problem in
5842    // terms of figuring out when zero is crossed, instead of when
5843    // Range.getUpper() is crossed.
5844    SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
5845    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
5846    const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
5847
5848    // Next, solve the constructed addrec
5849    std::pair<const SCEV *,const SCEV *> Roots =
5850      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
5851    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5852    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
5853    if (R1) {
5854      // Pick the smallest positive root value.
5855      if (ConstantInt *CB =
5856          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
5857                         R1->getValue(), R2->getValue()))) {
5858        if (CB->getZExtValue() == false)
5859          std::swap(R1, R2);   // R1 is the minimum root now.
5860
5861        // Make sure the root is not off by one.  The returned iteration should
5862        // not be in the range, but the previous one should be.  When solving
5863        // for "X*X < 5", for example, we should not return a root of 2.
5864        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
5865                                                             R1->getValue(),
5866                                                             SE);
5867        if (Range.contains(R1Val->getValue())) {
5868          // The next iteration must be out of the range...
5869          ConstantInt *NextVal =
5870                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
5871
5872          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5873          if (!Range.contains(R1Val->getValue()))
5874            return SE.getConstant(NextVal);
5875          return SE.getCouldNotCompute();  // Something strange happened
5876        }
5877
5878        // If R1 was not in the range, then it is a good return value.  Make
5879        // sure that R1-1 WAS in the range though, just in case.
5880        ConstantInt *NextVal =
5881               ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
5882        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5883        if (Range.contains(R1Val->getValue()))
5884          return R1;
5885        return SE.getCouldNotCompute();  // Something strange happened
5886      }
5887    }
5888  }
5889
5890  return SE.getCouldNotCompute();
5891}
5892
5893
5894
5895//===----------------------------------------------------------------------===//
5896//                   SCEVCallbackVH Class Implementation
5897//===----------------------------------------------------------------------===//
5898
5899void ScalarEvolution::SCEVCallbackVH::deleted() {
5900  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5901  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5902    SE->ConstantEvolutionLoopExitValue.erase(PN);
5903  SE->ValueExprMap.erase(getValPtr());
5904  // this now dangles!
5905}
5906
5907void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
5908  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5909
5910  // Forget all the expressions associated with users of the old value,
5911  // so that future queries will recompute the expressions using the new
5912  // value.
5913  Value *Old = getValPtr();
5914  SmallVector<User *, 16> Worklist;
5915  SmallPtrSet<User *, 8> Visited;
5916  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5917       UI != UE; ++UI)
5918    Worklist.push_back(*UI);
5919  while (!Worklist.empty()) {
5920    User *U = Worklist.pop_back_val();
5921    // Deleting the Old value will cause this to dangle. Postpone
5922    // that until everything else is done.
5923    if (U == Old)
5924      continue;
5925    if (!Visited.insert(U))
5926      continue;
5927    if (PHINode *PN = dyn_cast<PHINode>(U))
5928      SE->ConstantEvolutionLoopExitValue.erase(PN);
5929    SE->ValueExprMap.erase(U);
5930    for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5931         UI != UE; ++UI)
5932      Worklist.push_back(*UI);
5933  }
5934  // Delete the Old value.
5935  if (PHINode *PN = dyn_cast<PHINode>(Old))
5936    SE->ConstantEvolutionLoopExitValue.erase(PN);
5937  SE->ValueExprMap.erase(Old);
5938  // this now dangles!
5939}
5940
5941ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
5942  : CallbackVH(V), SE(se) {}
5943
5944//===----------------------------------------------------------------------===//
5945//                   ScalarEvolution Class Implementation
5946//===----------------------------------------------------------------------===//
5947
5948ScalarEvolution::ScalarEvolution()
5949  : FunctionPass(ID), FirstUnknown(0) {
5950  initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
5951}
5952
5953bool ScalarEvolution::runOnFunction(Function &F) {
5954  this->F = &F;
5955  LI = &getAnalysis<LoopInfo>();
5956  TD = getAnalysisIfAvailable<TargetData>();
5957  DT = &getAnalysis<DominatorTree>();
5958  return false;
5959}
5960
5961void ScalarEvolution::releaseMemory() {
5962  // Iterate through all the SCEVUnknown instances and call their
5963  // destructors, so that they release their references to their values.
5964  for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
5965    U->~SCEVUnknown();
5966  FirstUnknown = 0;
5967
5968  ValueExprMap.clear();
5969  BackedgeTakenCounts.clear();
5970  ConstantEvolutionLoopExitValue.clear();
5971  ValuesAtScopes.clear();
5972  LoopDispositions.clear();
5973  BlockDispositions.clear();
5974  UnsignedRanges.clear();
5975  SignedRanges.clear();
5976  UniqueSCEVs.clear();
5977  SCEVAllocator.Reset();
5978}
5979
5980void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5981  AU.setPreservesAll();
5982  AU.addRequiredTransitive<LoopInfo>();
5983  AU.addRequiredTransitive<DominatorTree>();
5984}
5985
5986bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
5987  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
5988}
5989
5990static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
5991                          const Loop *L) {
5992  // Print all inner loops first
5993  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5994    PrintLoopInfo(OS, SE, *I);
5995
5996  OS << "Loop ";
5997  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5998  OS << ": ";
5999
6000  SmallVector<BasicBlock *, 8> ExitBlocks;
6001  L->getExitBlocks(ExitBlocks);
6002  if (ExitBlocks.size() != 1)
6003    OS << "<multiple exits> ";
6004
6005  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
6006    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
6007  } else {
6008    OS << "Unpredictable backedge-taken count. ";
6009  }
6010
6011  OS << "\n"
6012        "Loop ";
6013  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6014  OS << ": ";
6015
6016  if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
6017    OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
6018  } else {
6019    OS << "Unpredictable max backedge-taken count. ";
6020  }
6021
6022  OS << "\n";
6023}
6024
6025void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
6026  // ScalarEvolution's implementation of the print method is to print
6027  // out SCEV values of all instructions that are interesting. Doing
6028  // this potentially causes it to create new SCEV objects though,
6029  // which technically conflicts with the const qualifier. This isn't
6030  // observable from outside the class though, so casting away the
6031  // const isn't dangerous.
6032  ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
6033
6034  OS << "Classifying expressions for: ";
6035  WriteAsOperand(OS, F, /*PrintType=*/false);
6036  OS << "\n";
6037  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
6038    if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
6039      OS << *I << '\n';
6040      OS << "  -->  ";
6041      const SCEV *SV = SE.getSCEV(&*I);
6042      SV->print(OS);
6043
6044      const Loop *L = LI->getLoopFor((*I).getParent());
6045
6046      const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
6047      if (AtUse != SV) {
6048        OS << "  -->  ";
6049        AtUse->print(OS);
6050      }
6051
6052      if (L) {
6053        OS << "\t\t" "Exits: ";
6054        const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
6055        if (!SE.isLoopInvariant(ExitValue, L)) {
6056          OS << "<<Unknown>>";
6057        } else {
6058          OS << *ExitValue;
6059        }
6060      }
6061
6062      OS << "\n";
6063    }
6064
6065  OS << "Determining loop execution counts for: ";
6066  WriteAsOperand(OS, F, /*PrintType=*/false);
6067  OS << "\n";
6068  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
6069    PrintLoopInfo(OS, &SE, *I);
6070}
6071
6072ScalarEvolution::LoopDisposition
6073ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
6074  std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
6075  std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
6076    Values.insert(std::make_pair(L, LoopVariant));
6077  if (!Pair.second)
6078    return Pair.first->second;
6079
6080  LoopDisposition D = computeLoopDisposition(S, L);
6081  return LoopDispositions[S][L] = D;
6082}
6083
6084ScalarEvolution::LoopDisposition
6085ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
6086  switch (S->getSCEVType()) {
6087  case scConstant:
6088    return LoopInvariant;
6089  case scTruncate:
6090  case scZeroExtend:
6091  case scSignExtend:
6092    return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
6093  case scAddRecExpr: {
6094    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6095
6096    // If L is the addrec's loop, it's computable.
6097    if (AR->getLoop() == L)
6098      return LoopComputable;
6099
6100    // Add recurrences are never invariant in the function-body (null loop).
6101    if (!L)
6102      return LoopVariant;
6103
6104    // This recurrence is variant w.r.t. L if L contains AR's loop.
6105    if (L->contains(AR->getLoop()))
6106      return LoopVariant;
6107
6108    // This recurrence is invariant w.r.t. L if AR's loop contains L.
6109    if (AR->getLoop()->contains(L))
6110      return LoopInvariant;
6111
6112    // This recurrence is variant w.r.t. L if any of its operands
6113    // are variant.
6114    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
6115         I != E; ++I)
6116      if (!isLoopInvariant(*I, L))
6117        return LoopVariant;
6118
6119    // Otherwise it's loop-invariant.
6120    return LoopInvariant;
6121  }
6122  case scAddExpr:
6123  case scMulExpr:
6124  case scUMaxExpr:
6125  case scSMaxExpr: {
6126    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6127    bool HasVarying = false;
6128    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6129         I != E; ++I) {
6130      LoopDisposition D = getLoopDisposition(*I, L);
6131      if (D == LoopVariant)
6132        return LoopVariant;
6133      if (D == LoopComputable)
6134        HasVarying = true;
6135    }
6136    return HasVarying ? LoopComputable : LoopInvariant;
6137  }
6138  case scUDivExpr: {
6139    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6140    LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
6141    if (LD == LoopVariant)
6142      return LoopVariant;
6143    LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
6144    if (RD == LoopVariant)
6145      return LoopVariant;
6146    return (LD == LoopInvariant && RD == LoopInvariant) ?
6147           LoopInvariant : LoopComputable;
6148  }
6149  case scUnknown:
6150    // All non-instruction values are loop invariant.  All instructions are loop
6151    // invariant if they are not contained in the specified loop.
6152    // Instructions are never considered invariant in the function body
6153    // (null loop) because they are defined within the "loop".
6154    if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
6155      return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
6156    return LoopInvariant;
6157  case scCouldNotCompute:
6158    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6159    return LoopVariant;
6160  default: break;
6161  }
6162  llvm_unreachable("Unknown SCEV kind!");
6163  return LoopVariant;
6164}
6165
6166bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
6167  return getLoopDisposition(S, L) == LoopInvariant;
6168}
6169
6170bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6171  return getLoopDisposition(S, L) == LoopComputable;
6172}
6173
6174ScalarEvolution::BlockDisposition
6175ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6176  std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
6177  std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
6178    Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
6179  if (!Pair.second)
6180    return Pair.first->second;
6181
6182  BlockDisposition D = computeBlockDisposition(S, BB);
6183  return BlockDispositions[S][BB] = D;
6184}
6185
6186ScalarEvolution::BlockDisposition
6187ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6188  switch (S->getSCEVType()) {
6189  case scConstant:
6190    return ProperlyDominatesBlock;
6191  case scTruncate:
6192  case scZeroExtend:
6193  case scSignExtend:
6194    return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
6195  case scAddRecExpr: {
6196    // This uses a "dominates" query instead of "properly dominates" query
6197    // to test for proper dominance too, because the instruction which
6198    // produces the addrec's value is a PHI, and a PHI effectively properly
6199    // dominates its entire containing block.
6200    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6201    if (!DT->dominates(AR->getLoop()->getHeader(), BB))
6202      return DoesNotDominateBlock;
6203  }
6204  // FALL THROUGH into SCEVNAryExpr handling.
6205  case scAddExpr:
6206  case scMulExpr:
6207  case scUMaxExpr:
6208  case scSMaxExpr: {
6209    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6210    bool Proper = true;
6211    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6212         I != E; ++I) {
6213      BlockDisposition D = getBlockDisposition(*I, BB);
6214      if (D == DoesNotDominateBlock)
6215        return DoesNotDominateBlock;
6216      if (D == DominatesBlock)
6217        Proper = false;
6218    }
6219    return Proper ? ProperlyDominatesBlock : DominatesBlock;
6220  }
6221  case scUDivExpr: {
6222    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6223    const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6224    BlockDisposition LD = getBlockDisposition(LHS, BB);
6225    if (LD == DoesNotDominateBlock)
6226      return DoesNotDominateBlock;
6227    BlockDisposition RD = getBlockDisposition(RHS, BB);
6228    if (RD == DoesNotDominateBlock)
6229      return DoesNotDominateBlock;
6230    return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6231      ProperlyDominatesBlock : DominatesBlock;
6232  }
6233  case scUnknown:
6234    if (Instruction *I =
6235          dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6236      if (I->getParent() == BB)
6237        return DominatesBlock;
6238      if (DT->properlyDominates(I->getParent(), BB))
6239        return ProperlyDominatesBlock;
6240      return DoesNotDominateBlock;
6241    }
6242    return ProperlyDominatesBlock;
6243  case scCouldNotCompute:
6244    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6245    return DoesNotDominateBlock;
6246  default: break;
6247  }
6248  llvm_unreachable("Unknown SCEV kind!");
6249  return DoesNotDominateBlock;
6250}
6251
6252bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
6253  return getBlockDisposition(S, BB) >= DominatesBlock;
6254}
6255
6256bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
6257  return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
6258}
6259
6260bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
6261  switch (S->getSCEVType()) {
6262  case scConstant:
6263    return false;
6264  case scTruncate:
6265  case scZeroExtend:
6266  case scSignExtend: {
6267    const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S);
6268    const SCEV *CastOp = Cast->getOperand();
6269    return Op == CastOp || hasOperand(CastOp, Op);
6270  }
6271  case scAddRecExpr:
6272  case scAddExpr:
6273  case scMulExpr:
6274  case scUMaxExpr:
6275  case scSMaxExpr: {
6276    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6277    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6278         I != E; ++I) {
6279      const SCEV *NAryOp = *I;
6280      if (NAryOp == Op || hasOperand(NAryOp, Op))
6281        return true;
6282    }
6283    return false;
6284  }
6285  case scUDivExpr: {
6286    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6287    const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6288    return LHS == Op || hasOperand(LHS, Op) ||
6289           RHS == Op || hasOperand(RHS, Op);
6290  }
6291  case scUnknown:
6292    return false;
6293  case scCouldNotCompute:
6294    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6295    return false;
6296  default: break;
6297  }
6298  llvm_unreachable("Unknown SCEV kind!");
6299  return false;
6300}
6301
6302void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
6303  ValuesAtScopes.erase(S);
6304  LoopDispositions.erase(S);
6305  BlockDispositions.erase(S);
6306  UnsignedRanges.erase(S);
6307  SignedRanges.erase(S);
6308}
6309