ScalarEvolution.cpp revision 6ee2f3d840fd06f29aa3c5b64a5d0643fd02cef3
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle.  These classes are reference counted, managed by the SCEVHandle
18// class.  We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression.  These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
36// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43//  Chains of recurrences -- a method to expedite the evaluation
44//  of closed-form functions
45//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47//  On computational properties of chains of recurrences
48//  Eugene V. Zima
49//
50//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51//  Robert A. van Engelen
52//
53//  Efficient Symbolic Analysis for Optimizing Compilers
54//  Robert A. van Engelen
55//
56//  Using the chains of recurrences algebra for data dependence testing and
57//  induction variable substitution
58//  MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
62#define DEBUG_TYPE "scalar-evolution"
63#include "llvm/Analysis/ScalarEvolutionExpressions.h"
64#include "llvm/Constants.h"
65#include "llvm/DerivedTypes.h"
66#include "llvm/GlobalVariable.h"
67#include "llvm/Instructions.h"
68#include "llvm/Analysis/ConstantFolding.h"
69#include "llvm/Analysis/Dominators.h"
70#include "llvm/Analysis/LoopInfo.h"
71#include "llvm/Assembly/Writer.h"
72#include "llvm/Target/TargetData.h"
73#include "llvm/Support/CommandLine.h"
74#include "llvm/Support/Compiler.h"
75#include "llvm/Support/ConstantRange.h"
76#include "llvm/Support/GetElementPtrTypeIterator.h"
77#include "llvm/Support/InstIterator.h"
78#include "llvm/Support/ManagedStatic.h"
79#include "llvm/Support/MathExtras.h"
80#include "llvm/Support/raw_ostream.h"
81#include "llvm/ADT/Statistic.h"
82#include "llvm/ADT/STLExtras.h"
83#include <ostream>
84#include <algorithm>
85using namespace llvm;
86
87STATISTIC(NumArrayLenItCounts,
88          "Number of trip counts computed with array length");
89STATISTIC(NumTripCountsComputed,
90          "Number of loops with predictable loop counts");
91STATISTIC(NumTripCountsNotComputed,
92          "Number of loops without predictable loop counts");
93STATISTIC(NumBruteForceTripCountsComputed,
94          "Number of loops with trip counts computed by force");
95
96static cl::opt<unsigned>
97MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
98                        cl::desc("Maximum number of iterations SCEV will "
99                                 "symbolically execute a constant derived loop"),
100                        cl::init(100));
101
102static RegisterPass<ScalarEvolution>
103R("scalar-evolution", "Scalar Evolution Analysis", false, true);
104char ScalarEvolution::ID = 0;
105
106//===----------------------------------------------------------------------===//
107//                           SCEV class definitions
108//===----------------------------------------------------------------------===//
109
110//===----------------------------------------------------------------------===//
111// Implementation of the SCEV class.
112//
113SCEV::~SCEV() {}
114void SCEV::dump() const {
115  print(errs());
116  errs() << '\n';
117}
118
119void SCEV::print(std::ostream &o) const {
120  raw_os_ostream OS(o);
121  print(OS);
122}
123
124bool SCEV::isZero() const {
125  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
126    return SC->getValue()->isZero();
127  return false;
128}
129
130
131SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
132SCEVCouldNotCompute::~SCEVCouldNotCompute() {}
133
134bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
135  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
136  return false;
137}
138
139const Type *SCEVCouldNotCompute::getType() const {
140  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
141  return 0;
142}
143
144bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
145  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
146  return false;
147}
148
149SCEVHandle SCEVCouldNotCompute::
150replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
151                                  const SCEVHandle &Conc,
152                                  ScalarEvolution &SE) const {
153  return this;
154}
155
156void SCEVCouldNotCompute::print(raw_ostream &OS) const {
157  OS << "***COULDNOTCOMPUTE***";
158}
159
160bool SCEVCouldNotCompute::classof(const SCEV *S) {
161  return S->getSCEVType() == scCouldNotCompute;
162}
163
164
165// SCEVConstants - Only allow the creation of one SCEVConstant for any
166// particular value.  Don't use a SCEVHandle here, or else the object will
167// never be deleted!
168static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
169
170
171SCEVConstant::~SCEVConstant() {
172  SCEVConstants->erase(V);
173}
174
175SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) {
176  SCEVConstant *&R = (*SCEVConstants)[V];
177  if (R == 0) R = new SCEVConstant(V);
178  return R;
179}
180
181SCEVHandle ScalarEvolution::getConstant(const APInt& Val) {
182  return getConstant(ConstantInt::get(Val));
183}
184
185const Type *SCEVConstant::getType() const { return V->getType(); }
186
187void SCEVConstant::print(raw_ostream &OS) const {
188  WriteAsOperand(OS, V, false);
189}
190
191SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy,
192                           const SCEVHandle &op, const Type *ty)
193  : SCEV(SCEVTy), Op(op), Ty(ty) {}
194
195SCEVCastExpr::~SCEVCastExpr() {}
196
197bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
198  return Op->dominates(BB, DT);
199}
200
201// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
202// particular input.  Don't use a SCEVHandle here, or else the object will
203// never be deleted!
204static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
205                     SCEVTruncateExpr*> > SCEVTruncates;
206
207SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
208  : SCEVCastExpr(scTruncate, op, ty) {
209  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
210         (Ty->isInteger() || isa<PointerType>(Ty)) &&
211         "Cannot truncate non-integer value!");
212}
213
214SCEVTruncateExpr::~SCEVTruncateExpr() {
215  SCEVTruncates->erase(std::make_pair(Op, Ty));
216}
217
218void SCEVTruncateExpr::print(raw_ostream &OS) const {
219  OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
220}
221
222// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
223// particular input.  Don't use a SCEVHandle here, or else the object will never
224// be deleted!
225static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
226                     SCEVZeroExtendExpr*> > SCEVZeroExtends;
227
228SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
229  : SCEVCastExpr(scZeroExtend, op, ty) {
230  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
231         (Ty->isInteger() || isa<PointerType>(Ty)) &&
232         "Cannot zero extend non-integer value!");
233}
234
235SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
236  SCEVZeroExtends->erase(std::make_pair(Op, Ty));
237}
238
239void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
240  OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
241}
242
243// SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any
244// particular input.  Don't use a SCEVHandle here, or else the object will never
245// be deleted!
246static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
247                     SCEVSignExtendExpr*> > SCEVSignExtends;
248
249SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty)
250  : SCEVCastExpr(scSignExtend, op, ty) {
251  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
252         (Ty->isInteger() || isa<PointerType>(Ty)) &&
253         "Cannot sign extend non-integer value!");
254}
255
256SCEVSignExtendExpr::~SCEVSignExtendExpr() {
257  SCEVSignExtends->erase(std::make_pair(Op, Ty));
258}
259
260void SCEVSignExtendExpr::print(raw_ostream &OS) const {
261  OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
262}
263
264// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
265// particular input.  Don't use a SCEVHandle here, or else the object will never
266// be deleted!
267static ManagedStatic<std::map<std::pair<unsigned, std::vector<const SCEV*> >,
268                     SCEVCommutativeExpr*> > SCEVCommExprs;
269
270SCEVCommutativeExpr::~SCEVCommutativeExpr() {
271  std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
272  SCEVCommExprs->erase(std::make_pair(getSCEVType(), SCEVOps));
273}
274
275void SCEVCommutativeExpr::print(raw_ostream &OS) const {
276  assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
277  const char *OpStr = getOperationStr();
278  OS << "(" << *Operands[0];
279  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
280    OS << OpStr << *Operands[i];
281  OS << ")";
282}
283
284SCEVHandle SCEVCommutativeExpr::
285replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
286                                  const SCEVHandle &Conc,
287                                  ScalarEvolution &SE) const {
288  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
289    SCEVHandle H =
290      getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
291    if (H != getOperand(i)) {
292      std::vector<SCEVHandle> NewOps;
293      NewOps.reserve(getNumOperands());
294      for (unsigned j = 0; j != i; ++j)
295        NewOps.push_back(getOperand(j));
296      NewOps.push_back(H);
297      for (++i; i != e; ++i)
298        NewOps.push_back(getOperand(i)->
299                         replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
300
301      if (isa<SCEVAddExpr>(this))
302        return SE.getAddExpr(NewOps);
303      else if (isa<SCEVMulExpr>(this))
304        return SE.getMulExpr(NewOps);
305      else if (isa<SCEVSMaxExpr>(this))
306        return SE.getSMaxExpr(NewOps);
307      else if (isa<SCEVUMaxExpr>(this))
308        return SE.getUMaxExpr(NewOps);
309      else
310        assert(0 && "Unknown commutative expr!");
311    }
312  }
313  return this;
314}
315
316bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
317  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
318    if (!getOperand(i)->dominates(BB, DT))
319      return false;
320  }
321  return true;
322}
323
324
325// SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
326// input.  Don't use a SCEVHandle here, or else the object will never be
327// deleted!
328static ManagedStatic<std::map<std::pair<const SCEV*, const SCEV*>,
329                     SCEVUDivExpr*> > SCEVUDivs;
330
331SCEVUDivExpr::~SCEVUDivExpr() {
332  SCEVUDivs->erase(std::make_pair(LHS, RHS));
333}
334
335bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
336  return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
337}
338
339void SCEVUDivExpr::print(raw_ostream &OS) const {
340  OS << "(" << *LHS << " /u " << *RHS << ")";
341}
342
343const Type *SCEVUDivExpr::getType() const {
344  return LHS->getType();
345}
346
347// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
348// particular input.  Don't use a SCEVHandle here, or else the object will never
349// be deleted!
350static ManagedStatic<std::map<std::pair<const Loop *,
351                                        std::vector<const SCEV*> >,
352                     SCEVAddRecExpr*> > SCEVAddRecExprs;
353
354SCEVAddRecExpr::~SCEVAddRecExpr() {
355  std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
356  SCEVAddRecExprs->erase(std::make_pair(L, SCEVOps));
357}
358
359SCEVHandle SCEVAddRecExpr::
360replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
361                                  const SCEVHandle &Conc,
362                                  ScalarEvolution &SE) const {
363  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
364    SCEVHandle H =
365      getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
366    if (H != getOperand(i)) {
367      std::vector<SCEVHandle> NewOps;
368      NewOps.reserve(getNumOperands());
369      for (unsigned j = 0; j != i; ++j)
370        NewOps.push_back(getOperand(j));
371      NewOps.push_back(H);
372      for (++i; i != e; ++i)
373        NewOps.push_back(getOperand(i)->
374                         replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
375
376      return SE.getAddRecExpr(NewOps, L);
377    }
378  }
379  return this;
380}
381
382
383bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
384  // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
385  // contain L and if the start is invariant.
386  return !QueryLoop->contains(L->getHeader()) &&
387         getOperand(0)->isLoopInvariant(QueryLoop);
388}
389
390
391void SCEVAddRecExpr::print(raw_ostream &OS) const {
392  OS << "{" << *Operands[0];
393  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
394    OS << ",+," << *Operands[i];
395  OS << "}<" << L->getHeader()->getName() + ">";
396}
397
398// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
399// value.  Don't use a SCEVHandle here, or else the object will never be
400// deleted!
401static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
402
403SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
404
405bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
406  // All non-instruction values are loop invariant.  All instructions are loop
407  // invariant if they are not contained in the specified loop.
408  if (Instruction *I = dyn_cast<Instruction>(V))
409    return !L->contains(I->getParent());
410  return true;
411}
412
413bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
414  if (Instruction *I = dyn_cast<Instruction>(getValue()))
415    return DT->dominates(I->getParent(), BB);
416  return true;
417}
418
419const Type *SCEVUnknown::getType() const {
420  return V->getType();
421}
422
423void SCEVUnknown::print(raw_ostream &OS) const {
424  WriteAsOperand(OS, V, false);
425}
426
427//===----------------------------------------------------------------------===//
428//                               SCEV Utilities
429//===----------------------------------------------------------------------===//
430
431namespace {
432  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
433  /// than the complexity of the RHS.  This comparator is used to canonicalize
434  /// expressions.
435  struct VISIBILITY_HIDDEN SCEVComplexityCompare {
436    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
437      return LHS->getSCEVType() < RHS->getSCEVType();
438    }
439  };
440}
441
442/// GroupByComplexity - Given a list of SCEV objects, order them by their
443/// complexity, and group objects of the same complexity together by value.
444/// When this routine is finished, we know that any duplicates in the vector are
445/// consecutive and that complexity is monotonically increasing.
446///
447/// Note that we go take special precautions to ensure that we get determinstic
448/// results from this routine.  In other words, we don't want the results of
449/// this to depend on where the addresses of various SCEV objects happened to
450/// land in memory.
451///
452static void GroupByComplexity(std::vector<SCEVHandle> &Ops) {
453  if (Ops.size() < 2) return;  // Noop
454  if (Ops.size() == 2) {
455    // This is the common case, which also happens to be trivially simple.
456    // Special case it.
457    if (SCEVComplexityCompare()(Ops[1], Ops[0]))
458      std::swap(Ops[0], Ops[1]);
459    return;
460  }
461
462  // Do the rough sort by complexity.
463  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());
464
465  // Now that we are sorted by complexity, group elements of the same
466  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
467  // be extremely short in practice.  Note that we take this approach because we
468  // do not want to depend on the addresses of the objects we are grouping.
469  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
470    const SCEV *S = Ops[i];
471    unsigned Complexity = S->getSCEVType();
472
473    // If there are any objects of the same complexity and same value as this
474    // one, group them.
475    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
476      if (Ops[j] == S) { // Found a duplicate.
477        // Move it to immediately after i'th element.
478        std::swap(Ops[i+1], Ops[j]);
479        ++i;   // no need to rescan it.
480        if (i == e-2) return;  // Done!
481      }
482    }
483  }
484}
485
486
487
488//===----------------------------------------------------------------------===//
489//                      Simple SCEV method implementations
490//===----------------------------------------------------------------------===//
491
492/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
493// Assume, K > 0.
494static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K,
495                                      ScalarEvolution &SE,
496                                      const Type* ResultTy) {
497  // Handle the simplest case efficiently.
498  if (K == 1)
499    return SE.getTruncateOrZeroExtend(It, ResultTy);
500
501  // We are using the following formula for BC(It, K):
502  //
503  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
504  //
505  // Suppose, W is the bitwidth of the return value.  We must be prepared for
506  // overflow.  Hence, we must assure that the result of our computation is
507  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
508  // safe in modular arithmetic.
509  //
510  // However, this code doesn't use exactly that formula; the formula it uses
511  // is something like the following, where T is the number of factors of 2 in
512  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
513  // exponentiation:
514  //
515  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
516  //
517  // This formula is trivially equivalent to the previous formula.  However,
518  // this formula can be implemented much more efficiently.  The trick is that
519  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
520  // arithmetic.  To do exact division in modular arithmetic, all we have
521  // to do is multiply by the inverse.  Therefore, this step can be done at
522  // width W.
523  //
524  // The next issue is how to safely do the division by 2^T.  The way this
525  // is done is by doing the multiplication step at a width of at least W + T
526  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
527  // when we perform the division by 2^T (which is equivalent to a right shift
528  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
529  // truncated out after the division by 2^T.
530  //
531  // In comparison to just directly using the first formula, this technique
532  // is much more efficient; using the first formula requires W * K bits,
533  // but this formula less than W + K bits. Also, the first formula requires
534  // a division step, whereas this formula only requires multiplies and shifts.
535  //
536  // It doesn't matter whether the subtraction step is done in the calculation
537  // width or the input iteration count's width; if the subtraction overflows,
538  // the result must be zero anyway.  We prefer here to do it in the width of
539  // the induction variable because it helps a lot for certain cases; CodeGen
540  // isn't smart enough to ignore the overflow, which leads to much less
541  // efficient code if the width of the subtraction is wider than the native
542  // register width.
543  //
544  // (It's possible to not widen at all by pulling out factors of 2 before
545  // the multiplication; for example, K=2 can be calculated as
546  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
547  // extra arithmetic, so it's not an obvious win, and it gets
548  // much more complicated for K > 3.)
549
550  // Protection from insane SCEVs; this bound is conservative,
551  // but it probably doesn't matter.
552  if (K > 1000)
553    return SE.getCouldNotCompute();
554
555  unsigned W = SE.getTypeSizeInBits(ResultTy);
556
557  // Calculate K! / 2^T and T; we divide out the factors of two before
558  // multiplying for calculating K! / 2^T to avoid overflow.
559  // Other overflow doesn't matter because we only care about the bottom
560  // W bits of the result.
561  APInt OddFactorial(W, 1);
562  unsigned T = 1;
563  for (unsigned i = 3; i <= K; ++i) {
564    APInt Mult(W, i);
565    unsigned TwoFactors = Mult.countTrailingZeros();
566    T += TwoFactors;
567    Mult = Mult.lshr(TwoFactors);
568    OddFactorial *= Mult;
569  }
570
571  // We need at least W + T bits for the multiplication step
572  unsigned CalculationBits = W + T;
573
574  // Calcuate 2^T, at width T+W.
575  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
576
577  // Calculate the multiplicative inverse of K! / 2^T;
578  // this multiplication factor will perform the exact division by
579  // K! / 2^T.
580  APInt Mod = APInt::getSignedMinValue(W+1);
581  APInt MultiplyFactor = OddFactorial.zext(W+1);
582  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
583  MultiplyFactor = MultiplyFactor.trunc(W);
584
585  // Calculate the product, at width T+W
586  const IntegerType *CalculationTy = IntegerType::get(CalculationBits);
587  SCEVHandle Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
588  for (unsigned i = 1; i != K; ++i) {
589    SCEVHandle S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
590    Dividend = SE.getMulExpr(Dividend,
591                             SE.getTruncateOrZeroExtend(S, CalculationTy));
592  }
593
594  // Divide by 2^T
595  SCEVHandle DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
596
597  // Truncate the result, and divide by K! / 2^T.
598
599  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
600                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
601}
602
603/// evaluateAtIteration - Return the value of this chain of recurrences at
604/// the specified iteration number.  We can evaluate this recurrence by
605/// multiplying each element in the chain by the binomial coefficient
606/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
607///
608///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
609///
610/// where BC(It, k) stands for binomial coefficient.
611///
612SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It,
613                                               ScalarEvolution &SE) const {
614  SCEVHandle Result = getStart();
615  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
616    // The computation is correct in the face of overflow provided that the
617    // multiplication is performed _after_ the evaluation of the binomial
618    // coefficient.
619    SCEVHandle Coeff = BinomialCoefficient(It, i, SE, getType());
620    if (isa<SCEVCouldNotCompute>(Coeff))
621      return Coeff;
622
623    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
624  }
625  return Result;
626}
627
628//===----------------------------------------------------------------------===//
629//                    SCEV Expression folder implementations
630//===----------------------------------------------------------------------===//
631
632SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op,
633                                            const Type *Ty) {
634  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
635         "This is not a truncating conversion!");
636  assert(isSCEVable(Ty) &&
637         "This is not a conversion to a SCEVable type!");
638  Ty = getEffectiveSCEVType(Ty);
639
640  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
641    return getUnknown(
642        ConstantExpr::getTrunc(SC->getValue(), Ty));
643
644  // trunc(trunc(x)) --> trunc(x)
645  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
646    return getTruncateExpr(ST->getOperand(), Ty);
647
648  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
649  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
650    return getTruncateOrSignExtend(SS->getOperand(), Ty);
651
652  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
653  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
654    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
655
656  // If the input value is a chrec scev made out of constants, truncate
657  // all of the constants.
658  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
659    std::vector<SCEVHandle> Operands;
660    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
661      // FIXME: This should allow truncation of other expression types!
662      if (isa<SCEVConstant>(AddRec->getOperand(i)))
663        Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
664      else
665        break;
666    if (Operands.size() == AddRec->getNumOperands())
667      return getAddRecExpr(Operands, AddRec->getLoop());
668  }
669
670  SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
671  if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
672  return Result;
673}
674
675SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op,
676                                              const Type *Ty) {
677  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
678         "This is not an extending conversion!");
679  assert(isSCEVable(Ty) &&
680         "This is not a conversion to a SCEVable type!");
681  Ty = getEffectiveSCEVType(Ty);
682
683  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
684    const Type *IntTy = getEffectiveSCEVType(Ty);
685    Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
686    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
687    return getUnknown(C);
688  }
689
690  // zext(zext(x)) --> zext(x)
691  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
692    return getZeroExtendExpr(SZ->getOperand(), Ty);
693
694  // If the input value is a chrec scev, and we can prove that the value
695  // did not overflow the old, smaller, value, we can zero extend all of the
696  // operands (often constants).  This allows analysis of something like
697  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
698  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
699    if (AR->isAffine()) {
700      // Check whether the backedge-taken count is SCEVCouldNotCompute.
701      // Note that this serves two purposes: It filters out loops that are
702      // simply not analyzable, and it covers the case where this code is
703      // being called from within backedge-taken count analysis, such that
704      // attempting to ask for the backedge-taken count would likely result
705      // in infinite recursion. In the later case, the analysis code will
706      // cope with a conservative value, and it will take care to purge
707      // that value once it has finished.
708      SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
709      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
710        // Manually compute the final value for AR, checking for
711        // overflow.
712        SCEVHandle Start = AR->getStart();
713        SCEVHandle Step = AR->getStepRecurrence(*this);
714
715        // Check whether the backedge-taken count can be losslessly casted to
716        // the addrec's type. The count is always unsigned.
717        SCEVHandle CastedMaxBECount =
718          getTruncateOrZeroExtend(MaxBECount, Start->getType());
719        if (MaxBECount ==
720            getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType())) {
721          const Type *WideTy =
722            IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
723          // Check whether Start+Step*MaxBECount has no unsigned overflow.
724          SCEVHandle ZMul =
725            getMulExpr(CastedMaxBECount,
726                       getTruncateOrZeroExtend(Step, Start->getType()));
727          SCEVHandle Add = getAddExpr(Start, ZMul);
728          if (getZeroExtendExpr(Add, WideTy) ==
729              getAddExpr(getZeroExtendExpr(Start, WideTy),
730                         getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
731                                    getZeroExtendExpr(Step, WideTy))))
732            // Return the expression with the addrec on the outside.
733            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
734                                 getZeroExtendExpr(Step, Ty),
735                                 AR->getLoop());
736
737          // Similar to above, only this time treat the step value as signed.
738          // This covers loops that count down.
739          SCEVHandle SMul =
740            getMulExpr(CastedMaxBECount,
741                       getTruncateOrSignExtend(Step, Start->getType()));
742          Add = getAddExpr(Start, SMul);
743          if (getZeroExtendExpr(Add, WideTy) ==
744              getAddExpr(getZeroExtendExpr(Start, WideTy),
745                         getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
746                                    getSignExtendExpr(Step, WideTy))))
747            // Return the expression with the addrec on the outside.
748            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
749                                 getSignExtendExpr(Step, Ty),
750                                 AR->getLoop());
751        }
752      }
753    }
754
755  SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
756  if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
757  return Result;
758}
759
760SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op,
761                                              const Type *Ty) {
762  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
763         "This is not an extending conversion!");
764  assert(isSCEVable(Ty) &&
765         "This is not a conversion to a SCEVable type!");
766  Ty = getEffectiveSCEVType(Ty);
767
768  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
769    const Type *IntTy = getEffectiveSCEVType(Ty);
770    Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
771    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
772    return getUnknown(C);
773  }
774
775  // sext(sext(x)) --> sext(x)
776  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
777    return getSignExtendExpr(SS->getOperand(), Ty);
778
779  // If the input value is a chrec scev, and we can prove that the value
780  // did not overflow the old, smaller, value, we can sign extend all of the
781  // operands (often constants).  This allows analysis of something like
782  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
783  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
784    if (AR->isAffine()) {
785      // Check whether the backedge-taken count is SCEVCouldNotCompute.
786      // Note that this serves two purposes: It filters out loops that are
787      // simply not analyzable, and it covers the case where this code is
788      // being called from within backedge-taken count analysis, such that
789      // attempting to ask for the backedge-taken count would likely result
790      // in infinite recursion. In the later case, the analysis code will
791      // cope with a conservative value, and it will take care to purge
792      // that value once it has finished.
793      SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
794      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
795        // Manually compute the final value for AR, checking for
796        // overflow.
797        SCEVHandle Start = AR->getStart();
798        SCEVHandle Step = AR->getStepRecurrence(*this);
799
800        // Check whether the backedge-taken count can be losslessly casted to
801        // the addrec's type. The count is always unsigned.
802        SCEVHandle CastedMaxBECount =
803          getTruncateOrZeroExtend(MaxBECount, Start->getType());
804        if (MaxBECount ==
805            getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType())) {
806          const Type *WideTy =
807            IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
808          // Check whether Start+Step*MaxBECount has no signed overflow.
809          SCEVHandle SMul =
810            getMulExpr(CastedMaxBECount,
811                       getTruncateOrSignExtend(Step, Start->getType()));
812          SCEVHandle Add = getAddExpr(Start, SMul);
813          if (getSignExtendExpr(Add, WideTy) ==
814              getAddExpr(getSignExtendExpr(Start, WideTy),
815                         getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
816                                    getSignExtendExpr(Step, WideTy))))
817            // Return the expression with the addrec on the outside.
818            return getAddRecExpr(getSignExtendExpr(Start, Ty),
819                                 getSignExtendExpr(Step, Ty),
820                                 AR->getLoop());
821        }
822      }
823    }
824
825  SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)];
826  if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty);
827  return Result;
828}
829
830// get - Get a canonical add expression, or something simpler if possible.
831SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) {
832  assert(!Ops.empty() && "Cannot get empty add!");
833  if (Ops.size() == 1) return Ops[0];
834
835  // Sort by complexity, this groups all similar expression types together.
836  GroupByComplexity(Ops);
837
838  // If there are any constants, fold them together.
839  unsigned Idx = 0;
840  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
841    ++Idx;
842    assert(Idx < Ops.size());
843    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
844      // We found two constants, fold them together!
845      ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() +
846                                           RHSC->getValue()->getValue());
847      Ops[0] = getConstant(Fold);
848      Ops.erase(Ops.begin()+1);  // Erase the folded element
849      if (Ops.size() == 1) return Ops[0];
850      LHSC = cast<SCEVConstant>(Ops[0]);
851    }
852
853    // If we are left with a constant zero being added, strip it off.
854    if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
855      Ops.erase(Ops.begin());
856      --Idx;
857    }
858  }
859
860  if (Ops.size() == 1) return Ops[0];
861
862  // Okay, check to see if the same value occurs in the operand list twice.  If
863  // so, merge them together into an multiply expression.  Since we sorted the
864  // list, these values are required to be adjacent.
865  const Type *Ty = Ops[0]->getType();
866  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
867    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
868      // Found a match, merge the two values into a multiply, and add any
869      // remaining values to the result.
870      SCEVHandle Two = getIntegerSCEV(2, Ty);
871      SCEVHandle Mul = getMulExpr(Ops[i], Two);
872      if (Ops.size() == 2)
873        return Mul;
874      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
875      Ops.push_back(Mul);
876      return getAddExpr(Ops);
877    }
878
879  // Now we know the first non-constant operand.  Skip past any cast SCEVs.
880  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
881    ++Idx;
882
883  // If there are add operands they would be next.
884  if (Idx < Ops.size()) {
885    bool DeletedAdd = false;
886    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
887      // If we have an add, expand the add operands onto the end of the operands
888      // list.
889      Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
890      Ops.erase(Ops.begin()+Idx);
891      DeletedAdd = true;
892    }
893
894    // If we deleted at least one add, we added operands to the end of the list,
895    // and they are not necessarily sorted.  Recurse to resort and resimplify
896    // any operands we just aquired.
897    if (DeletedAdd)
898      return getAddExpr(Ops);
899  }
900
901  // Skip over the add expression until we get to a multiply.
902  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
903    ++Idx;
904
905  // If we are adding something to a multiply expression, make sure the
906  // something is not already an operand of the multiply.  If so, merge it into
907  // the multiply.
908  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
909    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
910    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
911      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
912      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
913        if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
914          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
915          SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
916          if (Mul->getNumOperands() != 2) {
917            // If the multiply has more than two operands, we must get the
918            // Y*Z term.
919            std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
920            MulOps.erase(MulOps.begin()+MulOp);
921            InnerMul = getMulExpr(MulOps);
922          }
923          SCEVHandle One = getIntegerSCEV(1, Ty);
924          SCEVHandle AddOne = getAddExpr(InnerMul, One);
925          SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]);
926          if (Ops.size() == 2) return OuterMul;
927          if (AddOp < Idx) {
928            Ops.erase(Ops.begin()+AddOp);
929            Ops.erase(Ops.begin()+Idx-1);
930          } else {
931            Ops.erase(Ops.begin()+Idx);
932            Ops.erase(Ops.begin()+AddOp-1);
933          }
934          Ops.push_back(OuterMul);
935          return getAddExpr(Ops);
936        }
937
938      // Check this multiply against other multiplies being added together.
939      for (unsigned OtherMulIdx = Idx+1;
940           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
941           ++OtherMulIdx) {
942        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
943        // If MulOp occurs in OtherMul, we can fold the two multiplies
944        // together.
945        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
946             OMulOp != e; ++OMulOp)
947          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
948            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
949            SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
950            if (Mul->getNumOperands() != 2) {
951              std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
952              MulOps.erase(MulOps.begin()+MulOp);
953              InnerMul1 = getMulExpr(MulOps);
954            }
955            SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
956            if (OtherMul->getNumOperands() != 2) {
957              std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
958                                             OtherMul->op_end());
959              MulOps.erase(MulOps.begin()+OMulOp);
960              InnerMul2 = getMulExpr(MulOps);
961            }
962            SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
963            SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
964            if (Ops.size() == 2) return OuterMul;
965            Ops.erase(Ops.begin()+Idx);
966            Ops.erase(Ops.begin()+OtherMulIdx-1);
967            Ops.push_back(OuterMul);
968            return getAddExpr(Ops);
969          }
970      }
971    }
972  }
973
974  // If there are any add recurrences in the operands list, see if any other
975  // added values are loop invariant.  If so, we can fold them into the
976  // recurrence.
977  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
978    ++Idx;
979
980  // Scan over all recurrences, trying to fold loop invariants into them.
981  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
982    // Scan all of the other operands to this add and add them to the vector if
983    // they are loop invariant w.r.t. the recurrence.
984    std::vector<SCEVHandle> LIOps;
985    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
986    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
987      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
988        LIOps.push_back(Ops[i]);
989        Ops.erase(Ops.begin()+i);
990        --i; --e;
991      }
992
993    // If we found some loop invariants, fold them into the recurrence.
994    if (!LIOps.empty()) {
995      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
996      LIOps.push_back(AddRec->getStart());
997
998      std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
999      AddRecOps[0] = getAddExpr(LIOps);
1000
1001      SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
1002      // If all of the other operands were loop invariant, we are done.
1003      if (Ops.size() == 1) return NewRec;
1004
1005      // Otherwise, add the folded AddRec by the non-liv parts.
1006      for (unsigned i = 0;; ++i)
1007        if (Ops[i] == AddRec) {
1008          Ops[i] = NewRec;
1009          break;
1010        }
1011      return getAddExpr(Ops);
1012    }
1013
1014    // Okay, if there weren't any loop invariants to be folded, check to see if
1015    // there are multiple AddRec's with the same loop induction variable being
1016    // added together.  If so, we can fold them.
1017    for (unsigned OtherIdx = Idx+1;
1018         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1019      if (OtherIdx != Idx) {
1020        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1021        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1022          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
1023          std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
1024          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1025            if (i >= NewOps.size()) {
1026              NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1027                            OtherAddRec->op_end());
1028              break;
1029            }
1030            NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
1031          }
1032          SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
1033
1034          if (Ops.size() == 2) return NewAddRec;
1035
1036          Ops.erase(Ops.begin()+Idx);
1037          Ops.erase(Ops.begin()+OtherIdx-1);
1038          Ops.push_back(NewAddRec);
1039          return getAddExpr(Ops);
1040        }
1041      }
1042
1043    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1044    // next one.
1045  }
1046
1047  // Okay, it looks like we really DO need an add expr.  Check to see if we
1048  // already have one, otherwise create a new one.
1049  std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1050  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
1051                                                                 SCEVOps)];
1052  if (Result == 0) Result = new SCEVAddExpr(Ops);
1053  return Result;
1054}
1055
1056
1057SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) {
1058  assert(!Ops.empty() && "Cannot get empty mul!");
1059
1060  // Sort by complexity, this groups all similar expression types together.
1061  GroupByComplexity(Ops);
1062
1063  // If there are any constants, fold them together.
1064  unsigned Idx = 0;
1065  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1066
1067    // C1*(C2+V) -> C1*C2 + C1*V
1068    if (Ops.size() == 2)
1069      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1070        if (Add->getNumOperands() == 2 &&
1071            isa<SCEVConstant>(Add->getOperand(0)))
1072          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1073                            getMulExpr(LHSC, Add->getOperand(1)));
1074
1075
1076    ++Idx;
1077    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1078      // We found two constants, fold them together!
1079      ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() *
1080                                           RHSC->getValue()->getValue());
1081      Ops[0] = getConstant(Fold);
1082      Ops.erase(Ops.begin()+1);  // Erase the folded element
1083      if (Ops.size() == 1) return Ops[0];
1084      LHSC = cast<SCEVConstant>(Ops[0]);
1085    }
1086
1087    // If we are left with a constant one being multiplied, strip it off.
1088    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1089      Ops.erase(Ops.begin());
1090      --Idx;
1091    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1092      // If we have a multiply of zero, it will always be zero.
1093      return Ops[0];
1094    }
1095  }
1096
1097  // Skip over the add expression until we get to a multiply.
1098  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1099    ++Idx;
1100
1101  if (Ops.size() == 1)
1102    return Ops[0];
1103
1104  // If there are mul operands inline them all into this expression.
1105  if (Idx < Ops.size()) {
1106    bool DeletedMul = false;
1107    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1108      // If we have an mul, expand the mul operands onto the end of the operands
1109      // list.
1110      Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1111      Ops.erase(Ops.begin()+Idx);
1112      DeletedMul = true;
1113    }
1114
1115    // If we deleted at least one mul, we added operands to the end of the list,
1116    // and they are not necessarily sorted.  Recurse to resort and resimplify
1117    // any operands we just aquired.
1118    if (DeletedMul)
1119      return getMulExpr(Ops);
1120  }
1121
1122  // If there are any add recurrences in the operands list, see if any other
1123  // added values are loop invariant.  If so, we can fold them into the
1124  // recurrence.
1125  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1126    ++Idx;
1127
1128  // Scan over all recurrences, trying to fold loop invariants into them.
1129  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1130    // Scan all of the other operands to this mul and add them to the vector if
1131    // they are loop invariant w.r.t. the recurrence.
1132    std::vector<SCEVHandle> LIOps;
1133    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1134    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1135      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1136        LIOps.push_back(Ops[i]);
1137        Ops.erase(Ops.begin()+i);
1138        --i; --e;
1139      }
1140
1141    // If we found some loop invariants, fold them into the recurrence.
1142    if (!LIOps.empty()) {
1143      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1144      std::vector<SCEVHandle> NewOps;
1145      NewOps.reserve(AddRec->getNumOperands());
1146      if (LIOps.size() == 1) {
1147        const SCEV *Scale = LIOps[0];
1148        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1149          NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1150      } else {
1151        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
1152          std::vector<SCEVHandle> MulOps(LIOps);
1153          MulOps.push_back(AddRec->getOperand(i));
1154          NewOps.push_back(getMulExpr(MulOps));
1155        }
1156      }
1157
1158      SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
1159
1160      // If all of the other operands were loop invariant, we are done.
1161      if (Ops.size() == 1) return NewRec;
1162
1163      // Otherwise, multiply the folded AddRec by the non-liv parts.
1164      for (unsigned i = 0;; ++i)
1165        if (Ops[i] == AddRec) {
1166          Ops[i] = NewRec;
1167          break;
1168        }
1169      return getMulExpr(Ops);
1170    }
1171
1172    // Okay, if there weren't any loop invariants to be folded, check to see if
1173    // there are multiple AddRec's with the same loop induction variable being
1174    // multiplied together.  If so, we can fold them.
1175    for (unsigned OtherIdx = Idx+1;
1176         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1177      if (OtherIdx != Idx) {
1178        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1179        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1180          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
1181          const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1182          SCEVHandle NewStart = getMulExpr(F->getStart(),
1183                                                 G->getStart());
1184          SCEVHandle B = F->getStepRecurrence(*this);
1185          SCEVHandle D = G->getStepRecurrence(*this);
1186          SCEVHandle NewStep = getAddExpr(getMulExpr(F, D),
1187                                          getMulExpr(G, B),
1188                                          getMulExpr(B, D));
1189          SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep,
1190                                               F->getLoop());
1191          if (Ops.size() == 2) return NewAddRec;
1192
1193          Ops.erase(Ops.begin()+Idx);
1194          Ops.erase(Ops.begin()+OtherIdx-1);
1195          Ops.push_back(NewAddRec);
1196          return getMulExpr(Ops);
1197        }
1198      }
1199
1200    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1201    // next one.
1202  }
1203
1204  // Okay, it looks like we really DO need an mul expr.  Check to see if we
1205  // already have one, otherwise create a new one.
1206  std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1207  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
1208                                                                 SCEVOps)];
1209  if (Result == 0)
1210    Result = new SCEVMulExpr(Ops);
1211  return Result;
1212}
1213
1214SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS,
1215                                        const SCEVHandle &RHS) {
1216  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1217    if (RHSC->getValue()->equalsInt(1))
1218      return LHS;                            // X udiv 1 --> x
1219
1220    if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1221      Constant *LHSCV = LHSC->getValue();
1222      Constant *RHSCV = RHSC->getValue();
1223      return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV));
1224    }
1225  }
1226
1227  // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
1228
1229  SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)];
1230  if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
1231  return Result;
1232}
1233
1234
1235/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1236/// specified loop.  Simplify the expression as much as possible.
1237SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start,
1238                               const SCEVHandle &Step, const Loop *L) {
1239  std::vector<SCEVHandle> Operands;
1240  Operands.push_back(Start);
1241  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1242    if (StepChrec->getLoop() == L) {
1243      Operands.insert(Operands.end(), StepChrec->op_begin(),
1244                      StepChrec->op_end());
1245      return getAddRecExpr(Operands, L);
1246    }
1247
1248  Operands.push_back(Step);
1249  return getAddRecExpr(Operands, L);
1250}
1251
1252/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1253/// specified loop.  Simplify the expression as much as possible.
1254SCEVHandle ScalarEvolution::getAddRecExpr(std::vector<SCEVHandle> &Operands,
1255                                          const Loop *L) {
1256  if (Operands.size() == 1) return Operands[0];
1257
1258  if (Operands.back()->isZero()) {
1259    Operands.pop_back();
1260    return getAddRecExpr(Operands, L);             // {X,+,0}  -->  X
1261  }
1262
1263  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
1264  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
1265    const Loop* NestedLoop = NestedAR->getLoop();
1266    if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
1267      std::vector<SCEVHandle> NestedOperands(NestedAR->op_begin(),
1268                                             NestedAR->op_end());
1269      SCEVHandle NestedARHandle(NestedAR);
1270      Operands[0] = NestedAR->getStart();
1271      NestedOperands[0] = getAddRecExpr(Operands, L);
1272      return getAddRecExpr(NestedOperands, NestedLoop);
1273    }
1274  }
1275
1276  std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
1277  SCEVAddRecExpr *&Result = (*SCEVAddRecExprs)[std::make_pair(L, SCEVOps)];
1278  if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1279  return Result;
1280}
1281
1282SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS,
1283                                        const SCEVHandle &RHS) {
1284  std::vector<SCEVHandle> Ops;
1285  Ops.push_back(LHS);
1286  Ops.push_back(RHS);
1287  return getSMaxExpr(Ops);
1288}
1289
1290SCEVHandle ScalarEvolution::getSMaxExpr(std::vector<SCEVHandle> Ops) {
1291  assert(!Ops.empty() && "Cannot get empty smax!");
1292  if (Ops.size() == 1) return Ops[0];
1293
1294  // Sort by complexity, this groups all similar expression types together.
1295  GroupByComplexity(Ops);
1296
1297  // If there are any constants, fold them together.
1298  unsigned Idx = 0;
1299  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1300    ++Idx;
1301    assert(Idx < Ops.size());
1302    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1303      // We found two constants, fold them together!
1304      ConstantInt *Fold = ConstantInt::get(
1305                              APIntOps::smax(LHSC->getValue()->getValue(),
1306                                             RHSC->getValue()->getValue()));
1307      Ops[0] = getConstant(Fold);
1308      Ops.erase(Ops.begin()+1);  // Erase the folded element
1309      if (Ops.size() == 1) return Ops[0];
1310      LHSC = cast<SCEVConstant>(Ops[0]);
1311    }
1312
1313    // If we are left with a constant -inf, strip it off.
1314    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1315      Ops.erase(Ops.begin());
1316      --Idx;
1317    }
1318  }
1319
1320  if (Ops.size() == 1) return Ops[0];
1321
1322  // Find the first SMax
1323  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1324    ++Idx;
1325
1326  // Check to see if one of the operands is an SMax. If so, expand its operands
1327  // onto our operand list, and recurse to simplify.
1328  if (Idx < Ops.size()) {
1329    bool DeletedSMax = false;
1330    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
1331      Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1332      Ops.erase(Ops.begin()+Idx);
1333      DeletedSMax = true;
1334    }
1335
1336    if (DeletedSMax)
1337      return getSMaxExpr(Ops);
1338  }
1339
1340  // Okay, check to see if the same value occurs in the operand list twice.  If
1341  // so, delete one.  Since we sorted the list, these values are required to
1342  // be adjacent.
1343  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1344    if (Ops[i] == Ops[i+1]) {      //  X smax Y smax Y  -->  X smax Y
1345      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1346      --i; --e;
1347    }
1348
1349  if (Ops.size() == 1) return Ops[0];
1350
1351  assert(!Ops.empty() && "Reduced smax down to nothing!");
1352
1353  // Okay, it looks like we really DO need an smax expr.  Check to see if we
1354  // already have one, otherwise create a new one.
1355  std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1356  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr,
1357                                                                 SCEVOps)];
1358  if (Result == 0) Result = new SCEVSMaxExpr(Ops);
1359  return Result;
1360}
1361
1362SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS,
1363                                        const SCEVHandle &RHS) {
1364  std::vector<SCEVHandle> Ops;
1365  Ops.push_back(LHS);
1366  Ops.push_back(RHS);
1367  return getUMaxExpr(Ops);
1368}
1369
1370SCEVHandle ScalarEvolution::getUMaxExpr(std::vector<SCEVHandle> Ops) {
1371  assert(!Ops.empty() && "Cannot get empty umax!");
1372  if (Ops.size() == 1) return Ops[0];
1373
1374  // Sort by complexity, this groups all similar expression types together.
1375  GroupByComplexity(Ops);
1376
1377  // If there are any constants, fold them together.
1378  unsigned Idx = 0;
1379  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1380    ++Idx;
1381    assert(Idx < Ops.size());
1382    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1383      // We found two constants, fold them together!
1384      ConstantInt *Fold = ConstantInt::get(
1385                              APIntOps::umax(LHSC->getValue()->getValue(),
1386                                             RHSC->getValue()->getValue()));
1387      Ops[0] = getConstant(Fold);
1388      Ops.erase(Ops.begin()+1);  // Erase the folded element
1389      if (Ops.size() == 1) return Ops[0];
1390      LHSC = cast<SCEVConstant>(Ops[0]);
1391    }
1392
1393    // If we are left with a constant zero, strip it off.
1394    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
1395      Ops.erase(Ops.begin());
1396      --Idx;
1397    }
1398  }
1399
1400  if (Ops.size() == 1) return Ops[0];
1401
1402  // Find the first UMax
1403  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
1404    ++Idx;
1405
1406  // Check to see if one of the operands is a UMax. If so, expand its operands
1407  // onto our operand list, and recurse to simplify.
1408  if (Idx < Ops.size()) {
1409    bool DeletedUMax = false;
1410    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
1411      Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
1412      Ops.erase(Ops.begin()+Idx);
1413      DeletedUMax = true;
1414    }
1415
1416    if (DeletedUMax)
1417      return getUMaxExpr(Ops);
1418  }
1419
1420  // Okay, check to see if the same value occurs in the operand list twice.  If
1421  // so, delete one.  Since we sorted the list, these values are required to
1422  // be adjacent.
1423  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1424    if (Ops[i] == Ops[i+1]) {      //  X umax Y umax Y  -->  X umax Y
1425      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1426      --i; --e;
1427    }
1428
1429  if (Ops.size() == 1) return Ops[0];
1430
1431  assert(!Ops.empty() && "Reduced umax down to nothing!");
1432
1433  // Okay, it looks like we really DO need a umax expr.  Check to see if we
1434  // already have one, otherwise create a new one.
1435  std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1436  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr,
1437                                                                 SCEVOps)];
1438  if (Result == 0) Result = new SCEVUMaxExpr(Ops);
1439  return Result;
1440}
1441
1442SCEVHandle ScalarEvolution::getUnknown(Value *V) {
1443  if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
1444    return getConstant(CI);
1445  if (isa<ConstantPointerNull>(V))
1446    return getIntegerSCEV(0, V->getType());
1447  SCEVUnknown *&Result = (*SCEVUnknowns)[V];
1448  if (Result == 0) Result = new SCEVUnknown(V);
1449  return Result;
1450}
1451
1452//===----------------------------------------------------------------------===//
1453//            Basic SCEV Analysis and PHI Idiom Recognition Code
1454//
1455
1456/// isSCEVable - Test if values of the given type are analyzable within
1457/// the SCEV framework. This primarily includes integer types, and it
1458/// can optionally include pointer types if the ScalarEvolution class
1459/// has access to target-specific information.
1460bool ScalarEvolution::isSCEVable(const Type *Ty) const {
1461  // Integers are always SCEVable.
1462  if (Ty->isInteger())
1463    return true;
1464
1465  // Pointers are SCEVable if TargetData information is available
1466  // to provide pointer size information.
1467  if (isa<PointerType>(Ty))
1468    return TD != NULL;
1469
1470  // Otherwise it's not SCEVable.
1471  return false;
1472}
1473
1474/// getTypeSizeInBits - Return the size in bits of the specified type,
1475/// for which isSCEVable must return true.
1476uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
1477  assert(isSCEVable(Ty) && "Type is not SCEVable!");
1478
1479  // If we have a TargetData, use it!
1480  if (TD)
1481    return TD->getTypeSizeInBits(Ty);
1482
1483  // Otherwise, we support only integer types.
1484  assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!");
1485  return Ty->getPrimitiveSizeInBits();
1486}
1487
1488/// getEffectiveSCEVType - Return a type with the same bitwidth as
1489/// the given type and which represents how SCEV will treat the given
1490/// type, for which isSCEVable must return true. For pointer types,
1491/// this is the pointer-sized integer type.
1492const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
1493  assert(isSCEVable(Ty) && "Type is not SCEVable!");
1494
1495  if (Ty->isInteger())
1496    return Ty;
1497
1498  assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
1499  return TD->getIntPtrType();
1500}
1501
1502SCEVHandle ScalarEvolution::getCouldNotCompute() {
1503  return UnknownValue;
1504}
1505
1506/// hasSCEV - Return true if the SCEV for this value has already been
1507/// computed.
1508bool ScalarEvolution::hasSCEV(Value *V) const {
1509  return Scalars.count(V);
1510}
1511
1512/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1513/// expression and create a new one.
1514SCEVHandle ScalarEvolution::getSCEV(Value *V) {
1515  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
1516
1517  std::map<SCEVCallbackVH, SCEVHandle>::iterator I = Scalars.find(V);
1518  if (I != Scalars.end()) return I->second;
1519  SCEVHandle S = createSCEV(V);
1520  Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
1521  return S;
1522}
1523
1524/// getIntegerSCEV - Given an integer or FP type, create a constant for the
1525/// specified signed integer value and return a SCEV for the constant.
1526SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
1527  Ty = getEffectiveSCEVType(Ty);
1528  Constant *C;
1529  if (Val == 0)
1530    C = Constant::getNullValue(Ty);
1531  else if (Ty->isFloatingPoint())
1532    C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle :
1533                                APFloat::IEEEdouble, Val));
1534  else
1535    C = ConstantInt::get(Ty, Val);
1536  return getUnknown(C);
1537}
1538
1539/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
1540///
1541SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) {
1542  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
1543    return getUnknown(ConstantExpr::getNeg(VC->getValue()));
1544
1545  const Type *Ty = V->getType();
1546  Ty = getEffectiveSCEVType(Ty);
1547  return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(Ty)));
1548}
1549
1550/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
1551SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) {
1552  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
1553    return getUnknown(ConstantExpr::getNot(VC->getValue()));
1554
1555  const Type *Ty = V->getType();
1556  Ty = getEffectiveSCEVType(Ty);
1557  SCEVHandle AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty));
1558  return getMinusSCEV(AllOnes, V);
1559}
1560
1561/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
1562///
1563SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS,
1564                                         const SCEVHandle &RHS) {
1565  // X - Y --> X + -Y
1566  return getAddExpr(LHS, getNegativeSCEV(RHS));
1567}
1568
1569/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
1570/// input value to the specified type.  If the type must be extended, it is zero
1571/// extended.
1572SCEVHandle
1573ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V,
1574                                         const Type *Ty) {
1575  const Type *SrcTy = V->getType();
1576  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1577         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1578         "Cannot truncate or zero extend with non-integer arguments!");
1579  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1580    return V;  // No conversion
1581  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
1582    return getTruncateExpr(V, Ty);
1583  return getZeroExtendExpr(V, Ty);
1584}
1585
1586/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
1587/// input value to the specified type.  If the type must be extended, it is sign
1588/// extended.
1589SCEVHandle
1590ScalarEvolution::getTruncateOrSignExtend(const SCEVHandle &V,
1591                                         const Type *Ty) {
1592  const Type *SrcTy = V->getType();
1593  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1594         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1595         "Cannot truncate or zero extend with non-integer arguments!");
1596  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1597    return V;  // No conversion
1598  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
1599    return getTruncateExpr(V, Ty);
1600  return getSignExtendExpr(V, Ty);
1601}
1602
1603/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1604/// the specified instruction and replaces any references to the symbolic value
1605/// SymName with the specified value.  This is used during PHI resolution.
1606void ScalarEvolution::
1607ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1608                                 const SCEVHandle &NewVal) {
1609  std::map<SCEVCallbackVH, SCEVHandle>::iterator SI =
1610    Scalars.find(SCEVCallbackVH(I, this));
1611  if (SI == Scalars.end()) return;
1612
1613  SCEVHandle NV =
1614    SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this);
1615  if (NV == SI->second) return;  // No change.
1616
1617  SI->second = NV;       // Update the scalars map!
1618
1619  // Any instruction values that use this instruction might also need to be
1620  // updated!
1621  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1622       UI != E; ++UI)
1623    ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1624}
1625
1626/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
1627/// a loop header, making it a potential recurrence, or it doesn't.
1628///
1629SCEVHandle ScalarEvolution::createNodeForPHI(PHINode *PN) {
1630  if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
1631    if (const Loop *L = LI->getLoopFor(PN->getParent()))
1632      if (L->getHeader() == PN->getParent()) {
1633        // If it lives in the loop header, it has two incoming values, one
1634        // from outside the loop, and one from inside.
1635        unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1636        unsigned BackEdge     = IncomingEdge^1;
1637
1638        // While we are analyzing this PHI node, handle its value symbolically.
1639        SCEVHandle SymbolicName = getUnknown(PN);
1640        assert(Scalars.find(PN) == Scalars.end() &&
1641               "PHI node already processed?");
1642        Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
1643
1644        // Using this symbolic name for the PHI, analyze the value coming around
1645        // the back-edge.
1646        SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1647
1648        // NOTE: If BEValue is loop invariant, we know that the PHI node just
1649        // has a special value for the first iteration of the loop.
1650
1651        // If the value coming around the backedge is an add with the symbolic
1652        // value we just inserted, then we found a simple induction variable!
1653        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
1654          // If there is a single occurrence of the symbolic value, replace it
1655          // with a recurrence.
1656          unsigned FoundIndex = Add->getNumOperands();
1657          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1658            if (Add->getOperand(i) == SymbolicName)
1659              if (FoundIndex == e) {
1660                FoundIndex = i;
1661                break;
1662              }
1663
1664          if (FoundIndex != Add->getNumOperands()) {
1665            // Create an add with everything but the specified operand.
1666            std::vector<SCEVHandle> Ops;
1667            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1668              if (i != FoundIndex)
1669                Ops.push_back(Add->getOperand(i));
1670            SCEVHandle Accum = getAddExpr(Ops);
1671
1672            // This is not a valid addrec if the step amount is varying each
1673            // loop iteration, but is not itself an addrec in this loop.
1674            if (Accum->isLoopInvariant(L) ||
1675                (isa<SCEVAddRecExpr>(Accum) &&
1676                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1677              SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1678              SCEVHandle PHISCEV  = getAddRecExpr(StartVal, Accum, L);
1679
1680              // Okay, for the entire analysis of this edge we assumed the PHI
1681              // to be symbolic.  We now need to go back and update all of the
1682              // entries for the scalars that use the PHI (except for the PHI
1683              // itself) to use the new analyzed value instead of the "symbolic"
1684              // value.
1685              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1686              return PHISCEV;
1687            }
1688          }
1689        } else if (const SCEVAddRecExpr *AddRec =
1690                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
1691          // Otherwise, this could be a loop like this:
1692          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
1693          // In this case, j = {1,+,1}  and BEValue is j.
1694          // Because the other in-value of i (0) fits the evolution of BEValue
1695          // i really is an addrec evolution.
1696          if (AddRec->getLoop() == L && AddRec->isAffine()) {
1697            SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1698
1699            // If StartVal = j.start - j.stride, we can use StartVal as the
1700            // initial step of the addrec evolution.
1701            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
1702                                            AddRec->getOperand(1))) {
1703              SCEVHandle PHISCEV =
1704                 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
1705
1706              // Okay, for the entire analysis of this edge we assumed the PHI
1707              // to be symbolic.  We now need to go back and update all of the
1708              // entries for the scalars that use the PHI (except for the PHI
1709              // itself) to use the new analyzed value instead of the "symbolic"
1710              // value.
1711              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1712              return PHISCEV;
1713            }
1714          }
1715        }
1716
1717        return SymbolicName;
1718      }
1719
1720  // If it's not a loop phi, we can't handle it yet.
1721  return getUnknown(PN);
1722}
1723
1724/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
1725/// guaranteed to end in (at every loop iteration).  It is, at the same time,
1726/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
1727/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
1728static uint32_t GetMinTrailingZeros(SCEVHandle S, const ScalarEvolution &SE) {
1729  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
1730    return C->getValue()->getValue().countTrailingZeros();
1731
1732  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
1733    return std::min(GetMinTrailingZeros(T->getOperand(), SE),
1734                    (uint32_t)SE.getTypeSizeInBits(T->getType()));
1735
1736  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
1737    uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE);
1738    return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ?
1739             SE.getTypeSizeInBits(E->getOperand()->getType()) : OpRes;
1740  }
1741
1742  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
1743    uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE);
1744    return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ?
1745             SE.getTypeSizeInBits(E->getOperand()->getType()) : OpRes;
1746  }
1747
1748  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
1749    // The result is the min of all operands results.
1750    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE);
1751    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
1752      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE));
1753    return MinOpRes;
1754  }
1755
1756  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
1757    // The result is the sum of all operands results.
1758    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
1759    uint32_t BitWidth = SE.getTypeSizeInBits(M->getType());
1760    for (unsigned i = 1, e = M->getNumOperands();
1761         SumOpRes != BitWidth && i != e; ++i)
1762      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i), SE),
1763                          BitWidth);
1764    return SumOpRes;
1765  }
1766
1767  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
1768    // The result is the min of all operands results.
1769    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE);
1770    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
1771      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE));
1772    return MinOpRes;
1773  }
1774
1775  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
1776    // The result is the min of all operands results.
1777    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
1778    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
1779      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE));
1780    return MinOpRes;
1781  }
1782
1783  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
1784    // The result is the min of all operands results.
1785    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
1786    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
1787      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE));
1788    return MinOpRes;
1789  }
1790
1791  // SCEVUDivExpr, SCEVUnknown
1792  return 0;
1793}
1794
1795/// createSCEV - We know that there is no SCEV for the specified value.
1796/// Analyze the expression.
1797///
1798SCEVHandle ScalarEvolution::createSCEV(Value *V) {
1799  if (!isSCEVable(V->getType()))
1800    return getUnknown(V);
1801
1802  unsigned Opcode = Instruction::UserOp1;
1803  if (Instruction *I = dyn_cast<Instruction>(V))
1804    Opcode = I->getOpcode();
1805  else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1806    Opcode = CE->getOpcode();
1807  else
1808    return getUnknown(V);
1809
1810  User *U = cast<User>(V);
1811  switch (Opcode) {
1812  case Instruction::Add:
1813    return getAddExpr(getSCEV(U->getOperand(0)),
1814                      getSCEV(U->getOperand(1)));
1815  case Instruction::Mul:
1816    return getMulExpr(getSCEV(U->getOperand(0)),
1817                      getSCEV(U->getOperand(1)));
1818  case Instruction::UDiv:
1819    return getUDivExpr(getSCEV(U->getOperand(0)),
1820                       getSCEV(U->getOperand(1)));
1821  case Instruction::Sub:
1822    return getMinusSCEV(getSCEV(U->getOperand(0)),
1823                        getSCEV(U->getOperand(1)));
1824  case Instruction::And:
1825    // For an expression like x&255 that merely masks off the high bits,
1826    // use zext(trunc(x)) as the SCEV expression.
1827    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
1828      if (CI->isNullValue())
1829        return getSCEV(U->getOperand(1));
1830      if (CI->isAllOnesValue())
1831        return getSCEV(U->getOperand(0));
1832      const APInt &A = CI->getValue();
1833      unsigned Ones = A.countTrailingOnes();
1834      if (APIntOps::isMask(Ones, A))
1835        return
1836          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
1837                                            IntegerType::get(Ones)),
1838                            U->getType());
1839    }
1840    break;
1841  case Instruction::Or:
1842    // If the RHS of the Or is a constant, we may have something like:
1843    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
1844    // optimizations will transparently handle this case.
1845    //
1846    // In order for this transformation to be safe, the LHS must be of the
1847    // form X*(2^n) and the Or constant must be less than 2^n.
1848    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
1849      SCEVHandle LHS = getSCEV(U->getOperand(0));
1850      const APInt &CIVal = CI->getValue();
1851      if (GetMinTrailingZeros(LHS, *this) >=
1852          (CIVal.getBitWidth() - CIVal.countLeadingZeros()))
1853        return getAddExpr(LHS, getSCEV(U->getOperand(1)));
1854    }
1855    break;
1856  case Instruction::Xor:
1857    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
1858      // If the RHS of the xor is a signbit, then this is just an add.
1859      // Instcombine turns add of signbit into xor as a strength reduction step.
1860      if (CI->getValue().isSignBit())
1861        return getAddExpr(getSCEV(U->getOperand(0)),
1862                          getSCEV(U->getOperand(1)));
1863
1864      // If the RHS of xor is -1, then this is a not operation.
1865      else if (CI->isAllOnesValue())
1866        return getNotSCEV(getSCEV(U->getOperand(0)));
1867    }
1868    break;
1869
1870  case Instruction::Shl:
1871    // Turn shift left of a constant amount into a multiply.
1872    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
1873      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
1874      Constant *X = ConstantInt::get(
1875        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
1876      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
1877    }
1878    break;
1879
1880  case Instruction::LShr:
1881    // Turn logical shift right of a constant into a unsigned divide.
1882    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
1883      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
1884      Constant *X = ConstantInt::get(
1885        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
1886      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
1887    }
1888    break;
1889
1890  case Instruction::AShr:
1891    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
1892    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
1893      if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
1894        if (L->getOpcode() == Instruction::Shl &&
1895            L->getOperand(1) == U->getOperand(1)) {
1896          unsigned BitWidth = getTypeSizeInBits(U->getType());
1897          uint64_t Amt = BitWidth - CI->getZExtValue();
1898          if (Amt == BitWidth)
1899            return getSCEV(L->getOperand(0));       // shift by zero --> noop
1900          if (Amt > BitWidth)
1901            return getIntegerSCEV(0, U->getType()); // value is undefined
1902          return
1903            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
1904                                                      IntegerType::get(Amt)),
1905                                 U->getType());
1906        }
1907    break;
1908
1909  case Instruction::Trunc:
1910    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
1911
1912  case Instruction::ZExt:
1913    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
1914
1915  case Instruction::SExt:
1916    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
1917
1918  case Instruction::BitCast:
1919    // BitCasts are no-op casts so we just eliminate the cast.
1920    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
1921      return getSCEV(U->getOperand(0));
1922    break;
1923
1924  case Instruction::IntToPtr:
1925    if (!TD) break; // Without TD we can't analyze pointers.
1926    return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
1927                                   TD->getIntPtrType());
1928
1929  case Instruction::PtrToInt:
1930    if (!TD) break; // Without TD we can't analyze pointers.
1931    return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
1932                                   U->getType());
1933
1934  case Instruction::GetElementPtr: {
1935    if (!TD) break; // Without TD we can't analyze pointers.
1936    const Type *IntPtrTy = TD->getIntPtrType();
1937    Value *Base = U->getOperand(0);
1938    SCEVHandle TotalOffset = getIntegerSCEV(0, IntPtrTy);
1939    gep_type_iterator GTI = gep_type_begin(U);
1940    for (GetElementPtrInst::op_iterator I = next(U->op_begin()),
1941                                        E = U->op_end();
1942         I != E; ++I) {
1943      Value *Index = *I;
1944      // Compute the (potentially symbolic) offset in bytes for this index.
1945      if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
1946        // For a struct, add the member offset.
1947        const StructLayout &SL = *TD->getStructLayout(STy);
1948        unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
1949        uint64_t Offset = SL.getElementOffset(FieldNo);
1950        TotalOffset = getAddExpr(TotalOffset,
1951                                    getIntegerSCEV(Offset, IntPtrTy));
1952      } else {
1953        // For an array, add the element offset, explicitly scaled.
1954        SCEVHandle LocalOffset = getSCEV(Index);
1955        if (!isa<PointerType>(LocalOffset->getType()))
1956          // Getelementptr indicies are signed.
1957          LocalOffset = getTruncateOrSignExtend(LocalOffset,
1958                                                IntPtrTy);
1959        LocalOffset =
1960          getMulExpr(LocalOffset,
1961                     getIntegerSCEV(TD->getTypePaddedSize(*GTI),
1962                                    IntPtrTy));
1963        TotalOffset = getAddExpr(TotalOffset, LocalOffset);
1964      }
1965    }
1966    return getAddExpr(getSCEV(Base), TotalOffset);
1967  }
1968
1969  case Instruction::PHI:
1970    return createNodeForPHI(cast<PHINode>(U));
1971
1972  case Instruction::Select:
1973    // This could be a smax or umax that was lowered earlier.
1974    // Try to recover it.
1975    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
1976      Value *LHS = ICI->getOperand(0);
1977      Value *RHS = ICI->getOperand(1);
1978      switch (ICI->getPredicate()) {
1979      case ICmpInst::ICMP_SLT:
1980      case ICmpInst::ICMP_SLE:
1981        std::swap(LHS, RHS);
1982        // fall through
1983      case ICmpInst::ICMP_SGT:
1984      case ICmpInst::ICMP_SGE:
1985        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
1986          return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
1987        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
1988          // ~smax(~x, ~y) == smin(x, y).
1989          return getNotSCEV(getSMaxExpr(
1990                                   getNotSCEV(getSCEV(LHS)),
1991                                   getNotSCEV(getSCEV(RHS))));
1992        break;
1993      case ICmpInst::ICMP_ULT:
1994      case ICmpInst::ICMP_ULE:
1995        std::swap(LHS, RHS);
1996        // fall through
1997      case ICmpInst::ICMP_UGT:
1998      case ICmpInst::ICMP_UGE:
1999        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2000          return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
2001        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2002          // ~umax(~x, ~y) == umin(x, y)
2003          return getNotSCEV(getUMaxExpr(getNotSCEV(getSCEV(LHS)),
2004                                        getNotSCEV(getSCEV(RHS))));
2005        break;
2006      default:
2007        break;
2008      }
2009    }
2010
2011  default: // We cannot analyze this expression.
2012    break;
2013  }
2014
2015  return getUnknown(V);
2016}
2017
2018
2019
2020//===----------------------------------------------------------------------===//
2021//                   Iteration Count Computation Code
2022//
2023
2024/// getBackedgeTakenCount - If the specified loop has a predictable
2025/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
2026/// object. The backedge-taken count is the number of times the loop header
2027/// will be branched to from within the loop. This is one less than the
2028/// trip count of the loop, since it doesn't count the first iteration,
2029/// when the header is branched to from outside the loop.
2030///
2031/// Note that it is not valid to call this method on a loop without a
2032/// loop-invariant backedge-taken count (see
2033/// hasLoopInvariantBackedgeTakenCount).
2034///
2035SCEVHandle ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
2036  return getBackedgeTakenInfo(L).Exact;
2037}
2038
2039/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
2040/// return the least SCEV value that is known never to be less than the
2041/// actual backedge taken count.
2042SCEVHandle ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
2043  return getBackedgeTakenInfo(L).Max;
2044}
2045
2046const ScalarEvolution::BackedgeTakenInfo &
2047ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
2048  // Initially insert a CouldNotCompute for this loop. If the insertion
2049  // succeeds, procede to actually compute a backedge-taken count and
2050  // update the value. The temporary CouldNotCompute value tells SCEV
2051  // code elsewhere that it shouldn't attempt to request a new
2052  // backedge-taken count, which could result in infinite recursion.
2053  std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair =
2054    BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
2055  if (Pair.second) {
2056    BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
2057    if (ItCount.Exact != UnknownValue) {
2058      assert(ItCount.Exact->isLoopInvariant(L) &&
2059             ItCount.Max->isLoopInvariant(L) &&
2060             "Computed trip count isn't loop invariant for loop!");
2061      ++NumTripCountsComputed;
2062
2063      // Update the value in the map.
2064      Pair.first->second = ItCount;
2065    } else if (isa<PHINode>(L->getHeader()->begin())) {
2066      // Only count loops that have phi nodes as not being computable.
2067      ++NumTripCountsNotComputed;
2068    }
2069
2070    // Now that we know more about the trip count for this loop, forget any
2071    // existing SCEV values for PHI nodes in this loop since they are only
2072    // conservative estimates made without the benefit
2073    // of trip count information.
2074    if (ItCount.hasAnyInfo())
2075      forgetLoopPHIs(L);
2076  }
2077  return Pair.first->second;
2078}
2079
2080/// forgetLoopBackedgeTakenCount - This method should be called by the
2081/// client when it has changed a loop in a way that may effect
2082/// ScalarEvolution's ability to compute a trip count, or if the loop
2083/// is deleted.
2084void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) {
2085  BackedgeTakenCounts.erase(L);
2086  forgetLoopPHIs(L);
2087}
2088
2089/// forgetLoopPHIs - Delete the memoized SCEVs associated with the
2090/// PHI nodes in the given loop. This is used when the trip count of
2091/// the loop may have changed.
2092void ScalarEvolution::forgetLoopPHIs(const Loop *L) {
2093  BasicBlock *Header = L->getHeader();
2094
2095  SmallVector<Instruction *, 16> Worklist;
2096  for (BasicBlock::iterator I = Header->begin();
2097       PHINode *PN = dyn_cast<PHINode>(I); ++I)
2098    Worklist.push_back(PN);
2099
2100  while (!Worklist.empty()) {
2101    Instruction *I = Worklist.pop_back_val();
2102    if (Scalars.erase(I))
2103      for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2104           UI != UE; ++UI)
2105        Worklist.push_back(cast<Instruction>(UI));
2106  }
2107}
2108
2109/// ComputeBackedgeTakenCount - Compute the number of times the backedge
2110/// of the specified loop will execute.
2111ScalarEvolution::BackedgeTakenInfo
2112ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
2113  // If the loop has a non-one exit block count, we can't analyze it.
2114  SmallVector<BasicBlock*, 8> ExitBlocks;
2115  L->getExitBlocks(ExitBlocks);
2116  if (ExitBlocks.size() != 1) return UnknownValue;
2117
2118  // Okay, there is one exit block.  Try to find the condition that causes the
2119  // loop to be exited.
2120  BasicBlock *ExitBlock = ExitBlocks[0];
2121
2122  BasicBlock *ExitingBlock = 0;
2123  for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
2124       PI != E; ++PI)
2125    if (L->contains(*PI)) {
2126      if (ExitingBlock == 0)
2127        ExitingBlock = *PI;
2128      else
2129        return UnknownValue;   // More than one block exiting!
2130    }
2131  assert(ExitingBlock && "No exits from loop, something is broken!");
2132
2133  // Okay, we've computed the exiting block.  See what condition causes us to
2134  // exit.
2135  //
2136  // FIXME: we should be able to handle switch instructions (with a single exit)
2137  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2138  if (ExitBr == 0) return UnknownValue;
2139  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
2140
2141  // At this point, we know we have a conditional branch that determines whether
2142  // the loop is exited.  However, we don't know if the branch is executed each
2143  // time through the loop.  If not, then the execution count of the branch will
2144  // not be equal to the trip count of the loop.
2145  //
2146  // Currently we check for this by checking to see if the Exit branch goes to
2147  // the loop header.  If so, we know it will always execute the same number of
2148  // times as the loop.  We also handle the case where the exit block *is* the
2149  // loop header.  This is common for un-rotated loops.  More extensive analysis
2150  // could be done to handle more cases here.
2151  if (ExitBr->getSuccessor(0) != L->getHeader() &&
2152      ExitBr->getSuccessor(1) != L->getHeader() &&
2153      ExitBr->getParent() != L->getHeader())
2154    return UnknownValue;
2155
2156  ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition());
2157
2158  // If it's not an integer comparison then compute it the hard way.
2159  // Note that ICmpInst deals with pointer comparisons too so we must check
2160  // the type of the operand.
2161  if (ExitCond == 0 || isa<PointerType>(ExitCond->getOperand(0)->getType()))
2162    return ComputeBackedgeTakenCountExhaustively(L, ExitBr->getCondition(),
2163                                          ExitBr->getSuccessor(0) == ExitBlock);
2164
2165  // If the condition was exit on true, convert the condition to exit on false
2166  ICmpInst::Predicate Cond;
2167  if (ExitBr->getSuccessor(1) == ExitBlock)
2168    Cond = ExitCond->getPredicate();
2169  else
2170    Cond = ExitCond->getInversePredicate();
2171
2172  // Handle common loops like: for (X = "string"; *X; ++X)
2173  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
2174    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
2175      SCEVHandle ItCnt =
2176        ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
2177      if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
2178    }
2179
2180  SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
2181  SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
2182
2183  // Try to evaluate any dependencies out of the loop.
2184  SCEVHandle Tmp = getSCEVAtScope(LHS, L);
2185  if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
2186  Tmp = getSCEVAtScope(RHS, L);
2187  if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
2188
2189  // At this point, we would like to compute how many iterations of the
2190  // loop the predicate will return true for these inputs.
2191  if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
2192    // If there is a loop-invariant, force it into the RHS.
2193    std::swap(LHS, RHS);
2194    Cond = ICmpInst::getSwappedPredicate(Cond);
2195  }
2196
2197  // If we have a comparison of a chrec against a constant, try to use value
2198  // ranges to answer this query.
2199  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
2200    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
2201      if (AddRec->getLoop() == L) {
2202        // Form the comparison range using the constant of the correct type so
2203        // that the ConstantRange class knows to do a signed or unsigned
2204        // comparison.
2205        ConstantInt *CompVal = RHSC->getValue();
2206        const Type *RealTy = ExitCond->getOperand(0)->getType();
2207        CompVal = dyn_cast<ConstantInt>(
2208          ConstantExpr::getBitCast(CompVal, RealTy));
2209        if (CompVal) {
2210          // Form the constant range.
2211          ConstantRange CompRange(
2212              ICmpInst::makeConstantRange(Cond, CompVal->getValue()));
2213
2214          SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, *this);
2215          if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
2216        }
2217      }
2218
2219  switch (Cond) {
2220  case ICmpInst::ICMP_NE: {                     // while (X != Y)
2221    // Convert to: while (X-Y != 0)
2222    SCEVHandle TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
2223    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2224    break;
2225  }
2226  case ICmpInst::ICMP_EQ: {
2227    // Convert to: while (X-Y == 0)           // while (X == Y)
2228    SCEVHandle TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
2229    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2230    break;
2231  }
2232  case ICmpInst::ICMP_SLT: {
2233    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
2234    if (BTI.hasAnyInfo()) return BTI;
2235    break;
2236  }
2237  case ICmpInst::ICMP_SGT: {
2238    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
2239                                             getNotSCEV(RHS), L, true);
2240    if (BTI.hasAnyInfo()) return BTI;
2241    break;
2242  }
2243  case ICmpInst::ICMP_ULT: {
2244    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
2245    if (BTI.hasAnyInfo()) return BTI;
2246    break;
2247  }
2248  case ICmpInst::ICMP_UGT: {
2249    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
2250                                             getNotSCEV(RHS), L, false);
2251    if (BTI.hasAnyInfo()) return BTI;
2252    break;
2253  }
2254  default:
2255#if 0
2256    errs() << "ComputeBackedgeTakenCount ";
2257    if (ExitCond->getOperand(0)->getType()->isUnsigned())
2258      errs() << "[unsigned] ";
2259    errs() << *LHS << "   "
2260         << Instruction::getOpcodeName(Instruction::ICmp)
2261         << "   " << *RHS << "\n";
2262#endif
2263    break;
2264  }
2265  return
2266    ComputeBackedgeTakenCountExhaustively(L, ExitCond,
2267                                          ExitBr->getSuccessor(0) == ExitBlock);
2268}
2269
2270static ConstantInt *
2271EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
2272                                ScalarEvolution &SE) {
2273  SCEVHandle InVal = SE.getConstant(C);
2274  SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE);
2275  assert(isa<SCEVConstant>(Val) &&
2276         "Evaluation of SCEV at constant didn't fold correctly?");
2277  return cast<SCEVConstant>(Val)->getValue();
2278}
2279
2280/// GetAddressedElementFromGlobal - Given a global variable with an initializer
2281/// and a GEP expression (missing the pointer index) indexing into it, return
2282/// the addressed element of the initializer or null if the index expression is
2283/// invalid.
2284static Constant *
2285GetAddressedElementFromGlobal(GlobalVariable *GV,
2286                              const std::vector<ConstantInt*> &Indices) {
2287  Constant *Init = GV->getInitializer();
2288  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
2289    uint64_t Idx = Indices[i]->getZExtValue();
2290    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
2291      assert(Idx < CS->getNumOperands() && "Bad struct index!");
2292      Init = cast<Constant>(CS->getOperand(Idx));
2293    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
2294      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
2295      Init = cast<Constant>(CA->getOperand(Idx));
2296    } else if (isa<ConstantAggregateZero>(Init)) {
2297      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
2298        assert(Idx < STy->getNumElements() && "Bad struct index!");
2299        Init = Constant::getNullValue(STy->getElementType(Idx));
2300      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
2301        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
2302        Init = Constant::getNullValue(ATy->getElementType());
2303      } else {
2304        assert(0 && "Unknown constant aggregate type!");
2305      }
2306      return 0;
2307    } else {
2308      return 0; // Unknown initializer type
2309    }
2310  }
2311  return Init;
2312}
2313
2314/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
2315/// 'icmp op load X, cst', try to see if we can compute the backedge
2316/// execution count.
2317SCEVHandle ScalarEvolution::
2318ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS,
2319                                             const Loop *L,
2320                                             ICmpInst::Predicate predicate) {
2321  if (LI->isVolatile()) return UnknownValue;
2322
2323  // Check to see if the loaded pointer is a getelementptr of a global.
2324  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
2325  if (!GEP) return UnknownValue;
2326
2327  // Make sure that it is really a constant global we are gepping, with an
2328  // initializer, and make sure the first IDX is really 0.
2329  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
2330  if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
2331      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
2332      !cast<Constant>(GEP->getOperand(1))->isNullValue())
2333    return UnknownValue;
2334
2335  // Okay, we allow one non-constant index into the GEP instruction.
2336  Value *VarIdx = 0;
2337  std::vector<ConstantInt*> Indexes;
2338  unsigned VarIdxNum = 0;
2339  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
2340    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
2341      Indexes.push_back(CI);
2342    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
2343      if (VarIdx) return UnknownValue;  // Multiple non-constant idx's.
2344      VarIdx = GEP->getOperand(i);
2345      VarIdxNum = i-2;
2346      Indexes.push_back(0);
2347    }
2348
2349  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
2350  // Check to see if X is a loop variant variable value now.
2351  SCEVHandle Idx = getSCEV(VarIdx);
2352  SCEVHandle Tmp = getSCEVAtScope(Idx, L);
2353  if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
2354
2355  // We can only recognize very limited forms of loop index expressions, in
2356  // particular, only affine AddRec's like {C1,+,C2}.
2357  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
2358  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
2359      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
2360      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
2361    return UnknownValue;
2362
2363  unsigned MaxSteps = MaxBruteForceIterations;
2364  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
2365    ConstantInt *ItCst =
2366      ConstantInt::get(IdxExpr->getType(), IterationNum);
2367    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
2368
2369    // Form the GEP offset.
2370    Indexes[VarIdxNum] = Val;
2371
2372    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
2373    if (Result == 0) break;  // Cannot compute!
2374
2375    // Evaluate the condition for this iteration.
2376    Result = ConstantExpr::getICmp(predicate, Result, RHS);
2377    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
2378    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
2379#if 0
2380      errs() << "\n***\n*** Computed loop count " << *ItCst
2381             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
2382             << "***\n";
2383#endif
2384      ++NumArrayLenItCounts;
2385      return getConstant(ItCst);   // Found terminating iteration!
2386    }
2387  }
2388  return UnknownValue;
2389}
2390
2391
2392/// CanConstantFold - Return true if we can constant fold an instruction of the
2393/// specified type, assuming that all operands were constants.
2394static bool CanConstantFold(const Instruction *I) {
2395  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
2396      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
2397    return true;
2398
2399  if (const CallInst *CI = dyn_cast<CallInst>(I))
2400    if (const Function *F = CI->getCalledFunction())
2401      return canConstantFoldCallTo(F);
2402  return false;
2403}
2404
2405/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
2406/// in the loop that V is derived from.  We allow arbitrary operations along the
2407/// way, but the operands of an operation must either be constants or a value
2408/// derived from a constant PHI.  If this expression does not fit with these
2409/// constraints, return null.
2410static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
2411  // If this is not an instruction, or if this is an instruction outside of the
2412  // loop, it can't be derived from a loop PHI.
2413  Instruction *I = dyn_cast<Instruction>(V);
2414  if (I == 0 || !L->contains(I->getParent())) return 0;
2415
2416  if (PHINode *PN = dyn_cast<PHINode>(I)) {
2417    if (L->getHeader() == I->getParent())
2418      return PN;
2419    else
2420      // We don't currently keep track of the control flow needed to evaluate
2421      // PHIs, so we cannot handle PHIs inside of loops.
2422      return 0;
2423  }
2424
2425  // If we won't be able to constant fold this expression even if the operands
2426  // are constants, return early.
2427  if (!CanConstantFold(I)) return 0;
2428
2429  // Otherwise, we can evaluate this instruction if all of its operands are
2430  // constant or derived from a PHI node themselves.
2431  PHINode *PHI = 0;
2432  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
2433    if (!(isa<Constant>(I->getOperand(Op)) ||
2434          isa<GlobalValue>(I->getOperand(Op)))) {
2435      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
2436      if (P == 0) return 0;  // Not evolving from PHI
2437      if (PHI == 0)
2438        PHI = P;
2439      else if (PHI != P)
2440        return 0;  // Evolving from multiple different PHIs.
2441    }
2442
2443  // This is a expression evolving from a constant PHI!
2444  return PHI;
2445}
2446
2447/// EvaluateExpression - Given an expression that passes the
2448/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
2449/// in the loop has the value PHIVal.  If we can't fold this expression for some
2450/// reason, return null.
2451static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
2452  if (isa<PHINode>(V)) return PHIVal;
2453  if (Constant *C = dyn_cast<Constant>(V)) return C;
2454  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
2455  Instruction *I = cast<Instruction>(V);
2456
2457  std::vector<Constant*> Operands;
2458  Operands.resize(I->getNumOperands());
2459
2460  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2461    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
2462    if (Operands[i] == 0) return 0;
2463  }
2464
2465  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2466    return ConstantFoldCompareInstOperands(CI->getPredicate(),
2467                                           &Operands[0], Operands.size());
2468  else
2469    return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2470                                    &Operands[0], Operands.size());
2471}
2472
2473/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
2474/// in the header of its containing loop, we know the loop executes a
2475/// constant number of times, and the PHI node is just a recurrence
2476/// involving constants, fold it.
2477Constant *ScalarEvolution::
2478getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L){
2479  std::map<PHINode*, Constant*>::iterator I =
2480    ConstantEvolutionLoopExitValue.find(PN);
2481  if (I != ConstantEvolutionLoopExitValue.end())
2482    return I->second;
2483
2484  if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
2485    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
2486
2487  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
2488
2489  // Since the loop is canonicalized, the PHI node must have two entries.  One
2490  // entry must be a constant (coming in from outside of the loop), and the
2491  // second must be derived from the same PHI.
2492  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2493  Constant *StartCST =
2494    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2495  if (StartCST == 0)
2496    return RetVal = 0;  // Must be a constant.
2497
2498  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2499  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2500  if (PN2 != PN)
2501    return RetVal = 0;  // Not derived from same PHI.
2502
2503  // Execute the loop symbolically to determine the exit value.
2504  if (BEs.getActiveBits() >= 32)
2505    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
2506
2507  unsigned NumIterations = BEs.getZExtValue(); // must be in range
2508  unsigned IterationNum = 0;
2509  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
2510    if (IterationNum == NumIterations)
2511      return RetVal = PHIVal;  // Got exit value!
2512
2513    // Compute the value of the PHI node for the next iteration.
2514    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2515    if (NextPHI == PHIVal)
2516      return RetVal = NextPHI;  // Stopped evolving!
2517    if (NextPHI == 0)
2518      return 0;        // Couldn't evaluate!
2519    PHIVal = NextPHI;
2520  }
2521}
2522
2523/// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a
2524/// constant number of times (the condition evolves only from constants),
2525/// try to evaluate a few iterations of the loop until we get the exit
2526/// condition gets a value of ExitWhen (true or false).  If we cannot
2527/// evaluate the trip count of the loop, return UnknownValue.
2528SCEVHandle ScalarEvolution::
2529ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
2530  PHINode *PN = getConstantEvolvingPHI(Cond, L);
2531  if (PN == 0) return UnknownValue;
2532
2533  // Since the loop is canonicalized, the PHI node must have two entries.  One
2534  // entry must be a constant (coming in from outside of the loop), and the
2535  // second must be derived from the same PHI.
2536  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2537  Constant *StartCST =
2538    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2539  if (StartCST == 0) return UnknownValue;  // Must be a constant.
2540
2541  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2542  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2543  if (PN2 != PN) return UnknownValue;  // Not derived from same PHI.
2544
2545  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
2546  // the loop symbolically to determine when the condition gets a value of
2547  // "ExitWhen".
2548  unsigned IterationNum = 0;
2549  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
2550  for (Constant *PHIVal = StartCST;
2551       IterationNum != MaxIterations; ++IterationNum) {
2552    ConstantInt *CondVal =
2553      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
2554
2555    // Couldn't symbolically evaluate.
2556    if (!CondVal) return UnknownValue;
2557
2558    if (CondVal->getValue() == uint64_t(ExitWhen)) {
2559      ConstantEvolutionLoopExitValue[PN] = PHIVal;
2560      ++NumBruteForceTripCountsComputed;
2561      return getConstant(ConstantInt::get(Type::Int32Ty, IterationNum));
2562    }
2563
2564    // Compute the value of the PHI node for the next iteration.
2565    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2566    if (NextPHI == 0 || NextPHI == PHIVal)
2567      return UnknownValue;  // Couldn't evaluate or not making progress...
2568    PHIVal = NextPHI;
2569  }
2570
2571  // Too many iterations were needed to evaluate.
2572  return UnknownValue;
2573}
2574
2575/// getSCEVAtScope - Compute the value of the specified expression within the
2576/// indicated loop (which may be null to indicate in no loop).  If the
2577/// expression cannot be evaluated, return UnknownValue.
2578SCEVHandle ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
2579  // FIXME: this should be turned into a virtual method on SCEV!
2580
2581  if (isa<SCEVConstant>(V)) return V;
2582
2583  // If this instruction is evolved from a constant-evolving PHI, compute the
2584  // exit value from the loop without using SCEVs.
2585  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
2586    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
2587      const Loop *LI = (*this->LI)[I->getParent()];
2588      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
2589        if (PHINode *PN = dyn_cast<PHINode>(I))
2590          if (PN->getParent() == LI->getHeader()) {
2591            // Okay, there is no closed form solution for the PHI node.  Check
2592            // to see if the loop that contains it has a known backedge-taken
2593            // count.  If so, we may be able to force computation of the exit
2594            // value.
2595            SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(LI);
2596            if (const SCEVConstant *BTCC =
2597                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
2598              // Okay, we know how many times the containing loop executes.  If
2599              // this is a constant evolving PHI node, get the final value at
2600              // the specified iteration number.
2601              Constant *RV = getConstantEvolutionLoopExitValue(PN,
2602                                                   BTCC->getValue()->getValue(),
2603                                                               LI);
2604              if (RV) return getUnknown(RV);
2605            }
2606          }
2607
2608      // Okay, this is an expression that we cannot symbolically evaluate
2609      // into a SCEV.  Check to see if it's possible to symbolically evaluate
2610      // the arguments into constants, and if so, try to constant propagate the
2611      // result.  This is particularly useful for computing loop exit values.
2612      if (CanConstantFold(I)) {
2613        std::vector<Constant*> Operands;
2614        Operands.reserve(I->getNumOperands());
2615        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2616          Value *Op = I->getOperand(i);
2617          if (Constant *C = dyn_cast<Constant>(Op)) {
2618            Operands.push_back(C);
2619          } else {
2620            // If any of the operands is non-constant and if they are
2621            // non-integer and non-pointer, don't even try to analyze them
2622            // with scev techniques.
2623            if (!isSCEVable(Op->getType()))
2624              return V;
2625
2626            SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
2627            if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
2628              Constant *C = SC->getValue();
2629              if (C->getType() != Op->getType())
2630                C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
2631                                                                  Op->getType(),
2632                                                                  false),
2633                                          C, Op->getType());
2634              Operands.push_back(C);
2635            } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
2636              if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
2637                if (C->getType() != Op->getType())
2638                  C =
2639                    ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
2640                                                                  Op->getType(),
2641                                                                  false),
2642                                          C, Op->getType());
2643                Operands.push_back(C);
2644              } else
2645                return V;
2646            } else {
2647              return V;
2648            }
2649          }
2650        }
2651
2652        Constant *C;
2653        if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2654          C = ConstantFoldCompareInstOperands(CI->getPredicate(),
2655                                              &Operands[0], Operands.size());
2656        else
2657          C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2658                                       &Operands[0], Operands.size());
2659        return getUnknown(C);
2660      }
2661    }
2662
2663    // This is some other type of SCEVUnknown, just return it.
2664    return V;
2665  }
2666
2667  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
2668    // Avoid performing the look-up in the common case where the specified
2669    // expression has no loop-variant portions.
2670    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
2671      SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2672      if (OpAtScope != Comm->getOperand(i)) {
2673        if (OpAtScope == UnknownValue) return UnknownValue;
2674        // Okay, at least one of these operands is loop variant but might be
2675        // foldable.  Build a new instance of the folded commutative expression.
2676        std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
2677        NewOps.push_back(OpAtScope);
2678
2679        for (++i; i != e; ++i) {
2680          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2681          if (OpAtScope == UnknownValue) return UnknownValue;
2682          NewOps.push_back(OpAtScope);
2683        }
2684        if (isa<SCEVAddExpr>(Comm))
2685          return getAddExpr(NewOps);
2686        if (isa<SCEVMulExpr>(Comm))
2687          return getMulExpr(NewOps);
2688        if (isa<SCEVSMaxExpr>(Comm))
2689          return getSMaxExpr(NewOps);
2690        if (isa<SCEVUMaxExpr>(Comm))
2691          return getUMaxExpr(NewOps);
2692        assert(0 && "Unknown commutative SCEV type!");
2693      }
2694    }
2695    // If we got here, all operands are loop invariant.
2696    return Comm;
2697  }
2698
2699  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
2700    SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
2701    if (LHS == UnknownValue) return LHS;
2702    SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
2703    if (RHS == UnknownValue) return RHS;
2704    if (LHS == Div->getLHS() && RHS == Div->getRHS())
2705      return Div;   // must be loop invariant
2706    return getUDivExpr(LHS, RHS);
2707  }
2708
2709  // If this is a loop recurrence for a loop that does not contain L, then we
2710  // are dealing with the final value computed by the loop.
2711  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
2712    if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
2713      // To evaluate this recurrence, we need to know how many times the AddRec
2714      // loop iterates.  Compute this now.
2715      SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
2716      if (BackedgeTakenCount == UnknownValue) return UnknownValue;
2717
2718      // Then, evaluate the AddRec.
2719      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
2720    }
2721    return UnknownValue;
2722  }
2723
2724  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
2725    SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
2726    if (Op == UnknownValue) return Op;
2727    if (Op == Cast->getOperand())
2728      return Cast;  // must be loop invariant
2729    return getZeroExtendExpr(Op, Cast->getType());
2730  }
2731
2732  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
2733    SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
2734    if (Op == UnknownValue) return Op;
2735    if (Op == Cast->getOperand())
2736      return Cast;  // must be loop invariant
2737    return getSignExtendExpr(Op, Cast->getType());
2738  }
2739
2740  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
2741    SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
2742    if (Op == UnknownValue) return Op;
2743    if (Op == Cast->getOperand())
2744      return Cast;  // must be loop invariant
2745    return getTruncateExpr(Op, Cast->getType());
2746  }
2747
2748  assert(0 && "Unknown SCEV type!");
2749}
2750
2751/// getSCEVAtScope - Return a SCEV expression handle for the specified value
2752/// at the specified scope in the program.  The L value specifies a loop
2753/// nest to evaluate the expression at, where null is the top-level or a
2754/// specified loop is immediately inside of the loop.
2755///
2756/// This method can be used to compute the exit value for a variable defined
2757/// in a loop by querying what the value will hold in the parent loop.
2758///
2759/// If this value is not computable at this scope, a SCEVCouldNotCompute
2760/// object is returned.
2761SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
2762  return getSCEVAtScope(getSCEV(V), L);
2763}
2764
2765/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
2766/// following equation:
2767///
2768///     A * X = B (mod N)
2769///
2770/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
2771/// A and B isn't important.
2772///
2773/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
2774static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
2775                                               ScalarEvolution &SE) {
2776  uint32_t BW = A.getBitWidth();
2777  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
2778  assert(A != 0 && "A must be non-zero.");
2779
2780  // 1. D = gcd(A, N)
2781  //
2782  // The gcd of A and N may have only one prime factor: 2. The number of
2783  // trailing zeros in A is its multiplicity
2784  uint32_t Mult2 = A.countTrailingZeros();
2785  // D = 2^Mult2
2786
2787  // 2. Check if B is divisible by D.
2788  //
2789  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
2790  // is not less than multiplicity of this prime factor for D.
2791  if (B.countTrailingZeros() < Mult2)
2792    return SE.getCouldNotCompute();
2793
2794  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
2795  // modulo (N / D).
2796  //
2797  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
2798  // bit width during computations.
2799  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
2800  APInt Mod(BW + 1, 0);
2801  Mod.set(BW - Mult2);  // Mod = N / D
2802  APInt I = AD.multiplicativeInverse(Mod);
2803
2804  // 4. Compute the minimum unsigned root of the equation:
2805  // I * (B / D) mod (N / D)
2806  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
2807
2808  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
2809  // bits.
2810  return SE.getConstant(Result.trunc(BW));
2811}
2812
2813/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
2814/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
2815/// might be the same) or two SCEVCouldNotCompute objects.
2816///
2817static std::pair<SCEVHandle,SCEVHandle>
2818SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
2819  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
2820  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
2821  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
2822  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
2823
2824  // We currently can only solve this if the coefficients are constants.
2825  if (!LC || !MC || !NC) {
2826    const SCEV *CNC = SE.getCouldNotCompute();
2827    return std::make_pair(CNC, CNC);
2828  }
2829
2830  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
2831  const APInt &L = LC->getValue()->getValue();
2832  const APInt &M = MC->getValue()->getValue();
2833  const APInt &N = NC->getValue()->getValue();
2834  APInt Two(BitWidth, 2);
2835  APInt Four(BitWidth, 4);
2836
2837  {
2838    using namespace APIntOps;
2839    const APInt& C = L;
2840    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
2841    // The B coefficient is M-N/2
2842    APInt B(M);
2843    B -= sdiv(N,Two);
2844
2845    // The A coefficient is N/2
2846    APInt A(N.sdiv(Two));
2847
2848    // Compute the B^2-4ac term.
2849    APInt SqrtTerm(B);
2850    SqrtTerm *= B;
2851    SqrtTerm -= Four * (A * C);
2852
2853    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
2854    // integer value or else APInt::sqrt() will assert.
2855    APInt SqrtVal(SqrtTerm.sqrt());
2856
2857    // Compute the two solutions for the quadratic formula.
2858    // The divisions must be performed as signed divisions.
2859    APInt NegB(-B);
2860    APInt TwoA( A << 1 );
2861    if (TwoA.isMinValue()) {
2862      const SCEV *CNC = SE.getCouldNotCompute();
2863      return std::make_pair(CNC, CNC);
2864    }
2865
2866    ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA));
2867    ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA));
2868
2869    return std::make_pair(SE.getConstant(Solution1),
2870                          SE.getConstant(Solution2));
2871    } // end APIntOps namespace
2872}
2873
2874/// HowFarToZero - Return the number of times a backedge comparing the specified
2875/// value to zero will execute.  If not computable, return UnknownValue
2876SCEVHandle ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
2877  // If the value is a constant
2878  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2879    // If the value is already zero, the branch will execute zero times.
2880    if (C->getValue()->isZero()) return C;
2881    return UnknownValue;  // Otherwise it will loop infinitely.
2882  }
2883
2884  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
2885  if (!AddRec || AddRec->getLoop() != L)
2886    return UnknownValue;
2887
2888  if (AddRec->isAffine()) {
2889    // If this is an affine expression, the execution count of this branch is
2890    // the minimum unsigned root of the following equation:
2891    //
2892    //     Start + Step*N = 0 (mod 2^BW)
2893    //
2894    // equivalent to:
2895    //
2896    //             Step*N = -Start (mod 2^BW)
2897    //
2898    // where BW is the common bit width of Start and Step.
2899
2900    // Get the initial value for the loop.
2901    SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
2902    if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
2903
2904    SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
2905
2906    if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
2907      // For now we handle only constant steps.
2908
2909      // First, handle unitary steps.
2910      if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so:
2911        return getNegativeSCEV(Start);       //   N = -Start (as unsigned)
2912      if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so:
2913        return Start;                           //    N = Start (as unsigned)
2914
2915      // Then, try to solve the above equation provided that Start is constant.
2916      if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
2917        return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
2918                                            -StartC->getValue()->getValue(),
2919                                            *this);
2920    }
2921  } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
2922    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
2923    // the quadratic equation to solve it.
2924    std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec,
2925                                                                    *this);
2926    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2927    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2928    if (R1) {
2929#if 0
2930      errs() << "HFTZ: " << *V << " - sol#1: " << *R1
2931             << "  sol#2: " << *R2 << "\n";
2932#endif
2933      // Pick the smallest positive root value.
2934      if (ConstantInt *CB =
2935          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
2936                                   R1->getValue(), R2->getValue()))) {
2937        if (CB->getZExtValue() == false)
2938          std::swap(R1, R2);   // R1 is the minimum root now.
2939
2940        // We can only use this value if the chrec ends up with an exact zero
2941        // value at this index.  When solving for "X*X != 5", for example, we
2942        // should not accept a root of 2.
2943        SCEVHandle Val = AddRec->evaluateAtIteration(R1, *this);
2944        if (Val->isZero())
2945          return R1;  // We found a quadratic root!
2946      }
2947    }
2948  }
2949
2950  return UnknownValue;
2951}
2952
2953/// HowFarToNonZero - Return the number of times a backedge checking the
2954/// specified value for nonzero will execute.  If not computable, return
2955/// UnknownValue
2956SCEVHandle ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
2957  // Loops that look like: while (X == 0) are very strange indeed.  We don't
2958  // handle them yet except for the trivial case.  This could be expanded in the
2959  // future as needed.
2960
2961  // If the value is a constant, check to see if it is known to be non-zero
2962  // already.  If so, the backedge will execute zero times.
2963  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2964    if (!C->getValue()->isNullValue())
2965      return getIntegerSCEV(0, C->getType());
2966    return UnknownValue;  // Otherwise it will loop infinitely.
2967  }
2968
2969  // We could implement others, but I really doubt anyone writes loops like
2970  // this, and if they did, they would already be constant folded.
2971  return UnknownValue;
2972}
2973
2974/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
2975/// (which may not be an immediate predecessor) which has exactly one
2976/// successor from which BB is reachable, or null if no such block is
2977/// found.
2978///
2979BasicBlock *
2980ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
2981  // If the block has a unique predecessor, then there is no path from the
2982  // predecessor to the block that does not go through the direct edge
2983  // from the predecessor to the block.
2984  if (BasicBlock *Pred = BB->getSinglePredecessor())
2985    return Pred;
2986
2987  // A loop's header is defined to be a block that dominates the loop.
2988  // If the loop has a preheader, it must be a block that has exactly
2989  // one successor that can reach BB. This is slightly more strict
2990  // than necessary, but works if critical edges are split.
2991  if (Loop *L = LI->getLoopFor(BB))
2992    return L->getLoopPreheader();
2993
2994  return 0;
2995}
2996
2997/// isLoopGuardedByCond - Test whether entry to the loop is protected by
2998/// a conditional between LHS and RHS.  This is used to help avoid max
2999/// expressions in loop trip counts.
3000bool ScalarEvolution::isLoopGuardedByCond(const Loop *L,
3001                                          ICmpInst::Predicate Pred,
3002                                          const SCEV *LHS, const SCEV *RHS) {
3003  BasicBlock *Preheader = L->getLoopPreheader();
3004  BasicBlock *PreheaderDest = L->getHeader();
3005
3006  // Starting at the preheader, climb up the predecessor chain, as long as
3007  // there are predecessors that can be found that have unique successors
3008  // leading to the original header.
3009  for (; Preheader;
3010       PreheaderDest = Preheader,
3011       Preheader = getPredecessorWithUniqueSuccessorForBB(Preheader)) {
3012
3013    BranchInst *LoopEntryPredicate =
3014      dyn_cast<BranchInst>(Preheader->getTerminator());
3015    if (!LoopEntryPredicate ||
3016        LoopEntryPredicate->isUnconditional())
3017      continue;
3018
3019    ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition());
3020    if (!ICI) continue;
3021
3022    // Now that we found a conditional branch that dominates the loop, check to
3023    // see if it is the comparison we are looking for.
3024    Value *PreCondLHS = ICI->getOperand(0);
3025    Value *PreCondRHS = ICI->getOperand(1);
3026    ICmpInst::Predicate Cond;
3027    if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest)
3028      Cond = ICI->getPredicate();
3029    else
3030      Cond = ICI->getInversePredicate();
3031
3032    if (Cond == Pred)
3033      ; // An exact match.
3034    else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE)
3035      ; // The actual condition is beyond sufficient.
3036    else
3037      // Check a few special cases.
3038      switch (Cond) {
3039      case ICmpInst::ICMP_UGT:
3040        if (Pred == ICmpInst::ICMP_ULT) {
3041          std::swap(PreCondLHS, PreCondRHS);
3042          Cond = ICmpInst::ICMP_ULT;
3043          break;
3044        }
3045        continue;
3046      case ICmpInst::ICMP_SGT:
3047        if (Pred == ICmpInst::ICMP_SLT) {
3048          std::swap(PreCondLHS, PreCondRHS);
3049          Cond = ICmpInst::ICMP_SLT;
3050          break;
3051        }
3052        continue;
3053      case ICmpInst::ICMP_NE:
3054        // Expressions like (x >u 0) are often canonicalized to (x != 0),
3055        // so check for this case by checking if the NE is comparing against
3056        // a minimum or maximum constant.
3057        if (!ICmpInst::isTrueWhenEqual(Pred))
3058          if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) {
3059            const APInt &A = CI->getValue();
3060            switch (Pred) {
3061            case ICmpInst::ICMP_SLT:
3062              if (A.isMaxSignedValue()) break;
3063              continue;
3064            case ICmpInst::ICMP_SGT:
3065              if (A.isMinSignedValue()) break;
3066              continue;
3067            case ICmpInst::ICMP_ULT:
3068              if (A.isMaxValue()) break;
3069              continue;
3070            case ICmpInst::ICMP_UGT:
3071              if (A.isMinValue()) break;
3072              continue;
3073            default:
3074              continue;
3075            }
3076            Cond = ICmpInst::ICMP_NE;
3077            // NE is symmetric but the original comparison may not be. Swap
3078            // the operands if necessary so that they match below.
3079            if (isa<SCEVConstant>(LHS))
3080              std::swap(PreCondLHS, PreCondRHS);
3081            break;
3082          }
3083        continue;
3084      default:
3085        // We weren't able to reconcile the condition.
3086        continue;
3087      }
3088
3089    if (!PreCondLHS->getType()->isInteger()) continue;
3090
3091    SCEVHandle PreCondLHSSCEV = getSCEV(PreCondLHS);
3092    SCEVHandle PreCondRHSSCEV = getSCEV(PreCondRHS);
3093    if ((LHS == PreCondLHSSCEV && RHS == PreCondRHSSCEV) ||
3094        (LHS == getNotSCEV(PreCondRHSSCEV) &&
3095         RHS == getNotSCEV(PreCondLHSSCEV)))
3096      return true;
3097  }
3098
3099  return false;
3100}
3101
3102/// HowManyLessThans - Return the number of times a backedge containing the
3103/// specified less-than comparison will execute.  If not computable, return
3104/// UnknownValue.
3105ScalarEvolution::BackedgeTakenInfo ScalarEvolution::
3106HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
3107                 const Loop *L, bool isSigned) {
3108  // Only handle:  "ADDREC < LoopInvariant".
3109  if (!RHS->isLoopInvariant(L)) return UnknownValue;
3110
3111  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
3112  if (!AddRec || AddRec->getLoop() != L)
3113    return UnknownValue;
3114
3115  if (AddRec->isAffine()) {
3116    // FORNOW: We only support unit strides.
3117    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
3118    SCEVHandle Step = AddRec->getStepRecurrence(*this);
3119    SCEVHandle NegOne = getIntegerSCEV(-1, AddRec->getType());
3120
3121    // TODO: handle non-constant strides.
3122    const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
3123    if (!CStep || CStep->isZero())
3124      return UnknownValue;
3125    if (CStep->getValue()->getValue() == 1) {
3126      // With unit stride, the iteration never steps past the limit value.
3127    } else if (CStep->getValue()->getValue().isStrictlyPositive()) {
3128      if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) {
3129        // Test whether a positive iteration iteration can step past the limit
3130        // value and past the maximum value for its type in a single step.
3131        if (isSigned) {
3132          APInt Max = APInt::getSignedMaxValue(BitWidth);
3133          if ((Max - CStep->getValue()->getValue())
3134                .slt(CLimit->getValue()->getValue()))
3135            return UnknownValue;
3136        } else {
3137          APInt Max = APInt::getMaxValue(BitWidth);
3138          if ((Max - CStep->getValue()->getValue())
3139                .ult(CLimit->getValue()->getValue()))
3140            return UnknownValue;
3141        }
3142      } else
3143        // TODO: handle non-constant limit values below.
3144        return UnknownValue;
3145    } else
3146      // TODO: handle negative strides below.
3147      return UnknownValue;
3148
3149    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
3150    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
3151    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
3152    // treat m-n as signed nor unsigned due to overflow possibility.
3153
3154    // First, we get the value of the LHS in the first iteration: n
3155    SCEVHandle Start = AddRec->getOperand(0);
3156
3157    // Determine the minimum constant start value.
3158    SCEVHandle MinStart = isa<SCEVConstant>(Start) ? Start :
3159      getConstant(isSigned ? APInt::getSignedMinValue(BitWidth) :
3160                             APInt::getMinValue(BitWidth));
3161
3162    // If we know that the condition is true in order to enter the loop,
3163    // then we know that it will run exactly (m-n)/s times. Otherwise, we
3164    // only know if will execute (max(m,n)-n)/s times. In both cases, the
3165    // division must round up.
3166    SCEVHandle End = RHS;
3167    if (!isLoopGuardedByCond(L,
3168                             isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
3169                             getMinusSCEV(Start, Step), RHS))
3170      End = isSigned ? getSMaxExpr(RHS, Start)
3171                     : getUMaxExpr(RHS, Start);
3172
3173    // Determine the maximum constant end value.
3174    SCEVHandle MaxEnd = isa<SCEVConstant>(End) ? End :
3175      getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth) :
3176                             APInt::getMaxValue(BitWidth));
3177
3178    // Finally, we subtract these two values and divide, rounding up, to get
3179    // the number of times the backedge is executed.
3180    SCEVHandle BECount = getUDivExpr(getAddExpr(getMinusSCEV(End, Start),
3181                                                getAddExpr(Step, NegOne)),
3182                                     Step);
3183
3184    // The maximum backedge count is similar, except using the minimum start
3185    // value and the maximum end value.
3186    SCEVHandle MaxBECount = getUDivExpr(getAddExpr(getMinusSCEV(MaxEnd,
3187                                                                MinStart),
3188                                                   getAddExpr(Step, NegOne)),
3189                                        Step);
3190
3191    return BackedgeTakenInfo(BECount, MaxBECount);
3192  }
3193
3194  return UnknownValue;
3195}
3196
3197/// getNumIterationsInRange - Return the number of iterations of this loop that
3198/// produce values in the specified constant range.  Another way of looking at
3199/// this is that it returns the first iteration number where the value is not in
3200/// the condition, thus computing the exit count. If the iteration count can't
3201/// be computed, an instance of SCEVCouldNotCompute is returned.
3202SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
3203                                                   ScalarEvolution &SE) const {
3204  if (Range.isFullSet())  // Infinite loop.
3205    return SE.getCouldNotCompute();
3206
3207  // If the start is a non-zero constant, shift the range to simplify things.
3208  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
3209    if (!SC->getValue()->isZero()) {
3210      std::vector<SCEVHandle> Operands(op_begin(), op_end());
3211      Operands[0] = SE.getIntegerSCEV(0, SC->getType());
3212      SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop());
3213      if (const SCEVAddRecExpr *ShiftedAddRec =
3214            dyn_cast<SCEVAddRecExpr>(Shifted))
3215        return ShiftedAddRec->getNumIterationsInRange(
3216                           Range.subtract(SC->getValue()->getValue()), SE);
3217      // This is strange and shouldn't happen.
3218      return SE.getCouldNotCompute();
3219    }
3220
3221  // The only time we can solve this is when we have all constant indices.
3222  // Otherwise, we cannot determine the overflow conditions.
3223  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
3224    if (!isa<SCEVConstant>(getOperand(i)))
3225      return SE.getCouldNotCompute();
3226
3227
3228  // Okay at this point we know that all elements of the chrec are constants and
3229  // that the start element is zero.
3230
3231  // First check to see if the range contains zero.  If not, the first
3232  // iteration exits.
3233  unsigned BitWidth = SE.getTypeSizeInBits(getType());
3234  if (!Range.contains(APInt(BitWidth, 0)))
3235    return SE.getConstant(ConstantInt::get(getType(),0));
3236
3237  if (isAffine()) {
3238    // If this is an affine expression then we have this situation:
3239    //   Solve {0,+,A} in Range  ===  Ax in Range
3240
3241    // We know that zero is in the range.  If A is positive then we know that
3242    // the upper value of the range must be the first possible exit value.
3243    // If A is negative then the lower of the range is the last possible loop
3244    // value.  Also note that we already checked for a full range.
3245    APInt One(BitWidth,1);
3246    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
3247    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
3248
3249    // The exit value should be (End+A)/A.
3250    APInt ExitVal = (End + A).udiv(A);
3251    ConstantInt *ExitValue = ConstantInt::get(ExitVal);
3252
3253    // Evaluate at the exit value.  If we really did fall out of the valid
3254    // range, then we computed our trip count, otherwise wrap around or other
3255    // things must have happened.
3256    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
3257    if (Range.contains(Val->getValue()))
3258      return SE.getCouldNotCompute();  // Something strange happened
3259
3260    // Ensure that the previous value is in the range.  This is a sanity check.
3261    assert(Range.contains(
3262           EvaluateConstantChrecAtConstant(this,
3263           ConstantInt::get(ExitVal - One), SE)->getValue()) &&
3264           "Linear scev computation is off in a bad way!");
3265    return SE.getConstant(ExitValue);
3266  } else if (isQuadratic()) {
3267    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
3268    // quadratic equation to solve it.  To do this, we must frame our problem in
3269    // terms of figuring out when zero is crossed, instead of when
3270    // Range.getUpper() is crossed.
3271    std::vector<SCEVHandle> NewOps(op_begin(), op_end());
3272    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
3273    SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
3274
3275    // Next, solve the constructed addrec
3276    std::pair<SCEVHandle,SCEVHandle> Roots =
3277      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
3278    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
3279    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
3280    if (R1) {
3281      // Pick the smallest positive root value.
3282      if (ConstantInt *CB =
3283          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
3284                                   R1->getValue(), R2->getValue()))) {
3285        if (CB->getZExtValue() == false)
3286          std::swap(R1, R2);   // R1 is the minimum root now.
3287
3288        // Make sure the root is not off by one.  The returned iteration should
3289        // not be in the range, but the previous one should be.  When solving
3290        // for "X*X < 5", for example, we should not return a root of 2.
3291        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
3292                                                             R1->getValue(),
3293                                                             SE);
3294        if (Range.contains(R1Val->getValue())) {
3295          // The next iteration must be out of the range...
3296          ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1);
3297
3298          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
3299          if (!Range.contains(R1Val->getValue()))
3300            return SE.getConstant(NextVal);
3301          return SE.getCouldNotCompute();  // Something strange happened
3302        }
3303
3304        // If R1 was not in the range, then it is a good return value.  Make
3305        // sure that R1-1 WAS in the range though, just in case.
3306        ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1);
3307        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
3308        if (Range.contains(R1Val->getValue()))
3309          return R1;
3310        return SE.getCouldNotCompute();  // Something strange happened
3311      }
3312    }
3313  }
3314
3315  return SE.getCouldNotCompute();
3316}
3317
3318
3319
3320//===----------------------------------------------------------------------===//
3321//                   SCEVCallbackVH Class Implementation
3322//===----------------------------------------------------------------------===//
3323
3324void SCEVCallbackVH::deleted() {
3325  assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
3326  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
3327    SE->ConstantEvolutionLoopExitValue.erase(PN);
3328  SE->Scalars.erase(getValPtr());
3329  // this now dangles!
3330}
3331
3332void SCEVCallbackVH::allUsesReplacedWith(Value *) {
3333  assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
3334
3335  // Forget all the expressions associated with users of the old value,
3336  // so that future queries will recompute the expressions using the new
3337  // value.
3338  SmallVector<User *, 16> Worklist;
3339  Value *Old = getValPtr();
3340  bool DeleteOld = false;
3341  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
3342       UI != UE; ++UI)
3343    Worklist.push_back(*UI);
3344  while (!Worklist.empty()) {
3345    User *U = Worklist.pop_back_val();
3346    // Deleting the Old value will cause this to dangle. Postpone
3347    // that until everything else is done.
3348    if (U == Old) {
3349      DeleteOld = true;
3350      continue;
3351    }
3352    if (PHINode *PN = dyn_cast<PHINode>(U))
3353      SE->ConstantEvolutionLoopExitValue.erase(PN);
3354    if (SE->Scalars.erase(U))
3355      for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
3356           UI != UE; ++UI)
3357        Worklist.push_back(*UI);
3358  }
3359  if (DeleteOld) {
3360    if (PHINode *PN = dyn_cast<PHINode>(Old))
3361      SE->ConstantEvolutionLoopExitValue.erase(PN);
3362    SE->Scalars.erase(Old);
3363    // this now dangles!
3364  }
3365  // this may dangle!
3366}
3367
3368SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
3369  : CallbackVH(V), SE(se) {}
3370
3371//===----------------------------------------------------------------------===//
3372//                   ScalarEvolution Class Implementation
3373//===----------------------------------------------------------------------===//
3374
3375ScalarEvolution::ScalarEvolution()
3376  : FunctionPass(&ID), UnknownValue(new SCEVCouldNotCompute()) {
3377}
3378
3379bool ScalarEvolution::runOnFunction(Function &F) {
3380  this->F = &F;
3381  LI = &getAnalysis<LoopInfo>();
3382  TD = getAnalysisIfAvailable<TargetData>();
3383  return false;
3384}
3385
3386void ScalarEvolution::releaseMemory() {
3387  Scalars.clear();
3388  BackedgeTakenCounts.clear();
3389  ConstantEvolutionLoopExitValue.clear();
3390}
3391
3392void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
3393  AU.setPreservesAll();
3394  AU.addRequiredTransitive<LoopInfo>();
3395}
3396
3397bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
3398  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
3399}
3400
3401static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
3402                          const Loop *L) {
3403  // Print all inner loops first
3404  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3405    PrintLoopInfo(OS, SE, *I);
3406
3407  OS << "Loop " << L->getHeader()->getName() << ": ";
3408
3409  SmallVector<BasicBlock*, 8> ExitBlocks;
3410  L->getExitBlocks(ExitBlocks);
3411  if (ExitBlocks.size() != 1)
3412    OS << "<multiple exits> ";
3413
3414  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
3415    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
3416  } else {
3417    OS << "Unpredictable backedge-taken count. ";
3418  }
3419
3420  OS << "\n";
3421}
3422
3423void ScalarEvolution::print(raw_ostream &OS, const Module* ) const {
3424  // ScalarEvolution's implementaiton of the print method is to print
3425  // out SCEV values of all instructions that are interesting. Doing
3426  // this potentially causes it to create new SCEV objects though,
3427  // which technically conflicts with the const qualifier. This isn't
3428  // observable from outside the class though (the hasSCEV function
3429  // notwithstanding), so casting away the const isn't dangerous.
3430  ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this);
3431
3432  OS << "Classifying expressions for: " << F->getName() << "\n";
3433  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
3434    if (isSCEVable(I->getType())) {
3435      OS << *I;
3436      OS << "  -->  ";
3437      SCEVHandle SV = SE.getSCEV(&*I);
3438      SV->print(OS);
3439      OS << "\t\t";
3440
3441      if (const Loop *L = LI->getLoopFor((*I).getParent())) {
3442        OS << "Exits: ";
3443        SCEVHandle ExitValue = SE.getSCEVAtScope(&*I, L->getParentLoop());
3444        if (isa<SCEVCouldNotCompute>(ExitValue)) {
3445          OS << "<<Unknown>>";
3446        } else {
3447          OS << *ExitValue;
3448        }
3449      }
3450
3451
3452      OS << "\n";
3453    }
3454
3455  OS << "Determining loop execution counts for: " << F->getName() << "\n";
3456  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
3457    PrintLoopInfo(OS, &SE, *I);
3458}
3459
3460void ScalarEvolution::print(std::ostream &o, const Module *M) const {
3461  raw_os_ostream OS(o);
3462  print(OS, M);
3463}
3464