ScalarEvolution.cpp revision 71c4144076d35bd45f8a5103357532f958de6757
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
19//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression.  These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
30//
31// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
35// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42//  Chains of recurrences -- a method to expedite the evaluation
43//  of closed-form functions
44//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46//  On computational properties of chains of recurrences
47//  Eugene V. Zima
48//
49//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50//  Robert A. van Engelen
51//
52//  Efficient Symbolic Analysis for Optimizing Compilers
53//  Robert A. van Engelen
54//
55//  Using the chains of recurrences algebra for data dependence testing and
56//  induction variable substitution
57//  MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
61#define DEBUG_TYPE "scalar-evolution"
62#include "llvm/Analysis/ScalarEvolutionExpressions.h"
63#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
65#include "llvm/GlobalVariable.h"
66#include "llvm/GlobalAlias.h"
67#include "llvm/Instructions.h"
68#include "llvm/LLVMContext.h"
69#include "llvm/Operator.h"
70#include "llvm/Analysis/ConstantFolding.h"
71#include "llvm/Analysis/Dominators.h"
72#include "llvm/Analysis/LoopInfo.h"
73#include "llvm/Analysis/ValueTracking.h"
74#include "llvm/Assembly/Writer.h"
75#include "llvm/Target/TargetData.h"
76#include "llvm/Support/CommandLine.h"
77#include "llvm/Support/ConstantRange.h"
78#include "llvm/Support/Debug.h"
79#include "llvm/Support/ErrorHandling.h"
80#include "llvm/Support/GetElementPtrTypeIterator.h"
81#include "llvm/Support/InstIterator.h"
82#include "llvm/Support/MathExtras.h"
83#include "llvm/Support/raw_ostream.h"
84#include "llvm/ADT/Statistic.h"
85#include "llvm/ADT/STLExtras.h"
86#include "llvm/ADT/SmallPtrSet.h"
87#include <algorithm>
88using namespace llvm;
89
90STATISTIC(NumArrayLenItCounts,
91          "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93          "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95          "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97          "Number of loops with trip counts computed by force");
98
99static cl::opt<unsigned>
100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101                        cl::desc("Maximum number of iterations SCEV will "
102                                 "symbolically execute a constant "
103                                 "derived loop"),
104                        cl::init(100));
105
106INITIALIZE_PASS(ScalarEvolution, "scalar-evolution",
107                "Scalar Evolution Analysis", false, true);
108char ScalarEvolution::ID = 0;
109
110//===----------------------------------------------------------------------===//
111//                           SCEV class definitions
112//===----------------------------------------------------------------------===//
113
114//===----------------------------------------------------------------------===//
115// Implementation of the SCEV class.
116//
117
118SCEV::~SCEV() {}
119
120void SCEV::dump() const {
121  print(dbgs());
122  dbgs() << '\n';
123}
124
125bool SCEV::isZero() const {
126  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
127    return SC->getValue()->isZero();
128  return false;
129}
130
131bool SCEV::isOne() const {
132  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
133    return SC->getValue()->isOne();
134  return false;
135}
136
137bool SCEV::isAllOnesValue() const {
138  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
139    return SC->getValue()->isAllOnesValue();
140  return false;
141}
142
143SCEVCouldNotCompute::SCEVCouldNotCompute() :
144  SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
145
146bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
147  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
148  return false;
149}
150
151const Type *SCEVCouldNotCompute::getType() const {
152  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
153  return 0;
154}
155
156bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
157  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
158  return false;
159}
160
161bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
162  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
163  return false;
164}
165
166void SCEVCouldNotCompute::print(raw_ostream &OS) const {
167  OS << "***COULDNOTCOMPUTE***";
168}
169
170bool SCEVCouldNotCompute::classof(const SCEV *S) {
171  return S->getSCEVType() == scCouldNotCompute;
172}
173
174const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
175  FoldingSetNodeID ID;
176  ID.AddInteger(scConstant);
177  ID.AddPointer(V);
178  void *IP = 0;
179  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
180  SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
181  UniqueSCEVs.InsertNode(S, IP);
182  return S;
183}
184
185const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
186  return getConstant(ConstantInt::get(getContext(), Val));
187}
188
189const SCEV *
190ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
191  const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
192  return getConstant(ConstantInt::get(ITy, V, isSigned));
193}
194
195const Type *SCEVConstant::getType() const { return V->getType(); }
196
197void SCEVConstant::print(raw_ostream &OS) const {
198  WriteAsOperand(OS, V, false);
199}
200
201SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
202                           unsigned SCEVTy, const SCEV *op, const Type *ty)
203  : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
204
205bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
206  return Op->dominates(BB, DT);
207}
208
209bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
210  return Op->properlyDominates(BB, DT);
211}
212
213SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
214                                   const SCEV *op, const Type *ty)
215  : SCEVCastExpr(ID, scTruncate, op, ty) {
216  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
217         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
218         "Cannot truncate non-integer value!");
219}
220
221void SCEVTruncateExpr::print(raw_ostream &OS) const {
222  OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
223}
224
225SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
226                                       const SCEV *op, const Type *ty)
227  : SCEVCastExpr(ID, scZeroExtend, op, ty) {
228  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
229         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
230         "Cannot zero extend non-integer value!");
231}
232
233void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
234  OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
235}
236
237SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
238                                       const SCEV *op, const Type *ty)
239  : SCEVCastExpr(ID, scSignExtend, op, ty) {
240  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
241         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
242         "Cannot sign extend non-integer value!");
243}
244
245void SCEVSignExtendExpr::print(raw_ostream &OS) const {
246  OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
247}
248
249void SCEVCommutativeExpr::print(raw_ostream &OS) const {
250  const char *OpStr = getOperationStr();
251  OS << "(";
252  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
253    OS << **I;
254    if (llvm::next(I) != E)
255      OS << OpStr;
256  }
257  OS << ")";
258}
259
260bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
261  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
262    if (!getOperand(i)->dominates(BB, DT))
263      return false;
264  }
265  return true;
266}
267
268bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
269  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
270    if (!getOperand(i)->properlyDominates(BB, DT))
271      return false;
272  }
273  return true;
274}
275
276bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
277  return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
278}
279
280bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
281  return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
282}
283
284void SCEVUDivExpr::print(raw_ostream &OS) const {
285  OS << "(" << *LHS << " /u " << *RHS << ")";
286}
287
288const Type *SCEVUDivExpr::getType() const {
289  // In most cases the types of LHS and RHS will be the same, but in some
290  // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
291  // depend on the type for correctness, but handling types carefully can
292  // avoid extra casts in the SCEVExpander. The LHS is more likely to be
293  // a pointer type than the RHS, so use the RHS' type here.
294  return RHS->getType();
295}
296
297bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
298  // Add recurrences are never invariant in the function-body (null loop).
299  if (!QueryLoop)
300    return false;
301
302  // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
303  if (QueryLoop->contains(L))
304    return false;
305
306  // This recurrence is invariant w.r.t. QueryLoop if L contains QueryLoop.
307  if (L->contains(QueryLoop))
308    return true;
309
310  // This recurrence is variant w.r.t. QueryLoop if any of its operands
311  // are variant.
312  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
313    if (!getOperand(i)->isLoopInvariant(QueryLoop))
314      return false;
315
316  // Otherwise it's loop-invariant.
317  return true;
318}
319
320bool
321SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
322  return DT->dominates(L->getHeader(), BB) &&
323         SCEVNAryExpr::dominates(BB, DT);
324}
325
326bool
327SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
328  // This uses a "dominates" query instead of "properly dominates" query because
329  // the instruction which produces the addrec's value is a PHI, and a PHI
330  // effectively properly dominates its entire containing block.
331  return DT->dominates(L->getHeader(), BB) &&
332         SCEVNAryExpr::properlyDominates(BB, DT);
333}
334
335void SCEVAddRecExpr::print(raw_ostream &OS) const {
336  OS << "{" << *Operands[0];
337  for (unsigned i = 1, e = NumOperands; i != e; ++i)
338    OS << ",+," << *Operands[i];
339  OS << "}<";
340  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
341  OS << ">";
342}
343
344void SCEVUnknown::deleted() {
345  // Clear this SCEVUnknown from ValuesAtScopes.
346  SE->ValuesAtScopes.erase(this);
347
348  // Remove this SCEVUnknown from the uniquing map.
349  SE->UniqueSCEVs.RemoveNode(this);
350
351  // Release the value.
352  setValPtr(0);
353}
354
355void SCEVUnknown::allUsesReplacedWith(Value *New) {
356  // Clear this SCEVUnknown from ValuesAtScopes.
357  SE->ValuesAtScopes.erase(this);
358
359  // Remove this SCEVUnknown from the uniquing map.
360  SE->UniqueSCEVs.RemoveNode(this);
361
362  // Update this SCEVUnknown to point to the new value. This is needed
363  // because there may still be outstanding SCEVs which still point to
364  // this SCEVUnknown.
365  setValPtr(New);
366}
367
368bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
369  // All non-instruction values are loop invariant.  All instructions are loop
370  // invariant if they are not contained in the specified loop.
371  // Instructions are never considered invariant in the function body
372  // (null loop) because they are defined within the "loop".
373  if (Instruction *I = dyn_cast<Instruction>(getValue()))
374    return L && !L->contains(I);
375  return true;
376}
377
378bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
379  if (Instruction *I = dyn_cast<Instruction>(getValue()))
380    return DT->dominates(I->getParent(), BB);
381  return true;
382}
383
384bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
385  if (Instruction *I = dyn_cast<Instruction>(getValue()))
386    return DT->properlyDominates(I->getParent(), BB);
387  return true;
388}
389
390const Type *SCEVUnknown::getType() const {
391  return getValue()->getType();
392}
393
394bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
395  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
396    if (VCE->getOpcode() == Instruction::PtrToInt)
397      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
398        if (CE->getOpcode() == Instruction::GetElementPtr &&
399            CE->getOperand(0)->isNullValue() &&
400            CE->getNumOperands() == 2)
401          if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
402            if (CI->isOne()) {
403              AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
404                                 ->getElementType();
405              return true;
406            }
407
408  return false;
409}
410
411bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
412  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
413    if (VCE->getOpcode() == Instruction::PtrToInt)
414      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
415        if (CE->getOpcode() == Instruction::GetElementPtr &&
416            CE->getOperand(0)->isNullValue()) {
417          const Type *Ty =
418            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
419          if (const StructType *STy = dyn_cast<StructType>(Ty))
420            if (!STy->isPacked() &&
421                CE->getNumOperands() == 3 &&
422                CE->getOperand(1)->isNullValue()) {
423              if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
424                if (CI->isOne() &&
425                    STy->getNumElements() == 2 &&
426                    STy->getElementType(0)->isIntegerTy(1)) {
427                  AllocTy = STy->getElementType(1);
428                  return true;
429                }
430            }
431        }
432
433  return false;
434}
435
436bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
437  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
438    if (VCE->getOpcode() == Instruction::PtrToInt)
439      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
440        if (CE->getOpcode() == Instruction::GetElementPtr &&
441            CE->getNumOperands() == 3 &&
442            CE->getOperand(0)->isNullValue() &&
443            CE->getOperand(1)->isNullValue()) {
444          const Type *Ty =
445            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
446          // Ignore vector types here so that ScalarEvolutionExpander doesn't
447          // emit getelementptrs that index into vectors.
448          if (Ty->isStructTy() || Ty->isArrayTy()) {
449            CTy = Ty;
450            FieldNo = CE->getOperand(2);
451            return true;
452          }
453        }
454
455  return false;
456}
457
458void SCEVUnknown::print(raw_ostream &OS) const {
459  const Type *AllocTy;
460  if (isSizeOf(AllocTy)) {
461    OS << "sizeof(" << *AllocTy << ")";
462    return;
463  }
464  if (isAlignOf(AllocTy)) {
465    OS << "alignof(" << *AllocTy << ")";
466    return;
467  }
468
469  const Type *CTy;
470  Constant *FieldNo;
471  if (isOffsetOf(CTy, FieldNo)) {
472    OS << "offsetof(" << *CTy << ", ";
473    WriteAsOperand(OS, FieldNo, false);
474    OS << ")";
475    return;
476  }
477
478  // Otherwise just print it normally.
479  WriteAsOperand(OS, getValue(), false);
480}
481
482//===----------------------------------------------------------------------===//
483//                               SCEV Utilities
484//===----------------------------------------------------------------------===//
485
486static bool CompareTypes(const Type *A, const Type *B) {
487  if (A->getTypeID() != B->getTypeID())
488    return A->getTypeID() < B->getTypeID();
489  if (const IntegerType *AI = dyn_cast<IntegerType>(A)) {
490    const IntegerType *BI = cast<IntegerType>(B);
491    return AI->getBitWidth() < BI->getBitWidth();
492  }
493  if (const PointerType *AI = dyn_cast<PointerType>(A)) {
494    const PointerType *BI = cast<PointerType>(B);
495    return CompareTypes(AI->getElementType(), BI->getElementType());
496  }
497  if (const ArrayType *AI = dyn_cast<ArrayType>(A)) {
498    const ArrayType *BI = cast<ArrayType>(B);
499    if (AI->getNumElements() != BI->getNumElements())
500      return AI->getNumElements() < BI->getNumElements();
501    return CompareTypes(AI->getElementType(), BI->getElementType());
502  }
503  if (const VectorType *AI = dyn_cast<VectorType>(A)) {
504    const VectorType *BI = cast<VectorType>(B);
505    if (AI->getNumElements() != BI->getNumElements())
506      return AI->getNumElements() < BI->getNumElements();
507    return CompareTypes(AI->getElementType(), BI->getElementType());
508  }
509  if (const StructType *AI = dyn_cast<StructType>(A)) {
510    const StructType *BI = cast<StructType>(B);
511    if (AI->getNumElements() != BI->getNumElements())
512      return AI->getNumElements() < BI->getNumElements();
513    for (unsigned i = 0, e = AI->getNumElements(); i != e; ++i)
514      if (CompareTypes(AI->getElementType(i), BI->getElementType(i)) ||
515          CompareTypes(BI->getElementType(i), AI->getElementType(i)))
516        return CompareTypes(AI->getElementType(i), BI->getElementType(i));
517  }
518  return false;
519}
520
521namespace {
522  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
523  /// than the complexity of the RHS.  This comparator is used to canonicalize
524  /// expressions.
525  class SCEVComplexityCompare {
526    const LoopInfo *LI;
527  public:
528    explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
529
530    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
531      // Fast-path: SCEVs are uniqued so we can do a quick equality check.
532      if (LHS == RHS)
533        return false;
534
535      // Primarily, sort the SCEVs by their getSCEVType().
536      unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
537      if (LType != RType)
538        return LType < RType;
539
540      // Aside from the getSCEVType() ordering, the particular ordering
541      // isn't very important except that it's beneficial to be consistent,
542      // so that (a + b) and (b + a) don't end up as different expressions.
543
544      // Sort SCEVUnknown values with some loose heuristics. TODO: This is
545      // not as complete as it could be.
546      if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
547        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
548
549        // Order pointer values after integer values. This helps SCEVExpander
550        // form GEPs.
551        bool LIsPointer = LU->getType()->isPointerTy(),
552             RIsPointer = RU->getType()->isPointerTy();
553        if (LIsPointer != RIsPointer)
554          return RIsPointer;
555
556        // Compare getValueID values.
557        unsigned LID = LU->getValue()->getValueID(),
558                 RID = RU->getValue()->getValueID();
559        if (LID != RID)
560          return LID < RID;
561
562        // Sort arguments by their position.
563        if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
564          const Argument *RA = cast<Argument>(RU->getValue());
565          return LA->getArgNo() < RA->getArgNo();
566        }
567
568        // For instructions, compare their loop depth, and their opcode.
569        // This is pretty loose.
570        if (const Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
571          const Instruction *RV = cast<Instruction>(RU->getValue());
572
573          // Compare loop depths.
574          unsigned LDepth = LI->getLoopDepth(LV->getParent()),
575                   RDepth = LI->getLoopDepth(RV->getParent());
576          if (LDepth != RDepth)
577            return LDepth < RDepth;
578
579          // Compare the number of operands.
580          unsigned LNumOps = LV->getNumOperands(),
581                   RNumOps = RV->getNumOperands();
582          if (LNumOps != RNumOps)
583            return LNumOps < RNumOps;
584        }
585
586        return false;
587      }
588
589      // Compare constant values.
590      if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) {
591        const SCEVConstant *RC = cast<SCEVConstant>(RHS);
592        const ConstantInt *LCC = LC->getValue();
593        const ConstantInt *RCC = RC->getValue();
594        unsigned LBitWidth = LCC->getBitWidth(), RBitWidth = RCC->getBitWidth();
595        if (LBitWidth != RBitWidth)
596          return LBitWidth < RBitWidth;
597        return LCC->getValue().ult(RCC->getValue());
598      }
599
600      // Compare addrec loop depths.
601      if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) {
602        const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
603        unsigned LDepth = LA->getLoop()->getLoopDepth(),
604                 RDepth = RA->getLoop()->getLoopDepth();
605        if (LDepth != RDepth)
606          return LDepth < RDepth;
607      }
608
609      // Lexicographically compare n-ary expressions.
610      if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
611        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
612        unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
613        for (unsigned i = 0; i != LNumOps; ++i) {
614          if (i >= RNumOps)
615            return false;
616          const SCEV *LOp = LC->getOperand(i), *ROp = RC->getOperand(i);
617          if (operator()(LOp, ROp))
618            return true;
619          if (operator()(ROp, LOp))
620            return false;
621        }
622        return LNumOps < RNumOps;
623      }
624
625      // Lexicographically compare udiv expressions.
626      if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
627        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
628        const SCEV *LL = LC->getLHS(), *LR = LC->getRHS(),
629                   *RL = RC->getLHS(), *RR = RC->getRHS();
630        if (operator()(LL, RL))
631          return true;
632        if (operator()(RL, LL))
633          return false;
634        if (operator()(LR, RR))
635          return true;
636        if (operator()(RR, LR))
637          return false;
638        return false;
639      }
640
641      // Compare cast expressions by operand.
642      if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
643        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
644        return operator()(LC->getOperand(), RC->getOperand());
645      }
646
647      llvm_unreachable("Unknown SCEV kind!");
648      return false;
649    }
650  };
651}
652
653/// GroupByComplexity - Given a list of SCEV objects, order them by their
654/// complexity, and group objects of the same complexity together by value.
655/// When this routine is finished, we know that any duplicates in the vector are
656/// consecutive and that complexity is monotonically increasing.
657///
658/// Note that we go take special precautions to ensure that we get deterministic
659/// results from this routine.  In other words, we don't want the results of
660/// this to depend on where the addresses of various SCEV objects happened to
661/// land in memory.
662///
663static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
664                              LoopInfo *LI) {
665  if (Ops.size() < 2) return;  // Noop
666  if (Ops.size() == 2) {
667    // This is the common case, which also happens to be trivially simple.
668    // Special case it.
669    if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
670      std::swap(Ops[0], Ops[1]);
671    return;
672  }
673
674  // Do the rough sort by complexity.
675  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
676
677  // Now that we are sorted by complexity, group elements of the same
678  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
679  // be extremely short in practice.  Note that we take this approach because we
680  // do not want to depend on the addresses of the objects we are grouping.
681  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
682    const SCEV *S = Ops[i];
683    unsigned Complexity = S->getSCEVType();
684
685    // If there are any objects of the same complexity and same value as this
686    // one, group them.
687    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
688      if (Ops[j] == S) { // Found a duplicate.
689        // Move it to immediately after i'th element.
690        std::swap(Ops[i+1], Ops[j]);
691        ++i;   // no need to rescan it.
692        if (i == e-2) return;  // Done!
693      }
694    }
695  }
696}
697
698
699
700//===----------------------------------------------------------------------===//
701//                      Simple SCEV method implementations
702//===----------------------------------------------------------------------===//
703
704/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
705/// Assume, K > 0.
706static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
707                                       ScalarEvolution &SE,
708                                       const Type* ResultTy) {
709  // Handle the simplest case efficiently.
710  if (K == 1)
711    return SE.getTruncateOrZeroExtend(It, ResultTy);
712
713  // We are using the following formula for BC(It, K):
714  //
715  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
716  //
717  // Suppose, W is the bitwidth of the return value.  We must be prepared for
718  // overflow.  Hence, we must assure that the result of our computation is
719  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
720  // safe in modular arithmetic.
721  //
722  // However, this code doesn't use exactly that formula; the formula it uses
723  // is something like the following, where T is the number of factors of 2 in
724  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
725  // exponentiation:
726  //
727  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
728  //
729  // This formula is trivially equivalent to the previous formula.  However,
730  // this formula can be implemented much more efficiently.  The trick is that
731  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
732  // arithmetic.  To do exact division in modular arithmetic, all we have
733  // to do is multiply by the inverse.  Therefore, this step can be done at
734  // width W.
735  //
736  // The next issue is how to safely do the division by 2^T.  The way this
737  // is done is by doing the multiplication step at a width of at least W + T
738  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
739  // when we perform the division by 2^T (which is equivalent to a right shift
740  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
741  // truncated out after the division by 2^T.
742  //
743  // In comparison to just directly using the first formula, this technique
744  // is much more efficient; using the first formula requires W * K bits,
745  // but this formula less than W + K bits. Also, the first formula requires
746  // a division step, whereas this formula only requires multiplies and shifts.
747  //
748  // It doesn't matter whether the subtraction step is done in the calculation
749  // width or the input iteration count's width; if the subtraction overflows,
750  // the result must be zero anyway.  We prefer here to do it in the width of
751  // the induction variable because it helps a lot for certain cases; CodeGen
752  // isn't smart enough to ignore the overflow, which leads to much less
753  // efficient code if the width of the subtraction is wider than the native
754  // register width.
755  //
756  // (It's possible to not widen at all by pulling out factors of 2 before
757  // the multiplication; for example, K=2 can be calculated as
758  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
759  // extra arithmetic, so it's not an obvious win, and it gets
760  // much more complicated for K > 3.)
761
762  // Protection from insane SCEVs; this bound is conservative,
763  // but it probably doesn't matter.
764  if (K > 1000)
765    return SE.getCouldNotCompute();
766
767  unsigned W = SE.getTypeSizeInBits(ResultTy);
768
769  // Calculate K! / 2^T and T; we divide out the factors of two before
770  // multiplying for calculating K! / 2^T to avoid overflow.
771  // Other overflow doesn't matter because we only care about the bottom
772  // W bits of the result.
773  APInt OddFactorial(W, 1);
774  unsigned T = 1;
775  for (unsigned i = 3; i <= K; ++i) {
776    APInt Mult(W, i);
777    unsigned TwoFactors = Mult.countTrailingZeros();
778    T += TwoFactors;
779    Mult = Mult.lshr(TwoFactors);
780    OddFactorial *= Mult;
781  }
782
783  // We need at least W + T bits for the multiplication step
784  unsigned CalculationBits = W + T;
785
786  // Calculate 2^T, at width T+W.
787  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
788
789  // Calculate the multiplicative inverse of K! / 2^T;
790  // this multiplication factor will perform the exact division by
791  // K! / 2^T.
792  APInt Mod = APInt::getSignedMinValue(W+1);
793  APInt MultiplyFactor = OddFactorial.zext(W+1);
794  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
795  MultiplyFactor = MultiplyFactor.trunc(W);
796
797  // Calculate the product, at width T+W
798  const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
799                                                      CalculationBits);
800  const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
801  for (unsigned i = 1; i != K; ++i) {
802    const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
803    Dividend = SE.getMulExpr(Dividend,
804                             SE.getTruncateOrZeroExtend(S, CalculationTy));
805  }
806
807  // Divide by 2^T
808  const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
809
810  // Truncate the result, and divide by K! / 2^T.
811
812  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
813                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
814}
815
816/// evaluateAtIteration - Return the value of this chain of recurrences at
817/// the specified iteration number.  We can evaluate this recurrence by
818/// multiplying each element in the chain by the binomial coefficient
819/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
820///
821///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
822///
823/// where BC(It, k) stands for binomial coefficient.
824///
825const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
826                                                ScalarEvolution &SE) const {
827  const SCEV *Result = getStart();
828  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
829    // The computation is correct in the face of overflow provided that the
830    // multiplication is performed _after_ the evaluation of the binomial
831    // coefficient.
832    const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
833    if (isa<SCEVCouldNotCompute>(Coeff))
834      return Coeff;
835
836    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
837  }
838  return Result;
839}
840
841//===----------------------------------------------------------------------===//
842//                    SCEV Expression folder implementations
843//===----------------------------------------------------------------------===//
844
845const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
846                                             const Type *Ty) {
847  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
848         "This is not a truncating conversion!");
849  assert(isSCEVable(Ty) &&
850         "This is not a conversion to a SCEVable type!");
851  Ty = getEffectiveSCEVType(Ty);
852
853  FoldingSetNodeID ID;
854  ID.AddInteger(scTruncate);
855  ID.AddPointer(Op);
856  ID.AddPointer(Ty);
857  void *IP = 0;
858  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
859
860  // Fold if the operand is constant.
861  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
862    return getConstant(
863      cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
864                                               getEffectiveSCEVType(Ty))));
865
866  // trunc(trunc(x)) --> trunc(x)
867  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
868    return getTruncateExpr(ST->getOperand(), Ty);
869
870  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
871  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
872    return getTruncateOrSignExtend(SS->getOperand(), Ty);
873
874  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
875  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
876    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
877
878  // If the input value is a chrec scev, truncate the chrec's operands.
879  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
880    SmallVector<const SCEV *, 4> Operands;
881    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
882      Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
883    return getAddRecExpr(Operands, AddRec->getLoop());
884  }
885
886  // As a special case, fold trunc(undef) to undef. We don't want to
887  // know too much about SCEVUnknowns, but this special case is handy
888  // and harmless.
889  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
890    if (isa<UndefValue>(U->getValue()))
891      return getSCEV(UndefValue::get(Ty));
892
893  // The cast wasn't folded; create an explicit cast node. We can reuse
894  // the existing insert position since if we get here, we won't have
895  // made any changes which would invalidate it.
896  SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
897                                                 Op, Ty);
898  UniqueSCEVs.InsertNode(S, IP);
899  return S;
900}
901
902const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
903                                               const Type *Ty) {
904  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
905         "This is not an extending conversion!");
906  assert(isSCEVable(Ty) &&
907         "This is not a conversion to a SCEVable type!");
908  Ty = getEffectiveSCEVType(Ty);
909
910  // Fold if the operand is constant.
911  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
912    return getConstant(
913      cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
914                                              getEffectiveSCEVType(Ty))));
915
916  // zext(zext(x)) --> zext(x)
917  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
918    return getZeroExtendExpr(SZ->getOperand(), Ty);
919
920  // Before doing any expensive analysis, check to see if we've already
921  // computed a SCEV for this Op and Ty.
922  FoldingSetNodeID ID;
923  ID.AddInteger(scZeroExtend);
924  ID.AddPointer(Op);
925  ID.AddPointer(Ty);
926  void *IP = 0;
927  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
928
929  // If the input value is a chrec scev, and we can prove that the value
930  // did not overflow the old, smaller, value, we can zero extend all of the
931  // operands (often constants).  This allows analysis of something like
932  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
933  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
934    if (AR->isAffine()) {
935      const SCEV *Start = AR->getStart();
936      const SCEV *Step = AR->getStepRecurrence(*this);
937      unsigned BitWidth = getTypeSizeInBits(AR->getType());
938      const Loop *L = AR->getLoop();
939
940      // If we have special knowledge that this addrec won't overflow,
941      // we don't need to do any further analysis.
942      if (AR->hasNoUnsignedWrap())
943        return getAddRecExpr(getZeroExtendExpr(Start, Ty),
944                             getZeroExtendExpr(Step, Ty),
945                             L);
946
947      // Check whether the backedge-taken count is SCEVCouldNotCompute.
948      // Note that this serves two purposes: It filters out loops that are
949      // simply not analyzable, and it covers the case where this code is
950      // being called from within backedge-taken count analysis, such that
951      // attempting to ask for the backedge-taken count would likely result
952      // in infinite recursion. In the later case, the analysis code will
953      // cope with a conservative value, and it will take care to purge
954      // that value once it has finished.
955      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
956      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
957        // Manually compute the final value for AR, checking for
958        // overflow.
959
960        // Check whether the backedge-taken count can be losslessly casted to
961        // the addrec's type. The count is always unsigned.
962        const SCEV *CastedMaxBECount =
963          getTruncateOrZeroExtend(MaxBECount, Start->getType());
964        const SCEV *RecastedMaxBECount =
965          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
966        if (MaxBECount == RecastedMaxBECount) {
967          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
968          // Check whether Start+Step*MaxBECount has no unsigned overflow.
969          const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
970          const SCEV *Add = getAddExpr(Start, ZMul);
971          const SCEV *OperandExtendedAdd =
972            getAddExpr(getZeroExtendExpr(Start, WideTy),
973                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
974                                  getZeroExtendExpr(Step, WideTy)));
975          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
976            // Return the expression with the addrec on the outside.
977            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
978                                 getZeroExtendExpr(Step, Ty),
979                                 L);
980
981          // Similar to above, only this time treat the step value as signed.
982          // This covers loops that count down.
983          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
984          Add = getAddExpr(Start, SMul);
985          OperandExtendedAdd =
986            getAddExpr(getZeroExtendExpr(Start, WideTy),
987                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
988                                  getSignExtendExpr(Step, WideTy)));
989          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
990            // Return the expression with the addrec on the outside.
991            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
992                                 getSignExtendExpr(Step, Ty),
993                                 L);
994        }
995
996        // If the backedge is guarded by a comparison with the pre-inc value
997        // the addrec is safe. Also, if the entry is guarded by a comparison
998        // with the start value and the backedge is guarded by a comparison
999        // with the post-inc value, the addrec is safe.
1000        if (isKnownPositive(Step)) {
1001          const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1002                                      getUnsignedRange(Step).getUnsignedMax());
1003          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1004              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1005               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1006                                           AR->getPostIncExpr(*this), N)))
1007            // Return the expression with the addrec on the outside.
1008            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1009                                 getZeroExtendExpr(Step, Ty),
1010                                 L);
1011        } else if (isKnownNegative(Step)) {
1012          const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1013                                      getSignedRange(Step).getSignedMin());
1014          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1015              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1016               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1017                                           AR->getPostIncExpr(*this), N)))
1018            // Return the expression with the addrec on the outside.
1019            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1020                                 getSignExtendExpr(Step, Ty),
1021                                 L);
1022        }
1023      }
1024    }
1025
1026  // The cast wasn't folded; create an explicit cast node.
1027  // Recompute the insert position, as it may have been invalidated.
1028  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1029  SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1030                                                   Op, Ty);
1031  UniqueSCEVs.InsertNode(S, IP);
1032  return S;
1033}
1034
1035const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1036                                               const Type *Ty) {
1037  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1038         "This is not an extending conversion!");
1039  assert(isSCEVable(Ty) &&
1040         "This is not a conversion to a SCEVable type!");
1041  Ty = getEffectiveSCEVType(Ty);
1042
1043  // Fold if the operand is constant.
1044  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1045    return getConstant(
1046      cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1047                                              getEffectiveSCEVType(Ty))));
1048
1049  // sext(sext(x)) --> sext(x)
1050  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1051    return getSignExtendExpr(SS->getOperand(), Ty);
1052
1053  // Before doing any expensive analysis, check to see if we've already
1054  // computed a SCEV for this Op and Ty.
1055  FoldingSetNodeID ID;
1056  ID.AddInteger(scSignExtend);
1057  ID.AddPointer(Op);
1058  ID.AddPointer(Ty);
1059  void *IP = 0;
1060  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1061
1062  // If the input value is a chrec scev, and we can prove that the value
1063  // did not overflow the old, smaller, value, we can sign extend all of the
1064  // operands (often constants).  This allows analysis of something like
1065  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1066  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1067    if (AR->isAffine()) {
1068      const SCEV *Start = AR->getStart();
1069      const SCEV *Step = AR->getStepRecurrence(*this);
1070      unsigned BitWidth = getTypeSizeInBits(AR->getType());
1071      const Loop *L = AR->getLoop();
1072
1073      // If we have special knowledge that this addrec won't overflow,
1074      // we don't need to do any further analysis.
1075      if (AR->hasNoSignedWrap())
1076        return getAddRecExpr(getSignExtendExpr(Start, Ty),
1077                             getSignExtendExpr(Step, Ty),
1078                             L);
1079
1080      // Check whether the backedge-taken count is SCEVCouldNotCompute.
1081      // Note that this serves two purposes: It filters out loops that are
1082      // simply not analyzable, and it covers the case where this code is
1083      // being called from within backedge-taken count analysis, such that
1084      // attempting to ask for the backedge-taken count would likely result
1085      // in infinite recursion. In the later case, the analysis code will
1086      // cope with a conservative value, and it will take care to purge
1087      // that value once it has finished.
1088      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1089      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1090        // Manually compute the final value for AR, checking for
1091        // overflow.
1092
1093        // Check whether the backedge-taken count can be losslessly casted to
1094        // the addrec's type. The count is always unsigned.
1095        const SCEV *CastedMaxBECount =
1096          getTruncateOrZeroExtend(MaxBECount, Start->getType());
1097        const SCEV *RecastedMaxBECount =
1098          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1099        if (MaxBECount == RecastedMaxBECount) {
1100          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1101          // Check whether Start+Step*MaxBECount has no signed overflow.
1102          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1103          const SCEV *Add = getAddExpr(Start, SMul);
1104          const SCEV *OperandExtendedAdd =
1105            getAddExpr(getSignExtendExpr(Start, WideTy),
1106                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1107                                  getSignExtendExpr(Step, WideTy)));
1108          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
1109            // Return the expression with the addrec on the outside.
1110            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1111                                 getSignExtendExpr(Step, Ty),
1112                                 L);
1113
1114          // Similar to above, only this time treat the step value as unsigned.
1115          // This covers loops that count up with an unsigned step.
1116          const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
1117          Add = getAddExpr(Start, UMul);
1118          OperandExtendedAdd =
1119            getAddExpr(getSignExtendExpr(Start, WideTy),
1120                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1121                                  getZeroExtendExpr(Step, WideTy)));
1122          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
1123            // Return the expression with the addrec on the outside.
1124            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1125                                 getZeroExtendExpr(Step, Ty),
1126                                 L);
1127        }
1128
1129        // If the backedge is guarded by a comparison with the pre-inc value
1130        // the addrec is safe. Also, if the entry is guarded by a comparison
1131        // with the start value and the backedge is guarded by a comparison
1132        // with the post-inc value, the addrec is safe.
1133        if (isKnownPositive(Step)) {
1134          const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1135                                      getSignedRange(Step).getSignedMax());
1136          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
1137              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
1138               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1139                                           AR->getPostIncExpr(*this), N)))
1140            // Return the expression with the addrec on the outside.
1141            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1142                                 getSignExtendExpr(Step, Ty),
1143                                 L);
1144        } else if (isKnownNegative(Step)) {
1145          const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1146                                      getSignedRange(Step).getSignedMin());
1147          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
1148              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
1149               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1150                                           AR->getPostIncExpr(*this), N)))
1151            // Return the expression with the addrec on the outside.
1152            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1153                                 getSignExtendExpr(Step, Ty),
1154                                 L);
1155        }
1156      }
1157    }
1158
1159  // The cast wasn't folded; create an explicit cast node.
1160  // Recompute the insert position, as it may have been invalidated.
1161  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1162  SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1163                                                   Op, Ty);
1164  UniqueSCEVs.InsertNode(S, IP);
1165  return S;
1166}
1167
1168/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1169/// unspecified bits out to the given type.
1170///
1171const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1172                                              const Type *Ty) {
1173  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1174         "This is not an extending conversion!");
1175  assert(isSCEVable(Ty) &&
1176         "This is not a conversion to a SCEVable type!");
1177  Ty = getEffectiveSCEVType(Ty);
1178
1179  // Sign-extend negative constants.
1180  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1181    if (SC->getValue()->getValue().isNegative())
1182      return getSignExtendExpr(Op, Ty);
1183
1184  // Peel off a truncate cast.
1185  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1186    const SCEV *NewOp = T->getOperand();
1187    if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1188      return getAnyExtendExpr(NewOp, Ty);
1189    return getTruncateOrNoop(NewOp, Ty);
1190  }
1191
1192  // Next try a zext cast. If the cast is folded, use it.
1193  const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1194  if (!isa<SCEVZeroExtendExpr>(ZExt))
1195    return ZExt;
1196
1197  // Next try a sext cast. If the cast is folded, use it.
1198  const SCEV *SExt = getSignExtendExpr(Op, Ty);
1199  if (!isa<SCEVSignExtendExpr>(SExt))
1200    return SExt;
1201
1202  // Force the cast to be folded into the operands of an addrec.
1203  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1204    SmallVector<const SCEV *, 4> Ops;
1205    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1206         I != E; ++I)
1207      Ops.push_back(getAnyExtendExpr(*I, Ty));
1208    return getAddRecExpr(Ops, AR->getLoop());
1209  }
1210
1211  // As a special case, fold anyext(undef) to undef. We don't want to
1212  // know too much about SCEVUnknowns, but this special case is handy
1213  // and harmless.
1214  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1215    if (isa<UndefValue>(U->getValue()))
1216      return getSCEV(UndefValue::get(Ty));
1217
1218  // If the expression is obviously signed, use the sext cast value.
1219  if (isa<SCEVSMaxExpr>(Op))
1220    return SExt;
1221
1222  // Absent any other information, use the zext cast value.
1223  return ZExt;
1224}
1225
1226/// CollectAddOperandsWithScales - Process the given Ops list, which is
1227/// a list of operands to be added under the given scale, update the given
1228/// map. This is a helper function for getAddRecExpr. As an example of
1229/// what it does, given a sequence of operands that would form an add
1230/// expression like this:
1231///
1232///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1233///
1234/// where A and B are constants, update the map with these values:
1235///
1236///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1237///
1238/// and add 13 + A*B*29 to AccumulatedConstant.
1239/// This will allow getAddRecExpr to produce this:
1240///
1241///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1242///
1243/// This form often exposes folding opportunities that are hidden in
1244/// the original operand list.
1245///
1246/// Return true iff it appears that any interesting folding opportunities
1247/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1248/// the common case where no interesting opportunities are present, and
1249/// is also used as a check to avoid infinite recursion.
1250///
1251static bool
1252CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1253                             SmallVector<const SCEV *, 8> &NewOps,
1254                             APInt &AccumulatedConstant,
1255                             const SCEV *const *Ops, size_t NumOperands,
1256                             const APInt &Scale,
1257                             ScalarEvolution &SE) {
1258  bool Interesting = false;
1259
1260  // Iterate over the add operands. They are sorted, with constants first.
1261  unsigned i = 0;
1262  while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1263    ++i;
1264    // Pull a buried constant out to the outside.
1265    if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1266      Interesting = true;
1267    AccumulatedConstant += Scale * C->getValue()->getValue();
1268  }
1269
1270  // Next comes everything else. We're especially interested in multiplies
1271  // here, but they're in the middle, so just visit the rest with one loop.
1272  for (; i != NumOperands; ++i) {
1273    const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1274    if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1275      APInt NewScale =
1276        Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1277      if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1278        // A multiplication of a constant with another add; recurse.
1279        const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1280        Interesting |=
1281          CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1282                                       Add->op_begin(), Add->getNumOperands(),
1283                                       NewScale, SE);
1284      } else {
1285        // A multiplication of a constant with some other value. Update
1286        // the map.
1287        SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1288        const SCEV *Key = SE.getMulExpr(MulOps);
1289        std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1290          M.insert(std::make_pair(Key, NewScale));
1291        if (Pair.second) {
1292          NewOps.push_back(Pair.first->first);
1293        } else {
1294          Pair.first->second += NewScale;
1295          // The map already had an entry for this value, which may indicate
1296          // a folding opportunity.
1297          Interesting = true;
1298        }
1299      }
1300    } else {
1301      // An ordinary operand. Update the map.
1302      std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1303        M.insert(std::make_pair(Ops[i], Scale));
1304      if (Pair.second) {
1305        NewOps.push_back(Pair.first->first);
1306      } else {
1307        Pair.first->second += Scale;
1308        // The map already had an entry for this value, which may indicate
1309        // a folding opportunity.
1310        Interesting = true;
1311      }
1312    }
1313  }
1314
1315  return Interesting;
1316}
1317
1318namespace {
1319  struct APIntCompare {
1320    bool operator()(const APInt &LHS, const APInt &RHS) const {
1321      return LHS.ult(RHS);
1322    }
1323  };
1324}
1325
1326/// getAddExpr - Get a canonical add expression, or something simpler if
1327/// possible.
1328const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1329                                        bool HasNUW, bool HasNSW) {
1330  assert(!Ops.empty() && "Cannot get empty add!");
1331  if (Ops.size() == 1) return Ops[0];
1332#ifndef NDEBUG
1333  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1334  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1335    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1336           "SCEVAddExpr operand types don't match!");
1337#endif
1338
1339  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1340  if (!HasNUW && HasNSW) {
1341    bool All = true;
1342    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1343      if (!isKnownNonNegative(Ops[i])) {
1344        All = false;
1345        break;
1346      }
1347    if (All) HasNUW = true;
1348  }
1349
1350  // Sort by complexity, this groups all similar expression types together.
1351  GroupByComplexity(Ops, LI);
1352
1353  // If there are any constants, fold them together.
1354  unsigned Idx = 0;
1355  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1356    ++Idx;
1357    assert(Idx < Ops.size());
1358    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1359      // We found two constants, fold them together!
1360      Ops[0] = getConstant(LHSC->getValue()->getValue() +
1361                           RHSC->getValue()->getValue());
1362      if (Ops.size() == 2) return Ops[0];
1363      Ops.erase(Ops.begin()+1);  // Erase the folded element
1364      LHSC = cast<SCEVConstant>(Ops[0]);
1365    }
1366
1367    // If we are left with a constant zero being added, strip it off.
1368    if (LHSC->getValue()->isZero()) {
1369      Ops.erase(Ops.begin());
1370      --Idx;
1371    }
1372
1373    if (Ops.size() == 1) return Ops[0];
1374  }
1375
1376  // Okay, check to see if the same value occurs in the operand list twice.  If
1377  // so, merge them together into an multiply expression.  Since we sorted the
1378  // list, these values are required to be adjacent.
1379  const Type *Ty = Ops[0]->getType();
1380  bool FoundMatch = false;
1381  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1382    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
1383      // Found a match, merge the two values into a multiply, and add any
1384      // remaining values to the result.
1385      const SCEV *Two = getConstant(Ty, 2);
1386      const SCEV *Mul = getMulExpr(Ops[i], Two);
1387      if (Ops.size() == 2)
1388        return Mul;
1389      Ops[i] = Mul;
1390      Ops.erase(Ops.begin()+i+1);
1391      --i; --e;
1392      FoundMatch = true;
1393    }
1394  if (FoundMatch)
1395    return getAddExpr(Ops, HasNUW, HasNSW);
1396
1397  // Check for truncates. If all the operands are truncated from the same
1398  // type, see if factoring out the truncate would permit the result to be
1399  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1400  // if the contents of the resulting outer trunc fold to something simple.
1401  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1402    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1403    const Type *DstType = Trunc->getType();
1404    const Type *SrcType = Trunc->getOperand()->getType();
1405    SmallVector<const SCEV *, 8> LargeOps;
1406    bool Ok = true;
1407    // Check all the operands to see if they can be represented in the
1408    // source type of the truncate.
1409    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1410      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1411        if (T->getOperand()->getType() != SrcType) {
1412          Ok = false;
1413          break;
1414        }
1415        LargeOps.push_back(T->getOperand());
1416      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1417        LargeOps.push_back(getAnyExtendExpr(C, SrcType));
1418      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1419        SmallVector<const SCEV *, 8> LargeMulOps;
1420        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1421          if (const SCEVTruncateExpr *T =
1422                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1423            if (T->getOperand()->getType() != SrcType) {
1424              Ok = false;
1425              break;
1426            }
1427            LargeMulOps.push_back(T->getOperand());
1428          } else if (const SCEVConstant *C =
1429                       dyn_cast<SCEVConstant>(M->getOperand(j))) {
1430            LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
1431          } else {
1432            Ok = false;
1433            break;
1434          }
1435        }
1436        if (Ok)
1437          LargeOps.push_back(getMulExpr(LargeMulOps));
1438      } else {
1439        Ok = false;
1440        break;
1441      }
1442    }
1443    if (Ok) {
1444      // Evaluate the expression in the larger type.
1445      const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
1446      // If it folds to something simple, use it. Otherwise, don't.
1447      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1448        return getTruncateExpr(Fold, DstType);
1449    }
1450  }
1451
1452  // Skip past any other cast SCEVs.
1453  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1454    ++Idx;
1455
1456  // If there are add operands they would be next.
1457  if (Idx < Ops.size()) {
1458    bool DeletedAdd = false;
1459    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1460      // If we have an add, expand the add operands onto the end of the operands
1461      // list.
1462      Ops.erase(Ops.begin()+Idx);
1463      Ops.append(Add->op_begin(), Add->op_end());
1464      DeletedAdd = true;
1465    }
1466
1467    // If we deleted at least one add, we added operands to the end of the list,
1468    // and they are not necessarily sorted.  Recurse to resort and resimplify
1469    // any operands we just acquired.
1470    if (DeletedAdd)
1471      return getAddExpr(Ops);
1472  }
1473
1474  // Skip over the add expression until we get to a multiply.
1475  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1476    ++Idx;
1477
1478  // Check to see if there are any folding opportunities present with
1479  // operands multiplied by constant values.
1480  if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1481    uint64_t BitWidth = getTypeSizeInBits(Ty);
1482    DenseMap<const SCEV *, APInt> M;
1483    SmallVector<const SCEV *, 8> NewOps;
1484    APInt AccumulatedConstant(BitWidth, 0);
1485    if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1486                                     Ops.data(), Ops.size(),
1487                                     APInt(BitWidth, 1), *this)) {
1488      // Some interesting folding opportunity is present, so its worthwhile to
1489      // re-generate the operands list. Group the operands by constant scale,
1490      // to avoid multiplying by the same constant scale multiple times.
1491      std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1492      for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(),
1493           E = NewOps.end(); I != E; ++I)
1494        MulOpLists[M.find(*I)->second].push_back(*I);
1495      // Re-generate the operands list.
1496      Ops.clear();
1497      if (AccumulatedConstant != 0)
1498        Ops.push_back(getConstant(AccumulatedConstant));
1499      for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1500           I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1501        if (I->first != 0)
1502          Ops.push_back(getMulExpr(getConstant(I->first),
1503                                   getAddExpr(I->second)));
1504      if (Ops.empty())
1505        return getConstant(Ty, 0);
1506      if (Ops.size() == 1)
1507        return Ops[0];
1508      return getAddExpr(Ops);
1509    }
1510  }
1511
1512  // If we are adding something to a multiply expression, make sure the
1513  // something is not already an operand of the multiply.  If so, merge it into
1514  // the multiply.
1515  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1516    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1517    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1518      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1519      if (isa<SCEVConstant>(MulOpSCEV))
1520        continue;
1521      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1522        if (MulOpSCEV == Ops[AddOp]) {
1523          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1524          const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1525          if (Mul->getNumOperands() != 2) {
1526            // If the multiply has more than two operands, we must get the
1527            // Y*Z term.
1528            SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end());
1529            MulOps.erase(MulOps.begin()+MulOp);
1530            InnerMul = getMulExpr(MulOps);
1531          }
1532          const SCEV *One = getConstant(Ty, 1);
1533          const SCEV *AddOne = getAddExpr(InnerMul, One);
1534          const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
1535          if (Ops.size() == 2) return OuterMul;
1536          if (AddOp < Idx) {
1537            Ops.erase(Ops.begin()+AddOp);
1538            Ops.erase(Ops.begin()+Idx-1);
1539          } else {
1540            Ops.erase(Ops.begin()+Idx);
1541            Ops.erase(Ops.begin()+AddOp-1);
1542          }
1543          Ops.push_back(OuterMul);
1544          return getAddExpr(Ops);
1545        }
1546
1547      // Check this multiply against other multiplies being added together.
1548      bool AnyFold = false;
1549      for (unsigned OtherMulIdx = Idx+1;
1550           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1551           ++OtherMulIdx) {
1552        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1553        // If MulOp occurs in OtherMul, we can fold the two multiplies
1554        // together.
1555        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1556             OMulOp != e; ++OMulOp)
1557          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1558            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1559            const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
1560            if (Mul->getNumOperands() != 2) {
1561              SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1562                                                  Mul->op_end());
1563              MulOps.erase(MulOps.begin()+MulOp);
1564              InnerMul1 = getMulExpr(MulOps);
1565            }
1566            const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1567            if (OtherMul->getNumOperands() != 2) {
1568              SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1569                                                  OtherMul->op_end());
1570              MulOps.erase(MulOps.begin()+OMulOp);
1571              InnerMul2 = getMulExpr(MulOps);
1572            }
1573            const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1574            const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1575            if (Ops.size() == 2) return OuterMul;
1576            Ops[Idx] = OuterMul;
1577            Ops.erase(Ops.begin()+OtherMulIdx);
1578            OtherMulIdx = Idx;
1579            AnyFold = true;
1580          }
1581      }
1582      if (AnyFold)
1583        return getAddExpr(Ops);
1584    }
1585  }
1586
1587  // If there are any add recurrences in the operands list, see if any other
1588  // added values are loop invariant.  If so, we can fold them into the
1589  // recurrence.
1590  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1591    ++Idx;
1592
1593  // Scan over all recurrences, trying to fold loop invariants into them.
1594  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1595    // Scan all of the other operands to this add and add them to the vector if
1596    // they are loop invariant w.r.t. the recurrence.
1597    SmallVector<const SCEV *, 8> LIOps;
1598    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1599    const Loop *AddRecLoop = AddRec->getLoop();
1600    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1601      if (Ops[i]->isLoopInvariant(AddRecLoop)) {
1602        LIOps.push_back(Ops[i]);
1603        Ops.erase(Ops.begin()+i);
1604        --i; --e;
1605      }
1606
1607    // If we found some loop invariants, fold them into the recurrence.
1608    if (!LIOps.empty()) {
1609      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1610      LIOps.push_back(AddRec->getStart());
1611
1612      SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1613                                             AddRec->op_end());
1614      AddRecOps[0] = getAddExpr(LIOps);
1615
1616      // Build the new addrec. Propagate the NUW and NSW flags if both the
1617      // outer add and the inner addrec are guaranteed to have no overflow.
1618      const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop,
1619                                         HasNUW && AddRec->hasNoUnsignedWrap(),
1620                                         HasNSW && AddRec->hasNoSignedWrap());
1621
1622      // If all of the other operands were loop invariant, we are done.
1623      if (Ops.size() == 1) return NewRec;
1624
1625      // Otherwise, add the folded AddRec by the non-liv parts.
1626      for (unsigned i = 0;; ++i)
1627        if (Ops[i] == AddRec) {
1628          Ops[i] = NewRec;
1629          break;
1630        }
1631      return getAddExpr(Ops);
1632    }
1633
1634    // Okay, if there weren't any loop invariants to be folded, check to see if
1635    // there are multiple AddRec's with the same loop induction variable being
1636    // added together.  If so, we can fold them.
1637    for (unsigned OtherIdx = Idx+1;
1638         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1639      if (OtherIdx != Idx) {
1640        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1641        if (AddRecLoop == OtherAddRec->getLoop()) {
1642          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
1643          SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(),
1644                                              AddRec->op_end());
1645          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1646            if (i >= NewOps.size()) {
1647              NewOps.append(OtherAddRec->op_begin()+i,
1648                            OtherAddRec->op_end());
1649              break;
1650            }
1651            NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
1652          }
1653          const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRecLoop);
1654
1655          if (Ops.size() == 2) return NewAddRec;
1656
1657          Ops.erase(Ops.begin()+Idx);
1658          Ops.erase(Ops.begin()+OtherIdx-1);
1659          Ops.push_back(NewAddRec);
1660          return getAddExpr(Ops);
1661        }
1662      }
1663
1664    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1665    // next one.
1666  }
1667
1668  // Okay, it looks like we really DO need an add expr.  Check to see if we
1669  // already have one, otherwise create a new one.
1670  FoldingSetNodeID ID;
1671  ID.AddInteger(scAddExpr);
1672  ID.AddInteger(Ops.size());
1673  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1674    ID.AddPointer(Ops[i]);
1675  void *IP = 0;
1676  SCEVAddExpr *S =
1677    static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1678  if (!S) {
1679    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1680    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1681    S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1682                                        O, Ops.size());
1683    UniqueSCEVs.InsertNode(S, IP);
1684  }
1685  if (HasNUW) S->setHasNoUnsignedWrap(true);
1686  if (HasNSW) S->setHasNoSignedWrap(true);
1687  return S;
1688}
1689
1690/// getMulExpr - Get a canonical multiply expression, or something simpler if
1691/// possible.
1692const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1693                                        bool HasNUW, bool HasNSW) {
1694  assert(!Ops.empty() && "Cannot get empty mul!");
1695  if (Ops.size() == 1) return Ops[0];
1696#ifndef NDEBUG
1697  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1698    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1699           getEffectiveSCEVType(Ops[0]->getType()) &&
1700           "SCEVMulExpr operand types don't match!");
1701#endif
1702
1703  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1704  if (!HasNUW && HasNSW) {
1705    bool All = true;
1706    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1707      if (!isKnownNonNegative(Ops[i])) {
1708        All = false;
1709        break;
1710      }
1711    if (All) HasNUW = true;
1712  }
1713
1714  // Sort by complexity, this groups all similar expression types together.
1715  GroupByComplexity(Ops, LI);
1716
1717  // If there are any constants, fold them together.
1718  unsigned Idx = 0;
1719  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1720
1721    // C1*(C2+V) -> C1*C2 + C1*V
1722    if (Ops.size() == 2)
1723      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1724        if (Add->getNumOperands() == 2 &&
1725            isa<SCEVConstant>(Add->getOperand(0)))
1726          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1727                            getMulExpr(LHSC, Add->getOperand(1)));
1728
1729    ++Idx;
1730    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1731      // We found two constants, fold them together!
1732      ConstantInt *Fold = ConstantInt::get(getContext(),
1733                                           LHSC->getValue()->getValue() *
1734                                           RHSC->getValue()->getValue());
1735      Ops[0] = getConstant(Fold);
1736      Ops.erase(Ops.begin()+1);  // Erase the folded element
1737      if (Ops.size() == 1) return Ops[0];
1738      LHSC = cast<SCEVConstant>(Ops[0]);
1739    }
1740
1741    // If we are left with a constant one being multiplied, strip it off.
1742    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1743      Ops.erase(Ops.begin());
1744      --Idx;
1745    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1746      // If we have a multiply of zero, it will always be zero.
1747      return Ops[0];
1748    } else if (Ops[0]->isAllOnesValue()) {
1749      // If we have a mul by -1 of an add, try distributing the -1 among the
1750      // add operands.
1751      if (Ops.size() == 2)
1752        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1753          SmallVector<const SCEV *, 4> NewOps;
1754          bool AnyFolded = false;
1755          for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1756               I != E; ++I) {
1757            const SCEV *Mul = getMulExpr(Ops[0], *I);
1758            if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1759            NewOps.push_back(Mul);
1760          }
1761          if (AnyFolded)
1762            return getAddExpr(NewOps);
1763        }
1764    }
1765
1766    if (Ops.size() == 1)
1767      return Ops[0];
1768  }
1769
1770  // Skip over the add expression until we get to a multiply.
1771  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1772    ++Idx;
1773
1774  // If there are mul operands inline them all into this expression.
1775  if (Idx < Ops.size()) {
1776    bool DeletedMul = false;
1777    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1778      // If we have an mul, expand the mul operands onto the end of the operands
1779      // list.
1780      Ops.erase(Ops.begin()+Idx);
1781      Ops.append(Mul->op_begin(), Mul->op_end());
1782      DeletedMul = true;
1783    }
1784
1785    // If we deleted at least one mul, we added operands to the end of the list,
1786    // and they are not necessarily sorted.  Recurse to resort and resimplify
1787    // any operands we just acquired.
1788    if (DeletedMul)
1789      return getMulExpr(Ops);
1790  }
1791
1792  // If there are any add recurrences in the operands list, see if any other
1793  // added values are loop invariant.  If so, we can fold them into the
1794  // recurrence.
1795  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1796    ++Idx;
1797
1798  // Scan over all recurrences, trying to fold loop invariants into them.
1799  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1800    // Scan all of the other operands to this mul and add them to the vector if
1801    // they are loop invariant w.r.t. the recurrence.
1802    SmallVector<const SCEV *, 8> LIOps;
1803    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1804    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1805      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1806        LIOps.push_back(Ops[i]);
1807        Ops.erase(Ops.begin()+i);
1808        --i; --e;
1809      }
1810
1811    // If we found some loop invariants, fold them into the recurrence.
1812    if (!LIOps.empty()) {
1813      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1814      SmallVector<const SCEV *, 4> NewOps;
1815      NewOps.reserve(AddRec->getNumOperands());
1816      const SCEV *Scale = getMulExpr(LIOps);
1817      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1818        NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1819
1820      // Build the new addrec. Propagate the NUW and NSW flags if both the
1821      // outer mul and the inner addrec are guaranteed to have no overflow.
1822      const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(),
1823                                         HasNUW && AddRec->hasNoUnsignedWrap(),
1824                                         HasNSW && AddRec->hasNoSignedWrap());
1825
1826      // If all of the other operands were loop invariant, we are done.
1827      if (Ops.size() == 1) return NewRec;
1828
1829      // Otherwise, multiply the folded AddRec by the non-liv parts.
1830      for (unsigned i = 0;; ++i)
1831        if (Ops[i] == AddRec) {
1832          Ops[i] = NewRec;
1833          break;
1834        }
1835      return getMulExpr(Ops);
1836    }
1837
1838    // Okay, if there weren't any loop invariants to be folded, check to see if
1839    // there are multiple AddRec's with the same loop induction variable being
1840    // multiplied together.  If so, we can fold them.
1841    for (unsigned OtherIdx = Idx+1;
1842         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1843      if (OtherIdx != Idx) {
1844        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1845        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1846          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
1847          const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1848          const SCEV *NewStart = getMulExpr(F->getStart(),
1849                                                 G->getStart());
1850          const SCEV *B = F->getStepRecurrence(*this);
1851          const SCEV *D = G->getStepRecurrence(*this);
1852          const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1853                                          getMulExpr(G, B),
1854                                          getMulExpr(B, D));
1855          const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1856                                               F->getLoop());
1857          if (Ops.size() == 2) return NewAddRec;
1858
1859          Ops.erase(Ops.begin()+Idx);
1860          Ops.erase(Ops.begin()+OtherIdx-1);
1861          Ops.push_back(NewAddRec);
1862          return getMulExpr(Ops);
1863        }
1864      }
1865
1866    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1867    // next one.
1868  }
1869
1870  // Okay, it looks like we really DO need an mul expr.  Check to see if we
1871  // already have one, otherwise create a new one.
1872  FoldingSetNodeID ID;
1873  ID.AddInteger(scMulExpr);
1874  ID.AddInteger(Ops.size());
1875  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1876    ID.AddPointer(Ops[i]);
1877  void *IP = 0;
1878  SCEVMulExpr *S =
1879    static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1880  if (!S) {
1881    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1882    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1883    S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1884                                        O, Ops.size());
1885    UniqueSCEVs.InsertNode(S, IP);
1886  }
1887  if (HasNUW) S->setHasNoUnsignedWrap(true);
1888  if (HasNSW) S->setHasNoSignedWrap(true);
1889  return S;
1890}
1891
1892/// getUDivExpr - Get a canonical unsigned division expression, or something
1893/// simpler if possible.
1894const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1895                                         const SCEV *RHS) {
1896  assert(getEffectiveSCEVType(LHS->getType()) ==
1897         getEffectiveSCEVType(RHS->getType()) &&
1898         "SCEVUDivExpr operand types don't match!");
1899
1900  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1901    if (RHSC->getValue()->equalsInt(1))
1902      return LHS;                               // X udiv 1 --> x
1903    // If the denominator is zero, the result of the udiv is undefined. Don't
1904    // try to analyze it, because the resolution chosen here may differ from
1905    // the resolution chosen in other parts of the compiler.
1906    if (!RHSC->getValue()->isZero()) {
1907      // Determine if the division can be folded into the operands of
1908      // its operands.
1909      // TODO: Generalize this to non-constants by using known-bits information.
1910      const Type *Ty = LHS->getType();
1911      unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1912      unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
1913      // For non-power-of-two values, effectively round the value up to the
1914      // nearest power of two.
1915      if (!RHSC->getValue()->getValue().isPowerOf2())
1916        ++MaxShiftAmt;
1917      const IntegerType *ExtTy =
1918        IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1919      // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1920      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1921        if (const SCEVConstant *Step =
1922              dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1923          if (!Step->getValue()->getValue()
1924                .urem(RHSC->getValue()->getValue()) &&
1925              getZeroExtendExpr(AR, ExtTy) ==
1926              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1927                            getZeroExtendExpr(Step, ExtTy),
1928                            AR->getLoop())) {
1929            SmallVector<const SCEV *, 4> Operands;
1930            for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1931              Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1932            return getAddRecExpr(Operands, AR->getLoop());
1933          }
1934      // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1935      if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1936        SmallVector<const SCEV *, 4> Operands;
1937        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1938          Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1939        if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1940          // Find an operand that's safely divisible.
1941          for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1942            const SCEV *Op = M->getOperand(i);
1943            const SCEV *Div = getUDivExpr(Op, RHSC);
1944            if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1945              Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1946                                                      M->op_end());
1947              Operands[i] = Div;
1948              return getMulExpr(Operands);
1949            }
1950          }
1951      }
1952      // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1953      if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1954        SmallVector<const SCEV *, 4> Operands;
1955        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1956          Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1957        if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1958          Operands.clear();
1959          for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1960            const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
1961            if (isa<SCEVUDivExpr>(Op) ||
1962                getMulExpr(Op, RHS) != A->getOperand(i))
1963              break;
1964            Operands.push_back(Op);
1965          }
1966          if (Operands.size() == A->getNumOperands())
1967            return getAddExpr(Operands);
1968        }
1969      }
1970
1971      // Fold if both operands are constant.
1972      if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1973        Constant *LHSCV = LHSC->getValue();
1974        Constant *RHSCV = RHSC->getValue();
1975        return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1976                                                                   RHSCV)));
1977      }
1978    }
1979  }
1980
1981  FoldingSetNodeID ID;
1982  ID.AddInteger(scUDivExpr);
1983  ID.AddPointer(LHS);
1984  ID.AddPointer(RHS);
1985  void *IP = 0;
1986  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1987  SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
1988                                             LHS, RHS);
1989  UniqueSCEVs.InsertNode(S, IP);
1990  return S;
1991}
1992
1993
1994/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1995/// Simplify the expression as much as possible.
1996const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
1997                                           const SCEV *Step, const Loop *L,
1998                                           bool HasNUW, bool HasNSW) {
1999  SmallVector<const SCEV *, 4> Operands;
2000  Operands.push_back(Start);
2001  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2002    if (StepChrec->getLoop() == L) {
2003      Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2004      return getAddRecExpr(Operands, L);
2005    }
2006
2007  Operands.push_back(Step);
2008  return getAddRecExpr(Operands, L, HasNUW, HasNSW);
2009}
2010
2011/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2012/// Simplify the expression as much as possible.
2013const SCEV *
2014ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2015                               const Loop *L,
2016                               bool HasNUW, bool HasNSW) {
2017  if (Operands.size() == 1) return Operands[0];
2018#ifndef NDEBUG
2019  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2020    assert(getEffectiveSCEVType(Operands[i]->getType()) ==
2021           getEffectiveSCEVType(Operands[0]->getType()) &&
2022           "SCEVAddRecExpr operand types don't match!");
2023#endif
2024
2025  if (Operands.back()->isZero()) {
2026    Operands.pop_back();
2027    return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0}  -->  X
2028  }
2029
2030  // It's tempting to want to call getMaxBackedgeTakenCount count here and
2031  // use that information to infer NUW and NSW flags. However, computing a
2032  // BE count requires calling getAddRecExpr, so we may not yet have a
2033  // meaningful BE count at this point (and if we don't, we'd be stuck
2034  // with a SCEVCouldNotCompute as the cached BE count).
2035
2036  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
2037  if (!HasNUW && HasNSW) {
2038    bool All = true;
2039    for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2040      if (!isKnownNonNegative(Operands[i])) {
2041        All = false;
2042        break;
2043      }
2044    if (All) HasNUW = true;
2045  }
2046
2047  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2048  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2049    const Loop *NestedLoop = NestedAR->getLoop();
2050    if (L->contains(NestedLoop->getHeader()) ?
2051        (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
2052        (!NestedLoop->contains(L->getHeader()) &&
2053         DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
2054      SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2055                                                  NestedAR->op_end());
2056      Operands[0] = NestedAR->getStart();
2057      // AddRecs require their operands be loop-invariant with respect to their
2058      // loops. Don't perform this transformation if it would break this
2059      // requirement.
2060      bool AllInvariant = true;
2061      for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2062        if (!Operands[i]->isLoopInvariant(L)) {
2063          AllInvariant = false;
2064          break;
2065        }
2066      if (AllInvariant) {
2067        NestedOperands[0] = getAddRecExpr(Operands, L);
2068        AllInvariant = true;
2069        for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2070          if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
2071            AllInvariant = false;
2072            break;
2073          }
2074        if (AllInvariant)
2075          // Ok, both add recurrences are valid after the transformation.
2076          return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
2077      }
2078      // Reset Operands to its original state.
2079      Operands[0] = NestedAR;
2080    }
2081  }
2082
2083  // Okay, it looks like we really DO need an addrec expr.  Check to see if we
2084  // already have one, otherwise create a new one.
2085  FoldingSetNodeID ID;
2086  ID.AddInteger(scAddRecExpr);
2087  ID.AddInteger(Operands.size());
2088  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2089    ID.AddPointer(Operands[i]);
2090  ID.AddPointer(L);
2091  void *IP = 0;
2092  SCEVAddRecExpr *S =
2093    static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2094  if (!S) {
2095    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2096    std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2097    S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2098                                           O, Operands.size(), L);
2099    UniqueSCEVs.InsertNode(S, IP);
2100  }
2101  if (HasNUW) S->setHasNoUnsignedWrap(true);
2102  if (HasNSW) S->setHasNoSignedWrap(true);
2103  return S;
2104}
2105
2106const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2107                                         const SCEV *RHS) {
2108  SmallVector<const SCEV *, 2> Ops;
2109  Ops.push_back(LHS);
2110  Ops.push_back(RHS);
2111  return getSMaxExpr(Ops);
2112}
2113
2114const SCEV *
2115ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2116  assert(!Ops.empty() && "Cannot get empty smax!");
2117  if (Ops.size() == 1) return Ops[0];
2118#ifndef NDEBUG
2119  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2120    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2121           getEffectiveSCEVType(Ops[0]->getType()) &&
2122           "SCEVSMaxExpr operand types don't match!");
2123#endif
2124
2125  // Sort by complexity, this groups all similar expression types together.
2126  GroupByComplexity(Ops, LI);
2127
2128  // If there are any constants, fold them together.
2129  unsigned Idx = 0;
2130  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2131    ++Idx;
2132    assert(Idx < Ops.size());
2133    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2134      // We found two constants, fold them together!
2135      ConstantInt *Fold = ConstantInt::get(getContext(),
2136                              APIntOps::smax(LHSC->getValue()->getValue(),
2137                                             RHSC->getValue()->getValue()));
2138      Ops[0] = getConstant(Fold);
2139      Ops.erase(Ops.begin()+1);  // Erase the folded element
2140      if (Ops.size() == 1) return Ops[0];
2141      LHSC = cast<SCEVConstant>(Ops[0]);
2142    }
2143
2144    // If we are left with a constant minimum-int, strip it off.
2145    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2146      Ops.erase(Ops.begin());
2147      --Idx;
2148    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2149      // If we have an smax with a constant maximum-int, it will always be
2150      // maximum-int.
2151      return Ops[0];
2152    }
2153
2154    if (Ops.size() == 1) return Ops[0];
2155  }
2156
2157  // Find the first SMax
2158  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2159    ++Idx;
2160
2161  // Check to see if one of the operands is an SMax. If so, expand its operands
2162  // onto our operand list, and recurse to simplify.
2163  if (Idx < Ops.size()) {
2164    bool DeletedSMax = false;
2165    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
2166      Ops.erase(Ops.begin()+Idx);
2167      Ops.append(SMax->op_begin(), SMax->op_end());
2168      DeletedSMax = true;
2169    }
2170
2171    if (DeletedSMax)
2172      return getSMaxExpr(Ops);
2173  }
2174
2175  // Okay, check to see if the same value occurs in the operand list twice.  If
2176  // so, delete one.  Since we sorted the list, these values are required to
2177  // be adjacent.
2178  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2179    //  X smax Y smax Y  -->  X smax Y
2180    //  X smax Y         -->  X, if X is always greater than Y
2181    if (Ops[i] == Ops[i+1] ||
2182        isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2183      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2184      --i; --e;
2185    } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
2186      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2187      --i; --e;
2188    }
2189
2190  if (Ops.size() == 1) return Ops[0];
2191
2192  assert(!Ops.empty() && "Reduced smax down to nothing!");
2193
2194  // Okay, it looks like we really DO need an smax expr.  Check to see if we
2195  // already have one, otherwise create a new one.
2196  FoldingSetNodeID ID;
2197  ID.AddInteger(scSMaxExpr);
2198  ID.AddInteger(Ops.size());
2199  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2200    ID.AddPointer(Ops[i]);
2201  void *IP = 0;
2202  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2203  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2204  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2205  SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2206                                             O, Ops.size());
2207  UniqueSCEVs.InsertNode(S, IP);
2208  return S;
2209}
2210
2211const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2212                                         const SCEV *RHS) {
2213  SmallVector<const SCEV *, 2> Ops;
2214  Ops.push_back(LHS);
2215  Ops.push_back(RHS);
2216  return getUMaxExpr(Ops);
2217}
2218
2219const SCEV *
2220ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2221  assert(!Ops.empty() && "Cannot get empty umax!");
2222  if (Ops.size() == 1) return Ops[0];
2223#ifndef NDEBUG
2224  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2225    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2226           getEffectiveSCEVType(Ops[0]->getType()) &&
2227           "SCEVUMaxExpr operand types don't match!");
2228#endif
2229
2230  // Sort by complexity, this groups all similar expression types together.
2231  GroupByComplexity(Ops, LI);
2232
2233  // If there are any constants, fold them together.
2234  unsigned Idx = 0;
2235  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2236    ++Idx;
2237    assert(Idx < Ops.size());
2238    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2239      // We found two constants, fold them together!
2240      ConstantInt *Fold = ConstantInt::get(getContext(),
2241                              APIntOps::umax(LHSC->getValue()->getValue(),
2242                                             RHSC->getValue()->getValue()));
2243      Ops[0] = getConstant(Fold);
2244      Ops.erase(Ops.begin()+1);  // Erase the folded element
2245      if (Ops.size() == 1) return Ops[0];
2246      LHSC = cast<SCEVConstant>(Ops[0]);
2247    }
2248
2249    // If we are left with a constant minimum-int, strip it off.
2250    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2251      Ops.erase(Ops.begin());
2252      --Idx;
2253    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2254      // If we have an umax with a constant maximum-int, it will always be
2255      // maximum-int.
2256      return Ops[0];
2257    }
2258
2259    if (Ops.size() == 1) return Ops[0];
2260  }
2261
2262  // Find the first UMax
2263  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2264    ++Idx;
2265
2266  // Check to see if one of the operands is a UMax. If so, expand its operands
2267  // onto our operand list, and recurse to simplify.
2268  if (Idx < Ops.size()) {
2269    bool DeletedUMax = false;
2270    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
2271      Ops.erase(Ops.begin()+Idx);
2272      Ops.append(UMax->op_begin(), UMax->op_end());
2273      DeletedUMax = true;
2274    }
2275
2276    if (DeletedUMax)
2277      return getUMaxExpr(Ops);
2278  }
2279
2280  // Okay, check to see if the same value occurs in the operand list twice.  If
2281  // so, delete one.  Since we sorted the list, these values are required to
2282  // be adjacent.
2283  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2284    //  X umax Y umax Y  -->  X umax Y
2285    //  X umax Y         -->  X, if X is always greater than Y
2286    if (Ops[i] == Ops[i+1] ||
2287        isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2288      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2289      --i; --e;
2290    } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
2291      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2292      --i; --e;
2293    }
2294
2295  if (Ops.size() == 1) return Ops[0];
2296
2297  assert(!Ops.empty() && "Reduced umax down to nothing!");
2298
2299  // Okay, it looks like we really DO need a umax expr.  Check to see if we
2300  // already have one, otherwise create a new one.
2301  FoldingSetNodeID ID;
2302  ID.AddInteger(scUMaxExpr);
2303  ID.AddInteger(Ops.size());
2304  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2305    ID.AddPointer(Ops[i]);
2306  void *IP = 0;
2307  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2308  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2309  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2310  SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2311                                             O, Ops.size());
2312  UniqueSCEVs.InsertNode(S, IP);
2313  return S;
2314}
2315
2316const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2317                                         const SCEV *RHS) {
2318  // ~smax(~x, ~y) == smin(x, y).
2319  return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2320}
2321
2322const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2323                                         const SCEV *RHS) {
2324  // ~umax(~x, ~y) == umin(x, y)
2325  return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2326}
2327
2328const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
2329  // If we have TargetData, we can bypass creating a target-independent
2330  // constant expression and then folding it back into a ConstantInt.
2331  // This is just a compile-time optimization.
2332  if (TD)
2333    return getConstant(TD->getIntPtrType(getContext()),
2334                       TD->getTypeAllocSize(AllocTy));
2335
2336  Constant *C = ConstantExpr::getSizeOf(AllocTy);
2337  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2338    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2339      C = Folded;
2340  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2341  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2342}
2343
2344const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2345  Constant *C = ConstantExpr::getAlignOf(AllocTy);
2346  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2347    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2348      C = Folded;
2349  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2350  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2351}
2352
2353const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2354                                             unsigned FieldNo) {
2355  // If we have TargetData, we can bypass creating a target-independent
2356  // constant expression and then folding it back into a ConstantInt.
2357  // This is just a compile-time optimization.
2358  if (TD)
2359    return getConstant(TD->getIntPtrType(getContext()),
2360                       TD->getStructLayout(STy)->getElementOffset(FieldNo));
2361
2362  Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2363  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2364    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2365      C = Folded;
2366  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2367  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2368}
2369
2370const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2371                                             Constant *FieldNo) {
2372  Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
2373  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2374    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2375      C = Folded;
2376  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
2377  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2378}
2379
2380const SCEV *ScalarEvolution::getUnknown(Value *V) {
2381  // Don't attempt to do anything other than create a SCEVUnknown object
2382  // here.  createSCEV only calls getUnknown after checking for all other
2383  // interesting possibilities, and any other code that calls getUnknown
2384  // is doing so in order to hide a value from SCEV canonicalization.
2385
2386  FoldingSetNodeID ID;
2387  ID.AddInteger(scUnknown);
2388  ID.AddPointer(V);
2389  void *IP = 0;
2390  if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2391    assert(cast<SCEVUnknown>(S)->getValue() == V &&
2392           "Stale SCEVUnknown in uniquing map!");
2393    return S;
2394  }
2395  SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2396                                            FirstUnknown);
2397  FirstUnknown = cast<SCEVUnknown>(S);
2398  UniqueSCEVs.InsertNode(S, IP);
2399  return S;
2400}
2401
2402//===----------------------------------------------------------------------===//
2403//            Basic SCEV Analysis and PHI Idiom Recognition Code
2404//
2405
2406/// isSCEVable - Test if values of the given type are analyzable within
2407/// the SCEV framework. This primarily includes integer types, and it
2408/// can optionally include pointer types if the ScalarEvolution class
2409/// has access to target-specific information.
2410bool ScalarEvolution::isSCEVable(const Type *Ty) const {
2411  // Integers and pointers are always SCEVable.
2412  return Ty->isIntegerTy() || Ty->isPointerTy();
2413}
2414
2415/// getTypeSizeInBits - Return the size in bits of the specified type,
2416/// for which isSCEVable must return true.
2417uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
2418  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2419
2420  // If we have a TargetData, use it!
2421  if (TD)
2422    return TD->getTypeSizeInBits(Ty);
2423
2424  // Integer types have fixed sizes.
2425  if (Ty->isIntegerTy())
2426    return Ty->getPrimitiveSizeInBits();
2427
2428  // The only other support type is pointer. Without TargetData, conservatively
2429  // assume pointers are 64-bit.
2430  assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
2431  return 64;
2432}
2433
2434/// getEffectiveSCEVType - Return a type with the same bitwidth as
2435/// the given type and which represents how SCEV will treat the given
2436/// type, for which isSCEVable must return true. For pointer types,
2437/// this is the pointer-sized integer type.
2438const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
2439  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2440
2441  if (Ty->isIntegerTy())
2442    return Ty;
2443
2444  // The only other support type is pointer.
2445  assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
2446  if (TD) return TD->getIntPtrType(getContext());
2447
2448  // Without TargetData, conservatively assume pointers are 64-bit.
2449  return Type::getInt64Ty(getContext());
2450}
2451
2452const SCEV *ScalarEvolution::getCouldNotCompute() {
2453  return &CouldNotCompute;
2454}
2455
2456/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2457/// expression and create a new one.
2458const SCEV *ScalarEvolution::getSCEV(Value *V) {
2459  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
2460
2461  std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V);
2462  if (I != Scalars.end()) return I->second;
2463  const SCEV *S = createSCEV(V);
2464  Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
2465  return S;
2466}
2467
2468/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2469///
2470const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
2471  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2472    return getConstant(
2473               cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
2474
2475  const Type *Ty = V->getType();
2476  Ty = getEffectiveSCEVType(Ty);
2477  return getMulExpr(V,
2478                  getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
2479}
2480
2481/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2482const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
2483  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2484    return getConstant(
2485                cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
2486
2487  const Type *Ty = V->getType();
2488  Ty = getEffectiveSCEVType(Ty);
2489  const SCEV *AllOnes =
2490                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
2491  return getMinusSCEV(AllOnes, V);
2492}
2493
2494/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2495///
2496const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2497                                          const SCEV *RHS) {
2498  // Fast path: X - X --> 0.
2499  if (LHS == RHS)
2500    return getConstant(LHS->getType(), 0);
2501
2502  // X - Y --> X + -Y
2503  return getAddExpr(LHS, getNegativeSCEV(RHS));
2504}
2505
2506/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2507/// input value to the specified type.  If the type must be extended, it is zero
2508/// extended.
2509const SCEV *
2510ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
2511                                         const Type *Ty) {
2512  const Type *SrcTy = V->getType();
2513  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2514         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2515         "Cannot truncate or zero extend with non-integer arguments!");
2516  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2517    return V;  // No conversion
2518  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2519    return getTruncateExpr(V, Ty);
2520  return getZeroExtendExpr(V, Ty);
2521}
2522
2523/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2524/// input value to the specified type.  If the type must be extended, it is sign
2525/// extended.
2526const SCEV *
2527ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
2528                                         const Type *Ty) {
2529  const Type *SrcTy = V->getType();
2530  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2531         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2532         "Cannot truncate or zero extend with non-integer arguments!");
2533  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2534    return V;  // No conversion
2535  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2536    return getTruncateExpr(V, Ty);
2537  return getSignExtendExpr(V, Ty);
2538}
2539
2540/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2541/// input value to the specified type.  If the type must be extended, it is zero
2542/// extended.  The conversion must not be narrowing.
2543const SCEV *
2544ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
2545  const Type *SrcTy = V->getType();
2546  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2547         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2548         "Cannot noop or zero extend with non-integer arguments!");
2549  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2550         "getNoopOrZeroExtend cannot truncate!");
2551  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2552    return V;  // No conversion
2553  return getZeroExtendExpr(V, Ty);
2554}
2555
2556/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2557/// input value to the specified type.  If the type must be extended, it is sign
2558/// extended.  The conversion must not be narrowing.
2559const SCEV *
2560ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
2561  const Type *SrcTy = V->getType();
2562  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2563         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2564         "Cannot noop or sign extend with non-integer arguments!");
2565  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2566         "getNoopOrSignExtend cannot truncate!");
2567  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2568    return V;  // No conversion
2569  return getSignExtendExpr(V, Ty);
2570}
2571
2572/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2573/// the input value to the specified type. If the type must be extended,
2574/// it is extended with unspecified bits. The conversion must not be
2575/// narrowing.
2576const SCEV *
2577ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
2578  const Type *SrcTy = V->getType();
2579  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2580         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2581         "Cannot noop or any extend with non-integer arguments!");
2582  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2583         "getNoopOrAnyExtend cannot truncate!");
2584  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2585    return V;  // No conversion
2586  return getAnyExtendExpr(V, Ty);
2587}
2588
2589/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2590/// input value to the specified type.  The conversion must not be widening.
2591const SCEV *
2592ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
2593  const Type *SrcTy = V->getType();
2594  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2595         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2596         "Cannot truncate or noop with non-integer arguments!");
2597  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2598         "getTruncateOrNoop cannot extend!");
2599  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2600    return V;  // No conversion
2601  return getTruncateExpr(V, Ty);
2602}
2603
2604/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2605/// the types using zero-extension, and then perform a umax operation
2606/// with them.
2607const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2608                                                        const SCEV *RHS) {
2609  const SCEV *PromotedLHS = LHS;
2610  const SCEV *PromotedRHS = RHS;
2611
2612  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2613    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2614  else
2615    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2616
2617  return getUMaxExpr(PromotedLHS, PromotedRHS);
2618}
2619
2620/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2621/// the types using zero-extension, and then perform a umin operation
2622/// with them.
2623const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2624                                                        const SCEV *RHS) {
2625  const SCEV *PromotedLHS = LHS;
2626  const SCEV *PromotedRHS = RHS;
2627
2628  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2629    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2630  else
2631    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2632
2633  return getUMinExpr(PromotedLHS, PromotedRHS);
2634}
2635
2636/// PushDefUseChildren - Push users of the given Instruction
2637/// onto the given Worklist.
2638static void
2639PushDefUseChildren(Instruction *I,
2640                   SmallVectorImpl<Instruction *> &Worklist) {
2641  // Push the def-use children onto the Worklist stack.
2642  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2643       UI != UE; ++UI)
2644    Worklist.push_back(cast<Instruction>(*UI));
2645}
2646
2647/// ForgetSymbolicValue - This looks up computed SCEV values for all
2648/// instructions that depend on the given instruction and removes them from
2649/// the Scalars map if they reference SymName. This is used during PHI
2650/// resolution.
2651void
2652ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
2653  SmallVector<Instruction *, 16> Worklist;
2654  PushDefUseChildren(PN, Worklist);
2655
2656  SmallPtrSet<Instruction *, 8> Visited;
2657  Visited.insert(PN);
2658  while (!Worklist.empty()) {
2659    Instruction *I = Worklist.pop_back_val();
2660    if (!Visited.insert(I)) continue;
2661
2662    std::map<SCEVCallbackVH, const SCEV *>::iterator It =
2663      Scalars.find(static_cast<Value *>(I));
2664    if (It != Scalars.end()) {
2665      // Short-circuit the def-use traversal if the symbolic name
2666      // ceases to appear in expressions.
2667      if (It->second != SymName && !It->second->hasOperand(SymName))
2668        continue;
2669
2670      // SCEVUnknown for a PHI either means that it has an unrecognized
2671      // structure, it's a PHI that's in the progress of being computed
2672      // by createNodeForPHI, or it's a single-value PHI. In the first case,
2673      // additional loop trip count information isn't going to change anything.
2674      // In the second case, createNodeForPHI will perform the necessary
2675      // updates on its own when it gets to that point. In the third, we do
2676      // want to forget the SCEVUnknown.
2677      if (!isa<PHINode>(I) ||
2678          !isa<SCEVUnknown>(It->second) ||
2679          (I != PN && It->second == SymName)) {
2680        ValuesAtScopes.erase(It->second);
2681        Scalars.erase(It);
2682      }
2683    }
2684
2685    PushDefUseChildren(I, Worklist);
2686  }
2687}
2688
2689/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
2690/// a loop header, making it a potential recurrence, or it doesn't.
2691///
2692const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
2693  if (const Loop *L = LI->getLoopFor(PN->getParent()))
2694    if (L->getHeader() == PN->getParent()) {
2695      // The loop may have multiple entrances or multiple exits; we can analyze
2696      // this phi as an addrec if it has a unique entry value and a unique
2697      // backedge value.
2698      Value *BEValueV = 0, *StartValueV = 0;
2699      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2700        Value *V = PN->getIncomingValue(i);
2701        if (L->contains(PN->getIncomingBlock(i))) {
2702          if (!BEValueV) {
2703            BEValueV = V;
2704          } else if (BEValueV != V) {
2705            BEValueV = 0;
2706            break;
2707          }
2708        } else if (!StartValueV) {
2709          StartValueV = V;
2710        } else if (StartValueV != V) {
2711          StartValueV = 0;
2712          break;
2713        }
2714      }
2715      if (BEValueV && StartValueV) {
2716        // While we are analyzing this PHI node, handle its value symbolically.
2717        const SCEV *SymbolicName = getUnknown(PN);
2718        assert(Scalars.find(PN) == Scalars.end() &&
2719               "PHI node already processed?");
2720        Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
2721
2722        // Using this symbolic name for the PHI, analyze the value coming around
2723        // the back-edge.
2724        const SCEV *BEValue = getSCEV(BEValueV);
2725
2726        // NOTE: If BEValue is loop invariant, we know that the PHI node just
2727        // has a special value for the first iteration of the loop.
2728
2729        // If the value coming around the backedge is an add with the symbolic
2730        // value we just inserted, then we found a simple induction variable!
2731        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
2732          // If there is a single occurrence of the symbolic value, replace it
2733          // with a recurrence.
2734          unsigned FoundIndex = Add->getNumOperands();
2735          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2736            if (Add->getOperand(i) == SymbolicName)
2737              if (FoundIndex == e) {
2738                FoundIndex = i;
2739                break;
2740              }
2741
2742          if (FoundIndex != Add->getNumOperands()) {
2743            // Create an add with everything but the specified operand.
2744            SmallVector<const SCEV *, 8> Ops;
2745            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2746              if (i != FoundIndex)
2747                Ops.push_back(Add->getOperand(i));
2748            const SCEV *Accum = getAddExpr(Ops);
2749
2750            // This is not a valid addrec if the step amount is varying each
2751            // loop iteration, but is not itself an addrec in this loop.
2752            if (Accum->isLoopInvariant(L) ||
2753                (isa<SCEVAddRecExpr>(Accum) &&
2754                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
2755              bool HasNUW = false;
2756              bool HasNSW = false;
2757
2758              // If the increment doesn't overflow, then neither the addrec nor
2759              // the post-increment will overflow.
2760              if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2761                if (OBO->hasNoUnsignedWrap())
2762                  HasNUW = true;
2763                if (OBO->hasNoSignedWrap())
2764                  HasNSW = true;
2765              }
2766
2767              const SCEV *StartVal = getSCEV(StartValueV);
2768              const SCEV *PHISCEV =
2769                getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
2770
2771              // Since the no-wrap flags are on the increment, they apply to the
2772              // post-incremented value as well.
2773              if (Accum->isLoopInvariant(L))
2774                (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2775                                    Accum, L, HasNUW, HasNSW);
2776
2777              // Okay, for the entire analysis of this edge we assumed the PHI
2778              // to be symbolic.  We now need to go back and purge all of the
2779              // entries for the scalars that use the symbolic expression.
2780              ForgetSymbolicName(PN, SymbolicName);
2781              Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
2782              return PHISCEV;
2783            }
2784          }
2785        } else if (const SCEVAddRecExpr *AddRec =
2786                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
2787          // Otherwise, this could be a loop like this:
2788          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
2789          // In this case, j = {1,+,1}  and BEValue is j.
2790          // Because the other in-value of i (0) fits the evolution of BEValue
2791          // i really is an addrec evolution.
2792          if (AddRec->getLoop() == L && AddRec->isAffine()) {
2793            const SCEV *StartVal = getSCEV(StartValueV);
2794
2795            // If StartVal = j.start - j.stride, we can use StartVal as the
2796            // initial step of the addrec evolution.
2797            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
2798                                         AddRec->getOperand(1))) {
2799              const SCEV *PHISCEV =
2800                 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
2801
2802              // Okay, for the entire analysis of this edge we assumed the PHI
2803              // to be symbolic.  We now need to go back and purge all of the
2804              // entries for the scalars that use the symbolic expression.
2805              ForgetSymbolicName(PN, SymbolicName);
2806              Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
2807              return PHISCEV;
2808            }
2809          }
2810        }
2811      }
2812    }
2813
2814  // If the PHI has a single incoming value, follow that value, unless the
2815  // PHI's incoming blocks are in a different loop, in which case doing so
2816  // risks breaking LCSSA form. Instcombine would normally zap these, but
2817  // it doesn't have DominatorTree information, so it may miss cases.
2818  if (Value *V = PN->hasConstantValue(DT)) {
2819    bool AllSameLoop = true;
2820    Loop *PNLoop = LI->getLoopFor(PN->getParent());
2821    for (size_t i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2822      if (LI->getLoopFor(PN->getIncomingBlock(i)) != PNLoop) {
2823        AllSameLoop = false;
2824        break;
2825      }
2826    if (AllSameLoop)
2827      return getSCEV(V);
2828  }
2829
2830  // If it's not a loop phi, we can't handle it yet.
2831  return getUnknown(PN);
2832}
2833
2834/// createNodeForGEP - Expand GEP instructions into add and multiply
2835/// operations. This allows them to be analyzed by regular SCEV code.
2836///
2837const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
2838
2839  // Don't blindly transfer the inbounds flag from the GEP instruction to the
2840  // Add expression, because the Instruction may be guarded by control flow
2841  // and the no-overflow bits may not be valid for the expression in any
2842  // context.
2843
2844  const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
2845  Value *Base = GEP->getOperand(0);
2846  // Don't attempt to analyze GEPs over unsized objects.
2847  if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2848    return getUnknown(GEP);
2849  const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
2850  gep_type_iterator GTI = gep_type_begin(GEP);
2851  for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
2852                                      E = GEP->op_end();
2853       I != E; ++I) {
2854    Value *Index = *I;
2855    // Compute the (potentially symbolic) offset in bytes for this index.
2856    if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2857      // For a struct, add the member offset.
2858      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2859      const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
2860
2861      // Add the field offset to the running total offset.
2862      TotalOffset = getAddExpr(TotalOffset, FieldOffset);
2863    } else {
2864      // For an array, add the element offset, explicitly scaled.
2865      const SCEV *ElementSize = getSizeOfExpr(*GTI);
2866      const SCEV *IndexS = getSCEV(Index);
2867      // Getelementptr indices are signed.
2868      IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
2869
2870      // Multiply the index by the element size to compute the element offset.
2871      const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize);
2872
2873      // Add the element offset to the running total offset.
2874      TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2875    }
2876  }
2877
2878  // Get the SCEV for the GEP base.
2879  const SCEV *BaseS = getSCEV(Base);
2880
2881  // Add the total offset from all the GEP indices to the base.
2882  return getAddExpr(BaseS, TotalOffset);
2883}
2884
2885/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2886/// guaranteed to end in (at every loop iteration).  It is, at the same time,
2887/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
2888/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
2889uint32_t
2890ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
2891  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2892    return C->getValue()->getValue().countTrailingZeros();
2893
2894  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
2895    return std::min(GetMinTrailingZeros(T->getOperand()),
2896                    (uint32_t)getTypeSizeInBits(T->getType()));
2897
2898  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
2899    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2900    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2901             getTypeSizeInBits(E->getType()) : OpRes;
2902  }
2903
2904  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
2905    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2906    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2907             getTypeSizeInBits(E->getType()) : OpRes;
2908  }
2909
2910  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
2911    // The result is the min of all operands results.
2912    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2913    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2914      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2915    return MinOpRes;
2916  }
2917
2918  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
2919    // The result is the sum of all operands results.
2920    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2921    uint32_t BitWidth = getTypeSizeInBits(M->getType());
2922    for (unsigned i = 1, e = M->getNumOperands();
2923         SumOpRes != BitWidth && i != e; ++i)
2924      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
2925                          BitWidth);
2926    return SumOpRes;
2927  }
2928
2929  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
2930    // The result is the min of all operands results.
2931    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2932    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2933      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2934    return MinOpRes;
2935  }
2936
2937  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
2938    // The result is the min of all operands results.
2939    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2940    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2941      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2942    return MinOpRes;
2943  }
2944
2945  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
2946    // The result is the min of all operands results.
2947    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2948    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2949      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2950    return MinOpRes;
2951  }
2952
2953  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2954    // For a SCEVUnknown, ask ValueTracking.
2955    unsigned BitWidth = getTypeSizeInBits(U->getType());
2956    APInt Mask = APInt::getAllOnesValue(BitWidth);
2957    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2958    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2959    return Zeros.countTrailingOnes();
2960  }
2961
2962  // SCEVUDivExpr
2963  return 0;
2964}
2965
2966/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2967///
2968ConstantRange
2969ScalarEvolution::getUnsignedRange(const SCEV *S) {
2970
2971  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2972    return ConstantRange(C->getValue()->getValue());
2973
2974  unsigned BitWidth = getTypeSizeInBits(S->getType());
2975  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
2976
2977  // If the value has known zeros, the maximum unsigned value will have those
2978  // known zeros as well.
2979  uint32_t TZ = GetMinTrailingZeros(S);
2980  if (TZ != 0)
2981    ConservativeResult =
2982      ConstantRange(APInt::getMinValue(BitWidth),
2983                    APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
2984
2985  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2986    ConstantRange X = getUnsignedRange(Add->getOperand(0));
2987    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2988      X = X.add(getUnsignedRange(Add->getOperand(i)));
2989    return ConservativeResult.intersectWith(X);
2990  }
2991
2992  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2993    ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2994    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2995      X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
2996    return ConservativeResult.intersectWith(X);
2997  }
2998
2999  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3000    ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3001    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3002      X = X.smax(getUnsignedRange(SMax->getOperand(i)));
3003    return ConservativeResult.intersectWith(X);
3004  }
3005
3006  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3007    ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3008    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3009      X = X.umax(getUnsignedRange(UMax->getOperand(i)));
3010    return ConservativeResult.intersectWith(X);
3011  }
3012
3013  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3014    ConstantRange X = getUnsignedRange(UDiv->getLHS());
3015    ConstantRange Y = getUnsignedRange(UDiv->getRHS());
3016    return ConservativeResult.intersectWith(X.udiv(Y));
3017  }
3018
3019  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3020    ConstantRange X = getUnsignedRange(ZExt->getOperand());
3021    return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
3022  }
3023
3024  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3025    ConstantRange X = getUnsignedRange(SExt->getOperand());
3026    return ConservativeResult.intersectWith(X.signExtend(BitWidth));
3027  }
3028
3029  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3030    ConstantRange X = getUnsignedRange(Trunc->getOperand());
3031    return ConservativeResult.intersectWith(X.truncate(BitWidth));
3032  }
3033
3034  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3035    // If there's no unsigned wrap, the value will never be less than its
3036    // initial value.
3037    if (AddRec->hasNoUnsignedWrap())
3038      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
3039        if (!C->getValue()->isZero())
3040          ConservativeResult =
3041            ConservativeResult.intersectWith(
3042              ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
3043
3044    // TODO: non-affine addrec
3045    if (AddRec->isAffine()) {
3046      const Type *Ty = AddRec->getType();
3047      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3048      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3049          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3050        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3051
3052        const SCEV *Start = AddRec->getStart();
3053        const SCEV *Step = AddRec->getStepRecurrence(*this);
3054
3055        ConstantRange StartRange = getUnsignedRange(Start);
3056        ConstantRange StepRange = getSignedRange(Step);
3057        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3058        ConstantRange EndRange =
3059          StartRange.add(MaxBECountRange.multiply(StepRange));
3060
3061        // Check for overflow. This must be done with ConstantRange arithmetic
3062        // because we could be called from within the ScalarEvolution overflow
3063        // checking code.
3064        ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3065        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3066        ConstantRange ExtMaxBECountRange =
3067          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3068        ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3069        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3070            ExtEndRange)
3071          return ConservativeResult;
3072
3073        APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3074                                   EndRange.getUnsignedMin());
3075        APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3076                                   EndRange.getUnsignedMax());
3077        if (Min.isMinValue() && Max.isMaxValue())
3078          return ConservativeResult;
3079        return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
3080      }
3081    }
3082
3083    return ConservativeResult;
3084  }
3085
3086  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3087    // For a SCEVUnknown, ask ValueTracking.
3088    APInt Mask = APInt::getAllOnesValue(BitWidth);
3089    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3090    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
3091    if (Ones == ~Zeros + 1)
3092      return ConservativeResult;
3093    return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
3094  }
3095
3096  return ConservativeResult;
3097}
3098
3099/// getSignedRange - Determine the signed range for a particular SCEV.
3100///
3101ConstantRange
3102ScalarEvolution::getSignedRange(const SCEV *S) {
3103
3104  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3105    return ConstantRange(C->getValue()->getValue());
3106
3107  unsigned BitWidth = getTypeSizeInBits(S->getType());
3108  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3109
3110  // If the value has known zeros, the maximum signed value will have those
3111  // known zeros as well.
3112  uint32_t TZ = GetMinTrailingZeros(S);
3113  if (TZ != 0)
3114    ConservativeResult =
3115      ConstantRange(APInt::getSignedMinValue(BitWidth),
3116                    APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3117
3118  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3119    ConstantRange X = getSignedRange(Add->getOperand(0));
3120    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3121      X = X.add(getSignedRange(Add->getOperand(i)));
3122    return ConservativeResult.intersectWith(X);
3123  }
3124
3125  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3126    ConstantRange X = getSignedRange(Mul->getOperand(0));
3127    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3128      X = X.multiply(getSignedRange(Mul->getOperand(i)));
3129    return ConservativeResult.intersectWith(X);
3130  }
3131
3132  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3133    ConstantRange X = getSignedRange(SMax->getOperand(0));
3134    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3135      X = X.smax(getSignedRange(SMax->getOperand(i)));
3136    return ConservativeResult.intersectWith(X);
3137  }
3138
3139  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3140    ConstantRange X = getSignedRange(UMax->getOperand(0));
3141    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3142      X = X.umax(getSignedRange(UMax->getOperand(i)));
3143    return ConservativeResult.intersectWith(X);
3144  }
3145
3146  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3147    ConstantRange X = getSignedRange(UDiv->getLHS());
3148    ConstantRange Y = getSignedRange(UDiv->getRHS());
3149    return ConservativeResult.intersectWith(X.udiv(Y));
3150  }
3151
3152  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3153    ConstantRange X = getSignedRange(ZExt->getOperand());
3154    return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
3155  }
3156
3157  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3158    ConstantRange X = getSignedRange(SExt->getOperand());
3159    return ConservativeResult.intersectWith(X.signExtend(BitWidth));
3160  }
3161
3162  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3163    ConstantRange X = getSignedRange(Trunc->getOperand());
3164    return ConservativeResult.intersectWith(X.truncate(BitWidth));
3165  }
3166
3167  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3168    // If there's no signed wrap, and all the operands have the same sign or
3169    // zero, the value won't ever change sign.
3170    if (AddRec->hasNoSignedWrap()) {
3171      bool AllNonNeg = true;
3172      bool AllNonPos = true;
3173      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3174        if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3175        if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3176      }
3177      if (AllNonNeg)
3178        ConservativeResult = ConservativeResult.intersectWith(
3179          ConstantRange(APInt(BitWidth, 0),
3180                        APInt::getSignedMinValue(BitWidth)));
3181      else if (AllNonPos)
3182        ConservativeResult = ConservativeResult.intersectWith(
3183          ConstantRange(APInt::getSignedMinValue(BitWidth),
3184                        APInt(BitWidth, 1)));
3185    }
3186
3187    // TODO: non-affine addrec
3188    if (AddRec->isAffine()) {
3189      const Type *Ty = AddRec->getType();
3190      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3191      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3192          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3193        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3194
3195        const SCEV *Start = AddRec->getStart();
3196        const SCEV *Step = AddRec->getStepRecurrence(*this);
3197
3198        ConstantRange StartRange = getSignedRange(Start);
3199        ConstantRange StepRange = getSignedRange(Step);
3200        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3201        ConstantRange EndRange =
3202          StartRange.add(MaxBECountRange.multiply(StepRange));
3203
3204        // Check for overflow. This must be done with ConstantRange arithmetic
3205        // because we could be called from within the ScalarEvolution overflow
3206        // checking code.
3207        ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3208        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3209        ConstantRange ExtMaxBECountRange =
3210          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3211        ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3212        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3213            ExtEndRange)
3214          return ConservativeResult;
3215
3216        APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3217                                   EndRange.getSignedMin());
3218        APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3219                                   EndRange.getSignedMax());
3220        if (Min.isMinSignedValue() && Max.isMaxSignedValue())
3221          return ConservativeResult;
3222        return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
3223      }
3224    }
3225
3226    return ConservativeResult;
3227  }
3228
3229  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3230    // For a SCEVUnknown, ask ValueTracking.
3231    if (!U->getValue()->getType()->isIntegerTy() && !TD)
3232      return ConservativeResult;
3233    unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3234    if (NS == 1)
3235      return ConservativeResult;
3236    return ConservativeResult.intersectWith(
3237      ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
3238                    APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1));
3239  }
3240
3241  return ConservativeResult;
3242}
3243
3244/// createSCEV - We know that there is no SCEV for the specified value.
3245/// Analyze the expression.
3246///
3247const SCEV *ScalarEvolution::createSCEV(Value *V) {
3248  if (!isSCEVable(V->getType()))
3249    return getUnknown(V);
3250
3251  unsigned Opcode = Instruction::UserOp1;
3252  if (Instruction *I = dyn_cast<Instruction>(V)) {
3253    Opcode = I->getOpcode();
3254
3255    // Don't attempt to analyze instructions in blocks that aren't
3256    // reachable. Such instructions don't matter, and they aren't required
3257    // to obey basic rules for definitions dominating uses which this
3258    // analysis depends on.
3259    if (!DT->isReachableFromEntry(I->getParent()))
3260      return getUnknown(V);
3261  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
3262    Opcode = CE->getOpcode();
3263  else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3264    return getConstant(CI);
3265  else if (isa<ConstantPointerNull>(V))
3266    return getConstant(V->getType(), 0);
3267  else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3268    return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
3269  else
3270    return getUnknown(V);
3271
3272  Operator *U = cast<Operator>(V);
3273  switch (Opcode) {
3274  case Instruction::Add:
3275    return getAddExpr(getSCEV(U->getOperand(0)),
3276                      getSCEV(U->getOperand(1)));
3277  case Instruction::Mul:
3278    return getMulExpr(getSCEV(U->getOperand(0)),
3279                      getSCEV(U->getOperand(1)));
3280  case Instruction::UDiv:
3281    return getUDivExpr(getSCEV(U->getOperand(0)),
3282                       getSCEV(U->getOperand(1)));
3283  case Instruction::Sub:
3284    return getMinusSCEV(getSCEV(U->getOperand(0)),
3285                        getSCEV(U->getOperand(1)));
3286  case Instruction::And:
3287    // For an expression like x&255 that merely masks off the high bits,
3288    // use zext(trunc(x)) as the SCEV expression.
3289    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3290      if (CI->isNullValue())
3291        return getSCEV(U->getOperand(1));
3292      if (CI->isAllOnesValue())
3293        return getSCEV(U->getOperand(0));
3294      const APInt &A = CI->getValue();
3295
3296      // Instcombine's ShrinkDemandedConstant may strip bits out of
3297      // constants, obscuring what would otherwise be a low-bits mask.
3298      // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3299      // knew about to reconstruct a low-bits mask value.
3300      unsigned LZ = A.countLeadingZeros();
3301      unsigned BitWidth = A.getBitWidth();
3302      APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3303      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3304      ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3305
3306      APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3307
3308      if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
3309        return
3310          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
3311                                IntegerType::get(getContext(), BitWidth - LZ)),
3312                            U->getType());
3313    }
3314    break;
3315
3316  case Instruction::Or:
3317    // If the RHS of the Or is a constant, we may have something like:
3318    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
3319    // optimizations will transparently handle this case.
3320    //
3321    // In order for this transformation to be safe, the LHS must be of the
3322    // form X*(2^n) and the Or constant must be less than 2^n.
3323    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3324      const SCEV *LHS = getSCEV(U->getOperand(0));
3325      const APInt &CIVal = CI->getValue();
3326      if (GetMinTrailingZeros(LHS) >=
3327          (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3328        // Build a plain add SCEV.
3329        const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3330        // If the LHS of the add was an addrec and it has no-wrap flags,
3331        // transfer the no-wrap flags, since an or won't introduce a wrap.
3332        if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3333          const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3334          if (OldAR->hasNoUnsignedWrap())
3335            const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3336          if (OldAR->hasNoSignedWrap())
3337            const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3338        }
3339        return S;
3340      }
3341    }
3342    break;
3343  case Instruction::Xor:
3344    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3345      // If the RHS of the xor is a signbit, then this is just an add.
3346      // Instcombine turns add of signbit into xor as a strength reduction step.
3347      if (CI->getValue().isSignBit())
3348        return getAddExpr(getSCEV(U->getOperand(0)),
3349                          getSCEV(U->getOperand(1)));
3350
3351      // If the RHS of xor is -1, then this is a not operation.
3352      if (CI->isAllOnesValue())
3353        return getNotSCEV(getSCEV(U->getOperand(0)));
3354
3355      // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3356      // This is a variant of the check for xor with -1, and it handles
3357      // the case where instcombine has trimmed non-demanded bits out
3358      // of an xor with -1.
3359      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3360        if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3361          if (BO->getOpcode() == Instruction::And &&
3362              LCI->getValue() == CI->getValue())
3363            if (const SCEVZeroExtendExpr *Z =
3364                  dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
3365              const Type *UTy = U->getType();
3366              const SCEV *Z0 = Z->getOperand();
3367              const Type *Z0Ty = Z0->getType();
3368              unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3369
3370              // If C is a low-bits mask, the zero extend is serving to
3371              // mask off the high bits. Complement the operand and
3372              // re-apply the zext.
3373              if (APIntOps::isMask(Z0TySize, CI->getValue()))
3374                return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3375
3376              // If C is a single bit, it may be in the sign-bit position
3377              // before the zero-extend. In this case, represent the xor
3378              // using an add, which is equivalent, and re-apply the zext.
3379              APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3380              if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3381                  Trunc.isSignBit())
3382                return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3383                                         UTy);
3384            }
3385    }
3386    break;
3387
3388  case Instruction::Shl:
3389    // Turn shift left of a constant amount into a multiply.
3390    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3391      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3392
3393      // If the shift count is not less than the bitwidth, the result of
3394      // the shift is undefined. Don't try to analyze it, because the
3395      // resolution chosen here may differ from the resolution chosen in
3396      // other parts of the compiler.
3397      if (SA->getValue().uge(BitWidth))
3398        break;
3399
3400      Constant *X = ConstantInt::get(getContext(),
3401        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3402      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3403    }
3404    break;
3405
3406  case Instruction::LShr:
3407    // Turn logical shift right of a constant into a unsigned divide.
3408    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3409      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3410
3411      // If the shift count is not less than the bitwidth, the result of
3412      // the shift is undefined. Don't try to analyze it, because the
3413      // resolution chosen here may differ from the resolution chosen in
3414      // other parts of the compiler.
3415      if (SA->getValue().uge(BitWidth))
3416        break;
3417
3418      Constant *X = ConstantInt::get(getContext(),
3419        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3420      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3421    }
3422    break;
3423
3424  case Instruction::AShr:
3425    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3426    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
3427      if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
3428        if (L->getOpcode() == Instruction::Shl &&
3429            L->getOperand(1) == U->getOperand(1)) {
3430          uint64_t BitWidth = getTypeSizeInBits(U->getType());
3431
3432          // If the shift count is not less than the bitwidth, the result of
3433          // the shift is undefined. Don't try to analyze it, because the
3434          // resolution chosen here may differ from the resolution chosen in
3435          // other parts of the compiler.
3436          if (CI->getValue().uge(BitWidth))
3437            break;
3438
3439          uint64_t Amt = BitWidth - CI->getZExtValue();
3440          if (Amt == BitWidth)
3441            return getSCEV(L->getOperand(0));       // shift by zero --> noop
3442          return
3443            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
3444                                              IntegerType::get(getContext(),
3445                                                               Amt)),
3446                              U->getType());
3447        }
3448    break;
3449
3450  case Instruction::Trunc:
3451    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
3452
3453  case Instruction::ZExt:
3454    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3455
3456  case Instruction::SExt:
3457    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3458
3459  case Instruction::BitCast:
3460    // BitCasts are no-op casts so we just eliminate the cast.
3461    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
3462      return getSCEV(U->getOperand(0));
3463    break;
3464
3465  // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3466  // lead to pointer expressions which cannot safely be expanded to GEPs,
3467  // because ScalarEvolution doesn't respect the GEP aliasing rules when
3468  // simplifying integer expressions.
3469
3470  case Instruction::GetElementPtr:
3471    return createNodeForGEP(cast<GEPOperator>(U));
3472
3473  case Instruction::PHI:
3474    return createNodeForPHI(cast<PHINode>(U));
3475
3476  case Instruction::Select:
3477    // This could be a smax or umax that was lowered earlier.
3478    // Try to recover it.
3479    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3480      Value *LHS = ICI->getOperand(0);
3481      Value *RHS = ICI->getOperand(1);
3482      switch (ICI->getPredicate()) {
3483      case ICmpInst::ICMP_SLT:
3484      case ICmpInst::ICMP_SLE:
3485        std::swap(LHS, RHS);
3486        // fall through
3487      case ICmpInst::ICMP_SGT:
3488      case ICmpInst::ICMP_SGE:
3489        // a >s b ? a+x : b+x  ->  smax(a, b)+x
3490        // a >s b ? b+x : a+x  ->  smin(a, b)+x
3491        if (LHS->getType() == U->getType()) {
3492          const SCEV *LS = getSCEV(LHS);
3493          const SCEV *RS = getSCEV(RHS);
3494          const SCEV *LA = getSCEV(U->getOperand(1));
3495          const SCEV *RA = getSCEV(U->getOperand(2));
3496          const SCEV *LDiff = getMinusSCEV(LA, LS);
3497          const SCEV *RDiff = getMinusSCEV(RA, RS);
3498          if (LDiff == RDiff)
3499            return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3500          LDiff = getMinusSCEV(LA, RS);
3501          RDiff = getMinusSCEV(RA, LS);
3502          if (LDiff == RDiff)
3503            return getAddExpr(getSMinExpr(LS, RS), LDiff);
3504        }
3505        break;
3506      case ICmpInst::ICMP_ULT:
3507      case ICmpInst::ICMP_ULE:
3508        std::swap(LHS, RHS);
3509        // fall through
3510      case ICmpInst::ICMP_UGT:
3511      case ICmpInst::ICMP_UGE:
3512        // a >u b ? a+x : b+x  ->  umax(a, b)+x
3513        // a >u b ? b+x : a+x  ->  umin(a, b)+x
3514        if (LHS->getType() == U->getType()) {
3515          const SCEV *LS = getSCEV(LHS);
3516          const SCEV *RS = getSCEV(RHS);
3517          const SCEV *LA = getSCEV(U->getOperand(1));
3518          const SCEV *RA = getSCEV(U->getOperand(2));
3519          const SCEV *LDiff = getMinusSCEV(LA, LS);
3520          const SCEV *RDiff = getMinusSCEV(RA, RS);
3521          if (LDiff == RDiff)
3522            return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3523          LDiff = getMinusSCEV(LA, RS);
3524          RDiff = getMinusSCEV(RA, LS);
3525          if (LDiff == RDiff)
3526            return getAddExpr(getUMinExpr(LS, RS), LDiff);
3527        }
3528        break;
3529      case ICmpInst::ICMP_NE:
3530        // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
3531        if (LHS->getType() == U->getType() &&
3532            isa<ConstantInt>(RHS) &&
3533            cast<ConstantInt>(RHS)->isZero()) {
3534          const SCEV *One = getConstant(LHS->getType(), 1);
3535          const SCEV *LS = getSCEV(LHS);
3536          const SCEV *LA = getSCEV(U->getOperand(1));
3537          const SCEV *RA = getSCEV(U->getOperand(2));
3538          const SCEV *LDiff = getMinusSCEV(LA, LS);
3539          const SCEV *RDiff = getMinusSCEV(RA, One);
3540          if (LDiff == RDiff)
3541            return getAddExpr(getUMaxExpr(LS, One), LDiff);
3542        }
3543        break;
3544      case ICmpInst::ICMP_EQ:
3545        // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
3546        if (LHS->getType() == U->getType() &&
3547            isa<ConstantInt>(RHS) &&
3548            cast<ConstantInt>(RHS)->isZero()) {
3549          const SCEV *One = getConstant(LHS->getType(), 1);
3550          const SCEV *LS = getSCEV(LHS);
3551          const SCEV *LA = getSCEV(U->getOperand(1));
3552          const SCEV *RA = getSCEV(U->getOperand(2));
3553          const SCEV *LDiff = getMinusSCEV(LA, One);
3554          const SCEV *RDiff = getMinusSCEV(RA, LS);
3555          if (LDiff == RDiff)
3556            return getAddExpr(getUMaxExpr(LS, One), LDiff);
3557        }
3558        break;
3559      default:
3560        break;
3561      }
3562    }
3563
3564  default: // We cannot analyze this expression.
3565    break;
3566  }
3567
3568  return getUnknown(V);
3569}
3570
3571
3572
3573//===----------------------------------------------------------------------===//
3574//                   Iteration Count Computation Code
3575//
3576
3577/// getBackedgeTakenCount - If the specified loop has a predictable
3578/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3579/// object. The backedge-taken count is the number of times the loop header
3580/// will be branched to from within the loop. This is one less than the
3581/// trip count of the loop, since it doesn't count the first iteration,
3582/// when the header is branched to from outside the loop.
3583///
3584/// Note that it is not valid to call this method on a loop without a
3585/// loop-invariant backedge-taken count (see
3586/// hasLoopInvariantBackedgeTakenCount).
3587///
3588const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
3589  return getBackedgeTakenInfo(L).Exact;
3590}
3591
3592/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3593/// return the least SCEV value that is known never to be less than the
3594/// actual backedge taken count.
3595const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
3596  return getBackedgeTakenInfo(L).Max;
3597}
3598
3599/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3600/// onto the given Worklist.
3601static void
3602PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3603  BasicBlock *Header = L->getHeader();
3604
3605  // Push all Loop-header PHIs onto the Worklist stack.
3606  for (BasicBlock::iterator I = Header->begin();
3607       PHINode *PN = dyn_cast<PHINode>(I); ++I)
3608    Worklist.push_back(PN);
3609}
3610
3611const ScalarEvolution::BackedgeTakenInfo &
3612ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
3613  // Initially insert a CouldNotCompute for this loop. If the insertion
3614  // succeeds, proceed to actually compute a backedge-taken count and
3615  // update the value. The temporary CouldNotCompute value tells SCEV
3616  // code elsewhere that it shouldn't attempt to request a new
3617  // backedge-taken count, which could result in infinite recursion.
3618  std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
3619    BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3620  if (Pair.second) {
3621    BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3622    if (BECount.Exact != getCouldNotCompute()) {
3623      assert(BECount.Exact->isLoopInvariant(L) &&
3624             BECount.Max->isLoopInvariant(L) &&
3625             "Computed backedge-taken count isn't loop invariant for loop!");
3626      ++NumTripCountsComputed;
3627
3628      // Update the value in the map.
3629      Pair.first->second = BECount;
3630    } else {
3631      if (BECount.Max != getCouldNotCompute())
3632        // Update the value in the map.
3633        Pair.first->second = BECount;
3634      if (isa<PHINode>(L->getHeader()->begin()))
3635        // Only count loops that have phi nodes as not being computable.
3636        ++NumTripCountsNotComputed;
3637    }
3638
3639    // Now that we know more about the trip count for this loop, forget any
3640    // existing SCEV values for PHI nodes in this loop since they are only
3641    // conservative estimates made without the benefit of trip count
3642    // information. This is similar to the code in forgetLoop, except that
3643    // it handles SCEVUnknown PHI nodes specially.
3644    if (BECount.hasAnyInfo()) {
3645      SmallVector<Instruction *, 16> Worklist;
3646      PushLoopPHIs(L, Worklist);
3647
3648      SmallPtrSet<Instruction *, 8> Visited;
3649      while (!Worklist.empty()) {
3650        Instruction *I = Worklist.pop_back_val();
3651        if (!Visited.insert(I)) continue;
3652
3653        std::map<SCEVCallbackVH, const SCEV *>::iterator It =
3654          Scalars.find(static_cast<Value *>(I));
3655        if (It != Scalars.end()) {
3656          // SCEVUnknown for a PHI either means that it has an unrecognized
3657          // structure, or it's a PHI that's in the progress of being computed
3658          // by createNodeForPHI.  In the former case, additional loop trip
3659          // count information isn't going to change anything. In the later
3660          // case, createNodeForPHI will perform the necessary updates on its
3661          // own when it gets to that point.
3662          if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
3663            ValuesAtScopes.erase(It->second);
3664            Scalars.erase(It);
3665          }
3666          if (PHINode *PN = dyn_cast<PHINode>(I))
3667            ConstantEvolutionLoopExitValue.erase(PN);
3668        }
3669
3670        PushDefUseChildren(I, Worklist);
3671      }
3672    }
3673  }
3674  return Pair.first->second;
3675}
3676
3677/// forgetLoop - This method should be called by the client when it has
3678/// changed a loop in a way that may effect ScalarEvolution's ability to
3679/// compute a trip count, or if the loop is deleted.
3680void ScalarEvolution::forgetLoop(const Loop *L) {
3681  // Drop any stored trip count value.
3682  BackedgeTakenCounts.erase(L);
3683
3684  // Drop information about expressions based on loop-header PHIs.
3685  SmallVector<Instruction *, 16> Worklist;
3686  PushLoopPHIs(L, Worklist);
3687
3688  SmallPtrSet<Instruction *, 8> Visited;
3689  while (!Worklist.empty()) {
3690    Instruction *I = Worklist.pop_back_val();
3691    if (!Visited.insert(I)) continue;
3692
3693    std::map<SCEVCallbackVH, const SCEV *>::iterator It =
3694      Scalars.find(static_cast<Value *>(I));
3695    if (It != Scalars.end()) {
3696      ValuesAtScopes.erase(It->second);
3697      Scalars.erase(It);
3698      if (PHINode *PN = dyn_cast<PHINode>(I))
3699        ConstantEvolutionLoopExitValue.erase(PN);
3700    }
3701
3702    PushDefUseChildren(I, Worklist);
3703  }
3704}
3705
3706/// forgetValue - This method should be called by the client when it has
3707/// changed a value in a way that may effect its value, or which may
3708/// disconnect it from a def-use chain linking it to a loop.
3709void ScalarEvolution::forgetValue(Value *V) {
3710  Instruction *I = dyn_cast<Instruction>(V);
3711  if (!I) return;
3712
3713  // Drop information about expressions based on loop-header PHIs.
3714  SmallVector<Instruction *, 16> Worklist;
3715  Worklist.push_back(I);
3716
3717  SmallPtrSet<Instruction *, 8> Visited;
3718  while (!Worklist.empty()) {
3719    I = Worklist.pop_back_val();
3720    if (!Visited.insert(I)) continue;
3721
3722    std::map<SCEVCallbackVH, const SCEV *>::iterator It =
3723      Scalars.find(static_cast<Value *>(I));
3724    if (It != Scalars.end()) {
3725      ValuesAtScopes.erase(It->second);
3726      Scalars.erase(It);
3727      if (PHINode *PN = dyn_cast<PHINode>(I))
3728        ConstantEvolutionLoopExitValue.erase(PN);
3729    }
3730
3731    PushDefUseChildren(I, Worklist);
3732  }
3733}
3734
3735/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3736/// of the specified loop will execute.
3737ScalarEvolution::BackedgeTakenInfo
3738ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
3739  SmallVector<BasicBlock *, 8> ExitingBlocks;
3740  L->getExitingBlocks(ExitingBlocks);
3741
3742  // Examine all exits and pick the most conservative values.
3743  const SCEV *BECount = getCouldNotCompute();
3744  const SCEV *MaxBECount = getCouldNotCompute();
3745  bool CouldNotComputeBECount = false;
3746  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3747    BackedgeTakenInfo NewBTI =
3748      ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
3749
3750    if (NewBTI.Exact == getCouldNotCompute()) {
3751      // We couldn't compute an exact value for this exit, so
3752      // we won't be able to compute an exact value for the loop.
3753      CouldNotComputeBECount = true;
3754      BECount = getCouldNotCompute();
3755    } else if (!CouldNotComputeBECount) {
3756      if (BECount == getCouldNotCompute())
3757        BECount = NewBTI.Exact;
3758      else
3759        BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
3760    }
3761    if (MaxBECount == getCouldNotCompute())
3762      MaxBECount = NewBTI.Max;
3763    else if (NewBTI.Max != getCouldNotCompute())
3764      MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
3765  }
3766
3767  return BackedgeTakenInfo(BECount, MaxBECount);
3768}
3769
3770/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3771/// of the specified loop will execute if it exits via the specified block.
3772ScalarEvolution::BackedgeTakenInfo
3773ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3774                                                   BasicBlock *ExitingBlock) {
3775
3776  // Okay, we've chosen an exiting block.  See what condition causes us to
3777  // exit at this block.
3778  //
3779  // FIXME: we should be able to handle switch instructions (with a single exit)
3780  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
3781  if (ExitBr == 0) return getCouldNotCompute();
3782  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
3783
3784  // At this point, we know we have a conditional branch that determines whether
3785  // the loop is exited.  However, we don't know if the branch is executed each
3786  // time through the loop.  If not, then the execution count of the branch will
3787  // not be equal to the trip count of the loop.
3788  //
3789  // Currently we check for this by checking to see if the Exit branch goes to
3790  // the loop header.  If so, we know it will always execute the same number of
3791  // times as the loop.  We also handle the case where the exit block *is* the
3792  // loop header.  This is common for un-rotated loops.
3793  //
3794  // If both of those tests fail, walk up the unique predecessor chain to the
3795  // header, stopping if there is an edge that doesn't exit the loop. If the
3796  // header is reached, the execution count of the branch will be equal to the
3797  // trip count of the loop.
3798  //
3799  //  More extensive analysis could be done to handle more cases here.
3800  //
3801  if (ExitBr->getSuccessor(0) != L->getHeader() &&
3802      ExitBr->getSuccessor(1) != L->getHeader() &&
3803      ExitBr->getParent() != L->getHeader()) {
3804    // The simple checks failed, try climbing the unique predecessor chain
3805    // up to the header.
3806    bool Ok = false;
3807    for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3808      BasicBlock *Pred = BB->getUniquePredecessor();
3809      if (!Pred)
3810        return getCouldNotCompute();
3811      TerminatorInst *PredTerm = Pred->getTerminator();
3812      for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3813        BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3814        if (PredSucc == BB)
3815          continue;
3816        // If the predecessor has a successor that isn't BB and isn't
3817        // outside the loop, assume the worst.
3818        if (L->contains(PredSucc))
3819          return getCouldNotCompute();
3820      }
3821      if (Pred == L->getHeader()) {
3822        Ok = true;
3823        break;
3824      }
3825      BB = Pred;
3826    }
3827    if (!Ok)
3828      return getCouldNotCompute();
3829  }
3830
3831  // Proceed to the next level to examine the exit condition expression.
3832  return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3833                                               ExitBr->getSuccessor(0),
3834                                               ExitBr->getSuccessor(1));
3835}
3836
3837/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3838/// backedge of the specified loop will execute if its exit condition
3839/// were a conditional branch of ExitCond, TBB, and FBB.
3840ScalarEvolution::BackedgeTakenInfo
3841ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3842                                                       Value *ExitCond,
3843                                                       BasicBlock *TBB,
3844                                                       BasicBlock *FBB) {
3845  // Check if the controlling expression for this loop is an And or Or.
3846  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3847    if (BO->getOpcode() == Instruction::And) {
3848      // Recurse on the operands of the and.
3849      BackedgeTakenInfo BTI0 =
3850        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3851      BackedgeTakenInfo BTI1 =
3852        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3853      const SCEV *BECount = getCouldNotCompute();
3854      const SCEV *MaxBECount = getCouldNotCompute();
3855      if (L->contains(TBB)) {
3856        // Both conditions must be true for the loop to continue executing.
3857        // Choose the less conservative count.
3858        if (BTI0.Exact == getCouldNotCompute() ||
3859            BTI1.Exact == getCouldNotCompute())
3860          BECount = getCouldNotCompute();
3861        else
3862          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3863        if (BTI0.Max == getCouldNotCompute())
3864          MaxBECount = BTI1.Max;
3865        else if (BTI1.Max == getCouldNotCompute())
3866          MaxBECount = BTI0.Max;
3867        else
3868          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3869      } else {
3870        // Both conditions must be true at the same time for the loop to exit.
3871        // For now, be conservative.
3872        assert(L->contains(FBB) && "Loop block has no successor in loop!");
3873        if (BTI0.Max == BTI1.Max)
3874          MaxBECount = BTI0.Max;
3875        if (BTI0.Exact == BTI1.Exact)
3876          BECount = BTI0.Exact;
3877      }
3878
3879      return BackedgeTakenInfo(BECount, MaxBECount);
3880    }
3881    if (BO->getOpcode() == Instruction::Or) {
3882      // Recurse on the operands of the or.
3883      BackedgeTakenInfo BTI0 =
3884        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3885      BackedgeTakenInfo BTI1 =
3886        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3887      const SCEV *BECount = getCouldNotCompute();
3888      const SCEV *MaxBECount = getCouldNotCompute();
3889      if (L->contains(FBB)) {
3890        // Both conditions must be false for the loop to continue executing.
3891        // Choose the less conservative count.
3892        if (BTI0.Exact == getCouldNotCompute() ||
3893            BTI1.Exact == getCouldNotCompute())
3894          BECount = getCouldNotCompute();
3895        else
3896          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3897        if (BTI0.Max == getCouldNotCompute())
3898          MaxBECount = BTI1.Max;
3899        else if (BTI1.Max == getCouldNotCompute())
3900          MaxBECount = BTI0.Max;
3901        else
3902          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3903      } else {
3904        // Both conditions must be false at the same time for the loop to exit.
3905        // For now, be conservative.
3906        assert(L->contains(TBB) && "Loop block has no successor in loop!");
3907        if (BTI0.Max == BTI1.Max)
3908          MaxBECount = BTI0.Max;
3909        if (BTI0.Exact == BTI1.Exact)
3910          BECount = BTI0.Exact;
3911      }
3912
3913      return BackedgeTakenInfo(BECount, MaxBECount);
3914    }
3915  }
3916
3917  // With an icmp, it may be feasible to compute an exact backedge-taken count.
3918  // Proceed to the next level to examine the icmp.
3919  if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3920    return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
3921
3922  // Check for a constant condition. These are normally stripped out by
3923  // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
3924  // preserve the CFG and is temporarily leaving constant conditions
3925  // in place.
3926  if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
3927    if (L->contains(FBB) == !CI->getZExtValue())
3928      // The backedge is always taken.
3929      return getCouldNotCompute();
3930    else
3931      // The backedge is never taken.
3932      return getConstant(CI->getType(), 0);
3933  }
3934
3935  // If it's not an integer or pointer comparison then compute it the hard way.
3936  return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3937}
3938
3939/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
3940/// backedge of the specified loop will execute if its exit condition
3941/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
3942ScalarEvolution::BackedgeTakenInfo
3943ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
3944                                                           ICmpInst *ExitCond,
3945                                                           BasicBlock *TBB,
3946                                                           BasicBlock *FBB) {
3947
3948  // If the condition was exit on true, convert the condition to exit on false
3949  ICmpInst::Predicate Cond;
3950  if (!L->contains(FBB))
3951    Cond = ExitCond->getPredicate();
3952  else
3953    Cond = ExitCond->getInversePredicate();
3954
3955  // Handle common loops like: for (X = "string"; *X; ++X)
3956  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
3957    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
3958      BackedgeTakenInfo ItCnt =
3959        ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
3960      if (ItCnt.hasAnyInfo())
3961        return ItCnt;
3962    }
3963
3964  const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
3965  const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
3966
3967  // Try to evaluate any dependencies out of the loop.
3968  LHS = getSCEVAtScope(LHS, L);
3969  RHS = getSCEVAtScope(RHS, L);
3970
3971  // At this point, we would like to compute how many iterations of the
3972  // loop the predicate will return true for these inputs.
3973  if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
3974    // If there is a loop-invariant, force it into the RHS.
3975    std::swap(LHS, RHS);
3976    Cond = ICmpInst::getSwappedPredicate(Cond);
3977  }
3978
3979  // Simplify the operands before analyzing them.
3980  (void)SimplifyICmpOperands(Cond, LHS, RHS);
3981
3982  // If we have a comparison of a chrec against a constant, try to use value
3983  // ranges to answer this query.
3984  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
3985    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
3986      if (AddRec->getLoop() == L) {
3987        // Form the constant range.
3988        ConstantRange CompRange(
3989            ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
3990
3991        const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
3992        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
3993      }
3994
3995  switch (Cond) {
3996  case ICmpInst::ICMP_NE: {                     // while (X != Y)
3997    // Convert to: while (X-Y != 0)
3998    BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L);
3999    if (BTI.hasAnyInfo()) return BTI;
4000    break;
4001  }
4002  case ICmpInst::ICMP_EQ: {                     // while (X == Y)
4003    // Convert to: while (X-Y == 0)
4004    BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4005    if (BTI.hasAnyInfo()) return BTI;
4006    break;
4007  }
4008  case ICmpInst::ICMP_SLT: {
4009    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
4010    if (BTI.hasAnyInfo()) return BTI;
4011    break;
4012  }
4013  case ICmpInst::ICMP_SGT: {
4014    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4015                                             getNotSCEV(RHS), L, true);
4016    if (BTI.hasAnyInfo()) return BTI;
4017    break;
4018  }
4019  case ICmpInst::ICMP_ULT: {
4020    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
4021    if (BTI.hasAnyInfo()) return BTI;
4022    break;
4023  }
4024  case ICmpInst::ICMP_UGT: {
4025    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4026                                             getNotSCEV(RHS), L, false);
4027    if (BTI.hasAnyInfo()) return BTI;
4028    break;
4029  }
4030  default:
4031#if 0
4032    dbgs() << "ComputeBackedgeTakenCount ";
4033    if (ExitCond->getOperand(0)->getType()->isUnsigned())
4034      dbgs() << "[unsigned] ";
4035    dbgs() << *LHS << "   "
4036         << Instruction::getOpcodeName(Instruction::ICmp)
4037         << "   " << *RHS << "\n";
4038#endif
4039    break;
4040  }
4041  return
4042    ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
4043}
4044
4045static ConstantInt *
4046EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4047                                ScalarEvolution &SE) {
4048  const SCEV *InVal = SE.getConstant(C);
4049  const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
4050  assert(isa<SCEVConstant>(Val) &&
4051         "Evaluation of SCEV at constant didn't fold correctly?");
4052  return cast<SCEVConstant>(Val)->getValue();
4053}
4054
4055/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4056/// and a GEP expression (missing the pointer index) indexing into it, return
4057/// the addressed element of the initializer or null if the index expression is
4058/// invalid.
4059static Constant *
4060GetAddressedElementFromGlobal(GlobalVariable *GV,
4061                              const std::vector<ConstantInt*> &Indices) {
4062  Constant *Init = GV->getInitializer();
4063  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
4064    uint64_t Idx = Indices[i]->getZExtValue();
4065    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4066      assert(Idx < CS->getNumOperands() && "Bad struct index!");
4067      Init = cast<Constant>(CS->getOperand(Idx));
4068    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4069      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
4070      Init = cast<Constant>(CA->getOperand(Idx));
4071    } else if (isa<ConstantAggregateZero>(Init)) {
4072      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
4073        assert(Idx < STy->getNumElements() && "Bad struct index!");
4074        Init = Constant::getNullValue(STy->getElementType(Idx));
4075      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4076        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
4077        Init = Constant::getNullValue(ATy->getElementType());
4078      } else {
4079        llvm_unreachable("Unknown constant aggregate type!");
4080      }
4081      return 0;
4082    } else {
4083      return 0; // Unknown initializer type
4084    }
4085  }
4086  return Init;
4087}
4088
4089/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4090/// 'icmp op load X, cst', try to see if we can compute the backedge
4091/// execution count.
4092ScalarEvolution::BackedgeTakenInfo
4093ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4094                                                LoadInst *LI,
4095                                                Constant *RHS,
4096                                                const Loop *L,
4097                                                ICmpInst::Predicate predicate) {
4098  if (LI->isVolatile()) return getCouldNotCompute();
4099
4100  // Check to see if the loaded pointer is a getelementptr of a global.
4101  // TODO: Use SCEV instead of manually grubbing with GEPs.
4102  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
4103  if (!GEP) return getCouldNotCompute();
4104
4105  // Make sure that it is really a constant global we are gepping, with an
4106  // initializer, and make sure the first IDX is really 0.
4107  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
4108  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
4109      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4110      !cast<Constant>(GEP->getOperand(1))->isNullValue())
4111    return getCouldNotCompute();
4112
4113  // Okay, we allow one non-constant index into the GEP instruction.
4114  Value *VarIdx = 0;
4115  std::vector<ConstantInt*> Indexes;
4116  unsigned VarIdxNum = 0;
4117  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4118    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4119      Indexes.push_back(CI);
4120    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
4121      if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
4122      VarIdx = GEP->getOperand(i);
4123      VarIdxNum = i-2;
4124      Indexes.push_back(0);
4125    }
4126
4127  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4128  // Check to see if X is a loop variant variable value now.
4129  const SCEV *Idx = getSCEV(VarIdx);
4130  Idx = getSCEVAtScope(Idx, L);
4131
4132  // We can only recognize very limited forms of loop index expressions, in
4133  // particular, only affine AddRec's like {C1,+,C2}.
4134  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
4135  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
4136      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4137      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
4138    return getCouldNotCompute();
4139
4140  unsigned MaxSteps = MaxBruteForceIterations;
4141  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
4142    ConstantInt *ItCst = ConstantInt::get(
4143                           cast<IntegerType>(IdxExpr->getType()), IterationNum);
4144    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
4145
4146    // Form the GEP offset.
4147    Indexes[VarIdxNum] = Val;
4148
4149    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
4150    if (Result == 0) break;  // Cannot compute!
4151
4152    // Evaluate the condition for this iteration.
4153    Result = ConstantExpr::getICmp(predicate, Result, RHS);
4154    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
4155    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
4156#if 0
4157      dbgs() << "\n***\n*** Computed loop count " << *ItCst
4158             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4159             << "***\n";
4160#endif
4161      ++NumArrayLenItCounts;
4162      return getConstant(ItCst);   // Found terminating iteration!
4163    }
4164  }
4165  return getCouldNotCompute();
4166}
4167
4168
4169/// CanConstantFold - Return true if we can constant fold an instruction of the
4170/// specified type, assuming that all operands were constants.
4171static bool CanConstantFold(const Instruction *I) {
4172  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
4173      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4174    return true;
4175
4176  if (const CallInst *CI = dyn_cast<CallInst>(I))
4177    if (const Function *F = CI->getCalledFunction())
4178      return canConstantFoldCallTo(F);
4179  return false;
4180}
4181
4182/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4183/// in the loop that V is derived from.  We allow arbitrary operations along the
4184/// way, but the operands of an operation must either be constants or a value
4185/// derived from a constant PHI.  If this expression does not fit with these
4186/// constraints, return null.
4187static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4188  // If this is not an instruction, or if this is an instruction outside of the
4189  // loop, it can't be derived from a loop PHI.
4190  Instruction *I = dyn_cast<Instruction>(V);
4191  if (I == 0 || !L->contains(I)) return 0;
4192
4193  if (PHINode *PN = dyn_cast<PHINode>(I)) {
4194    if (L->getHeader() == I->getParent())
4195      return PN;
4196    else
4197      // We don't currently keep track of the control flow needed to evaluate
4198      // PHIs, so we cannot handle PHIs inside of loops.
4199      return 0;
4200  }
4201
4202  // If we won't be able to constant fold this expression even if the operands
4203  // are constants, return early.
4204  if (!CanConstantFold(I)) return 0;
4205
4206  // Otherwise, we can evaluate this instruction if all of its operands are
4207  // constant or derived from a PHI node themselves.
4208  PHINode *PHI = 0;
4209  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
4210    if (!isa<Constant>(I->getOperand(Op))) {
4211      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4212      if (P == 0) return 0;  // Not evolving from PHI
4213      if (PHI == 0)
4214        PHI = P;
4215      else if (PHI != P)
4216        return 0;  // Evolving from multiple different PHIs.
4217    }
4218
4219  // This is a expression evolving from a constant PHI!
4220  return PHI;
4221}
4222
4223/// EvaluateExpression - Given an expression that passes the
4224/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4225/// in the loop has the value PHIVal.  If we can't fold this expression for some
4226/// reason, return null.
4227static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4228                                    const TargetData *TD) {
4229  if (isa<PHINode>(V)) return PHIVal;
4230  if (Constant *C = dyn_cast<Constant>(V)) return C;
4231  Instruction *I = cast<Instruction>(V);
4232
4233  std::vector<Constant*> Operands(I->getNumOperands());
4234
4235  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4236    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
4237    if (Operands[i] == 0) return 0;
4238  }
4239
4240  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4241    return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
4242                                           Operands[1], TD);
4243  return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4244                                  &Operands[0], Operands.size(), TD);
4245}
4246
4247/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4248/// in the header of its containing loop, we know the loop executes a
4249/// constant number of times, and the PHI node is just a recurrence
4250/// involving constants, fold it.
4251Constant *
4252ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
4253                                                   const APInt &BEs,
4254                                                   const Loop *L) {
4255  std::map<PHINode*, Constant*>::iterator I =
4256    ConstantEvolutionLoopExitValue.find(PN);
4257  if (I != ConstantEvolutionLoopExitValue.end())
4258    return I->second;
4259
4260  if (BEs.ugt(MaxBruteForceIterations))
4261    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
4262
4263  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4264
4265  // Since the loop is canonicalized, the PHI node must have two entries.  One
4266  // entry must be a constant (coming in from outside of the loop), and the
4267  // second must be derived from the same PHI.
4268  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4269  Constant *StartCST =
4270    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4271  if (StartCST == 0)
4272    return RetVal = 0;  // Must be a constant.
4273
4274  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4275  if (getConstantEvolvingPHI(BEValue, L) != PN &&
4276      !isa<Constant>(BEValue))
4277    return RetVal = 0;  // Not derived from same PHI.
4278
4279  // Execute the loop symbolically to determine the exit value.
4280  if (BEs.getActiveBits() >= 32)
4281    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
4282
4283  unsigned NumIterations = BEs.getZExtValue(); // must be in range
4284  unsigned IterationNum = 0;
4285  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4286    if (IterationNum == NumIterations)
4287      return RetVal = PHIVal;  // Got exit value!
4288
4289    // Compute the value of the PHI node for the next iteration.
4290    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4291    if (NextPHI == PHIVal)
4292      return RetVal = NextPHI;  // Stopped evolving!
4293    if (NextPHI == 0)
4294      return 0;        // Couldn't evaluate!
4295    PHIVal = NextPHI;
4296  }
4297}
4298
4299/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
4300/// constant number of times (the condition evolves only from constants),
4301/// try to evaluate a few iterations of the loop until we get the exit
4302/// condition gets a value of ExitWhen (true or false).  If we cannot
4303/// evaluate the trip count of the loop, return getCouldNotCompute().
4304const SCEV *
4305ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4306                                                       Value *Cond,
4307                                                       bool ExitWhen) {
4308  PHINode *PN = getConstantEvolvingPHI(Cond, L);
4309  if (PN == 0) return getCouldNotCompute();
4310
4311  // If the loop is canonicalized, the PHI will have exactly two entries.
4312  // That's the only form we support here.
4313  if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4314
4315  // One entry must be a constant (coming in from outside of the loop), and the
4316  // second must be derived from the same PHI.
4317  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4318  Constant *StartCST =
4319    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4320  if (StartCST == 0) return getCouldNotCompute();  // Must be a constant.
4321
4322  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4323  if (getConstantEvolvingPHI(BEValue, L) != PN &&
4324      !isa<Constant>(BEValue))
4325    return getCouldNotCompute();  // Not derived from same PHI.
4326
4327  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
4328  // the loop symbolically to determine when the condition gets a value of
4329  // "ExitWhen".
4330  unsigned IterationNum = 0;
4331  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
4332  for (Constant *PHIVal = StartCST;
4333       IterationNum != MaxIterations; ++IterationNum) {
4334    ConstantInt *CondVal =
4335      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
4336
4337    // Couldn't symbolically evaluate.
4338    if (!CondVal) return getCouldNotCompute();
4339
4340    if (CondVal->getValue() == uint64_t(ExitWhen)) {
4341      ++NumBruteForceTripCountsComputed;
4342      return getConstant(Type::getInt32Ty(getContext()), IterationNum);
4343    }
4344
4345    // Compute the value of the PHI node for the next iteration.
4346    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4347    if (NextPHI == 0 || NextPHI == PHIVal)
4348      return getCouldNotCompute();// Couldn't evaluate or not making progress...
4349    PHIVal = NextPHI;
4350  }
4351
4352  // Too many iterations were needed to evaluate.
4353  return getCouldNotCompute();
4354}
4355
4356/// getSCEVAtScope - Return a SCEV expression for the specified value
4357/// at the specified scope in the program.  The L value specifies a loop
4358/// nest to evaluate the expression at, where null is the top-level or a
4359/// specified loop is immediately inside of the loop.
4360///
4361/// This method can be used to compute the exit value for a variable defined
4362/// in a loop by querying what the value will hold in the parent loop.
4363///
4364/// In the case that a relevant loop exit value cannot be computed, the
4365/// original value V is returned.
4366const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
4367  // Check to see if we've folded this expression at this loop before.
4368  std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4369  std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4370    Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4371  if (!Pair.second)
4372    return Pair.first->second ? Pair.first->second : V;
4373
4374  // Otherwise compute it.
4375  const SCEV *C = computeSCEVAtScope(V, L);
4376  ValuesAtScopes[V][L] = C;
4377  return C;
4378}
4379
4380const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
4381  if (isa<SCEVConstant>(V)) return V;
4382
4383  // If this instruction is evolved from a constant-evolving PHI, compute the
4384  // exit value from the loop without using SCEVs.
4385  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
4386    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
4387      const Loop *LI = (*this->LI)[I->getParent()];
4388      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
4389        if (PHINode *PN = dyn_cast<PHINode>(I))
4390          if (PN->getParent() == LI->getHeader()) {
4391            // Okay, there is no closed form solution for the PHI node.  Check
4392            // to see if the loop that contains it has a known backedge-taken
4393            // count.  If so, we may be able to force computation of the exit
4394            // value.
4395            const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
4396            if (const SCEVConstant *BTCC =
4397                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
4398              // Okay, we know how many times the containing loop executes.  If
4399              // this is a constant evolving PHI node, get the final value at
4400              // the specified iteration number.
4401              Constant *RV = getConstantEvolutionLoopExitValue(PN,
4402                                                   BTCC->getValue()->getValue(),
4403                                                               LI);
4404              if (RV) return getSCEV(RV);
4405            }
4406          }
4407
4408      // Okay, this is an expression that we cannot symbolically evaluate
4409      // into a SCEV.  Check to see if it's possible to symbolically evaluate
4410      // the arguments into constants, and if so, try to constant propagate the
4411      // result.  This is particularly useful for computing loop exit values.
4412      if (CanConstantFold(I)) {
4413        SmallVector<Constant *, 4> Operands;
4414        bool MadeImprovement = false;
4415        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4416          Value *Op = I->getOperand(i);
4417          if (Constant *C = dyn_cast<Constant>(Op)) {
4418            Operands.push_back(C);
4419            continue;
4420          }
4421
4422          // If any of the operands is non-constant and if they are
4423          // non-integer and non-pointer, don't even try to analyze them
4424          // with scev techniques.
4425          if (!isSCEVable(Op->getType()))
4426            return V;
4427
4428          const SCEV *OrigV = getSCEV(Op);
4429          const SCEV *OpV = getSCEVAtScope(OrigV, L);
4430          MadeImprovement |= OrigV != OpV;
4431
4432          Constant *C = 0;
4433          if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4434            C = SC->getValue();
4435          if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4436            C = dyn_cast<Constant>(SU->getValue());
4437          if (!C) return V;
4438          if (C->getType() != Op->getType())
4439            C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4440                                                              Op->getType(),
4441                                                              false),
4442                                      C, Op->getType());
4443          Operands.push_back(C);
4444        }
4445
4446        // Check to see if getSCEVAtScope actually made an improvement.
4447        if (MadeImprovement) {
4448          Constant *C = 0;
4449          if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4450            C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4451                                                Operands[0], Operands[1], TD);
4452          else
4453            C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4454                                         &Operands[0], Operands.size(), TD);
4455          if (!C) return V;
4456          return getSCEV(C);
4457        }
4458      }
4459    }
4460
4461    // This is some other type of SCEVUnknown, just return it.
4462    return V;
4463  }
4464
4465  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
4466    // Avoid performing the look-up in the common case where the specified
4467    // expression has no loop-variant portions.
4468    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
4469      const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4470      if (OpAtScope != Comm->getOperand(i)) {
4471        // Okay, at least one of these operands is loop variant but might be
4472        // foldable.  Build a new instance of the folded commutative expression.
4473        SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4474                                            Comm->op_begin()+i);
4475        NewOps.push_back(OpAtScope);
4476
4477        for (++i; i != e; ++i) {
4478          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4479          NewOps.push_back(OpAtScope);
4480        }
4481        if (isa<SCEVAddExpr>(Comm))
4482          return getAddExpr(NewOps);
4483        if (isa<SCEVMulExpr>(Comm))
4484          return getMulExpr(NewOps);
4485        if (isa<SCEVSMaxExpr>(Comm))
4486          return getSMaxExpr(NewOps);
4487        if (isa<SCEVUMaxExpr>(Comm))
4488          return getUMaxExpr(NewOps);
4489        llvm_unreachable("Unknown commutative SCEV type!");
4490      }
4491    }
4492    // If we got here, all operands are loop invariant.
4493    return Comm;
4494  }
4495
4496  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
4497    const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4498    const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
4499    if (LHS == Div->getLHS() && RHS == Div->getRHS())
4500      return Div;   // must be loop invariant
4501    return getUDivExpr(LHS, RHS);
4502  }
4503
4504  // If this is a loop recurrence for a loop that does not contain L, then we
4505  // are dealing with the final value computed by the loop.
4506  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4507    // First, attempt to evaluate each operand.
4508    // Avoid performing the look-up in the common case where the specified
4509    // expression has no loop-variant portions.
4510    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4511      const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4512      if (OpAtScope == AddRec->getOperand(i))
4513        continue;
4514
4515      // Okay, at least one of these operands is loop variant but might be
4516      // foldable.  Build a new instance of the folded commutative expression.
4517      SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4518                                          AddRec->op_begin()+i);
4519      NewOps.push_back(OpAtScope);
4520      for (++i; i != e; ++i)
4521        NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4522
4523      AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop()));
4524      break;
4525    }
4526
4527    // If the scope is outside the addrec's loop, evaluate it by using the
4528    // loop exit value of the addrec.
4529    if (!AddRec->getLoop()->contains(L)) {
4530      // To evaluate this recurrence, we need to know how many times the AddRec
4531      // loop iterates.  Compute this now.
4532      const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
4533      if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
4534
4535      // Then, evaluate the AddRec.
4536      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
4537    }
4538
4539    return AddRec;
4540  }
4541
4542  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
4543    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4544    if (Op == Cast->getOperand())
4545      return Cast;  // must be loop invariant
4546    return getZeroExtendExpr(Op, Cast->getType());
4547  }
4548
4549  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
4550    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4551    if (Op == Cast->getOperand())
4552      return Cast;  // must be loop invariant
4553    return getSignExtendExpr(Op, Cast->getType());
4554  }
4555
4556  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
4557    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4558    if (Op == Cast->getOperand())
4559      return Cast;  // must be loop invariant
4560    return getTruncateExpr(Op, Cast->getType());
4561  }
4562
4563  llvm_unreachable("Unknown SCEV type!");
4564  return 0;
4565}
4566
4567/// getSCEVAtScope - This is a convenience function which does
4568/// getSCEVAtScope(getSCEV(V), L).
4569const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
4570  return getSCEVAtScope(getSCEV(V), L);
4571}
4572
4573/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4574/// following equation:
4575///
4576///     A * X = B (mod N)
4577///
4578/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4579/// A and B isn't important.
4580///
4581/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
4582static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
4583                                               ScalarEvolution &SE) {
4584  uint32_t BW = A.getBitWidth();
4585  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4586  assert(A != 0 && "A must be non-zero.");
4587
4588  // 1. D = gcd(A, N)
4589  //
4590  // The gcd of A and N may have only one prime factor: 2. The number of
4591  // trailing zeros in A is its multiplicity
4592  uint32_t Mult2 = A.countTrailingZeros();
4593  // D = 2^Mult2
4594
4595  // 2. Check if B is divisible by D.
4596  //
4597  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4598  // is not less than multiplicity of this prime factor for D.
4599  if (B.countTrailingZeros() < Mult2)
4600    return SE.getCouldNotCompute();
4601
4602  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4603  // modulo (N / D).
4604  //
4605  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
4606  // bit width during computations.
4607  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
4608  APInt Mod(BW + 1, 0);
4609  Mod.set(BW - Mult2);  // Mod = N / D
4610  APInt I = AD.multiplicativeInverse(Mod);
4611
4612  // 4. Compute the minimum unsigned root of the equation:
4613  // I * (B / D) mod (N / D)
4614  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4615
4616  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4617  // bits.
4618  return SE.getConstant(Result.trunc(BW));
4619}
4620
4621/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4622/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
4623/// might be the same) or two SCEVCouldNotCompute objects.
4624///
4625static std::pair<const SCEV *,const SCEV *>
4626SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
4627  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
4628  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4629  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4630  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
4631
4632  // We currently can only solve this if the coefficients are constants.
4633  if (!LC || !MC || !NC) {
4634    const SCEV *CNC = SE.getCouldNotCompute();
4635    return std::make_pair(CNC, CNC);
4636  }
4637
4638  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
4639  const APInt &L = LC->getValue()->getValue();
4640  const APInt &M = MC->getValue()->getValue();
4641  const APInt &N = NC->getValue()->getValue();
4642  APInt Two(BitWidth, 2);
4643  APInt Four(BitWidth, 4);
4644
4645  {
4646    using namespace APIntOps;
4647    const APInt& C = L;
4648    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4649    // The B coefficient is M-N/2
4650    APInt B(M);
4651    B -= sdiv(N,Two);
4652
4653    // The A coefficient is N/2
4654    APInt A(N.sdiv(Two));
4655
4656    // Compute the B^2-4ac term.
4657    APInt SqrtTerm(B);
4658    SqrtTerm *= B;
4659    SqrtTerm -= Four * (A * C);
4660
4661    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4662    // integer value or else APInt::sqrt() will assert.
4663    APInt SqrtVal(SqrtTerm.sqrt());
4664
4665    // Compute the two solutions for the quadratic formula.
4666    // The divisions must be performed as signed divisions.
4667    APInt NegB(-B);
4668    APInt TwoA( A << 1 );
4669    if (TwoA.isMinValue()) {
4670      const SCEV *CNC = SE.getCouldNotCompute();
4671      return std::make_pair(CNC, CNC);
4672    }
4673
4674    LLVMContext &Context = SE.getContext();
4675
4676    ConstantInt *Solution1 =
4677      ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
4678    ConstantInt *Solution2 =
4679      ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
4680
4681    return std::make_pair(SE.getConstant(Solution1),
4682                          SE.getConstant(Solution2));
4683    } // end APIntOps namespace
4684}
4685
4686/// HowFarToZero - Return the number of times a backedge comparing the specified
4687/// value to zero will execute.  If not computable, return CouldNotCompute.
4688ScalarEvolution::BackedgeTakenInfo
4689ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
4690  // If the value is a constant
4691  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4692    // If the value is already zero, the branch will execute zero times.
4693    if (C->getValue()->isZero()) return C;
4694    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4695  }
4696
4697  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
4698  if (!AddRec || AddRec->getLoop() != L)
4699    return getCouldNotCompute();
4700
4701  if (AddRec->isAffine()) {
4702    // If this is an affine expression, the execution count of this branch is
4703    // the minimum unsigned root of the following equation:
4704    //
4705    //     Start + Step*N = 0 (mod 2^BW)
4706    //
4707    // equivalent to:
4708    //
4709    //             Step*N = -Start (mod 2^BW)
4710    //
4711    // where BW is the common bit width of Start and Step.
4712
4713    // Get the initial value for the loop.
4714    const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4715                                       L->getParentLoop());
4716    const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4717                                      L->getParentLoop());
4718
4719    if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
4720      // For now we handle only constant steps.
4721
4722      // First, handle unitary steps.
4723      if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so:
4724        return getNegativeSCEV(Start);          //   N = -Start (as unsigned)
4725      if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so:
4726        return Start;                           //    N = Start (as unsigned)
4727
4728      // Then, try to solve the above equation provided that Start is constant.
4729      if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
4730        return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
4731                                            -StartC->getValue()->getValue(),
4732                                            *this);
4733    }
4734  } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
4735    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4736    // the quadratic equation to solve it.
4737    std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
4738                                                                    *this);
4739    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4740    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
4741    if (R1) {
4742#if 0
4743      dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
4744             << "  sol#2: " << *R2 << "\n";
4745#endif
4746      // Pick the smallest positive root value.
4747      if (ConstantInt *CB =
4748          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
4749                                   R1->getValue(), R2->getValue()))) {
4750        if (CB->getZExtValue() == false)
4751          std::swap(R1, R2);   // R1 is the minimum root now.
4752
4753        // We can only use this value if the chrec ends up with an exact zero
4754        // value at this index.  When solving for "X*X != 5", for example, we
4755        // should not accept a root of 2.
4756        const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
4757        if (Val->isZero())
4758          return R1;  // We found a quadratic root!
4759      }
4760    }
4761  }
4762
4763  return getCouldNotCompute();
4764}
4765
4766/// HowFarToNonZero - Return the number of times a backedge checking the
4767/// specified value for nonzero will execute.  If not computable, return
4768/// CouldNotCompute
4769ScalarEvolution::BackedgeTakenInfo
4770ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
4771  // Loops that look like: while (X == 0) are very strange indeed.  We don't
4772  // handle them yet except for the trivial case.  This could be expanded in the
4773  // future as needed.
4774
4775  // If the value is a constant, check to see if it is known to be non-zero
4776  // already.  If so, the backedge will execute zero times.
4777  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4778    if (!C->getValue()->isNullValue())
4779      return getConstant(C->getType(), 0);
4780    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4781  }
4782
4783  // We could implement others, but I really doubt anyone writes loops like
4784  // this, and if they did, they would already be constant folded.
4785  return getCouldNotCompute();
4786}
4787
4788/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4789/// (which may not be an immediate predecessor) which has exactly one
4790/// successor from which BB is reachable, or null if no such block is
4791/// found.
4792///
4793std::pair<BasicBlock *, BasicBlock *>
4794ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
4795  // If the block has a unique predecessor, then there is no path from the
4796  // predecessor to the block that does not go through the direct edge
4797  // from the predecessor to the block.
4798  if (BasicBlock *Pred = BB->getSinglePredecessor())
4799    return std::make_pair(Pred, BB);
4800
4801  // A loop's header is defined to be a block that dominates the loop.
4802  // If the header has a unique predecessor outside the loop, it must be
4803  // a block that has exactly one successor that can reach the loop.
4804  if (Loop *L = LI->getLoopFor(BB))
4805    return std::make_pair(L->getLoopPredecessor(), L->getHeader());
4806
4807  return std::pair<BasicBlock *, BasicBlock *>();
4808}
4809
4810/// HasSameValue - SCEV structural equivalence is usually sufficient for
4811/// testing whether two expressions are equal, however for the purposes of
4812/// looking for a condition guarding a loop, it can be useful to be a little
4813/// more general, since a front-end may have replicated the controlling
4814/// expression.
4815///
4816static bool HasSameValue(const SCEV *A, const SCEV *B) {
4817  // Quick check to see if they are the same SCEV.
4818  if (A == B) return true;
4819
4820  // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4821  // two different instructions with the same value. Check for this case.
4822  if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4823    if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4824      if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4825        if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
4826          if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
4827            return true;
4828
4829  // Otherwise assume they may have a different value.
4830  return false;
4831}
4832
4833/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
4834/// predicate Pred. Return true iff any changes were made.
4835///
4836bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
4837                                           const SCEV *&LHS, const SCEV *&RHS) {
4838  bool Changed = false;
4839
4840  // Canonicalize a constant to the right side.
4841  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
4842    // Check for both operands constant.
4843    if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
4844      if (ConstantExpr::getICmp(Pred,
4845                                LHSC->getValue(),
4846                                RHSC->getValue())->isNullValue())
4847        goto trivially_false;
4848      else
4849        goto trivially_true;
4850    }
4851    // Otherwise swap the operands to put the constant on the right.
4852    std::swap(LHS, RHS);
4853    Pred = ICmpInst::getSwappedPredicate(Pred);
4854    Changed = true;
4855  }
4856
4857  // If we're comparing an addrec with a value which is loop-invariant in the
4858  // addrec's loop, put the addrec on the left. Also make a dominance check,
4859  // as both operands could be addrecs loop-invariant in each other's loop.
4860  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
4861    const Loop *L = AR->getLoop();
4862    if (LHS->isLoopInvariant(L) && LHS->properlyDominates(L->getHeader(), DT)) {
4863      std::swap(LHS, RHS);
4864      Pred = ICmpInst::getSwappedPredicate(Pred);
4865      Changed = true;
4866    }
4867  }
4868
4869  // If there's a constant operand, canonicalize comparisons with boundary
4870  // cases, and canonicalize *-or-equal comparisons to regular comparisons.
4871  if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4872    const APInt &RA = RC->getValue()->getValue();
4873    switch (Pred) {
4874    default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4875    case ICmpInst::ICMP_EQ:
4876    case ICmpInst::ICMP_NE:
4877      break;
4878    case ICmpInst::ICMP_UGE:
4879      if ((RA - 1).isMinValue()) {
4880        Pred = ICmpInst::ICMP_NE;
4881        RHS = getConstant(RA - 1);
4882        Changed = true;
4883        break;
4884      }
4885      if (RA.isMaxValue()) {
4886        Pred = ICmpInst::ICMP_EQ;
4887        Changed = true;
4888        break;
4889      }
4890      if (RA.isMinValue()) goto trivially_true;
4891
4892      Pred = ICmpInst::ICMP_UGT;
4893      RHS = getConstant(RA - 1);
4894      Changed = true;
4895      break;
4896    case ICmpInst::ICMP_ULE:
4897      if ((RA + 1).isMaxValue()) {
4898        Pred = ICmpInst::ICMP_NE;
4899        RHS = getConstant(RA + 1);
4900        Changed = true;
4901        break;
4902      }
4903      if (RA.isMinValue()) {
4904        Pred = ICmpInst::ICMP_EQ;
4905        Changed = true;
4906        break;
4907      }
4908      if (RA.isMaxValue()) goto trivially_true;
4909
4910      Pred = ICmpInst::ICMP_ULT;
4911      RHS = getConstant(RA + 1);
4912      Changed = true;
4913      break;
4914    case ICmpInst::ICMP_SGE:
4915      if ((RA - 1).isMinSignedValue()) {
4916        Pred = ICmpInst::ICMP_NE;
4917        RHS = getConstant(RA - 1);
4918        Changed = true;
4919        break;
4920      }
4921      if (RA.isMaxSignedValue()) {
4922        Pred = ICmpInst::ICMP_EQ;
4923        Changed = true;
4924        break;
4925      }
4926      if (RA.isMinSignedValue()) goto trivially_true;
4927
4928      Pred = ICmpInst::ICMP_SGT;
4929      RHS = getConstant(RA - 1);
4930      Changed = true;
4931      break;
4932    case ICmpInst::ICMP_SLE:
4933      if ((RA + 1).isMaxSignedValue()) {
4934        Pred = ICmpInst::ICMP_NE;
4935        RHS = getConstant(RA + 1);
4936        Changed = true;
4937        break;
4938      }
4939      if (RA.isMinSignedValue()) {
4940        Pred = ICmpInst::ICMP_EQ;
4941        Changed = true;
4942        break;
4943      }
4944      if (RA.isMaxSignedValue()) goto trivially_true;
4945
4946      Pred = ICmpInst::ICMP_SLT;
4947      RHS = getConstant(RA + 1);
4948      Changed = true;
4949      break;
4950    case ICmpInst::ICMP_UGT:
4951      if (RA.isMinValue()) {
4952        Pred = ICmpInst::ICMP_NE;
4953        Changed = true;
4954        break;
4955      }
4956      if ((RA + 1).isMaxValue()) {
4957        Pred = ICmpInst::ICMP_EQ;
4958        RHS = getConstant(RA + 1);
4959        Changed = true;
4960        break;
4961      }
4962      if (RA.isMaxValue()) goto trivially_false;
4963      break;
4964    case ICmpInst::ICMP_ULT:
4965      if (RA.isMaxValue()) {
4966        Pred = ICmpInst::ICMP_NE;
4967        Changed = true;
4968        break;
4969      }
4970      if ((RA - 1).isMinValue()) {
4971        Pred = ICmpInst::ICMP_EQ;
4972        RHS = getConstant(RA - 1);
4973        Changed = true;
4974        break;
4975      }
4976      if (RA.isMinValue()) goto trivially_false;
4977      break;
4978    case ICmpInst::ICMP_SGT:
4979      if (RA.isMinSignedValue()) {
4980        Pred = ICmpInst::ICMP_NE;
4981        Changed = true;
4982        break;
4983      }
4984      if ((RA + 1).isMaxSignedValue()) {
4985        Pred = ICmpInst::ICMP_EQ;
4986        RHS = getConstant(RA + 1);
4987        Changed = true;
4988        break;
4989      }
4990      if (RA.isMaxSignedValue()) goto trivially_false;
4991      break;
4992    case ICmpInst::ICMP_SLT:
4993      if (RA.isMaxSignedValue()) {
4994        Pred = ICmpInst::ICMP_NE;
4995        Changed = true;
4996        break;
4997      }
4998      if ((RA - 1).isMinSignedValue()) {
4999       Pred = ICmpInst::ICMP_EQ;
5000       RHS = getConstant(RA - 1);
5001        Changed = true;
5002       break;
5003      }
5004      if (RA.isMinSignedValue()) goto trivially_false;
5005      break;
5006    }
5007  }
5008
5009  // Check for obvious equality.
5010  if (HasSameValue(LHS, RHS)) {
5011    if (ICmpInst::isTrueWhenEqual(Pred))
5012      goto trivially_true;
5013    if (ICmpInst::isFalseWhenEqual(Pred))
5014      goto trivially_false;
5015  }
5016
5017  // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5018  // adding or subtracting 1 from one of the operands.
5019  switch (Pred) {
5020  case ICmpInst::ICMP_SLE:
5021    if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5022      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5023                       /*HasNUW=*/false, /*HasNSW=*/true);
5024      Pred = ICmpInst::ICMP_SLT;
5025      Changed = true;
5026    } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
5027      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5028                       /*HasNUW=*/false, /*HasNSW=*/true);
5029      Pred = ICmpInst::ICMP_SLT;
5030      Changed = true;
5031    }
5032    break;
5033  case ICmpInst::ICMP_SGE:
5034    if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
5035      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5036                       /*HasNUW=*/false, /*HasNSW=*/true);
5037      Pred = ICmpInst::ICMP_SGT;
5038      Changed = true;
5039    } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5040      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5041                       /*HasNUW=*/false, /*HasNSW=*/true);
5042      Pred = ICmpInst::ICMP_SGT;
5043      Changed = true;
5044    }
5045    break;
5046  case ICmpInst::ICMP_ULE:
5047    if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
5048      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5049                       /*HasNUW=*/true, /*HasNSW=*/false);
5050      Pred = ICmpInst::ICMP_ULT;
5051      Changed = true;
5052    } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
5053      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5054                       /*HasNUW=*/true, /*HasNSW=*/false);
5055      Pred = ICmpInst::ICMP_ULT;
5056      Changed = true;
5057    }
5058    break;
5059  case ICmpInst::ICMP_UGE:
5060    if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
5061      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5062                       /*HasNUW=*/true, /*HasNSW=*/false);
5063      Pred = ICmpInst::ICMP_UGT;
5064      Changed = true;
5065    } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
5066      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5067                       /*HasNUW=*/true, /*HasNSW=*/false);
5068      Pred = ICmpInst::ICMP_UGT;
5069      Changed = true;
5070    }
5071    break;
5072  default:
5073    break;
5074  }
5075
5076  // TODO: More simplifications are possible here.
5077
5078  return Changed;
5079
5080trivially_true:
5081  // Return 0 == 0.
5082  LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5083  Pred = ICmpInst::ICMP_EQ;
5084  return true;
5085
5086trivially_false:
5087  // Return 0 != 0.
5088  LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5089  Pred = ICmpInst::ICMP_NE;
5090  return true;
5091}
5092
5093bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5094  return getSignedRange(S).getSignedMax().isNegative();
5095}
5096
5097bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5098  return getSignedRange(S).getSignedMin().isStrictlyPositive();
5099}
5100
5101bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5102  return !getSignedRange(S).getSignedMin().isNegative();
5103}
5104
5105bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5106  return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5107}
5108
5109bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5110  return isKnownNegative(S) || isKnownPositive(S);
5111}
5112
5113bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5114                                       const SCEV *LHS, const SCEV *RHS) {
5115  // Canonicalize the inputs first.
5116  (void)SimplifyICmpOperands(Pred, LHS, RHS);
5117
5118  // If LHS or RHS is an addrec, check to see if the condition is true in
5119  // every iteration of the loop.
5120  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5121    if (isLoopEntryGuardedByCond(
5122          AR->getLoop(), Pred, AR->getStart(), RHS) &&
5123        isLoopBackedgeGuardedByCond(
5124          AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
5125      return true;
5126  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5127    if (isLoopEntryGuardedByCond(
5128          AR->getLoop(), Pred, LHS, AR->getStart()) &&
5129        isLoopBackedgeGuardedByCond(
5130          AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
5131      return true;
5132
5133  // Otherwise see what can be done with known constant ranges.
5134  return isKnownPredicateWithRanges(Pred, LHS, RHS);
5135}
5136
5137bool
5138ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5139                                            const SCEV *LHS, const SCEV *RHS) {
5140  if (HasSameValue(LHS, RHS))
5141    return ICmpInst::isTrueWhenEqual(Pred);
5142
5143  // This code is split out from isKnownPredicate because it is called from
5144  // within isLoopEntryGuardedByCond.
5145  switch (Pred) {
5146  default:
5147    llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5148    break;
5149  case ICmpInst::ICMP_SGT:
5150    Pred = ICmpInst::ICMP_SLT;
5151    std::swap(LHS, RHS);
5152  case ICmpInst::ICMP_SLT: {
5153    ConstantRange LHSRange = getSignedRange(LHS);
5154    ConstantRange RHSRange = getSignedRange(RHS);
5155    if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5156      return true;
5157    if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5158      return false;
5159    break;
5160  }
5161  case ICmpInst::ICMP_SGE:
5162    Pred = ICmpInst::ICMP_SLE;
5163    std::swap(LHS, RHS);
5164  case ICmpInst::ICMP_SLE: {
5165    ConstantRange LHSRange = getSignedRange(LHS);
5166    ConstantRange RHSRange = getSignedRange(RHS);
5167    if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5168      return true;
5169    if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5170      return false;
5171    break;
5172  }
5173  case ICmpInst::ICMP_UGT:
5174    Pred = ICmpInst::ICMP_ULT;
5175    std::swap(LHS, RHS);
5176  case ICmpInst::ICMP_ULT: {
5177    ConstantRange LHSRange = getUnsignedRange(LHS);
5178    ConstantRange RHSRange = getUnsignedRange(RHS);
5179    if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5180      return true;
5181    if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5182      return false;
5183    break;
5184  }
5185  case ICmpInst::ICMP_UGE:
5186    Pred = ICmpInst::ICMP_ULE;
5187    std::swap(LHS, RHS);
5188  case ICmpInst::ICMP_ULE: {
5189    ConstantRange LHSRange = getUnsignedRange(LHS);
5190    ConstantRange RHSRange = getUnsignedRange(RHS);
5191    if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5192      return true;
5193    if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5194      return false;
5195    break;
5196  }
5197  case ICmpInst::ICMP_NE: {
5198    if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5199      return true;
5200    if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5201      return true;
5202
5203    const SCEV *Diff = getMinusSCEV(LHS, RHS);
5204    if (isKnownNonZero(Diff))
5205      return true;
5206    break;
5207  }
5208  case ICmpInst::ICMP_EQ:
5209    // The check at the top of the function catches the case where
5210    // the values are known to be equal.
5211    break;
5212  }
5213  return false;
5214}
5215
5216/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5217/// protected by a conditional between LHS and RHS.  This is used to
5218/// to eliminate casts.
5219bool
5220ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5221                                             ICmpInst::Predicate Pred,
5222                                             const SCEV *LHS, const SCEV *RHS) {
5223  // Interpret a null as meaning no loop, where there is obviously no guard
5224  // (interprocedural conditions notwithstanding).
5225  if (!L) return true;
5226
5227  BasicBlock *Latch = L->getLoopLatch();
5228  if (!Latch)
5229    return false;
5230
5231  BranchInst *LoopContinuePredicate =
5232    dyn_cast<BranchInst>(Latch->getTerminator());
5233  if (!LoopContinuePredicate ||
5234      LoopContinuePredicate->isUnconditional())
5235    return false;
5236
5237  return isImpliedCond(Pred, LHS, RHS,
5238                       LoopContinuePredicate->getCondition(),
5239                       LoopContinuePredicate->getSuccessor(0) != L->getHeader());
5240}
5241
5242/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
5243/// by a conditional between LHS and RHS.  This is used to help avoid max
5244/// expressions in loop trip counts, and to eliminate casts.
5245bool
5246ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5247                                          ICmpInst::Predicate Pred,
5248                                          const SCEV *LHS, const SCEV *RHS) {
5249  // Interpret a null as meaning no loop, where there is obviously no guard
5250  // (interprocedural conditions notwithstanding).
5251  if (!L) return false;
5252
5253  // Starting at the loop predecessor, climb up the predecessor chain, as long
5254  // as there are predecessors that can be found that have unique successors
5255  // leading to the original header.
5256  for (std::pair<BasicBlock *, BasicBlock *>
5257         Pair(L->getLoopPredecessor(), L->getHeader());
5258       Pair.first;
5259       Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
5260
5261    BranchInst *LoopEntryPredicate =
5262      dyn_cast<BranchInst>(Pair.first->getTerminator());
5263    if (!LoopEntryPredicate ||
5264        LoopEntryPredicate->isUnconditional())
5265      continue;
5266
5267    if (isImpliedCond(Pred, LHS, RHS,
5268                      LoopEntryPredicate->getCondition(),
5269                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
5270      return true;
5271  }
5272
5273  return false;
5274}
5275
5276/// isImpliedCond - Test whether the condition described by Pred, LHS,
5277/// and RHS is true whenever the given Cond value evaluates to true.
5278bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
5279                                    const SCEV *LHS, const SCEV *RHS,
5280                                    Value *FoundCondValue,
5281                                    bool Inverse) {
5282  // Recursively handle And and Or conditions.
5283  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
5284    if (BO->getOpcode() == Instruction::And) {
5285      if (!Inverse)
5286        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5287               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
5288    } else if (BO->getOpcode() == Instruction::Or) {
5289      if (Inverse)
5290        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5291               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
5292    }
5293  }
5294
5295  ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
5296  if (!ICI) return false;
5297
5298  // Bail if the ICmp's operands' types are wider than the needed type
5299  // before attempting to call getSCEV on them. This avoids infinite
5300  // recursion, since the analysis of widening casts can require loop
5301  // exit condition information for overflow checking, which would
5302  // lead back here.
5303  if (getTypeSizeInBits(LHS->getType()) <
5304      getTypeSizeInBits(ICI->getOperand(0)->getType()))
5305    return false;
5306
5307  // Now that we found a conditional branch that dominates the loop, check to
5308  // see if it is the comparison we are looking for.
5309  ICmpInst::Predicate FoundPred;
5310  if (Inverse)
5311    FoundPred = ICI->getInversePredicate();
5312  else
5313    FoundPred = ICI->getPredicate();
5314
5315  const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5316  const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
5317
5318  // Balance the types. The case where FoundLHS' type is wider than
5319  // LHS' type is checked for above.
5320  if (getTypeSizeInBits(LHS->getType()) >
5321      getTypeSizeInBits(FoundLHS->getType())) {
5322    if (CmpInst::isSigned(Pred)) {
5323      FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5324      FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5325    } else {
5326      FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5327      FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5328    }
5329  }
5330
5331  // Canonicalize the query to match the way instcombine will have
5332  // canonicalized the comparison.
5333  if (SimplifyICmpOperands(Pred, LHS, RHS))
5334    if (LHS == RHS)
5335      return CmpInst::isTrueWhenEqual(Pred);
5336  if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5337    if (FoundLHS == FoundRHS)
5338      return CmpInst::isFalseWhenEqual(Pred);
5339
5340  // Check to see if we can make the LHS or RHS match.
5341  if (LHS == FoundRHS || RHS == FoundLHS) {
5342    if (isa<SCEVConstant>(RHS)) {
5343      std::swap(FoundLHS, FoundRHS);
5344      FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5345    } else {
5346      std::swap(LHS, RHS);
5347      Pred = ICmpInst::getSwappedPredicate(Pred);
5348    }
5349  }
5350
5351  // Check whether the found predicate is the same as the desired predicate.
5352  if (FoundPred == Pred)
5353    return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5354
5355  // Check whether swapping the found predicate makes it the same as the
5356  // desired predicate.
5357  if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5358    if (isa<SCEVConstant>(RHS))
5359      return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5360    else
5361      return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5362                                   RHS, LHS, FoundLHS, FoundRHS);
5363  }
5364
5365  // Check whether the actual condition is beyond sufficient.
5366  if (FoundPred == ICmpInst::ICMP_EQ)
5367    if (ICmpInst::isTrueWhenEqual(Pred))
5368      if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5369        return true;
5370  if (Pred == ICmpInst::ICMP_NE)
5371    if (!ICmpInst::isTrueWhenEqual(FoundPred))
5372      if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5373        return true;
5374
5375  // Otherwise assume the worst.
5376  return false;
5377}
5378
5379/// isImpliedCondOperands - Test whether the condition described by Pred,
5380/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
5381/// and FoundRHS is true.
5382bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5383                                            const SCEV *LHS, const SCEV *RHS,
5384                                            const SCEV *FoundLHS,
5385                                            const SCEV *FoundRHS) {
5386  return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5387                                     FoundLHS, FoundRHS) ||
5388         // ~x < ~y --> x > y
5389         isImpliedCondOperandsHelper(Pred, LHS, RHS,
5390                                     getNotSCEV(FoundRHS),
5391                                     getNotSCEV(FoundLHS));
5392}
5393
5394/// isImpliedCondOperandsHelper - Test whether the condition described by
5395/// Pred, LHS, and RHS is true whenever the condition described by Pred,
5396/// FoundLHS, and FoundRHS is true.
5397bool
5398ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5399                                             const SCEV *LHS, const SCEV *RHS,
5400                                             const SCEV *FoundLHS,
5401                                             const SCEV *FoundRHS) {
5402  switch (Pred) {
5403  default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5404  case ICmpInst::ICMP_EQ:
5405  case ICmpInst::ICMP_NE:
5406    if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5407      return true;
5408    break;
5409  case ICmpInst::ICMP_SLT:
5410  case ICmpInst::ICMP_SLE:
5411    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5412        isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
5413      return true;
5414    break;
5415  case ICmpInst::ICMP_SGT:
5416  case ICmpInst::ICMP_SGE:
5417    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5418        isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
5419      return true;
5420    break;
5421  case ICmpInst::ICMP_ULT:
5422  case ICmpInst::ICMP_ULE:
5423    if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5424        isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
5425      return true;
5426    break;
5427  case ICmpInst::ICMP_UGT:
5428  case ICmpInst::ICMP_UGE:
5429    if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5430        isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
5431      return true;
5432    break;
5433  }
5434
5435  return false;
5436}
5437
5438/// getBECount - Subtract the end and start values and divide by the step,
5439/// rounding up, to get the number of times the backedge is executed. Return
5440/// CouldNotCompute if an intermediate computation overflows.
5441const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
5442                                        const SCEV *End,
5443                                        const SCEV *Step,
5444                                        bool NoWrap) {
5445  assert(!isKnownNegative(Step) &&
5446         "This code doesn't handle negative strides yet!");
5447
5448  const Type *Ty = Start->getType();
5449  const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
5450  const SCEV *Diff = getMinusSCEV(End, Start);
5451  const SCEV *RoundUp = getAddExpr(Step, NegOne);
5452
5453  // Add an adjustment to the difference between End and Start so that
5454  // the division will effectively round up.
5455  const SCEV *Add = getAddExpr(Diff, RoundUp);
5456
5457  if (!NoWrap) {
5458    // Check Add for unsigned overflow.
5459    // TODO: More sophisticated things could be done here.
5460    const Type *WideTy = IntegerType::get(getContext(),
5461                                          getTypeSizeInBits(Ty) + 1);
5462    const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5463    const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5464    const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5465    if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5466      return getCouldNotCompute();
5467  }
5468
5469  return getUDivExpr(Add, Step);
5470}
5471
5472/// HowManyLessThans - Return the number of times a backedge containing the
5473/// specified less-than comparison will execute.  If not computable, return
5474/// CouldNotCompute.
5475ScalarEvolution::BackedgeTakenInfo
5476ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5477                                  const Loop *L, bool isSigned) {
5478  // Only handle:  "ADDREC < LoopInvariant".
5479  if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
5480
5481  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
5482  if (!AddRec || AddRec->getLoop() != L)
5483    return getCouldNotCompute();
5484
5485  // Check to see if we have a flag which makes analysis easy.
5486  bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5487                           AddRec->hasNoUnsignedWrap();
5488
5489  if (AddRec->isAffine()) {
5490    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
5491    const SCEV *Step = AddRec->getStepRecurrence(*this);
5492
5493    if (Step->isZero())
5494      return getCouldNotCompute();
5495    if (Step->isOne()) {
5496      // With unit stride, the iteration never steps past the limit value.
5497    } else if (isKnownPositive(Step)) {
5498      // Test whether a positive iteration can step past the limit
5499      // value and past the maximum value for its type in a single step.
5500      // Note that it's not sufficient to check NoWrap here, because even
5501      // though the value after a wrap is undefined, it's not undefined
5502      // behavior, so if wrap does occur, the loop could either terminate or
5503      // loop infinitely, but in either case, the loop is guaranteed to
5504      // iterate at least until the iteration where the wrapping occurs.
5505      const SCEV *One = getConstant(Step->getType(), 1);
5506      if (isSigned) {
5507        APInt Max = APInt::getSignedMaxValue(BitWidth);
5508        if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5509              .slt(getSignedRange(RHS).getSignedMax()))
5510          return getCouldNotCompute();
5511      } else {
5512        APInt Max = APInt::getMaxValue(BitWidth);
5513        if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5514              .ult(getUnsignedRange(RHS).getUnsignedMax()))
5515          return getCouldNotCompute();
5516      }
5517    } else
5518      // TODO: Handle negative strides here and below.
5519      return getCouldNotCompute();
5520
5521    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5522    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
5523    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
5524    // treat m-n as signed nor unsigned due to overflow possibility.
5525
5526    // First, we get the value of the LHS in the first iteration: n
5527    const SCEV *Start = AddRec->getOperand(0);
5528
5529    // Determine the minimum constant start value.
5530    const SCEV *MinStart = getConstant(isSigned ?
5531      getSignedRange(Start).getSignedMin() :
5532      getUnsignedRange(Start).getUnsignedMin());
5533
5534    // If we know that the condition is true in order to enter the loop,
5535    // then we know that it will run exactly (m-n)/s times. Otherwise, we
5536    // only know that it will execute (max(m,n)-n)/s times. In both cases,
5537    // the division must round up.
5538    const SCEV *End = RHS;
5539    if (!isLoopEntryGuardedByCond(L,
5540                                  isSigned ? ICmpInst::ICMP_SLT :
5541                                             ICmpInst::ICMP_ULT,
5542                                  getMinusSCEV(Start, Step), RHS))
5543      End = isSigned ? getSMaxExpr(RHS, Start)
5544                     : getUMaxExpr(RHS, Start);
5545
5546    // Determine the maximum constant end value.
5547    const SCEV *MaxEnd = getConstant(isSigned ?
5548      getSignedRange(End).getSignedMax() :
5549      getUnsignedRange(End).getUnsignedMax());
5550
5551    // If MaxEnd is within a step of the maximum integer value in its type,
5552    // adjust it down to the minimum value which would produce the same effect.
5553    // This allows the subsequent ceiling division of (N+(step-1))/step to
5554    // compute the correct value.
5555    const SCEV *StepMinusOne = getMinusSCEV(Step,
5556                                            getConstant(Step->getType(), 1));
5557    MaxEnd = isSigned ?
5558      getSMinExpr(MaxEnd,
5559                  getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5560                               StepMinusOne)) :
5561      getUMinExpr(MaxEnd,
5562                  getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5563                               StepMinusOne));
5564
5565    // Finally, we subtract these two values and divide, rounding up, to get
5566    // the number of times the backedge is executed.
5567    const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
5568
5569    // The maximum backedge count is similar, except using the minimum start
5570    // value and the maximum end value.
5571    const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
5572
5573    return BackedgeTakenInfo(BECount, MaxBECount);
5574  }
5575
5576  return getCouldNotCompute();
5577}
5578
5579/// getNumIterationsInRange - Return the number of iterations of this loop that
5580/// produce values in the specified constant range.  Another way of looking at
5581/// this is that it returns the first iteration number where the value is not in
5582/// the condition, thus computing the exit count. If the iteration count can't
5583/// be computed, an instance of SCEVCouldNotCompute is returned.
5584const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
5585                                                    ScalarEvolution &SE) const {
5586  if (Range.isFullSet())  // Infinite loop.
5587    return SE.getCouldNotCompute();
5588
5589  // If the start is a non-zero constant, shift the range to simplify things.
5590  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
5591    if (!SC->getValue()->isZero()) {
5592      SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
5593      Operands[0] = SE.getConstant(SC->getType(), 0);
5594      const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
5595      if (const SCEVAddRecExpr *ShiftedAddRec =
5596            dyn_cast<SCEVAddRecExpr>(Shifted))
5597        return ShiftedAddRec->getNumIterationsInRange(
5598                           Range.subtract(SC->getValue()->getValue()), SE);
5599      // This is strange and shouldn't happen.
5600      return SE.getCouldNotCompute();
5601    }
5602
5603  // The only time we can solve this is when we have all constant indices.
5604  // Otherwise, we cannot determine the overflow conditions.
5605  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5606    if (!isa<SCEVConstant>(getOperand(i)))
5607      return SE.getCouldNotCompute();
5608
5609
5610  // Okay at this point we know that all elements of the chrec are constants and
5611  // that the start element is zero.
5612
5613  // First check to see if the range contains zero.  If not, the first
5614  // iteration exits.
5615  unsigned BitWidth = SE.getTypeSizeInBits(getType());
5616  if (!Range.contains(APInt(BitWidth, 0)))
5617    return SE.getConstant(getType(), 0);
5618
5619  if (isAffine()) {
5620    // If this is an affine expression then we have this situation:
5621    //   Solve {0,+,A} in Range  ===  Ax in Range
5622
5623    // We know that zero is in the range.  If A is positive then we know that
5624    // the upper value of the range must be the first possible exit value.
5625    // If A is negative then the lower of the range is the last possible loop
5626    // value.  Also note that we already checked for a full range.
5627    APInt One(BitWidth,1);
5628    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5629    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
5630
5631    // The exit value should be (End+A)/A.
5632    APInt ExitVal = (End + A).udiv(A);
5633    ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
5634
5635    // Evaluate at the exit value.  If we really did fall out of the valid
5636    // range, then we computed our trip count, otherwise wrap around or other
5637    // things must have happened.
5638    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
5639    if (Range.contains(Val->getValue()))
5640      return SE.getCouldNotCompute();  // Something strange happened
5641
5642    // Ensure that the previous value is in the range.  This is a sanity check.
5643    assert(Range.contains(
5644           EvaluateConstantChrecAtConstant(this,
5645           ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
5646           "Linear scev computation is off in a bad way!");
5647    return SE.getConstant(ExitValue);
5648  } else if (isQuadratic()) {
5649    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5650    // quadratic equation to solve it.  To do this, we must frame our problem in
5651    // terms of figuring out when zero is crossed, instead of when
5652    // Range.getUpper() is crossed.
5653    SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
5654    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
5655    const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
5656
5657    // Next, solve the constructed addrec
5658    std::pair<const SCEV *,const SCEV *> Roots =
5659      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
5660    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5661    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
5662    if (R1) {
5663      // Pick the smallest positive root value.
5664      if (ConstantInt *CB =
5665          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
5666                         R1->getValue(), R2->getValue()))) {
5667        if (CB->getZExtValue() == false)
5668          std::swap(R1, R2);   // R1 is the minimum root now.
5669
5670        // Make sure the root is not off by one.  The returned iteration should
5671        // not be in the range, but the previous one should be.  When solving
5672        // for "X*X < 5", for example, we should not return a root of 2.
5673        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
5674                                                             R1->getValue(),
5675                                                             SE);
5676        if (Range.contains(R1Val->getValue())) {
5677          // The next iteration must be out of the range...
5678          ConstantInt *NextVal =
5679                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
5680
5681          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5682          if (!Range.contains(R1Val->getValue()))
5683            return SE.getConstant(NextVal);
5684          return SE.getCouldNotCompute();  // Something strange happened
5685        }
5686
5687        // If R1 was not in the range, then it is a good return value.  Make
5688        // sure that R1-1 WAS in the range though, just in case.
5689        ConstantInt *NextVal =
5690               ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
5691        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5692        if (Range.contains(R1Val->getValue()))
5693          return R1;
5694        return SE.getCouldNotCompute();  // Something strange happened
5695      }
5696    }
5697  }
5698
5699  return SE.getCouldNotCompute();
5700}
5701
5702
5703
5704//===----------------------------------------------------------------------===//
5705//                   SCEVCallbackVH Class Implementation
5706//===----------------------------------------------------------------------===//
5707
5708void ScalarEvolution::SCEVCallbackVH::deleted() {
5709  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5710  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5711    SE->ConstantEvolutionLoopExitValue.erase(PN);
5712  SE->Scalars.erase(getValPtr());
5713  // this now dangles!
5714}
5715
5716void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
5717  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5718
5719  // Forget all the expressions associated with users of the old value,
5720  // so that future queries will recompute the expressions using the new
5721  // value.
5722  Value *Old = getValPtr();
5723  SmallVector<User *, 16> Worklist;
5724  SmallPtrSet<User *, 8> Visited;
5725  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5726       UI != UE; ++UI)
5727    Worklist.push_back(*UI);
5728  while (!Worklist.empty()) {
5729    User *U = Worklist.pop_back_val();
5730    // Deleting the Old value will cause this to dangle. Postpone
5731    // that until everything else is done.
5732    if (U == Old)
5733      continue;
5734    if (!Visited.insert(U))
5735      continue;
5736    if (PHINode *PN = dyn_cast<PHINode>(U))
5737      SE->ConstantEvolutionLoopExitValue.erase(PN);
5738    SE->Scalars.erase(U);
5739    for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5740         UI != UE; ++UI)
5741      Worklist.push_back(*UI);
5742  }
5743  // Delete the Old value.
5744  if (PHINode *PN = dyn_cast<PHINode>(Old))
5745    SE->ConstantEvolutionLoopExitValue.erase(PN);
5746  SE->Scalars.erase(Old);
5747  // this now dangles!
5748}
5749
5750ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
5751  : CallbackVH(V), SE(se) {}
5752
5753//===----------------------------------------------------------------------===//
5754//                   ScalarEvolution Class Implementation
5755//===----------------------------------------------------------------------===//
5756
5757ScalarEvolution::ScalarEvolution()
5758  : FunctionPass(ID), FirstUnknown(0) {
5759}
5760
5761bool ScalarEvolution::runOnFunction(Function &F) {
5762  this->F = &F;
5763  LI = &getAnalysis<LoopInfo>();
5764  TD = getAnalysisIfAvailable<TargetData>();
5765  DT = &getAnalysis<DominatorTree>();
5766  return false;
5767}
5768
5769void ScalarEvolution::releaseMemory() {
5770  // Iterate through all the SCEVUnknown instances and call their
5771  // destructors, so that they release their references to their values.
5772  for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
5773    U->~SCEVUnknown();
5774  FirstUnknown = 0;
5775
5776  Scalars.clear();
5777  BackedgeTakenCounts.clear();
5778  ConstantEvolutionLoopExitValue.clear();
5779  ValuesAtScopes.clear();
5780  UniqueSCEVs.clear();
5781  SCEVAllocator.Reset();
5782}
5783
5784void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5785  AU.setPreservesAll();
5786  AU.addRequiredTransitive<LoopInfo>();
5787  AU.addRequiredTransitive<DominatorTree>();
5788}
5789
5790bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
5791  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
5792}
5793
5794static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
5795                          const Loop *L) {
5796  // Print all inner loops first
5797  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5798    PrintLoopInfo(OS, SE, *I);
5799
5800  OS << "Loop ";
5801  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5802  OS << ": ";
5803
5804  SmallVector<BasicBlock *, 8> ExitBlocks;
5805  L->getExitBlocks(ExitBlocks);
5806  if (ExitBlocks.size() != 1)
5807    OS << "<multiple exits> ";
5808
5809  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5810    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
5811  } else {
5812    OS << "Unpredictable backedge-taken count. ";
5813  }
5814
5815  OS << "\n"
5816        "Loop ";
5817  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5818  OS << ": ";
5819
5820  if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5821    OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5822  } else {
5823    OS << "Unpredictable max backedge-taken count. ";
5824  }
5825
5826  OS << "\n";
5827}
5828
5829void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
5830  // ScalarEvolution's implementation of the print method is to print
5831  // out SCEV values of all instructions that are interesting. Doing
5832  // this potentially causes it to create new SCEV objects though,
5833  // which technically conflicts with the const qualifier. This isn't
5834  // observable from outside the class though, so casting away the
5835  // const isn't dangerous.
5836  ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
5837
5838  OS << "Classifying expressions for: ";
5839  WriteAsOperand(OS, F, /*PrintType=*/false);
5840  OS << "\n";
5841  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
5842    if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
5843      OS << *I << '\n';
5844      OS << "  -->  ";
5845      const SCEV *SV = SE.getSCEV(&*I);
5846      SV->print(OS);
5847
5848      const Loop *L = LI->getLoopFor((*I).getParent());
5849
5850      const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
5851      if (AtUse != SV) {
5852        OS << "  -->  ";
5853        AtUse->print(OS);
5854      }
5855
5856      if (L) {
5857        OS << "\t\t" "Exits: ";
5858        const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
5859        if (!ExitValue->isLoopInvariant(L)) {
5860          OS << "<<Unknown>>";
5861        } else {
5862          OS << *ExitValue;
5863        }
5864      }
5865
5866      OS << "\n";
5867    }
5868
5869  OS << "Determining loop execution counts for: ";
5870  WriteAsOperand(OS, F, /*PrintType=*/false);
5871  OS << "\n";
5872  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5873    PrintLoopInfo(OS, &SE, *I);
5874}
5875
5876