ScalarEvolution.cpp revision 75de5ab9f58b84aa99c2a9133572ce1d997ec1a8
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle.  These classes are reference counted, managed by the SCEVHandle
18// class.  We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression.  These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
36// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43//  Chains of recurrences -- a method to expedite the evaluation
44//  of closed-form functions
45//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47//  On computational properties of chains of recurrences
48//  Eugene V. Zima
49//
50//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51//  Robert A. van Engelen
52//
53//  Efficient Symbolic Analysis for Optimizing Compilers
54//  Robert A. van Engelen
55//
56//  Using the chains of recurrences algebra for data dependence testing and
57//  induction variable substitution
58//  MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
62#include "llvm/Analysis/ScalarEvolutionExpressions.h"
63#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
65#include "llvm/GlobalVariable.h"
66#include "llvm/Instructions.h"
67#include "llvm/Analysis/ConstantFolding.h"
68#include "llvm/Analysis/LoopInfo.h"
69#include "llvm/Assembly/Writer.h"
70#include "llvm/Transforms/Scalar.h"
71#include "llvm/Support/CFG.h"
72#include "llvm/Support/CommandLine.h"
73#include "llvm/Support/Compiler.h"
74#include "llvm/Support/ConstantRange.h"
75#include "llvm/Support/InstIterator.h"
76#include "llvm/Support/ManagedStatic.h"
77#include "llvm/Support/MathExtras.h"
78#include "llvm/Support/Streams.h"
79#include "llvm/ADT/Statistic.h"
80#include <ostream>
81#include <algorithm>
82#include <cmath>
83using namespace llvm;
84
85namespace {
86  RegisterPass<ScalarEvolution>
87  R("scalar-evolution", "Scalar Evolution Analysis");
88
89  Statistic
90  NumBruteForceEvaluations("scalar-evolution",
91                           "Number of brute force evaluations needed to "
92                           "calculate high-order polynomial exit values");
93  Statistic
94  NumArrayLenItCounts("scalar-evolution",
95                      "Number of trip counts computed with array length");
96  Statistic
97  NumTripCountsComputed("scalar-evolution",
98                        "Number of loops with predictable loop counts");
99  Statistic
100  NumTripCountsNotComputed("scalar-evolution",
101                           "Number of loops without predictable loop counts");
102  Statistic
103  NumBruteForceTripCountsComputed("scalar-evolution",
104                        "Number of loops with trip counts computed by force");
105
106  cl::opt<unsigned>
107  MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
108                          cl::desc("Maximum number of iterations SCEV will "
109                              "symbolically execute a constant derived loop"),
110                          cl::init(100));
111}
112
113//===----------------------------------------------------------------------===//
114//                           SCEV class definitions
115//===----------------------------------------------------------------------===//
116
117//===----------------------------------------------------------------------===//
118// Implementation of the SCEV class.
119//
120SCEV::~SCEV() {}
121void SCEV::dump() const {
122  print(cerr);
123}
124
125/// getValueRange - Return the tightest constant bounds that this value is
126/// known to have.  This method is only valid on integer SCEV objects.
127ConstantRange SCEV::getValueRange() const {
128  const Type *Ty = getType();
129  assert(Ty->isInteger() && "Can't get range for a non-integer SCEV!");
130  Ty = Ty->getUnsignedVersion();
131  // Default to a full range if no better information is available.
132  return ConstantRange(getType());
133}
134
135
136SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
137
138bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
139  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
140  return false;
141}
142
143const Type *SCEVCouldNotCompute::getType() const {
144  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
145  return 0;
146}
147
148bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
149  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
150  return false;
151}
152
153SCEVHandle SCEVCouldNotCompute::
154replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
155                                  const SCEVHandle &Conc) const {
156  return this;
157}
158
159void SCEVCouldNotCompute::print(std::ostream &OS) const {
160  OS << "***COULDNOTCOMPUTE***";
161}
162
163bool SCEVCouldNotCompute::classof(const SCEV *S) {
164  return S->getSCEVType() == scCouldNotCompute;
165}
166
167
168// SCEVConstants - Only allow the creation of one SCEVConstant for any
169// particular value.  Don't use a SCEVHandle here, or else the object will
170// never be deleted!
171static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
172
173
174SCEVConstant::~SCEVConstant() {
175  SCEVConstants->erase(V);
176}
177
178SCEVHandle SCEVConstant::get(ConstantInt *V) {
179  // Make sure that SCEVConstant instances are all unsigned.
180  if (V->getType()->isSigned()) {
181    const Type *NewTy = V->getType()->getUnsignedVersion();
182    V = cast<ConstantInt>(
183        ConstantExpr::getBitCast(V, NewTy));
184  }
185
186  SCEVConstant *&R = (*SCEVConstants)[V];
187  if (R == 0) R = new SCEVConstant(V);
188  return R;
189}
190
191ConstantRange SCEVConstant::getValueRange() const {
192  return ConstantRange(V);
193}
194
195const Type *SCEVConstant::getType() const { return V->getType(); }
196
197void SCEVConstant::print(std::ostream &OS) const {
198  WriteAsOperand(OS, V, false);
199}
200
201// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
202// particular input.  Don't use a SCEVHandle here, or else the object will
203// never be deleted!
204static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
205                     SCEVTruncateExpr*> > SCEVTruncates;
206
207SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
208  : SCEV(scTruncate), Op(op), Ty(ty) {
209  assert(Op->getType()->isInteger() && Ty->isInteger() &&
210         "Cannot truncate non-integer value!");
211  assert(Op->getType()->getPrimitiveSize() > Ty->getPrimitiveSize() &&
212         "This is not a truncating conversion!");
213}
214
215SCEVTruncateExpr::~SCEVTruncateExpr() {
216  SCEVTruncates->erase(std::make_pair(Op, Ty));
217}
218
219ConstantRange SCEVTruncateExpr::getValueRange() const {
220  return getOperand()->getValueRange().truncate(getType());
221}
222
223void SCEVTruncateExpr::print(std::ostream &OS) const {
224  OS << "(truncate " << *Op << " to " << *Ty << ")";
225}
226
227// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
228// particular input.  Don't use a SCEVHandle here, or else the object will never
229// be deleted!
230static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
231                     SCEVZeroExtendExpr*> > SCEVZeroExtends;
232
233SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
234  : SCEV(scZeroExtend), Op(op), Ty(ty) {
235  assert(Op->getType()->isInteger() && Ty->isInteger() &&
236         "Cannot zero extend non-integer value!");
237  assert(Op->getType()->getPrimitiveSize() < Ty->getPrimitiveSize() &&
238         "This is not an extending conversion!");
239}
240
241SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
242  SCEVZeroExtends->erase(std::make_pair(Op, Ty));
243}
244
245ConstantRange SCEVZeroExtendExpr::getValueRange() const {
246  return getOperand()->getValueRange().zeroExtend(getType());
247}
248
249void SCEVZeroExtendExpr::print(std::ostream &OS) const {
250  OS << "(zeroextend " << *Op << " to " << *Ty << ")";
251}
252
253// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
254// particular input.  Don't use a SCEVHandle here, or else the object will never
255// be deleted!
256static ManagedStatic<std::map<std::pair<unsigned, std::vector<SCEV*> >,
257                     SCEVCommutativeExpr*> > SCEVCommExprs;
258
259SCEVCommutativeExpr::~SCEVCommutativeExpr() {
260  SCEVCommExprs->erase(std::make_pair(getSCEVType(),
261                                      std::vector<SCEV*>(Operands.begin(),
262                                                         Operands.end())));
263}
264
265void SCEVCommutativeExpr::print(std::ostream &OS) const {
266  assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
267  const char *OpStr = getOperationStr();
268  OS << "(" << *Operands[0];
269  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
270    OS << OpStr << *Operands[i];
271  OS << ")";
272}
273
274SCEVHandle SCEVCommutativeExpr::
275replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
276                                  const SCEVHandle &Conc) const {
277  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
278    SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc);
279    if (H != getOperand(i)) {
280      std::vector<SCEVHandle> NewOps;
281      NewOps.reserve(getNumOperands());
282      for (unsigned j = 0; j != i; ++j)
283        NewOps.push_back(getOperand(j));
284      NewOps.push_back(H);
285      for (++i; i != e; ++i)
286        NewOps.push_back(getOperand(i)->
287                         replaceSymbolicValuesWithConcrete(Sym, Conc));
288
289      if (isa<SCEVAddExpr>(this))
290        return SCEVAddExpr::get(NewOps);
291      else if (isa<SCEVMulExpr>(this))
292        return SCEVMulExpr::get(NewOps);
293      else
294        assert(0 && "Unknown commutative expr!");
295    }
296  }
297  return this;
298}
299
300
301// SCEVSDivs - Only allow the creation of one SCEVSDivExpr for any particular
302// input.  Don't use a SCEVHandle here, or else the object will never be
303// deleted!
304static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>,
305                     SCEVSDivExpr*> > SCEVSDivs;
306
307SCEVSDivExpr::~SCEVSDivExpr() {
308  SCEVSDivs->erase(std::make_pair(LHS, RHS));
309}
310
311void SCEVSDivExpr::print(std::ostream &OS) const {
312  OS << "(" << *LHS << " /s " << *RHS << ")";
313}
314
315const Type *SCEVSDivExpr::getType() const {
316  const Type *Ty = LHS->getType();
317  if (Ty->isUnsigned()) Ty = Ty->getSignedVersion();
318  return Ty;
319}
320
321// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
322// particular input.  Don't use a SCEVHandle here, or else the object will never
323// be deleted!
324static ManagedStatic<std::map<std::pair<const Loop *, std::vector<SCEV*> >,
325                     SCEVAddRecExpr*> > SCEVAddRecExprs;
326
327SCEVAddRecExpr::~SCEVAddRecExpr() {
328  SCEVAddRecExprs->erase(std::make_pair(L,
329                                        std::vector<SCEV*>(Operands.begin(),
330                                                           Operands.end())));
331}
332
333SCEVHandle SCEVAddRecExpr::
334replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
335                                  const SCEVHandle &Conc) const {
336  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
337    SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc);
338    if (H != getOperand(i)) {
339      std::vector<SCEVHandle> NewOps;
340      NewOps.reserve(getNumOperands());
341      for (unsigned j = 0; j != i; ++j)
342        NewOps.push_back(getOperand(j));
343      NewOps.push_back(H);
344      for (++i; i != e; ++i)
345        NewOps.push_back(getOperand(i)->
346                         replaceSymbolicValuesWithConcrete(Sym, Conc));
347
348      return get(NewOps, L);
349    }
350  }
351  return this;
352}
353
354
355bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
356  // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
357  // contain L and if the start is invariant.
358  return !QueryLoop->contains(L->getHeader()) &&
359         getOperand(0)->isLoopInvariant(QueryLoop);
360}
361
362
363void SCEVAddRecExpr::print(std::ostream &OS) const {
364  OS << "{" << *Operands[0];
365  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
366    OS << ",+," << *Operands[i];
367  OS << "}<" << L->getHeader()->getName() + ">";
368}
369
370// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
371// value.  Don't use a SCEVHandle here, or else the object will never be
372// deleted!
373static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
374
375SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
376
377bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
378  // All non-instruction values are loop invariant.  All instructions are loop
379  // invariant if they are not contained in the specified loop.
380  if (Instruction *I = dyn_cast<Instruction>(V))
381    return !L->contains(I->getParent());
382  return true;
383}
384
385const Type *SCEVUnknown::getType() const {
386  return V->getType();
387}
388
389void SCEVUnknown::print(std::ostream &OS) const {
390  WriteAsOperand(OS, V, false);
391}
392
393//===----------------------------------------------------------------------===//
394//                               SCEV Utilities
395//===----------------------------------------------------------------------===//
396
397namespace {
398  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
399  /// than the complexity of the RHS.  This comparator is used to canonicalize
400  /// expressions.
401  struct VISIBILITY_HIDDEN SCEVComplexityCompare {
402    bool operator()(SCEV *LHS, SCEV *RHS) {
403      return LHS->getSCEVType() < RHS->getSCEVType();
404    }
405  };
406}
407
408/// GroupByComplexity - Given a list of SCEV objects, order them by their
409/// complexity, and group objects of the same complexity together by value.
410/// When this routine is finished, we know that any duplicates in the vector are
411/// consecutive and that complexity is monotonically increasing.
412///
413/// Note that we go take special precautions to ensure that we get determinstic
414/// results from this routine.  In other words, we don't want the results of
415/// this to depend on where the addresses of various SCEV objects happened to
416/// land in memory.
417///
418static void GroupByComplexity(std::vector<SCEVHandle> &Ops) {
419  if (Ops.size() < 2) return;  // Noop
420  if (Ops.size() == 2) {
421    // This is the common case, which also happens to be trivially simple.
422    // Special case it.
423    if (Ops[0]->getSCEVType() > Ops[1]->getSCEVType())
424      std::swap(Ops[0], Ops[1]);
425    return;
426  }
427
428  // Do the rough sort by complexity.
429  std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());
430
431  // Now that we are sorted by complexity, group elements of the same
432  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
433  // be extremely short in practice.  Note that we take this approach because we
434  // do not want to depend on the addresses of the objects we are grouping.
435  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
436    SCEV *S = Ops[i];
437    unsigned Complexity = S->getSCEVType();
438
439    // If there are any objects of the same complexity and same value as this
440    // one, group them.
441    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
442      if (Ops[j] == S) { // Found a duplicate.
443        // Move it to immediately after i'th element.
444        std::swap(Ops[i+1], Ops[j]);
445        ++i;   // no need to rescan it.
446        if (i == e-2) return;  // Done!
447      }
448    }
449  }
450}
451
452
453
454//===----------------------------------------------------------------------===//
455//                      Simple SCEV method implementations
456//===----------------------------------------------------------------------===//
457
458/// getIntegerSCEV - Given an integer or FP type, create a constant for the
459/// specified signed integer value and return a SCEV for the constant.
460SCEVHandle SCEVUnknown::getIntegerSCEV(int Val, const Type *Ty) {
461  Constant *C;
462  if (Val == 0)
463    C = Constant::getNullValue(Ty);
464  else if (Ty->isFloatingPoint())
465    C = ConstantFP::get(Ty, Val);
466  else if (Ty->isSigned())
467    C = ConstantInt::get(Ty, Val);
468  else {
469    C = ConstantInt::get(Ty->getSignedVersion(), Val);
470    C = ConstantExpr::getBitCast(C, Ty);
471  }
472  return SCEVUnknown::get(C);
473}
474
475/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
476/// input value to the specified type.  If the type must be extended, it is zero
477/// extended.
478static SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty) {
479  const Type *SrcTy = V->getType();
480  assert(SrcTy->isInteger() && Ty->isInteger() &&
481         "Cannot truncate or zero extend with non-integer arguments!");
482  if (SrcTy->getPrimitiveSize() == Ty->getPrimitiveSize())
483    return V;  // No conversion
484  if (SrcTy->getPrimitiveSize() > Ty->getPrimitiveSize())
485    return SCEVTruncateExpr::get(V, Ty);
486  return SCEVZeroExtendExpr::get(V, Ty);
487}
488
489/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
490///
491SCEVHandle SCEV::getNegativeSCEV(const SCEVHandle &V) {
492  if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
493    return SCEVUnknown::get(ConstantExpr::getNeg(VC->getValue()));
494
495  return SCEVMulExpr::get(V, SCEVUnknown::getIntegerSCEV(-1, V->getType()));
496}
497
498/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
499///
500SCEVHandle SCEV::getMinusSCEV(const SCEVHandle &LHS, const SCEVHandle &RHS) {
501  // X - Y --> X + -Y
502  return SCEVAddExpr::get(LHS, SCEV::getNegativeSCEV(RHS));
503}
504
505
506/// PartialFact - Compute V!/(V-NumSteps)!
507static SCEVHandle PartialFact(SCEVHandle V, unsigned NumSteps) {
508  // Handle this case efficiently, it is common to have constant iteration
509  // counts while computing loop exit values.
510  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
511    uint64_t Val = SC->getValue()->getZExtValue();
512    uint64_t Result = 1;
513    for (; NumSteps; --NumSteps)
514      Result *= Val-(NumSteps-1);
515    Constant *Res = ConstantInt::get(Type::ULongTy, Result);
516    return SCEVUnknown::get(
517        ConstantExpr::getTruncOrBitCast(Res, V->getType()));
518  }
519
520  const Type *Ty = V->getType();
521  if (NumSteps == 0)
522    return SCEVUnknown::getIntegerSCEV(1, Ty);
523
524  SCEVHandle Result = V;
525  for (unsigned i = 1; i != NumSteps; ++i)
526    Result = SCEVMulExpr::get(Result, SCEV::getMinusSCEV(V,
527                                          SCEVUnknown::getIntegerSCEV(i, Ty)));
528  return Result;
529}
530
531
532/// evaluateAtIteration - Return the value of this chain of recurrences at
533/// the specified iteration number.  We can evaluate this recurrence by
534/// multiplying each element in the chain by the binomial coefficient
535/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
536///
537///   A*choose(It, 0) + B*choose(It, 1) + C*choose(It, 2) + D*choose(It, 3)
538///
539/// FIXME/VERIFY: I don't trust that this is correct in the face of overflow.
540/// Is the binomial equation safe using modular arithmetic??
541///
542SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It) const {
543  SCEVHandle Result = getStart();
544  int Divisor = 1;
545  const Type *Ty = It->getType();
546  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
547    SCEVHandle BC = PartialFact(It, i);
548    Divisor *= i;
549    SCEVHandle Val = SCEVSDivExpr::get(SCEVMulExpr::get(BC, getOperand(i)),
550                                       SCEVUnknown::getIntegerSCEV(Divisor,Ty));
551    Result = SCEVAddExpr::get(Result, Val);
552  }
553  return Result;
554}
555
556
557//===----------------------------------------------------------------------===//
558//                    SCEV Expression folder implementations
559//===----------------------------------------------------------------------===//
560
561SCEVHandle SCEVTruncateExpr::get(const SCEVHandle &Op, const Type *Ty) {
562  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
563    return SCEVUnknown::get(
564        ConstantExpr::getTrunc(SC->getValue(), Ty));
565
566  // If the input value is a chrec scev made out of constants, truncate
567  // all of the constants.
568  if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
569    std::vector<SCEVHandle> Operands;
570    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
571      // FIXME: This should allow truncation of other expression types!
572      if (isa<SCEVConstant>(AddRec->getOperand(i)))
573        Operands.push_back(get(AddRec->getOperand(i), Ty));
574      else
575        break;
576    if (Operands.size() == AddRec->getNumOperands())
577      return SCEVAddRecExpr::get(Operands, AddRec->getLoop());
578  }
579
580  SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
581  if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
582  return Result;
583}
584
585SCEVHandle SCEVZeroExtendExpr::get(const SCEVHandle &Op, const Type *Ty) {
586  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
587    return SCEVUnknown::get(
588        ConstantExpr::getZExt(SC->getValue(), Ty));
589
590  // FIXME: If the input value is a chrec scev, and we can prove that the value
591  // did not overflow the old, smaller, value, we can zero extend all of the
592  // operands (often constants).  This would allow analysis of something like
593  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
594
595  SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
596  if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
597  return Result;
598}
599
600// get - Get a canonical add expression, or something simpler if possible.
601SCEVHandle SCEVAddExpr::get(std::vector<SCEVHandle> &Ops) {
602  assert(!Ops.empty() && "Cannot get empty add!");
603  if (Ops.size() == 1) return Ops[0];
604
605  // Sort by complexity, this groups all similar expression types together.
606  GroupByComplexity(Ops);
607
608  // If there are any constants, fold them together.
609  unsigned Idx = 0;
610  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
611    ++Idx;
612    assert(Idx < Ops.size());
613    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
614      // We found two constants, fold them together!
615      Constant *Fold = ConstantExpr::getAdd(LHSC->getValue(), RHSC->getValue());
616      if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
617        Ops[0] = SCEVConstant::get(CI);
618        Ops.erase(Ops.begin()+1);  // Erase the folded element
619        if (Ops.size() == 1) return Ops[0];
620        LHSC = cast<SCEVConstant>(Ops[0]);
621      } else {
622        // If we couldn't fold the expression, move to the next constant.  Note
623        // that this is impossible to happen in practice because we always
624        // constant fold constant ints to constant ints.
625        ++Idx;
626      }
627    }
628
629    // If we are left with a constant zero being added, strip it off.
630    if (cast<SCEVConstant>(Ops[0])->getValue()->isNullValue()) {
631      Ops.erase(Ops.begin());
632      --Idx;
633    }
634  }
635
636  if (Ops.size() == 1) return Ops[0];
637
638  // Okay, check to see if the same value occurs in the operand list twice.  If
639  // so, merge them together into an multiply expression.  Since we sorted the
640  // list, these values are required to be adjacent.
641  const Type *Ty = Ops[0]->getType();
642  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
643    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
644      // Found a match, merge the two values into a multiply, and add any
645      // remaining values to the result.
646      SCEVHandle Two = SCEVUnknown::getIntegerSCEV(2, Ty);
647      SCEVHandle Mul = SCEVMulExpr::get(Ops[i], Two);
648      if (Ops.size() == 2)
649        return Mul;
650      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
651      Ops.push_back(Mul);
652      return SCEVAddExpr::get(Ops);
653    }
654
655  // Okay, now we know the first non-constant operand.  If there are add
656  // operands they would be next.
657  if (Idx < Ops.size()) {
658    bool DeletedAdd = false;
659    while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
660      // If we have an add, expand the add operands onto the end of the operands
661      // list.
662      Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
663      Ops.erase(Ops.begin()+Idx);
664      DeletedAdd = true;
665    }
666
667    // If we deleted at least one add, we added operands to the end of the list,
668    // and they are not necessarily sorted.  Recurse to resort and resimplify
669    // any operands we just aquired.
670    if (DeletedAdd)
671      return get(Ops);
672  }
673
674  // Skip over the add expression until we get to a multiply.
675  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
676    ++Idx;
677
678  // If we are adding something to a multiply expression, make sure the
679  // something is not already an operand of the multiply.  If so, merge it into
680  // the multiply.
681  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
682    SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
683    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
684      SCEV *MulOpSCEV = Mul->getOperand(MulOp);
685      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
686        if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
687          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
688          SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
689          if (Mul->getNumOperands() != 2) {
690            // If the multiply has more than two operands, we must get the
691            // Y*Z term.
692            std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
693            MulOps.erase(MulOps.begin()+MulOp);
694            InnerMul = SCEVMulExpr::get(MulOps);
695          }
696          SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, Ty);
697          SCEVHandle AddOne = SCEVAddExpr::get(InnerMul, One);
698          SCEVHandle OuterMul = SCEVMulExpr::get(AddOne, Ops[AddOp]);
699          if (Ops.size() == 2) return OuterMul;
700          if (AddOp < Idx) {
701            Ops.erase(Ops.begin()+AddOp);
702            Ops.erase(Ops.begin()+Idx-1);
703          } else {
704            Ops.erase(Ops.begin()+Idx);
705            Ops.erase(Ops.begin()+AddOp-1);
706          }
707          Ops.push_back(OuterMul);
708          return SCEVAddExpr::get(Ops);
709        }
710
711      // Check this multiply against other multiplies being added together.
712      for (unsigned OtherMulIdx = Idx+1;
713           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
714           ++OtherMulIdx) {
715        SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
716        // If MulOp occurs in OtherMul, we can fold the two multiplies
717        // together.
718        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
719             OMulOp != e; ++OMulOp)
720          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
721            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
722            SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
723            if (Mul->getNumOperands() != 2) {
724              std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
725              MulOps.erase(MulOps.begin()+MulOp);
726              InnerMul1 = SCEVMulExpr::get(MulOps);
727            }
728            SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
729            if (OtherMul->getNumOperands() != 2) {
730              std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
731                                             OtherMul->op_end());
732              MulOps.erase(MulOps.begin()+OMulOp);
733              InnerMul2 = SCEVMulExpr::get(MulOps);
734            }
735            SCEVHandle InnerMulSum = SCEVAddExpr::get(InnerMul1,InnerMul2);
736            SCEVHandle OuterMul = SCEVMulExpr::get(MulOpSCEV, InnerMulSum);
737            if (Ops.size() == 2) return OuterMul;
738            Ops.erase(Ops.begin()+Idx);
739            Ops.erase(Ops.begin()+OtherMulIdx-1);
740            Ops.push_back(OuterMul);
741            return SCEVAddExpr::get(Ops);
742          }
743      }
744    }
745  }
746
747  // If there are any add recurrences in the operands list, see if any other
748  // added values are loop invariant.  If so, we can fold them into the
749  // recurrence.
750  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
751    ++Idx;
752
753  // Scan over all recurrences, trying to fold loop invariants into them.
754  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
755    // Scan all of the other operands to this add and add them to the vector if
756    // they are loop invariant w.r.t. the recurrence.
757    std::vector<SCEVHandle> LIOps;
758    SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
759    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
760      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
761        LIOps.push_back(Ops[i]);
762        Ops.erase(Ops.begin()+i);
763        --i; --e;
764      }
765
766    // If we found some loop invariants, fold them into the recurrence.
767    if (!LIOps.empty()) {
768      //  NLI + LI + { Start,+,Step}  -->  NLI + { LI+Start,+,Step }
769      LIOps.push_back(AddRec->getStart());
770
771      std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
772      AddRecOps[0] = SCEVAddExpr::get(LIOps);
773
774      SCEVHandle NewRec = SCEVAddRecExpr::get(AddRecOps, AddRec->getLoop());
775      // If all of the other operands were loop invariant, we are done.
776      if (Ops.size() == 1) return NewRec;
777
778      // Otherwise, add the folded AddRec by the non-liv parts.
779      for (unsigned i = 0;; ++i)
780        if (Ops[i] == AddRec) {
781          Ops[i] = NewRec;
782          break;
783        }
784      return SCEVAddExpr::get(Ops);
785    }
786
787    // Okay, if there weren't any loop invariants to be folded, check to see if
788    // there are multiple AddRec's with the same loop induction variable being
789    // added together.  If so, we can fold them.
790    for (unsigned OtherIdx = Idx+1;
791         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
792      if (OtherIdx != Idx) {
793        SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
794        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
795          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
796          std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
797          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
798            if (i >= NewOps.size()) {
799              NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
800                            OtherAddRec->op_end());
801              break;
802            }
803            NewOps[i] = SCEVAddExpr::get(NewOps[i], OtherAddRec->getOperand(i));
804          }
805          SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
806
807          if (Ops.size() == 2) return NewAddRec;
808
809          Ops.erase(Ops.begin()+Idx);
810          Ops.erase(Ops.begin()+OtherIdx-1);
811          Ops.push_back(NewAddRec);
812          return SCEVAddExpr::get(Ops);
813        }
814      }
815
816    // Otherwise couldn't fold anything into this recurrence.  Move onto the
817    // next one.
818  }
819
820  // Okay, it looks like we really DO need an add expr.  Check to see if we
821  // already have one, otherwise create a new one.
822  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
823  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
824                                                                 SCEVOps)];
825  if (Result == 0) Result = new SCEVAddExpr(Ops);
826  return Result;
827}
828
829
830SCEVHandle SCEVMulExpr::get(std::vector<SCEVHandle> &Ops) {
831  assert(!Ops.empty() && "Cannot get empty mul!");
832
833  // Sort by complexity, this groups all similar expression types together.
834  GroupByComplexity(Ops);
835
836  // If there are any constants, fold them together.
837  unsigned Idx = 0;
838  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
839
840    // C1*(C2+V) -> C1*C2 + C1*V
841    if (Ops.size() == 2)
842      if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
843        if (Add->getNumOperands() == 2 &&
844            isa<SCEVConstant>(Add->getOperand(0)))
845          return SCEVAddExpr::get(SCEVMulExpr::get(LHSC, Add->getOperand(0)),
846                                  SCEVMulExpr::get(LHSC, Add->getOperand(1)));
847
848
849    ++Idx;
850    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
851      // We found two constants, fold them together!
852      Constant *Fold = ConstantExpr::getMul(LHSC->getValue(), RHSC->getValue());
853      if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
854        Ops[0] = SCEVConstant::get(CI);
855        Ops.erase(Ops.begin()+1);  // Erase the folded element
856        if (Ops.size() == 1) return Ops[0];
857        LHSC = cast<SCEVConstant>(Ops[0]);
858      } else {
859        // If we couldn't fold the expression, move to the next constant.  Note
860        // that this is impossible to happen in practice because we always
861        // constant fold constant ints to constant ints.
862        ++Idx;
863      }
864    }
865
866    // If we are left with a constant one being multiplied, strip it off.
867    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
868      Ops.erase(Ops.begin());
869      --Idx;
870    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isNullValue()) {
871      // If we have a multiply of zero, it will always be zero.
872      return Ops[0];
873    }
874  }
875
876  // Skip over the add expression until we get to a multiply.
877  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
878    ++Idx;
879
880  if (Ops.size() == 1)
881    return Ops[0];
882
883  // If there are mul operands inline them all into this expression.
884  if (Idx < Ops.size()) {
885    bool DeletedMul = false;
886    while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
887      // If we have an mul, expand the mul operands onto the end of the operands
888      // list.
889      Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
890      Ops.erase(Ops.begin()+Idx);
891      DeletedMul = true;
892    }
893
894    // If we deleted at least one mul, we added operands to the end of the list,
895    // and they are not necessarily sorted.  Recurse to resort and resimplify
896    // any operands we just aquired.
897    if (DeletedMul)
898      return get(Ops);
899  }
900
901  // If there are any add recurrences in the operands list, see if any other
902  // added values are loop invariant.  If so, we can fold them into the
903  // recurrence.
904  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
905    ++Idx;
906
907  // Scan over all recurrences, trying to fold loop invariants into them.
908  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
909    // Scan all of the other operands to this mul and add them to the vector if
910    // they are loop invariant w.r.t. the recurrence.
911    std::vector<SCEVHandle> LIOps;
912    SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
913    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
914      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
915        LIOps.push_back(Ops[i]);
916        Ops.erase(Ops.begin()+i);
917        --i; --e;
918      }
919
920    // If we found some loop invariants, fold them into the recurrence.
921    if (!LIOps.empty()) {
922      //  NLI * LI * { Start,+,Step}  -->  NLI * { LI*Start,+,LI*Step }
923      std::vector<SCEVHandle> NewOps;
924      NewOps.reserve(AddRec->getNumOperands());
925      if (LIOps.size() == 1) {
926        SCEV *Scale = LIOps[0];
927        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
928          NewOps.push_back(SCEVMulExpr::get(Scale, AddRec->getOperand(i)));
929      } else {
930        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
931          std::vector<SCEVHandle> MulOps(LIOps);
932          MulOps.push_back(AddRec->getOperand(i));
933          NewOps.push_back(SCEVMulExpr::get(MulOps));
934        }
935      }
936
937      SCEVHandle NewRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
938
939      // If all of the other operands were loop invariant, we are done.
940      if (Ops.size() == 1) return NewRec;
941
942      // Otherwise, multiply the folded AddRec by the non-liv parts.
943      for (unsigned i = 0;; ++i)
944        if (Ops[i] == AddRec) {
945          Ops[i] = NewRec;
946          break;
947        }
948      return SCEVMulExpr::get(Ops);
949    }
950
951    // Okay, if there weren't any loop invariants to be folded, check to see if
952    // there are multiple AddRec's with the same loop induction variable being
953    // multiplied together.  If so, we can fold them.
954    for (unsigned OtherIdx = Idx+1;
955         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
956      if (OtherIdx != Idx) {
957        SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
958        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
959          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
960          SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
961          SCEVHandle NewStart = SCEVMulExpr::get(F->getStart(),
962                                                 G->getStart());
963          SCEVHandle B = F->getStepRecurrence();
964          SCEVHandle D = G->getStepRecurrence();
965          SCEVHandle NewStep = SCEVAddExpr::get(SCEVMulExpr::get(F, D),
966                                                SCEVMulExpr::get(G, B),
967                                                SCEVMulExpr::get(B, D));
968          SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewStart, NewStep,
969                                                     F->getLoop());
970          if (Ops.size() == 2) return NewAddRec;
971
972          Ops.erase(Ops.begin()+Idx);
973          Ops.erase(Ops.begin()+OtherIdx-1);
974          Ops.push_back(NewAddRec);
975          return SCEVMulExpr::get(Ops);
976        }
977      }
978
979    // Otherwise couldn't fold anything into this recurrence.  Move onto the
980    // next one.
981  }
982
983  // Okay, it looks like we really DO need an mul expr.  Check to see if we
984  // already have one, otherwise create a new one.
985  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
986  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
987                                                                 SCEVOps)];
988  if (Result == 0)
989    Result = new SCEVMulExpr(Ops);
990  return Result;
991}
992
993SCEVHandle SCEVSDivExpr::get(const SCEVHandle &LHS, const SCEVHandle &RHS) {
994  if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
995    if (RHSC->getValue()->equalsInt(1))
996      return LHS;                            // X sdiv 1 --> x
997    if (RHSC->getValue()->isAllOnesValue())
998      return SCEV::getNegativeSCEV(LHS);           // X sdiv -1  -->  -x
999
1000    if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1001      Constant *LHSCV = LHSC->getValue();
1002      Constant *RHSCV = RHSC->getValue();
1003      return SCEVUnknown::get(ConstantExpr::getSDiv(LHSCV, RHSCV));
1004    }
1005  }
1006
1007  // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
1008
1009  SCEVSDivExpr *&Result = (*SCEVSDivs)[std::make_pair(LHS, RHS)];
1010  if (Result == 0) Result = new SCEVSDivExpr(LHS, RHS);
1011  return Result;
1012}
1013
1014
1015/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1016/// specified loop.  Simplify the expression as much as possible.
1017SCEVHandle SCEVAddRecExpr::get(const SCEVHandle &Start,
1018                               const SCEVHandle &Step, const Loop *L) {
1019  std::vector<SCEVHandle> Operands;
1020  Operands.push_back(Start);
1021  if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1022    if (StepChrec->getLoop() == L) {
1023      Operands.insert(Operands.end(), StepChrec->op_begin(),
1024                      StepChrec->op_end());
1025      return get(Operands, L);
1026    }
1027
1028  Operands.push_back(Step);
1029  return get(Operands, L);
1030}
1031
1032/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1033/// specified loop.  Simplify the expression as much as possible.
1034SCEVHandle SCEVAddRecExpr::get(std::vector<SCEVHandle> &Operands,
1035                               const Loop *L) {
1036  if (Operands.size() == 1) return Operands[0];
1037
1038  if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Operands.back()))
1039    if (StepC->getValue()->isNullValue()) {
1040      Operands.pop_back();
1041      return get(Operands, L);             // { X,+,0 }  -->  X
1042    }
1043
1044  SCEVAddRecExpr *&Result =
1045    (*SCEVAddRecExprs)[std::make_pair(L, std::vector<SCEV*>(Operands.begin(),
1046                                                            Operands.end()))];
1047  if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1048  return Result;
1049}
1050
1051SCEVHandle SCEVUnknown::get(Value *V) {
1052  if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
1053    return SCEVConstant::get(CI);
1054  SCEVUnknown *&Result = (*SCEVUnknowns)[V];
1055  if (Result == 0) Result = new SCEVUnknown(V);
1056  return Result;
1057}
1058
1059
1060//===----------------------------------------------------------------------===//
1061//             ScalarEvolutionsImpl Definition and Implementation
1062//===----------------------------------------------------------------------===//
1063//
1064/// ScalarEvolutionsImpl - This class implements the main driver for the scalar
1065/// evolution code.
1066///
1067namespace {
1068  struct VISIBILITY_HIDDEN ScalarEvolutionsImpl {
1069    /// F - The function we are analyzing.
1070    ///
1071    Function &F;
1072
1073    /// LI - The loop information for the function we are currently analyzing.
1074    ///
1075    LoopInfo &LI;
1076
1077    /// UnknownValue - This SCEV is used to represent unknown trip counts and
1078    /// things.
1079    SCEVHandle UnknownValue;
1080
1081    /// Scalars - This is a cache of the scalars we have analyzed so far.
1082    ///
1083    std::map<Value*, SCEVHandle> Scalars;
1084
1085    /// IterationCounts - Cache the iteration count of the loops for this
1086    /// function as they are computed.
1087    std::map<const Loop*, SCEVHandle> IterationCounts;
1088
1089    /// ConstantEvolutionLoopExitValue - This map contains entries for all of
1090    /// the PHI instructions that we attempt to compute constant evolutions for.
1091    /// This allows us to avoid potentially expensive recomputation of these
1092    /// properties.  An instruction maps to null if we are unable to compute its
1093    /// exit value.
1094    std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
1095
1096  public:
1097    ScalarEvolutionsImpl(Function &f, LoopInfo &li)
1098      : F(f), LI(li), UnknownValue(new SCEVCouldNotCompute()) {}
1099
1100    /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1101    /// expression and create a new one.
1102    SCEVHandle getSCEV(Value *V);
1103
1104    /// hasSCEV - Return true if the SCEV for this value has already been
1105    /// computed.
1106    bool hasSCEV(Value *V) const {
1107      return Scalars.count(V);
1108    }
1109
1110    /// setSCEV - Insert the specified SCEV into the map of current SCEVs for
1111    /// the specified value.
1112    void setSCEV(Value *V, const SCEVHandle &H) {
1113      bool isNew = Scalars.insert(std::make_pair(V, H)).second;
1114      assert(isNew && "This entry already existed!");
1115    }
1116
1117
1118    /// getSCEVAtScope - Compute the value of the specified expression within
1119    /// the indicated loop (which may be null to indicate in no loop).  If the
1120    /// expression cannot be evaluated, return UnknownValue itself.
1121    SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L);
1122
1123
1124    /// hasLoopInvariantIterationCount - Return true if the specified loop has
1125    /// an analyzable loop-invariant iteration count.
1126    bool hasLoopInvariantIterationCount(const Loop *L);
1127
1128    /// getIterationCount - If the specified loop has a predictable iteration
1129    /// count, return it.  Note that it is not valid to call this method on a
1130    /// loop without a loop-invariant iteration count.
1131    SCEVHandle getIterationCount(const Loop *L);
1132
1133    /// deleteInstructionFromRecords - This method should be called by the
1134    /// client before it removes an instruction from the program, to make sure
1135    /// that no dangling references are left around.
1136    void deleteInstructionFromRecords(Instruction *I);
1137
1138  private:
1139    /// createSCEV - We know that there is no SCEV for the specified value.
1140    /// Analyze the expression.
1141    SCEVHandle createSCEV(Value *V);
1142
1143    /// createNodeForPHI - Provide the special handling we need to analyze PHI
1144    /// SCEVs.
1145    SCEVHandle createNodeForPHI(PHINode *PN);
1146
1147    /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value
1148    /// for the specified instruction and replaces any references to the
1149    /// symbolic value SymName with the specified value.  This is used during
1150    /// PHI resolution.
1151    void ReplaceSymbolicValueWithConcrete(Instruction *I,
1152                                          const SCEVHandle &SymName,
1153                                          const SCEVHandle &NewVal);
1154
1155    /// ComputeIterationCount - Compute the number of times the specified loop
1156    /// will iterate.
1157    SCEVHandle ComputeIterationCount(const Loop *L);
1158
1159    /// ComputeLoadConstantCompareIterationCount - Given an exit condition of
1160    /// 'setcc load X, cst', try to se if we can compute the trip count.
1161    SCEVHandle ComputeLoadConstantCompareIterationCount(LoadInst *LI,
1162                                                        Constant *RHS,
1163                                                        const Loop *L,
1164                                                        unsigned SetCCOpcode);
1165
1166    /// ComputeIterationCountExhaustively - If the trip is known to execute a
1167    /// constant number of times (the condition evolves only from constants),
1168    /// try to evaluate a few iterations of the loop until we get the exit
1169    /// condition gets a value of ExitWhen (true or false).  If we cannot
1170    /// evaluate the trip count of the loop, return UnknownValue.
1171    SCEVHandle ComputeIterationCountExhaustively(const Loop *L, Value *Cond,
1172                                                 bool ExitWhen);
1173
1174    /// HowFarToZero - Return the number of times a backedge comparing the
1175    /// specified value to zero will execute.  If not computable, return
1176    /// UnknownValue.
1177    SCEVHandle HowFarToZero(SCEV *V, const Loop *L);
1178
1179    /// HowFarToNonZero - Return the number of times a backedge checking the
1180    /// specified value for nonzero will execute.  If not computable, return
1181    /// UnknownValue.
1182    SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L);
1183
1184    /// HowManyLessThans - Return the number of times a backedge containing the
1185    /// specified less-than comparison will execute.  If not computable, return
1186    /// UnknownValue.
1187    SCEVHandle HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L);
1188
1189    /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1190    /// in the header of its containing loop, we know the loop executes a
1191    /// constant number of times, and the PHI node is just a recurrence
1192    /// involving constants, fold it.
1193    Constant *getConstantEvolutionLoopExitValue(PHINode *PN, uint64_t Its,
1194                                                const Loop *L);
1195  };
1196}
1197
1198//===----------------------------------------------------------------------===//
1199//            Basic SCEV Analysis and PHI Idiom Recognition Code
1200//
1201
1202/// deleteInstructionFromRecords - This method should be called by the
1203/// client before it removes an instruction from the program, to make sure
1204/// that no dangling references are left around.
1205void ScalarEvolutionsImpl::deleteInstructionFromRecords(Instruction *I) {
1206  Scalars.erase(I);
1207  if (PHINode *PN = dyn_cast<PHINode>(I))
1208    ConstantEvolutionLoopExitValue.erase(PN);
1209}
1210
1211
1212/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1213/// expression and create a new one.
1214SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) {
1215  assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!");
1216
1217  std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V);
1218  if (I != Scalars.end()) return I->second;
1219  SCEVHandle S = createSCEV(V);
1220  Scalars.insert(std::make_pair(V, S));
1221  return S;
1222}
1223
1224/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1225/// the specified instruction and replaces any references to the symbolic value
1226/// SymName with the specified value.  This is used during PHI resolution.
1227void ScalarEvolutionsImpl::
1228ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1229                                 const SCEVHandle &NewVal) {
1230  std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I);
1231  if (SI == Scalars.end()) return;
1232
1233  SCEVHandle NV =
1234    SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal);
1235  if (NV == SI->second) return;  // No change.
1236
1237  SI->second = NV;       // Update the scalars map!
1238
1239  // Any instruction values that use this instruction might also need to be
1240  // updated!
1241  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1242       UI != E; ++UI)
1243    ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1244}
1245
1246/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
1247/// a loop header, making it a potential recurrence, or it doesn't.
1248///
1249SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) {
1250  if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
1251    if (const Loop *L = LI.getLoopFor(PN->getParent()))
1252      if (L->getHeader() == PN->getParent()) {
1253        // If it lives in the loop header, it has two incoming values, one
1254        // from outside the loop, and one from inside.
1255        unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1256        unsigned BackEdge     = IncomingEdge^1;
1257
1258        // While we are analyzing this PHI node, handle its value symbolically.
1259        SCEVHandle SymbolicName = SCEVUnknown::get(PN);
1260        assert(Scalars.find(PN) == Scalars.end() &&
1261               "PHI node already processed?");
1262        Scalars.insert(std::make_pair(PN, SymbolicName));
1263
1264        // Using this symbolic name for the PHI, analyze the value coming around
1265        // the back-edge.
1266        SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1267
1268        // NOTE: If BEValue is loop invariant, we know that the PHI node just
1269        // has a special value for the first iteration of the loop.
1270
1271        // If the value coming around the backedge is an add with the symbolic
1272        // value we just inserted, then we found a simple induction variable!
1273        if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
1274          // If there is a single occurrence of the symbolic value, replace it
1275          // with a recurrence.
1276          unsigned FoundIndex = Add->getNumOperands();
1277          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1278            if (Add->getOperand(i) == SymbolicName)
1279              if (FoundIndex == e) {
1280                FoundIndex = i;
1281                break;
1282              }
1283
1284          if (FoundIndex != Add->getNumOperands()) {
1285            // Create an add with everything but the specified operand.
1286            std::vector<SCEVHandle> Ops;
1287            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1288              if (i != FoundIndex)
1289                Ops.push_back(Add->getOperand(i));
1290            SCEVHandle Accum = SCEVAddExpr::get(Ops);
1291
1292            // This is not a valid addrec if the step amount is varying each
1293            // loop iteration, but is not itself an addrec in this loop.
1294            if (Accum->isLoopInvariant(L) ||
1295                (isa<SCEVAddRecExpr>(Accum) &&
1296                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1297              SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1298              SCEVHandle PHISCEV  = SCEVAddRecExpr::get(StartVal, Accum, L);
1299
1300              // Okay, for the entire analysis of this edge we assumed the PHI
1301              // to be symbolic.  We now need to go back and update all of the
1302              // entries for the scalars that use the PHI (except for the PHI
1303              // itself) to use the new analyzed value instead of the "symbolic"
1304              // value.
1305              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1306              return PHISCEV;
1307            }
1308          }
1309        } else if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) {
1310          // Otherwise, this could be a loop like this:
1311          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
1312          // In this case, j = {1,+,1}  and BEValue is j.
1313          // Because the other in-value of i (0) fits the evolution of BEValue
1314          // i really is an addrec evolution.
1315          if (AddRec->getLoop() == L && AddRec->isAffine()) {
1316            SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1317
1318            // If StartVal = j.start - j.stride, we can use StartVal as the
1319            // initial step of the addrec evolution.
1320            if (StartVal == SCEV::getMinusSCEV(AddRec->getOperand(0),
1321                                               AddRec->getOperand(1))) {
1322              SCEVHandle PHISCEV =
1323                 SCEVAddRecExpr::get(StartVal, AddRec->getOperand(1), L);
1324
1325              // Okay, for the entire analysis of this edge we assumed the PHI
1326              // to be symbolic.  We now need to go back and update all of the
1327              // entries for the scalars that use the PHI (except for the PHI
1328              // itself) to use the new analyzed value instead of the "symbolic"
1329              // value.
1330              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1331              return PHISCEV;
1332            }
1333          }
1334        }
1335
1336        return SymbolicName;
1337      }
1338
1339  // If it's not a loop phi, we can't handle it yet.
1340  return SCEVUnknown::get(PN);
1341}
1342
1343/// GetConstantFactor - Determine the largest constant factor that S has.  For
1344/// example, turn {4,+,8} -> 4.    (S umod result) should always equal zero.
1345static uint64_t GetConstantFactor(SCEVHandle S) {
1346  if (SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
1347    if (uint64_t V = C->getValue()->getZExtValue())
1348      return V;
1349    else   // Zero is a multiple of everything.
1350      return 1ULL << (S->getType()->getPrimitiveSizeInBits()-1);
1351  }
1352
1353  if (SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
1354    return GetConstantFactor(T->getOperand()) &
1355           T->getType()->getIntegralTypeMask();
1356  if (SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S))
1357    return GetConstantFactor(E->getOperand());
1358
1359  if (SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
1360    // The result is the min of all operands.
1361    uint64_t Res = GetConstantFactor(A->getOperand(0));
1362    for (unsigned i = 1, e = A->getNumOperands(); i != e && Res > 1; ++i)
1363      Res = std::min(Res, GetConstantFactor(A->getOperand(i)));
1364    return Res;
1365  }
1366
1367  if (SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
1368    // The result is the product of all the operands.
1369    uint64_t Res = GetConstantFactor(M->getOperand(0));
1370    for (unsigned i = 1, e = M->getNumOperands(); i != e; ++i)
1371      Res *= GetConstantFactor(M->getOperand(i));
1372    return Res;
1373  }
1374
1375  if (SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
1376    // For now, we just handle linear expressions.
1377    if (A->getNumOperands() == 2) {
1378      // We want the GCD between the start and the stride value.
1379      uint64_t Start = GetConstantFactor(A->getOperand(0));
1380      if (Start == 1) return 1;
1381      uint64_t Stride = GetConstantFactor(A->getOperand(1));
1382      return GreatestCommonDivisor64(Start, Stride);
1383    }
1384  }
1385
1386  // SCEVSDivExpr, SCEVUnknown.
1387  return 1;
1388}
1389
1390/// createSCEV - We know that there is no SCEV for the specified value.
1391/// Analyze the expression.
1392///
1393SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) {
1394  if (Instruction *I = dyn_cast<Instruction>(V)) {
1395    switch (I->getOpcode()) {
1396    case Instruction::Add:
1397      return SCEVAddExpr::get(getSCEV(I->getOperand(0)),
1398                              getSCEV(I->getOperand(1)));
1399    case Instruction::Mul:
1400      return SCEVMulExpr::get(getSCEV(I->getOperand(0)),
1401                              getSCEV(I->getOperand(1)));
1402    case Instruction::SDiv:
1403      return SCEVSDivExpr::get(getSCEV(I->getOperand(0)),
1404                              getSCEV(I->getOperand(1)));
1405      break;
1406
1407    case Instruction::Sub:
1408      return SCEV::getMinusSCEV(getSCEV(I->getOperand(0)),
1409                                getSCEV(I->getOperand(1)));
1410    case Instruction::Or:
1411      // If the RHS of the Or is a constant, we may have something like:
1412      // X*4+1 which got turned into X*4|1.  Handle this as an add so loop
1413      // optimizations will transparently handle this case.
1414      if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
1415        SCEVHandle LHS = getSCEV(I->getOperand(0));
1416        uint64_t CommonFact = GetConstantFactor(LHS);
1417        assert(CommonFact && "Common factor should at least be 1!");
1418        if (CommonFact > CI->getZExtValue()) {
1419          // If the LHS is a multiple that is larger than the RHS, use +.
1420          return SCEVAddExpr::get(LHS,
1421                                  getSCEV(I->getOperand(1)));
1422        }
1423      }
1424      break;
1425
1426    case Instruction::Shl:
1427      // Turn shift left of a constant amount into a multiply.
1428      if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1429        Constant *X = ConstantInt::get(V->getType(), 1);
1430        X = ConstantExpr::getShl(X, SA);
1431        return SCEVMulExpr::get(getSCEV(I->getOperand(0)), getSCEV(X));
1432      }
1433      break;
1434
1435    case Instruction::Trunc:
1436      // We don't handle trunc to bool yet.
1437      if (I->getType()->isInteger())
1438        return SCEVTruncateExpr::get(getSCEV(I->getOperand(0)),
1439                                     I->getType()->getUnsignedVersion());
1440      break;
1441
1442    case Instruction::ZExt:
1443      // We don't handle zext from bool yet.
1444      if (I->getOperand(0)->getType()->isInteger())
1445        return SCEVZeroExtendExpr::get(getSCEV(I->getOperand(0)),
1446                                       I->getType()->getUnsignedVersion());
1447      break;
1448
1449    case Instruction::BitCast:
1450      // BitCasts are no-op casts so we just eliminate the cast.
1451      if (I->getType()->isInteger() && I->getOperand(0)->getType()->isInteger())
1452        return getSCEV(I->getOperand(0));
1453      break;
1454
1455    case Instruction::PHI:
1456      return createNodeForPHI(cast<PHINode>(I));
1457
1458    default: // We cannot analyze this expression.
1459      break;
1460    }
1461  }
1462
1463  return SCEVUnknown::get(V);
1464}
1465
1466
1467
1468//===----------------------------------------------------------------------===//
1469//                   Iteration Count Computation Code
1470//
1471
1472/// getIterationCount - If the specified loop has a predictable iteration
1473/// count, return it.  Note that it is not valid to call this method on a
1474/// loop without a loop-invariant iteration count.
1475SCEVHandle ScalarEvolutionsImpl::getIterationCount(const Loop *L) {
1476  std::map<const Loop*, SCEVHandle>::iterator I = IterationCounts.find(L);
1477  if (I == IterationCounts.end()) {
1478    SCEVHandle ItCount = ComputeIterationCount(L);
1479    I = IterationCounts.insert(std::make_pair(L, ItCount)).first;
1480    if (ItCount != UnknownValue) {
1481      assert(ItCount->isLoopInvariant(L) &&
1482             "Computed trip count isn't loop invariant for loop!");
1483      ++NumTripCountsComputed;
1484    } else if (isa<PHINode>(L->getHeader()->begin())) {
1485      // Only count loops that have phi nodes as not being computable.
1486      ++NumTripCountsNotComputed;
1487    }
1488  }
1489  return I->second;
1490}
1491
1492/// ComputeIterationCount - Compute the number of times the specified loop
1493/// will iterate.
1494SCEVHandle ScalarEvolutionsImpl::ComputeIterationCount(const Loop *L) {
1495  // If the loop has a non-one exit block count, we can't analyze it.
1496  std::vector<BasicBlock*> ExitBlocks;
1497  L->getExitBlocks(ExitBlocks);
1498  if (ExitBlocks.size() != 1) return UnknownValue;
1499
1500  // Okay, there is one exit block.  Try to find the condition that causes the
1501  // loop to be exited.
1502  BasicBlock *ExitBlock = ExitBlocks[0];
1503
1504  BasicBlock *ExitingBlock = 0;
1505  for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
1506       PI != E; ++PI)
1507    if (L->contains(*PI)) {
1508      if (ExitingBlock == 0)
1509        ExitingBlock = *PI;
1510      else
1511        return UnknownValue;   // More than one block exiting!
1512    }
1513  assert(ExitingBlock && "No exits from loop, something is broken!");
1514
1515  // Okay, we've computed the exiting block.  See what condition causes us to
1516  // exit.
1517  //
1518  // FIXME: we should be able to handle switch instructions (with a single exit)
1519  // FIXME: We should handle cast of int to bool as well
1520  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1521  if (ExitBr == 0) return UnknownValue;
1522  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
1523  SetCondInst *ExitCond = dyn_cast<SetCondInst>(ExitBr->getCondition());
1524  if (ExitCond == 0)  // Not a setcc
1525    return ComputeIterationCountExhaustively(L, ExitBr->getCondition(),
1526                                          ExitBr->getSuccessor(0) == ExitBlock);
1527
1528  // If the condition was exit on true, convert the condition to exit on false.
1529  Instruction::BinaryOps Cond;
1530  if (ExitBr->getSuccessor(1) == ExitBlock)
1531    Cond = ExitCond->getOpcode();
1532  else
1533    Cond = ExitCond->getInverseCondition();
1534
1535  // Handle common loops like: for (X = "string"; *X; ++X)
1536  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
1537    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
1538      SCEVHandle ItCnt =
1539        ComputeLoadConstantCompareIterationCount(LI, RHS, L, Cond);
1540      if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
1541    }
1542
1543  SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
1544  SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
1545
1546  // Try to evaluate any dependencies out of the loop.
1547  SCEVHandle Tmp = getSCEVAtScope(LHS, L);
1548  if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
1549  Tmp = getSCEVAtScope(RHS, L);
1550  if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
1551
1552  // At this point, we would like to compute how many iterations of the loop the
1553  // predicate will return true for these inputs.
1554  if (isa<SCEVConstant>(LHS) && !isa<SCEVConstant>(RHS)) {
1555    // If there is a constant, force it into the RHS.
1556    std::swap(LHS, RHS);
1557    Cond = SetCondInst::getSwappedCondition(Cond);
1558  }
1559
1560  // FIXME: think about handling pointer comparisons!  i.e.:
1561  // while (P != P+100) ++P;
1562
1563  // If we have a comparison of a chrec against a constant, try to use value
1564  // ranges to answer this query.
1565  if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
1566    if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
1567      if (AddRec->getLoop() == L) {
1568        // Form the comparison range using the constant of the correct type so
1569        // that the ConstantRange class knows to do a signed or unsigned
1570        // comparison.
1571        ConstantInt *CompVal = RHSC->getValue();
1572        const Type *RealTy = ExitCond->getOperand(0)->getType();
1573        CompVal = dyn_cast<ConstantInt>(
1574          ConstantExpr::getBitCast(CompVal, RealTy));
1575        if (CompVal) {
1576          // Form the constant range.
1577          ConstantRange CompRange(Cond, CompVal);
1578
1579          // Now that we have it, if it's signed, convert it to an unsigned
1580          // range.
1581          if (CompRange.getLower()->getType()->isSigned()) {
1582            const Type *NewTy = RHSC->getValue()->getType();
1583            Constant *NewL = ConstantExpr::getBitCast(CompRange.getLower(),
1584                                                      NewTy);
1585            Constant *NewU = ConstantExpr::getBitCast(CompRange.getUpper(),
1586                                                      NewTy);
1587            CompRange = ConstantRange(NewL, NewU);
1588          }
1589
1590          SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange);
1591          if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
1592        }
1593      }
1594
1595  switch (Cond) {
1596  case Instruction::SetNE:                     // while (X != Y)
1597    // Convert to: while (X-Y != 0)
1598    if (LHS->getType()->isInteger()) {
1599      SCEVHandle TC = HowFarToZero(SCEV::getMinusSCEV(LHS, RHS), L);
1600      if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1601    }
1602    break;
1603  case Instruction::SetEQ:
1604    // Convert to: while (X-Y == 0)           // while (X == Y)
1605    if (LHS->getType()->isInteger()) {
1606      SCEVHandle TC = HowFarToNonZero(SCEV::getMinusSCEV(LHS, RHS), L);
1607      if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1608    }
1609    break;
1610  case Instruction::SetLT:
1611    if (LHS->getType()->isInteger() &&
1612        ExitCond->getOperand(0)->getType()->isSigned()) {
1613      SCEVHandle TC = HowManyLessThans(LHS, RHS, L);
1614      if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1615    }
1616    break;
1617  case Instruction::SetGT:
1618    if (LHS->getType()->isInteger() &&
1619        ExitCond->getOperand(0)->getType()->isSigned()) {
1620      SCEVHandle TC = HowManyLessThans(RHS, LHS, L);
1621      if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1622    }
1623    break;
1624  default:
1625#if 0
1626    cerr << "ComputeIterationCount ";
1627    if (ExitCond->getOperand(0)->getType()->isUnsigned())
1628      cerr << "[unsigned] ";
1629    cerr << *LHS << "   "
1630         << Instruction::getOpcodeName(Cond) << "   " << *RHS << "\n";
1631#endif
1632    break;
1633  }
1634
1635  return ComputeIterationCountExhaustively(L, ExitCond,
1636                                         ExitBr->getSuccessor(0) == ExitBlock);
1637}
1638
1639static ConstantInt *
1640EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, Constant *C) {
1641  SCEVHandle InVal = SCEVConstant::get(cast<ConstantInt>(C));
1642  SCEVHandle Val = AddRec->evaluateAtIteration(InVal);
1643  assert(isa<SCEVConstant>(Val) &&
1644         "Evaluation of SCEV at constant didn't fold correctly?");
1645  return cast<SCEVConstant>(Val)->getValue();
1646}
1647
1648/// GetAddressedElementFromGlobal - Given a global variable with an initializer
1649/// and a GEP expression (missing the pointer index) indexing into it, return
1650/// the addressed element of the initializer or null if the index expression is
1651/// invalid.
1652static Constant *
1653GetAddressedElementFromGlobal(GlobalVariable *GV,
1654                              const std::vector<ConstantInt*> &Indices) {
1655  Constant *Init = GV->getInitializer();
1656  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1657    uint64_t Idx = Indices[i]->getZExtValue();
1658    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
1659      assert(Idx < CS->getNumOperands() && "Bad struct index!");
1660      Init = cast<Constant>(CS->getOperand(Idx));
1661    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
1662      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
1663      Init = cast<Constant>(CA->getOperand(Idx));
1664    } else if (isa<ConstantAggregateZero>(Init)) {
1665      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
1666        assert(Idx < STy->getNumElements() && "Bad struct index!");
1667        Init = Constant::getNullValue(STy->getElementType(Idx));
1668      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
1669        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
1670        Init = Constant::getNullValue(ATy->getElementType());
1671      } else {
1672        assert(0 && "Unknown constant aggregate type!");
1673      }
1674      return 0;
1675    } else {
1676      return 0; // Unknown initializer type
1677    }
1678  }
1679  return Init;
1680}
1681
1682/// ComputeLoadConstantCompareIterationCount - Given an exit condition of
1683/// 'setcc load X, cst', try to se if we can compute the trip count.
1684SCEVHandle ScalarEvolutionsImpl::
1685ComputeLoadConstantCompareIterationCount(LoadInst *LI, Constant *RHS,
1686                                         const Loop *L, unsigned SetCCOpcode) {
1687  if (LI->isVolatile()) return UnknownValue;
1688
1689  // Check to see if the loaded pointer is a getelementptr of a global.
1690  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
1691  if (!GEP) return UnknownValue;
1692
1693  // Make sure that it is really a constant global we are gepping, with an
1694  // initializer, and make sure the first IDX is really 0.
1695  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
1696  if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
1697      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
1698      !cast<Constant>(GEP->getOperand(1))->isNullValue())
1699    return UnknownValue;
1700
1701  // Okay, we allow one non-constant index into the GEP instruction.
1702  Value *VarIdx = 0;
1703  std::vector<ConstantInt*> Indexes;
1704  unsigned VarIdxNum = 0;
1705  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
1706    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
1707      Indexes.push_back(CI);
1708    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
1709      if (VarIdx) return UnknownValue;  // Multiple non-constant idx's.
1710      VarIdx = GEP->getOperand(i);
1711      VarIdxNum = i-2;
1712      Indexes.push_back(0);
1713    }
1714
1715  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
1716  // Check to see if X is a loop variant variable value now.
1717  SCEVHandle Idx = getSCEV(VarIdx);
1718  SCEVHandle Tmp = getSCEVAtScope(Idx, L);
1719  if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
1720
1721  // We can only recognize very limited forms of loop index expressions, in
1722  // particular, only affine AddRec's like {C1,+,C2}.
1723  SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
1724  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
1725      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
1726      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
1727    return UnknownValue;
1728
1729  unsigned MaxSteps = MaxBruteForceIterations;
1730  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
1731    ConstantInt *ItCst =
1732      ConstantInt::get(IdxExpr->getType()->getUnsignedVersion(), IterationNum);
1733    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst);
1734
1735    // Form the GEP offset.
1736    Indexes[VarIdxNum] = Val;
1737
1738    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
1739    if (Result == 0) break;  // Cannot compute!
1740
1741    // Evaluate the condition for this iteration.
1742    Result = ConstantExpr::get(SetCCOpcode, Result, RHS);
1743    if (!isa<ConstantBool>(Result)) break;  // Couldn't decide for sure
1744    if (cast<ConstantBool>(Result)->getValue() == false) {
1745#if 0
1746      cerr << "\n***\n*** Computed loop count " << *ItCst
1747           << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
1748           << "***\n";
1749#endif
1750      ++NumArrayLenItCounts;
1751      return SCEVConstant::get(ItCst);   // Found terminating iteration!
1752    }
1753  }
1754  return UnknownValue;
1755}
1756
1757
1758/// CanConstantFold - Return true if we can constant fold an instruction of the
1759/// specified type, assuming that all operands were constants.
1760static bool CanConstantFold(const Instruction *I) {
1761  if (isa<BinaryOperator>(I) || isa<ShiftInst>(I) ||
1762      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
1763    return true;
1764
1765  if (const CallInst *CI = dyn_cast<CallInst>(I))
1766    if (const Function *F = CI->getCalledFunction())
1767      return canConstantFoldCallTo((Function*)F);  // FIXME: elim cast
1768  return false;
1769}
1770
1771/// ConstantFold - Constant fold an instruction of the specified type with the
1772/// specified constant operands.  This function may modify the operands vector.
1773static Constant *ConstantFold(const Instruction *I,
1774                              std::vector<Constant*> &Operands) {
1775  if (isa<BinaryOperator>(I) || isa<ShiftInst>(I))
1776    return ConstantExpr::get(I->getOpcode(), Operands[0], Operands[1]);
1777
1778  if (isa<CastInst>(I))
1779    return ConstantExpr::getCast(I->getOpcode(), Operands[0], I->getType());
1780
1781  switch (I->getOpcode()) {
1782  case Instruction::Select:
1783    return ConstantExpr::getSelect(Operands[0], Operands[1], Operands[2]);
1784  case Instruction::Call:
1785    if (Function *GV = dyn_cast<Function>(Operands[0])) {
1786      Operands.erase(Operands.begin());
1787      return ConstantFoldCall(cast<Function>(GV), Operands);
1788    }
1789    return 0;
1790  case Instruction::GetElementPtr:
1791    Constant *Base = Operands[0];
1792    Operands.erase(Operands.begin());
1793    return ConstantExpr::getGetElementPtr(Base, Operands);
1794  }
1795  return 0;
1796}
1797
1798
1799/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
1800/// in the loop that V is derived from.  We allow arbitrary operations along the
1801/// way, but the operands of an operation must either be constants or a value
1802/// derived from a constant PHI.  If this expression does not fit with these
1803/// constraints, return null.
1804static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
1805  // If this is not an instruction, or if this is an instruction outside of the
1806  // loop, it can't be derived from a loop PHI.
1807  Instruction *I = dyn_cast<Instruction>(V);
1808  if (I == 0 || !L->contains(I->getParent())) return 0;
1809
1810  if (PHINode *PN = dyn_cast<PHINode>(I))
1811    if (L->getHeader() == I->getParent())
1812      return PN;
1813    else
1814      // We don't currently keep track of the control flow needed to evaluate
1815      // PHIs, so we cannot handle PHIs inside of loops.
1816      return 0;
1817
1818  // If we won't be able to constant fold this expression even if the operands
1819  // are constants, return early.
1820  if (!CanConstantFold(I)) return 0;
1821
1822  // Otherwise, we can evaluate this instruction if all of its operands are
1823  // constant or derived from a PHI node themselves.
1824  PHINode *PHI = 0;
1825  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
1826    if (!(isa<Constant>(I->getOperand(Op)) ||
1827          isa<GlobalValue>(I->getOperand(Op)))) {
1828      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
1829      if (P == 0) return 0;  // Not evolving from PHI
1830      if (PHI == 0)
1831        PHI = P;
1832      else if (PHI != P)
1833        return 0;  // Evolving from multiple different PHIs.
1834    }
1835
1836  // This is a expression evolving from a constant PHI!
1837  return PHI;
1838}
1839
1840/// EvaluateExpression - Given an expression that passes the
1841/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
1842/// in the loop has the value PHIVal.  If we can't fold this expression for some
1843/// reason, return null.
1844static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
1845  if (isa<PHINode>(V)) return PHIVal;
1846  if (GlobalValue *GV = dyn_cast<GlobalValue>(V))
1847    return GV;
1848  if (Constant *C = dyn_cast<Constant>(V)) return C;
1849  Instruction *I = cast<Instruction>(V);
1850
1851  std::vector<Constant*> Operands;
1852  Operands.resize(I->getNumOperands());
1853
1854  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
1855    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
1856    if (Operands[i] == 0) return 0;
1857  }
1858
1859  return ConstantFold(I, Operands);
1860}
1861
1862/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1863/// in the header of its containing loop, we know the loop executes a
1864/// constant number of times, and the PHI node is just a recurrence
1865/// involving constants, fold it.
1866Constant *ScalarEvolutionsImpl::
1867getConstantEvolutionLoopExitValue(PHINode *PN, uint64_t Its, const Loop *L) {
1868  std::map<PHINode*, Constant*>::iterator I =
1869    ConstantEvolutionLoopExitValue.find(PN);
1870  if (I != ConstantEvolutionLoopExitValue.end())
1871    return I->second;
1872
1873  if (Its > MaxBruteForceIterations)
1874    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
1875
1876  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
1877
1878  // Since the loop is canonicalized, the PHI node must have two entries.  One
1879  // entry must be a constant (coming in from outside of the loop), and the
1880  // second must be derived from the same PHI.
1881  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
1882  Constant *StartCST =
1883    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
1884  if (StartCST == 0)
1885    return RetVal = 0;  // Must be a constant.
1886
1887  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
1888  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
1889  if (PN2 != PN)
1890    return RetVal = 0;  // Not derived from same PHI.
1891
1892  // Execute the loop symbolically to determine the exit value.
1893  unsigned IterationNum = 0;
1894  unsigned NumIterations = Its;
1895  if (NumIterations != Its)
1896    return RetVal = 0;  // More than 2^32 iterations??
1897
1898  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
1899    if (IterationNum == NumIterations)
1900      return RetVal = PHIVal;  // Got exit value!
1901
1902    // Compute the value of the PHI node for the next iteration.
1903    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
1904    if (NextPHI == PHIVal)
1905      return RetVal = NextPHI;  // Stopped evolving!
1906    if (NextPHI == 0)
1907      return 0;        // Couldn't evaluate!
1908    PHIVal = NextPHI;
1909  }
1910}
1911
1912/// ComputeIterationCountExhaustively - If the trip is known to execute a
1913/// constant number of times (the condition evolves only from constants),
1914/// try to evaluate a few iterations of the loop until we get the exit
1915/// condition gets a value of ExitWhen (true or false).  If we cannot
1916/// evaluate the trip count of the loop, return UnknownValue.
1917SCEVHandle ScalarEvolutionsImpl::
1918ComputeIterationCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
1919  PHINode *PN = getConstantEvolvingPHI(Cond, L);
1920  if (PN == 0) return UnknownValue;
1921
1922  // Since the loop is canonicalized, the PHI node must have two entries.  One
1923  // entry must be a constant (coming in from outside of the loop), and the
1924  // second must be derived from the same PHI.
1925  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
1926  Constant *StartCST =
1927    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
1928  if (StartCST == 0) return UnknownValue;  // Must be a constant.
1929
1930  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
1931  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
1932  if (PN2 != PN) return UnknownValue;  // Not derived from same PHI.
1933
1934  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
1935  // the loop symbolically to determine when the condition gets a value of
1936  // "ExitWhen".
1937  unsigned IterationNum = 0;
1938  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
1939  for (Constant *PHIVal = StartCST;
1940       IterationNum != MaxIterations; ++IterationNum) {
1941    ConstantBool *CondVal =
1942      dyn_cast_or_null<ConstantBool>(EvaluateExpression(Cond, PHIVal));
1943    if (!CondVal) return UnknownValue;     // Couldn't symbolically evaluate.
1944
1945    if (CondVal->getValue() == ExitWhen) {
1946      ConstantEvolutionLoopExitValue[PN] = PHIVal;
1947      ++NumBruteForceTripCountsComputed;
1948      return SCEVConstant::get(ConstantInt::get(Type::UIntTy, IterationNum));
1949    }
1950
1951    // Compute the value of the PHI node for the next iteration.
1952    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
1953    if (NextPHI == 0 || NextPHI == PHIVal)
1954      return UnknownValue;  // Couldn't evaluate or not making progress...
1955    PHIVal = NextPHI;
1956  }
1957
1958  // Too many iterations were needed to evaluate.
1959  return UnknownValue;
1960}
1961
1962/// getSCEVAtScope - Compute the value of the specified expression within the
1963/// indicated loop (which may be null to indicate in no loop).  If the
1964/// expression cannot be evaluated, return UnknownValue.
1965SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) {
1966  // FIXME: this should be turned into a virtual method on SCEV!
1967
1968  if (isa<SCEVConstant>(V)) return V;
1969
1970  // If this instruction is evolves from a constant-evolving PHI, compute the
1971  // exit value from the loop without using SCEVs.
1972  if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
1973    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
1974      const Loop *LI = this->LI[I->getParent()];
1975      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
1976        if (PHINode *PN = dyn_cast<PHINode>(I))
1977          if (PN->getParent() == LI->getHeader()) {
1978            // Okay, there is no closed form solution for the PHI node.  Check
1979            // to see if the loop that contains it has a known iteration count.
1980            // If so, we may be able to force computation of the exit value.
1981            SCEVHandle IterationCount = getIterationCount(LI);
1982            if (SCEVConstant *ICC = dyn_cast<SCEVConstant>(IterationCount)) {
1983              // Okay, we know how many times the containing loop executes.  If
1984              // this is a constant evolving PHI node, get the final value at
1985              // the specified iteration number.
1986              Constant *RV = getConstantEvolutionLoopExitValue(PN,
1987                                               ICC->getValue()->getZExtValue(),
1988                                                               LI);
1989              if (RV) return SCEVUnknown::get(RV);
1990            }
1991          }
1992
1993      // Okay, this is an expression that we cannot symbolically evaluate
1994      // into a SCEV.  Check to see if it's possible to symbolically evaluate
1995      // the arguments into constants, and if so, try to constant propagate the
1996      // result.  This is particularly useful for computing loop exit values.
1997      if (CanConstantFold(I)) {
1998        std::vector<Constant*> Operands;
1999        Operands.reserve(I->getNumOperands());
2000        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2001          Value *Op = I->getOperand(i);
2002          if (Constant *C = dyn_cast<Constant>(Op)) {
2003            Operands.push_back(C);
2004          } else {
2005            SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
2006            if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
2007              Operands.push_back(ConstantExpr::getIntegerCast(SC->getValue(),
2008                                                              Op->getType(),
2009                                                              false));
2010            else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
2011              if (Constant *C = dyn_cast<Constant>(SU->getValue()))
2012                Operands.push_back(ConstantExpr::getIntegerCast(C,
2013                                                                Op->getType(),
2014                                                                false));
2015              else
2016                return V;
2017            } else {
2018              return V;
2019            }
2020          }
2021        }
2022        return SCEVUnknown::get(ConstantFold(I, Operands));
2023      }
2024    }
2025
2026    // This is some other type of SCEVUnknown, just return it.
2027    return V;
2028  }
2029
2030  if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
2031    // Avoid performing the look-up in the common case where the specified
2032    // expression has no loop-variant portions.
2033    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
2034      SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2035      if (OpAtScope != Comm->getOperand(i)) {
2036        if (OpAtScope == UnknownValue) return UnknownValue;
2037        // Okay, at least one of these operands is loop variant but might be
2038        // foldable.  Build a new instance of the folded commutative expression.
2039        std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
2040        NewOps.push_back(OpAtScope);
2041
2042        for (++i; i != e; ++i) {
2043          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2044          if (OpAtScope == UnknownValue) return UnknownValue;
2045          NewOps.push_back(OpAtScope);
2046        }
2047        if (isa<SCEVAddExpr>(Comm))
2048          return SCEVAddExpr::get(NewOps);
2049        assert(isa<SCEVMulExpr>(Comm) && "Only know about add and mul!");
2050        return SCEVMulExpr::get(NewOps);
2051      }
2052    }
2053    // If we got here, all operands are loop invariant.
2054    return Comm;
2055  }
2056
2057  if (SCEVSDivExpr *Div = dyn_cast<SCEVSDivExpr>(V)) {
2058    SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
2059    if (LHS == UnknownValue) return LHS;
2060    SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
2061    if (RHS == UnknownValue) return RHS;
2062    if (LHS == Div->getLHS() && RHS == Div->getRHS())
2063      return Div;   // must be loop invariant
2064    return SCEVSDivExpr::get(LHS, RHS);
2065  }
2066
2067  // If this is a loop recurrence for a loop that does not contain L, then we
2068  // are dealing with the final value computed by the loop.
2069  if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
2070    if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
2071      // To evaluate this recurrence, we need to know how many times the AddRec
2072      // loop iterates.  Compute this now.
2073      SCEVHandle IterationCount = getIterationCount(AddRec->getLoop());
2074      if (IterationCount == UnknownValue) return UnknownValue;
2075      IterationCount = getTruncateOrZeroExtend(IterationCount,
2076                                               AddRec->getType());
2077
2078      // If the value is affine, simplify the expression evaluation to just
2079      // Start + Step*IterationCount.
2080      if (AddRec->isAffine())
2081        return SCEVAddExpr::get(AddRec->getStart(),
2082                                SCEVMulExpr::get(IterationCount,
2083                                                 AddRec->getOperand(1)));
2084
2085      // Otherwise, evaluate it the hard way.
2086      return AddRec->evaluateAtIteration(IterationCount);
2087    }
2088    return UnknownValue;
2089  }
2090
2091  //assert(0 && "Unknown SCEV type!");
2092  return UnknownValue;
2093}
2094
2095
2096/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
2097/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
2098/// might be the same) or two SCEVCouldNotCompute objects.
2099///
2100static std::pair<SCEVHandle,SCEVHandle>
2101SolveQuadraticEquation(const SCEVAddRecExpr *AddRec) {
2102  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
2103  SCEVConstant *L = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
2104  SCEVConstant *M = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
2105  SCEVConstant *N = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
2106
2107  // We currently can only solve this if the coefficients are constants.
2108  if (!L || !M || !N) {
2109    SCEV *CNC = new SCEVCouldNotCompute();
2110    return std::make_pair(CNC, CNC);
2111  }
2112
2113  Constant *C = L->getValue();
2114  Constant *Two = ConstantInt::get(C->getType(), 2);
2115
2116  // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
2117  // The B coefficient is M-N/2
2118  Constant *B = ConstantExpr::getSub(M->getValue(),
2119                                     ConstantExpr::getSDiv(N->getValue(),
2120                                                          Two));
2121  // The A coefficient is N/2
2122  Constant *A = ConstantExpr::getSDiv(N->getValue(), Two);
2123
2124  // Compute the B^2-4ac term.
2125  Constant *SqrtTerm =
2126    ConstantExpr::getMul(ConstantInt::get(C->getType(), 4),
2127                         ConstantExpr::getMul(A, C));
2128  SqrtTerm = ConstantExpr::getSub(ConstantExpr::getMul(B, B), SqrtTerm);
2129
2130  // Compute floor(sqrt(B^2-4ac))
2131  ConstantInt *SqrtVal =
2132    cast<ConstantInt>(ConstantExpr::getBitCast(SqrtTerm,
2133                                   SqrtTerm->getType()->getUnsignedVersion()));
2134  uint64_t SqrtValV = SqrtVal->getZExtValue();
2135  uint64_t SqrtValV2 = (uint64_t)sqrt((double)SqrtValV);
2136  // The square root might not be precise for arbitrary 64-bit integer
2137  // values.  Do some sanity checks to ensure it's correct.
2138  if (SqrtValV2*SqrtValV2 > SqrtValV ||
2139      (SqrtValV2+1)*(SqrtValV2+1) <= SqrtValV) {
2140    SCEV *CNC = new SCEVCouldNotCompute();
2141    return std::make_pair(CNC, CNC);
2142  }
2143
2144  SqrtVal = ConstantInt::get(Type::ULongTy, SqrtValV2);
2145  SqrtTerm = ConstantExpr::getTruncOrBitCast(SqrtVal, SqrtTerm->getType());
2146
2147  Constant *NegB = ConstantExpr::getNeg(B);
2148  Constant *TwoA = ConstantExpr::getMul(A, Two);
2149
2150  // The divisions must be performed as signed divisions.
2151  const Type *SignedTy = NegB->getType()->getSignedVersion();
2152  NegB = ConstantExpr::getBitCast(NegB, SignedTy);
2153  TwoA = ConstantExpr::getBitCast(TwoA, SignedTy);
2154  SqrtTerm = ConstantExpr::getBitCast(SqrtTerm, SignedTy);
2155
2156  Constant *Solution1 =
2157    ConstantExpr::getSDiv(ConstantExpr::getAdd(NegB, SqrtTerm), TwoA);
2158  Constant *Solution2 =
2159    ConstantExpr::getSDiv(ConstantExpr::getSub(NegB, SqrtTerm), TwoA);
2160  return std::make_pair(SCEVUnknown::get(Solution1),
2161                        SCEVUnknown::get(Solution2));
2162}
2163
2164/// HowFarToZero - Return the number of times a backedge comparing the specified
2165/// value to zero will execute.  If not computable, return UnknownValue
2166SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) {
2167  // If the value is a constant
2168  if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2169    // If the value is already zero, the branch will execute zero times.
2170    if (C->getValue()->isNullValue()) return C;
2171    return UnknownValue;  // Otherwise it will loop infinitely.
2172  }
2173
2174  SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
2175  if (!AddRec || AddRec->getLoop() != L)
2176    return UnknownValue;
2177
2178  if (AddRec->isAffine()) {
2179    // If this is an affine expression the execution count of this branch is
2180    // equal to:
2181    //
2182    //     (0 - Start/Step)    iff   Start % Step == 0
2183    //
2184    // Get the initial value for the loop.
2185    SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
2186    if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
2187    SCEVHandle Step = AddRec->getOperand(1);
2188
2189    Step = getSCEVAtScope(Step, L->getParentLoop());
2190
2191    // Figure out if Start % Step == 0.
2192    // FIXME: We should add DivExpr and RemExpr operations to our AST.
2193    if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
2194      if (StepC->getValue()->equalsInt(1))      // N % 1 == 0
2195        return SCEV::getNegativeSCEV(Start);  // 0 - Start/1 == -Start
2196      if (StepC->getValue()->isAllOnesValue())  // N % -1 == 0
2197        return Start;                   // 0 - Start/-1 == Start
2198
2199      // Check to see if Start is divisible by SC with no remainder.
2200      if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
2201        ConstantInt *StartCC = StartC->getValue();
2202        Constant *StartNegC = ConstantExpr::getNeg(StartCC);
2203        Constant *Rem = ConstantExpr::getSRem(StartNegC, StepC->getValue());
2204        if (Rem->isNullValue()) {
2205          Constant *Result =ConstantExpr::getSDiv(StartNegC,StepC->getValue());
2206          return SCEVUnknown::get(Result);
2207        }
2208      }
2209    }
2210  } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
2211    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
2212    // the quadratic equation to solve it.
2213    std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec);
2214    SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2215    SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2216    if (R1) {
2217#if 0
2218      cerr << "HFTZ: " << *V << " - sol#1: " << *R1
2219           << "  sol#2: " << *R2 << "\n";
2220#endif
2221      // Pick the smallest positive root value.
2222      assert(R1->getType()->isUnsigned()&&"Didn't canonicalize to unsigned?");
2223      if (ConstantBool *CB =
2224          dyn_cast<ConstantBool>(ConstantExpr::getSetLT(R1->getValue(),
2225                                                        R2->getValue()))) {
2226        if (CB->getValue() == false)
2227          std::swap(R1, R2);   // R1 is the minimum root now.
2228
2229        // We can only use this value if the chrec ends up with an exact zero
2230        // value at this index.  When solving for "X*X != 5", for example, we
2231        // should not accept a root of 2.
2232        SCEVHandle Val = AddRec->evaluateAtIteration(R1);
2233        if (SCEVConstant *EvalVal = dyn_cast<SCEVConstant>(Val))
2234          if (EvalVal->getValue()->isNullValue())
2235            return R1;  // We found a quadratic root!
2236      }
2237    }
2238  }
2239
2240  return UnknownValue;
2241}
2242
2243/// HowFarToNonZero - Return the number of times a backedge checking the
2244/// specified value for nonzero will execute.  If not computable, return
2245/// UnknownValue
2246SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) {
2247  // Loops that look like: while (X == 0) are very strange indeed.  We don't
2248  // handle them yet except for the trivial case.  This could be expanded in the
2249  // future as needed.
2250
2251  // If the value is a constant, check to see if it is known to be non-zero
2252  // already.  If so, the backedge will execute zero times.
2253  if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2254    Constant *Zero = Constant::getNullValue(C->getValue()->getType());
2255    Constant *NonZero = ConstantExpr::getSetNE(C->getValue(), Zero);
2256    if (NonZero == ConstantBool::getTrue())
2257      return getSCEV(Zero);
2258    return UnknownValue;  // Otherwise it will loop infinitely.
2259  }
2260
2261  // We could implement others, but I really doubt anyone writes loops like
2262  // this, and if they did, they would already be constant folded.
2263  return UnknownValue;
2264}
2265
2266/// HowManyLessThans - Return the number of times a backedge containing the
2267/// specified less-than comparison will execute.  If not computable, return
2268/// UnknownValue.
2269SCEVHandle ScalarEvolutionsImpl::
2270HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L) {
2271  // Only handle:  "ADDREC < LoopInvariant".
2272  if (!RHS->isLoopInvariant(L)) return UnknownValue;
2273
2274  SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
2275  if (!AddRec || AddRec->getLoop() != L)
2276    return UnknownValue;
2277
2278  if (AddRec->isAffine()) {
2279    // FORNOW: We only support unit strides.
2280    SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, RHS->getType());
2281    if (AddRec->getOperand(1) != One)
2282      return UnknownValue;
2283
2284    // The number of iterations for "[n,+,1] < m", is m-n.  However, we don't
2285    // know that m is >= n on input to the loop.  If it is, the condition return
2286    // true zero times.  What we really should return, for full generality, is
2287    // SMAX(0, m-n).  Since we cannot check this, we will instead check for a
2288    // canonical loop form: most do-loops will have a check that dominates the
2289    // loop, that only enters the loop if [n-1]<m.  If we can find this check,
2290    // we know that the SMAX will evaluate to m-n, because we know that m >= n.
2291
2292    // Search for the check.
2293    BasicBlock *Preheader = L->getLoopPreheader();
2294    BasicBlock *PreheaderDest = L->getHeader();
2295    if (Preheader == 0) return UnknownValue;
2296
2297    BranchInst *LoopEntryPredicate =
2298      dyn_cast<BranchInst>(Preheader->getTerminator());
2299    if (!LoopEntryPredicate) return UnknownValue;
2300
2301    // This might be a critical edge broken out.  If the loop preheader ends in
2302    // an unconditional branch to the loop, check to see if the preheader has a
2303    // single predecessor, and if so, look for its terminator.
2304    while (LoopEntryPredicate->isUnconditional()) {
2305      PreheaderDest = Preheader;
2306      Preheader = Preheader->getSinglePredecessor();
2307      if (!Preheader) return UnknownValue;  // Multiple preds.
2308
2309      LoopEntryPredicate =
2310        dyn_cast<BranchInst>(Preheader->getTerminator());
2311      if (!LoopEntryPredicate) return UnknownValue;
2312    }
2313
2314    // Now that we found a conditional branch that dominates the loop, check to
2315    // see if it is the comparison we are looking for.
2316    SetCondInst *SCI =dyn_cast<SetCondInst>(LoopEntryPredicate->getCondition());
2317    if (!SCI) return UnknownValue;
2318    Value *PreCondLHS = SCI->getOperand(0);
2319    Value *PreCondRHS = SCI->getOperand(1);
2320    Instruction::BinaryOps Cond;
2321    if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest)
2322      Cond = SCI->getOpcode();
2323    else
2324      Cond = SCI->getInverseCondition();
2325
2326    switch (Cond) {
2327    case Instruction::SetGT:
2328      std::swap(PreCondLHS, PreCondRHS);
2329      Cond = Instruction::SetLT;
2330      // Fall Through.
2331    case Instruction::SetLT:
2332      if (PreCondLHS->getType()->isInteger() &&
2333          PreCondLHS->getType()->isSigned()) {
2334        if (RHS != getSCEV(PreCondRHS))
2335          return UnknownValue;  // Not a comparison against 'm'.
2336
2337        if (SCEV::getMinusSCEV(AddRec->getOperand(0), One)
2338                    != getSCEV(PreCondLHS))
2339          return UnknownValue;  // Not a comparison against 'n-1'.
2340        break;
2341      } else {
2342        return UnknownValue;
2343      }
2344    default: break;
2345    }
2346
2347    //cerr << "Computed Loop Trip Count as: "
2348    //     << *SCEV::getMinusSCEV(RHS, AddRec->getOperand(0)) << "\n";
2349    return SCEV::getMinusSCEV(RHS, AddRec->getOperand(0));
2350  }
2351
2352  return UnknownValue;
2353}
2354
2355/// getNumIterationsInRange - Return the number of iterations of this loop that
2356/// produce values in the specified constant range.  Another way of looking at
2357/// this is that it returns the first iteration number where the value is not in
2358/// the condition, thus computing the exit count. If the iteration count can't
2359/// be computed, an instance of SCEVCouldNotCompute is returned.
2360SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range) const {
2361  if (Range.isFullSet())  // Infinite loop.
2362    return new SCEVCouldNotCompute();
2363
2364  // If the start is a non-zero constant, shift the range to simplify things.
2365  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
2366    if (!SC->getValue()->isNullValue()) {
2367      std::vector<SCEVHandle> Operands(op_begin(), op_end());
2368      Operands[0] = SCEVUnknown::getIntegerSCEV(0, SC->getType());
2369      SCEVHandle Shifted = SCEVAddRecExpr::get(Operands, getLoop());
2370      if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
2371        return ShiftedAddRec->getNumIterationsInRange(
2372                                              Range.subtract(SC->getValue()));
2373      // This is strange and shouldn't happen.
2374      return new SCEVCouldNotCompute();
2375    }
2376
2377  // The only time we can solve this is when we have all constant indices.
2378  // Otherwise, we cannot determine the overflow conditions.
2379  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2380    if (!isa<SCEVConstant>(getOperand(i)))
2381      return new SCEVCouldNotCompute();
2382
2383
2384  // Okay at this point we know that all elements of the chrec are constants and
2385  // that the start element is zero.
2386
2387  // First check to see if the range contains zero.  If not, the first
2388  // iteration exits.
2389  ConstantInt *Zero = ConstantInt::get(getType(), 0);
2390  if (!Range.contains(Zero)) return SCEVConstant::get(Zero);
2391
2392  if (isAffine()) {
2393    // If this is an affine expression then we have this situation:
2394    //   Solve {0,+,A} in Range  ===  Ax in Range
2395
2396    // Since we know that zero is in the range, we know that the upper value of
2397    // the range must be the first possible exit value.  Also note that we
2398    // already checked for a full range.
2399    ConstantInt *Upper = cast<ConstantInt>(Range.getUpper());
2400    ConstantInt *A     = cast<SCEVConstant>(getOperand(1))->getValue();
2401    ConstantInt *One   = ConstantInt::get(getType(), 1);
2402
2403    // The exit value should be (Upper+A-1)/A.
2404    Constant *ExitValue = Upper;
2405    if (A != One) {
2406      ExitValue = ConstantExpr::getSub(ConstantExpr::getAdd(Upper, A), One);
2407      ExitValue = ConstantExpr::getSDiv(ExitValue, A);
2408    }
2409    assert(isa<ConstantInt>(ExitValue) &&
2410           "Constant folding of integers not implemented?");
2411
2412    // Evaluate at the exit value.  If we really did fall out of the valid
2413    // range, then we computed our trip count, otherwise wrap around or other
2414    // things must have happened.
2415    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue);
2416    if (Range.contains(Val))
2417      return new SCEVCouldNotCompute();  // Something strange happened
2418
2419    // Ensure that the previous value is in the range.  This is a sanity check.
2420    assert(Range.contains(EvaluateConstantChrecAtConstant(this,
2421                              ConstantExpr::getSub(ExitValue, One))) &&
2422           "Linear scev computation is off in a bad way!");
2423    return SCEVConstant::get(cast<ConstantInt>(ExitValue));
2424  } else if (isQuadratic()) {
2425    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
2426    // quadratic equation to solve it.  To do this, we must frame our problem in
2427    // terms of figuring out when zero is crossed, instead of when
2428    // Range.getUpper() is crossed.
2429    std::vector<SCEVHandle> NewOps(op_begin(), op_end());
2430    NewOps[0] = SCEV::getNegativeSCEV(SCEVUnknown::get(Range.getUpper()));
2431    SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, getLoop());
2432
2433    // Next, solve the constructed addrec
2434    std::pair<SCEVHandle,SCEVHandle> Roots =
2435      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec));
2436    SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2437    SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2438    if (R1) {
2439      // Pick the smallest positive root value.
2440      assert(R1->getType()->isUnsigned() && "Didn't canonicalize to unsigned?");
2441      if (ConstantBool *CB =
2442          dyn_cast<ConstantBool>(ConstantExpr::getSetLT(R1->getValue(),
2443                                                        R2->getValue()))) {
2444        if (CB->getValue() == false)
2445          std::swap(R1, R2);   // R1 is the minimum root now.
2446
2447        // Make sure the root is not off by one.  The returned iteration should
2448        // not be in the range, but the previous one should be.  When solving
2449        // for "X*X < 5", for example, we should not return a root of 2.
2450        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
2451                                                             R1->getValue());
2452        if (Range.contains(R1Val)) {
2453          // The next iteration must be out of the range...
2454          Constant *NextVal =
2455            ConstantExpr::getAdd(R1->getValue(),
2456                                 ConstantInt::get(R1->getType(), 1));
2457
2458          R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
2459          if (!Range.contains(R1Val))
2460            return SCEVUnknown::get(NextVal);
2461          return new SCEVCouldNotCompute();  // Something strange happened
2462        }
2463
2464        // If R1 was not in the range, then it is a good return value.  Make
2465        // sure that R1-1 WAS in the range though, just in case.
2466        Constant *NextVal =
2467          ConstantExpr::getSub(R1->getValue(),
2468                               ConstantInt::get(R1->getType(), 1));
2469        R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
2470        if (Range.contains(R1Val))
2471          return R1;
2472        return new SCEVCouldNotCompute();  // Something strange happened
2473      }
2474    }
2475  }
2476
2477  // Fallback, if this is a general polynomial, figure out the progression
2478  // through brute force: evaluate until we find an iteration that fails the
2479  // test.  This is likely to be slow, but getting an accurate trip count is
2480  // incredibly important, we will be able to simplify the exit test a lot, and
2481  // we are almost guaranteed to get a trip count in this case.
2482  ConstantInt *TestVal = ConstantInt::get(getType(), 0);
2483  ConstantInt *One     = ConstantInt::get(getType(), 1);
2484  ConstantInt *EndVal  = TestVal;  // Stop when we wrap around.
2485  do {
2486    ++NumBruteForceEvaluations;
2487    SCEVHandle Val = evaluateAtIteration(SCEVConstant::get(TestVal));
2488    if (!isa<SCEVConstant>(Val))  // This shouldn't happen.
2489      return new SCEVCouldNotCompute();
2490
2491    // Check to see if we found the value!
2492    if (!Range.contains(cast<SCEVConstant>(Val)->getValue()))
2493      return SCEVConstant::get(TestVal);
2494
2495    // Increment to test the next index.
2496    TestVal = cast<ConstantInt>(ConstantExpr::getAdd(TestVal, One));
2497  } while (TestVal != EndVal);
2498
2499  return new SCEVCouldNotCompute();
2500}
2501
2502
2503
2504//===----------------------------------------------------------------------===//
2505//                   ScalarEvolution Class Implementation
2506//===----------------------------------------------------------------------===//
2507
2508bool ScalarEvolution::runOnFunction(Function &F) {
2509  Impl = new ScalarEvolutionsImpl(F, getAnalysis<LoopInfo>());
2510  return false;
2511}
2512
2513void ScalarEvolution::releaseMemory() {
2514  delete (ScalarEvolutionsImpl*)Impl;
2515  Impl = 0;
2516}
2517
2518void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
2519  AU.setPreservesAll();
2520  AU.addRequiredTransitive<LoopInfo>();
2521}
2522
2523SCEVHandle ScalarEvolution::getSCEV(Value *V) const {
2524  return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V);
2525}
2526
2527/// hasSCEV - Return true if the SCEV for this value has already been
2528/// computed.
2529bool ScalarEvolution::hasSCEV(Value *V) const {
2530  return ((ScalarEvolutionsImpl*)Impl)->hasSCEV(V);
2531}
2532
2533
2534/// setSCEV - Insert the specified SCEV into the map of current SCEVs for
2535/// the specified value.
2536void ScalarEvolution::setSCEV(Value *V, const SCEVHandle &H) {
2537  ((ScalarEvolutionsImpl*)Impl)->setSCEV(V, H);
2538}
2539
2540
2541SCEVHandle ScalarEvolution::getIterationCount(const Loop *L) const {
2542  return ((ScalarEvolutionsImpl*)Impl)->getIterationCount(L);
2543}
2544
2545bool ScalarEvolution::hasLoopInvariantIterationCount(const Loop *L) const {
2546  return !isa<SCEVCouldNotCompute>(getIterationCount(L));
2547}
2548
2549SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const {
2550  return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L);
2551}
2552
2553void ScalarEvolution::deleteInstructionFromRecords(Instruction *I) const {
2554  return ((ScalarEvolutionsImpl*)Impl)->deleteInstructionFromRecords(I);
2555}
2556
2557static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE,
2558                          const Loop *L) {
2559  // Print all inner loops first
2560  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
2561    PrintLoopInfo(OS, SE, *I);
2562
2563  cerr << "Loop " << L->getHeader()->getName() << ": ";
2564
2565  std::vector<BasicBlock*> ExitBlocks;
2566  L->getExitBlocks(ExitBlocks);
2567  if (ExitBlocks.size() != 1)
2568    cerr << "<multiple exits> ";
2569
2570  if (SE->hasLoopInvariantIterationCount(L)) {
2571    cerr << *SE->getIterationCount(L) << " iterations! ";
2572  } else {
2573    cerr << "Unpredictable iteration count. ";
2574  }
2575
2576  cerr << "\n";
2577}
2578
2579void ScalarEvolution::print(std::ostream &OS, const Module* ) const {
2580  Function &F = ((ScalarEvolutionsImpl*)Impl)->F;
2581  LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI;
2582
2583  OS << "Classifying expressions for: " << F.getName() << "\n";
2584  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
2585    if (I->getType()->isInteger()) {
2586      OS << *I;
2587      OS << "  --> ";
2588      SCEVHandle SV = getSCEV(&*I);
2589      SV->print(OS);
2590      OS << "\t\t";
2591
2592      if ((*I).getType()->isIntegral()) {
2593        ConstantRange Bounds = SV->getValueRange();
2594        if (!Bounds.isFullSet())
2595          OS << "Bounds: " << Bounds << " ";
2596      }
2597
2598      if (const Loop *L = LI.getLoopFor((*I).getParent())) {
2599        OS << "Exits: ";
2600        SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop());
2601        if (isa<SCEVCouldNotCompute>(ExitValue)) {
2602          OS << "<<Unknown>>";
2603        } else {
2604          OS << *ExitValue;
2605        }
2606      }
2607
2608
2609      OS << "\n";
2610    }
2611
2612  OS << "Determining loop execution counts for: " << F.getName() << "\n";
2613  for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
2614    PrintLoopInfo(OS, this, *I);
2615}
2616
2617