ScalarEvolution.cpp revision b7211a2ce13a0365e0e1dd2f27adda2ee3d1288b
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle.  These classes are reference counted, managed by the SCEVHandle
18// class.  We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression.  These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
36// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43//  Chains of recurrences -- a method to expedite the evaluation
44//  of closed-form functions
45//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47//  On computational properties of chains of recurrences
48//  Eugene V. Zima
49//
50//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51//  Robert A. van Engelen
52//
53//  Efficient Symbolic Analysis for Optimizing Compilers
54//  Robert A. van Engelen
55//
56//  Using the chains of recurrences algebra for data dependence testing and
57//  induction variable substitution
58//  MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
62#define DEBUG_TYPE "scalar-evolution"
63#include "llvm/Analysis/ScalarEvolutionExpressions.h"
64#include "llvm/Constants.h"
65#include "llvm/DerivedTypes.h"
66#include "llvm/GlobalVariable.h"
67#include "llvm/Instructions.h"
68#include "llvm/Analysis/ConstantFolding.h"
69#include "llvm/Analysis/LoopInfo.h"
70#include "llvm/Assembly/Writer.h"
71#include "llvm/Transforms/Scalar.h"
72#include "llvm/Support/CFG.h"
73#include "llvm/Support/CommandLine.h"
74#include "llvm/Support/Compiler.h"
75#include "llvm/Support/ConstantRange.h"
76#include "llvm/Support/InstIterator.h"
77#include "llvm/Support/ManagedStatic.h"
78#include "llvm/Support/MathExtras.h"
79#include "llvm/Support/Streams.h"
80#include "llvm/ADT/Statistic.h"
81#include <ostream>
82#include <algorithm>
83#include <cmath>
84using namespace llvm;
85
86STATISTIC(NumBruteForceEvaluations,
87          "Number of brute force evaluations needed to "
88          "calculate high-order polynomial exit values");
89STATISTIC(NumArrayLenItCounts,
90          "Number of trip counts computed with array length");
91STATISTIC(NumTripCountsComputed,
92          "Number of loops with predictable loop counts");
93STATISTIC(NumTripCountsNotComputed,
94          "Number of loops without predictable loop counts");
95STATISTIC(NumBruteForceTripCountsComputed,
96          "Number of loops with trip counts computed by force");
97
98cl::opt<unsigned>
99MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
100                        cl::desc("Maximum number of iterations SCEV will "
101                                 "symbolically execute a constant derived loop"),
102                        cl::init(100));
103
104namespace {
105  RegisterPass<ScalarEvolution>
106  R("scalar-evolution", "Scalar Evolution Analysis");
107}
108char ScalarEvolution::ID = 0;
109
110//===----------------------------------------------------------------------===//
111//                           SCEV class definitions
112//===----------------------------------------------------------------------===//
113
114//===----------------------------------------------------------------------===//
115// Implementation of the SCEV class.
116//
117SCEV::~SCEV() {}
118void SCEV::dump() const {
119  print(cerr);
120}
121
122/// getValueRange - Return the tightest constant bounds that this value is
123/// known to have.  This method is only valid on integer SCEV objects.
124ConstantRange SCEV::getValueRange() const {
125  const Type *Ty = getType();
126  assert(Ty->isInteger() && "Can't get range for a non-integer SCEV!");
127  // Default to a full range if no better information is available.
128  return ConstantRange(getBitWidth());
129}
130
131uint32_t SCEV::getBitWidth() const {
132  if (const IntegerType* ITy = dyn_cast<IntegerType>(getType()))
133    return ITy->getBitWidth();
134  return 0;
135}
136
137
138SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
139
140bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
141  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
142  return false;
143}
144
145const Type *SCEVCouldNotCompute::getType() const {
146  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
147  return 0;
148}
149
150bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
151  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
152  return false;
153}
154
155SCEVHandle SCEVCouldNotCompute::
156replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
157                                  const SCEVHandle &Conc) const {
158  return this;
159}
160
161void SCEVCouldNotCompute::print(std::ostream &OS) const {
162  OS << "***COULDNOTCOMPUTE***";
163}
164
165bool SCEVCouldNotCompute::classof(const SCEV *S) {
166  return S->getSCEVType() == scCouldNotCompute;
167}
168
169
170// SCEVConstants - Only allow the creation of one SCEVConstant for any
171// particular value.  Don't use a SCEVHandle here, or else the object will
172// never be deleted!
173static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
174
175
176SCEVConstant::~SCEVConstant() {
177  SCEVConstants->erase(V);
178}
179
180SCEVHandle SCEVConstant::get(ConstantInt *V) {
181  SCEVConstant *&R = (*SCEVConstants)[V];
182  if (R == 0) R = new SCEVConstant(V);
183  return R;
184}
185
186SCEVHandle SCEVConstant::get(const APInt& Val) {
187  return get(ConstantInt::get(Val));
188}
189
190ConstantRange SCEVConstant::getValueRange() const {
191  return ConstantRange(V->getValue());
192}
193
194const Type *SCEVConstant::getType() const { return V->getType(); }
195
196void SCEVConstant::print(std::ostream &OS) const {
197  WriteAsOperand(OS, V, false);
198}
199
200// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
201// particular input.  Don't use a SCEVHandle here, or else the object will
202// never be deleted!
203static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
204                     SCEVTruncateExpr*> > SCEVTruncates;
205
206SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
207  : SCEV(scTruncate), Op(op), Ty(ty) {
208  assert(Op->getType()->isInteger() && Ty->isInteger() &&
209         "Cannot truncate non-integer value!");
210  assert(Op->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()
211         && "This is not a truncating conversion!");
212}
213
214SCEVTruncateExpr::~SCEVTruncateExpr() {
215  SCEVTruncates->erase(std::make_pair(Op, Ty));
216}
217
218ConstantRange SCEVTruncateExpr::getValueRange() const {
219  return getOperand()->getValueRange().truncate(getBitWidth());
220}
221
222void SCEVTruncateExpr::print(std::ostream &OS) const {
223  OS << "(truncate " << *Op << " to " << *Ty << ")";
224}
225
226// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
227// particular input.  Don't use a SCEVHandle here, or else the object will never
228// be deleted!
229static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
230                     SCEVZeroExtendExpr*> > SCEVZeroExtends;
231
232SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
233  : SCEV(scZeroExtend), Op(op), Ty(ty) {
234  assert(Op->getType()->isInteger() && Ty->isInteger() &&
235         "Cannot zero extend non-integer value!");
236  assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()
237         && "This is not an extending conversion!");
238}
239
240SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
241  SCEVZeroExtends->erase(std::make_pair(Op, Ty));
242}
243
244ConstantRange SCEVZeroExtendExpr::getValueRange() const {
245  return getOperand()->getValueRange().zeroExtend(getBitWidth());
246}
247
248void SCEVZeroExtendExpr::print(std::ostream &OS) const {
249  OS << "(zeroextend " << *Op << " to " << *Ty << ")";
250}
251
252// SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any
253// particular input.  Don't use a SCEVHandle here, or else the object will never
254// be deleted!
255static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
256                     SCEVSignExtendExpr*> > SCEVSignExtends;
257
258SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty)
259  : SCEV(scSignExtend), Op(op), Ty(ty) {
260  assert(Op->getType()->isInteger() && Ty->isInteger() &&
261         "Cannot sign extend non-integer value!");
262  assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()
263         && "This is not an extending conversion!");
264}
265
266SCEVSignExtendExpr::~SCEVSignExtendExpr() {
267  SCEVSignExtends->erase(std::make_pair(Op, Ty));
268}
269
270ConstantRange SCEVSignExtendExpr::getValueRange() const {
271  return getOperand()->getValueRange().signExtend(getBitWidth());
272}
273
274void SCEVSignExtendExpr::print(std::ostream &OS) const {
275  OS << "(signextend " << *Op << " to " << *Ty << ")";
276}
277
278// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
279// particular input.  Don't use a SCEVHandle here, or else the object will never
280// be deleted!
281static ManagedStatic<std::map<std::pair<unsigned, std::vector<SCEV*> >,
282                     SCEVCommutativeExpr*> > SCEVCommExprs;
283
284SCEVCommutativeExpr::~SCEVCommutativeExpr() {
285  SCEVCommExprs->erase(std::make_pair(getSCEVType(),
286                                      std::vector<SCEV*>(Operands.begin(),
287                                                         Operands.end())));
288}
289
290void SCEVCommutativeExpr::print(std::ostream &OS) const {
291  assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
292  const char *OpStr = getOperationStr();
293  OS << "(" << *Operands[0];
294  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
295    OS << OpStr << *Operands[i];
296  OS << ")";
297}
298
299SCEVHandle SCEVCommutativeExpr::
300replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
301                                  const SCEVHandle &Conc) const {
302  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
303    SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc);
304    if (H != getOperand(i)) {
305      std::vector<SCEVHandle> NewOps;
306      NewOps.reserve(getNumOperands());
307      for (unsigned j = 0; j != i; ++j)
308        NewOps.push_back(getOperand(j));
309      NewOps.push_back(H);
310      for (++i; i != e; ++i)
311        NewOps.push_back(getOperand(i)->
312                         replaceSymbolicValuesWithConcrete(Sym, Conc));
313
314      if (isa<SCEVAddExpr>(this))
315        return SCEVAddExpr::get(NewOps);
316      else if (isa<SCEVMulExpr>(this))
317        return SCEVMulExpr::get(NewOps);
318      else
319        assert(0 && "Unknown commutative expr!");
320    }
321  }
322  return this;
323}
324
325
326// SCEVSDivs - Only allow the creation of one SCEVSDivExpr for any particular
327// input.  Don't use a SCEVHandle here, or else the object will never be
328// deleted!
329static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>,
330                     SCEVSDivExpr*> > SCEVSDivs;
331
332SCEVSDivExpr::~SCEVSDivExpr() {
333  SCEVSDivs->erase(std::make_pair(LHS, RHS));
334}
335
336void SCEVSDivExpr::print(std::ostream &OS) const {
337  OS << "(" << *LHS << " /s " << *RHS << ")";
338}
339
340const Type *SCEVSDivExpr::getType() const {
341  return LHS->getType();
342}
343
344// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
345// particular input.  Don't use a SCEVHandle here, or else the object will never
346// be deleted!
347static ManagedStatic<std::map<std::pair<const Loop *, std::vector<SCEV*> >,
348                     SCEVAddRecExpr*> > SCEVAddRecExprs;
349
350SCEVAddRecExpr::~SCEVAddRecExpr() {
351  SCEVAddRecExprs->erase(std::make_pair(L,
352                                        std::vector<SCEV*>(Operands.begin(),
353                                                           Operands.end())));
354}
355
356SCEVHandle SCEVAddRecExpr::
357replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
358                                  const SCEVHandle &Conc) const {
359  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
360    SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc);
361    if (H != getOperand(i)) {
362      std::vector<SCEVHandle> NewOps;
363      NewOps.reserve(getNumOperands());
364      for (unsigned j = 0; j != i; ++j)
365        NewOps.push_back(getOperand(j));
366      NewOps.push_back(H);
367      for (++i; i != e; ++i)
368        NewOps.push_back(getOperand(i)->
369                         replaceSymbolicValuesWithConcrete(Sym, Conc));
370
371      return get(NewOps, L);
372    }
373  }
374  return this;
375}
376
377
378bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
379  // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
380  // contain L and if the start is invariant.
381  return !QueryLoop->contains(L->getHeader()) &&
382         getOperand(0)->isLoopInvariant(QueryLoop);
383}
384
385
386void SCEVAddRecExpr::print(std::ostream &OS) const {
387  OS << "{" << *Operands[0];
388  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
389    OS << ",+," << *Operands[i];
390  OS << "}<" << L->getHeader()->getName() + ">";
391}
392
393// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
394// value.  Don't use a SCEVHandle here, or else the object will never be
395// deleted!
396static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
397
398SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
399
400bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
401  // All non-instruction values are loop invariant.  All instructions are loop
402  // invariant if they are not contained in the specified loop.
403  if (Instruction *I = dyn_cast<Instruction>(V))
404    return !L->contains(I->getParent());
405  return true;
406}
407
408const Type *SCEVUnknown::getType() const {
409  return V->getType();
410}
411
412void SCEVUnknown::print(std::ostream &OS) const {
413  WriteAsOperand(OS, V, false);
414}
415
416//===----------------------------------------------------------------------===//
417//                               SCEV Utilities
418//===----------------------------------------------------------------------===//
419
420namespace {
421  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
422  /// than the complexity of the RHS.  This comparator is used to canonicalize
423  /// expressions.
424  struct VISIBILITY_HIDDEN SCEVComplexityCompare {
425    bool operator()(SCEV *LHS, SCEV *RHS) {
426      return LHS->getSCEVType() < RHS->getSCEVType();
427    }
428  };
429}
430
431/// GroupByComplexity - Given a list of SCEV objects, order them by their
432/// complexity, and group objects of the same complexity together by value.
433/// When this routine is finished, we know that any duplicates in the vector are
434/// consecutive and that complexity is monotonically increasing.
435///
436/// Note that we go take special precautions to ensure that we get determinstic
437/// results from this routine.  In other words, we don't want the results of
438/// this to depend on where the addresses of various SCEV objects happened to
439/// land in memory.
440///
441static void GroupByComplexity(std::vector<SCEVHandle> &Ops) {
442  if (Ops.size() < 2) return;  // Noop
443  if (Ops.size() == 2) {
444    // This is the common case, which also happens to be trivially simple.
445    // Special case it.
446    if (Ops[0]->getSCEVType() > Ops[1]->getSCEVType())
447      std::swap(Ops[0], Ops[1]);
448    return;
449  }
450
451  // Do the rough sort by complexity.
452  std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());
453
454  // Now that we are sorted by complexity, group elements of the same
455  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
456  // be extremely short in practice.  Note that we take this approach because we
457  // do not want to depend on the addresses of the objects we are grouping.
458  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
459    SCEV *S = Ops[i];
460    unsigned Complexity = S->getSCEVType();
461
462    // If there are any objects of the same complexity and same value as this
463    // one, group them.
464    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
465      if (Ops[j] == S) { // Found a duplicate.
466        // Move it to immediately after i'th element.
467        std::swap(Ops[i+1], Ops[j]);
468        ++i;   // no need to rescan it.
469        if (i == e-2) return;  // Done!
470      }
471    }
472  }
473}
474
475
476
477//===----------------------------------------------------------------------===//
478//                      Simple SCEV method implementations
479//===----------------------------------------------------------------------===//
480
481/// getIntegerSCEV - Given an integer or FP type, create a constant for the
482/// specified signed integer value and return a SCEV for the constant.
483SCEVHandle SCEVUnknown::getIntegerSCEV(int Val, const Type *Ty) {
484  Constant *C;
485  if (Val == 0)
486    C = Constant::getNullValue(Ty);
487  else if (Ty->isFloatingPoint())
488    C = ConstantFP::get(Ty, Val);
489  else
490    C = ConstantInt::get(Ty, Val);
491  return SCEVUnknown::get(C);
492}
493
494/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
495/// input value to the specified type.  If the type must be extended, it is zero
496/// extended.
497static SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty) {
498  const Type *SrcTy = V->getType();
499  assert(SrcTy->isInteger() && Ty->isInteger() &&
500         "Cannot truncate or zero extend with non-integer arguments!");
501  if (SrcTy->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
502    return V;  // No conversion
503  if (SrcTy->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits())
504    return SCEVTruncateExpr::get(V, Ty);
505  return SCEVZeroExtendExpr::get(V, Ty);
506}
507
508/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
509///
510SCEVHandle SCEV::getNegativeSCEV(const SCEVHandle &V) {
511  if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
512    return SCEVUnknown::get(ConstantExpr::getNeg(VC->getValue()));
513
514  return SCEVMulExpr::get(V, SCEVUnknown::getIntegerSCEV(-1, V->getType()));
515}
516
517/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
518///
519SCEVHandle SCEV::getMinusSCEV(const SCEVHandle &LHS, const SCEVHandle &RHS) {
520  // X - Y --> X + -Y
521  return SCEVAddExpr::get(LHS, SCEV::getNegativeSCEV(RHS));
522}
523
524
525/// PartialFact - Compute V!/(V-NumSteps)!
526static SCEVHandle PartialFact(SCEVHandle V, unsigned NumSteps) {
527  // Handle this case efficiently, it is common to have constant iteration
528  // counts while computing loop exit values.
529  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
530    const APInt& Val = SC->getValue()->getValue();
531    APInt Result(Val.getBitWidth(), 1);
532    for (; NumSteps; --NumSteps)
533      Result *= Val-(NumSteps-1);
534    return SCEVConstant::get(Result);
535  }
536
537  const Type *Ty = V->getType();
538  if (NumSteps == 0)
539    return SCEVUnknown::getIntegerSCEV(1, Ty);
540
541  SCEVHandle Result = V;
542  for (unsigned i = 1; i != NumSteps; ++i)
543    Result = SCEVMulExpr::get(Result, SCEV::getMinusSCEV(V,
544                                          SCEVUnknown::getIntegerSCEV(i, Ty)));
545  return Result;
546}
547
548
549/// evaluateAtIteration - Return the value of this chain of recurrences at
550/// the specified iteration number.  We can evaluate this recurrence by
551/// multiplying each element in the chain by the binomial coefficient
552/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
553///
554///   A*choose(It, 0) + B*choose(It, 1) + C*choose(It, 2) + D*choose(It, 3)
555///
556/// FIXME/VERIFY: I don't trust that this is correct in the face of overflow.
557/// Is the binomial equation safe using modular arithmetic??
558///
559SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It) const {
560  SCEVHandle Result = getStart();
561  int Divisor = 1;
562  const Type *Ty = It->getType();
563  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
564    SCEVHandle BC = PartialFact(It, i);
565    Divisor *= i;
566    SCEVHandle Val = SCEVSDivExpr::get(SCEVMulExpr::get(BC, getOperand(i)),
567                                       SCEVUnknown::getIntegerSCEV(Divisor,Ty));
568    Result = SCEVAddExpr::get(Result, Val);
569  }
570  return Result;
571}
572
573
574//===----------------------------------------------------------------------===//
575//                    SCEV Expression folder implementations
576//===----------------------------------------------------------------------===//
577
578SCEVHandle SCEVTruncateExpr::get(const SCEVHandle &Op, const Type *Ty) {
579  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
580    return SCEVUnknown::get(
581        ConstantExpr::getTrunc(SC->getValue(), Ty));
582
583  // If the input value is a chrec scev made out of constants, truncate
584  // all of the constants.
585  if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
586    std::vector<SCEVHandle> Operands;
587    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
588      // FIXME: This should allow truncation of other expression types!
589      if (isa<SCEVConstant>(AddRec->getOperand(i)))
590        Operands.push_back(get(AddRec->getOperand(i), Ty));
591      else
592        break;
593    if (Operands.size() == AddRec->getNumOperands())
594      return SCEVAddRecExpr::get(Operands, AddRec->getLoop());
595  }
596
597  SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
598  if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
599  return Result;
600}
601
602SCEVHandle SCEVZeroExtendExpr::get(const SCEVHandle &Op, const Type *Ty) {
603  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
604    return SCEVUnknown::get(
605        ConstantExpr::getZExt(SC->getValue(), Ty));
606
607  // FIXME: If the input value is a chrec scev, and we can prove that the value
608  // did not overflow the old, smaller, value, we can zero extend all of the
609  // operands (often constants).  This would allow analysis of something like
610  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
611
612  SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
613  if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
614  return Result;
615}
616
617SCEVHandle SCEVSignExtendExpr::get(const SCEVHandle &Op, const Type *Ty) {
618  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
619    return SCEVUnknown::get(
620        ConstantExpr::getSExt(SC->getValue(), Ty));
621
622  // FIXME: If the input value is a chrec scev, and we can prove that the value
623  // did not overflow the old, smaller, value, we can sign extend all of the
624  // operands (often constants).  This would allow analysis of something like
625  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
626
627  SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)];
628  if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty);
629  return Result;
630}
631
632// get - Get a canonical add expression, or something simpler if possible.
633SCEVHandle SCEVAddExpr::get(std::vector<SCEVHandle> &Ops) {
634  assert(!Ops.empty() && "Cannot get empty add!");
635  if (Ops.size() == 1) return Ops[0];
636
637  // Sort by complexity, this groups all similar expression types together.
638  GroupByComplexity(Ops);
639
640  // If there are any constants, fold them together.
641  unsigned Idx = 0;
642  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
643    ++Idx;
644    assert(Idx < Ops.size());
645    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
646      // We found two constants, fold them together!
647      Constant *Fold = ConstantInt::get(LHSC->getValue()->getValue() +
648                                        RHSC->getValue()->getValue());
649      if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
650        Ops[0] = SCEVConstant::get(CI);
651        Ops.erase(Ops.begin()+1);  // Erase the folded element
652        if (Ops.size() == 1) return Ops[0];
653        LHSC = cast<SCEVConstant>(Ops[0]);
654      } else {
655        // If we couldn't fold the expression, move to the next constant.  Note
656        // that this is impossible to happen in practice because we always
657        // constant fold constant ints to constant ints.
658        ++Idx;
659      }
660    }
661
662    // If we are left with a constant zero being added, strip it off.
663    if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
664      Ops.erase(Ops.begin());
665      --Idx;
666    }
667  }
668
669  if (Ops.size() == 1) return Ops[0];
670
671  // Okay, check to see if the same value occurs in the operand list twice.  If
672  // so, merge them together into an multiply expression.  Since we sorted the
673  // list, these values are required to be adjacent.
674  const Type *Ty = Ops[0]->getType();
675  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
676    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
677      // Found a match, merge the two values into a multiply, and add any
678      // remaining values to the result.
679      SCEVHandle Two = SCEVUnknown::getIntegerSCEV(2, Ty);
680      SCEVHandle Mul = SCEVMulExpr::get(Ops[i], Two);
681      if (Ops.size() == 2)
682        return Mul;
683      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
684      Ops.push_back(Mul);
685      return SCEVAddExpr::get(Ops);
686    }
687
688  // Now we know the first non-constant operand.  Skip past any cast SCEVs.
689  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
690    ++Idx;
691
692  // If there are add operands they would be next.
693  if (Idx < Ops.size()) {
694    bool DeletedAdd = false;
695    while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
696      // If we have an add, expand the add operands onto the end of the operands
697      // list.
698      Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
699      Ops.erase(Ops.begin()+Idx);
700      DeletedAdd = true;
701    }
702
703    // If we deleted at least one add, we added operands to the end of the list,
704    // and they are not necessarily sorted.  Recurse to resort and resimplify
705    // any operands we just aquired.
706    if (DeletedAdd)
707      return get(Ops);
708  }
709
710  // Skip over the add expression until we get to a multiply.
711  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
712    ++Idx;
713
714  // If we are adding something to a multiply expression, make sure the
715  // something is not already an operand of the multiply.  If so, merge it into
716  // the multiply.
717  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
718    SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
719    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
720      SCEV *MulOpSCEV = Mul->getOperand(MulOp);
721      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
722        if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
723          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
724          SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
725          if (Mul->getNumOperands() != 2) {
726            // If the multiply has more than two operands, we must get the
727            // Y*Z term.
728            std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
729            MulOps.erase(MulOps.begin()+MulOp);
730            InnerMul = SCEVMulExpr::get(MulOps);
731          }
732          SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, Ty);
733          SCEVHandle AddOne = SCEVAddExpr::get(InnerMul, One);
734          SCEVHandle OuterMul = SCEVMulExpr::get(AddOne, Ops[AddOp]);
735          if (Ops.size() == 2) return OuterMul;
736          if (AddOp < Idx) {
737            Ops.erase(Ops.begin()+AddOp);
738            Ops.erase(Ops.begin()+Idx-1);
739          } else {
740            Ops.erase(Ops.begin()+Idx);
741            Ops.erase(Ops.begin()+AddOp-1);
742          }
743          Ops.push_back(OuterMul);
744          return SCEVAddExpr::get(Ops);
745        }
746
747      // Check this multiply against other multiplies being added together.
748      for (unsigned OtherMulIdx = Idx+1;
749           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
750           ++OtherMulIdx) {
751        SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
752        // If MulOp occurs in OtherMul, we can fold the two multiplies
753        // together.
754        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
755             OMulOp != e; ++OMulOp)
756          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
757            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
758            SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
759            if (Mul->getNumOperands() != 2) {
760              std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
761              MulOps.erase(MulOps.begin()+MulOp);
762              InnerMul1 = SCEVMulExpr::get(MulOps);
763            }
764            SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
765            if (OtherMul->getNumOperands() != 2) {
766              std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
767                                             OtherMul->op_end());
768              MulOps.erase(MulOps.begin()+OMulOp);
769              InnerMul2 = SCEVMulExpr::get(MulOps);
770            }
771            SCEVHandle InnerMulSum = SCEVAddExpr::get(InnerMul1,InnerMul2);
772            SCEVHandle OuterMul = SCEVMulExpr::get(MulOpSCEV, InnerMulSum);
773            if (Ops.size() == 2) return OuterMul;
774            Ops.erase(Ops.begin()+Idx);
775            Ops.erase(Ops.begin()+OtherMulIdx-1);
776            Ops.push_back(OuterMul);
777            return SCEVAddExpr::get(Ops);
778          }
779      }
780    }
781  }
782
783  // If there are any add recurrences in the operands list, see if any other
784  // added values are loop invariant.  If so, we can fold them into the
785  // recurrence.
786  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
787    ++Idx;
788
789  // Scan over all recurrences, trying to fold loop invariants into them.
790  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
791    // Scan all of the other operands to this add and add them to the vector if
792    // they are loop invariant w.r.t. the recurrence.
793    std::vector<SCEVHandle> LIOps;
794    SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
795    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
796      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
797        LIOps.push_back(Ops[i]);
798        Ops.erase(Ops.begin()+i);
799        --i; --e;
800      }
801
802    // If we found some loop invariants, fold them into the recurrence.
803    if (!LIOps.empty()) {
804      //  NLI + LI + { Start,+,Step}  -->  NLI + { LI+Start,+,Step }
805      LIOps.push_back(AddRec->getStart());
806
807      std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
808      AddRecOps[0] = SCEVAddExpr::get(LIOps);
809
810      SCEVHandle NewRec = SCEVAddRecExpr::get(AddRecOps, AddRec->getLoop());
811      // If all of the other operands were loop invariant, we are done.
812      if (Ops.size() == 1) return NewRec;
813
814      // Otherwise, add the folded AddRec by the non-liv parts.
815      for (unsigned i = 0;; ++i)
816        if (Ops[i] == AddRec) {
817          Ops[i] = NewRec;
818          break;
819        }
820      return SCEVAddExpr::get(Ops);
821    }
822
823    // Okay, if there weren't any loop invariants to be folded, check to see if
824    // there are multiple AddRec's with the same loop induction variable being
825    // added together.  If so, we can fold them.
826    for (unsigned OtherIdx = Idx+1;
827         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
828      if (OtherIdx != Idx) {
829        SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
830        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
831          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
832          std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
833          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
834            if (i >= NewOps.size()) {
835              NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
836                            OtherAddRec->op_end());
837              break;
838            }
839            NewOps[i] = SCEVAddExpr::get(NewOps[i], OtherAddRec->getOperand(i));
840          }
841          SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
842
843          if (Ops.size() == 2) return NewAddRec;
844
845          Ops.erase(Ops.begin()+Idx);
846          Ops.erase(Ops.begin()+OtherIdx-1);
847          Ops.push_back(NewAddRec);
848          return SCEVAddExpr::get(Ops);
849        }
850      }
851
852    // Otherwise couldn't fold anything into this recurrence.  Move onto the
853    // next one.
854  }
855
856  // Okay, it looks like we really DO need an add expr.  Check to see if we
857  // already have one, otherwise create a new one.
858  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
859  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
860                                                                 SCEVOps)];
861  if (Result == 0) Result = new SCEVAddExpr(Ops);
862  return Result;
863}
864
865
866SCEVHandle SCEVMulExpr::get(std::vector<SCEVHandle> &Ops) {
867  assert(!Ops.empty() && "Cannot get empty mul!");
868
869  // Sort by complexity, this groups all similar expression types together.
870  GroupByComplexity(Ops);
871
872  // If there are any constants, fold them together.
873  unsigned Idx = 0;
874  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
875
876    // C1*(C2+V) -> C1*C2 + C1*V
877    if (Ops.size() == 2)
878      if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
879        if (Add->getNumOperands() == 2 &&
880            isa<SCEVConstant>(Add->getOperand(0)))
881          return SCEVAddExpr::get(SCEVMulExpr::get(LHSC, Add->getOperand(0)),
882                                  SCEVMulExpr::get(LHSC, Add->getOperand(1)));
883
884
885    ++Idx;
886    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
887      // We found two constants, fold them together!
888      Constant *Fold = ConstantInt::get(LHSC->getValue()->getValue() *
889                                        RHSC->getValue()->getValue());
890      if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
891        Ops[0] = SCEVConstant::get(CI);
892        Ops.erase(Ops.begin()+1);  // Erase the folded element
893        if (Ops.size() == 1) return Ops[0];
894        LHSC = cast<SCEVConstant>(Ops[0]);
895      } else {
896        // If we couldn't fold the expression, move to the next constant.  Note
897        // that this is impossible to happen in practice because we always
898        // constant fold constant ints to constant ints.
899        ++Idx;
900      }
901    }
902
903    // If we are left with a constant one being multiplied, strip it off.
904    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
905      Ops.erase(Ops.begin());
906      --Idx;
907    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
908      // If we have a multiply of zero, it will always be zero.
909      return Ops[0];
910    }
911  }
912
913  // Skip over the add expression until we get to a multiply.
914  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
915    ++Idx;
916
917  if (Ops.size() == 1)
918    return Ops[0];
919
920  // If there are mul operands inline them all into this expression.
921  if (Idx < Ops.size()) {
922    bool DeletedMul = false;
923    while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
924      // If we have an mul, expand the mul operands onto the end of the operands
925      // list.
926      Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
927      Ops.erase(Ops.begin()+Idx);
928      DeletedMul = true;
929    }
930
931    // If we deleted at least one mul, we added operands to the end of the list,
932    // and they are not necessarily sorted.  Recurse to resort and resimplify
933    // any operands we just aquired.
934    if (DeletedMul)
935      return get(Ops);
936  }
937
938  // If there are any add recurrences in the operands list, see if any other
939  // added values are loop invariant.  If so, we can fold them into the
940  // recurrence.
941  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
942    ++Idx;
943
944  // Scan over all recurrences, trying to fold loop invariants into them.
945  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
946    // Scan all of the other operands to this mul and add them to the vector if
947    // they are loop invariant w.r.t. the recurrence.
948    std::vector<SCEVHandle> LIOps;
949    SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
950    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
951      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
952        LIOps.push_back(Ops[i]);
953        Ops.erase(Ops.begin()+i);
954        --i; --e;
955      }
956
957    // If we found some loop invariants, fold them into the recurrence.
958    if (!LIOps.empty()) {
959      //  NLI * LI * { Start,+,Step}  -->  NLI * { LI*Start,+,LI*Step }
960      std::vector<SCEVHandle> NewOps;
961      NewOps.reserve(AddRec->getNumOperands());
962      if (LIOps.size() == 1) {
963        SCEV *Scale = LIOps[0];
964        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
965          NewOps.push_back(SCEVMulExpr::get(Scale, AddRec->getOperand(i)));
966      } else {
967        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
968          std::vector<SCEVHandle> MulOps(LIOps);
969          MulOps.push_back(AddRec->getOperand(i));
970          NewOps.push_back(SCEVMulExpr::get(MulOps));
971        }
972      }
973
974      SCEVHandle NewRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
975
976      // If all of the other operands were loop invariant, we are done.
977      if (Ops.size() == 1) return NewRec;
978
979      // Otherwise, multiply the folded AddRec by the non-liv parts.
980      for (unsigned i = 0;; ++i)
981        if (Ops[i] == AddRec) {
982          Ops[i] = NewRec;
983          break;
984        }
985      return SCEVMulExpr::get(Ops);
986    }
987
988    // Okay, if there weren't any loop invariants to be folded, check to see if
989    // there are multiple AddRec's with the same loop induction variable being
990    // multiplied together.  If so, we can fold them.
991    for (unsigned OtherIdx = Idx+1;
992         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
993      if (OtherIdx != Idx) {
994        SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
995        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
996          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
997          SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
998          SCEVHandle NewStart = SCEVMulExpr::get(F->getStart(),
999                                                 G->getStart());
1000          SCEVHandle B = F->getStepRecurrence();
1001          SCEVHandle D = G->getStepRecurrence();
1002          SCEVHandle NewStep = SCEVAddExpr::get(SCEVMulExpr::get(F, D),
1003                                                SCEVMulExpr::get(G, B),
1004                                                SCEVMulExpr::get(B, D));
1005          SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewStart, NewStep,
1006                                                     F->getLoop());
1007          if (Ops.size() == 2) return NewAddRec;
1008
1009          Ops.erase(Ops.begin()+Idx);
1010          Ops.erase(Ops.begin()+OtherIdx-1);
1011          Ops.push_back(NewAddRec);
1012          return SCEVMulExpr::get(Ops);
1013        }
1014      }
1015
1016    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1017    // next one.
1018  }
1019
1020  // Okay, it looks like we really DO need an mul expr.  Check to see if we
1021  // already have one, otherwise create a new one.
1022  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
1023  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
1024                                                                 SCEVOps)];
1025  if (Result == 0)
1026    Result = new SCEVMulExpr(Ops);
1027  return Result;
1028}
1029
1030SCEVHandle SCEVSDivExpr::get(const SCEVHandle &LHS, const SCEVHandle &RHS) {
1031  if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1032    if (RHSC->getValue()->equalsInt(1))
1033      return LHS;                            // X sdiv 1 --> x
1034    if (RHSC->getValue()->isAllOnesValue())
1035      return SCEV::getNegativeSCEV(LHS);           // X sdiv -1  -->  -x
1036
1037    if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1038      Constant *LHSCV = LHSC->getValue();
1039      Constant *RHSCV = RHSC->getValue();
1040      return SCEVUnknown::get(ConstantExpr::getSDiv(LHSCV, RHSCV));
1041    }
1042  }
1043
1044  // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
1045
1046  SCEVSDivExpr *&Result = (*SCEVSDivs)[std::make_pair(LHS, RHS)];
1047  if (Result == 0) Result = new SCEVSDivExpr(LHS, RHS);
1048  return Result;
1049}
1050
1051
1052/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1053/// specified loop.  Simplify the expression as much as possible.
1054SCEVHandle SCEVAddRecExpr::get(const SCEVHandle &Start,
1055                               const SCEVHandle &Step, const Loop *L) {
1056  std::vector<SCEVHandle> Operands;
1057  Operands.push_back(Start);
1058  if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1059    if (StepChrec->getLoop() == L) {
1060      Operands.insert(Operands.end(), StepChrec->op_begin(),
1061                      StepChrec->op_end());
1062      return get(Operands, L);
1063    }
1064
1065  Operands.push_back(Step);
1066  return get(Operands, L);
1067}
1068
1069/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1070/// specified loop.  Simplify the expression as much as possible.
1071SCEVHandle SCEVAddRecExpr::get(std::vector<SCEVHandle> &Operands,
1072                               const Loop *L) {
1073  if (Operands.size() == 1) return Operands[0];
1074
1075  if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Operands.back()))
1076    if (StepC->getValue()->isZero()) {
1077      Operands.pop_back();
1078      return get(Operands, L);             // { X,+,0 }  -->  X
1079    }
1080
1081  SCEVAddRecExpr *&Result =
1082    (*SCEVAddRecExprs)[std::make_pair(L, std::vector<SCEV*>(Operands.begin(),
1083                                                            Operands.end()))];
1084  if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1085  return Result;
1086}
1087
1088SCEVHandle SCEVUnknown::get(Value *V) {
1089  if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
1090    return SCEVConstant::get(CI);
1091  SCEVUnknown *&Result = (*SCEVUnknowns)[V];
1092  if (Result == 0) Result = new SCEVUnknown(V);
1093  return Result;
1094}
1095
1096
1097//===----------------------------------------------------------------------===//
1098//             ScalarEvolutionsImpl Definition and Implementation
1099//===----------------------------------------------------------------------===//
1100//
1101/// ScalarEvolutionsImpl - This class implements the main driver for the scalar
1102/// evolution code.
1103///
1104namespace {
1105  struct VISIBILITY_HIDDEN ScalarEvolutionsImpl {
1106    /// F - The function we are analyzing.
1107    ///
1108    Function &F;
1109
1110    /// LI - The loop information for the function we are currently analyzing.
1111    ///
1112    LoopInfo &LI;
1113
1114    /// UnknownValue - This SCEV is used to represent unknown trip counts and
1115    /// things.
1116    SCEVHandle UnknownValue;
1117
1118    /// Scalars - This is a cache of the scalars we have analyzed so far.
1119    ///
1120    std::map<Value*, SCEVHandle> Scalars;
1121
1122    /// IterationCounts - Cache the iteration count of the loops for this
1123    /// function as they are computed.
1124    std::map<const Loop*, SCEVHandle> IterationCounts;
1125
1126    /// ConstantEvolutionLoopExitValue - This map contains entries for all of
1127    /// the PHI instructions that we attempt to compute constant evolutions for.
1128    /// This allows us to avoid potentially expensive recomputation of these
1129    /// properties.  An instruction maps to null if we are unable to compute its
1130    /// exit value.
1131    std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
1132
1133  public:
1134    ScalarEvolutionsImpl(Function &f, LoopInfo &li)
1135      : F(f), LI(li), UnknownValue(new SCEVCouldNotCompute()) {}
1136
1137    /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1138    /// expression and create a new one.
1139    SCEVHandle getSCEV(Value *V);
1140
1141    /// hasSCEV - Return true if the SCEV for this value has already been
1142    /// computed.
1143    bool hasSCEV(Value *V) const {
1144      return Scalars.count(V);
1145    }
1146
1147    /// setSCEV - Insert the specified SCEV into the map of current SCEVs for
1148    /// the specified value.
1149    void setSCEV(Value *V, const SCEVHandle &H) {
1150      bool isNew = Scalars.insert(std::make_pair(V, H)).second;
1151      assert(isNew && "This entry already existed!");
1152    }
1153
1154
1155    /// getSCEVAtScope - Compute the value of the specified expression within
1156    /// the indicated loop (which may be null to indicate in no loop).  If the
1157    /// expression cannot be evaluated, return UnknownValue itself.
1158    SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L);
1159
1160
1161    /// hasLoopInvariantIterationCount - Return true if the specified loop has
1162    /// an analyzable loop-invariant iteration count.
1163    bool hasLoopInvariantIterationCount(const Loop *L);
1164
1165    /// getIterationCount - If the specified loop has a predictable iteration
1166    /// count, return it.  Note that it is not valid to call this method on a
1167    /// loop without a loop-invariant iteration count.
1168    SCEVHandle getIterationCount(const Loop *L);
1169
1170    /// deleteValueFromRecords - This method should be called by the
1171    /// client before it removes a value from the program, to make sure
1172    /// that no dangling references are left around.
1173    void deleteValueFromRecords(Value *V);
1174
1175  private:
1176    /// createSCEV - We know that there is no SCEV for the specified value.
1177    /// Analyze the expression.
1178    SCEVHandle createSCEV(Value *V);
1179
1180    /// createNodeForPHI - Provide the special handling we need to analyze PHI
1181    /// SCEVs.
1182    SCEVHandle createNodeForPHI(PHINode *PN);
1183
1184    /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value
1185    /// for the specified instruction and replaces any references to the
1186    /// symbolic value SymName with the specified value.  This is used during
1187    /// PHI resolution.
1188    void ReplaceSymbolicValueWithConcrete(Instruction *I,
1189                                          const SCEVHandle &SymName,
1190                                          const SCEVHandle &NewVal);
1191
1192    /// ComputeIterationCount - Compute the number of times the specified loop
1193    /// will iterate.
1194    SCEVHandle ComputeIterationCount(const Loop *L);
1195
1196    /// ComputeLoadConstantCompareIterationCount - Given an exit condition of
1197    /// 'setcc load X, cst', try to see if we can compute the trip count.
1198    SCEVHandle ComputeLoadConstantCompareIterationCount(LoadInst *LI,
1199                                                        Constant *RHS,
1200                                                        const Loop *L,
1201                                                        ICmpInst::Predicate p);
1202
1203    /// ComputeIterationCountExhaustively - If the trip is known to execute a
1204    /// constant number of times (the condition evolves only from constants),
1205    /// try to evaluate a few iterations of the loop until we get the exit
1206    /// condition gets a value of ExitWhen (true or false).  If we cannot
1207    /// evaluate the trip count of the loop, return UnknownValue.
1208    SCEVHandle ComputeIterationCountExhaustively(const Loop *L, Value *Cond,
1209                                                 bool ExitWhen);
1210
1211    /// HowFarToZero - Return the number of times a backedge comparing the
1212    /// specified value to zero will execute.  If not computable, return
1213    /// UnknownValue.
1214    SCEVHandle HowFarToZero(SCEV *V, const Loop *L);
1215
1216    /// HowFarToNonZero - Return the number of times a backedge checking the
1217    /// specified value for nonzero will execute.  If not computable, return
1218    /// UnknownValue.
1219    SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L);
1220
1221    /// HowManyLessThans - Return the number of times a backedge containing the
1222    /// specified less-than comparison will execute.  If not computable, return
1223    /// UnknownValue. isSigned specifies whether the less-than is signed.
1224    SCEVHandle HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L,
1225                                bool isSigned);
1226
1227    /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1228    /// in the header of its containing loop, we know the loop executes a
1229    /// constant number of times, and the PHI node is just a recurrence
1230    /// involving constants, fold it.
1231    Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its,
1232                                                const Loop *L);
1233  };
1234}
1235
1236//===----------------------------------------------------------------------===//
1237//            Basic SCEV Analysis and PHI Idiom Recognition Code
1238//
1239
1240/// deleteValueFromRecords - This method should be called by the
1241/// client before it removes an instruction from the program, to make sure
1242/// that no dangling references are left around.
1243void ScalarEvolutionsImpl::deleteValueFromRecords(Value *V) {
1244  SmallVector<Value *, 16> Worklist;
1245
1246  if (Scalars.erase(V)) {
1247    if (PHINode *PN = dyn_cast<PHINode>(V))
1248      ConstantEvolutionLoopExitValue.erase(PN);
1249    Worklist.push_back(V);
1250  }
1251
1252  while (!Worklist.empty()) {
1253    Value *VV = Worklist.back();
1254    Worklist.pop_back();
1255
1256    for (Instruction::use_iterator UI = VV->use_begin(), UE = VV->use_end();
1257         UI != UE; ++UI) {
1258      Instruction *Inst = cast<Instruction>(*UI);
1259      if (Scalars.erase(Inst)) {
1260        if (PHINode *PN = dyn_cast<PHINode>(VV))
1261          ConstantEvolutionLoopExitValue.erase(PN);
1262        Worklist.push_back(Inst);
1263      }
1264    }
1265  }
1266}
1267
1268
1269/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1270/// expression and create a new one.
1271SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) {
1272  assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!");
1273
1274  std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V);
1275  if (I != Scalars.end()) return I->second;
1276  SCEVHandle S = createSCEV(V);
1277  Scalars.insert(std::make_pair(V, S));
1278  return S;
1279}
1280
1281/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1282/// the specified instruction and replaces any references to the symbolic value
1283/// SymName with the specified value.  This is used during PHI resolution.
1284void ScalarEvolutionsImpl::
1285ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1286                                 const SCEVHandle &NewVal) {
1287  std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I);
1288  if (SI == Scalars.end()) return;
1289
1290  SCEVHandle NV =
1291    SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal);
1292  if (NV == SI->second) return;  // No change.
1293
1294  SI->second = NV;       // Update the scalars map!
1295
1296  // Any instruction values that use this instruction might also need to be
1297  // updated!
1298  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1299       UI != E; ++UI)
1300    ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1301}
1302
1303/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
1304/// a loop header, making it a potential recurrence, or it doesn't.
1305///
1306SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) {
1307  if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
1308    if (const Loop *L = LI.getLoopFor(PN->getParent()))
1309      if (L->getHeader() == PN->getParent()) {
1310        // If it lives in the loop header, it has two incoming values, one
1311        // from outside the loop, and one from inside.
1312        unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1313        unsigned BackEdge     = IncomingEdge^1;
1314
1315        // While we are analyzing this PHI node, handle its value symbolically.
1316        SCEVHandle SymbolicName = SCEVUnknown::get(PN);
1317        assert(Scalars.find(PN) == Scalars.end() &&
1318               "PHI node already processed?");
1319        Scalars.insert(std::make_pair(PN, SymbolicName));
1320
1321        // Using this symbolic name for the PHI, analyze the value coming around
1322        // the back-edge.
1323        SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1324
1325        // NOTE: If BEValue is loop invariant, we know that the PHI node just
1326        // has a special value for the first iteration of the loop.
1327
1328        // If the value coming around the backedge is an add with the symbolic
1329        // value we just inserted, then we found a simple induction variable!
1330        if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
1331          // If there is a single occurrence of the symbolic value, replace it
1332          // with a recurrence.
1333          unsigned FoundIndex = Add->getNumOperands();
1334          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1335            if (Add->getOperand(i) == SymbolicName)
1336              if (FoundIndex == e) {
1337                FoundIndex = i;
1338                break;
1339              }
1340
1341          if (FoundIndex != Add->getNumOperands()) {
1342            // Create an add with everything but the specified operand.
1343            std::vector<SCEVHandle> Ops;
1344            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1345              if (i != FoundIndex)
1346                Ops.push_back(Add->getOperand(i));
1347            SCEVHandle Accum = SCEVAddExpr::get(Ops);
1348
1349            // This is not a valid addrec if the step amount is varying each
1350            // loop iteration, but is not itself an addrec in this loop.
1351            if (Accum->isLoopInvariant(L) ||
1352                (isa<SCEVAddRecExpr>(Accum) &&
1353                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1354              SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1355              SCEVHandle PHISCEV  = SCEVAddRecExpr::get(StartVal, Accum, L);
1356
1357              // Okay, for the entire analysis of this edge we assumed the PHI
1358              // to be symbolic.  We now need to go back and update all of the
1359              // entries for the scalars that use the PHI (except for the PHI
1360              // itself) to use the new analyzed value instead of the "symbolic"
1361              // value.
1362              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1363              return PHISCEV;
1364            }
1365          }
1366        } else if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) {
1367          // Otherwise, this could be a loop like this:
1368          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
1369          // In this case, j = {1,+,1}  and BEValue is j.
1370          // Because the other in-value of i (0) fits the evolution of BEValue
1371          // i really is an addrec evolution.
1372          if (AddRec->getLoop() == L && AddRec->isAffine()) {
1373            SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1374
1375            // If StartVal = j.start - j.stride, we can use StartVal as the
1376            // initial step of the addrec evolution.
1377            if (StartVal == SCEV::getMinusSCEV(AddRec->getOperand(0),
1378                                               AddRec->getOperand(1))) {
1379              SCEVHandle PHISCEV =
1380                 SCEVAddRecExpr::get(StartVal, AddRec->getOperand(1), L);
1381
1382              // Okay, for the entire analysis of this edge we assumed the PHI
1383              // to be symbolic.  We now need to go back and update all of the
1384              // entries for the scalars that use the PHI (except for the PHI
1385              // itself) to use the new analyzed value instead of the "symbolic"
1386              // value.
1387              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1388              return PHISCEV;
1389            }
1390          }
1391        }
1392
1393        return SymbolicName;
1394      }
1395
1396  // If it's not a loop phi, we can't handle it yet.
1397  return SCEVUnknown::get(PN);
1398}
1399
1400/// GetConstantFactor - Determine the largest constant factor that S has.  For
1401/// example, turn {4,+,8} -> 4.    (S umod result) should always equal zero.
1402static APInt GetConstantFactor(SCEVHandle S) {
1403  if (SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
1404    const APInt& V = C->getValue()->getValue();
1405    if (!V.isMinValue())
1406      return V;
1407    else   // Zero is a multiple of everything.
1408      return APInt(C->getBitWidth(), 1).shl(C->getBitWidth()-1);
1409  }
1410
1411  if (SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) {
1412    return GetConstantFactor(T->getOperand()).trunc(
1413                               cast<IntegerType>(T->getType())->getBitWidth());
1414  }
1415  if (SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S))
1416    return GetConstantFactor(E->getOperand()).zext(
1417                               cast<IntegerType>(E->getType())->getBitWidth());
1418  if (SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S))
1419    return GetConstantFactor(E->getOperand()).sext(
1420                               cast<IntegerType>(E->getType())->getBitWidth());
1421
1422  if (SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
1423    // The result is the min of all operands.
1424    APInt Res(GetConstantFactor(A->getOperand(0)));
1425    for (unsigned i = 1, e = A->getNumOperands();
1426         i != e && Res.ugt(APInt(Res.getBitWidth(),1)); ++i) {
1427      APInt Tmp(GetConstantFactor(A->getOperand(i)));
1428      Res = APIntOps::umin(Res, Tmp);
1429    }
1430    return Res;
1431  }
1432
1433  if (SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
1434    // The result is the product of all the operands.
1435    APInt Res(GetConstantFactor(M->getOperand(0)));
1436    for (unsigned i = 1, e = M->getNumOperands(); i != e; ++i) {
1437      APInt Tmp(GetConstantFactor(M->getOperand(i)));
1438      Res *= Tmp;
1439    }
1440    return Res;
1441  }
1442
1443  if (SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
1444    // For now, we just handle linear expressions.
1445    if (A->getNumOperands() == 2) {
1446      // We want the GCD between the start and the stride value.
1447      APInt Start(GetConstantFactor(A->getOperand(0)));
1448      if (Start == 1)
1449        return Start;
1450      APInt Stride(GetConstantFactor(A->getOperand(1)));
1451      return APIntOps::GreatestCommonDivisor(Start, Stride);
1452    }
1453  }
1454
1455  // SCEVSDivExpr, SCEVUnknown.
1456  return APInt(S->getBitWidth(), 1);
1457}
1458
1459/// createSCEV - We know that there is no SCEV for the specified value.
1460/// Analyze the expression.
1461///
1462SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) {
1463  if (Instruction *I = dyn_cast<Instruction>(V)) {
1464    switch (I->getOpcode()) {
1465    case Instruction::Add:
1466      return SCEVAddExpr::get(getSCEV(I->getOperand(0)),
1467                              getSCEV(I->getOperand(1)));
1468    case Instruction::Mul:
1469      return SCEVMulExpr::get(getSCEV(I->getOperand(0)),
1470                              getSCEV(I->getOperand(1)));
1471    case Instruction::SDiv:
1472      return SCEVSDivExpr::get(getSCEV(I->getOperand(0)),
1473                              getSCEV(I->getOperand(1)));
1474      break;
1475
1476    case Instruction::Sub:
1477      return SCEV::getMinusSCEV(getSCEV(I->getOperand(0)),
1478                                getSCEV(I->getOperand(1)));
1479    case Instruction::Or:
1480      // If the RHS of the Or is a constant, we may have something like:
1481      // X*4+1 which got turned into X*4|1.  Handle this as an add so loop
1482      // optimizations will transparently handle this case.
1483      if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
1484        SCEVHandle LHS = getSCEV(I->getOperand(0));
1485        APInt CommonFact(GetConstantFactor(LHS));
1486        assert(!CommonFact.isMinValue() &&
1487               "Common factor should at least be 1!");
1488        if (CommonFact.ugt(CI->getValue())) {
1489          // If the LHS is a multiple that is larger than the RHS, use +.
1490          return SCEVAddExpr::get(LHS,
1491                                  getSCEV(I->getOperand(1)));
1492        }
1493      }
1494      break;
1495    case Instruction::Xor:
1496      // If the RHS of the xor is a signbit, then this is just an add.
1497      // Instcombine turns add of signbit into xor as a strength reduction step.
1498      if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
1499        if (CI->getValue().isSignBit())
1500          return SCEVAddExpr::get(getSCEV(I->getOperand(0)),
1501                                  getSCEV(I->getOperand(1)));
1502      }
1503      break;
1504
1505    case Instruction::Shl:
1506      // Turn shift left of a constant amount into a multiply.
1507      if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1508        uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
1509        Constant *X = ConstantInt::get(
1510          APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
1511        return SCEVMulExpr::get(getSCEV(I->getOperand(0)), getSCEV(X));
1512      }
1513      break;
1514
1515    case Instruction::Trunc:
1516      return SCEVTruncateExpr::get(getSCEV(I->getOperand(0)), I->getType());
1517
1518    case Instruction::ZExt:
1519      return SCEVZeroExtendExpr::get(getSCEV(I->getOperand(0)), I->getType());
1520
1521    case Instruction::SExt:
1522      return SCEVSignExtendExpr::get(getSCEV(I->getOperand(0)), I->getType());
1523
1524    case Instruction::BitCast:
1525      // BitCasts are no-op casts so we just eliminate the cast.
1526      if (I->getType()->isInteger() &&
1527          I->getOperand(0)->getType()->isInteger())
1528        return getSCEV(I->getOperand(0));
1529      break;
1530
1531    case Instruction::PHI:
1532      return createNodeForPHI(cast<PHINode>(I));
1533
1534    default: // We cannot analyze this expression.
1535      break;
1536    }
1537  }
1538
1539  return SCEVUnknown::get(V);
1540}
1541
1542
1543
1544//===----------------------------------------------------------------------===//
1545//                   Iteration Count Computation Code
1546//
1547
1548/// getIterationCount - If the specified loop has a predictable iteration
1549/// count, return it.  Note that it is not valid to call this method on a
1550/// loop without a loop-invariant iteration count.
1551SCEVHandle ScalarEvolutionsImpl::getIterationCount(const Loop *L) {
1552  std::map<const Loop*, SCEVHandle>::iterator I = IterationCounts.find(L);
1553  if (I == IterationCounts.end()) {
1554    SCEVHandle ItCount = ComputeIterationCount(L);
1555    I = IterationCounts.insert(std::make_pair(L, ItCount)).first;
1556    if (ItCount != UnknownValue) {
1557      assert(ItCount->isLoopInvariant(L) &&
1558             "Computed trip count isn't loop invariant for loop!");
1559      ++NumTripCountsComputed;
1560    } else if (isa<PHINode>(L->getHeader()->begin())) {
1561      // Only count loops that have phi nodes as not being computable.
1562      ++NumTripCountsNotComputed;
1563    }
1564  }
1565  return I->second;
1566}
1567
1568/// ComputeIterationCount - Compute the number of times the specified loop
1569/// will iterate.
1570SCEVHandle ScalarEvolutionsImpl::ComputeIterationCount(const Loop *L) {
1571  // If the loop has a non-one exit block count, we can't analyze it.
1572  SmallVector<BasicBlock*, 8> ExitBlocks;
1573  L->getExitBlocks(ExitBlocks);
1574  if (ExitBlocks.size() != 1) return UnknownValue;
1575
1576  // Okay, there is one exit block.  Try to find the condition that causes the
1577  // loop to be exited.
1578  BasicBlock *ExitBlock = ExitBlocks[0];
1579
1580  BasicBlock *ExitingBlock = 0;
1581  for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
1582       PI != E; ++PI)
1583    if (L->contains(*PI)) {
1584      if (ExitingBlock == 0)
1585        ExitingBlock = *PI;
1586      else
1587        return UnknownValue;   // More than one block exiting!
1588    }
1589  assert(ExitingBlock && "No exits from loop, something is broken!");
1590
1591  // Okay, we've computed the exiting block.  See what condition causes us to
1592  // exit.
1593  //
1594  // FIXME: we should be able to handle switch instructions (with a single exit)
1595  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1596  if (ExitBr == 0) return UnknownValue;
1597  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
1598
1599  // At this point, we know we have a conditional branch that determines whether
1600  // the loop is exited.  However, we don't know if the branch is executed each
1601  // time through the loop.  If not, then the execution count of the branch will
1602  // not be equal to the trip count of the loop.
1603  //
1604  // Currently we check for this by checking to see if the Exit branch goes to
1605  // the loop header.  If so, we know it will always execute the same number of
1606  // times as the loop.  We also handle the case where the exit block *is* the
1607  // loop header.  This is common for un-rotated loops.  More extensive analysis
1608  // could be done to handle more cases here.
1609  if (ExitBr->getSuccessor(0) != L->getHeader() &&
1610      ExitBr->getSuccessor(1) != L->getHeader() &&
1611      ExitBr->getParent() != L->getHeader())
1612    return UnknownValue;
1613
1614  ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition());
1615
1616  // If its not an integer comparison then compute it the hard way.
1617  // Note that ICmpInst deals with pointer comparisons too so we must check
1618  // the type of the operand.
1619  if (ExitCond == 0 || isa<PointerType>(ExitCond->getOperand(0)->getType()))
1620    return ComputeIterationCountExhaustively(L, ExitBr->getCondition(),
1621                                          ExitBr->getSuccessor(0) == ExitBlock);
1622
1623  // If the condition was exit on true, convert the condition to exit on false
1624  ICmpInst::Predicate Cond;
1625  if (ExitBr->getSuccessor(1) == ExitBlock)
1626    Cond = ExitCond->getPredicate();
1627  else
1628    Cond = ExitCond->getInversePredicate();
1629
1630  // Handle common loops like: for (X = "string"; *X; ++X)
1631  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
1632    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
1633      SCEVHandle ItCnt =
1634        ComputeLoadConstantCompareIterationCount(LI, RHS, L, Cond);
1635      if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
1636    }
1637
1638  SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
1639  SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
1640
1641  // Try to evaluate any dependencies out of the loop.
1642  SCEVHandle Tmp = getSCEVAtScope(LHS, L);
1643  if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
1644  Tmp = getSCEVAtScope(RHS, L);
1645  if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
1646
1647  // At this point, we would like to compute how many iterations of the
1648  // loop the predicate will return true for these inputs.
1649  if (isa<SCEVConstant>(LHS) && !isa<SCEVConstant>(RHS)) {
1650    // If there is a constant, force it into the RHS.
1651    std::swap(LHS, RHS);
1652    Cond = ICmpInst::getSwappedPredicate(Cond);
1653  }
1654
1655  // FIXME: think about handling pointer comparisons!  i.e.:
1656  // while (P != P+100) ++P;
1657
1658  // If we have a comparison of a chrec against a constant, try to use value
1659  // ranges to answer this query.
1660  if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
1661    if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
1662      if (AddRec->getLoop() == L) {
1663        // Form the comparison range using the constant of the correct type so
1664        // that the ConstantRange class knows to do a signed or unsigned
1665        // comparison.
1666        ConstantInt *CompVal = RHSC->getValue();
1667        const Type *RealTy = ExitCond->getOperand(0)->getType();
1668        CompVal = dyn_cast<ConstantInt>(
1669          ConstantExpr::getBitCast(CompVal, RealTy));
1670        if (CompVal) {
1671          // Form the constant range.
1672          ConstantRange CompRange(
1673              ICmpInst::makeConstantRange(Cond, CompVal->getValue()));
1674
1675          SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange);
1676          if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
1677        }
1678      }
1679
1680  switch (Cond) {
1681  case ICmpInst::ICMP_NE: {                     // while (X != Y)
1682    // Convert to: while (X-Y != 0)
1683    SCEVHandle TC = HowFarToZero(SCEV::getMinusSCEV(LHS, RHS), L);
1684    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1685    break;
1686  }
1687  case ICmpInst::ICMP_EQ: {
1688    // Convert to: while (X-Y == 0)           // while (X == Y)
1689    SCEVHandle TC = HowFarToNonZero(SCEV::getMinusSCEV(LHS, RHS), L);
1690    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1691    break;
1692  }
1693  case ICmpInst::ICMP_SLT: {
1694    SCEVHandle TC = HowManyLessThans(LHS, RHS, L, true);
1695    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1696    break;
1697  }
1698  case ICmpInst::ICMP_SGT: {
1699    SCEVHandle TC = HowManyLessThans(SCEV::getNegativeSCEV(LHS),
1700                                     SCEV::getNegativeSCEV(RHS), L, true);
1701    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1702    break;
1703  }
1704  case ICmpInst::ICMP_ULT: {
1705    SCEVHandle TC = HowManyLessThans(LHS, RHS, L, false);
1706    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1707    break;
1708  }
1709  case ICmpInst::ICMP_UGT: {
1710    SCEVHandle TC = HowManyLessThans(SCEV::getNegativeSCEV(LHS),
1711                                     SCEV::getNegativeSCEV(RHS), L, false);
1712    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1713    break;
1714  }
1715  default:
1716#if 0
1717    cerr << "ComputeIterationCount ";
1718    if (ExitCond->getOperand(0)->getType()->isUnsigned())
1719      cerr << "[unsigned] ";
1720    cerr << *LHS << "   "
1721         << Instruction::getOpcodeName(Instruction::ICmp)
1722         << "   " << *RHS << "\n";
1723#endif
1724    break;
1725  }
1726  return ComputeIterationCountExhaustively(L, ExitCond,
1727                                       ExitBr->getSuccessor(0) == ExitBlock);
1728}
1729
1730static ConstantInt *
1731EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C) {
1732  SCEVHandle InVal = SCEVConstant::get(C);
1733  SCEVHandle Val = AddRec->evaluateAtIteration(InVal);
1734  assert(isa<SCEVConstant>(Val) &&
1735         "Evaluation of SCEV at constant didn't fold correctly?");
1736  return cast<SCEVConstant>(Val)->getValue();
1737}
1738
1739/// GetAddressedElementFromGlobal - Given a global variable with an initializer
1740/// and a GEP expression (missing the pointer index) indexing into it, return
1741/// the addressed element of the initializer or null if the index expression is
1742/// invalid.
1743static Constant *
1744GetAddressedElementFromGlobal(GlobalVariable *GV,
1745                              const std::vector<ConstantInt*> &Indices) {
1746  Constant *Init = GV->getInitializer();
1747  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1748    uint64_t Idx = Indices[i]->getZExtValue();
1749    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
1750      assert(Idx < CS->getNumOperands() && "Bad struct index!");
1751      Init = cast<Constant>(CS->getOperand(Idx));
1752    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
1753      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
1754      Init = cast<Constant>(CA->getOperand(Idx));
1755    } else if (isa<ConstantAggregateZero>(Init)) {
1756      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
1757        assert(Idx < STy->getNumElements() && "Bad struct index!");
1758        Init = Constant::getNullValue(STy->getElementType(Idx));
1759      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
1760        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
1761        Init = Constant::getNullValue(ATy->getElementType());
1762      } else {
1763        assert(0 && "Unknown constant aggregate type!");
1764      }
1765      return 0;
1766    } else {
1767      return 0; // Unknown initializer type
1768    }
1769  }
1770  return Init;
1771}
1772
1773/// ComputeLoadConstantCompareIterationCount - Given an exit condition of
1774/// 'setcc load X, cst', try to se if we can compute the trip count.
1775SCEVHandle ScalarEvolutionsImpl::
1776ComputeLoadConstantCompareIterationCount(LoadInst *LI, Constant *RHS,
1777                                         const Loop *L,
1778                                         ICmpInst::Predicate predicate) {
1779  if (LI->isVolatile()) return UnknownValue;
1780
1781  // Check to see if the loaded pointer is a getelementptr of a global.
1782  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
1783  if (!GEP) return UnknownValue;
1784
1785  // Make sure that it is really a constant global we are gepping, with an
1786  // initializer, and make sure the first IDX is really 0.
1787  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
1788  if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
1789      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
1790      !cast<Constant>(GEP->getOperand(1))->isNullValue())
1791    return UnknownValue;
1792
1793  // Okay, we allow one non-constant index into the GEP instruction.
1794  Value *VarIdx = 0;
1795  std::vector<ConstantInt*> Indexes;
1796  unsigned VarIdxNum = 0;
1797  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
1798    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
1799      Indexes.push_back(CI);
1800    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
1801      if (VarIdx) return UnknownValue;  // Multiple non-constant idx's.
1802      VarIdx = GEP->getOperand(i);
1803      VarIdxNum = i-2;
1804      Indexes.push_back(0);
1805    }
1806
1807  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
1808  // Check to see if X is a loop variant variable value now.
1809  SCEVHandle Idx = getSCEV(VarIdx);
1810  SCEVHandle Tmp = getSCEVAtScope(Idx, L);
1811  if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
1812
1813  // We can only recognize very limited forms of loop index expressions, in
1814  // particular, only affine AddRec's like {C1,+,C2}.
1815  SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
1816  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
1817      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
1818      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
1819    return UnknownValue;
1820
1821  unsigned MaxSteps = MaxBruteForceIterations;
1822  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
1823    ConstantInt *ItCst =
1824      ConstantInt::get(IdxExpr->getType(), IterationNum);
1825    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst);
1826
1827    // Form the GEP offset.
1828    Indexes[VarIdxNum] = Val;
1829
1830    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
1831    if (Result == 0) break;  // Cannot compute!
1832
1833    // Evaluate the condition for this iteration.
1834    Result = ConstantExpr::getICmp(predicate, Result, RHS);
1835    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
1836    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
1837#if 0
1838      cerr << "\n***\n*** Computed loop count " << *ItCst
1839           << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
1840           << "***\n";
1841#endif
1842      ++NumArrayLenItCounts;
1843      return SCEVConstant::get(ItCst);   // Found terminating iteration!
1844    }
1845  }
1846  return UnknownValue;
1847}
1848
1849
1850/// CanConstantFold - Return true if we can constant fold an instruction of the
1851/// specified type, assuming that all operands were constants.
1852static bool CanConstantFold(const Instruction *I) {
1853  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
1854      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
1855    return true;
1856
1857  if (const CallInst *CI = dyn_cast<CallInst>(I))
1858    if (const Function *F = CI->getCalledFunction())
1859      return canConstantFoldCallTo((Function*)F);  // FIXME: elim cast
1860  return false;
1861}
1862
1863/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
1864/// in the loop that V is derived from.  We allow arbitrary operations along the
1865/// way, but the operands of an operation must either be constants or a value
1866/// derived from a constant PHI.  If this expression does not fit with these
1867/// constraints, return null.
1868static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
1869  // If this is not an instruction, or if this is an instruction outside of the
1870  // loop, it can't be derived from a loop PHI.
1871  Instruction *I = dyn_cast<Instruction>(V);
1872  if (I == 0 || !L->contains(I->getParent())) return 0;
1873
1874  if (PHINode *PN = dyn_cast<PHINode>(I))
1875    if (L->getHeader() == I->getParent())
1876      return PN;
1877    else
1878      // We don't currently keep track of the control flow needed to evaluate
1879      // PHIs, so we cannot handle PHIs inside of loops.
1880      return 0;
1881
1882  // If we won't be able to constant fold this expression even if the operands
1883  // are constants, return early.
1884  if (!CanConstantFold(I)) return 0;
1885
1886  // Otherwise, we can evaluate this instruction if all of its operands are
1887  // constant or derived from a PHI node themselves.
1888  PHINode *PHI = 0;
1889  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
1890    if (!(isa<Constant>(I->getOperand(Op)) ||
1891          isa<GlobalValue>(I->getOperand(Op)))) {
1892      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
1893      if (P == 0) return 0;  // Not evolving from PHI
1894      if (PHI == 0)
1895        PHI = P;
1896      else if (PHI != P)
1897        return 0;  // Evolving from multiple different PHIs.
1898    }
1899
1900  // This is a expression evolving from a constant PHI!
1901  return PHI;
1902}
1903
1904/// EvaluateExpression - Given an expression that passes the
1905/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
1906/// in the loop has the value PHIVal.  If we can't fold this expression for some
1907/// reason, return null.
1908static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
1909  if (isa<PHINode>(V)) return PHIVal;
1910  if (GlobalValue *GV = dyn_cast<GlobalValue>(V))
1911    return GV;
1912  if (Constant *C = dyn_cast<Constant>(V)) return C;
1913  Instruction *I = cast<Instruction>(V);
1914
1915  std::vector<Constant*> Operands;
1916  Operands.resize(I->getNumOperands());
1917
1918  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
1919    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
1920    if (Operands[i] == 0) return 0;
1921  }
1922
1923  return ConstantFoldInstOperands(I, &Operands[0], Operands.size());
1924}
1925
1926/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1927/// in the header of its containing loop, we know the loop executes a
1928/// constant number of times, and the PHI node is just a recurrence
1929/// involving constants, fold it.
1930Constant *ScalarEvolutionsImpl::
1931getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its, const Loop *L){
1932  std::map<PHINode*, Constant*>::iterator I =
1933    ConstantEvolutionLoopExitValue.find(PN);
1934  if (I != ConstantEvolutionLoopExitValue.end())
1935    return I->second;
1936
1937  if (Its.ugt(APInt(Its.getBitWidth(),MaxBruteForceIterations)))
1938    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
1939
1940  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
1941
1942  // Since the loop is canonicalized, the PHI node must have two entries.  One
1943  // entry must be a constant (coming in from outside of the loop), and the
1944  // second must be derived from the same PHI.
1945  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
1946  Constant *StartCST =
1947    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
1948  if (StartCST == 0)
1949    return RetVal = 0;  // Must be a constant.
1950
1951  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
1952  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
1953  if (PN2 != PN)
1954    return RetVal = 0;  // Not derived from same PHI.
1955
1956  // Execute the loop symbolically to determine the exit value.
1957  if (Its.getActiveBits() >= 32)
1958    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
1959
1960  unsigned NumIterations = Its.getZExtValue(); // must be in range
1961  unsigned IterationNum = 0;
1962  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
1963    if (IterationNum == NumIterations)
1964      return RetVal = PHIVal;  // Got exit value!
1965
1966    // Compute the value of the PHI node for the next iteration.
1967    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
1968    if (NextPHI == PHIVal)
1969      return RetVal = NextPHI;  // Stopped evolving!
1970    if (NextPHI == 0)
1971      return 0;        // Couldn't evaluate!
1972    PHIVal = NextPHI;
1973  }
1974}
1975
1976/// ComputeIterationCountExhaustively - If the trip is known to execute a
1977/// constant number of times (the condition evolves only from constants),
1978/// try to evaluate a few iterations of the loop until we get the exit
1979/// condition gets a value of ExitWhen (true or false).  If we cannot
1980/// evaluate the trip count of the loop, return UnknownValue.
1981SCEVHandle ScalarEvolutionsImpl::
1982ComputeIterationCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
1983  PHINode *PN = getConstantEvolvingPHI(Cond, L);
1984  if (PN == 0) return UnknownValue;
1985
1986  // Since the loop is canonicalized, the PHI node must have two entries.  One
1987  // entry must be a constant (coming in from outside of the loop), and the
1988  // second must be derived from the same PHI.
1989  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
1990  Constant *StartCST =
1991    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
1992  if (StartCST == 0) return UnknownValue;  // Must be a constant.
1993
1994  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
1995  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
1996  if (PN2 != PN) return UnknownValue;  // Not derived from same PHI.
1997
1998  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
1999  // the loop symbolically to determine when the condition gets a value of
2000  // "ExitWhen".
2001  unsigned IterationNum = 0;
2002  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
2003  for (Constant *PHIVal = StartCST;
2004       IterationNum != MaxIterations; ++IterationNum) {
2005    ConstantInt *CondVal =
2006      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
2007
2008    // Couldn't symbolically evaluate.
2009    if (!CondVal) return UnknownValue;
2010
2011    if (CondVal->getValue() == uint64_t(ExitWhen)) {
2012      ConstantEvolutionLoopExitValue[PN] = PHIVal;
2013      ++NumBruteForceTripCountsComputed;
2014      return SCEVConstant::get(ConstantInt::get(Type::Int32Ty, IterationNum));
2015    }
2016
2017    // Compute the value of the PHI node for the next iteration.
2018    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2019    if (NextPHI == 0 || NextPHI == PHIVal)
2020      return UnknownValue;  // Couldn't evaluate or not making progress...
2021    PHIVal = NextPHI;
2022  }
2023
2024  // Too many iterations were needed to evaluate.
2025  return UnknownValue;
2026}
2027
2028/// getSCEVAtScope - Compute the value of the specified expression within the
2029/// indicated loop (which may be null to indicate in no loop).  If the
2030/// expression cannot be evaluated, return UnknownValue.
2031SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) {
2032  // FIXME: this should be turned into a virtual method on SCEV!
2033
2034  if (isa<SCEVConstant>(V)) return V;
2035
2036  // If this instruction is evolves from a constant-evolving PHI, compute the
2037  // exit value from the loop without using SCEVs.
2038  if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
2039    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
2040      const Loop *LI = this->LI[I->getParent()];
2041      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
2042        if (PHINode *PN = dyn_cast<PHINode>(I))
2043          if (PN->getParent() == LI->getHeader()) {
2044            // Okay, there is no closed form solution for the PHI node.  Check
2045            // to see if the loop that contains it has a known iteration count.
2046            // If so, we may be able to force computation of the exit value.
2047            SCEVHandle IterationCount = getIterationCount(LI);
2048            if (SCEVConstant *ICC = dyn_cast<SCEVConstant>(IterationCount)) {
2049              // Okay, we know how many times the containing loop executes.  If
2050              // this is a constant evolving PHI node, get the final value at
2051              // the specified iteration number.
2052              Constant *RV = getConstantEvolutionLoopExitValue(PN,
2053                                                    ICC->getValue()->getValue(),
2054                                                               LI);
2055              if (RV) return SCEVUnknown::get(RV);
2056            }
2057          }
2058
2059      // Okay, this is an expression that we cannot symbolically evaluate
2060      // into a SCEV.  Check to see if it's possible to symbolically evaluate
2061      // the arguments into constants, and if so, try to constant propagate the
2062      // result.  This is particularly useful for computing loop exit values.
2063      if (CanConstantFold(I)) {
2064        std::vector<Constant*> Operands;
2065        Operands.reserve(I->getNumOperands());
2066        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2067          Value *Op = I->getOperand(i);
2068          if (Constant *C = dyn_cast<Constant>(Op)) {
2069            Operands.push_back(C);
2070          } else {
2071            SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
2072            if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
2073              Operands.push_back(ConstantExpr::getIntegerCast(SC->getValue(),
2074                                                              Op->getType(),
2075                                                              false));
2076            else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
2077              if (Constant *C = dyn_cast<Constant>(SU->getValue()))
2078                Operands.push_back(ConstantExpr::getIntegerCast(C,
2079                                                                Op->getType(),
2080                                                                false));
2081              else
2082                return V;
2083            } else {
2084              return V;
2085            }
2086          }
2087        }
2088        Constant *C =ConstantFoldInstOperands(I, &Operands[0], Operands.size());
2089        return SCEVUnknown::get(C);
2090      }
2091    }
2092
2093    // This is some other type of SCEVUnknown, just return it.
2094    return V;
2095  }
2096
2097  if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
2098    // Avoid performing the look-up in the common case where the specified
2099    // expression has no loop-variant portions.
2100    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
2101      SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2102      if (OpAtScope != Comm->getOperand(i)) {
2103        if (OpAtScope == UnknownValue) return UnknownValue;
2104        // Okay, at least one of these operands is loop variant but might be
2105        // foldable.  Build a new instance of the folded commutative expression.
2106        std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
2107        NewOps.push_back(OpAtScope);
2108
2109        for (++i; i != e; ++i) {
2110          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2111          if (OpAtScope == UnknownValue) return UnknownValue;
2112          NewOps.push_back(OpAtScope);
2113        }
2114        if (isa<SCEVAddExpr>(Comm))
2115          return SCEVAddExpr::get(NewOps);
2116        assert(isa<SCEVMulExpr>(Comm) && "Only know about add and mul!");
2117        return SCEVMulExpr::get(NewOps);
2118      }
2119    }
2120    // If we got here, all operands are loop invariant.
2121    return Comm;
2122  }
2123
2124  if (SCEVSDivExpr *Div = dyn_cast<SCEVSDivExpr>(V)) {
2125    SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
2126    if (LHS == UnknownValue) return LHS;
2127    SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
2128    if (RHS == UnknownValue) return RHS;
2129    if (LHS == Div->getLHS() && RHS == Div->getRHS())
2130      return Div;   // must be loop invariant
2131    return SCEVSDivExpr::get(LHS, RHS);
2132  }
2133
2134  // If this is a loop recurrence for a loop that does not contain L, then we
2135  // are dealing with the final value computed by the loop.
2136  if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
2137    if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
2138      // To evaluate this recurrence, we need to know how many times the AddRec
2139      // loop iterates.  Compute this now.
2140      SCEVHandle IterationCount = getIterationCount(AddRec->getLoop());
2141      if (IterationCount == UnknownValue) return UnknownValue;
2142      IterationCount = getTruncateOrZeroExtend(IterationCount,
2143                                               AddRec->getType());
2144
2145      // If the value is affine, simplify the expression evaluation to just
2146      // Start + Step*IterationCount.
2147      if (AddRec->isAffine())
2148        return SCEVAddExpr::get(AddRec->getStart(),
2149                                SCEVMulExpr::get(IterationCount,
2150                                                 AddRec->getOperand(1)));
2151
2152      // Otherwise, evaluate it the hard way.
2153      return AddRec->evaluateAtIteration(IterationCount);
2154    }
2155    return UnknownValue;
2156  }
2157
2158  //assert(0 && "Unknown SCEV type!");
2159  return UnknownValue;
2160}
2161
2162
2163/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
2164/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
2165/// might be the same) or two SCEVCouldNotCompute objects.
2166///
2167static std::pair<SCEVHandle,SCEVHandle>
2168SolveQuadraticEquation(const SCEVAddRecExpr *AddRec) {
2169  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
2170  SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
2171  SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
2172  SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
2173
2174  // We currently can only solve this if the coefficients are constants.
2175  if (!LC || !MC || !NC) {
2176    SCEV *CNC = new SCEVCouldNotCompute();
2177    return std::make_pair(CNC, CNC);
2178  }
2179
2180  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
2181  const APInt &L = LC->getValue()->getValue();
2182  const APInt &M = MC->getValue()->getValue();
2183  const APInt &N = NC->getValue()->getValue();
2184  APInt Two(BitWidth, 2);
2185  APInt Four(BitWidth, 4);
2186
2187  {
2188    using namespace APIntOps;
2189    const APInt& C = L;
2190    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
2191    // The B coefficient is M-N/2
2192    APInt B(M);
2193    B -= sdiv(N,Two);
2194
2195    // The A coefficient is N/2
2196    APInt A(N.sdiv(Two));
2197
2198    // Compute the B^2-4ac term.
2199    APInt SqrtTerm(B);
2200    SqrtTerm *= B;
2201    SqrtTerm -= Four * (A * C);
2202
2203    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
2204    // integer value or else APInt::sqrt() will assert.
2205    APInt SqrtVal(SqrtTerm.sqrt());
2206
2207    // Compute the two solutions for the quadratic formula.
2208    // The divisions must be performed as signed divisions.
2209    APInt NegB(-B);
2210    APInt TwoA( A << 1 );
2211    ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA));
2212    ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA));
2213
2214    return std::make_pair(SCEVConstant::get(Solution1),
2215                          SCEVConstant::get(Solution2));
2216    } // end APIntOps namespace
2217}
2218
2219/// HowFarToZero - Return the number of times a backedge comparing the specified
2220/// value to zero will execute.  If not computable, return UnknownValue
2221SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) {
2222  // If the value is a constant
2223  if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2224    // If the value is already zero, the branch will execute zero times.
2225    if (C->getValue()->isZero()) return C;
2226    return UnknownValue;  // Otherwise it will loop infinitely.
2227  }
2228
2229  SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
2230  if (!AddRec || AddRec->getLoop() != L)
2231    return UnknownValue;
2232
2233  if (AddRec->isAffine()) {
2234    // If this is an affine expression the execution count of this branch is
2235    // equal to:
2236    //
2237    //     (0 - Start/Step)    iff   Start % Step == 0
2238    //
2239    // Get the initial value for the loop.
2240    SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
2241    if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
2242    SCEVHandle Step = AddRec->getOperand(1);
2243
2244    Step = getSCEVAtScope(Step, L->getParentLoop());
2245
2246    // Figure out if Start % Step == 0.
2247    // FIXME: We should add DivExpr and RemExpr operations to our AST.
2248    if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
2249      if (StepC->getValue()->equalsInt(1))      // N % 1 == 0
2250        return SCEV::getNegativeSCEV(Start);  // 0 - Start/1 == -Start
2251      if (StepC->getValue()->isAllOnesValue())  // N % -1 == 0
2252        return Start;                   // 0 - Start/-1 == Start
2253
2254      // Check to see if Start is divisible by SC with no remainder.
2255      if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
2256        ConstantInt *StartCC = StartC->getValue();
2257        Constant *StartNegC = ConstantExpr::getNeg(StartCC);
2258        Constant *Rem = ConstantExpr::getSRem(StartNegC, StepC->getValue());
2259        if (Rem->isNullValue()) {
2260          Constant *Result =ConstantExpr::getSDiv(StartNegC,StepC->getValue());
2261          return SCEVUnknown::get(Result);
2262        }
2263      }
2264    }
2265  } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
2266    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
2267    // the quadratic equation to solve it.
2268    std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec);
2269    SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2270    SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2271    if (R1) {
2272#if 0
2273      cerr << "HFTZ: " << *V << " - sol#1: " << *R1
2274           << "  sol#2: " << *R2 << "\n";
2275#endif
2276      // Pick the smallest positive root value.
2277      if (ConstantInt *CB =
2278          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
2279                                   R1->getValue(), R2->getValue()))) {
2280        if (CB->getZExtValue() == false)
2281          std::swap(R1, R2);   // R1 is the minimum root now.
2282
2283        // We can only use this value if the chrec ends up with an exact zero
2284        // value at this index.  When solving for "X*X != 5", for example, we
2285        // should not accept a root of 2.
2286        SCEVHandle Val = AddRec->evaluateAtIteration(R1);
2287        if (SCEVConstant *EvalVal = dyn_cast<SCEVConstant>(Val))
2288          if (EvalVal->getValue()->isZero())
2289            return R1;  // We found a quadratic root!
2290      }
2291    }
2292  }
2293
2294  return UnknownValue;
2295}
2296
2297/// HowFarToNonZero - Return the number of times a backedge checking the
2298/// specified value for nonzero will execute.  If not computable, return
2299/// UnknownValue
2300SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) {
2301  // Loops that look like: while (X == 0) are very strange indeed.  We don't
2302  // handle them yet except for the trivial case.  This could be expanded in the
2303  // future as needed.
2304
2305  // If the value is a constant, check to see if it is known to be non-zero
2306  // already.  If so, the backedge will execute zero times.
2307  if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2308    Constant *Zero = Constant::getNullValue(C->getValue()->getType());
2309    Constant *NonZero =
2310      ConstantExpr::getICmp(ICmpInst::ICMP_NE, C->getValue(), Zero);
2311    if (NonZero == ConstantInt::getTrue())
2312      return getSCEV(Zero);
2313    return UnknownValue;  // Otherwise it will loop infinitely.
2314  }
2315
2316  // We could implement others, but I really doubt anyone writes loops like
2317  // this, and if they did, they would already be constant folded.
2318  return UnknownValue;
2319}
2320
2321/// HowManyLessThans - Return the number of times a backedge containing the
2322/// specified less-than comparison will execute.  If not computable, return
2323/// UnknownValue.
2324SCEVHandle ScalarEvolutionsImpl::
2325HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L, bool isSigned) {
2326  // Only handle:  "ADDREC < LoopInvariant".
2327  if (!RHS->isLoopInvariant(L)) return UnknownValue;
2328
2329  SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
2330  if (!AddRec || AddRec->getLoop() != L)
2331    return UnknownValue;
2332
2333  if (AddRec->isAffine()) {
2334    // FORNOW: We only support unit strides.
2335    SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, RHS->getType());
2336    if (AddRec->getOperand(1) != One)
2337      return UnknownValue;
2338
2339    // The number of iterations for "[n,+,1] < m", is m-n.  However, we don't
2340    // know that m is >= n on input to the loop.  If it is, the condition return
2341    // true zero times.  What we really should return, for full generality, is
2342    // SMAX(0, m-n).  Since we cannot check this, we will instead check for a
2343    // canonical loop form: most do-loops will have a check that dominates the
2344    // loop, that only enters the loop if [n-1]<m.  If we can find this check,
2345    // we know that the SMAX will evaluate to m-n, because we know that m >= n.
2346
2347    // Search for the check.
2348    BasicBlock *Preheader = L->getLoopPreheader();
2349    BasicBlock *PreheaderDest = L->getHeader();
2350    if (Preheader == 0) return UnknownValue;
2351
2352    BranchInst *LoopEntryPredicate =
2353      dyn_cast<BranchInst>(Preheader->getTerminator());
2354    if (!LoopEntryPredicate) return UnknownValue;
2355
2356    // This might be a critical edge broken out.  If the loop preheader ends in
2357    // an unconditional branch to the loop, check to see if the preheader has a
2358    // single predecessor, and if so, look for its terminator.
2359    while (LoopEntryPredicate->isUnconditional()) {
2360      PreheaderDest = Preheader;
2361      Preheader = Preheader->getSinglePredecessor();
2362      if (!Preheader) return UnknownValue;  // Multiple preds.
2363
2364      LoopEntryPredicate =
2365        dyn_cast<BranchInst>(Preheader->getTerminator());
2366      if (!LoopEntryPredicate) return UnknownValue;
2367    }
2368
2369    // Now that we found a conditional branch that dominates the loop, check to
2370    // see if it is the comparison we are looking for.
2371    if (ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition())){
2372      Value *PreCondLHS = ICI->getOperand(0);
2373      Value *PreCondRHS = ICI->getOperand(1);
2374      ICmpInst::Predicate Cond;
2375      if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest)
2376        Cond = ICI->getPredicate();
2377      else
2378        Cond = ICI->getInversePredicate();
2379
2380      switch (Cond) {
2381      case ICmpInst::ICMP_UGT:
2382        if (isSigned) return UnknownValue;
2383        std::swap(PreCondLHS, PreCondRHS);
2384        Cond = ICmpInst::ICMP_ULT;
2385        break;
2386      case ICmpInst::ICMP_SGT:
2387        if (!isSigned) return UnknownValue;
2388        std::swap(PreCondLHS, PreCondRHS);
2389        Cond = ICmpInst::ICMP_SLT;
2390        break;
2391      case ICmpInst::ICMP_ULT:
2392        if (isSigned) return UnknownValue;
2393        break;
2394      case ICmpInst::ICMP_SLT:
2395        if (!isSigned) return UnknownValue;
2396        break;
2397      default:
2398        return UnknownValue;
2399      }
2400
2401      if (PreCondLHS->getType()->isInteger()) {
2402        if (RHS != getSCEV(PreCondRHS))
2403          return UnknownValue;  // Not a comparison against 'm'.
2404
2405        if (SCEV::getMinusSCEV(AddRec->getOperand(0), One)
2406                    != getSCEV(PreCondLHS))
2407          return UnknownValue;  // Not a comparison against 'n-1'.
2408      }
2409      else return UnknownValue;
2410
2411      // cerr << "Computed Loop Trip Count as: "
2412      //      << //  *SCEV::getMinusSCEV(RHS, AddRec->getOperand(0)) << "\n";
2413      return SCEV::getMinusSCEV(RHS, AddRec->getOperand(0));
2414    }
2415    else
2416      return UnknownValue;
2417  }
2418
2419  return UnknownValue;
2420}
2421
2422/// getNumIterationsInRange - Return the number of iterations of this loop that
2423/// produce values in the specified constant range.  Another way of looking at
2424/// this is that it returns the first iteration number where the value is not in
2425/// the condition, thus computing the exit count. If the iteration count can't
2426/// be computed, an instance of SCEVCouldNotCompute is returned.
2427SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range) const {
2428  if (Range.isFullSet())  // Infinite loop.
2429    return new SCEVCouldNotCompute();
2430
2431  // If the start is a non-zero constant, shift the range to simplify things.
2432  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
2433    if (!SC->getValue()->isZero()) {
2434      std::vector<SCEVHandle> Operands(op_begin(), op_end());
2435      Operands[0] = SCEVUnknown::getIntegerSCEV(0, SC->getType());
2436      SCEVHandle Shifted = SCEVAddRecExpr::get(Operands, getLoop());
2437      if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
2438        return ShiftedAddRec->getNumIterationsInRange(
2439                           Range.subtract(SC->getValue()->getValue()));
2440      // This is strange and shouldn't happen.
2441      return new SCEVCouldNotCompute();
2442    }
2443
2444  // The only time we can solve this is when we have all constant indices.
2445  // Otherwise, we cannot determine the overflow conditions.
2446  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2447    if (!isa<SCEVConstant>(getOperand(i)))
2448      return new SCEVCouldNotCompute();
2449
2450
2451  // Okay at this point we know that all elements of the chrec are constants and
2452  // that the start element is zero.
2453
2454  // First check to see if the range contains zero.  If not, the first
2455  // iteration exits.
2456  if (!Range.contains(APInt(getBitWidth(),0)))
2457    return SCEVConstant::get(ConstantInt::get(getType(),0));
2458
2459  if (isAffine()) {
2460    // If this is an affine expression then we have this situation:
2461    //   Solve {0,+,A} in Range  ===  Ax in Range
2462
2463    // We know that zero is in the range.  If A is positive then we know that
2464    // the upper value of the range must be the first possible exit value.
2465    // If A is negative then the lower of the range is the last possible loop
2466    // value.  Also note that we already checked for a full range.
2467    APInt One(getBitWidth(),1);
2468    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
2469    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
2470
2471    // The exit value should be (End+A)/A.
2472    APInt ExitVal = (End + A).sdiv(A);
2473    ConstantInt *ExitValue = ConstantInt::get(ExitVal);
2474
2475    // Evaluate at the exit value.  If we really did fall out of the valid
2476    // range, then we computed our trip count, otherwise wrap around or other
2477    // things must have happened.
2478    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue);
2479    if (Range.contains(Val->getValue()))
2480      return new SCEVCouldNotCompute();  // Something strange happened
2481
2482    // Ensure that the previous value is in the range.  This is a sanity check.
2483    assert(Range.contains(
2484           EvaluateConstantChrecAtConstant(this,
2485           ConstantInt::get(ExitVal - One))->getValue()) &&
2486           "Linear scev computation is off in a bad way!");
2487    return SCEVConstant::get(ExitValue);
2488  } else if (isQuadratic()) {
2489    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
2490    // quadratic equation to solve it.  To do this, we must frame our problem in
2491    // terms of figuring out when zero is crossed, instead of when
2492    // Range.getUpper() is crossed.
2493    std::vector<SCEVHandle> NewOps(op_begin(), op_end());
2494    NewOps[0] = SCEV::getNegativeSCEV(SCEVConstant::get(Range.getUpper()));
2495    SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, getLoop());
2496
2497    // Next, solve the constructed addrec
2498    std::pair<SCEVHandle,SCEVHandle> Roots =
2499      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec));
2500    SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2501    SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2502    if (R1) {
2503      // Pick the smallest positive root value.
2504      if (ConstantInt *CB =
2505          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
2506                                   R1->getValue(), R2->getValue()))) {
2507        if (CB->getZExtValue() == false)
2508          std::swap(R1, R2);   // R1 is the minimum root now.
2509
2510        // Make sure the root is not off by one.  The returned iteration should
2511        // not be in the range, but the previous one should be.  When solving
2512        // for "X*X < 5", for example, we should not return a root of 2.
2513        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
2514                                                             R1->getValue());
2515        if (Range.contains(R1Val->getValue())) {
2516          // The next iteration must be out of the range...
2517          ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1);
2518
2519          R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
2520          if (!Range.contains(R1Val->getValue()))
2521            return SCEVConstant::get(NextVal);
2522          return new SCEVCouldNotCompute();  // Something strange happened
2523        }
2524
2525        // If R1 was not in the range, then it is a good return value.  Make
2526        // sure that R1-1 WAS in the range though, just in case.
2527        ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1);
2528        R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
2529        if (Range.contains(R1Val->getValue()))
2530          return R1;
2531        return new SCEVCouldNotCompute();  // Something strange happened
2532      }
2533    }
2534  }
2535
2536  // Fallback, if this is a general polynomial, figure out the progression
2537  // through brute force: evaluate until we find an iteration that fails the
2538  // test.  This is likely to be slow, but getting an accurate trip count is
2539  // incredibly important, we will be able to simplify the exit test a lot, and
2540  // we are almost guaranteed to get a trip count in this case.
2541  ConstantInt *TestVal = ConstantInt::get(getType(), 0);
2542  ConstantInt *EndVal  = TestVal;  // Stop when we wrap around.
2543  do {
2544    ++NumBruteForceEvaluations;
2545    SCEVHandle Val = evaluateAtIteration(SCEVConstant::get(TestVal));
2546    if (!isa<SCEVConstant>(Val))  // This shouldn't happen.
2547      return new SCEVCouldNotCompute();
2548
2549    // Check to see if we found the value!
2550    if (!Range.contains(cast<SCEVConstant>(Val)->getValue()->getValue()))
2551      return SCEVConstant::get(TestVal);
2552
2553    // Increment to test the next index.
2554    TestVal = ConstantInt::get(TestVal->getValue()+1);
2555  } while (TestVal != EndVal);
2556
2557  return new SCEVCouldNotCompute();
2558}
2559
2560
2561
2562//===----------------------------------------------------------------------===//
2563//                   ScalarEvolution Class Implementation
2564//===----------------------------------------------------------------------===//
2565
2566bool ScalarEvolution::runOnFunction(Function &F) {
2567  Impl = new ScalarEvolutionsImpl(F, getAnalysis<LoopInfo>());
2568  return false;
2569}
2570
2571void ScalarEvolution::releaseMemory() {
2572  delete (ScalarEvolutionsImpl*)Impl;
2573  Impl = 0;
2574}
2575
2576void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
2577  AU.setPreservesAll();
2578  AU.addRequiredTransitive<LoopInfo>();
2579}
2580
2581SCEVHandle ScalarEvolution::getSCEV(Value *V) const {
2582  return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V);
2583}
2584
2585/// hasSCEV - Return true if the SCEV for this value has already been
2586/// computed.
2587bool ScalarEvolution::hasSCEV(Value *V) const {
2588  return ((ScalarEvolutionsImpl*)Impl)->hasSCEV(V);
2589}
2590
2591
2592/// setSCEV - Insert the specified SCEV into the map of current SCEVs for
2593/// the specified value.
2594void ScalarEvolution::setSCEV(Value *V, const SCEVHandle &H) {
2595  ((ScalarEvolutionsImpl*)Impl)->setSCEV(V, H);
2596}
2597
2598
2599SCEVHandle ScalarEvolution::getIterationCount(const Loop *L) const {
2600  return ((ScalarEvolutionsImpl*)Impl)->getIterationCount(L);
2601}
2602
2603bool ScalarEvolution::hasLoopInvariantIterationCount(const Loop *L) const {
2604  return !isa<SCEVCouldNotCompute>(getIterationCount(L));
2605}
2606
2607SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const {
2608  return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L);
2609}
2610
2611void ScalarEvolution::deleteValueFromRecords(Value *V) const {
2612  return ((ScalarEvolutionsImpl*)Impl)->deleteValueFromRecords(V);
2613}
2614
2615static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE,
2616                          const Loop *L) {
2617  // Print all inner loops first
2618  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
2619    PrintLoopInfo(OS, SE, *I);
2620
2621  cerr << "Loop " << L->getHeader()->getName() << ": ";
2622
2623  SmallVector<BasicBlock*, 8> ExitBlocks;
2624  L->getExitBlocks(ExitBlocks);
2625  if (ExitBlocks.size() != 1)
2626    cerr << "<multiple exits> ";
2627
2628  if (SE->hasLoopInvariantIterationCount(L)) {
2629    cerr << *SE->getIterationCount(L) << " iterations! ";
2630  } else {
2631    cerr << "Unpredictable iteration count. ";
2632  }
2633
2634  cerr << "\n";
2635}
2636
2637void ScalarEvolution::print(std::ostream &OS, const Module* ) const {
2638  Function &F = ((ScalarEvolutionsImpl*)Impl)->F;
2639  LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI;
2640
2641  OS << "Classifying expressions for: " << F.getName() << "\n";
2642  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
2643    if (I->getType()->isInteger()) {
2644      OS << *I;
2645      OS << "  --> ";
2646      SCEVHandle SV = getSCEV(&*I);
2647      SV->print(OS);
2648      OS << "\t\t";
2649
2650      if ((*I).getType()->isInteger()) {
2651        ConstantRange Bounds = SV->getValueRange();
2652        if (!Bounds.isFullSet())
2653          OS << "Bounds: " << Bounds << " ";
2654      }
2655
2656      if (const Loop *L = LI.getLoopFor((*I).getParent())) {
2657        OS << "Exits: ";
2658        SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop());
2659        if (isa<SCEVCouldNotCompute>(ExitValue)) {
2660          OS << "<<Unknown>>";
2661        } else {
2662          OS << *ExitValue;
2663        }
2664      }
2665
2666
2667      OS << "\n";
2668    }
2669
2670  OS << "Determining loop execution counts for: " << F.getName() << "\n";
2671  for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
2672    PrintLoopInfo(OS, this, *I);
2673}
2674
2675