ScalarEvolution.cpp revision c72f0c8c57a79fe9d32d9147ec3b8717ade6faa1
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
19//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression.  These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
30//
31// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
35// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42//  Chains of recurrences -- a method to expedite the evaluation
43//  of closed-form functions
44//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46//  On computational properties of chains of recurrences
47//  Eugene V. Zima
48//
49//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50//  Robert A. van Engelen
51//
52//  Efficient Symbolic Analysis for Optimizing Compilers
53//  Robert A. van Engelen
54//
55//  Using the chains of recurrences algebra for data dependence testing and
56//  induction variable substitution
57//  MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
61#define DEBUG_TYPE "scalar-evolution"
62#include "llvm/Analysis/ScalarEvolutionExpressions.h"
63#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
65#include "llvm/GlobalVariable.h"
66#include "llvm/GlobalAlias.h"
67#include "llvm/Instructions.h"
68#include "llvm/LLVMContext.h"
69#include "llvm/Operator.h"
70#include "llvm/Analysis/ConstantFolding.h"
71#include "llvm/Analysis/Dominators.h"
72#include "llvm/Analysis/LoopInfo.h"
73#include "llvm/Analysis/ValueTracking.h"
74#include "llvm/Assembly/Writer.h"
75#include "llvm/Target/TargetData.h"
76#include "llvm/Support/CommandLine.h"
77#include "llvm/Support/ConstantRange.h"
78#include "llvm/Support/Debug.h"
79#include "llvm/Support/ErrorHandling.h"
80#include "llvm/Support/GetElementPtrTypeIterator.h"
81#include "llvm/Support/InstIterator.h"
82#include "llvm/Support/MathExtras.h"
83#include "llvm/Support/raw_ostream.h"
84#include "llvm/ADT/Statistic.h"
85#include "llvm/ADT/STLExtras.h"
86#include "llvm/ADT/SmallPtrSet.h"
87#include <algorithm>
88using namespace llvm;
89
90STATISTIC(NumArrayLenItCounts,
91          "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93          "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95          "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97          "Number of loops with trip counts computed by force");
98
99static cl::opt<unsigned>
100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101                        cl::desc("Maximum number of iterations SCEV will "
102                                 "symbolically execute a constant "
103                                 "derived loop"),
104                        cl::init(100));
105
106static RegisterPass<ScalarEvolution>
107R("scalar-evolution", "Scalar Evolution Analysis", false, true);
108char ScalarEvolution::ID = 0;
109
110//===----------------------------------------------------------------------===//
111//                           SCEV class definitions
112//===----------------------------------------------------------------------===//
113
114//===----------------------------------------------------------------------===//
115// Implementation of the SCEV class.
116//
117
118SCEV::~SCEV() {}
119
120void SCEV::dump() const {
121  print(dbgs());
122  dbgs() << '\n';
123}
124
125bool SCEV::isZero() const {
126  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
127    return SC->getValue()->isZero();
128  return false;
129}
130
131bool SCEV::isOne() const {
132  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
133    return SC->getValue()->isOne();
134  return false;
135}
136
137bool SCEV::isAllOnesValue() const {
138  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
139    return SC->getValue()->isAllOnesValue();
140  return false;
141}
142
143SCEVCouldNotCompute::SCEVCouldNotCompute() :
144  SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
145
146bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
147  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
148  return false;
149}
150
151const Type *SCEVCouldNotCompute::getType() const {
152  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
153  return 0;
154}
155
156bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
157  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
158  return false;
159}
160
161bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
162  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
163  return false;
164}
165
166void SCEVCouldNotCompute::print(raw_ostream &OS) const {
167  OS << "***COULDNOTCOMPUTE***";
168}
169
170bool SCEVCouldNotCompute::classof(const SCEV *S) {
171  return S->getSCEVType() == scCouldNotCompute;
172}
173
174const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
175  FoldingSetNodeID ID;
176  ID.AddInteger(scConstant);
177  ID.AddPointer(V);
178  void *IP = 0;
179  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
180  SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
181  UniqueSCEVs.InsertNode(S, IP);
182  return S;
183}
184
185const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
186  return getConstant(ConstantInt::get(getContext(), Val));
187}
188
189const SCEV *
190ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
191  const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
192  return getConstant(ConstantInt::get(ITy, V, isSigned));
193}
194
195const Type *SCEVConstant::getType() const { return V->getType(); }
196
197void SCEVConstant::print(raw_ostream &OS) const {
198  WriteAsOperand(OS, V, false);
199}
200
201SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
202                           unsigned SCEVTy, const SCEV *op, const Type *ty)
203  : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
204
205bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
206  return Op->dominates(BB, DT);
207}
208
209bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
210  return Op->properlyDominates(BB, DT);
211}
212
213SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
214                                   const SCEV *op, const Type *ty)
215  : SCEVCastExpr(ID, scTruncate, op, ty) {
216  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
217         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
218         "Cannot truncate non-integer value!");
219}
220
221void SCEVTruncateExpr::print(raw_ostream &OS) const {
222  OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
223}
224
225SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
226                                       const SCEV *op, const Type *ty)
227  : SCEVCastExpr(ID, scZeroExtend, op, ty) {
228  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
229         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
230         "Cannot zero extend non-integer value!");
231}
232
233void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
234  OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
235}
236
237SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
238                                       const SCEV *op, const Type *ty)
239  : SCEVCastExpr(ID, scSignExtend, op, ty) {
240  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
241         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
242         "Cannot sign extend non-integer value!");
243}
244
245void SCEVSignExtendExpr::print(raw_ostream &OS) const {
246  OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
247}
248
249void SCEVCommutativeExpr::print(raw_ostream &OS) const {
250  const char *OpStr = getOperationStr();
251  OS << "(";
252  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
253    OS << **I;
254    if (next(I) != E)
255      OS << OpStr;
256  }
257  OS << ")";
258}
259
260bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
261  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
262    if (!getOperand(i)->dominates(BB, DT))
263      return false;
264  }
265  return true;
266}
267
268bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
269  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
270    if (!getOperand(i)->properlyDominates(BB, DT))
271      return false;
272  }
273  return true;
274}
275
276bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
277  return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
278}
279
280bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
281  return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
282}
283
284void SCEVUDivExpr::print(raw_ostream &OS) const {
285  OS << "(" << *LHS << " /u " << *RHS << ")";
286}
287
288const Type *SCEVUDivExpr::getType() const {
289  // In most cases the types of LHS and RHS will be the same, but in some
290  // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
291  // depend on the type for correctness, but handling types carefully can
292  // avoid extra casts in the SCEVExpander. The LHS is more likely to be
293  // a pointer type than the RHS, so use the RHS' type here.
294  return RHS->getType();
295}
296
297bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
298  // Add recurrences are never invariant in the function-body (null loop).
299  if (!QueryLoop)
300    return false;
301
302  // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
303  if (QueryLoop->contains(L))
304    return false;
305
306  // This recurrence is variant w.r.t. QueryLoop if any of its operands
307  // are variant.
308  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
309    if (!getOperand(i)->isLoopInvariant(QueryLoop))
310      return false;
311
312  // Otherwise it's loop-invariant.
313  return true;
314}
315
316bool
317SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
318  return DT->dominates(L->getHeader(), BB) &&
319         SCEVNAryExpr::dominates(BB, DT);
320}
321
322bool
323SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
324  // This uses a "dominates" query instead of "properly dominates" query because
325  // the instruction which produces the addrec's value is a PHI, and a PHI
326  // effectively properly dominates its entire containing block.
327  return DT->dominates(L->getHeader(), BB) &&
328         SCEVNAryExpr::properlyDominates(BB, DT);
329}
330
331void SCEVAddRecExpr::print(raw_ostream &OS) const {
332  OS << "{" << *Operands[0];
333  for (unsigned i = 1, e = NumOperands; i != e; ++i)
334    OS << ",+," << *Operands[i];
335  OS << "}<";
336  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
337  OS << ">";
338}
339
340bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
341  // All non-instruction values are loop invariant.  All instructions are loop
342  // invariant if they are not contained in the specified loop.
343  // Instructions are never considered invariant in the function body
344  // (null loop) because they are defined within the "loop".
345  if (Instruction *I = dyn_cast<Instruction>(V))
346    return L && !L->contains(I);
347  return true;
348}
349
350bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
351  if (Instruction *I = dyn_cast<Instruction>(getValue()))
352    return DT->dominates(I->getParent(), BB);
353  return true;
354}
355
356bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
357  if (Instruction *I = dyn_cast<Instruction>(getValue()))
358    return DT->properlyDominates(I->getParent(), BB);
359  return true;
360}
361
362const Type *SCEVUnknown::getType() const {
363  return V->getType();
364}
365
366bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
367  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
368    if (VCE->getOpcode() == Instruction::PtrToInt)
369      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
370        if (CE->getOpcode() == Instruction::GetElementPtr &&
371            CE->getOperand(0)->isNullValue() &&
372            CE->getNumOperands() == 2)
373          if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
374            if (CI->isOne()) {
375              AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
376                                 ->getElementType();
377              return true;
378            }
379
380  return false;
381}
382
383bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
384  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
385    if (VCE->getOpcode() == Instruction::PtrToInt)
386      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
387        if (CE->getOpcode() == Instruction::GetElementPtr &&
388            CE->getOperand(0)->isNullValue()) {
389          const Type *Ty =
390            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
391          if (const StructType *STy = dyn_cast<StructType>(Ty))
392            if (!STy->isPacked() &&
393                CE->getNumOperands() == 3 &&
394                CE->getOperand(1)->isNullValue()) {
395              if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
396                if (CI->isOne() &&
397                    STy->getNumElements() == 2 &&
398                    STy->getElementType(0)->isIntegerTy(1)) {
399                  AllocTy = STy->getElementType(1);
400                  return true;
401                }
402            }
403        }
404
405  return false;
406}
407
408bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
409  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
410    if (VCE->getOpcode() == Instruction::PtrToInt)
411      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
412        if (CE->getOpcode() == Instruction::GetElementPtr &&
413            CE->getNumOperands() == 3 &&
414            CE->getOperand(0)->isNullValue() &&
415            CE->getOperand(1)->isNullValue()) {
416          const Type *Ty =
417            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
418          // Ignore vector types here so that ScalarEvolutionExpander doesn't
419          // emit getelementptrs that index into vectors.
420          if (Ty->isStructTy() || Ty->isArrayTy()) {
421            CTy = Ty;
422            FieldNo = CE->getOperand(2);
423            return true;
424          }
425        }
426
427  return false;
428}
429
430void SCEVUnknown::print(raw_ostream &OS) const {
431  const Type *AllocTy;
432  if (isSizeOf(AllocTy)) {
433    OS << "sizeof(" << *AllocTy << ")";
434    return;
435  }
436  if (isAlignOf(AllocTy)) {
437    OS << "alignof(" << *AllocTy << ")";
438    return;
439  }
440
441  const Type *CTy;
442  Constant *FieldNo;
443  if (isOffsetOf(CTy, FieldNo)) {
444    OS << "offsetof(" << *CTy << ", ";
445    WriteAsOperand(OS, FieldNo, false);
446    OS << ")";
447    return;
448  }
449
450  // Otherwise just print it normally.
451  WriteAsOperand(OS, V, false);
452}
453
454//===----------------------------------------------------------------------===//
455//                               SCEV Utilities
456//===----------------------------------------------------------------------===//
457
458static bool CompareTypes(const Type *A, const Type *B) {
459  if (A->getTypeID() != B->getTypeID())
460    return A->getTypeID() < B->getTypeID();
461  if (const IntegerType *AI = dyn_cast<IntegerType>(A)) {
462    const IntegerType *BI = cast<IntegerType>(B);
463    return AI->getBitWidth() < BI->getBitWidth();
464  }
465  if (const PointerType *AI = dyn_cast<PointerType>(A)) {
466    const PointerType *BI = cast<PointerType>(B);
467    return CompareTypes(AI->getElementType(), BI->getElementType());
468  }
469  if (const ArrayType *AI = dyn_cast<ArrayType>(A)) {
470    const ArrayType *BI = cast<ArrayType>(B);
471    if (AI->getNumElements() != BI->getNumElements())
472      return AI->getNumElements() < BI->getNumElements();
473    return CompareTypes(AI->getElementType(), BI->getElementType());
474  }
475  if (const VectorType *AI = dyn_cast<VectorType>(A)) {
476    const VectorType *BI = cast<VectorType>(B);
477    if (AI->getNumElements() != BI->getNumElements())
478      return AI->getNumElements() < BI->getNumElements();
479    return CompareTypes(AI->getElementType(), BI->getElementType());
480  }
481  if (const StructType *AI = dyn_cast<StructType>(A)) {
482    const StructType *BI = cast<StructType>(B);
483    if (AI->getNumElements() != BI->getNumElements())
484      return AI->getNumElements() < BI->getNumElements();
485    for (unsigned i = 0, e = AI->getNumElements(); i != e; ++i)
486      if (CompareTypes(AI->getElementType(i), BI->getElementType(i)) ||
487          CompareTypes(BI->getElementType(i), AI->getElementType(i)))
488        return CompareTypes(AI->getElementType(i), BI->getElementType(i));
489  }
490  return false;
491}
492
493namespace {
494  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
495  /// than the complexity of the RHS.  This comparator is used to canonicalize
496  /// expressions.
497  class SCEVComplexityCompare {
498    LoopInfo *LI;
499  public:
500    explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
501
502    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
503      // Fast-path: SCEVs are uniqued so we can do a quick equality check.
504      if (LHS == RHS)
505        return false;
506
507      // Primarily, sort the SCEVs by their getSCEVType().
508      if (LHS->getSCEVType() != RHS->getSCEVType())
509        return LHS->getSCEVType() < RHS->getSCEVType();
510
511      // Aside from the getSCEVType() ordering, the particular ordering
512      // isn't very important except that it's beneficial to be consistent,
513      // so that (a + b) and (b + a) don't end up as different expressions.
514
515      // Sort SCEVUnknown values with some loose heuristics. TODO: This is
516      // not as complete as it could be.
517      if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
518        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
519
520        // Order pointer values after integer values. This helps SCEVExpander
521        // form GEPs.
522        if (LU->getType()->isPointerTy() && !RU->getType()->isPointerTy())
523          return false;
524        if (RU->getType()->isPointerTy() && !LU->getType()->isPointerTy())
525          return true;
526
527        // Compare getValueID values.
528        if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
529          return LU->getValue()->getValueID() < RU->getValue()->getValueID();
530
531        // Sort arguments by their position.
532        if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
533          const Argument *RA = cast<Argument>(RU->getValue());
534          return LA->getArgNo() < RA->getArgNo();
535        }
536
537        // For instructions, compare their loop depth, and their opcode.
538        // This is pretty loose.
539        if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
540          Instruction *RV = cast<Instruction>(RU->getValue());
541
542          // Compare loop depths.
543          if (LI->getLoopDepth(LV->getParent()) !=
544              LI->getLoopDepth(RV->getParent()))
545            return LI->getLoopDepth(LV->getParent()) <
546                   LI->getLoopDepth(RV->getParent());
547
548          // Compare opcodes.
549          if (LV->getOpcode() != RV->getOpcode())
550            return LV->getOpcode() < RV->getOpcode();
551
552          // Compare the number of operands.
553          if (LV->getNumOperands() != RV->getNumOperands())
554            return LV->getNumOperands() < RV->getNumOperands();
555        }
556
557        return false;
558      }
559
560      // Compare constant values.
561      if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) {
562        const SCEVConstant *RC = cast<SCEVConstant>(RHS);
563        if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth())
564          return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth();
565        return LC->getValue()->getValue().ult(RC->getValue()->getValue());
566      }
567
568      // Compare addrec loop depths.
569      if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) {
570        const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
571        if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth())
572          return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth();
573      }
574
575      // Lexicographically compare n-ary expressions.
576      if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
577        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
578        for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
579          if (i >= RC->getNumOperands())
580            return false;
581          if (operator()(LC->getOperand(i), RC->getOperand(i)))
582            return true;
583          if (operator()(RC->getOperand(i), LC->getOperand(i)))
584            return false;
585        }
586        return LC->getNumOperands() < RC->getNumOperands();
587      }
588
589      // Lexicographically compare udiv expressions.
590      if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
591        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
592        if (operator()(LC->getLHS(), RC->getLHS()))
593          return true;
594        if (operator()(RC->getLHS(), LC->getLHS()))
595          return false;
596        if (operator()(LC->getRHS(), RC->getRHS()))
597          return true;
598        if (operator()(RC->getRHS(), LC->getRHS()))
599          return false;
600        return false;
601      }
602
603      // Compare cast expressions by operand.
604      if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
605        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
606        return operator()(LC->getOperand(), RC->getOperand());
607      }
608
609      llvm_unreachable("Unknown SCEV kind!");
610      return false;
611    }
612  };
613}
614
615/// GroupByComplexity - Given a list of SCEV objects, order them by their
616/// complexity, and group objects of the same complexity together by value.
617/// When this routine is finished, we know that any duplicates in the vector are
618/// consecutive and that complexity is monotonically increasing.
619///
620/// Note that we go take special precautions to ensure that we get deterministic
621/// results from this routine.  In other words, we don't want the results of
622/// this to depend on where the addresses of various SCEV objects happened to
623/// land in memory.
624///
625static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
626                              LoopInfo *LI) {
627  if (Ops.size() < 2) return;  // Noop
628  if (Ops.size() == 2) {
629    // This is the common case, which also happens to be trivially simple.
630    // Special case it.
631    if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
632      std::swap(Ops[0], Ops[1]);
633    return;
634  }
635
636  // Do the rough sort by complexity.
637  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
638
639  // Now that we are sorted by complexity, group elements of the same
640  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
641  // be extremely short in practice.  Note that we take this approach because we
642  // do not want to depend on the addresses of the objects we are grouping.
643  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
644    const SCEV *S = Ops[i];
645    unsigned Complexity = S->getSCEVType();
646
647    // If there are any objects of the same complexity and same value as this
648    // one, group them.
649    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
650      if (Ops[j] == S) { // Found a duplicate.
651        // Move it to immediately after i'th element.
652        std::swap(Ops[i+1], Ops[j]);
653        ++i;   // no need to rescan it.
654        if (i == e-2) return;  // Done!
655      }
656    }
657  }
658}
659
660
661
662//===----------------------------------------------------------------------===//
663//                      Simple SCEV method implementations
664//===----------------------------------------------------------------------===//
665
666/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
667/// Assume, K > 0.
668static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
669                                       ScalarEvolution &SE,
670                                       const Type* ResultTy) {
671  // Handle the simplest case efficiently.
672  if (K == 1)
673    return SE.getTruncateOrZeroExtend(It, ResultTy);
674
675  // We are using the following formula for BC(It, K):
676  //
677  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
678  //
679  // Suppose, W is the bitwidth of the return value.  We must be prepared for
680  // overflow.  Hence, we must assure that the result of our computation is
681  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
682  // safe in modular arithmetic.
683  //
684  // However, this code doesn't use exactly that formula; the formula it uses
685  // is something like the following, where T is the number of factors of 2 in
686  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
687  // exponentiation:
688  //
689  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
690  //
691  // This formula is trivially equivalent to the previous formula.  However,
692  // this formula can be implemented much more efficiently.  The trick is that
693  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
694  // arithmetic.  To do exact division in modular arithmetic, all we have
695  // to do is multiply by the inverse.  Therefore, this step can be done at
696  // width W.
697  //
698  // The next issue is how to safely do the division by 2^T.  The way this
699  // is done is by doing the multiplication step at a width of at least W + T
700  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
701  // when we perform the division by 2^T (which is equivalent to a right shift
702  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
703  // truncated out after the division by 2^T.
704  //
705  // In comparison to just directly using the first formula, this technique
706  // is much more efficient; using the first formula requires W * K bits,
707  // but this formula less than W + K bits. Also, the first formula requires
708  // a division step, whereas this formula only requires multiplies and shifts.
709  //
710  // It doesn't matter whether the subtraction step is done in the calculation
711  // width or the input iteration count's width; if the subtraction overflows,
712  // the result must be zero anyway.  We prefer here to do it in the width of
713  // the induction variable because it helps a lot for certain cases; CodeGen
714  // isn't smart enough to ignore the overflow, which leads to much less
715  // efficient code if the width of the subtraction is wider than the native
716  // register width.
717  //
718  // (It's possible to not widen at all by pulling out factors of 2 before
719  // the multiplication; for example, K=2 can be calculated as
720  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
721  // extra arithmetic, so it's not an obvious win, and it gets
722  // much more complicated for K > 3.)
723
724  // Protection from insane SCEVs; this bound is conservative,
725  // but it probably doesn't matter.
726  if (K > 1000)
727    return SE.getCouldNotCompute();
728
729  unsigned W = SE.getTypeSizeInBits(ResultTy);
730
731  // Calculate K! / 2^T and T; we divide out the factors of two before
732  // multiplying for calculating K! / 2^T to avoid overflow.
733  // Other overflow doesn't matter because we only care about the bottom
734  // W bits of the result.
735  APInt OddFactorial(W, 1);
736  unsigned T = 1;
737  for (unsigned i = 3; i <= K; ++i) {
738    APInt Mult(W, i);
739    unsigned TwoFactors = Mult.countTrailingZeros();
740    T += TwoFactors;
741    Mult = Mult.lshr(TwoFactors);
742    OddFactorial *= Mult;
743  }
744
745  // We need at least W + T bits for the multiplication step
746  unsigned CalculationBits = W + T;
747
748  // Calculate 2^T, at width T+W.
749  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
750
751  // Calculate the multiplicative inverse of K! / 2^T;
752  // this multiplication factor will perform the exact division by
753  // K! / 2^T.
754  APInt Mod = APInt::getSignedMinValue(W+1);
755  APInt MultiplyFactor = OddFactorial.zext(W+1);
756  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
757  MultiplyFactor = MultiplyFactor.trunc(W);
758
759  // Calculate the product, at width T+W
760  const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
761                                                      CalculationBits);
762  const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
763  for (unsigned i = 1; i != K; ++i) {
764    const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
765    Dividend = SE.getMulExpr(Dividend,
766                             SE.getTruncateOrZeroExtend(S, CalculationTy));
767  }
768
769  // Divide by 2^T
770  const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
771
772  // Truncate the result, and divide by K! / 2^T.
773
774  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
775                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
776}
777
778/// evaluateAtIteration - Return the value of this chain of recurrences at
779/// the specified iteration number.  We can evaluate this recurrence by
780/// multiplying each element in the chain by the binomial coefficient
781/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
782///
783///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
784///
785/// where BC(It, k) stands for binomial coefficient.
786///
787const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
788                                                ScalarEvolution &SE) const {
789  const SCEV *Result = getStart();
790  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
791    // The computation is correct in the face of overflow provided that the
792    // multiplication is performed _after_ the evaluation of the binomial
793    // coefficient.
794    const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
795    if (isa<SCEVCouldNotCompute>(Coeff))
796      return Coeff;
797
798    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
799  }
800  return Result;
801}
802
803//===----------------------------------------------------------------------===//
804//                    SCEV Expression folder implementations
805//===----------------------------------------------------------------------===//
806
807const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
808                                             const Type *Ty) {
809  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
810         "This is not a truncating conversion!");
811  assert(isSCEVable(Ty) &&
812         "This is not a conversion to a SCEVable type!");
813  Ty = getEffectiveSCEVType(Ty);
814
815  FoldingSetNodeID ID;
816  ID.AddInteger(scTruncate);
817  ID.AddPointer(Op);
818  ID.AddPointer(Ty);
819  void *IP = 0;
820  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
821
822  // Fold if the operand is constant.
823  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
824    return getConstant(
825      cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
826
827  // trunc(trunc(x)) --> trunc(x)
828  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
829    return getTruncateExpr(ST->getOperand(), Ty);
830
831  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
832  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
833    return getTruncateOrSignExtend(SS->getOperand(), Ty);
834
835  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
836  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
837    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
838
839  // If the input value is a chrec scev, truncate the chrec's operands.
840  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
841    SmallVector<const SCEV *, 4> Operands;
842    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
843      Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
844    return getAddRecExpr(Operands, AddRec->getLoop());
845  }
846
847  // The cast wasn't folded; create an explicit cast node.
848  // Recompute the insert position, as it may have been invalidated.
849  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
850  SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
851                                                 Op, Ty);
852  UniqueSCEVs.InsertNode(S, IP);
853  return S;
854}
855
856const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
857                                               const Type *Ty) {
858  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
859         "This is not an extending conversion!");
860  assert(isSCEVable(Ty) &&
861         "This is not a conversion to a SCEVable type!");
862  Ty = getEffectiveSCEVType(Ty);
863
864  // Fold if the operand is constant.
865  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
866    const Type *IntTy = getEffectiveSCEVType(Ty);
867    Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
868    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
869    return getConstant(cast<ConstantInt>(C));
870  }
871
872  // zext(zext(x)) --> zext(x)
873  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
874    return getZeroExtendExpr(SZ->getOperand(), Ty);
875
876  // Before doing any expensive analysis, check to see if we've already
877  // computed a SCEV for this Op and Ty.
878  FoldingSetNodeID ID;
879  ID.AddInteger(scZeroExtend);
880  ID.AddPointer(Op);
881  ID.AddPointer(Ty);
882  void *IP = 0;
883  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
884
885  // If the input value is a chrec scev, and we can prove that the value
886  // did not overflow the old, smaller, value, we can zero extend all of the
887  // operands (often constants).  This allows analysis of something like
888  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
889  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
890    if (AR->isAffine()) {
891      const SCEV *Start = AR->getStart();
892      const SCEV *Step = AR->getStepRecurrence(*this);
893      unsigned BitWidth = getTypeSizeInBits(AR->getType());
894      const Loop *L = AR->getLoop();
895
896      // If we have special knowledge that this addrec won't overflow,
897      // we don't need to do any further analysis.
898      if (AR->hasNoUnsignedWrap())
899        return getAddRecExpr(getZeroExtendExpr(Start, Ty),
900                             getZeroExtendExpr(Step, Ty),
901                             L);
902
903      // Check whether the backedge-taken count is SCEVCouldNotCompute.
904      // Note that this serves two purposes: It filters out loops that are
905      // simply not analyzable, and it covers the case where this code is
906      // being called from within backedge-taken count analysis, such that
907      // attempting to ask for the backedge-taken count would likely result
908      // in infinite recursion. In the later case, the analysis code will
909      // cope with a conservative value, and it will take care to purge
910      // that value once it has finished.
911      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
912      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
913        // Manually compute the final value for AR, checking for
914        // overflow.
915
916        // Check whether the backedge-taken count can be losslessly casted to
917        // the addrec's type. The count is always unsigned.
918        const SCEV *CastedMaxBECount =
919          getTruncateOrZeroExtend(MaxBECount, Start->getType());
920        const SCEV *RecastedMaxBECount =
921          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
922        if (MaxBECount == RecastedMaxBECount) {
923          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
924          // Check whether Start+Step*MaxBECount has no unsigned overflow.
925          const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
926          const SCEV *Add = getAddExpr(Start, ZMul);
927          const SCEV *OperandExtendedAdd =
928            getAddExpr(getZeroExtendExpr(Start, WideTy),
929                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
930                                  getZeroExtendExpr(Step, WideTy)));
931          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
932            // Return the expression with the addrec on the outside.
933            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
934                                 getZeroExtendExpr(Step, Ty),
935                                 L);
936
937          // Similar to above, only this time treat the step value as signed.
938          // This covers loops that count down.
939          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
940          Add = getAddExpr(Start, SMul);
941          OperandExtendedAdd =
942            getAddExpr(getZeroExtendExpr(Start, WideTy),
943                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
944                                  getSignExtendExpr(Step, WideTy)));
945          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
946            // Return the expression with the addrec on the outside.
947            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
948                                 getSignExtendExpr(Step, Ty),
949                                 L);
950        }
951
952        // If the backedge is guarded by a comparison with the pre-inc value
953        // the addrec is safe. Also, if the entry is guarded by a comparison
954        // with the start value and the backedge is guarded by a comparison
955        // with the post-inc value, the addrec is safe.
956        if (isKnownPositive(Step)) {
957          const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
958                                      getUnsignedRange(Step).getUnsignedMax());
959          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
960              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
961               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
962                                           AR->getPostIncExpr(*this), N)))
963            // Return the expression with the addrec on the outside.
964            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
965                                 getZeroExtendExpr(Step, Ty),
966                                 L);
967        } else if (isKnownNegative(Step)) {
968          const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
969                                      getSignedRange(Step).getSignedMin());
970          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
971              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
972               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
973                                           AR->getPostIncExpr(*this), N)))
974            // Return the expression with the addrec on the outside.
975            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
976                                 getSignExtendExpr(Step, Ty),
977                                 L);
978        }
979      }
980    }
981
982  // The cast wasn't folded; create an explicit cast node.
983  // Recompute the insert position, as it may have been invalidated.
984  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
985  SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
986                                                   Op, Ty);
987  UniqueSCEVs.InsertNode(S, IP);
988  return S;
989}
990
991const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
992                                               const Type *Ty) {
993  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
994         "This is not an extending conversion!");
995  assert(isSCEVable(Ty) &&
996         "This is not a conversion to a SCEVable type!");
997  Ty = getEffectiveSCEVType(Ty);
998
999  // Fold if the operand is constant.
1000  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
1001    const Type *IntTy = getEffectiveSCEVType(Ty);
1002    Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
1003    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
1004    return getConstant(cast<ConstantInt>(C));
1005  }
1006
1007  // sext(sext(x)) --> sext(x)
1008  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1009    return getSignExtendExpr(SS->getOperand(), Ty);
1010
1011  // Before doing any expensive analysis, check to see if we've already
1012  // computed a SCEV for this Op and Ty.
1013  FoldingSetNodeID ID;
1014  ID.AddInteger(scSignExtend);
1015  ID.AddPointer(Op);
1016  ID.AddPointer(Ty);
1017  void *IP = 0;
1018  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1019
1020  // If the input value is a chrec scev, and we can prove that the value
1021  // did not overflow the old, smaller, value, we can sign extend all of the
1022  // operands (often constants).  This allows analysis of something like
1023  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1024  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1025    if (AR->isAffine()) {
1026      const SCEV *Start = AR->getStart();
1027      const SCEV *Step = AR->getStepRecurrence(*this);
1028      unsigned BitWidth = getTypeSizeInBits(AR->getType());
1029      const Loop *L = AR->getLoop();
1030
1031      // If we have special knowledge that this addrec won't overflow,
1032      // we don't need to do any further analysis.
1033      if (AR->hasNoSignedWrap())
1034        return getAddRecExpr(getSignExtendExpr(Start, Ty),
1035                             getSignExtendExpr(Step, Ty),
1036                             L);
1037
1038      // Check whether the backedge-taken count is SCEVCouldNotCompute.
1039      // Note that this serves two purposes: It filters out loops that are
1040      // simply not analyzable, and it covers the case where this code is
1041      // being called from within backedge-taken count analysis, such that
1042      // attempting to ask for the backedge-taken count would likely result
1043      // in infinite recursion. In the later case, the analysis code will
1044      // cope with a conservative value, and it will take care to purge
1045      // that value once it has finished.
1046      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1047      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1048        // Manually compute the final value for AR, checking for
1049        // overflow.
1050
1051        // Check whether the backedge-taken count can be losslessly casted to
1052        // the addrec's type. The count is always unsigned.
1053        const SCEV *CastedMaxBECount =
1054          getTruncateOrZeroExtend(MaxBECount, Start->getType());
1055        const SCEV *RecastedMaxBECount =
1056          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1057        if (MaxBECount == RecastedMaxBECount) {
1058          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1059          // Check whether Start+Step*MaxBECount has no signed overflow.
1060          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1061          const SCEV *Add = getAddExpr(Start, SMul);
1062          const SCEV *OperandExtendedAdd =
1063            getAddExpr(getSignExtendExpr(Start, WideTy),
1064                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1065                                  getSignExtendExpr(Step, WideTy)));
1066          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
1067            // Return the expression with the addrec on the outside.
1068            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1069                                 getSignExtendExpr(Step, Ty),
1070                                 L);
1071
1072          // Similar to above, only this time treat the step value as unsigned.
1073          // This covers loops that count up with an unsigned step.
1074          const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
1075          Add = getAddExpr(Start, UMul);
1076          OperandExtendedAdd =
1077            getAddExpr(getSignExtendExpr(Start, WideTy),
1078                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1079                                  getZeroExtendExpr(Step, WideTy)));
1080          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
1081            // Return the expression with the addrec on the outside.
1082            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1083                                 getZeroExtendExpr(Step, Ty),
1084                                 L);
1085        }
1086
1087        // If the backedge is guarded by a comparison with the pre-inc value
1088        // the addrec is safe. Also, if the entry is guarded by a comparison
1089        // with the start value and the backedge is guarded by a comparison
1090        // with the post-inc value, the addrec is safe.
1091        if (isKnownPositive(Step)) {
1092          const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1093                                      getSignedRange(Step).getSignedMax());
1094          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
1095              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
1096               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1097                                           AR->getPostIncExpr(*this), N)))
1098            // Return the expression with the addrec on the outside.
1099            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1100                                 getSignExtendExpr(Step, Ty),
1101                                 L);
1102        } else if (isKnownNegative(Step)) {
1103          const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1104                                      getSignedRange(Step).getSignedMin());
1105          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
1106              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
1107               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1108                                           AR->getPostIncExpr(*this), N)))
1109            // Return the expression with the addrec on the outside.
1110            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1111                                 getSignExtendExpr(Step, Ty),
1112                                 L);
1113        }
1114      }
1115    }
1116
1117  // The cast wasn't folded; create an explicit cast node.
1118  // Recompute the insert position, as it may have been invalidated.
1119  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1120  SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1121                                                   Op, Ty);
1122  UniqueSCEVs.InsertNode(S, IP);
1123  return S;
1124}
1125
1126/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1127/// unspecified bits out to the given type.
1128///
1129const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1130                                              const Type *Ty) {
1131  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1132         "This is not an extending conversion!");
1133  assert(isSCEVable(Ty) &&
1134         "This is not a conversion to a SCEVable type!");
1135  Ty = getEffectiveSCEVType(Ty);
1136
1137  // Sign-extend negative constants.
1138  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1139    if (SC->getValue()->getValue().isNegative())
1140      return getSignExtendExpr(Op, Ty);
1141
1142  // Peel off a truncate cast.
1143  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1144    const SCEV *NewOp = T->getOperand();
1145    if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1146      return getAnyExtendExpr(NewOp, Ty);
1147    return getTruncateOrNoop(NewOp, Ty);
1148  }
1149
1150  // Next try a zext cast. If the cast is folded, use it.
1151  const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1152  if (!isa<SCEVZeroExtendExpr>(ZExt))
1153    return ZExt;
1154
1155  // Next try a sext cast. If the cast is folded, use it.
1156  const SCEV *SExt = getSignExtendExpr(Op, Ty);
1157  if (!isa<SCEVSignExtendExpr>(SExt))
1158    return SExt;
1159
1160  // Force the cast to be folded into the operands of an addrec.
1161  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1162    SmallVector<const SCEV *, 4> Ops;
1163    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1164         I != E; ++I)
1165      Ops.push_back(getAnyExtendExpr(*I, Ty));
1166    return getAddRecExpr(Ops, AR->getLoop());
1167  }
1168
1169  // If the expression is obviously signed, use the sext cast value.
1170  if (isa<SCEVSMaxExpr>(Op))
1171    return SExt;
1172
1173  // Absent any other information, use the zext cast value.
1174  return ZExt;
1175}
1176
1177/// CollectAddOperandsWithScales - Process the given Ops list, which is
1178/// a list of operands to be added under the given scale, update the given
1179/// map. This is a helper function for getAddRecExpr. As an example of
1180/// what it does, given a sequence of operands that would form an add
1181/// expression like this:
1182///
1183///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1184///
1185/// where A and B are constants, update the map with these values:
1186///
1187///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1188///
1189/// and add 13 + A*B*29 to AccumulatedConstant.
1190/// This will allow getAddRecExpr to produce this:
1191///
1192///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1193///
1194/// This form often exposes folding opportunities that are hidden in
1195/// the original operand list.
1196///
1197/// Return true iff it appears that any interesting folding opportunities
1198/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1199/// the common case where no interesting opportunities are present, and
1200/// is also used as a check to avoid infinite recursion.
1201///
1202static bool
1203CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1204                             SmallVector<const SCEV *, 8> &NewOps,
1205                             APInt &AccumulatedConstant,
1206                             const SCEV *const *Ops, size_t NumOperands,
1207                             const APInt &Scale,
1208                             ScalarEvolution &SE) {
1209  bool Interesting = false;
1210
1211  // Iterate over the add operands.
1212  for (unsigned i = 0, e = NumOperands; i != e; ++i) {
1213    const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1214    if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1215      APInt NewScale =
1216        Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1217      if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1218        // A multiplication of a constant with another add; recurse.
1219        const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1220        Interesting |=
1221          CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1222                                       Add->op_begin(), Add->getNumOperands(),
1223                                       NewScale, SE);
1224      } else {
1225        // A multiplication of a constant with some other value. Update
1226        // the map.
1227        SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1228        const SCEV *Key = SE.getMulExpr(MulOps);
1229        std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1230          M.insert(std::make_pair(Key, NewScale));
1231        if (Pair.second) {
1232          NewOps.push_back(Pair.first->first);
1233        } else {
1234          Pair.first->second += NewScale;
1235          // The map already had an entry for this value, which may indicate
1236          // a folding opportunity.
1237          Interesting = true;
1238        }
1239      }
1240    } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1241      // Pull a buried constant out to the outside.
1242      if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1243        Interesting = true;
1244      AccumulatedConstant += Scale * C->getValue()->getValue();
1245    } else {
1246      // An ordinary operand. Update the map.
1247      std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1248        M.insert(std::make_pair(Ops[i], Scale));
1249      if (Pair.second) {
1250        NewOps.push_back(Pair.first->first);
1251      } else {
1252        Pair.first->second += Scale;
1253        // The map already had an entry for this value, which may indicate
1254        // a folding opportunity.
1255        Interesting = true;
1256      }
1257    }
1258  }
1259
1260  return Interesting;
1261}
1262
1263namespace {
1264  struct APIntCompare {
1265    bool operator()(const APInt &LHS, const APInt &RHS) const {
1266      return LHS.ult(RHS);
1267    }
1268  };
1269}
1270
1271/// getAddExpr - Get a canonical add expression, or something simpler if
1272/// possible.
1273const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1274                                        bool HasNUW, bool HasNSW) {
1275  assert(!Ops.empty() && "Cannot get empty add!");
1276  if (Ops.size() == 1) return Ops[0];
1277#ifndef NDEBUG
1278  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1279  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1280    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1281           "SCEVAddExpr operand types don't match!");
1282#endif
1283
1284  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1285  if (!HasNUW && HasNSW) {
1286    bool All = true;
1287    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1288      if (!isKnownNonNegative(Ops[i])) {
1289        All = false;
1290        break;
1291      }
1292    if (All) HasNUW = true;
1293  }
1294
1295  // Sort by complexity, this groups all similar expression types together.
1296  GroupByComplexity(Ops, LI);
1297
1298  // If there are any constants, fold them together.
1299  unsigned Idx = 0;
1300  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1301    ++Idx;
1302    assert(Idx < Ops.size());
1303    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1304      // We found two constants, fold them together!
1305      Ops[0] = getConstant(LHSC->getValue()->getValue() +
1306                           RHSC->getValue()->getValue());
1307      if (Ops.size() == 2) return Ops[0];
1308      Ops.erase(Ops.begin()+1);  // Erase the folded element
1309      LHSC = cast<SCEVConstant>(Ops[0]);
1310    }
1311
1312    // If we are left with a constant zero being added, strip it off.
1313    if (LHSC->getValue()->isZero()) {
1314      Ops.erase(Ops.begin());
1315      --Idx;
1316    }
1317
1318    if (Ops.size() == 1) return Ops[0];
1319  }
1320
1321  // Okay, check to see if the same value occurs in the operand list twice.  If
1322  // so, merge them together into an multiply expression.  Since we sorted the
1323  // list, these values are required to be adjacent.
1324  const Type *Ty = Ops[0]->getType();
1325  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1326    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
1327      // Found a match, merge the two values into a multiply, and add any
1328      // remaining values to the result.
1329      const SCEV *Two = getConstant(Ty, 2);
1330      const SCEV *Mul = getMulExpr(Ops[i], Two);
1331      if (Ops.size() == 2)
1332        return Mul;
1333      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1334      Ops.push_back(Mul);
1335      return getAddExpr(Ops, HasNUW, HasNSW);
1336    }
1337
1338  // Check for truncates. If all the operands are truncated from the same
1339  // type, see if factoring out the truncate would permit the result to be
1340  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1341  // if the contents of the resulting outer trunc fold to something simple.
1342  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1343    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1344    const Type *DstType = Trunc->getType();
1345    const Type *SrcType = Trunc->getOperand()->getType();
1346    SmallVector<const SCEV *, 8> LargeOps;
1347    bool Ok = true;
1348    // Check all the operands to see if they can be represented in the
1349    // source type of the truncate.
1350    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1351      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1352        if (T->getOperand()->getType() != SrcType) {
1353          Ok = false;
1354          break;
1355        }
1356        LargeOps.push_back(T->getOperand());
1357      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1358        LargeOps.push_back(getAnyExtendExpr(C, SrcType));
1359      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1360        SmallVector<const SCEV *, 8> LargeMulOps;
1361        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1362          if (const SCEVTruncateExpr *T =
1363                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1364            if (T->getOperand()->getType() != SrcType) {
1365              Ok = false;
1366              break;
1367            }
1368            LargeMulOps.push_back(T->getOperand());
1369          } else if (const SCEVConstant *C =
1370                       dyn_cast<SCEVConstant>(M->getOperand(j))) {
1371            LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
1372          } else {
1373            Ok = false;
1374            break;
1375          }
1376        }
1377        if (Ok)
1378          LargeOps.push_back(getMulExpr(LargeMulOps));
1379      } else {
1380        Ok = false;
1381        break;
1382      }
1383    }
1384    if (Ok) {
1385      // Evaluate the expression in the larger type.
1386      const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
1387      // If it folds to something simple, use it. Otherwise, don't.
1388      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1389        return getTruncateExpr(Fold, DstType);
1390    }
1391  }
1392
1393  // Skip past any other cast SCEVs.
1394  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1395    ++Idx;
1396
1397  // If there are add operands they would be next.
1398  if (Idx < Ops.size()) {
1399    bool DeletedAdd = false;
1400    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1401      // If we have an add, expand the add operands onto the end of the operands
1402      // list.
1403      Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1404      Ops.erase(Ops.begin()+Idx);
1405      DeletedAdd = true;
1406    }
1407
1408    // If we deleted at least one add, we added operands to the end of the list,
1409    // and they are not necessarily sorted.  Recurse to resort and resimplify
1410    // any operands we just acquired.
1411    if (DeletedAdd)
1412      return getAddExpr(Ops);
1413  }
1414
1415  // Skip over the add expression until we get to a multiply.
1416  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1417    ++Idx;
1418
1419  // Check to see if there are any folding opportunities present with
1420  // operands multiplied by constant values.
1421  if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1422    uint64_t BitWidth = getTypeSizeInBits(Ty);
1423    DenseMap<const SCEV *, APInt> M;
1424    SmallVector<const SCEV *, 8> NewOps;
1425    APInt AccumulatedConstant(BitWidth, 0);
1426    if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1427                                     Ops.data(), Ops.size(),
1428                                     APInt(BitWidth, 1), *this)) {
1429      // Some interesting folding opportunity is present, so its worthwhile to
1430      // re-generate the operands list. Group the operands by constant scale,
1431      // to avoid multiplying by the same constant scale multiple times.
1432      std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1433      for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(),
1434           E = NewOps.end(); I != E; ++I)
1435        MulOpLists[M.find(*I)->second].push_back(*I);
1436      // Re-generate the operands list.
1437      Ops.clear();
1438      if (AccumulatedConstant != 0)
1439        Ops.push_back(getConstant(AccumulatedConstant));
1440      for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1441           I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1442        if (I->first != 0)
1443          Ops.push_back(getMulExpr(getConstant(I->first),
1444                                   getAddExpr(I->second)));
1445      if (Ops.empty())
1446        return getConstant(Ty, 0);
1447      if (Ops.size() == 1)
1448        return Ops[0];
1449      return getAddExpr(Ops);
1450    }
1451  }
1452
1453  // If we are adding something to a multiply expression, make sure the
1454  // something is not already an operand of the multiply.  If so, merge it into
1455  // the multiply.
1456  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1457    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1458    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1459      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1460      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1461        if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
1462          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1463          const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1464          if (Mul->getNumOperands() != 2) {
1465            // If the multiply has more than two operands, we must get the
1466            // Y*Z term.
1467            SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end());
1468            MulOps.erase(MulOps.begin()+MulOp);
1469            InnerMul = getMulExpr(MulOps);
1470          }
1471          const SCEV *One = getConstant(Ty, 1);
1472          const SCEV *AddOne = getAddExpr(InnerMul, One);
1473          const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]);
1474          if (Ops.size() == 2) return OuterMul;
1475          if (AddOp < Idx) {
1476            Ops.erase(Ops.begin()+AddOp);
1477            Ops.erase(Ops.begin()+Idx-1);
1478          } else {
1479            Ops.erase(Ops.begin()+Idx);
1480            Ops.erase(Ops.begin()+AddOp-1);
1481          }
1482          Ops.push_back(OuterMul);
1483          return getAddExpr(Ops);
1484        }
1485
1486      // Check this multiply against other multiplies being added together.
1487      for (unsigned OtherMulIdx = Idx+1;
1488           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1489           ++OtherMulIdx) {
1490        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1491        // If MulOp occurs in OtherMul, we can fold the two multiplies
1492        // together.
1493        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1494             OMulOp != e; ++OMulOp)
1495          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1496            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1497            const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
1498            if (Mul->getNumOperands() != 2) {
1499              SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1500                                                  Mul->op_end());
1501              MulOps.erase(MulOps.begin()+MulOp);
1502              InnerMul1 = getMulExpr(MulOps);
1503            }
1504            const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1505            if (OtherMul->getNumOperands() != 2) {
1506              SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1507                                                  OtherMul->op_end());
1508              MulOps.erase(MulOps.begin()+OMulOp);
1509              InnerMul2 = getMulExpr(MulOps);
1510            }
1511            const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1512            const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1513            if (Ops.size() == 2) return OuterMul;
1514            Ops.erase(Ops.begin()+Idx);
1515            Ops.erase(Ops.begin()+OtherMulIdx-1);
1516            Ops.push_back(OuterMul);
1517            return getAddExpr(Ops);
1518          }
1519      }
1520    }
1521  }
1522
1523  // If there are any add recurrences in the operands list, see if any other
1524  // added values are loop invariant.  If so, we can fold them into the
1525  // recurrence.
1526  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1527    ++Idx;
1528
1529  // Scan over all recurrences, trying to fold loop invariants into them.
1530  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1531    // Scan all of the other operands to this add and add them to the vector if
1532    // they are loop invariant w.r.t. the recurrence.
1533    SmallVector<const SCEV *, 8> LIOps;
1534    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1535    const Loop *AddRecLoop = AddRec->getLoop();
1536    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1537      if (Ops[i]->isLoopInvariant(AddRecLoop)) {
1538        LIOps.push_back(Ops[i]);
1539        Ops.erase(Ops.begin()+i);
1540        --i; --e;
1541      }
1542
1543    // If we found some loop invariants, fold them into the recurrence.
1544    if (!LIOps.empty()) {
1545      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1546      LIOps.push_back(AddRec->getStart());
1547
1548      SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1549                                             AddRec->op_end());
1550      AddRecOps[0] = getAddExpr(LIOps);
1551
1552      // It's tempting to propagate NUW/NSW flags here, but nuw/nsw addition
1553      // is not associative so this isn't necessarily safe.
1554      const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop);
1555
1556      // If all of the other operands were loop invariant, we are done.
1557      if (Ops.size() == 1) return NewRec;
1558
1559      // Otherwise, add the folded AddRec by the non-liv parts.
1560      for (unsigned i = 0;; ++i)
1561        if (Ops[i] == AddRec) {
1562          Ops[i] = NewRec;
1563          break;
1564        }
1565      return getAddExpr(Ops);
1566    }
1567
1568    // Okay, if there weren't any loop invariants to be folded, check to see if
1569    // there are multiple AddRec's with the same loop induction variable being
1570    // added together.  If so, we can fold them.
1571    for (unsigned OtherIdx = Idx+1;
1572         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1573      if (OtherIdx != Idx) {
1574        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1575        if (AddRecLoop == OtherAddRec->getLoop()) {
1576          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
1577          SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(),
1578                                              AddRec->op_end());
1579          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1580            if (i >= NewOps.size()) {
1581              NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1582                            OtherAddRec->op_end());
1583              break;
1584            }
1585            NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
1586          }
1587          const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRecLoop);
1588
1589          if (Ops.size() == 2) return NewAddRec;
1590
1591          Ops.erase(Ops.begin()+Idx);
1592          Ops.erase(Ops.begin()+OtherIdx-1);
1593          Ops.push_back(NewAddRec);
1594          return getAddExpr(Ops);
1595        }
1596      }
1597
1598    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1599    // next one.
1600  }
1601
1602  // Okay, it looks like we really DO need an add expr.  Check to see if we
1603  // already have one, otherwise create a new one.
1604  FoldingSetNodeID ID;
1605  ID.AddInteger(scAddExpr);
1606  ID.AddInteger(Ops.size());
1607  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1608    ID.AddPointer(Ops[i]);
1609  void *IP = 0;
1610  SCEVAddExpr *S =
1611    static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1612  if (!S) {
1613    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1614    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1615    S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1616                                        O, Ops.size());
1617    UniqueSCEVs.InsertNode(S, IP);
1618  }
1619  if (HasNUW) S->setHasNoUnsignedWrap(true);
1620  if (HasNSW) S->setHasNoSignedWrap(true);
1621  return S;
1622}
1623
1624/// getMulExpr - Get a canonical multiply expression, or something simpler if
1625/// possible.
1626const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1627                                        bool HasNUW, bool HasNSW) {
1628  assert(!Ops.empty() && "Cannot get empty mul!");
1629  if (Ops.size() == 1) return Ops[0];
1630#ifndef NDEBUG
1631  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1632    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1633           getEffectiveSCEVType(Ops[0]->getType()) &&
1634           "SCEVMulExpr operand types don't match!");
1635#endif
1636
1637  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1638  if (!HasNUW && HasNSW) {
1639    bool All = true;
1640    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1641      if (!isKnownNonNegative(Ops[i])) {
1642        All = false;
1643        break;
1644      }
1645    if (All) HasNUW = true;
1646  }
1647
1648  // Sort by complexity, this groups all similar expression types together.
1649  GroupByComplexity(Ops, LI);
1650
1651  // If there are any constants, fold them together.
1652  unsigned Idx = 0;
1653  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1654
1655    // C1*(C2+V) -> C1*C2 + C1*V
1656    if (Ops.size() == 2)
1657      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1658        if (Add->getNumOperands() == 2 &&
1659            isa<SCEVConstant>(Add->getOperand(0)))
1660          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1661                            getMulExpr(LHSC, Add->getOperand(1)));
1662
1663    ++Idx;
1664    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1665      // We found two constants, fold them together!
1666      ConstantInt *Fold = ConstantInt::get(getContext(),
1667                                           LHSC->getValue()->getValue() *
1668                                           RHSC->getValue()->getValue());
1669      Ops[0] = getConstant(Fold);
1670      Ops.erase(Ops.begin()+1);  // Erase the folded element
1671      if (Ops.size() == 1) return Ops[0];
1672      LHSC = cast<SCEVConstant>(Ops[0]);
1673    }
1674
1675    // If we are left with a constant one being multiplied, strip it off.
1676    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1677      Ops.erase(Ops.begin());
1678      --Idx;
1679    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1680      // If we have a multiply of zero, it will always be zero.
1681      return Ops[0];
1682    } else if (Ops[0]->isAllOnesValue()) {
1683      // If we have a mul by -1 of an add, try distributing the -1 among the
1684      // add operands.
1685      if (Ops.size() == 2)
1686        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1687          SmallVector<const SCEV *, 4> NewOps;
1688          bool AnyFolded = false;
1689          for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1690               I != E; ++I) {
1691            const SCEV *Mul = getMulExpr(Ops[0], *I);
1692            if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1693            NewOps.push_back(Mul);
1694          }
1695          if (AnyFolded)
1696            return getAddExpr(NewOps);
1697        }
1698    }
1699
1700    if (Ops.size() == 1)
1701      return Ops[0];
1702  }
1703
1704  // Skip over the add expression until we get to a multiply.
1705  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1706    ++Idx;
1707
1708  // If there are mul operands inline them all into this expression.
1709  if (Idx < Ops.size()) {
1710    bool DeletedMul = false;
1711    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1712      // If we have an mul, expand the mul operands onto the end of the operands
1713      // list.
1714      Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1715      Ops.erase(Ops.begin()+Idx);
1716      DeletedMul = true;
1717    }
1718
1719    // If we deleted at least one mul, we added operands to the end of the list,
1720    // and they are not necessarily sorted.  Recurse to resort and resimplify
1721    // any operands we just acquired.
1722    if (DeletedMul)
1723      return getMulExpr(Ops);
1724  }
1725
1726  // If there are any add recurrences in the operands list, see if any other
1727  // added values are loop invariant.  If so, we can fold them into the
1728  // recurrence.
1729  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1730    ++Idx;
1731
1732  // Scan over all recurrences, trying to fold loop invariants into them.
1733  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1734    // Scan all of the other operands to this mul and add them to the vector if
1735    // they are loop invariant w.r.t. the recurrence.
1736    SmallVector<const SCEV *, 8> LIOps;
1737    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1738    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1739      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1740        LIOps.push_back(Ops[i]);
1741        Ops.erase(Ops.begin()+i);
1742        --i; --e;
1743      }
1744
1745    // If we found some loop invariants, fold them into the recurrence.
1746    if (!LIOps.empty()) {
1747      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1748      SmallVector<const SCEV *, 4> NewOps;
1749      NewOps.reserve(AddRec->getNumOperands());
1750      const SCEV *Scale = getMulExpr(LIOps);
1751      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1752        NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1753
1754      // It's tempting to propagate the NSW flag here, but nsw multiplication
1755      // is not associative so this isn't necessarily safe.
1756      const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(),
1757                                         HasNUW && AddRec->hasNoUnsignedWrap(),
1758                                         /*HasNSW=*/false);
1759
1760      // If all of the other operands were loop invariant, we are done.
1761      if (Ops.size() == 1) return NewRec;
1762
1763      // Otherwise, multiply the folded AddRec by the non-liv parts.
1764      for (unsigned i = 0;; ++i)
1765        if (Ops[i] == AddRec) {
1766          Ops[i] = NewRec;
1767          break;
1768        }
1769      return getMulExpr(Ops);
1770    }
1771
1772    // Okay, if there weren't any loop invariants to be folded, check to see if
1773    // there are multiple AddRec's with the same loop induction variable being
1774    // multiplied together.  If so, we can fold them.
1775    for (unsigned OtherIdx = Idx+1;
1776         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1777      if (OtherIdx != Idx) {
1778        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1779        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1780          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
1781          const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1782          const SCEV *NewStart = getMulExpr(F->getStart(),
1783                                                 G->getStart());
1784          const SCEV *B = F->getStepRecurrence(*this);
1785          const SCEV *D = G->getStepRecurrence(*this);
1786          const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1787                                          getMulExpr(G, B),
1788                                          getMulExpr(B, D));
1789          const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1790                                               F->getLoop());
1791          if (Ops.size() == 2) return NewAddRec;
1792
1793          Ops.erase(Ops.begin()+Idx);
1794          Ops.erase(Ops.begin()+OtherIdx-1);
1795          Ops.push_back(NewAddRec);
1796          return getMulExpr(Ops);
1797        }
1798      }
1799
1800    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1801    // next one.
1802  }
1803
1804  // Okay, it looks like we really DO need an mul expr.  Check to see if we
1805  // already have one, otherwise create a new one.
1806  FoldingSetNodeID ID;
1807  ID.AddInteger(scMulExpr);
1808  ID.AddInteger(Ops.size());
1809  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1810    ID.AddPointer(Ops[i]);
1811  void *IP = 0;
1812  SCEVMulExpr *S =
1813    static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1814  if (!S) {
1815    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1816    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1817    S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1818                                        O, Ops.size());
1819    UniqueSCEVs.InsertNode(S, IP);
1820  }
1821  if (HasNUW) S->setHasNoUnsignedWrap(true);
1822  if (HasNSW) S->setHasNoSignedWrap(true);
1823  return S;
1824}
1825
1826/// getUDivExpr - Get a canonical unsigned division expression, or something
1827/// simpler if possible.
1828const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1829                                         const SCEV *RHS) {
1830  assert(getEffectiveSCEVType(LHS->getType()) ==
1831         getEffectiveSCEVType(RHS->getType()) &&
1832         "SCEVUDivExpr operand types don't match!");
1833
1834  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1835    if (RHSC->getValue()->equalsInt(1))
1836      return LHS;                               // X udiv 1 --> x
1837    // If the denominator is zero, the result of the udiv is undefined. Don't
1838    // try to analyze it, because the resolution chosen here may differ from
1839    // the resolution chosen in other parts of the compiler.
1840    if (!RHSC->getValue()->isZero()) {
1841      // Determine if the division can be folded into the operands of
1842      // its operands.
1843      // TODO: Generalize this to non-constants by using known-bits information.
1844      const Type *Ty = LHS->getType();
1845      unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1846      unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1847      // For non-power-of-two values, effectively round the value up to the
1848      // nearest power of two.
1849      if (!RHSC->getValue()->getValue().isPowerOf2())
1850        ++MaxShiftAmt;
1851      const IntegerType *ExtTy =
1852        IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1853      // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1854      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1855        if (const SCEVConstant *Step =
1856              dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1857          if (!Step->getValue()->getValue()
1858                .urem(RHSC->getValue()->getValue()) &&
1859              getZeroExtendExpr(AR, ExtTy) ==
1860              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1861                            getZeroExtendExpr(Step, ExtTy),
1862                            AR->getLoop())) {
1863            SmallVector<const SCEV *, 4> Operands;
1864            for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1865              Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1866            return getAddRecExpr(Operands, AR->getLoop());
1867          }
1868      // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1869      if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1870        SmallVector<const SCEV *, 4> Operands;
1871        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1872          Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1873        if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1874          // Find an operand that's safely divisible.
1875          for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1876            const SCEV *Op = M->getOperand(i);
1877            const SCEV *Div = getUDivExpr(Op, RHSC);
1878            if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1879              Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1880                                                      M->op_end());
1881              Operands[i] = Div;
1882              return getMulExpr(Operands);
1883            }
1884          }
1885      }
1886      // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1887      if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1888        SmallVector<const SCEV *, 4> Operands;
1889        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1890          Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1891        if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1892          Operands.clear();
1893          for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1894            const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
1895            if (isa<SCEVUDivExpr>(Op) ||
1896                getMulExpr(Op, RHS) != A->getOperand(i))
1897              break;
1898            Operands.push_back(Op);
1899          }
1900          if (Operands.size() == A->getNumOperands())
1901            return getAddExpr(Operands);
1902        }
1903      }
1904
1905      // Fold if both operands are constant.
1906      if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1907        Constant *LHSCV = LHSC->getValue();
1908        Constant *RHSCV = RHSC->getValue();
1909        return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1910                                                                   RHSCV)));
1911      }
1912    }
1913  }
1914
1915  FoldingSetNodeID ID;
1916  ID.AddInteger(scUDivExpr);
1917  ID.AddPointer(LHS);
1918  ID.AddPointer(RHS);
1919  void *IP = 0;
1920  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1921  SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
1922                                             LHS, RHS);
1923  UniqueSCEVs.InsertNode(S, IP);
1924  return S;
1925}
1926
1927
1928/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1929/// Simplify the expression as much as possible.
1930const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
1931                                           const SCEV *Step, const Loop *L,
1932                                           bool HasNUW, bool HasNSW) {
1933  SmallVector<const SCEV *, 4> Operands;
1934  Operands.push_back(Start);
1935  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1936    if (StepChrec->getLoop() == L) {
1937      Operands.insert(Operands.end(), StepChrec->op_begin(),
1938                      StepChrec->op_end());
1939      return getAddRecExpr(Operands, L);
1940    }
1941
1942  Operands.push_back(Step);
1943  return getAddRecExpr(Operands, L, HasNUW, HasNSW);
1944}
1945
1946/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1947/// Simplify the expression as much as possible.
1948const SCEV *
1949ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
1950                               const Loop *L,
1951                               bool HasNUW, bool HasNSW) {
1952  if (Operands.size() == 1) return Operands[0];
1953#ifndef NDEBUG
1954  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1955    assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1956           getEffectiveSCEVType(Operands[0]->getType()) &&
1957           "SCEVAddRecExpr operand types don't match!");
1958#endif
1959
1960  if (Operands.back()->isZero()) {
1961    Operands.pop_back();
1962    return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0}  -->  X
1963  }
1964
1965  // It's tempting to want to call getMaxBackedgeTakenCount count here and
1966  // use that information to infer NUW and NSW flags. However, computing a
1967  // BE count requires calling getAddRecExpr, so we may not yet have a
1968  // meaningful BE count at this point (and if we don't, we'd be stuck
1969  // with a SCEVCouldNotCompute as the cached BE count).
1970
1971  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1972  if (!HasNUW && HasNSW) {
1973    bool All = true;
1974    for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1975      if (!isKnownNonNegative(Operands[i])) {
1976        All = false;
1977        break;
1978      }
1979    if (All) HasNUW = true;
1980  }
1981
1982  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
1983  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
1984    const Loop *NestedLoop = NestedAR->getLoop();
1985    if (L->contains(NestedLoop->getHeader()) ?
1986        (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
1987        (!NestedLoop->contains(L->getHeader()) &&
1988         DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
1989      SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
1990                                                  NestedAR->op_end());
1991      Operands[0] = NestedAR->getStart();
1992      // AddRecs require their operands be loop-invariant with respect to their
1993      // loops. Don't perform this transformation if it would break this
1994      // requirement.
1995      bool AllInvariant = true;
1996      for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1997        if (!Operands[i]->isLoopInvariant(L)) {
1998          AllInvariant = false;
1999          break;
2000        }
2001      if (AllInvariant) {
2002        NestedOperands[0] = getAddRecExpr(Operands, L);
2003        AllInvariant = true;
2004        for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2005          if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
2006            AllInvariant = false;
2007            break;
2008          }
2009        if (AllInvariant)
2010          // Ok, both add recurrences are valid after the transformation.
2011          return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
2012      }
2013      // Reset Operands to its original state.
2014      Operands[0] = NestedAR;
2015    }
2016  }
2017
2018  // Okay, it looks like we really DO need an addrec expr.  Check to see if we
2019  // already have one, otherwise create a new one.
2020  FoldingSetNodeID ID;
2021  ID.AddInteger(scAddRecExpr);
2022  ID.AddInteger(Operands.size());
2023  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2024    ID.AddPointer(Operands[i]);
2025  ID.AddPointer(L);
2026  void *IP = 0;
2027  SCEVAddRecExpr *S =
2028    static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2029  if (!S) {
2030    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2031    std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2032    S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2033                                           O, Operands.size(), L);
2034    UniqueSCEVs.InsertNode(S, IP);
2035  }
2036  if (HasNUW) S->setHasNoUnsignedWrap(true);
2037  if (HasNSW) S->setHasNoSignedWrap(true);
2038  return S;
2039}
2040
2041const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2042                                         const SCEV *RHS) {
2043  SmallVector<const SCEV *, 2> Ops;
2044  Ops.push_back(LHS);
2045  Ops.push_back(RHS);
2046  return getSMaxExpr(Ops);
2047}
2048
2049const SCEV *
2050ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2051  assert(!Ops.empty() && "Cannot get empty smax!");
2052  if (Ops.size() == 1) return Ops[0];
2053#ifndef NDEBUG
2054  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2055    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2056           getEffectiveSCEVType(Ops[0]->getType()) &&
2057           "SCEVSMaxExpr operand types don't match!");
2058#endif
2059
2060  // Sort by complexity, this groups all similar expression types together.
2061  GroupByComplexity(Ops, LI);
2062
2063  // If there are any constants, fold them together.
2064  unsigned Idx = 0;
2065  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2066    ++Idx;
2067    assert(Idx < Ops.size());
2068    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2069      // We found two constants, fold them together!
2070      ConstantInt *Fold = ConstantInt::get(getContext(),
2071                              APIntOps::smax(LHSC->getValue()->getValue(),
2072                                             RHSC->getValue()->getValue()));
2073      Ops[0] = getConstant(Fold);
2074      Ops.erase(Ops.begin()+1);  // Erase the folded element
2075      if (Ops.size() == 1) return Ops[0];
2076      LHSC = cast<SCEVConstant>(Ops[0]);
2077    }
2078
2079    // If we are left with a constant minimum-int, strip it off.
2080    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2081      Ops.erase(Ops.begin());
2082      --Idx;
2083    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2084      // If we have an smax with a constant maximum-int, it will always be
2085      // maximum-int.
2086      return Ops[0];
2087    }
2088
2089    if (Ops.size() == 1) return Ops[0];
2090  }
2091
2092  // Find the first SMax
2093  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2094    ++Idx;
2095
2096  // Check to see if one of the operands is an SMax. If so, expand its operands
2097  // onto our operand list, and recurse to simplify.
2098  if (Idx < Ops.size()) {
2099    bool DeletedSMax = false;
2100    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
2101      Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
2102      Ops.erase(Ops.begin()+Idx);
2103      DeletedSMax = true;
2104    }
2105
2106    if (DeletedSMax)
2107      return getSMaxExpr(Ops);
2108  }
2109
2110  // Okay, check to see if the same value occurs in the operand list twice.  If
2111  // so, delete one.  Since we sorted the list, these values are required to
2112  // be adjacent.
2113  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2114    //  X smax Y smax Y  -->  X smax Y
2115    //  X smax Y         -->  X, if X is always greater than Y
2116    if (Ops[i] == Ops[i+1] ||
2117        isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2118      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2119      --i; --e;
2120    } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
2121      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2122      --i; --e;
2123    }
2124
2125  if (Ops.size() == 1) return Ops[0];
2126
2127  assert(!Ops.empty() && "Reduced smax down to nothing!");
2128
2129  // Okay, it looks like we really DO need an smax expr.  Check to see if we
2130  // already have one, otherwise create a new one.
2131  FoldingSetNodeID ID;
2132  ID.AddInteger(scSMaxExpr);
2133  ID.AddInteger(Ops.size());
2134  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2135    ID.AddPointer(Ops[i]);
2136  void *IP = 0;
2137  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2138  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2139  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2140  SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2141                                             O, Ops.size());
2142  UniqueSCEVs.InsertNode(S, IP);
2143  return S;
2144}
2145
2146const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2147                                         const SCEV *RHS) {
2148  SmallVector<const SCEV *, 2> Ops;
2149  Ops.push_back(LHS);
2150  Ops.push_back(RHS);
2151  return getUMaxExpr(Ops);
2152}
2153
2154const SCEV *
2155ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2156  assert(!Ops.empty() && "Cannot get empty umax!");
2157  if (Ops.size() == 1) return Ops[0];
2158#ifndef NDEBUG
2159  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2160    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2161           getEffectiveSCEVType(Ops[0]->getType()) &&
2162           "SCEVUMaxExpr operand types don't match!");
2163#endif
2164
2165  // Sort by complexity, this groups all similar expression types together.
2166  GroupByComplexity(Ops, LI);
2167
2168  // If there are any constants, fold them together.
2169  unsigned Idx = 0;
2170  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2171    ++Idx;
2172    assert(Idx < Ops.size());
2173    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2174      // We found two constants, fold them together!
2175      ConstantInt *Fold = ConstantInt::get(getContext(),
2176                              APIntOps::umax(LHSC->getValue()->getValue(),
2177                                             RHSC->getValue()->getValue()));
2178      Ops[0] = getConstant(Fold);
2179      Ops.erase(Ops.begin()+1);  // Erase the folded element
2180      if (Ops.size() == 1) return Ops[0];
2181      LHSC = cast<SCEVConstant>(Ops[0]);
2182    }
2183
2184    // If we are left with a constant minimum-int, strip it off.
2185    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2186      Ops.erase(Ops.begin());
2187      --Idx;
2188    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2189      // If we have an umax with a constant maximum-int, it will always be
2190      // maximum-int.
2191      return Ops[0];
2192    }
2193
2194    if (Ops.size() == 1) return Ops[0];
2195  }
2196
2197  // Find the first UMax
2198  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2199    ++Idx;
2200
2201  // Check to see if one of the operands is a UMax. If so, expand its operands
2202  // onto our operand list, and recurse to simplify.
2203  if (Idx < Ops.size()) {
2204    bool DeletedUMax = false;
2205    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
2206      Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
2207      Ops.erase(Ops.begin()+Idx);
2208      DeletedUMax = true;
2209    }
2210
2211    if (DeletedUMax)
2212      return getUMaxExpr(Ops);
2213  }
2214
2215  // Okay, check to see if the same value occurs in the operand list twice.  If
2216  // so, delete one.  Since we sorted the list, these values are required to
2217  // be adjacent.
2218  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2219    //  X umax Y umax Y  -->  X umax Y
2220    //  X umax Y         -->  X, if X is always greater than Y
2221    if (Ops[i] == Ops[i+1] ||
2222        isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2223      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2224      --i; --e;
2225    } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
2226      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2227      --i; --e;
2228    }
2229
2230  if (Ops.size() == 1) return Ops[0];
2231
2232  assert(!Ops.empty() && "Reduced umax down to nothing!");
2233
2234  // Okay, it looks like we really DO need a umax expr.  Check to see if we
2235  // already have one, otherwise create a new one.
2236  FoldingSetNodeID ID;
2237  ID.AddInteger(scUMaxExpr);
2238  ID.AddInteger(Ops.size());
2239  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2240    ID.AddPointer(Ops[i]);
2241  void *IP = 0;
2242  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2243  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2244  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2245  SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2246                                             O, Ops.size());
2247  UniqueSCEVs.InsertNode(S, IP);
2248  return S;
2249}
2250
2251const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2252                                         const SCEV *RHS) {
2253  // ~smax(~x, ~y) == smin(x, y).
2254  return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2255}
2256
2257const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2258                                         const SCEV *RHS) {
2259  // ~umax(~x, ~y) == umin(x, y)
2260  return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2261}
2262
2263const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
2264  // If we have TargetData, we can bypass creating a target-independent
2265  // constant expression and then folding it back into a ConstantInt.
2266  // This is just a compile-time optimization.
2267  if (TD)
2268    return getConstant(TD->getIntPtrType(getContext()),
2269                       TD->getTypeAllocSize(AllocTy));
2270
2271  Constant *C = ConstantExpr::getSizeOf(AllocTy);
2272  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2273    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2274      C = Folded;
2275  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2276  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2277}
2278
2279const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2280  Constant *C = ConstantExpr::getAlignOf(AllocTy);
2281  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2282    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2283      C = Folded;
2284  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2285  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2286}
2287
2288const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2289                                             unsigned FieldNo) {
2290  // If we have TargetData, we can bypass creating a target-independent
2291  // constant expression and then folding it back into a ConstantInt.
2292  // This is just a compile-time optimization.
2293  if (TD)
2294    return getConstant(TD->getIntPtrType(getContext()),
2295                       TD->getStructLayout(STy)->getElementOffset(FieldNo));
2296
2297  Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2298  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2299    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2300      C = Folded;
2301  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2302  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2303}
2304
2305const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2306                                             Constant *FieldNo) {
2307  Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
2308  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2309    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2310      C = Folded;
2311  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
2312  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2313}
2314
2315const SCEV *ScalarEvolution::getUnknown(Value *V) {
2316  // Don't attempt to do anything other than create a SCEVUnknown object
2317  // here.  createSCEV only calls getUnknown after checking for all other
2318  // interesting possibilities, and any other code that calls getUnknown
2319  // is doing so in order to hide a value from SCEV canonicalization.
2320
2321  FoldingSetNodeID ID;
2322  ID.AddInteger(scUnknown);
2323  ID.AddPointer(V);
2324  void *IP = 0;
2325  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2326  SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V);
2327  UniqueSCEVs.InsertNode(S, IP);
2328  return S;
2329}
2330
2331//===----------------------------------------------------------------------===//
2332//            Basic SCEV Analysis and PHI Idiom Recognition Code
2333//
2334
2335/// isSCEVable - Test if values of the given type are analyzable within
2336/// the SCEV framework. This primarily includes integer types, and it
2337/// can optionally include pointer types if the ScalarEvolution class
2338/// has access to target-specific information.
2339bool ScalarEvolution::isSCEVable(const Type *Ty) const {
2340  // Integers and pointers are always SCEVable.
2341  return Ty->isIntegerTy() || Ty->isPointerTy();
2342}
2343
2344/// getTypeSizeInBits - Return the size in bits of the specified type,
2345/// for which isSCEVable must return true.
2346uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
2347  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2348
2349  // If we have a TargetData, use it!
2350  if (TD)
2351    return TD->getTypeSizeInBits(Ty);
2352
2353  // Integer types have fixed sizes.
2354  if (Ty->isIntegerTy())
2355    return Ty->getPrimitiveSizeInBits();
2356
2357  // The only other support type is pointer. Without TargetData, conservatively
2358  // assume pointers are 64-bit.
2359  assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
2360  return 64;
2361}
2362
2363/// getEffectiveSCEVType - Return a type with the same bitwidth as
2364/// the given type and which represents how SCEV will treat the given
2365/// type, for which isSCEVable must return true. For pointer types,
2366/// this is the pointer-sized integer type.
2367const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
2368  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2369
2370  if (Ty->isIntegerTy())
2371    return Ty;
2372
2373  // The only other support type is pointer.
2374  assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
2375  if (TD) return TD->getIntPtrType(getContext());
2376
2377  // Without TargetData, conservatively assume pointers are 64-bit.
2378  return Type::getInt64Ty(getContext());
2379}
2380
2381const SCEV *ScalarEvolution::getCouldNotCompute() {
2382  return &CouldNotCompute;
2383}
2384
2385/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2386/// expression and create a new one.
2387const SCEV *ScalarEvolution::getSCEV(Value *V) {
2388  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
2389
2390  std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V);
2391  if (I != Scalars.end()) return I->second;
2392  const SCEV *S = createSCEV(V);
2393  Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
2394  return S;
2395}
2396
2397/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2398///
2399const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
2400  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2401    return getConstant(
2402               cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
2403
2404  const Type *Ty = V->getType();
2405  Ty = getEffectiveSCEVType(Ty);
2406  return getMulExpr(V,
2407                  getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
2408}
2409
2410/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2411const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
2412  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2413    return getConstant(
2414                cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
2415
2416  const Type *Ty = V->getType();
2417  Ty = getEffectiveSCEVType(Ty);
2418  const SCEV *AllOnes =
2419                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
2420  return getMinusSCEV(AllOnes, V);
2421}
2422
2423/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2424///
2425const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2426                                          const SCEV *RHS) {
2427  // X - Y --> X + -Y
2428  return getAddExpr(LHS, getNegativeSCEV(RHS));
2429}
2430
2431/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2432/// input value to the specified type.  If the type must be extended, it is zero
2433/// extended.
2434const SCEV *
2435ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
2436                                         const Type *Ty) {
2437  const Type *SrcTy = V->getType();
2438  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2439         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2440         "Cannot truncate or zero extend with non-integer arguments!");
2441  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2442    return V;  // No conversion
2443  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2444    return getTruncateExpr(V, Ty);
2445  return getZeroExtendExpr(V, Ty);
2446}
2447
2448/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2449/// input value to the specified type.  If the type must be extended, it is sign
2450/// extended.
2451const SCEV *
2452ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
2453                                         const Type *Ty) {
2454  const Type *SrcTy = V->getType();
2455  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2456         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2457         "Cannot truncate or zero extend with non-integer arguments!");
2458  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2459    return V;  // No conversion
2460  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2461    return getTruncateExpr(V, Ty);
2462  return getSignExtendExpr(V, Ty);
2463}
2464
2465/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2466/// input value to the specified type.  If the type must be extended, it is zero
2467/// extended.  The conversion must not be narrowing.
2468const SCEV *
2469ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
2470  const Type *SrcTy = V->getType();
2471  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2472         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2473         "Cannot noop or zero extend with non-integer arguments!");
2474  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2475         "getNoopOrZeroExtend cannot truncate!");
2476  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2477    return V;  // No conversion
2478  return getZeroExtendExpr(V, Ty);
2479}
2480
2481/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2482/// input value to the specified type.  If the type must be extended, it is sign
2483/// extended.  The conversion must not be narrowing.
2484const SCEV *
2485ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
2486  const Type *SrcTy = V->getType();
2487  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2488         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2489         "Cannot noop or sign extend with non-integer arguments!");
2490  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2491         "getNoopOrSignExtend cannot truncate!");
2492  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2493    return V;  // No conversion
2494  return getSignExtendExpr(V, Ty);
2495}
2496
2497/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2498/// the input value to the specified type. If the type must be extended,
2499/// it is extended with unspecified bits. The conversion must not be
2500/// narrowing.
2501const SCEV *
2502ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
2503  const Type *SrcTy = V->getType();
2504  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2505         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2506         "Cannot noop or any extend with non-integer arguments!");
2507  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2508         "getNoopOrAnyExtend cannot truncate!");
2509  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2510    return V;  // No conversion
2511  return getAnyExtendExpr(V, Ty);
2512}
2513
2514/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2515/// input value to the specified type.  The conversion must not be widening.
2516const SCEV *
2517ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
2518  const Type *SrcTy = V->getType();
2519  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2520         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2521         "Cannot truncate or noop with non-integer arguments!");
2522  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2523         "getTruncateOrNoop cannot extend!");
2524  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2525    return V;  // No conversion
2526  return getTruncateExpr(V, Ty);
2527}
2528
2529/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2530/// the types using zero-extension, and then perform a umax operation
2531/// with them.
2532const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2533                                                        const SCEV *RHS) {
2534  const SCEV *PromotedLHS = LHS;
2535  const SCEV *PromotedRHS = RHS;
2536
2537  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2538    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2539  else
2540    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2541
2542  return getUMaxExpr(PromotedLHS, PromotedRHS);
2543}
2544
2545/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2546/// the types using zero-extension, and then perform a umin operation
2547/// with them.
2548const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2549                                                        const SCEV *RHS) {
2550  const SCEV *PromotedLHS = LHS;
2551  const SCEV *PromotedRHS = RHS;
2552
2553  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2554    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2555  else
2556    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2557
2558  return getUMinExpr(PromotedLHS, PromotedRHS);
2559}
2560
2561/// PushDefUseChildren - Push users of the given Instruction
2562/// onto the given Worklist.
2563static void
2564PushDefUseChildren(Instruction *I,
2565                   SmallVectorImpl<Instruction *> &Worklist) {
2566  // Push the def-use children onto the Worklist stack.
2567  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2568       UI != UE; ++UI)
2569    Worklist.push_back(cast<Instruction>(UI));
2570}
2571
2572/// ForgetSymbolicValue - This looks up computed SCEV values for all
2573/// instructions that depend on the given instruction and removes them from
2574/// the Scalars map if they reference SymName. This is used during PHI
2575/// resolution.
2576void
2577ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
2578  SmallVector<Instruction *, 16> Worklist;
2579  PushDefUseChildren(PN, Worklist);
2580
2581  SmallPtrSet<Instruction *, 8> Visited;
2582  Visited.insert(PN);
2583  while (!Worklist.empty()) {
2584    Instruction *I = Worklist.pop_back_val();
2585    if (!Visited.insert(I)) continue;
2586
2587    std::map<SCEVCallbackVH, const SCEV *>::iterator It =
2588      Scalars.find(static_cast<Value *>(I));
2589    if (It != Scalars.end()) {
2590      // Short-circuit the def-use traversal if the symbolic name
2591      // ceases to appear in expressions.
2592      if (It->second != SymName && !It->second->hasOperand(SymName))
2593        continue;
2594
2595      // SCEVUnknown for a PHI either means that it has an unrecognized
2596      // structure, it's a PHI that's in the progress of being computed
2597      // by createNodeForPHI, or it's a single-value PHI. In the first case,
2598      // additional loop trip count information isn't going to change anything.
2599      // In the second case, createNodeForPHI will perform the necessary
2600      // updates on its own when it gets to that point. In the third, we do
2601      // want to forget the SCEVUnknown.
2602      if (!isa<PHINode>(I) ||
2603          !isa<SCEVUnknown>(It->second) ||
2604          (I != PN && It->second == SymName)) {
2605        ValuesAtScopes.erase(It->second);
2606        Scalars.erase(It);
2607      }
2608    }
2609
2610    PushDefUseChildren(I, Worklist);
2611  }
2612}
2613
2614/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
2615/// a loop header, making it a potential recurrence, or it doesn't.
2616///
2617const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
2618  if (const Loop *L = LI->getLoopFor(PN->getParent()))
2619    if (L->getHeader() == PN->getParent()) {
2620      // The loop may have multiple entrances or multiple exits; we can analyze
2621      // this phi as an addrec if it has a unique entry value and a unique
2622      // backedge value.
2623      Value *BEValueV = 0, *StartValueV = 0;
2624      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2625        Value *V = PN->getIncomingValue(i);
2626        if (L->contains(PN->getIncomingBlock(i))) {
2627          if (!BEValueV) {
2628            BEValueV = V;
2629          } else if (BEValueV != V) {
2630            BEValueV = 0;
2631            break;
2632          }
2633        } else if (!StartValueV) {
2634          StartValueV = V;
2635        } else if (StartValueV != V) {
2636          StartValueV = 0;
2637          break;
2638        }
2639      }
2640      if (BEValueV && StartValueV) {
2641        // While we are analyzing this PHI node, handle its value symbolically.
2642        const SCEV *SymbolicName = getUnknown(PN);
2643        assert(Scalars.find(PN) == Scalars.end() &&
2644               "PHI node already processed?");
2645        Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
2646
2647        // Using this symbolic name for the PHI, analyze the value coming around
2648        // the back-edge.
2649        const SCEV *BEValue = getSCEV(BEValueV);
2650
2651        // NOTE: If BEValue is loop invariant, we know that the PHI node just
2652        // has a special value for the first iteration of the loop.
2653
2654        // If the value coming around the backedge is an add with the symbolic
2655        // value we just inserted, then we found a simple induction variable!
2656        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
2657          // If there is a single occurrence of the symbolic value, replace it
2658          // with a recurrence.
2659          unsigned FoundIndex = Add->getNumOperands();
2660          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2661            if (Add->getOperand(i) == SymbolicName)
2662              if (FoundIndex == e) {
2663                FoundIndex = i;
2664                break;
2665              }
2666
2667          if (FoundIndex != Add->getNumOperands()) {
2668            // Create an add with everything but the specified operand.
2669            SmallVector<const SCEV *, 8> Ops;
2670            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2671              if (i != FoundIndex)
2672                Ops.push_back(Add->getOperand(i));
2673            const SCEV *Accum = getAddExpr(Ops);
2674
2675            // This is not a valid addrec if the step amount is varying each
2676            // loop iteration, but is not itself an addrec in this loop.
2677            if (Accum->isLoopInvariant(L) ||
2678                (isa<SCEVAddRecExpr>(Accum) &&
2679                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
2680              bool HasNUW = false;
2681              bool HasNSW = false;
2682
2683              // If the increment doesn't overflow, then neither the addrec nor
2684              // the post-increment will overflow.
2685              if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2686                if (OBO->hasNoUnsignedWrap())
2687                  HasNUW = true;
2688                if (OBO->hasNoSignedWrap())
2689                  HasNSW = true;
2690              }
2691
2692              const SCEV *StartVal = getSCEV(StartValueV);
2693              const SCEV *PHISCEV =
2694                getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
2695
2696              // Since the no-wrap flags are on the increment, they apply to the
2697              // post-incremented value as well.
2698              if (Accum->isLoopInvariant(L))
2699                (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2700                                    Accum, L, HasNUW, HasNSW);
2701
2702              // Okay, for the entire analysis of this edge we assumed the PHI
2703              // to be symbolic.  We now need to go back and purge all of the
2704              // entries for the scalars that use the symbolic expression.
2705              ForgetSymbolicName(PN, SymbolicName);
2706              Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
2707              return PHISCEV;
2708            }
2709          }
2710        } else if (const SCEVAddRecExpr *AddRec =
2711                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
2712          // Otherwise, this could be a loop like this:
2713          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
2714          // In this case, j = {1,+,1}  and BEValue is j.
2715          // Because the other in-value of i (0) fits the evolution of BEValue
2716          // i really is an addrec evolution.
2717          if (AddRec->getLoop() == L && AddRec->isAffine()) {
2718            const SCEV *StartVal = getSCEV(StartValueV);
2719
2720            // If StartVal = j.start - j.stride, we can use StartVal as the
2721            // initial step of the addrec evolution.
2722            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
2723                                         AddRec->getOperand(1))) {
2724              const SCEV *PHISCEV =
2725                 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
2726
2727              // Okay, for the entire analysis of this edge we assumed the PHI
2728              // to be symbolic.  We now need to go back and purge all of the
2729              // entries for the scalars that use the symbolic expression.
2730              ForgetSymbolicName(PN, SymbolicName);
2731              Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
2732              return PHISCEV;
2733            }
2734          }
2735        }
2736      }
2737    }
2738
2739  // If the PHI has a single incoming value, follow that value, unless the
2740  // PHI's incoming blocks are in a different loop, in which case doing so
2741  // risks breaking LCSSA form. Instcombine would normally zap these, but
2742  // it doesn't have DominatorTree information, so it may miss cases.
2743  if (Value *V = PN->hasConstantValue(DT)) {
2744    bool AllSameLoop = true;
2745    Loop *PNLoop = LI->getLoopFor(PN->getParent());
2746    for (size_t i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2747      if (LI->getLoopFor(PN->getIncomingBlock(i)) != PNLoop) {
2748        AllSameLoop = false;
2749        break;
2750      }
2751    if (AllSameLoop)
2752      return getSCEV(V);
2753  }
2754
2755  // If it's not a loop phi, we can't handle it yet.
2756  return getUnknown(PN);
2757}
2758
2759/// createNodeForGEP - Expand GEP instructions into add and multiply
2760/// operations. This allows them to be analyzed by regular SCEV code.
2761///
2762const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
2763
2764  bool InBounds = GEP->isInBounds();
2765  const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
2766  Value *Base = GEP->getOperand(0);
2767  // Don't attempt to analyze GEPs over unsized objects.
2768  if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2769    return getUnknown(GEP);
2770  const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
2771  gep_type_iterator GTI = gep_type_begin(GEP);
2772  for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2773                                      E = GEP->op_end();
2774       I != E; ++I) {
2775    Value *Index = *I;
2776    // Compute the (potentially symbolic) offset in bytes for this index.
2777    if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2778      // For a struct, add the member offset.
2779      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2780      TotalOffset = getAddExpr(TotalOffset,
2781                               getOffsetOfExpr(STy, FieldNo),
2782                               /*HasNUW=*/false, /*HasNSW=*/InBounds);
2783    } else {
2784      // For an array, add the element offset, explicitly scaled.
2785      const SCEV *LocalOffset = getSCEV(Index);
2786      // Getelementptr indices are signed.
2787      LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy);
2788      // Lower "inbounds" GEPs to NSW arithmetic.
2789      LocalOffset = getMulExpr(LocalOffset, getSizeOfExpr(*GTI),
2790                               /*HasNUW=*/false, /*HasNSW=*/InBounds);
2791      TotalOffset = getAddExpr(TotalOffset, LocalOffset,
2792                               /*HasNUW=*/false, /*HasNSW=*/InBounds);
2793    }
2794  }
2795  return getAddExpr(getSCEV(Base), TotalOffset,
2796                    /*HasNUW=*/false, /*HasNSW=*/InBounds);
2797}
2798
2799/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2800/// guaranteed to end in (at every loop iteration).  It is, at the same time,
2801/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
2802/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
2803uint32_t
2804ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
2805  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2806    return C->getValue()->getValue().countTrailingZeros();
2807
2808  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
2809    return std::min(GetMinTrailingZeros(T->getOperand()),
2810                    (uint32_t)getTypeSizeInBits(T->getType()));
2811
2812  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
2813    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2814    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2815             getTypeSizeInBits(E->getType()) : OpRes;
2816  }
2817
2818  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
2819    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2820    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2821             getTypeSizeInBits(E->getType()) : OpRes;
2822  }
2823
2824  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
2825    // The result is the min of all operands results.
2826    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2827    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2828      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2829    return MinOpRes;
2830  }
2831
2832  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
2833    // The result is the sum of all operands results.
2834    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2835    uint32_t BitWidth = getTypeSizeInBits(M->getType());
2836    for (unsigned i = 1, e = M->getNumOperands();
2837         SumOpRes != BitWidth && i != e; ++i)
2838      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
2839                          BitWidth);
2840    return SumOpRes;
2841  }
2842
2843  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
2844    // The result is the min of all operands results.
2845    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2846    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2847      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2848    return MinOpRes;
2849  }
2850
2851  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
2852    // The result is the min of all operands results.
2853    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2854    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2855      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2856    return MinOpRes;
2857  }
2858
2859  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
2860    // The result is the min of all operands results.
2861    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2862    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2863      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2864    return MinOpRes;
2865  }
2866
2867  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2868    // For a SCEVUnknown, ask ValueTracking.
2869    unsigned BitWidth = getTypeSizeInBits(U->getType());
2870    APInt Mask = APInt::getAllOnesValue(BitWidth);
2871    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2872    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2873    return Zeros.countTrailingOnes();
2874  }
2875
2876  // SCEVUDivExpr
2877  return 0;
2878}
2879
2880/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2881///
2882ConstantRange
2883ScalarEvolution::getUnsignedRange(const SCEV *S) {
2884
2885  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2886    return ConstantRange(C->getValue()->getValue());
2887
2888  unsigned BitWidth = getTypeSizeInBits(S->getType());
2889  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
2890
2891  // If the value has known zeros, the maximum unsigned value will have those
2892  // known zeros as well.
2893  uint32_t TZ = GetMinTrailingZeros(S);
2894  if (TZ != 0)
2895    ConservativeResult =
2896      ConstantRange(APInt::getMinValue(BitWidth),
2897                    APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
2898
2899  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2900    ConstantRange X = getUnsignedRange(Add->getOperand(0));
2901    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2902      X = X.add(getUnsignedRange(Add->getOperand(i)));
2903    return ConservativeResult.intersectWith(X);
2904  }
2905
2906  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2907    ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2908    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2909      X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
2910    return ConservativeResult.intersectWith(X);
2911  }
2912
2913  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2914    ConstantRange X = getUnsignedRange(SMax->getOperand(0));
2915    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2916      X = X.smax(getUnsignedRange(SMax->getOperand(i)));
2917    return ConservativeResult.intersectWith(X);
2918  }
2919
2920  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2921    ConstantRange X = getUnsignedRange(UMax->getOperand(0));
2922    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2923      X = X.umax(getUnsignedRange(UMax->getOperand(i)));
2924    return ConservativeResult.intersectWith(X);
2925  }
2926
2927  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2928    ConstantRange X = getUnsignedRange(UDiv->getLHS());
2929    ConstantRange Y = getUnsignedRange(UDiv->getRHS());
2930    return ConservativeResult.intersectWith(X.udiv(Y));
2931  }
2932
2933  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2934    ConstantRange X = getUnsignedRange(ZExt->getOperand());
2935    return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
2936  }
2937
2938  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2939    ConstantRange X = getUnsignedRange(SExt->getOperand());
2940    return ConservativeResult.intersectWith(X.signExtend(BitWidth));
2941  }
2942
2943  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2944    ConstantRange X = getUnsignedRange(Trunc->getOperand());
2945    return ConservativeResult.intersectWith(X.truncate(BitWidth));
2946  }
2947
2948  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
2949    // If there's no unsigned wrap, the value will never be less than its
2950    // initial value.
2951    if (AddRec->hasNoUnsignedWrap())
2952      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
2953        if (!C->getValue()->isZero())
2954          ConservativeResult =
2955            ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0));
2956
2957    // TODO: non-affine addrec
2958    if (AddRec->isAffine()) {
2959      const Type *Ty = AddRec->getType();
2960      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
2961      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
2962          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
2963        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
2964
2965        const SCEV *Start = AddRec->getStart();
2966        const SCEV *Step = AddRec->getStepRecurrence(*this);
2967
2968        ConstantRange StartRange = getUnsignedRange(Start);
2969        ConstantRange StepRange = getSignedRange(Step);
2970        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
2971        ConstantRange EndRange =
2972          StartRange.add(MaxBECountRange.multiply(StepRange));
2973
2974        // Check for overflow. This must be done with ConstantRange arithmetic
2975        // because we could be called from within the ScalarEvolution overflow
2976        // checking code.
2977        ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
2978        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
2979        ConstantRange ExtMaxBECountRange =
2980          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
2981        ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
2982        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
2983            ExtEndRange)
2984          return ConservativeResult;
2985
2986        APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
2987                                   EndRange.getUnsignedMin());
2988        APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
2989                                   EndRange.getUnsignedMax());
2990        if (Min.isMinValue() && Max.isMaxValue())
2991          return ConservativeResult;
2992        return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
2993      }
2994    }
2995
2996    return ConservativeResult;
2997  }
2998
2999  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3000    // For a SCEVUnknown, ask ValueTracking.
3001    APInt Mask = APInt::getAllOnesValue(BitWidth);
3002    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3003    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
3004    if (Ones == ~Zeros + 1)
3005      return ConservativeResult;
3006    return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
3007  }
3008
3009  return ConservativeResult;
3010}
3011
3012/// getSignedRange - Determine the signed range for a particular SCEV.
3013///
3014ConstantRange
3015ScalarEvolution::getSignedRange(const SCEV *S) {
3016
3017  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3018    return ConstantRange(C->getValue()->getValue());
3019
3020  unsigned BitWidth = getTypeSizeInBits(S->getType());
3021  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3022
3023  // If the value has known zeros, the maximum signed value will have those
3024  // known zeros as well.
3025  uint32_t TZ = GetMinTrailingZeros(S);
3026  if (TZ != 0)
3027    ConservativeResult =
3028      ConstantRange(APInt::getSignedMinValue(BitWidth),
3029                    APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3030
3031  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3032    ConstantRange X = getSignedRange(Add->getOperand(0));
3033    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3034      X = X.add(getSignedRange(Add->getOperand(i)));
3035    return ConservativeResult.intersectWith(X);
3036  }
3037
3038  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3039    ConstantRange X = getSignedRange(Mul->getOperand(0));
3040    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3041      X = X.multiply(getSignedRange(Mul->getOperand(i)));
3042    return ConservativeResult.intersectWith(X);
3043  }
3044
3045  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3046    ConstantRange X = getSignedRange(SMax->getOperand(0));
3047    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3048      X = X.smax(getSignedRange(SMax->getOperand(i)));
3049    return ConservativeResult.intersectWith(X);
3050  }
3051
3052  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3053    ConstantRange X = getSignedRange(UMax->getOperand(0));
3054    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3055      X = X.umax(getSignedRange(UMax->getOperand(i)));
3056    return ConservativeResult.intersectWith(X);
3057  }
3058
3059  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3060    ConstantRange X = getSignedRange(UDiv->getLHS());
3061    ConstantRange Y = getSignedRange(UDiv->getRHS());
3062    return ConservativeResult.intersectWith(X.udiv(Y));
3063  }
3064
3065  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3066    ConstantRange X = getSignedRange(ZExt->getOperand());
3067    return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
3068  }
3069
3070  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3071    ConstantRange X = getSignedRange(SExt->getOperand());
3072    return ConservativeResult.intersectWith(X.signExtend(BitWidth));
3073  }
3074
3075  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3076    ConstantRange X = getSignedRange(Trunc->getOperand());
3077    return ConservativeResult.intersectWith(X.truncate(BitWidth));
3078  }
3079
3080  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3081    // If there's no signed wrap, and all the operands have the same sign or
3082    // zero, the value won't ever change sign.
3083    if (AddRec->hasNoSignedWrap()) {
3084      bool AllNonNeg = true;
3085      bool AllNonPos = true;
3086      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3087        if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3088        if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3089      }
3090      if (AllNonNeg)
3091        ConservativeResult = ConservativeResult.intersectWith(
3092          ConstantRange(APInt(BitWidth, 0),
3093                        APInt::getSignedMinValue(BitWidth)));
3094      else if (AllNonPos)
3095        ConservativeResult = ConservativeResult.intersectWith(
3096          ConstantRange(APInt::getSignedMinValue(BitWidth),
3097                        APInt(BitWidth, 1)));
3098    }
3099
3100    // TODO: non-affine addrec
3101    if (AddRec->isAffine()) {
3102      const Type *Ty = AddRec->getType();
3103      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3104      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3105          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3106        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3107
3108        const SCEV *Start = AddRec->getStart();
3109        const SCEV *Step = AddRec->getStepRecurrence(*this);
3110
3111        ConstantRange StartRange = getSignedRange(Start);
3112        ConstantRange StepRange = getSignedRange(Step);
3113        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3114        ConstantRange EndRange =
3115          StartRange.add(MaxBECountRange.multiply(StepRange));
3116
3117        // Check for overflow. This must be done with ConstantRange arithmetic
3118        // because we could be called from within the ScalarEvolution overflow
3119        // checking code.
3120        ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3121        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3122        ConstantRange ExtMaxBECountRange =
3123          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3124        ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3125        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3126            ExtEndRange)
3127          return ConservativeResult;
3128
3129        APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3130                                   EndRange.getSignedMin());
3131        APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3132                                   EndRange.getSignedMax());
3133        if (Min.isMinSignedValue() && Max.isMaxSignedValue())
3134          return ConservativeResult;
3135        return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
3136      }
3137    }
3138
3139    return ConservativeResult;
3140  }
3141
3142  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3143    // For a SCEVUnknown, ask ValueTracking.
3144    if (!U->getValue()->getType()->isIntegerTy() && !TD)
3145      return ConservativeResult;
3146    unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3147    if (NS == 1)
3148      return ConservativeResult;
3149    return ConservativeResult.intersectWith(
3150      ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
3151                    APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1));
3152  }
3153
3154  return ConservativeResult;
3155}
3156
3157/// createSCEV - We know that there is no SCEV for the specified value.
3158/// Analyze the expression.
3159///
3160const SCEV *ScalarEvolution::createSCEV(Value *V) {
3161  if (!isSCEVable(V->getType()))
3162    return getUnknown(V);
3163
3164  unsigned Opcode = Instruction::UserOp1;
3165  if (Instruction *I = dyn_cast<Instruction>(V)) {
3166    Opcode = I->getOpcode();
3167
3168    // Don't attempt to analyze instructions in blocks that aren't
3169    // reachable. Such instructions don't matter, and they aren't required
3170    // to obey basic rules for definitions dominating uses which this
3171    // analysis depends on.
3172    if (!DT->isReachableFromEntry(I->getParent()))
3173      return getUnknown(V);
3174  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
3175    Opcode = CE->getOpcode();
3176  else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3177    return getConstant(CI);
3178  else if (isa<ConstantPointerNull>(V))
3179    return getConstant(V->getType(), 0);
3180  else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3181    return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
3182  else
3183    return getUnknown(V);
3184
3185  Operator *U = cast<Operator>(V);
3186  switch (Opcode) {
3187  case Instruction::Add:
3188    // Don't transfer the NSW and NUW bits from the Add instruction to the
3189    // Add expression, because the Instruction may be guarded by control
3190    // flow and the no-overflow bits may not be valid for the expression in
3191    // any context.
3192    return getAddExpr(getSCEV(U->getOperand(0)),
3193                      getSCEV(U->getOperand(1)));
3194  case Instruction::Mul:
3195    // Don't transfer the NSW and NUW bits from the Mul instruction to the
3196    // Mul expression, as with Add.
3197    return getMulExpr(getSCEV(U->getOperand(0)),
3198                      getSCEV(U->getOperand(1)));
3199  case Instruction::UDiv:
3200    return getUDivExpr(getSCEV(U->getOperand(0)),
3201                       getSCEV(U->getOperand(1)));
3202  case Instruction::Sub:
3203    return getMinusSCEV(getSCEV(U->getOperand(0)),
3204                        getSCEV(U->getOperand(1)));
3205  case Instruction::And:
3206    // For an expression like x&255 that merely masks off the high bits,
3207    // use zext(trunc(x)) as the SCEV expression.
3208    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3209      if (CI->isNullValue())
3210        return getSCEV(U->getOperand(1));
3211      if (CI->isAllOnesValue())
3212        return getSCEV(U->getOperand(0));
3213      const APInt &A = CI->getValue();
3214
3215      // Instcombine's ShrinkDemandedConstant may strip bits out of
3216      // constants, obscuring what would otherwise be a low-bits mask.
3217      // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3218      // knew about to reconstruct a low-bits mask value.
3219      unsigned LZ = A.countLeadingZeros();
3220      unsigned BitWidth = A.getBitWidth();
3221      APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3222      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3223      ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3224
3225      APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3226
3227      if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
3228        return
3229          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
3230                                IntegerType::get(getContext(), BitWidth - LZ)),
3231                            U->getType());
3232    }
3233    break;
3234
3235  case Instruction::Or:
3236    // If the RHS of the Or is a constant, we may have something like:
3237    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
3238    // optimizations will transparently handle this case.
3239    //
3240    // In order for this transformation to be safe, the LHS must be of the
3241    // form X*(2^n) and the Or constant must be less than 2^n.
3242    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3243      const SCEV *LHS = getSCEV(U->getOperand(0));
3244      const APInt &CIVal = CI->getValue();
3245      if (GetMinTrailingZeros(LHS) >=
3246          (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3247        // Build a plain add SCEV.
3248        const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3249        // If the LHS of the add was an addrec and it has no-wrap flags,
3250        // transfer the no-wrap flags, since an or won't introduce a wrap.
3251        if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3252          const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3253          if (OldAR->hasNoUnsignedWrap())
3254            const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3255          if (OldAR->hasNoSignedWrap())
3256            const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3257        }
3258        return S;
3259      }
3260    }
3261    break;
3262  case Instruction::Xor:
3263    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3264      // If the RHS of the xor is a signbit, then this is just an add.
3265      // Instcombine turns add of signbit into xor as a strength reduction step.
3266      if (CI->getValue().isSignBit())
3267        return getAddExpr(getSCEV(U->getOperand(0)),
3268                          getSCEV(U->getOperand(1)));
3269
3270      // If the RHS of xor is -1, then this is a not operation.
3271      if (CI->isAllOnesValue())
3272        return getNotSCEV(getSCEV(U->getOperand(0)));
3273
3274      // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3275      // This is a variant of the check for xor with -1, and it handles
3276      // the case where instcombine has trimmed non-demanded bits out
3277      // of an xor with -1.
3278      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3279        if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3280          if (BO->getOpcode() == Instruction::And &&
3281              LCI->getValue() == CI->getValue())
3282            if (const SCEVZeroExtendExpr *Z =
3283                  dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
3284              const Type *UTy = U->getType();
3285              const SCEV *Z0 = Z->getOperand();
3286              const Type *Z0Ty = Z0->getType();
3287              unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3288
3289              // If C is a low-bits mask, the zero extend is serving to
3290              // mask off the high bits. Complement the operand and
3291              // re-apply the zext.
3292              if (APIntOps::isMask(Z0TySize, CI->getValue()))
3293                return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3294
3295              // If C is a single bit, it may be in the sign-bit position
3296              // before the zero-extend. In this case, represent the xor
3297              // using an add, which is equivalent, and re-apply the zext.
3298              APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3299              if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3300                  Trunc.isSignBit())
3301                return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3302                                         UTy);
3303            }
3304    }
3305    break;
3306
3307  case Instruction::Shl:
3308    // Turn shift left of a constant amount into a multiply.
3309    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3310      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3311
3312      // If the shift count is not less than the bitwidth, the result of
3313      // the shift is undefined. Don't try to analyze it, because the
3314      // resolution chosen here may differ from the resolution chosen in
3315      // other parts of the compiler.
3316      if (SA->getValue().uge(BitWidth))
3317        break;
3318
3319      Constant *X = ConstantInt::get(getContext(),
3320        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3321      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3322    }
3323    break;
3324
3325  case Instruction::LShr:
3326    // Turn logical shift right of a constant into a unsigned divide.
3327    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3328      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3329
3330      // If the shift count is not less than the bitwidth, the result of
3331      // the shift is undefined. Don't try to analyze it, because the
3332      // resolution chosen here may differ from the resolution chosen in
3333      // other parts of the compiler.
3334      if (SA->getValue().uge(BitWidth))
3335        break;
3336
3337      Constant *X = ConstantInt::get(getContext(),
3338        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3339      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3340    }
3341    break;
3342
3343  case Instruction::AShr:
3344    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3345    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
3346      if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
3347        if (L->getOpcode() == Instruction::Shl &&
3348            L->getOperand(1) == U->getOperand(1)) {
3349          uint64_t BitWidth = getTypeSizeInBits(U->getType());
3350
3351          // If the shift count is not less than the bitwidth, the result of
3352          // the shift is undefined. Don't try to analyze it, because the
3353          // resolution chosen here may differ from the resolution chosen in
3354          // other parts of the compiler.
3355          if (CI->getValue().uge(BitWidth))
3356            break;
3357
3358          uint64_t Amt = BitWidth - CI->getZExtValue();
3359          if (Amt == BitWidth)
3360            return getSCEV(L->getOperand(0));       // shift by zero --> noop
3361          return
3362            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
3363                                              IntegerType::get(getContext(),
3364                                                               Amt)),
3365                              U->getType());
3366        }
3367    break;
3368
3369  case Instruction::Trunc:
3370    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
3371
3372  case Instruction::ZExt:
3373    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3374
3375  case Instruction::SExt:
3376    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3377
3378  case Instruction::BitCast:
3379    // BitCasts are no-op casts so we just eliminate the cast.
3380    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
3381      return getSCEV(U->getOperand(0));
3382    break;
3383
3384  // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3385  // lead to pointer expressions which cannot safely be expanded to GEPs,
3386  // because ScalarEvolution doesn't respect the GEP aliasing rules when
3387  // simplifying integer expressions.
3388
3389  case Instruction::GetElementPtr:
3390    return createNodeForGEP(cast<GEPOperator>(U));
3391
3392  case Instruction::PHI:
3393    return createNodeForPHI(cast<PHINode>(U));
3394
3395  case Instruction::Select:
3396    // This could be a smax or umax that was lowered earlier.
3397    // Try to recover it.
3398    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3399      Value *LHS = ICI->getOperand(0);
3400      Value *RHS = ICI->getOperand(1);
3401      switch (ICI->getPredicate()) {
3402      case ICmpInst::ICMP_SLT:
3403      case ICmpInst::ICMP_SLE:
3404        std::swap(LHS, RHS);
3405        // fall through
3406      case ICmpInst::ICMP_SGT:
3407      case ICmpInst::ICMP_SGE:
3408        // a >s b ? a+x : b+x  ->  smax(a, b)+x
3409        // a >s b ? b+x : a+x  ->  smin(a, b)+x
3410        if (LHS->getType() == U->getType()) {
3411          const SCEV *LS = getSCEV(LHS);
3412          const SCEV *RS = getSCEV(RHS);
3413          const SCEV *LA = getSCEV(U->getOperand(1));
3414          const SCEV *RA = getSCEV(U->getOperand(2));
3415          const SCEV *LDiff = getMinusSCEV(LA, LS);
3416          const SCEV *RDiff = getMinusSCEV(RA, RS);
3417          if (LDiff == RDiff)
3418            return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3419          LDiff = getMinusSCEV(LA, RS);
3420          RDiff = getMinusSCEV(RA, LS);
3421          if (LDiff == RDiff)
3422            return getAddExpr(getSMinExpr(LS, RS), LDiff);
3423        }
3424        break;
3425      case ICmpInst::ICMP_ULT:
3426      case ICmpInst::ICMP_ULE:
3427        std::swap(LHS, RHS);
3428        // fall through
3429      case ICmpInst::ICMP_UGT:
3430      case ICmpInst::ICMP_UGE:
3431        // a >u b ? a+x : b+x  ->  umax(a, b)+x
3432        // a >u b ? b+x : a+x  ->  umin(a, b)+x
3433        if (LHS->getType() == U->getType()) {
3434          const SCEV *LS = getSCEV(LHS);
3435          const SCEV *RS = getSCEV(RHS);
3436          const SCEV *LA = getSCEV(U->getOperand(1));
3437          const SCEV *RA = getSCEV(U->getOperand(2));
3438          const SCEV *LDiff = getMinusSCEV(LA, LS);
3439          const SCEV *RDiff = getMinusSCEV(RA, RS);
3440          if (LDiff == RDiff)
3441            return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3442          LDiff = getMinusSCEV(LA, RS);
3443          RDiff = getMinusSCEV(RA, LS);
3444          if (LDiff == RDiff)
3445            return getAddExpr(getUMinExpr(LS, RS), LDiff);
3446        }
3447        break;
3448      case ICmpInst::ICMP_NE:
3449        // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
3450        if (LHS->getType() == U->getType() &&
3451            isa<ConstantInt>(RHS) &&
3452            cast<ConstantInt>(RHS)->isZero()) {
3453          const SCEV *One = getConstant(LHS->getType(), 1);
3454          const SCEV *LS = getSCEV(LHS);
3455          const SCEV *LA = getSCEV(U->getOperand(1));
3456          const SCEV *RA = getSCEV(U->getOperand(2));
3457          const SCEV *LDiff = getMinusSCEV(LA, LS);
3458          const SCEV *RDiff = getMinusSCEV(RA, One);
3459          if (LDiff == RDiff)
3460            return getAddExpr(getUMaxExpr(LS, One), LDiff);
3461        }
3462        break;
3463      case ICmpInst::ICMP_EQ:
3464        // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
3465        if (LHS->getType() == U->getType() &&
3466            isa<ConstantInt>(RHS) &&
3467            cast<ConstantInt>(RHS)->isZero()) {
3468          const SCEV *One = getConstant(LHS->getType(), 1);
3469          const SCEV *LS = getSCEV(LHS);
3470          const SCEV *LA = getSCEV(U->getOperand(1));
3471          const SCEV *RA = getSCEV(U->getOperand(2));
3472          const SCEV *LDiff = getMinusSCEV(LA, One);
3473          const SCEV *RDiff = getMinusSCEV(RA, LS);
3474          if (LDiff == RDiff)
3475            return getAddExpr(getUMaxExpr(LS, One), LDiff);
3476        }
3477        break;
3478      default:
3479        break;
3480      }
3481    }
3482
3483  default: // We cannot analyze this expression.
3484    break;
3485  }
3486
3487  return getUnknown(V);
3488}
3489
3490
3491
3492//===----------------------------------------------------------------------===//
3493//                   Iteration Count Computation Code
3494//
3495
3496/// getBackedgeTakenCount - If the specified loop has a predictable
3497/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3498/// object. The backedge-taken count is the number of times the loop header
3499/// will be branched to from within the loop. This is one less than the
3500/// trip count of the loop, since it doesn't count the first iteration,
3501/// when the header is branched to from outside the loop.
3502///
3503/// Note that it is not valid to call this method on a loop without a
3504/// loop-invariant backedge-taken count (see
3505/// hasLoopInvariantBackedgeTakenCount).
3506///
3507const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
3508  return getBackedgeTakenInfo(L).Exact;
3509}
3510
3511/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3512/// return the least SCEV value that is known never to be less than the
3513/// actual backedge taken count.
3514const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
3515  return getBackedgeTakenInfo(L).Max;
3516}
3517
3518/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3519/// onto the given Worklist.
3520static void
3521PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3522  BasicBlock *Header = L->getHeader();
3523
3524  // Push all Loop-header PHIs onto the Worklist stack.
3525  for (BasicBlock::iterator I = Header->begin();
3526       PHINode *PN = dyn_cast<PHINode>(I); ++I)
3527    Worklist.push_back(PN);
3528}
3529
3530const ScalarEvolution::BackedgeTakenInfo &
3531ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
3532  // Initially insert a CouldNotCompute for this loop. If the insertion
3533  // succeeds, proceed to actually compute a backedge-taken count and
3534  // update the value. The temporary CouldNotCompute value tells SCEV
3535  // code elsewhere that it shouldn't attempt to request a new
3536  // backedge-taken count, which could result in infinite recursion.
3537  std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
3538    BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3539  if (Pair.second) {
3540    BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3541    if (BECount.Exact != getCouldNotCompute()) {
3542      assert(BECount.Exact->isLoopInvariant(L) &&
3543             BECount.Max->isLoopInvariant(L) &&
3544             "Computed backedge-taken count isn't loop invariant for loop!");
3545      ++NumTripCountsComputed;
3546
3547      // Update the value in the map.
3548      Pair.first->second = BECount;
3549    } else {
3550      if (BECount.Max != getCouldNotCompute())
3551        // Update the value in the map.
3552        Pair.first->second = BECount;
3553      if (isa<PHINode>(L->getHeader()->begin()))
3554        // Only count loops that have phi nodes as not being computable.
3555        ++NumTripCountsNotComputed;
3556    }
3557
3558    // Now that we know more about the trip count for this loop, forget any
3559    // existing SCEV values for PHI nodes in this loop since they are only
3560    // conservative estimates made without the benefit of trip count
3561    // information. This is similar to the code in forgetLoop, except that
3562    // it handles SCEVUnknown PHI nodes specially.
3563    if (BECount.hasAnyInfo()) {
3564      SmallVector<Instruction *, 16> Worklist;
3565      PushLoopPHIs(L, Worklist);
3566
3567      SmallPtrSet<Instruction *, 8> Visited;
3568      while (!Worklist.empty()) {
3569        Instruction *I = Worklist.pop_back_val();
3570        if (!Visited.insert(I)) continue;
3571
3572        std::map<SCEVCallbackVH, const SCEV *>::iterator It =
3573          Scalars.find(static_cast<Value *>(I));
3574        if (It != Scalars.end()) {
3575          // SCEVUnknown for a PHI either means that it has an unrecognized
3576          // structure, or it's a PHI that's in the progress of being computed
3577          // by createNodeForPHI.  In the former case, additional loop trip
3578          // count information isn't going to change anything. In the later
3579          // case, createNodeForPHI will perform the necessary updates on its
3580          // own when it gets to that point.
3581          if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
3582            ValuesAtScopes.erase(It->second);
3583            Scalars.erase(It);
3584          }
3585          if (PHINode *PN = dyn_cast<PHINode>(I))
3586            ConstantEvolutionLoopExitValue.erase(PN);
3587        }
3588
3589        PushDefUseChildren(I, Worklist);
3590      }
3591    }
3592  }
3593  return Pair.first->second;
3594}
3595
3596/// forgetLoop - This method should be called by the client when it has
3597/// changed a loop in a way that may effect ScalarEvolution's ability to
3598/// compute a trip count, or if the loop is deleted.
3599void ScalarEvolution::forgetLoop(const Loop *L) {
3600  // Drop any stored trip count value.
3601  BackedgeTakenCounts.erase(L);
3602
3603  // Drop information about expressions based on loop-header PHIs.
3604  SmallVector<Instruction *, 16> Worklist;
3605  PushLoopPHIs(L, Worklist);
3606
3607  SmallPtrSet<Instruction *, 8> Visited;
3608  while (!Worklist.empty()) {
3609    Instruction *I = Worklist.pop_back_val();
3610    if (!Visited.insert(I)) continue;
3611
3612    std::map<SCEVCallbackVH, const SCEV *>::iterator It =
3613      Scalars.find(static_cast<Value *>(I));
3614    if (It != Scalars.end()) {
3615      ValuesAtScopes.erase(It->second);
3616      Scalars.erase(It);
3617      if (PHINode *PN = dyn_cast<PHINode>(I))
3618        ConstantEvolutionLoopExitValue.erase(PN);
3619    }
3620
3621    PushDefUseChildren(I, Worklist);
3622  }
3623}
3624
3625/// forgetValue - This method should be called by the client when it has
3626/// changed a value in a way that may effect its value, or which may
3627/// disconnect it from a def-use chain linking it to a loop.
3628void ScalarEvolution::forgetValue(Value *V) {
3629  Instruction *I = dyn_cast<Instruction>(V);
3630  if (!I) return;
3631
3632  // Drop information about expressions based on loop-header PHIs.
3633  SmallVector<Instruction *, 16> Worklist;
3634  Worklist.push_back(I);
3635
3636  SmallPtrSet<Instruction *, 8> Visited;
3637  while (!Worklist.empty()) {
3638    I = Worklist.pop_back_val();
3639    if (!Visited.insert(I)) continue;
3640
3641    std::map<SCEVCallbackVH, const SCEV *>::iterator It =
3642      Scalars.find(static_cast<Value *>(I));
3643    if (It != Scalars.end()) {
3644      ValuesAtScopes.erase(It->second);
3645      Scalars.erase(It);
3646      if (PHINode *PN = dyn_cast<PHINode>(I))
3647        ConstantEvolutionLoopExitValue.erase(PN);
3648    }
3649
3650    PushDefUseChildren(I, Worklist);
3651  }
3652}
3653
3654/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3655/// of the specified loop will execute.
3656ScalarEvolution::BackedgeTakenInfo
3657ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
3658  SmallVector<BasicBlock *, 8> ExitingBlocks;
3659  L->getExitingBlocks(ExitingBlocks);
3660
3661  // Examine all exits and pick the most conservative values.
3662  const SCEV *BECount = getCouldNotCompute();
3663  const SCEV *MaxBECount = getCouldNotCompute();
3664  bool CouldNotComputeBECount = false;
3665  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3666    BackedgeTakenInfo NewBTI =
3667      ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
3668
3669    if (NewBTI.Exact == getCouldNotCompute()) {
3670      // We couldn't compute an exact value for this exit, so
3671      // we won't be able to compute an exact value for the loop.
3672      CouldNotComputeBECount = true;
3673      BECount = getCouldNotCompute();
3674    } else if (!CouldNotComputeBECount) {
3675      if (BECount == getCouldNotCompute())
3676        BECount = NewBTI.Exact;
3677      else
3678        BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
3679    }
3680    if (MaxBECount == getCouldNotCompute())
3681      MaxBECount = NewBTI.Max;
3682    else if (NewBTI.Max != getCouldNotCompute())
3683      MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
3684  }
3685
3686  return BackedgeTakenInfo(BECount, MaxBECount);
3687}
3688
3689/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3690/// of the specified loop will execute if it exits via the specified block.
3691ScalarEvolution::BackedgeTakenInfo
3692ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3693                                                   BasicBlock *ExitingBlock) {
3694
3695  // Okay, we've chosen an exiting block.  See what condition causes us to
3696  // exit at this block.
3697  //
3698  // FIXME: we should be able to handle switch instructions (with a single exit)
3699  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
3700  if (ExitBr == 0) return getCouldNotCompute();
3701  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
3702
3703  // At this point, we know we have a conditional branch that determines whether
3704  // the loop is exited.  However, we don't know if the branch is executed each
3705  // time through the loop.  If not, then the execution count of the branch will
3706  // not be equal to the trip count of the loop.
3707  //
3708  // Currently we check for this by checking to see if the Exit branch goes to
3709  // the loop header.  If so, we know it will always execute the same number of
3710  // times as the loop.  We also handle the case where the exit block *is* the
3711  // loop header.  This is common for un-rotated loops.
3712  //
3713  // If both of those tests fail, walk up the unique predecessor chain to the
3714  // header, stopping if there is an edge that doesn't exit the loop. If the
3715  // header is reached, the execution count of the branch will be equal to the
3716  // trip count of the loop.
3717  //
3718  //  More extensive analysis could be done to handle more cases here.
3719  //
3720  if (ExitBr->getSuccessor(0) != L->getHeader() &&
3721      ExitBr->getSuccessor(1) != L->getHeader() &&
3722      ExitBr->getParent() != L->getHeader()) {
3723    // The simple checks failed, try climbing the unique predecessor chain
3724    // up to the header.
3725    bool Ok = false;
3726    for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3727      BasicBlock *Pred = BB->getUniquePredecessor();
3728      if (!Pred)
3729        return getCouldNotCompute();
3730      TerminatorInst *PredTerm = Pred->getTerminator();
3731      for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3732        BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3733        if (PredSucc == BB)
3734          continue;
3735        // If the predecessor has a successor that isn't BB and isn't
3736        // outside the loop, assume the worst.
3737        if (L->contains(PredSucc))
3738          return getCouldNotCompute();
3739      }
3740      if (Pred == L->getHeader()) {
3741        Ok = true;
3742        break;
3743      }
3744      BB = Pred;
3745    }
3746    if (!Ok)
3747      return getCouldNotCompute();
3748  }
3749
3750  // Proceed to the next level to examine the exit condition expression.
3751  return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3752                                               ExitBr->getSuccessor(0),
3753                                               ExitBr->getSuccessor(1));
3754}
3755
3756/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3757/// backedge of the specified loop will execute if its exit condition
3758/// were a conditional branch of ExitCond, TBB, and FBB.
3759ScalarEvolution::BackedgeTakenInfo
3760ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3761                                                       Value *ExitCond,
3762                                                       BasicBlock *TBB,
3763                                                       BasicBlock *FBB) {
3764  // Check if the controlling expression for this loop is an And or Or.
3765  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3766    if (BO->getOpcode() == Instruction::And) {
3767      // Recurse on the operands of the and.
3768      BackedgeTakenInfo BTI0 =
3769        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3770      BackedgeTakenInfo BTI1 =
3771        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3772      const SCEV *BECount = getCouldNotCompute();
3773      const SCEV *MaxBECount = getCouldNotCompute();
3774      if (L->contains(TBB)) {
3775        // Both conditions must be true for the loop to continue executing.
3776        // Choose the less conservative count.
3777        if (BTI0.Exact == getCouldNotCompute() ||
3778            BTI1.Exact == getCouldNotCompute())
3779          BECount = getCouldNotCompute();
3780        else
3781          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3782        if (BTI0.Max == getCouldNotCompute())
3783          MaxBECount = BTI1.Max;
3784        else if (BTI1.Max == getCouldNotCompute())
3785          MaxBECount = BTI0.Max;
3786        else
3787          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3788      } else {
3789        // Both conditions must be true for the loop to exit.
3790        assert(L->contains(FBB) && "Loop block has no successor in loop!");
3791        if (BTI0.Exact != getCouldNotCompute() &&
3792            BTI1.Exact != getCouldNotCompute())
3793          BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3794        if (BTI0.Max != getCouldNotCompute() &&
3795            BTI1.Max != getCouldNotCompute())
3796          MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3797      }
3798
3799      return BackedgeTakenInfo(BECount, MaxBECount);
3800    }
3801    if (BO->getOpcode() == Instruction::Or) {
3802      // Recurse on the operands of the or.
3803      BackedgeTakenInfo BTI0 =
3804        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3805      BackedgeTakenInfo BTI1 =
3806        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3807      const SCEV *BECount = getCouldNotCompute();
3808      const SCEV *MaxBECount = getCouldNotCompute();
3809      if (L->contains(FBB)) {
3810        // Both conditions must be false for the loop to continue executing.
3811        // Choose the less conservative count.
3812        if (BTI0.Exact == getCouldNotCompute() ||
3813            BTI1.Exact == getCouldNotCompute())
3814          BECount = getCouldNotCompute();
3815        else
3816          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3817        if (BTI0.Max == getCouldNotCompute())
3818          MaxBECount = BTI1.Max;
3819        else if (BTI1.Max == getCouldNotCompute())
3820          MaxBECount = BTI0.Max;
3821        else
3822          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3823      } else {
3824        // Both conditions must be false for the loop to exit.
3825        assert(L->contains(TBB) && "Loop block has no successor in loop!");
3826        if (BTI0.Exact != getCouldNotCompute() &&
3827            BTI1.Exact != getCouldNotCompute())
3828          BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3829        if (BTI0.Max != getCouldNotCompute() &&
3830            BTI1.Max != getCouldNotCompute())
3831          MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3832      }
3833
3834      return BackedgeTakenInfo(BECount, MaxBECount);
3835    }
3836  }
3837
3838  // With an icmp, it may be feasible to compute an exact backedge-taken count.
3839  // Proceed to the next level to examine the icmp.
3840  if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3841    return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
3842
3843  // Check for a constant condition. These are normally stripped out by
3844  // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
3845  // preserve the CFG and is temporarily leaving constant conditions
3846  // in place.
3847  if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
3848    if (L->contains(FBB) == !CI->getZExtValue())
3849      // The backedge is always taken.
3850      return getCouldNotCompute();
3851    else
3852      // The backedge is never taken.
3853      return getConstant(CI->getType(), 0);
3854  }
3855
3856  // If it's not an integer or pointer comparison then compute it the hard way.
3857  return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3858}
3859
3860/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
3861/// backedge of the specified loop will execute if its exit condition
3862/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
3863ScalarEvolution::BackedgeTakenInfo
3864ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
3865                                                           ICmpInst *ExitCond,
3866                                                           BasicBlock *TBB,
3867                                                           BasicBlock *FBB) {
3868
3869  // If the condition was exit on true, convert the condition to exit on false
3870  ICmpInst::Predicate Cond;
3871  if (!L->contains(FBB))
3872    Cond = ExitCond->getPredicate();
3873  else
3874    Cond = ExitCond->getInversePredicate();
3875
3876  // Handle common loops like: for (X = "string"; *X; ++X)
3877  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
3878    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
3879      BackedgeTakenInfo ItCnt =
3880        ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
3881      if (ItCnt.hasAnyInfo())
3882        return ItCnt;
3883    }
3884
3885  const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
3886  const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
3887
3888  // Try to evaluate any dependencies out of the loop.
3889  LHS = getSCEVAtScope(LHS, L);
3890  RHS = getSCEVAtScope(RHS, L);
3891
3892  // At this point, we would like to compute how many iterations of the
3893  // loop the predicate will return true for these inputs.
3894  if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
3895    // If there is a loop-invariant, force it into the RHS.
3896    std::swap(LHS, RHS);
3897    Cond = ICmpInst::getSwappedPredicate(Cond);
3898  }
3899
3900  // Simplify the operands before analyzing them.
3901  (void)SimplifyICmpOperands(Cond, LHS, RHS);
3902
3903  // If we have a comparison of a chrec against a constant, try to use value
3904  // ranges to answer this query.
3905  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
3906    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
3907      if (AddRec->getLoop() == L) {
3908        // Form the constant range.
3909        ConstantRange CompRange(
3910            ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
3911
3912        const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
3913        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
3914      }
3915
3916  switch (Cond) {
3917  case ICmpInst::ICMP_NE: {                     // while (X != Y)
3918    // Convert to: while (X-Y != 0)
3919    BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L);
3920    if (BTI.hasAnyInfo()) return BTI;
3921    break;
3922  }
3923  case ICmpInst::ICMP_EQ: {                     // while (X == Y)
3924    // Convert to: while (X-Y == 0)
3925    BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
3926    if (BTI.hasAnyInfo()) return BTI;
3927    break;
3928  }
3929  case ICmpInst::ICMP_SLT: {
3930    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
3931    if (BTI.hasAnyInfo()) return BTI;
3932    break;
3933  }
3934  case ICmpInst::ICMP_SGT: {
3935    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3936                                             getNotSCEV(RHS), L, true);
3937    if (BTI.hasAnyInfo()) return BTI;
3938    break;
3939  }
3940  case ICmpInst::ICMP_ULT: {
3941    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
3942    if (BTI.hasAnyInfo()) return BTI;
3943    break;
3944  }
3945  case ICmpInst::ICMP_UGT: {
3946    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3947                                             getNotSCEV(RHS), L, false);
3948    if (BTI.hasAnyInfo()) return BTI;
3949    break;
3950  }
3951  default:
3952#if 0
3953    dbgs() << "ComputeBackedgeTakenCount ";
3954    if (ExitCond->getOperand(0)->getType()->isUnsigned())
3955      dbgs() << "[unsigned] ";
3956    dbgs() << *LHS << "   "
3957         << Instruction::getOpcodeName(Instruction::ICmp)
3958         << "   " << *RHS << "\n";
3959#endif
3960    break;
3961  }
3962  return
3963    ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3964}
3965
3966static ConstantInt *
3967EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
3968                                ScalarEvolution &SE) {
3969  const SCEV *InVal = SE.getConstant(C);
3970  const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
3971  assert(isa<SCEVConstant>(Val) &&
3972         "Evaluation of SCEV at constant didn't fold correctly?");
3973  return cast<SCEVConstant>(Val)->getValue();
3974}
3975
3976/// GetAddressedElementFromGlobal - Given a global variable with an initializer
3977/// and a GEP expression (missing the pointer index) indexing into it, return
3978/// the addressed element of the initializer or null if the index expression is
3979/// invalid.
3980static Constant *
3981GetAddressedElementFromGlobal(GlobalVariable *GV,
3982                              const std::vector<ConstantInt*> &Indices) {
3983  Constant *Init = GV->getInitializer();
3984  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
3985    uint64_t Idx = Indices[i]->getZExtValue();
3986    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
3987      assert(Idx < CS->getNumOperands() && "Bad struct index!");
3988      Init = cast<Constant>(CS->getOperand(Idx));
3989    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
3990      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
3991      Init = cast<Constant>(CA->getOperand(Idx));
3992    } else if (isa<ConstantAggregateZero>(Init)) {
3993      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
3994        assert(Idx < STy->getNumElements() && "Bad struct index!");
3995        Init = Constant::getNullValue(STy->getElementType(Idx));
3996      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
3997        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
3998        Init = Constant::getNullValue(ATy->getElementType());
3999      } else {
4000        llvm_unreachable("Unknown constant aggregate type!");
4001      }
4002      return 0;
4003    } else {
4004      return 0; // Unknown initializer type
4005    }
4006  }
4007  return Init;
4008}
4009
4010/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4011/// 'icmp op load X, cst', try to see if we can compute the backedge
4012/// execution count.
4013ScalarEvolution::BackedgeTakenInfo
4014ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4015                                                LoadInst *LI,
4016                                                Constant *RHS,
4017                                                const Loop *L,
4018                                                ICmpInst::Predicate predicate) {
4019  if (LI->isVolatile()) return getCouldNotCompute();
4020
4021  // Check to see if the loaded pointer is a getelementptr of a global.
4022  // TODO: Use SCEV instead of manually grubbing with GEPs.
4023  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
4024  if (!GEP) return getCouldNotCompute();
4025
4026  // Make sure that it is really a constant global we are gepping, with an
4027  // initializer, and make sure the first IDX is really 0.
4028  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
4029  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
4030      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4031      !cast<Constant>(GEP->getOperand(1))->isNullValue())
4032    return getCouldNotCompute();
4033
4034  // Okay, we allow one non-constant index into the GEP instruction.
4035  Value *VarIdx = 0;
4036  std::vector<ConstantInt*> Indexes;
4037  unsigned VarIdxNum = 0;
4038  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4039    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4040      Indexes.push_back(CI);
4041    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
4042      if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
4043      VarIdx = GEP->getOperand(i);
4044      VarIdxNum = i-2;
4045      Indexes.push_back(0);
4046    }
4047
4048  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4049  // Check to see if X is a loop variant variable value now.
4050  const SCEV *Idx = getSCEV(VarIdx);
4051  Idx = getSCEVAtScope(Idx, L);
4052
4053  // We can only recognize very limited forms of loop index expressions, in
4054  // particular, only affine AddRec's like {C1,+,C2}.
4055  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
4056  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
4057      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4058      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
4059    return getCouldNotCompute();
4060
4061  unsigned MaxSteps = MaxBruteForceIterations;
4062  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
4063    ConstantInt *ItCst = ConstantInt::get(
4064                           cast<IntegerType>(IdxExpr->getType()), IterationNum);
4065    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
4066
4067    // Form the GEP offset.
4068    Indexes[VarIdxNum] = Val;
4069
4070    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
4071    if (Result == 0) break;  // Cannot compute!
4072
4073    // Evaluate the condition for this iteration.
4074    Result = ConstantExpr::getICmp(predicate, Result, RHS);
4075    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
4076    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
4077#if 0
4078      dbgs() << "\n***\n*** Computed loop count " << *ItCst
4079             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4080             << "***\n";
4081#endif
4082      ++NumArrayLenItCounts;
4083      return getConstant(ItCst);   // Found terminating iteration!
4084    }
4085  }
4086  return getCouldNotCompute();
4087}
4088
4089
4090/// CanConstantFold - Return true if we can constant fold an instruction of the
4091/// specified type, assuming that all operands were constants.
4092static bool CanConstantFold(const Instruction *I) {
4093  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
4094      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4095    return true;
4096
4097  if (const CallInst *CI = dyn_cast<CallInst>(I))
4098    if (const Function *F = CI->getCalledFunction())
4099      return canConstantFoldCallTo(F);
4100  return false;
4101}
4102
4103/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4104/// in the loop that V is derived from.  We allow arbitrary operations along the
4105/// way, but the operands of an operation must either be constants or a value
4106/// derived from a constant PHI.  If this expression does not fit with these
4107/// constraints, return null.
4108static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4109  // If this is not an instruction, or if this is an instruction outside of the
4110  // loop, it can't be derived from a loop PHI.
4111  Instruction *I = dyn_cast<Instruction>(V);
4112  if (I == 0 || !L->contains(I)) return 0;
4113
4114  if (PHINode *PN = dyn_cast<PHINode>(I)) {
4115    if (L->getHeader() == I->getParent())
4116      return PN;
4117    else
4118      // We don't currently keep track of the control flow needed to evaluate
4119      // PHIs, so we cannot handle PHIs inside of loops.
4120      return 0;
4121  }
4122
4123  // If we won't be able to constant fold this expression even if the operands
4124  // are constants, return early.
4125  if (!CanConstantFold(I)) return 0;
4126
4127  // Otherwise, we can evaluate this instruction if all of its operands are
4128  // constant or derived from a PHI node themselves.
4129  PHINode *PHI = 0;
4130  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
4131    if (!(isa<Constant>(I->getOperand(Op)) ||
4132          isa<GlobalValue>(I->getOperand(Op)))) {
4133      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4134      if (P == 0) return 0;  // Not evolving from PHI
4135      if (PHI == 0)
4136        PHI = P;
4137      else if (PHI != P)
4138        return 0;  // Evolving from multiple different PHIs.
4139    }
4140
4141  // This is a expression evolving from a constant PHI!
4142  return PHI;
4143}
4144
4145/// EvaluateExpression - Given an expression that passes the
4146/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4147/// in the loop has the value PHIVal.  If we can't fold this expression for some
4148/// reason, return null.
4149static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4150                                    const TargetData *TD) {
4151  if (isa<PHINode>(V)) return PHIVal;
4152  if (Constant *C = dyn_cast<Constant>(V)) return C;
4153  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
4154  Instruction *I = cast<Instruction>(V);
4155
4156  std::vector<Constant*> Operands;
4157  Operands.resize(I->getNumOperands());
4158
4159  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4160    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
4161    if (Operands[i] == 0) return 0;
4162  }
4163
4164  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4165    return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
4166                                           Operands[1], TD);
4167  return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4168                                  &Operands[0], Operands.size(), TD);
4169}
4170
4171/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4172/// in the header of its containing loop, we know the loop executes a
4173/// constant number of times, and the PHI node is just a recurrence
4174/// involving constants, fold it.
4175Constant *
4176ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
4177                                                   const APInt &BEs,
4178                                                   const Loop *L) {
4179  std::map<PHINode*, Constant*>::iterator I =
4180    ConstantEvolutionLoopExitValue.find(PN);
4181  if (I != ConstantEvolutionLoopExitValue.end())
4182    return I->second;
4183
4184  if (BEs.ugt(MaxBruteForceIterations))
4185    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
4186
4187  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4188
4189  // Since the loop is canonicalized, the PHI node must have two entries.  One
4190  // entry must be a constant (coming in from outside of the loop), and the
4191  // second must be derived from the same PHI.
4192  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4193  Constant *StartCST =
4194    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4195  if (StartCST == 0)
4196    return RetVal = 0;  // Must be a constant.
4197
4198  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4199  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
4200  if (PN2 != PN)
4201    return RetVal = 0;  // Not derived from same PHI.
4202
4203  // Execute the loop symbolically to determine the exit value.
4204  if (BEs.getActiveBits() >= 32)
4205    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
4206
4207  unsigned NumIterations = BEs.getZExtValue(); // must be in range
4208  unsigned IterationNum = 0;
4209  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4210    if (IterationNum == NumIterations)
4211      return RetVal = PHIVal;  // Got exit value!
4212
4213    // Compute the value of the PHI node for the next iteration.
4214    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4215    if (NextPHI == PHIVal)
4216      return RetVal = NextPHI;  // Stopped evolving!
4217    if (NextPHI == 0)
4218      return 0;        // Couldn't evaluate!
4219    PHIVal = NextPHI;
4220  }
4221}
4222
4223/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
4224/// constant number of times (the condition evolves only from constants),
4225/// try to evaluate a few iterations of the loop until we get the exit
4226/// condition gets a value of ExitWhen (true or false).  If we cannot
4227/// evaluate the trip count of the loop, return getCouldNotCompute().
4228const SCEV *
4229ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4230                                                       Value *Cond,
4231                                                       bool ExitWhen) {
4232  PHINode *PN = getConstantEvolvingPHI(Cond, L);
4233  if (PN == 0) return getCouldNotCompute();
4234
4235  // Since the loop is canonicalized, the PHI node must have two entries.  One
4236  // entry must be a constant (coming in from outside of the loop), and the
4237  // second must be derived from the same PHI.
4238  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4239  Constant *StartCST =
4240    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4241  if (StartCST == 0) return getCouldNotCompute();  // Must be a constant.
4242
4243  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4244  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
4245  if (PN2 != PN) return getCouldNotCompute();  // Not derived from same PHI.
4246
4247  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
4248  // the loop symbolically to determine when the condition gets a value of
4249  // "ExitWhen".
4250  unsigned IterationNum = 0;
4251  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
4252  for (Constant *PHIVal = StartCST;
4253       IterationNum != MaxIterations; ++IterationNum) {
4254    ConstantInt *CondVal =
4255      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
4256
4257    // Couldn't symbolically evaluate.
4258    if (!CondVal) return getCouldNotCompute();
4259
4260    if (CondVal->getValue() == uint64_t(ExitWhen)) {
4261      ++NumBruteForceTripCountsComputed;
4262      return getConstant(Type::getInt32Ty(getContext()), IterationNum);
4263    }
4264
4265    // Compute the value of the PHI node for the next iteration.
4266    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4267    if (NextPHI == 0 || NextPHI == PHIVal)
4268      return getCouldNotCompute();// Couldn't evaluate or not making progress...
4269    PHIVal = NextPHI;
4270  }
4271
4272  // Too many iterations were needed to evaluate.
4273  return getCouldNotCompute();
4274}
4275
4276/// getSCEVAtScope - Return a SCEV expression for the specified value
4277/// at the specified scope in the program.  The L value specifies a loop
4278/// nest to evaluate the expression at, where null is the top-level or a
4279/// specified loop is immediately inside of the loop.
4280///
4281/// This method can be used to compute the exit value for a variable defined
4282/// in a loop by querying what the value will hold in the parent loop.
4283///
4284/// In the case that a relevant loop exit value cannot be computed, the
4285/// original value V is returned.
4286const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
4287  // Check to see if we've folded this expression at this loop before.
4288  std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4289  std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4290    Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4291  if (!Pair.second)
4292    return Pair.first->second ? Pair.first->second : V;
4293
4294  // Otherwise compute it.
4295  const SCEV *C = computeSCEVAtScope(V, L);
4296  ValuesAtScopes[V][L] = C;
4297  return C;
4298}
4299
4300const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
4301  if (isa<SCEVConstant>(V)) return V;
4302
4303  // If this instruction is evolved from a constant-evolving PHI, compute the
4304  // exit value from the loop without using SCEVs.
4305  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
4306    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
4307      const Loop *LI = (*this->LI)[I->getParent()];
4308      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
4309        if (PHINode *PN = dyn_cast<PHINode>(I))
4310          if (PN->getParent() == LI->getHeader()) {
4311            // Okay, there is no closed form solution for the PHI node.  Check
4312            // to see if the loop that contains it has a known backedge-taken
4313            // count.  If so, we may be able to force computation of the exit
4314            // value.
4315            const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
4316            if (const SCEVConstant *BTCC =
4317                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
4318              // Okay, we know how many times the containing loop executes.  If
4319              // this is a constant evolving PHI node, get the final value at
4320              // the specified iteration number.
4321              Constant *RV = getConstantEvolutionLoopExitValue(PN,
4322                                                   BTCC->getValue()->getValue(),
4323                                                               LI);
4324              if (RV) return getSCEV(RV);
4325            }
4326          }
4327
4328      // Okay, this is an expression that we cannot symbolically evaluate
4329      // into a SCEV.  Check to see if it's possible to symbolically evaluate
4330      // the arguments into constants, and if so, try to constant propagate the
4331      // result.  This is particularly useful for computing loop exit values.
4332      if (CanConstantFold(I)) {
4333        std::vector<Constant*> Operands;
4334        Operands.reserve(I->getNumOperands());
4335        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4336          Value *Op = I->getOperand(i);
4337          if (Constant *C = dyn_cast<Constant>(Op)) {
4338            Operands.push_back(C);
4339          } else {
4340            // If any of the operands is non-constant and if they are
4341            // non-integer and non-pointer, don't even try to analyze them
4342            // with scev techniques.
4343            if (!isSCEVable(Op->getType()))
4344              return V;
4345
4346            const SCEV *OpV = getSCEVAtScope(Op, L);
4347            if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
4348              Constant *C = SC->getValue();
4349              if (C->getType() != Op->getType())
4350                C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4351                                                                  Op->getType(),
4352                                                                  false),
4353                                          C, Op->getType());
4354              Operands.push_back(C);
4355            } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
4356              if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
4357                if (C->getType() != Op->getType())
4358                  C =
4359                    ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4360                                                                  Op->getType(),
4361                                                                  false),
4362                                          C, Op->getType());
4363                Operands.push_back(C);
4364              } else
4365                return V;
4366            } else {
4367              return V;
4368            }
4369          }
4370        }
4371
4372        Constant *C = 0;
4373        if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4374          C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4375                                              Operands[0], Operands[1], TD);
4376        else
4377          C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4378                                       &Operands[0], Operands.size(), TD);
4379        if (C)
4380          return getSCEV(C);
4381      }
4382    }
4383
4384    // This is some other type of SCEVUnknown, just return it.
4385    return V;
4386  }
4387
4388  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
4389    // Avoid performing the look-up in the common case where the specified
4390    // expression has no loop-variant portions.
4391    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
4392      const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4393      if (OpAtScope != Comm->getOperand(i)) {
4394        // Okay, at least one of these operands is loop variant but might be
4395        // foldable.  Build a new instance of the folded commutative expression.
4396        SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4397                                            Comm->op_begin()+i);
4398        NewOps.push_back(OpAtScope);
4399
4400        for (++i; i != e; ++i) {
4401          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4402          NewOps.push_back(OpAtScope);
4403        }
4404        if (isa<SCEVAddExpr>(Comm))
4405          return getAddExpr(NewOps);
4406        if (isa<SCEVMulExpr>(Comm))
4407          return getMulExpr(NewOps);
4408        if (isa<SCEVSMaxExpr>(Comm))
4409          return getSMaxExpr(NewOps);
4410        if (isa<SCEVUMaxExpr>(Comm))
4411          return getUMaxExpr(NewOps);
4412        llvm_unreachable("Unknown commutative SCEV type!");
4413      }
4414    }
4415    // If we got here, all operands are loop invariant.
4416    return Comm;
4417  }
4418
4419  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
4420    const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4421    const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
4422    if (LHS == Div->getLHS() && RHS == Div->getRHS())
4423      return Div;   // must be loop invariant
4424    return getUDivExpr(LHS, RHS);
4425  }
4426
4427  // If this is a loop recurrence for a loop that does not contain L, then we
4428  // are dealing with the final value computed by the loop.
4429  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4430    if (!L || !AddRec->getLoop()->contains(L)) {
4431      // To evaluate this recurrence, we need to know how many times the AddRec
4432      // loop iterates.  Compute this now.
4433      const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
4434      if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
4435
4436      // Then, evaluate the AddRec.
4437      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
4438    }
4439    return AddRec;
4440  }
4441
4442  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
4443    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4444    if (Op == Cast->getOperand())
4445      return Cast;  // must be loop invariant
4446    return getZeroExtendExpr(Op, Cast->getType());
4447  }
4448
4449  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
4450    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4451    if (Op == Cast->getOperand())
4452      return Cast;  // must be loop invariant
4453    return getSignExtendExpr(Op, Cast->getType());
4454  }
4455
4456  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
4457    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4458    if (Op == Cast->getOperand())
4459      return Cast;  // must be loop invariant
4460    return getTruncateExpr(Op, Cast->getType());
4461  }
4462
4463  llvm_unreachable("Unknown SCEV type!");
4464  return 0;
4465}
4466
4467/// getSCEVAtScope - This is a convenience function which does
4468/// getSCEVAtScope(getSCEV(V), L).
4469const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
4470  return getSCEVAtScope(getSCEV(V), L);
4471}
4472
4473/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4474/// following equation:
4475///
4476///     A * X = B (mod N)
4477///
4478/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4479/// A and B isn't important.
4480///
4481/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
4482static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
4483                                               ScalarEvolution &SE) {
4484  uint32_t BW = A.getBitWidth();
4485  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4486  assert(A != 0 && "A must be non-zero.");
4487
4488  // 1. D = gcd(A, N)
4489  //
4490  // The gcd of A and N may have only one prime factor: 2. The number of
4491  // trailing zeros in A is its multiplicity
4492  uint32_t Mult2 = A.countTrailingZeros();
4493  // D = 2^Mult2
4494
4495  // 2. Check if B is divisible by D.
4496  //
4497  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4498  // is not less than multiplicity of this prime factor for D.
4499  if (B.countTrailingZeros() < Mult2)
4500    return SE.getCouldNotCompute();
4501
4502  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4503  // modulo (N / D).
4504  //
4505  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
4506  // bit width during computations.
4507  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
4508  APInt Mod(BW + 1, 0);
4509  Mod.set(BW - Mult2);  // Mod = N / D
4510  APInt I = AD.multiplicativeInverse(Mod);
4511
4512  // 4. Compute the minimum unsigned root of the equation:
4513  // I * (B / D) mod (N / D)
4514  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4515
4516  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4517  // bits.
4518  return SE.getConstant(Result.trunc(BW));
4519}
4520
4521/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4522/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
4523/// might be the same) or two SCEVCouldNotCompute objects.
4524///
4525static std::pair<const SCEV *,const SCEV *>
4526SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
4527  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
4528  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4529  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4530  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
4531
4532  // We currently can only solve this if the coefficients are constants.
4533  if (!LC || !MC || !NC) {
4534    const SCEV *CNC = SE.getCouldNotCompute();
4535    return std::make_pair(CNC, CNC);
4536  }
4537
4538  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
4539  const APInt &L = LC->getValue()->getValue();
4540  const APInt &M = MC->getValue()->getValue();
4541  const APInt &N = NC->getValue()->getValue();
4542  APInt Two(BitWidth, 2);
4543  APInt Four(BitWidth, 4);
4544
4545  {
4546    using namespace APIntOps;
4547    const APInt& C = L;
4548    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4549    // The B coefficient is M-N/2
4550    APInt B(M);
4551    B -= sdiv(N,Two);
4552
4553    // The A coefficient is N/2
4554    APInt A(N.sdiv(Two));
4555
4556    // Compute the B^2-4ac term.
4557    APInt SqrtTerm(B);
4558    SqrtTerm *= B;
4559    SqrtTerm -= Four * (A * C);
4560
4561    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4562    // integer value or else APInt::sqrt() will assert.
4563    APInt SqrtVal(SqrtTerm.sqrt());
4564
4565    // Compute the two solutions for the quadratic formula.
4566    // The divisions must be performed as signed divisions.
4567    APInt NegB(-B);
4568    APInt TwoA( A << 1 );
4569    if (TwoA.isMinValue()) {
4570      const SCEV *CNC = SE.getCouldNotCompute();
4571      return std::make_pair(CNC, CNC);
4572    }
4573
4574    LLVMContext &Context = SE.getContext();
4575
4576    ConstantInt *Solution1 =
4577      ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
4578    ConstantInt *Solution2 =
4579      ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
4580
4581    return std::make_pair(SE.getConstant(Solution1),
4582                          SE.getConstant(Solution2));
4583    } // end APIntOps namespace
4584}
4585
4586/// HowFarToZero - Return the number of times a backedge comparing the specified
4587/// value to zero will execute.  If not computable, return CouldNotCompute.
4588ScalarEvolution::BackedgeTakenInfo
4589ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
4590  // If the value is a constant
4591  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4592    // If the value is already zero, the branch will execute zero times.
4593    if (C->getValue()->isZero()) return C;
4594    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4595  }
4596
4597  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
4598  if (!AddRec || AddRec->getLoop() != L)
4599    return getCouldNotCompute();
4600
4601  if (AddRec->isAffine()) {
4602    // If this is an affine expression, the execution count of this branch is
4603    // the minimum unsigned root of the following equation:
4604    //
4605    //     Start + Step*N = 0 (mod 2^BW)
4606    //
4607    // equivalent to:
4608    //
4609    //             Step*N = -Start (mod 2^BW)
4610    //
4611    // where BW is the common bit width of Start and Step.
4612
4613    // Get the initial value for the loop.
4614    const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4615                                       L->getParentLoop());
4616    const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4617                                      L->getParentLoop());
4618
4619    if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
4620      // For now we handle only constant steps.
4621
4622      // First, handle unitary steps.
4623      if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so:
4624        return getNegativeSCEV(Start);          //   N = -Start (as unsigned)
4625      if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so:
4626        return Start;                           //    N = Start (as unsigned)
4627
4628      // Then, try to solve the above equation provided that Start is constant.
4629      if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
4630        return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
4631                                            -StartC->getValue()->getValue(),
4632                                            *this);
4633    }
4634  } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
4635    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4636    // the quadratic equation to solve it.
4637    std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
4638                                                                    *this);
4639    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4640    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
4641    if (R1) {
4642#if 0
4643      dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
4644             << "  sol#2: " << *R2 << "\n";
4645#endif
4646      // Pick the smallest positive root value.
4647      if (ConstantInt *CB =
4648          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
4649                                   R1->getValue(), R2->getValue()))) {
4650        if (CB->getZExtValue() == false)
4651          std::swap(R1, R2);   // R1 is the minimum root now.
4652
4653        // We can only use this value if the chrec ends up with an exact zero
4654        // value at this index.  When solving for "X*X != 5", for example, we
4655        // should not accept a root of 2.
4656        const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
4657        if (Val->isZero())
4658          return R1;  // We found a quadratic root!
4659      }
4660    }
4661  }
4662
4663  return getCouldNotCompute();
4664}
4665
4666/// HowFarToNonZero - Return the number of times a backedge checking the
4667/// specified value for nonzero will execute.  If not computable, return
4668/// CouldNotCompute
4669ScalarEvolution::BackedgeTakenInfo
4670ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
4671  // Loops that look like: while (X == 0) are very strange indeed.  We don't
4672  // handle them yet except for the trivial case.  This could be expanded in the
4673  // future as needed.
4674
4675  // If the value is a constant, check to see if it is known to be non-zero
4676  // already.  If so, the backedge will execute zero times.
4677  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4678    if (!C->getValue()->isNullValue())
4679      return getConstant(C->getType(), 0);
4680    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4681  }
4682
4683  // We could implement others, but I really doubt anyone writes loops like
4684  // this, and if they did, they would already be constant folded.
4685  return getCouldNotCompute();
4686}
4687
4688/// getLoopPredecessor - If the given loop's header has exactly one unique
4689/// predecessor outside the loop, return it. Otherwise return null.
4690/// This is less strict that the loop "preheader" concept, which requires
4691/// the predecessor to have only one single successor.
4692///
4693BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
4694  BasicBlock *Header = L->getHeader();
4695  BasicBlock *Pred = 0;
4696  for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
4697       PI != E; ++PI)
4698    if (!L->contains(*PI)) {
4699      if (Pred && Pred != *PI) return 0; // Multiple predecessors.
4700      Pred = *PI;
4701    }
4702  return Pred;
4703}
4704
4705/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4706/// (which may not be an immediate predecessor) which has exactly one
4707/// successor from which BB is reachable, or null if no such block is
4708/// found.
4709///
4710std::pair<BasicBlock *, BasicBlock *>
4711ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
4712  // If the block has a unique predecessor, then there is no path from the
4713  // predecessor to the block that does not go through the direct edge
4714  // from the predecessor to the block.
4715  if (BasicBlock *Pred = BB->getSinglePredecessor())
4716    return std::make_pair(Pred, BB);
4717
4718  // A loop's header is defined to be a block that dominates the loop.
4719  // If the header has a unique predecessor outside the loop, it must be
4720  // a block that has exactly one successor that can reach the loop.
4721  if (Loop *L = LI->getLoopFor(BB))
4722    return std::make_pair(getLoopPredecessor(L), L->getHeader());
4723
4724  return std::pair<BasicBlock *, BasicBlock *>();
4725}
4726
4727/// HasSameValue - SCEV structural equivalence is usually sufficient for
4728/// testing whether two expressions are equal, however for the purposes of
4729/// looking for a condition guarding a loop, it can be useful to be a little
4730/// more general, since a front-end may have replicated the controlling
4731/// expression.
4732///
4733static bool HasSameValue(const SCEV *A, const SCEV *B) {
4734  // Quick check to see if they are the same SCEV.
4735  if (A == B) return true;
4736
4737  // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4738  // two different instructions with the same value. Check for this case.
4739  if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4740    if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4741      if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4742        if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
4743          if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
4744            return true;
4745
4746  // Otherwise assume they may have a different value.
4747  return false;
4748}
4749
4750/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
4751/// predicate Pred. Return true iff any changes were made.
4752///
4753bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
4754                                           const SCEV *&LHS, const SCEV *&RHS) {
4755  bool Changed = false;
4756
4757  // Canonicalize a constant to the right side.
4758  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
4759    // Check for both operands constant.
4760    if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
4761      if (ConstantExpr::getICmp(Pred,
4762                                LHSC->getValue(),
4763                                RHSC->getValue())->isNullValue())
4764        goto trivially_false;
4765      else
4766        goto trivially_true;
4767    }
4768    // Otherwise swap the operands to put the constant on the right.
4769    std::swap(LHS, RHS);
4770    Pred = ICmpInst::getSwappedPredicate(Pred);
4771    Changed = true;
4772  }
4773
4774  // If we're comparing an addrec with a value which is loop-invariant in the
4775  // addrec's loop, put the addrec on the left. Also make a dominance check,
4776  // as both operands could be addrecs loop-invariant in each other's loop.
4777  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
4778    const Loop *L = AR->getLoop();
4779    if (LHS->isLoopInvariant(L) && LHS->properlyDominates(L->getHeader(), DT)) {
4780      std::swap(LHS, RHS);
4781      Pred = ICmpInst::getSwappedPredicate(Pred);
4782      Changed = true;
4783    }
4784  }
4785
4786  // If there's a constant operand, canonicalize comparisons with boundary
4787  // cases, and canonicalize *-or-equal comparisons to regular comparisons.
4788  if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4789    const APInt &RA = RC->getValue()->getValue();
4790    switch (Pred) {
4791    default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4792    case ICmpInst::ICMP_EQ:
4793    case ICmpInst::ICMP_NE:
4794      break;
4795    case ICmpInst::ICMP_UGE:
4796      if ((RA - 1).isMinValue()) {
4797        Pred = ICmpInst::ICMP_NE;
4798        RHS = getConstant(RA - 1);
4799        Changed = true;
4800        break;
4801      }
4802      if (RA.isMaxValue()) {
4803        Pred = ICmpInst::ICMP_EQ;
4804        Changed = true;
4805        break;
4806      }
4807      if (RA.isMinValue()) goto trivially_true;
4808
4809      Pred = ICmpInst::ICMP_UGT;
4810      RHS = getConstant(RA - 1);
4811      Changed = true;
4812      break;
4813    case ICmpInst::ICMP_ULE:
4814      if ((RA + 1).isMaxValue()) {
4815        Pred = ICmpInst::ICMP_NE;
4816        RHS = getConstant(RA + 1);
4817        Changed = true;
4818        break;
4819      }
4820      if (RA.isMinValue()) {
4821        Pred = ICmpInst::ICMP_EQ;
4822        Changed = true;
4823        break;
4824      }
4825      if (RA.isMaxValue()) goto trivially_true;
4826
4827      Pred = ICmpInst::ICMP_ULT;
4828      RHS = getConstant(RA + 1);
4829      Changed = true;
4830      break;
4831    case ICmpInst::ICMP_SGE:
4832      if ((RA - 1).isMinSignedValue()) {
4833        Pred = ICmpInst::ICMP_NE;
4834        RHS = getConstant(RA - 1);
4835        Changed = true;
4836        break;
4837      }
4838      if (RA.isMaxSignedValue()) {
4839        Pred = ICmpInst::ICMP_EQ;
4840        Changed = true;
4841        break;
4842      }
4843      if (RA.isMinSignedValue()) goto trivially_true;
4844
4845      Pred = ICmpInst::ICMP_SGT;
4846      RHS = getConstant(RA - 1);
4847      Changed = true;
4848      break;
4849    case ICmpInst::ICMP_SLE:
4850      if ((RA + 1).isMaxSignedValue()) {
4851        Pred = ICmpInst::ICMP_NE;
4852        RHS = getConstant(RA + 1);
4853        Changed = true;
4854        break;
4855      }
4856      if (RA.isMinSignedValue()) {
4857        Pred = ICmpInst::ICMP_EQ;
4858        Changed = true;
4859        break;
4860      }
4861      if (RA.isMaxSignedValue()) goto trivially_true;
4862
4863      Pred = ICmpInst::ICMP_SLT;
4864      RHS = getConstant(RA + 1);
4865      Changed = true;
4866      break;
4867    case ICmpInst::ICMP_UGT:
4868      if (RA.isMinValue()) {
4869        Pred = ICmpInst::ICMP_NE;
4870        Changed = true;
4871        break;
4872      }
4873      if ((RA + 1).isMaxValue()) {
4874        Pred = ICmpInst::ICMP_EQ;
4875        RHS = getConstant(RA + 1);
4876        Changed = true;
4877        break;
4878      }
4879      if (RA.isMaxValue()) goto trivially_false;
4880      break;
4881    case ICmpInst::ICMP_ULT:
4882      if (RA.isMaxValue()) {
4883        Pred = ICmpInst::ICMP_NE;
4884        Changed = true;
4885        break;
4886      }
4887      if ((RA - 1).isMinValue()) {
4888        Pred = ICmpInst::ICMP_EQ;
4889        RHS = getConstant(RA - 1);
4890        Changed = true;
4891        break;
4892      }
4893      if (RA.isMinValue()) goto trivially_false;
4894      break;
4895    case ICmpInst::ICMP_SGT:
4896      if (RA.isMinSignedValue()) {
4897        Pred = ICmpInst::ICMP_NE;
4898        Changed = true;
4899        break;
4900      }
4901      if ((RA + 1).isMaxSignedValue()) {
4902        Pred = ICmpInst::ICMP_EQ;
4903        RHS = getConstant(RA + 1);
4904        Changed = true;
4905        break;
4906      }
4907      if (RA.isMaxSignedValue()) goto trivially_false;
4908      break;
4909    case ICmpInst::ICMP_SLT:
4910      if (RA.isMaxSignedValue()) {
4911        Pred = ICmpInst::ICMP_NE;
4912        Changed = true;
4913        break;
4914      }
4915      if ((RA - 1).isMinSignedValue()) {
4916       Pred = ICmpInst::ICMP_EQ;
4917       RHS = getConstant(RA - 1);
4918        Changed = true;
4919       break;
4920      }
4921      if (RA.isMinSignedValue()) goto trivially_false;
4922      break;
4923    }
4924  }
4925
4926  // Check for obvious equality.
4927  if (HasSameValue(LHS, RHS)) {
4928    if (ICmpInst::isTrueWhenEqual(Pred))
4929      goto trivially_true;
4930    if (ICmpInst::isFalseWhenEqual(Pred))
4931      goto trivially_false;
4932  }
4933
4934  // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
4935  // adding or subtracting 1 from one of the operands.
4936  switch (Pred) {
4937  case ICmpInst::ICMP_SLE:
4938    if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
4939      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
4940                       /*HasNUW=*/false, /*HasNSW=*/true);
4941      Pred = ICmpInst::ICMP_SLT;
4942      Changed = true;
4943    } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
4944      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
4945                       /*HasNUW=*/false, /*HasNSW=*/true);
4946      Pred = ICmpInst::ICMP_SLT;
4947      Changed = true;
4948    }
4949    break;
4950  case ICmpInst::ICMP_SGE:
4951    if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
4952      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
4953                       /*HasNUW=*/false, /*HasNSW=*/true);
4954      Pred = ICmpInst::ICMP_SGT;
4955      Changed = true;
4956    } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
4957      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
4958                       /*HasNUW=*/false, /*HasNSW=*/true);
4959      Pred = ICmpInst::ICMP_SGT;
4960      Changed = true;
4961    }
4962    break;
4963  case ICmpInst::ICMP_ULE:
4964    if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
4965      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
4966                       /*HasNUW=*/true, /*HasNSW=*/false);
4967      Pred = ICmpInst::ICMP_ULT;
4968      Changed = true;
4969    } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
4970      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
4971                       /*HasNUW=*/true, /*HasNSW=*/false);
4972      Pred = ICmpInst::ICMP_ULT;
4973      Changed = true;
4974    }
4975    break;
4976  case ICmpInst::ICMP_UGE:
4977    if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
4978      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
4979                       /*HasNUW=*/true, /*HasNSW=*/false);
4980      Pred = ICmpInst::ICMP_UGT;
4981      Changed = true;
4982    } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
4983      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
4984                       /*HasNUW=*/true, /*HasNSW=*/false);
4985      Pred = ICmpInst::ICMP_UGT;
4986      Changed = true;
4987    }
4988    break;
4989  default:
4990    break;
4991  }
4992
4993  // TODO: More simplifications are possible here.
4994
4995  return Changed;
4996
4997trivially_true:
4998  // Return 0 == 0.
4999  LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5000  Pred = ICmpInst::ICMP_EQ;
5001  return true;
5002
5003trivially_false:
5004  // Return 0 != 0.
5005  LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5006  Pred = ICmpInst::ICMP_NE;
5007  return true;
5008}
5009
5010bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5011  return getSignedRange(S).getSignedMax().isNegative();
5012}
5013
5014bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5015  return getSignedRange(S).getSignedMin().isStrictlyPositive();
5016}
5017
5018bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5019  return !getSignedRange(S).getSignedMin().isNegative();
5020}
5021
5022bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5023  return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5024}
5025
5026bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5027  return isKnownNegative(S) || isKnownPositive(S);
5028}
5029
5030bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5031                                       const SCEV *LHS, const SCEV *RHS) {
5032  // Canonicalize the inputs first.
5033  (void)SimplifyICmpOperands(Pred, LHS, RHS);
5034
5035  // If LHS or RHS is an addrec, check to see if the condition is true in
5036  // every iteration of the loop.
5037  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5038    if (isLoopEntryGuardedByCond(
5039          AR->getLoop(), Pred, AR->getStart(), RHS) &&
5040        isLoopBackedgeGuardedByCond(
5041          AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
5042      return true;
5043  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5044    if (isLoopEntryGuardedByCond(
5045          AR->getLoop(), Pred, LHS, AR->getStart()) &&
5046        isLoopBackedgeGuardedByCond(
5047          AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
5048      return true;
5049
5050  // Otherwise see what can be done with known constant ranges.
5051  return isKnownPredicateWithRanges(Pred, LHS, RHS);
5052}
5053
5054bool
5055ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5056                                            const SCEV *LHS, const SCEV *RHS) {
5057  if (HasSameValue(LHS, RHS))
5058    return ICmpInst::isTrueWhenEqual(Pred);
5059
5060  // This code is split out from isKnownPredicate because it is called from
5061  // within isLoopEntryGuardedByCond.
5062  switch (Pred) {
5063  default:
5064    llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5065    break;
5066  case ICmpInst::ICMP_SGT:
5067    Pred = ICmpInst::ICMP_SLT;
5068    std::swap(LHS, RHS);
5069  case ICmpInst::ICMP_SLT: {
5070    ConstantRange LHSRange = getSignedRange(LHS);
5071    ConstantRange RHSRange = getSignedRange(RHS);
5072    if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5073      return true;
5074    if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5075      return false;
5076    break;
5077  }
5078  case ICmpInst::ICMP_SGE:
5079    Pred = ICmpInst::ICMP_SLE;
5080    std::swap(LHS, RHS);
5081  case ICmpInst::ICMP_SLE: {
5082    ConstantRange LHSRange = getSignedRange(LHS);
5083    ConstantRange RHSRange = getSignedRange(RHS);
5084    if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5085      return true;
5086    if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5087      return false;
5088    break;
5089  }
5090  case ICmpInst::ICMP_UGT:
5091    Pred = ICmpInst::ICMP_ULT;
5092    std::swap(LHS, RHS);
5093  case ICmpInst::ICMP_ULT: {
5094    ConstantRange LHSRange = getUnsignedRange(LHS);
5095    ConstantRange RHSRange = getUnsignedRange(RHS);
5096    if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5097      return true;
5098    if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5099      return false;
5100    break;
5101  }
5102  case ICmpInst::ICMP_UGE:
5103    Pred = ICmpInst::ICMP_ULE;
5104    std::swap(LHS, RHS);
5105  case ICmpInst::ICMP_ULE: {
5106    ConstantRange LHSRange = getUnsignedRange(LHS);
5107    ConstantRange RHSRange = getUnsignedRange(RHS);
5108    if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5109      return true;
5110    if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5111      return false;
5112    break;
5113  }
5114  case ICmpInst::ICMP_NE: {
5115    if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5116      return true;
5117    if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5118      return true;
5119
5120    const SCEV *Diff = getMinusSCEV(LHS, RHS);
5121    if (isKnownNonZero(Diff))
5122      return true;
5123    break;
5124  }
5125  case ICmpInst::ICMP_EQ:
5126    // The check at the top of the function catches the case where
5127    // the values are known to be equal.
5128    break;
5129  }
5130  return false;
5131}
5132
5133/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5134/// protected by a conditional between LHS and RHS.  This is used to
5135/// to eliminate casts.
5136bool
5137ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5138                                             ICmpInst::Predicate Pred,
5139                                             const SCEV *LHS, const SCEV *RHS) {
5140  // Interpret a null as meaning no loop, where there is obviously no guard
5141  // (interprocedural conditions notwithstanding).
5142  if (!L) return true;
5143
5144  BasicBlock *Latch = L->getLoopLatch();
5145  if (!Latch)
5146    return false;
5147
5148  BranchInst *LoopContinuePredicate =
5149    dyn_cast<BranchInst>(Latch->getTerminator());
5150  if (!LoopContinuePredicate ||
5151      LoopContinuePredicate->isUnconditional())
5152    return false;
5153
5154  return isImpliedCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS,
5155                       LoopContinuePredicate->getSuccessor(0) != L->getHeader());
5156}
5157
5158/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
5159/// by a conditional between LHS and RHS.  This is used to help avoid max
5160/// expressions in loop trip counts, and to eliminate casts.
5161bool
5162ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5163                                          ICmpInst::Predicate Pred,
5164                                          const SCEV *LHS, const SCEV *RHS) {
5165  // Interpret a null as meaning no loop, where there is obviously no guard
5166  // (interprocedural conditions notwithstanding).
5167  if (!L) return false;
5168
5169  // Starting at the loop predecessor, climb up the predecessor chain, as long
5170  // as there are predecessors that can be found that have unique successors
5171  // leading to the original header.
5172  for (std::pair<BasicBlock *, BasicBlock *>
5173         Pair(getLoopPredecessor(L), L->getHeader());
5174       Pair.first;
5175       Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
5176
5177    BranchInst *LoopEntryPredicate =
5178      dyn_cast<BranchInst>(Pair.first->getTerminator());
5179    if (!LoopEntryPredicate ||
5180        LoopEntryPredicate->isUnconditional())
5181      continue;
5182
5183    if (isImpliedCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS,
5184                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
5185      return true;
5186  }
5187
5188  return false;
5189}
5190
5191/// isImpliedCond - Test whether the condition described by Pred, LHS,
5192/// and RHS is true whenever the given Cond value evaluates to true.
5193bool ScalarEvolution::isImpliedCond(Value *CondValue,
5194                                    ICmpInst::Predicate Pred,
5195                                    const SCEV *LHS, const SCEV *RHS,
5196                                    bool Inverse) {
5197  // Recursively handle And and Or conditions.
5198  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) {
5199    if (BO->getOpcode() == Instruction::And) {
5200      if (!Inverse)
5201        return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
5202               isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
5203    } else if (BO->getOpcode() == Instruction::Or) {
5204      if (Inverse)
5205        return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
5206               isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
5207    }
5208  }
5209
5210  ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue);
5211  if (!ICI) return false;
5212
5213  // Bail if the ICmp's operands' types are wider than the needed type
5214  // before attempting to call getSCEV on them. This avoids infinite
5215  // recursion, since the analysis of widening casts can require loop
5216  // exit condition information for overflow checking, which would
5217  // lead back here.
5218  if (getTypeSizeInBits(LHS->getType()) <
5219      getTypeSizeInBits(ICI->getOperand(0)->getType()))
5220    return false;
5221
5222  // Now that we found a conditional branch that dominates the loop, check to
5223  // see if it is the comparison we are looking for.
5224  ICmpInst::Predicate FoundPred;
5225  if (Inverse)
5226    FoundPred = ICI->getInversePredicate();
5227  else
5228    FoundPred = ICI->getPredicate();
5229
5230  const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5231  const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
5232
5233  // Balance the types. The case where FoundLHS' type is wider than
5234  // LHS' type is checked for above.
5235  if (getTypeSizeInBits(LHS->getType()) >
5236      getTypeSizeInBits(FoundLHS->getType())) {
5237    if (CmpInst::isSigned(Pred)) {
5238      FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5239      FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5240    } else {
5241      FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5242      FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5243    }
5244  }
5245
5246  // Canonicalize the query to match the way instcombine will have
5247  // canonicalized the comparison.
5248  if (SimplifyICmpOperands(Pred, LHS, RHS))
5249    if (LHS == RHS)
5250      return CmpInst::isTrueWhenEqual(Pred);
5251  if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5252    if (FoundLHS == FoundRHS)
5253      return CmpInst::isFalseWhenEqual(Pred);
5254
5255  // Check to see if we can make the LHS or RHS match.
5256  if (LHS == FoundRHS || RHS == FoundLHS) {
5257    if (isa<SCEVConstant>(RHS)) {
5258      std::swap(FoundLHS, FoundRHS);
5259      FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5260    } else {
5261      std::swap(LHS, RHS);
5262      Pred = ICmpInst::getSwappedPredicate(Pred);
5263    }
5264  }
5265
5266  // Check whether the found predicate is the same as the desired predicate.
5267  if (FoundPred == Pred)
5268    return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5269
5270  // Check whether swapping the found predicate makes it the same as the
5271  // desired predicate.
5272  if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5273    if (isa<SCEVConstant>(RHS))
5274      return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5275    else
5276      return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5277                                   RHS, LHS, FoundLHS, FoundRHS);
5278  }
5279
5280  // Check whether the actual condition is beyond sufficient.
5281  if (FoundPred == ICmpInst::ICMP_EQ)
5282    if (ICmpInst::isTrueWhenEqual(Pred))
5283      if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5284        return true;
5285  if (Pred == ICmpInst::ICMP_NE)
5286    if (!ICmpInst::isTrueWhenEqual(FoundPred))
5287      if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5288        return true;
5289
5290  // Otherwise assume the worst.
5291  return false;
5292}
5293
5294/// isImpliedCondOperands - Test whether the condition described by Pred,
5295/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
5296/// and FoundRHS is true.
5297bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5298                                            const SCEV *LHS, const SCEV *RHS,
5299                                            const SCEV *FoundLHS,
5300                                            const SCEV *FoundRHS) {
5301  return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5302                                     FoundLHS, FoundRHS) ||
5303         // ~x < ~y --> x > y
5304         isImpliedCondOperandsHelper(Pred, LHS, RHS,
5305                                     getNotSCEV(FoundRHS),
5306                                     getNotSCEV(FoundLHS));
5307}
5308
5309/// isImpliedCondOperandsHelper - Test whether the condition described by
5310/// Pred, LHS, and RHS is true whenever the condition described by Pred,
5311/// FoundLHS, and FoundRHS is true.
5312bool
5313ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5314                                             const SCEV *LHS, const SCEV *RHS,
5315                                             const SCEV *FoundLHS,
5316                                             const SCEV *FoundRHS) {
5317  switch (Pred) {
5318  default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5319  case ICmpInst::ICMP_EQ:
5320  case ICmpInst::ICMP_NE:
5321    if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5322      return true;
5323    break;
5324  case ICmpInst::ICMP_SLT:
5325  case ICmpInst::ICMP_SLE:
5326    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5327        isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
5328      return true;
5329    break;
5330  case ICmpInst::ICMP_SGT:
5331  case ICmpInst::ICMP_SGE:
5332    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5333        isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
5334      return true;
5335    break;
5336  case ICmpInst::ICMP_ULT:
5337  case ICmpInst::ICMP_ULE:
5338    if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5339        isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
5340      return true;
5341    break;
5342  case ICmpInst::ICMP_UGT:
5343  case ICmpInst::ICMP_UGE:
5344    if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5345        isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
5346      return true;
5347    break;
5348  }
5349
5350  return false;
5351}
5352
5353/// getBECount - Subtract the end and start values and divide by the step,
5354/// rounding up, to get the number of times the backedge is executed. Return
5355/// CouldNotCompute if an intermediate computation overflows.
5356const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
5357                                        const SCEV *End,
5358                                        const SCEV *Step,
5359                                        bool NoWrap) {
5360  assert(!isKnownNegative(Step) &&
5361         "This code doesn't handle negative strides yet!");
5362
5363  const Type *Ty = Start->getType();
5364  const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
5365  const SCEV *Diff = getMinusSCEV(End, Start);
5366  const SCEV *RoundUp = getAddExpr(Step, NegOne);
5367
5368  // Add an adjustment to the difference between End and Start so that
5369  // the division will effectively round up.
5370  const SCEV *Add = getAddExpr(Diff, RoundUp);
5371
5372  if (!NoWrap) {
5373    // Check Add for unsigned overflow.
5374    // TODO: More sophisticated things could be done here.
5375    const Type *WideTy = IntegerType::get(getContext(),
5376                                          getTypeSizeInBits(Ty) + 1);
5377    const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5378    const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5379    const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5380    if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5381      return getCouldNotCompute();
5382  }
5383
5384  return getUDivExpr(Add, Step);
5385}
5386
5387/// HowManyLessThans - Return the number of times a backedge containing the
5388/// specified less-than comparison will execute.  If not computable, return
5389/// CouldNotCompute.
5390ScalarEvolution::BackedgeTakenInfo
5391ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5392                                  const Loop *L, bool isSigned) {
5393  // Only handle:  "ADDREC < LoopInvariant".
5394  if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
5395
5396  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
5397  if (!AddRec || AddRec->getLoop() != L)
5398    return getCouldNotCompute();
5399
5400  // Check to see if we have a flag which makes analysis easy.
5401  bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5402                           AddRec->hasNoUnsignedWrap();
5403
5404  if (AddRec->isAffine()) {
5405    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
5406    const SCEV *Step = AddRec->getStepRecurrence(*this);
5407
5408    if (Step->isZero())
5409      return getCouldNotCompute();
5410    if (Step->isOne()) {
5411      // With unit stride, the iteration never steps past the limit value.
5412    } else if (isKnownPositive(Step)) {
5413      // Test whether a positive iteration can step past the limit
5414      // value and past the maximum value for its type in a single step.
5415      // Note that it's not sufficient to check NoWrap here, because even
5416      // though the value after a wrap is undefined, it's not undefined
5417      // behavior, so if wrap does occur, the loop could either terminate or
5418      // loop infinitely, but in either case, the loop is guaranteed to
5419      // iterate at least until the iteration where the wrapping occurs.
5420      const SCEV *One = getConstant(Step->getType(), 1);
5421      if (isSigned) {
5422        APInt Max = APInt::getSignedMaxValue(BitWidth);
5423        if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5424              .slt(getSignedRange(RHS).getSignedMax()))
5425          return getCouldNotCompute();
5426      } else {
5427        APInt Max = APInt::getMaxValue(BitWidth);
5428        if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5429              .ult(getUnsignedRange(RHS).getUnsignedMax()))
5430          return getCouldNotCompute();
5431      }
5432    } else
5433      // TODO: Handle negative strides here and below.
5434      return getCouldNotCompute();
5435
5436    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5437    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
5438    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
5439    // treat m-n as signed nor unsigned due to overflow possibility.
5440
5441    // First, we get the value of the LHS in the first iteration: n
5442    const SCEV *Start = AddRec->getOperand(0);
5443
5444    // Determine the minimum constant start value.
5445    const SCEV *MinStart = getConstant(isSigned ?
5446      getSignedRange(Start).getSignedMin() :
5447      getUnsignedRange(Start).getUnsignedMin());
5448
5449    // If we know that the condition is true in order to enter the loop,
5450    // then we know that it will run exactly (m-n)/s times. Otherwise, we
5451    // only know that it will execute (max(m,n)-n)/s times. In both cases,
5452    // the division must round up.
5453    const SCEV *End = RHS;
5454    if (!isLoopEntryGuardedByCond(L,
5455                                  isSigned ? ICmpInst::ICMP_SLT :
5456                                             ICmpInst::ICMP_ULT,
5457                                  getMinusSCEV(Start, Step), RHS))
5458      End = isSigned ? getSMaxExpr(RHS, Start)
5459                     : getUMaxExpr(RHS, Start);
5460
5461    // Determine the maximum constant end value.
5462    const SCEV *MaxEnd = getConstant(isSigned ?
5463      getSignedRange(End).getSignedMax() :
5464      getUnsignedRange(End).getUnsignedMax());
5465
5466    // If MaxEnd is within a step of the maximum integer value in its type,
5467    // adjust it down to the minimum value which would produce the same effect.
5468    // This allows the subsequent ceiling division of (N+(step-1))/step to
5469    // compute the correct value.
5470    const SCEV *StepMinusOne = getMinusSCEV(Step,
5471                                            getConstant(Step->getType(), 1));
5472    MaxEnd = isSigned ?
5473      getSMinExpr(MaxEnd,
5474                  getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5475                               StepMinusOne)) :
5476      getUMinExpr(MaxEnd,
5477                  getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5478                               StepMinusOne));
5479
5480    // Finally, we subtract these two values and divide, rounding up, to get
5481    // the number of times the backedge is executed.
5482    const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
5483
5484    // The maximum backedge count is similar, except using the minimum start
5485    // value and the maximum end value.
5486    const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
5487
5488    return BackedgeTakenInfo(BECount, MaxBECount);
5489  }
5490
5491  return getCouldNotCompute();
5492}
5493
5494/// getNumIterationsInRange - Return the number of iterations of this loop that
5495/// produce values in the specified constant range.  Another way of looking at
5496/// this is that it returns the first iteration number where the value is not in
5497/// the condition, thus computing the exit count. If the iteration count can't
5498/// be computed, an instance of SCEVCouldNotCompute is returned.
5499const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
5500                                                    ScalarEvolution &SE) const {
5501  if (Range.isFullSet())  // Infinite loop.
5502    return SE.getCouldNotCompute();
5503
5504  // If the start is a non-zero constant, shift the range to simplify things.
5505  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
5506    if (!SC->getValue()->isZero()) {
5507      SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
5508      Operands[0] = SE.getConstant(SC->getType(), 0);
5509      const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
5510      if (const SCEVAddRecExpr *ShiftedAddRec =
5511            dyn_cast<SCEVAddRecExpr>(Shifted))
5512        return ShiftedAddRec->getNumIterationsInRange(
5513                           Range.subtract(SC->getValue()->getValue()), SE);
5514      // This is strange and shouldn't happen.
5515      return SE.getCouldNotCompute();
5516    }
5517
5518  // The only time we can solve this is when we have all constant indices.
5519  // Otherwise, we cannot determine the overflow conditions.
5520  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5521    if (!isa<SCEVConstant>(getOperand(i)))
5522      return SE.getCouldNotCompute();
5523
5524
5525  // Okay at this point we know that all elements of the chrec are constants and
5526  // that the start element is zero.
5527
5528  // First check to see if the range contains zero.  If not, the first
5529  // iteration exits.
5530  unsigned BitWidth = SE.getTypeSizeInBits(getType());
5531  if (!Range.contains(APInt(BitWidth, 0)))
5532    return SE.getConstant(getType(), 0);
5533
5534  if (isAffine()) {
5535    // If this is an affine expression then we have this situation:
5536    //   Solve {0,+,A} in Range  ===  Ax in Range
5537
5538    // We know that zero is in the range.  If A is positive then we know that
5539    // the upper value of the range must be the first possible exit value.
5540    // If A is negative then the lower of the range is the last possible loop
5541    // value.  Also note that we already checked for a full range.
5542    APInt One(BitWidth,1);
5543    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5544    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
5545
5546    // The exit value should be (End+A)/A.
5547    APInt ExitVal = (End + A).udiv(A);
5548    ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
5549
5550    // Evaluate at the exit value.  If we really did fall out of the valid
5551    // range, then we computed our trip count, otherwise wrap around or other
5552    // things must have happened.
5553    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
5554    if (Range.contains(Val->getValue()))
5555      return SE.getCouldNotCompute();  // Something strange happened
5556
5557    // Ensure that the previous value is in the range.  This is a sanity check.
5558    assert(Range.contains(
5559           EvaluateConstantChrecAtConstant(this,
5560           ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
5561           "Linear scev computation is off in a bad way!");
5562    return SE.getConstant(ExitValue);
5563  } else if (isQuadratic()) {
5564    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5565    // quadratic equation to solve it.  To do this, we must frame our problem in
5566    // terms of figuring out when zero is crossed, instead of when
5567    // Range.getUpper() is crossed.
5568    SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
5569    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
5570    const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
5571
5572    // Next, solve the constructed addrec
5573    std::pair<const SCEV *,const SCEV *> Roots =
5574      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
5575    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5576    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
5577    if (R1) {
5578      // Pick the smallest positive root value.
5579      if (ConstantInt *CB =
5580          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
5581                         R1->getValue(), R2->getValue()))) {
5582        if (CB->getZExtValue() == false)
5583          std::swap(R1, R2);   // R1 is the minimum root now.
5584
5585        // Make sure the root is not off by one.  The returned iteration should
5586        // not be in the range, but the previous one should be.  When solving
5587        // for "X*X < 5", for example, we should not return a root of 2.
5588        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
5589                                                             R1->getValue(),
5590                                                             SE);
5591        if (Range.contains(R1Val->getValue())) {
5592          // The next iteration must be out of the range...
5593          ConstantInt *NextVal =
5594                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
5595
5596          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5597          if (!Range.contains(R1Val->getValue()))
5598            return SE.getConstant(NextVal);
5599          return SE.getCouldNotCompute();  // Something strange happened
5600        }
5601
5602        // If R1 was not in the range, then it is a good return value.  Make
5603        // sure that R1-1 WAS in the range though, just in case.
5604        ConstantInt *NextVal =
5605               ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
5606        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5607        if (Range.contains(R1Val->getValue()))
5608          return R1;
5609        return SE.getCouldNotCompute();  // Something strange happened
5610      }
5611    }
5612  }
5613
5614  return SE.getCouldNotCompute();
5615}
5616
5617
5618
5619//===----------------------------------------------------------------------===//
5620//                   SCEVCallbackVH Class Implementation
5621//===----------------------------------------------------------------------===//
5622
5623void ScalarEvolution::SCEVCallbackVH::deleted() {
5624  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5625  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5626    SE->ConstantEvolutionLoopExitValue.erase(PN);
5627  SE->Scalars.erase(getValPtr());
5628  // this now dangles!
5629}
5630
5631void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
5632  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5633
5634  // Forget all the expressions associated with users of the old value,
5635  // so that future queries will recompute the expressions using the new
5636  // value.
5637  SmallVector<User *, 16> Worklist;
5638  SmallPtrSet<User *, 8> Visited;
5639  Value *Old = getValPtr();
5640  bool DeleteOld = false;
5641  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5642       UI != UE; ++UI)
5643    Worklist.push_back(*UI);
5644  while (!Worklist.empty()) {
5645    User *U = Worklist.pop_back_val();
5646    // Deleting the Old value will cause this to dangle. Postpone
5647    // that until everything else is done.
5648    if (U == Old) {
5649      DeleteOld = true;
5650      continue;
5651    }
5652    if (!Visited.insert(U))
5653      continue;
5654    if (PHINode *PN = dyn_cast<PHINode>(U))
5655      SE->ConstantEvolutionLoopExitValue.erase(PN);
5656    SE->Scalars.erase(U);
5657    for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5658         UI != UE; ++UI)
5659      Worklist.push_back(*UI);
5660  }
5661  // Delete the Old value if it (indirectly) references itself.
5662  if (DeleteOld) {
5663    if (PHINode *PN = dyn_cast<PHINode>(Old))
5664      SE->ConstantEvolutionLoopExitValue.erase(PN);
5665    SE->Scalars.erase(Old);
5666    // this now dangles!
5667  }
5668  // this may dangle!
5669}
5670
5671ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
5672  : CallbackVH(V), SE(se) {}
5673
5674//===----------------------------------------------------------------------===//
5675//                   ScalarEvolution Class Implementation
5676//===----------------------------------------------------------------------===//
5677
5678ScalarEvolution::ScalarEvolution()
5679  : FunctionPass(&ID) {
5680}
5681
5682bool ScalarEvolution::runOnFunction(Function &F) {
5683  this->F = &F;
5684  LI = &getAnalysis<LoopInfo>();
5685  TD = getAnalysisIfAvailable<TargetData>();
5686  DT = &getAnalysis<DominatorTree>();
5687  return false;
5688}
5689
5690void ScalarEvolution::releaseMemory() {
5691  Scalars.clear();
5692  BackedgeTakenCounts.clear();
5693  ConstantEvolutionLoopExitValue.clear();
5694  ValuesAtScopes.clear();
5695  UniqueSCEVs.clear();
5696  SCEVAllocator.Reset();
5697}
5698
5699void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5700  AU.setPreservesAll();
5701  AU.addRequiredTransitive<LoopInfo>();
5702  AU.addRequiredTransitive<DominatorTree>();
5703}
5704
5705bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
5706  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
5707}
5708
5709static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
5710                          const Loop *L) {
5711  // Print all inner loops first
5712  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5713    PrintLoopInfo(OS, SE, *I);
5714
5715  OS << "Loop ";
5716  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5717  OS << ": ";
5718
5719  SmallVector<BasicBlock *, 8> ExitBlocks;
5720  L->getExitBlocks(ExitBlocks);
5721  if (ExitBlocks.size() != 1)
5722    OS << "<multiple exits> ";
5723
5724  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5725    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
5726  } else {
5727    OS << "Unpredictable backedge-taken count. ";
5728  }
5729
5730  OS << "\n"
5731        "Loop ";
5732  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5733  OS << ": ";
5734
5735  if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5736    OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5737  } else {
5738    OS << "Unpredictable max backedge-taken count. ";
5739  }
5740
5741  OS << "\n";
5742}
5743
5744void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
5745  // ScalarEvolution's implementation of the print method is to print
5746  // out SCEV values of all instructions that are interesting. Doing
5747  // this potentially causes it to create new SCEV objects though,
5748  // which technically conflicts with the const qualifier. This isn't
5749  // observable from outside the class though, so casting away the
5750  // const isn't dangerous.
5751  ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
5752
5753  OS << "Classifying expressions for: ";
5754  WriteAsOperand(OS, F, /*PrintType=*/false);
5755  OS << "\n";
5756  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
5757    if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
5758      OS << *I << '\n';
5759      OS << "  -->  ";
5760      const SCEV *SV = SE.getSCEV(&*I);
5761      SV->print(OS);
5762
5763      const Loop *L = LI->getLoopFor((*I).getParent());
5764
5765      const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
5766      if (AtUse != SV) {
5767        OS << "  -->  ";
5768        AtUse->print(OS);
5769      }
5770
5771      if (L) {
5772        OS << "\t\t" "Exits: ";
5773        const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
5774        if (!ExitValue->isLoopInvariant(L)) {
5775          OS << "<<Unknown>>";
5776        } else {
5777          OS << *ExitValue;
5778        }
5779      }
5780
5781      OS << "\n";
5782    }
5783
5784  OS << "Determining loop execution counts for: ";
5785  WriteAsOperand(OS, F, /*PrintType=*/false);
5786  OS << "\n";
5787  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5788    PrintLoopInfo(OS, &SE, *I);
5789}
5790
5791