ScalarEvolution.cpp revision eb490a7aa34c873b1bc401eb2c45a4d71a62be37
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle.  These classes are reference counted, managed by the const SCEV *
18// class.  We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression.  These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
36// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43//  Chains of recurrences -- a method to expedite the evaluation
44//  of closed-form functions
45//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47//  On computational properties of chains of recurrences
48//  Eugene V. Zima
49//
50//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51//  Robert A. van Engelen
52//
53//  Efficient Symbolic Analysis for Optimizing Compilers
54//  Robert A. van Engelen
55//
56//  Using the chains of recurrences algebra for data dependence testing and
57//  induction variable substitution
58//  MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
62#define DEBUG_TYPE "scalar-evolution"
63#include "llvm/Analysis/ScalarEvolutionExpressions.h"
64#include "llvm/Constants.h"
65#include "llvm/DerivedTypes.h"
66#include "llvm/GlobalVariable.h"
67#include "llvm/Instructions.h"
68#include "llvm/LLVMContext.h"
69#include "llvm/Operator.h"
70#include "llvm/Analysis/ConstantFolding.h"
71#include "llvm/Analysis/Dominators.h"
72#include "llvm/Analysis/LoopInfo.h"
73#include "llvm/Analysis/ValueTracking.h"
74#include "llvm/Assembly/Writer.h"
75#include "llvm/Target/TargetData.h"
76#include "llvm/Support/CommandLine.h"
77#include "llvm/Support/Compiler.h"
78#include "llvm/Support/ConstantRange.h"
79#include "llvm/Support/ErrorHandling.h"
80#include "llvm/Support/GetElementPtrTypeIterator.h"
81#include "llvm/Support/InstIterator.h"
82#include "llvm/Support/MathExtras.h"
83#include "llvm/Support/raw_ostream.h"
84#include "llvm/ADT/Statistic.h"
85#include "llvm/ADT/STLExtras.h"
86#include "llvm/ADT/SmallPtrSet.h"
87#include <algorithm>
88using namespace llvm;
89
90STATISTIC(NumArrayLenItCounts,
91          "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93          "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95          "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97          "Number of loops with trip counts computed by force");
98
99static cl::opt<unsigned>
100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101                        cl::desc("Maximum number of iterations SCEV will "
102                                 "symbolically execute a constant "
103                                 "derived loop"),
104                        cl::init(100));
105
106static RegisterPass<ScalarEvolution>
107R("scalar-evolution", "Scalar Evolution Analysis", false, true);
108char ScalarEvolution::ID = 0;
109
110//===----------------------------------------------------------------------===//
111//                           SCEV class definitions
112//===----------------------------------------------------------------------===//
113
114//===----------------------------------------------------------------------===//
115// Implementation of the SCEV class.
116//
117
118SCEV::~SCEV() {}
119
120void SCEV::dump() const {
121  print(errs());
122  errs() << '\n';
123}
124
125void SCEV::print(std::ostream &o) const {
126  raw_os_ostream OS(o);
127  print(OS);
128}
129
130bool SCEV::isZero() const {
131  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
132    return SC->getValue()->isZero();
133  return false;
134}
135
136bool SCEV::isOne() const {
137  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
138    return SC->getValue()->isOne();
139  return false;
140}
141
142bool SCEV::isAllOnesValue() const {
143  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
144    return SC->getValue()->isAllOnesValue();
145  return false;
146}
147
148SCEVCouldNotCompute::SCEVCouldNotCompute() :
149  SCEV(FoldingSetNodeID(), scCouldNotCompute) {}
150
151bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
152  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
153  return false;
154}
155
156const Type *SCEVCouldNotCompute::getType() const {
157  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
158  return 0;
159}
160
161bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
162  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
163  return false;
164}
165
166bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
167  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
168  return false;
169}
170
171void SCEVCouldNotCompute::print(raw_ostream &OS) const {
172  OS << "***COULDNOTCOMPUTE***";
173}
174
175bool SCEVCouldNotCompute::classof(const SCEV *S) {
176  return S->getSCEVType() == scCouldNotCompute;
177}
178
179const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
180  FoldingSetNodeID ID;
181  ID.AddInteger(scConstant);
182  ID.AddPointer(V);
183  void *IP = 0;
184  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
185  SCEV *S = SCEVAllocator.Allocate<SCEVConstant>();
186  new (S) SCEVConstant(ID, V);
187  UniqueSCEVs.InsertNode(S, IP);
188  return S;
189}
190
191const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
192  return getConstant(ConstantInt::get(getContext(), Val));
193}
194
195const SCEV *
196ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
197  return getConstant(
198    ConstantInt::get(cast<IntegerType>(Ty), V, isSigned));
199}
200
201const Type *SCEVConstant::getType() const { return V->getType(); }
202
203void SCEVConstant::print(raw_ostream &OS) const {
204  WriteAsOperand(OS, V, false);
205}
206
207SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeID &ID,
208                           unsigned SCEVTy, const SCEV *op, const Type *ty)
209  : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
210
211bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
212  return Op->dominates(BB, DT);
213}
214
215SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeID &ID,
216                                   const SCEV *op, const Type *ty)
217  : SCEVCastExpr(ID, scTruncate, op, ty) {
218  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
219         (Ty->isInteger() || isa<PointerType>(Ty)) &&
220         "Cannot truncate non-integer value!");
221}
222
223void SCEVTruncateExpr::print(raw_ostream &OS) const {
224  OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
225}
226
227SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeID &ID,
228                                       const SCEV *op, const Type *ty)
229  : SCEVCastExpr(ID, scZeroExtend, op, ty) {
230  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
231         (Ty->isInteger() || isa<PointerType>(Ty)) &&
232         "Cannot zero extend non-integer value!");
233}
234
235void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
236  OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
237}
238
239SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeID &ID,
240                                       const SCEV *op, const Type *ty)
241  : SCEVCastExpr(ID, scSignExtend, op, ty) {
242  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
243         (Ty->isInteger() || isa<PointerType>(Ty)) &&
244         "Cannot sign extend non-integer value!");
245}
246
247void SCEVSignExtendExpr::print(raw_ostream &OS) const {
248  OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
249}
250
251void SCEVCommutativeExpr::print(raw_ostream &OS) const {
252  assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
253  const char *OpStr = getOperationStr();
254  OS << "(" << *Operands[0];
255  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
256    OS << OpStr << *Operands[i];
257  OS << ")";
258}
259
260bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
261  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
262    if (!getOperand(i)->dominates(BB, DT))
263      return false;
264  }
265  return true;
266}
267
268bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
269  return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
270}
271
272void SCEVUDivExpr::print(raw_ostream &OS) const {
273  OS << "(" << *LHS << " /u " << *RHS << ")";
274}
275
276const Type *SCEVUDivExpr::getType() const {
277  // In most cases the types of LHS and RHS will be the same, but in some
278  // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
279  // depend on the type for correctness, but handling types carefully can
280  // avoid extra casts in the SCEVExpander. The LHS is more likely to be
281  // a pointer type than the RHS, so use the RHS' type here.
282  return RHS->getType();
283}
284
285bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
286  // Add recurrences are never invariant in the function-body (null loop).
287  if (!QueryLoop)
288    return false;
289
290  // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
291  if (QueryLoop->contains(L->getHeader()))
292    return false;
293
294  // This recurrence is variant w.r.t. QueryLoop if any of its operands
295  // are variant.
296  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
297    if (!getOperand(i)->isLoopInvariant(QueryLoop))
298      return false;
299
300  // Otherwise it's loop-invariant.
301  return true;
302}
303
304void SCEVAddRecExpr::print(raw_ostream &OS) const {
305  OS << "{" << *Operands[0];
306  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
307    OS << ",+," << *Operands[i];
308  OS << "}<" << L->getHeader()->getName() + ">";
309}
310
311bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
312  // All non-instruction values are loop invariant.  All instructions are loop
313  // invariant if they are not contained in the specified loop.
314  // Instructions are never considered invariant in the function body
315  // (null loop) because they are defined within the "loop".
316  if (Instruction *I = dyn_cast<Instruction>(V))
317    return L && !L->contains(I->getParent());
318  return true;
319}
320
321bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
322  if (Instruction *I = dyn_cast<Instruction>(getValue()))
323    return DT->dominates(I->getParent(), BB);
324  return true;
325}
326
327const Type *SCEVUnknown::getType() const {
328  return V->getType();
329}
330
331void SCEVUnknown::print(raw_ostream &OS) const {
332  WriteAsOperand(OS, V, false);
333}
334
335//===----------------------------------------------------------------------===//
336//                               SCEV Utilities
337//===----------------------------------------------------------------------===//
338
339namespace {
340  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
341  /// than the complexity of the RHS.  This comparator is used to canonicalize
342  /// expressions.
343  class VISIBILITY_HIDDEN SCEVComplexityCompare {
344    LoopInfo *LI;
345  public:
346    explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
347
348    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
349      // Primarily, sort the SCEVs by their getSCEVType().
350      if (LHS->getSCEVType() != RHS->getSCEVType())
351        return LHS->getSCEVType() < RHS->getSCEVType();
352
353      // Aside from the getSCEVType() ordering, the particular ordering
354      // isn't very important except that it's beneficial to be consistent,
355      // so that (a + b) and (b + a) don't end up as different expressions.
356
357      // Sort SCEVUnknown values with some loose heuristics. TODO: This is
358      // not as complete as it could be.
359      if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
360        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
361
362        // Order pointer values after integer values. This helps SCEVExpander
363        // form GEPs.
364        if (isa<PointerType>(LU->getType()) && !isa<PointerType>(RU->getType()))
365          return false;
366        if (isa<PointerType>(RU->getType()) && !isa<PointerType>(LU->getType()))
367          return true;
368
369        // Compare getValueID values.
370        if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
371          return LU->getValue()->getValueID() < RU->getValue()->getValueID();
372
373        // Sort arguments by their position.
374        if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
375          const Argument *RA = cast<Argument>(RU->getValue());
376          return LA->getArgNo() < RA->getArgNo();
377        }
378
379        // For instructions, compare their loop depth, and their opcode.
380        // This is pretty loose.
381        if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
382          Instruction *RV = cast<Instruction>(RU->getValue());
383
384          // Compare loop depths.
385          if (LI->getLoopDepth(LV->getParent()) !=
386              LI->getLoopDepth(RV->getParent()))
387            return LI->getLoopDepth(LV->getParent()) <
388                   LI->getLoopDepth(RV->getParent());
389
390          // Compare opcodes.
391          if (LV->getOpcode() != RV->getOpcode())
392            return LV->getOpcode() < RV->getOpcode();
393
394          // Compare the number of operands.
395          if (LV->getNumOperands() != RV->getNumOperands())
396            return LV->getNumOperands() < RV->getNumOperands();
397        }
398
399        return false;
400      }
401
402      // Compare constant values.
403      if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) {
404        const SCEVConstant *RC = cast<SCEVConstant>(RHS);
405        if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth())
406          return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth();
407        return LC->getValue()->getValue().ult(RC->getValue()->getValue());
408      }
409
410      // Compare addrec loop depths.
411      if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) {
412        const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
413        if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth())
414          return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth();
415      }
416
417      // Lexicographically compare n-ary expressions.
418      if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
419        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
420        for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
421          if (i >= RC->getNumOperands())
422            return false;
423          if (operator()(LC->getOperand(i), RC->getOperand(i)))
424            return true;
425          if (operator()(RC->getOperand(i), LC->getOperand(i)))
426            return false;
427        }
428        return LC->getNumOperands() < RC->getNumOperands();
429      }
430
431      // Lexicographically compare udiv expressions.
432      if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
433        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
434        if (operator()(LC->getLHS(), RC->getLHS()))
435          return true;
436        if (operator()(RC->getLHS(), LC->getLHS()))
437          return false;
438        if (operator()(LC->getRHS(), RC->getRHS()))
439          return true;
440        if (operator()(RC->getRHS(), LC->getRHS()))
441          return false;
442        return false;
443      }
444
445      // Compare cast expressions by operand.
446      if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
447        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
448        return operator()(LC->getOperand(), RC->getOperand());
449      }
450
451      llvm_unreachable("Unknown SCEV kind!");
452      return false;
453    }
454  };
455}
456
457/// GroupByComplexity - Given a list of SCEV objects, order them by their
458/// complexity, and group objects of the same complexity together by value.
459/// When this routine is finished, we know that any duplicates in the vector are
460/// consecutive and that complexity is monotonically increasing.
461///
462/// Note that we go take special precautions to ensure that we get determinstic
463/// results from this routine.  In other words, we don't want the results of
464/// this to depend on where the addresses of various SCEV objects happened to
465/// land in memory.
466///
467static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
468                              LoopInfo *LI) {
469  if (Ops.size() < 2) return;  // Noop
470  if (Ops.size() == 2) {
471    // This is the common case, which also happens to be trivially simple.
472    // Special case it.
473    if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
474      std::swap(Ops[0], Ops[1]);
475    return;
476  }
477
478  // Do the rough sort by complexity.
479  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
480
481  // Now that we are sorted by complexity, group elements of the same
482  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
483  // be extremely short in practice.  Note that we take this approach because we
484  // do not want to depend on the addresses of the objects we are grouping.
485  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
486    const SCEV *S = Ops[i];
487    unsigned Complexity = S->getSCEVType();
488
489    // If there are any objects of the same complexity and same value as this
490    // one, group them.
491    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
492      if (Ops[j] == S) { // Found a duplicate.
493        // Move it to immediately after i'th element.
494        std::swap(Ops[i+1], Ops[j]);
495        ++i;   // no need to rescan it.
496        if (i == e-2) return;  // Done!
497      }
498    }
499  }
500}
501
502
503
504//===----------------------------------------------------------------------===//
505//                      Simple SCEV method implementations
506//===----------------------------------------------------------------------===//
507
508/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
509/// Assume, K > 0.
510static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
511                                       ScalarEvolution &SE,
512                                       const Type* ResultTy) {
513  // Handle the simplest case efficiently.
514  if (K == 1)
515    return SE.getTruncateOrZeroExtend(It, ResultTy);
516
517  // We are using the following formula for BC(It, K):
518  //
519  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
520  //
521  // Suppose, W is the bitwidth of the return value.  We must be prepared for
522  // overflow.  Hence, we must assure that the result of our computation is
523  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
524  // safe in modular arithmetic.
525  //
526  // However, this code doesn't use exactly that formula; the formula it uses
527  // is something like the following, where T is the number of factors of 2 in
528  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
529  // exponentiation:
530  //
531  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
532  //
533  // This formula is trivially equivalent to the previous formula.  However,
534  // this formula can be implemented much more efficiently.  The trick is that
535  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
536  // arithmetic.  To do exact division in modular arithmetic, all we have
537  // to do is multiply by the inverse.  Therefore, this step can be done at
538  // width W.
539  //
540  // The next issue is how to safely do the division by 2^T.  The way this
541  // is done is by doing the multiplication step at a width of at least W + T
542  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
543  // when we perform the division by 2^T (which is equivalent to a right shift
544  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
545  // truncated out after the division by 2^T.
546  //
547  // In comparison to just directly using the first formula, this technique
548  // is much more efficient; using the first formula requires W * K bits,
549  // but this formula less than W + K bits. Also, the first formula requires
550  // a division step, whereas this formula only requires multiplies and shifts.
551  //
552  // It doesn't matter whether the subtraction step is done in the calculation
553  // width or the input iteration count's width; if the subtraction overflows,
554  // the result must be zero anyway.  We prefer here to do it in the width of
555  // the induction variable because it helps a lot for certain cases; CodeGen
556  // isn't smart enough to ignore the overflow, which leads to much less
557  // efficient code if the width of the subtraction is wider than the native
558  // register width.
559  //
560  // (It's possible to not widen at all by pulling out factors of 2 before
561  // the multiplication; for example, K=2 can be calculated as
562  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
563  // extra arithmetic, so it's not an obvious win, and it gets
564  // much more complicated for K > 3.)
565
566  // Protection from insane SCEVs; this bound is conservative,
567  // but it probably doesn't matter.
568  if (K > 1000)
569    return SE.getCouldNotCompute();
570
571  unsigned W = SE.getTypeSizeInBits(ResultTy);
572
573  // Calculate K! / 2^T and T; we divide out the factors of two before
574  // multiplying for calculating K! / 2^T to avoid overflow.
575  // Other overflow doesn't matter because we only care about the bottom
576  // W bits of the result.
577  APInt OddFactorial(W, 1);
578  unsigned T = 1;
579  for (unsigned i = 3; i <= K; ++i) {
580    APInt Mult(W, i);
581    unsigned TwoFactors = Mult.countTrailingZeros();
582    T += TwoFactors;
583    Mult = Mult.lshr(TwoFactors);
584    OddFactorial *= Mult;
585  }
586
587  // We need at least W + T bits for the multiplication step
588  unsigned CalculationBits = W + T;
589
590  // Calcuate 2^T, at width T+W.
591  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
592
593  // Calculate the multiplicative inverse of K! / 2^T;
594  // this multiplication factor will perform the exact division by
595  // K! / 2^T.
596  APInt Mod = APInt::getSignedMinValue(W+1);
597  APInt MultiplyFactor = OddFactorial.zext(W+1);
598  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
599  MultiplyFactor = MultiplyFactor.trunc(W);
600
601  // Calculate the product, at width T+W
602  const IntegerType *CalculationTy = IntegerType::get(CalculationBits);
603  const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
604  for (unsigned i = 1; i != K; ++i) {
605    const SCEV *S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
606    Dividend = SE.getMulExpr(Dividend,
607                             SE.getTruncateOrZeroExtend(S, CalculationTy));
608  }
609
610  // Divide by 2^T
611  const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
612
613  // Truncate the result, and divide by K! / 2^T.
614
615  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
616                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
617}
618
619/// evaluateAtIteration - Return the value of this chain of recurrences at
620/// the specified iteration number.  We can evaluate this recurrence by
621/// multiplying each element in the chain by the binomial coefficient
622/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
623///
624///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
625///
626/// where BC(It, k) stands for binomial coefficient.
627///
628const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
629                                                ScalarEvolution &SE) const {
630  const SCEV *Result = getStart();
631  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
632    // The computation is correct in the face of overflow provided that the
633    // multiplication is performed _after_ the evaluation of the binomial
634    // coefficient.
635    const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
636    if (isa<SCEVCouldNotCompute>(Coeff))
637      return Coeff;
638
639    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
640  }
641  return Result;
642}
643
644//===----------------------------------------------------------------------===//
645//                    SCEV Expression folder implementations
646//===----------------------------------------------------------------------===//
647
648const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
649                                             const Type *Ty) {
650  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
651         "This is not a truncating conversion!");
652  assert(isSCEVable(Ty) &&
653         "This is not a conversion to a SCEVable type!");
654  Ty = getEffectiveSCEVType(Ty);
655
656  FoldingSetNodeID ID;
657  ID.AddInteger(scTruncate);
658  ID.AddPointer(Op);
659  ID.AddPointer(Ty);
660  void *IP = 0;
661  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
662
663  // Fold if the operand is constant.
664  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
665    return getConstant(
666      cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
667
668  // trunc(trunc(x)) --> trunc(x)
669  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
670    return getTruncateExpr(ST->getOperand(), Ty);
671
672  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
673  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
674    return getTruncateOrSignExtend(SS->getOperand(), Ty);
675
676  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
677  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
678    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
679
680  // If the input value is a chrec scev, truncate the chrec's operands.
681  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
682    SmallVector<const SCEV *, 4> Operands;
683    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
684      Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
685    return getAddRecExpr(Operands, AddRec->getLoop());
686  }
687
688  // The cast wasn't folded; create an explicit cast node.
689  // Recompute the insert position, as it may have been invalidated.
690  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
691  SCEV *S = SCEVAllocator.Allocate<SCEVTruncateExpr>();
692  new (S) SCEVTruncateExpr(ID, Op, Ty);
693  UniqueSCEVs.InsertNode(S, IP);
694  return S;
695}
696
697const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
698                                               const Type *Ty) {
699  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
700         "This is not an extending conversion!");
701  assert(isSCEVable(Ty) &&
702         "This is not a conversion to a SCEVable type!");
703  Ty = getEffectiveSCEVType(Ty);
704
705  // Fold if the operand is constant.
706  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
707    const Type *IntTy = getEffectiveSCEVType(Ty);
708    Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
709    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
710    return getConstant(cast<ConstantInt>(C));
711  }
712
713  // zext(zext(x)) --> zext(x)
714  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
715    return getZeroExtendExpr(SZ->getOperand(), Ty);
716
717  // Before doing any expensive analysis, check to see if we've already
718  // computed a SCEV for this Op and Ty.
719  FoldingSetNodeID ID;
720  ID.AddInteger(scZeroExtend);
721  ID.AddPointer(Op);
722  ID.AddPointer(Ty);
723  void *IP = 0;
724  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
725
726  // If the input value is a chrec scev, and we can prove that the value
727  // did not overflow the old, smaller, value, we can zero extend all of the
728  // operands (often constants).  This allows analysis of something like
729  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
730  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
731    if (AR->isAffine()) {
732      const SCEV *Start = AR->getStart();
733      const SCEV *Step = AR->getStepRecurrence(*this);
734      unsigned BitWidth = getTypeSizeInBits(AR->getType());
735      const Loop *L = AR->getLoop();
736
737      // If we have special knowledge that this addrec won't overflow,
738      // we don't need to do any further analysis.
739      if (AR->hasNoUnsignedOverflow())
740        return getAddRecExpr(getZeroExtendExpr(Start, Ty),
741                             getZeroExtendExpr(Step, Ty),
742                             L);
743
744      // Check whether the backedge-taken count is SCEVCouldNotCompute.
745      // Note that this serves two purposes: It filters out loops that are
746      // simply not analyzable, and it covers the case where this code is
747      // being called from within backedge-taken count analysis, such that
748      // attempting to ask for the backedge-taken count would likely result
749      // in infinite recursion. In the later case, the analysis code will
750      // cope with a conservative value, and it will take care to purge
751      // that value once it has finished.
752      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
753      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
754        // Manually compute the final value for AR, checking for
755        // overflow.
756
757        // Check whether the backedge-taken count can be losslessly casted to
758        // the addrec's type. The count is always unsigned.
759        const SCEV *CastedMaxBECount =
760          getTruncateOrZeroExtend(MaxBECount, Start->getType());
761        const SCEV *RecastedMaxBECount =
762          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
763        if (MaxBECount == RecastedMaxBECount) {
764          const Type *WideTy = IntegerType::get(BitWidth * 2);
765          // Check whether Start+Step*MaxBECount has no unsigned overflow.
766          const SCEV *ZMul =
767            getMulExpr(CastedMaxBECount,
768                       getTruncateOrZeroExtend(Step, Start->getType()));
769          const SCEV *Add = getAddExpr(Start, ZMul);
770          const SCEV *OperandExtendedAdd =
771            getAddExpr(getZeroExtendExpr(Start, WideTy),
772                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
773                                  getZeroExtendExpr(Step, WideTy)));
774          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
775            // Return the expression with the addrec on the outside.
776            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
777                                 getZeroExtendExpr(Step, Ty),
778                                 L);
779
780          // Similar to above, only this time treat the step value as signed.
781          // This covers loops that count down.
782          const SCEV *SMul =
783            getMulExpr(CastedMaxBECount,
784                       getTruncateOrSignExtend(Step, Start->getType()));
785          Add = getAddExpr(Start, SMul);
786          OperandExtendedAdd =
787            getAddExpr(getZeroExtendExpr(Start, WideTy),
788                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
789                                  getSignExtendExpr(Step, WideTy)));
790          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
791            // Return the expression with the addrec on the outside.
792            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
793                                 getSignExtendExpr(Step, Ty),
794                                 L);
795        }
796
797        // If the backedge is guarded by a comparison with the pre-inc value
798        // the addrec is safe. Also, if the entry is guarded by a comparison
799        // with the start value and the backedge is guarded by a comparison
800        // with the post-inc value, the addrec is safe.
801        if (isKnownPositive(Step)) {
802          const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
803                                      getUnsignedRange(Step).getUnsignedMax());
804          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
805              (isLoopGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
806               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
807                                           AR->getPostIncExpr(*this), N)))
808            // Return the expression with the addrec on the outside.
809            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
810                                 getZeroExtendExpr(Step, Ty),
811                                 L);
812        } else if (isKnownNegative(Step)) {
813          const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
814                                      getSignedRange(Step).getSignedMin());
815          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) &&
816              (isLoopGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) ||
817               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
818                                           AR->getPostIncExpr(*this), N)))
819            // Return the expression with the addrec on the outside.
820            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
821                                 getSignExtendExpr(Step, Ty),
822                                 L);
823        }
824      }
825    }
826
827  // The cast wasn't folded; create an explicit cast node.
828  // Recompute the insert position, as it may have been invalidated.
829  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
830  SCEV *S = SCEVAllocator.Allocate<SCEVZeroExtendExpr>();
831  new (S) SCEVZeroExtendExpr(ID, Op, Ty);
832  UniqueSCEVs.InsertNode(S, IP);
833  return S;
834}
835
836const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
837                                               const Type *Ty) {
838  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
839         "This is not an extending conversion!");
840  assert(isSCEVable(Ty) &&
841         "This is not a conversion to a SCEVable type!");
842  Ty = getEffectiveSCEVType(Ty);
843
844  // Fold if the operand is constant.
845  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
846    const Type *IntTy = getEffectiveSCEVType(Ty);
847    Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
848    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
849    return getConstant(cast<ConstantInt>(C));
850  }
851
852  // sext(sext(x)) --> sext(x)
853  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
854    return getSignExtendExpr(SS->getOperand(), Ty);
855
856  // Before doing any expensive analysis, check to see if we've already
857  // computed a SCEV for this Op and Ty.
858  FoldingSetNodeID ID;
859  ID.AddInteger(scSignExtend);
860  ID.AddPointer(Op);
861  ID.AddPointer(Ty);
862  void *IP = 0;
863  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
864
865  // If the input value is a chrec scev, and we can prove that the value
866  // did not overflow the old, smaller, value, we can sign extend all of the
867  // operands (often constants).  This allows analysis of something like
868  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
869  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
870    if (AR->isAffine()) {
871      const SCEV *Start = AR->getStart();
872      const SCEV *Step = AR->getStepRecurrence(*this);
873      unsigned BitWidth = getTypeSizeInBits(AR->getType());
874      const Loop *L = AR->getLoop();
875
876      // If we have special knowledge that this addrec won't overflow,
877      // we don't need to do any further analysis.
878      if (AR->hasNoSignedOverflow())
879        return getAddRecExpr(getSignExtendExpr(Start, Ty),
880                             getSignExtendExpr(Step, Ty),
881                             L);
882
883      // Check whether the backedge-taken count is SCEVCouldNotCompute.
884      // Note that this serves two purposes: It filters out loops that are
885      // simply not analyzable, and it covers the case where this code is
886      // being called from within backedge-taken count analysis, such that
887      // attempting to ask for the backedge-taken count would likely result
888      // in infinite recursion. In the later case, the analysis code will
889      // cope with a conservative value, and it will take care to purge
890      // that value once it has finished.
891      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
892      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
893        // Manually compute the final value for AR, checking for
894        // overflow.
895
896        // Check whether the backedge-taken count can be losslessly casted to
897        // the addrec's type. The count is always unsigned.
898        const SCEV *CastedMaxBECount =
899          getTruncateOrZeroExtend(MaxBECount, Start->getType());
900        const SCEV *RecastedMaxBECount =
901          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
902        if (MaxBECount == RecastedMaxBECount) {
903          const Type *WideTy = IntegerType::get(BitWidth * 2);
904          // Check whether Start+Step*MaxBECount has no signed overflow.
905          const SCEV *SMul =
906            getMulExpr(CastedMaxBECount,
907                       getTruncateOrSignExtend(Step, Start->getType()));
908          const SCEV *Add = getAddExpr(Start, SMul);
909          const SCEV *OperandExtendedAdd =
910            getAddExpr(getSignExtendExpr(Start, WideTy),
911                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
912                                  getSignExtendExpr(Step, WideTy)));
913          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
914            // Return the expression with the addrec on the outside.
915            return getAddRecExpr(getSignExtendExpr(Start, Ty),
916                                 getSignExtendExpr(Step, Ty),
917                                 L);
918
919          // Similar to above, only this time treat the step value as unsigned.
920          // This covers loops that count up with an unsigned step.
921          const SCEV *UMul =
922            getMulExpr(CastedMaxBECount,
923                       getTruncateOrZeroExtend(Step, Start->getType()));
924          Add = getAddExpr(Start, UMul);
925          OperandExtendedAdd =
926            getAddExpr(getZeroExtendExpr(Start, WideTy),
927                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
928                                  getZeroExtendExpr(Step, WideTy)));
929          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
930            // Return the expression with the addrec on the outside.
931            return getAddRecExpr(getSignExtendExpr(Start, Ty),
932                                 getZeroExtendExpr(Step, Ty),
933                                 L);
934        }
935
936        // If the backedge is guarded by a comparison with the pre-inc value
937        // the addrec is safe. Also, if the entry is guarded by a comparison
938        // with the start value and the backedge is guarded by a comparison
939        // with the post-inc value, the addrec is safe.
940        if (isKnownPositive(Step)) {
941          const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
942                                      getSignedRange(Step).getSignedMax());
943          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
944              (isLoopGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
945               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
946                                           AR->getPostIncExpr(*this), N)))
947            // Return the expression with the addrec on the outside.
948            return getAddRecExpr(getSignExtendExpr(Start, Ty),
949                                 getSignExtendExpr(Step, Ty),
950                                 L);
951        } else if (isKnownNegative(Step)) {
952          const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
953                                      getSignedRange(Step).getSignedMin());
954          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
955              (isLoopGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
956               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
957                                           AR->getPostIncExpr(*this), N)))
958            // Return the expression with the addrec on the outside.
959            return getAddRecExpr(getSignExtendExpr(Start, Ty),
960                                 getSignExtendExpr(Step, Ty),
961                                 L);
962        }
963      }
964    }
965
966  // The cast wasn't folded; create an explicit cast node.
967  // Recompute the insert position, as it may have been invalidated.
968  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
969  SCEV *S = SCEVAllocator.Allocate<SCEVSignExtendExpr>();
970  new (S) SCEVSignExtendExpr(ID, Op, Ty);
971  UniqueSCEVs.InsertNode(S, IP);
972  return S;
973}
974
975/// getAnyExtendExpr - Return a SCEV for the given operand extended with
976/// unspecified bits out to the given type.
977///
978const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
979                                             const Type *Ty) {
980  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
981         "This is not an extending conversion!");
982  assert(isSCEVable(Ty) &&
983         "This is not a conversion to a SCEVable type!");
984  Ty = getEffectiveSCEVType(Ty);
985
986  // Sign-extend negative constants.
987  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
988    if (SC->getValue()->getValue().isNegative())
989      return getSignExtendExpr(Op, Ty);
990
991  // Peel off a truncate cast.
992  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
993    const SCEV *NewOp = T->getOperand();
994    if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
995      return getAnyExtendExpr(NewOp, Ty);
996    return getTruncateOrNoop(NewOp, Ty);
997  }
998
999  // Next try a zext cast. If the cast is folded, use it.
1000  const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1001  if (!isa<SCEVZeroExtendExpr>(ZExt))
1002    return ZExt;
1003
1004  // Next try a sext cast. If the cast is folded, use it.
1005  const SCEV *SExt = getSignExtendExpr(Op, Ty);
1006  if (!isa<SCEVSignExtendExpr>(SExt))
1007    return SExt;
1008
1009  // If the expression is obviously signed, use the sext cast value.
1010  if (isa<SCEVSMaxExpr>(Op))
1011    return SExt;
1012
1013  // Absent any other information, use the zext cast value.
1014  return ZExt;
1015}
1016
1017/// CollectAddOperandsWithScales - Process the given Ops list, which is
1018/// a list of operands to be added under the given scale, update the given
1019/// map. This is a helper function for getAddRecExpr. As an example of
1020/// what it does, given a sequence of operands that would form an add
1021/// expression like this:
1022///
1023///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1024///
1025/// where A and B are constants, update the map with these values:
1026///
1027///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1028///
1029/// and add 13 + A*B*29 to AccumulatedConstant.
1030/// This will allow getAddRecExpr to produce this:
1031///
1032///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1033///
1034/// This form often exposes folding opportunities that are hidden in
1035/// the original operand list.
1036///
1037/// Return true iff it appears that any interesting folding opportunities
1038/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1039/// the common case where no interesting opportunities are present, and
1040/// is also used as a check to avoid infinite recursion.
1041///
1042static bool
1043CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1044                             SmallVector<const SCEV *, 8> &NewOps,
1045                             APInt &AccumulatedConstant,
1046                             const SmallVectorImpl<const SCEV *> &Ops,
1047                             const APInt &Scale,
1048                             ScalarEvolution &SE) {
1049  bool Interesting = false;
1050
1051  // Iterate over the add operands.
1052  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1053    const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1054    if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1055      APInt NewScale =
1056        Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1057      if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1058        // A multiplication of a constant with another add; recurse.
1059        Interesting |=
1060          CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1061                                       cast<SCEVAddExpr>(Mul->getOperand(1))
1062                                         ->getOperands(),
1063                                       NewScale, SE);
1064      } else {
1065        // A multiplication of a constant with some other value. Update
1066        // the map.
1067        SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1068        const SCEV *Key = SE.getMulExpr(MulOps);
1069        std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1070          M.insert(std::make_pair(Key, NewScale));
1071        if (Pair.second) {
1072          NewOps.push_back(Pair.first->first);
1073        } else {
1074          Pair.first->second += NewScale;
1075          // The map already had an entry for this value, which may indicate
1076          // a folding opportunity.
1077          Interesting = true;
1078        }
1079      }
1080    } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1081      // Pull a buried constant out to the outside.
1082      if (Scale != 1 || AccumulatedConstant != 0 || C->isZero())
1083        Interesting = true;
1084      AccumulatedConstant += Scale * C->getValue()->getValue();
1085    } else {
1086      // An ordinary operand. Update the map.
1087      std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1088        M.insert(std::make_pair(Ops[i], Scale));
1089      if (Pair.second) {
1090        NewOps.push_back(Pair.first->first);
1091      } else {
1092        Pair.first->second += Scale;
1093        // The map already had an entry for this value, which may indicate
1094        // a folding opportunity.
1095        Interesting = true;
1096      }
1097    }
1098  }
1099
1100  return Interesting;
1101}
1102
1103namespace {
1104  struct APIntCompare {
1105    bool operator()(const APInt &LHS, const APInt &RHS) const {
1106      return LHS.ult(RHS);
1107    }
1108  };
1109}
1110
1111/// getAddExpr - Get a canonical add expression, or something simpler if
1112/// possible.
1113const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops) {
1114  assert(!Ops.empty() && "Cannot get empty add!");
1115  if (Ops.size() == 1) return Ops[0];
1116#ifndef NDEBUG
1117  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1118    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1119           getEffectiveSCEVType(Ops[0]->getType()) &&
1120           "SCEVAddExpr operand types don't match!");
1121#endif
1122
1123  // Sort by complexity, this groups all similar expression types together.
1124  GroupByComplexity(Ops, LI);
1125
1126  // If there are any constants, fold them together.
1127  unsigned Idx = 0;
1128  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1129    ++Idx;
1130    assert(Idx < Ops.size());
1131    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1132      // We found two constants, fold them together!
1133      Ops[0] = getConstant(LHSC->getValue()->getValue() +
1134                           RHSC->getValue()->getValue());
1135      if (Ops.size() == 2) return Ops[0];
1136      Ops.erase(Ops.begin()+1);  // Erase the folded element
1137      LHSC = cast<SCEVConstant>(Ops[0]);
1138    }
1139
1140    // If we are left with a constant zero being added, strip it off.
1141    if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1142      Ops.erase(Ops.begin());
1143      --Idx;
1144    }
1145  }
1146
1147  if (Ops.size() == 1) return Ops[0];
1148
1149  // Okay, check to see if the same value occurs in the operand list twice.  If
1150  // so, merge them together into an multiply expression.  Since we sorted the
1151  // list, these values are required to be adjacent.
1152  const Type *Ty = Ops[0]->getType();
1153  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1154    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
1155      // Found a match, merge the two values into a multiply, and add any
1156      // remaining values to the result.
1157      const SCEV *Two = getIntegerSCEV(2, Ty);
1158      const SCEV *Mul = getMulExpr(Ops[i], Two);
1159      if (Ops.size() == 2)
1160        return Mul;
1161      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1162      Ops.push_back(Mul);
1163      return getAddExpr(Ops);
1164    }
1165
1166  // Check for truncates. If all the operands are truncated from the same
1167  // type, see if factoring out the truncate would permit the result to be
1168  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1169  // if the contents of the resulting outer trunc fold to something simple.
1170  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1171    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1172    const Type *DstType = Trunc->getType();
1173    const Type *SrcType = Trunc->getOperand()->getType();
1174    SmallVector<const SCEV *, 8> LargeOps;
1175    bool Ok = true;
1176    // Check all the operands to see if they can be represented in the
1177    // source type of the truncate.
1178    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1179      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1180        if (T->getOperand()->getType() != SrcType) {
1181          Ok = false;
1182          break;
1183        }
1184        LargeOps.push_back(T->getOperand());
1185      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1186        // This could be either sign or zero extension, but sign extension
1187        // is much more likely to be foldable here.
1188        LargeOps.push_back(getSignExtendExpr(C, SrcType));
1189      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1190        SmallVector<const SCEV *, 8> LargeMulOps;
1191        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1192          if (const SCEVTruncateExpr *T =
1193                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1194            if (T->getOperand()->getType() != SrcType) {
1195              Ok = false;
1196              break;
1197            }
1198            LargeMulOps.push_back(T->getOperand());
1199          } else if (const SCEVConstant *C =
1200                       dyn_cast<SCEVConstant>(M->getOperand(j))) {
1201            // This could be either sign or zero extension, but sign extension
1202            // is much more likely to be foldable here.
1203            LargeMulOps.push_back(getSignExtendExpr(C, SrcType));
1204          } else {
1205            Ok = false;
1206            break;
1207          }
1208        }
1209        if (Ok)
1210          LargeOps.push_back(getMulExpr(LargeMulOps));
1211      } else {
1212        Ok = false;
1213        break;
1214      }
1215    }
1216    if (Ok) {
1217      // Evaluate the expression in the larger type.
1218      const SCEV *Fold = getAddExpr(LargeOps);
1219      // If it folds to something simple, use it. Otherwise, don't.
1220      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1221        return getTruncateExpr(Fold, DstType);
1222    }
1223  }
1224
1225  // Skip past any other cast SCEVs.
1226  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1227    ++Idx;
1228
1229  // If there are add operands they would be next.
1230  if (Idx < Ops.size()) {
1231    bool DeletedAdd = false;
1232    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1233      // If we have an add, expand the add operands onto the end of the operands
1234      // list.
1235      Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1236      Ops.erase(Ops.begin()+Idx);
1237      DeletedAdd = true;
1238    }
1239
1240    // If we deleted at least one add, we added operands to the end of the list,
1241    // and they are not necessarily sorted.  Recurse to resort and resimplify
1242    // any operands we just aquired.
1243    if (DeletedAdd)
1244      return getAddExpr(Ops);
1245  }
1246
1247  // Skip over the add expression until we get to a multiply.
1248  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1249    ++Idx;
1250
1251  // Check to see if there are any folding opportunities present with
1252  // operands multiplied by constant values.
1253  if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1254    uint64_t BitWidth = getTypeSizeInBits(Ty);
1255    DenseMap<const SCEV *, APInt> M;
1256    SmallVector<const SCEV *, 8> NewOps;
1257    APInt AccumulatedConstant(BitWidth, 0);
1258    if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1259                                     Ops, APInt(BitWidth, 1), *this)) {
1260      // Some interesting folding opportunity is present, so its worthwhile to
1261      // re-generate the operands list. Group the operands by constant scale,
1262      // to avoid multiplying by the same constant scale multiple times.
1263      std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1264      for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(),
1265           E = NewOps.end(); I != E; ++I)
1266        MulOpLists[M.find(*I)->second].push_back(*I);
1267      // Re-generate the operands list.
1268      Ops.clear();
1269      if (AccumulatedConstant != 0)
1270        Ops.push_back(getConstant(AccumulatedConstant));
1271      for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1272           I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1273        if (I->first != 0)
1274          Ops.push_back(getMulExpr(getConstant(I->first),
1275                                   getAddExpr(I->second)));
1276      if (Ops.empty())
1277        return getIntegerSCEV(0, Ty);
1278      if (Ops.size() == 1)
1279        return Ops[0];
1280      return getAddExpr(Ops);
1281    }
1282  }
1283
1284  // If we are adding something to a multiply expression, make sure the
1285  // something is not already an operand of the multiply.  If so, merge it into
1286  // the multiply.
1287  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1288    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1289    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1290      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1291      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1292        if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
1293          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1294          const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1295          if (Mul->getNumOperands() != 2) {
1296            // If the multiply has more than two operands, we must get the
1297            // Y*Z term.
1298            SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end());
1299            MulOps.erase(MulOps.begin()+MulOp);
1300            InnerMul = getMulExpr(MulOps);
1301          }
1302          const SCEV *One = getIntegerSCEV(1, Ty);
1303          const SCEV *AddOne = getAddExpr(InnerMul, One);
1304          const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]);
1305          if (Ops.size() == 2) return OuterMul;
1306          if (AddOp < Idx) {
1307            Ops.erase(Ops.begin()+AddOp);
1308            Ops.erase(Ops.begin()+Idx-1);
1309          } else {
1310            Ops.erase(Ops.begin()+Idx);
1311            Ops.erase(Ops.begin()+AddOp-1);
1312          }
1313          Ops.push_back(OuterMul);
1314          return getAddExpr(Ops);
1315        }
1316
1317      // Check this multiply against other multiplies being added together.
1318      for (unsigned OtherMulIdx = Idx+1;
1319           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1320           ++OtherMulIdx) {
1321        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1322        // If MulOp occurs in OtherMul, we can fold the two multiplies
1323        // together.
1324        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1325             OMulOp != e; ++OMulOp)
1326          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1327            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1328            const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
1329            if (Mul->getNumOperands() != 2) {
1330              SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1331                                                  Mul->op_end());
1332              MulOps.erase(MulOps.begin()+MulOp);
1333              InnerMul1 = getMulExpr(MulOps);
1334            }
1335            const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1336            if (OtherMul->getNumOperands() != 2) {
1337              SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1338                                                  OtherMul->op_end());
1339              MulOps.erase(MulOps.begin()+OMulOp);
1340              InnerMul2 = getMulExpr(MulOps);
1341            }
1342            const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1343            const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1344            if (Ops.size() == 2) return OuterMul;
1345            Ops.erase(Ops.begin()+Idx);
1346            Ops.erase(Ops.begin()+OtherMulIdx-1);
1347            Ops.push_back(OuterMul);
1348            return getAddExpr(Ops);
1349          }
1350      }
1351    }
1352  }
1353
1354  // If there are any add recurrences in the operands list, see if any other
1355  // added values are loop invariant.  If so, we can fold them into the
1356  // recurrence.
1357  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1358    ++Idx;
1359
1360  // Scan over all recurrences, trying to fold loop invariants into them.
1361  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1362    // Scan all of the other operands to this add and add them to the vector if
1363    // they are loop invariant w.r.t. the recurrence.
1364    SmallVector<const SCEV *, 8> LIOps;
1365    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1366    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1367      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1368        LIOps.push_back(Ops[i]);
1369        Ops.erase(Ops.begin()+i);
1370        --i; --e;
1371      }
1372
1373    // If we found some loop invariants, fold them into the recurrence.
1374    if (!LIOps.empty()) {
1375      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1376      LIOps.push_back(AddRec->getStart());
1377
1378      SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1379                                           AddRec->op_end());
1380      AddRecOps[0] = getAddExpr(LIOps);
1381
1382      const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
1383      // If all of the other operands were loop invariant, we are done.
1384      if (Ops.size() == 1) return NewRec;
1385
1386      // Otherwise, add the folded AddRec by the non-liv parts.
1387      for (unsigned i = 0;; ++i)
1388        if (Ops[i] == AddRec) {
1389          Ops[i] = NewRec;
1390          break;
1391        }
1392      return getAddExpr(Ops);
1393    }
1394
1395    // Okay, if there weren't any loop invariants to be folded, check to see if
1396    // there are multiple AddRec's with the same loop induction variable being
1397    // added together.  If so, we can fold them.
1398    for (unsigned OtherIdx = Idx+1;
1399         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1400      if (OtherIdx != Idx) {
1401        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1402        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1403          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
1404          SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(),
1405                                              AddRec->op_end());
1406          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1407            if (i >= NewOps.size()) {
1408              NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1409                            OtherAddRec->op_end());
1410              break;
1411            }
1412            NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
1413          }
1414          const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
1415
1416          if (Ops.size() == 2) return NewAddRec;
1417
1418          Ops.erase(Ops.begin()+Idx);
1419          Ops.erase(Ops.begin()+OtherIdx-1);
1420          Ops.push_back(NewAddRec);
1421          return getAddExpr(Ops);
1422        }
1423      }
1424
1425    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1426    // next one.
1427  }
1428
1429  // Okay, it looks like we really DO need an add expr.  Check to see if we
1430  // already have one, otherwise create a new one.
1431  FoldingSetNodeID ID;
1432  ID.AddInteger(scAddExpr);
1433  ID.AddInteger(Ops.size());
1434  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1435    ID.AddPointer(Ops[i]);
1436  void *IP = 0;
1437  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1438  SCEV *S = SCEVAllocator.Allocate<SCEVAddExpr>();
1439  new (S) SCEVAddExpr(ID, Ops);
1440  UniqueSCEVs.InsertNode(S, IP);
1441  return S;
1442}
1443
1444
1445/// getMulExpr - Get a canonical multiply expression, or something simpler if
1446/// possible.
1447const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops) {
1448  assert(!Ops.empty() && "Cannot get empty mul!");
1449#ifndef NDEBUG
1450  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1451    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1452           getEffectiveSCEVType(Ops[0]->getType()) &&
1453           "SCEVMulExpr operand types don't match!");
1454#endif
1455
1456  // Sort by complexity, this groups all similar expression types together.
1457  GroupByComplexity(Ops, LI);
1458
1459  // If there are any constants, fold them together.
1460  unsigned Idx = 0;
1461  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1462
1463    // C1*(C2+V) -> C1*C2 + C1*V
1464    if (Ops.size() == 2)
1465      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1466        if (Add->getNumOperands() == 2 &&
1467            isa<SCEVConstant>(Add->getOperand(0)))
1468          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1469                            getMulExpr(LHSC, Add->getOperand(1)));
1470
1471
1472    ++Idx;
1473    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1474      // We found two constants, fold them together!
1475      ConstantInt *Fold = ConstantInt::get(getContext(),
1476                                           LHSC->getValue()->getValue() *
1477                                           RHSC->getValue()->getValue());
1478      Ops[0] = getConstant(Fold);
1479      Ops.erase(Ops.begin()+1);  // Erase the folded element
1480      if (Ops.size() == 1) return Ops[0];
1481      LHSC = cast<SCEVConstant>(Ops[0]);
1482    }
1483
1484    // If we are left with a constant one being multiplied, strip it off.
1485    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1486      Ops.erase(Ops.begin());
1487      --Idx;
1488    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1489      // If we have a multiply of zero, it will always be zero.
1490      return Ops[0];
1491    }
1492  }
1493
1494  // Skip over the add expression until we get to a multiply.
1495  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1496    ++Idx;
1497
1498  if (Ops.size() == 1)
1499    return Ops[0];
1500
1501  // If there are mul operands inline them all into this expression.
1502  if (Idx < Ops.size()) {
1503    bool DeletedMul = false;
1504    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1505      // If we have an mul, expand the mul operands onto the end of the operands
1506      // list.
1507      Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1508      Ops.erase(Ops.begin()+Idx);
1509      DeletedMul = true;
1510    }
1511
1512    // If we deleted at least one mul, we added operands to the end of the list,
1513    // and they are not necessarily sorted.  Recurse to resort and resimplify
1514    // any operands we just aquired.
1515    if (DeletedMul)
1516      return getMulExpr(Ops);
1517  }
1518
1519  // If there are any add recurrences in the operands list, see if any other
1520  // added values are loop invariant.  If so, we can fold them into the
1521  // recurrence.
1522  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1523    ++Idx;
1524
1525  // Scan over all recurrences, trying to fold loop invariants into them.
1526  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1527    // Scan all of the other operands to this mul and add them to the vector if
1528    // they are loop invariant w.r.t. the recurrence.
1529    SmallVector<const SCEV *, 8> LIOps;
1530    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1531    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1532      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1533        LIOps.push_back(Ops[i]);
1534        Ops.erase(Ops.begin()+i);
1535        --i; --e;
1536      }
1537
1538    // If we found some loop invariants, fold them into the recurrence.
1539    if (!LIOps.empty()) {
1540      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1541      SmallVector<const SCEV *, 4> NewOps;
1542      NewOps.reserve(AddRec->getNumOperands());
1543      if (LIOps.size() == 1) {
1544        const SCEV *Scale = LIOps[0];
1545        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1546          NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1547      } else {
1548        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
1549          SmallVector<const SCEV *, 4> MulOps(LIOps.begin(), LIOps.end());
1550          MulOps.push_back(AddRec->getOperand(i));
1551          NewOps.push_back(getMulExpr(MulOps));
1552        }
1553      }
1554
1555      const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
1556
1557      // If all of the other operands were loop invariant, we are done.
1558      if (Ops.size() == 1) return NewRec;
1559
1560      // Otherwise, multiply the folded AddRec by the non-liv parts.
1561      for (unsigned i = 0;; ++i)
1562        if (Ops[i] == AddRec) {
1563          Ops[i] = NewRec;
1564          break;
1565        }
1566      return getMulExpr(Ops);
1567    }
1568
1569    // Okay, if there weren't any loop invariants to be folded, check to see if
1570    // there are multiple AddRec's with the same loop induction variable being
1571    // multiplied together.  If so, we can fold them.
1572    for (unsigned OtherIdx = Idx+1;
1573         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1574      if (OtherIdx != Idx) {
1575        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1576        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1577          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
1578          const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1579          const SCEV *NewStart = getMulExpr(F->getStart(),
1580                                                 G->getStart());
1581          const SCEV *B = F->getStepRecurrence(*this);
1582          const SCEV *D = G->getStepRecurrence(*this);
1583          const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1584                                          getMulExpr(G, B),
1585                                          getMulExpr(B, D));
1586          const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1587                                               F->getLoop());
1588          if (Ops.size() == 2) return NewAddRec;
1589
1590          Ops.erase(Ops.begin()+Idx);
1591          Ops.erase(Ops.begin()+OtherIdx-1);
1592          Ops.push_back(NewAddRec);
1593          return getMulExpr(Ops);
1594        }
1595      }
1596
1597    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1598    // next one.
1599  }
1600
1601  // Okay, it looks like we really DO need an mul expr.  Check to see if we
1602  // already have one, otherwise create a new one.
1603  FoldingSetNodeID ID;
1604  ID.AddInteger(scMulExpr);
1605  ID.AddInteger(Ops.size());
1606  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1607    ID.AddPointer(Ops[i]);
1608  void *IP = 0;
1609  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1610  SCEV *S = SCEVAllocator.Allocate<SCEVMulExpr>();
1611  new (S) SCEVMulExpr(ID, Ops);
1612  UniqueSCEVs.InsertNode(S, IP);
1613  return S;
1614}
1615
1616/// getUDivExpr - Get a canonical multiply expression, or something simpler if
1617/// possible.
1618const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1619                                         const SCEV *RHS) {
1620  assert(getEffectiveSCEVType(LHS->getType()) ==
1621         getEffectiveSCEVType(RHS->getType()) &&
1622         "SCEVUDivExpr operand types don't match!");
1623
1624  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1625    if (RHSC->getValue()->equalsInt(1))
1626      return LHS;                            // X udiv 1 --> x
1627    if (RHSC->isZero())
1628      return getIntegerSCEV(0, LHS->getType()); // value is undefined
1629
1630    // Determine if the division can be folded into the operands of
1631    // its operands.
1632    // TODO: Generalize this to non-constants by using known-bits information.
1633    const Type *Ty = LHS->getType();
1634    unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1635    unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1636    // For non-power-of-two values, effectively round the value up to the
1637    // nearest power of two.
1638    if (!RHSC->getValue()->getValue().isPowerOf2())
1639      ++MaxShiftAmt;
1640    const IntegerType *ExtTy =
1641      IntegerType::get(getTypeSizeInBits(Ty) + MaxShiftAmt);
1642    // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1643    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1644      if (const SCEVConstant *Step =
1645            dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1646        if (!Step->getValue()->getValue()
1647              .urem(RHSC->getValue()->getValue()) &&
1648            getZeroExtendExpr(AR, ExtTy) ==
1649            getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1650                          getZeroExtendExpr(Step, ExtTy),
1651                          AR->getLoop())) {
1652          SmallVector<const SCEV *, 4> Operands;
1653          for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1654            Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1655          return getAddRecExpr(Operands, AR->getLoop());
1656        }
1657    // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1658    if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1659      SmallVector<const SCEV *, 4> Operands;
1660      for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1661        Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1662      if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1663        // Find an operand that's safely divisible.
1664        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1665          const SCEV *Op = M->getOperand(i);
1666          const SCEV *Div = getUDivExpr(Op, RHSC);
1667          if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1668            const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
1669            Operands = SmallVector<const SCEV *, 4>(MOperands.begin(),
1670                                                  MOperands.end());
1671            Operands[i] = Div;
1672            return getMulExpr(Operands);
1673          }
1674        }
1675    }
1676    // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1677    if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1678      SmallVector<const SCEV *, 4> Operands;
1679      for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1680        Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1681      if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1682        Operands.clear();
1683        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1684          const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
1685          if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i))
1686            break;
1687          Operands.push_back(Op);
1688        }
1689        if (Operands.size() == A->getNumOperands())
1690          return getAddExpr(Operands);
1691      }
1692    }
1693
1694    // Fold if both operands are constant.
1695    if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1696      Constant *LHSCV = LHSC->getValue();
1697      Constant *RHSCV = RHSC->getValue();
1698      return getConstant(cast<ConstantInt>(getContext().getConstantExprUDiv(LHSCV,
1699                                                                 RHSCV)));
1700    }
1701  }
1702
1703  FoldingSetNodeID ID;
1704  ID.AddInteger(scUDivExpr);
1705  ID.AddPointer(LHS);
1706  ID.AddPointer(RHS);
1707  void *IP = 0;
1708  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1709  SCEV *S = SCEVAllocator.Allocate<SCEVUDivExpr>();
1710  new (S) SCEVUDivExpr(ID, LHS, RHS);
1711  UniqueSCEVs.InsertNode(S, IP);
1712  return S;
1713}
1714
1715
1716/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1717/// Simplify the expression as much as possible.
1718const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
1719                                           const SCEV *Step, const Loop *L) {
1720  SmallVector<const SCEV *, 4> Operands;
1721  Operands.push_back(Start);
1722  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1723    if (StepChrec->getLoop() == L) {
1724      Operands.insert(Operands.end(), StepChrec->op_begin(),
1725                      StepChrec->op_end());
1726      return getAddRecExpr(Operands, L);
1727    }
1728
1729  Operands.push_back(Step);
1730  return getAddRecExpr(Operands, L);
1731}
1732
1733/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1734/// Simplify the expression as much as possible.
1735const SCEV *
1736ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
1737                               const Loop *L) {
1738  if (Operands.size() == 1) return Operands[0];
1739#ifndef NDEBUG
1740  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1741    assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1742           getEffectiveSCEVType(Operands[0]->getType()) &&
1743           "SCEVAddRecExpr operand types don't match!");
1744#endif
1745
1746  if (Operands.back()->isZero()) {
1747    Operands.pop_back();
1748    return getAddRecExpr(Operands, L);             // {X,+,0}  -->  X
1749  }
1750
1751  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
1752  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
1753    const Loop* NestedLoop = NestedAR->getLoop();
1754    if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
1755      SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
1756                                                NestedAR->op_end());
1757      Operands[0] = NestedAR->getStart();
1758      // AddRecs require their operands be loop-invariant with respect to their
1759      // loops. Don't perform this transformation if it would break this
1760      // requirement.
1761      bool AllInvariant = true;
1762      for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1763        if (!Operands[i]->isLoopInvariant(L)) {
1764          AllInvariant = false;
1765          break;
1766        }
1767      if (AllInvariant) {
1768        NestedOperands[0] = getAddRecExpr(Operands, L);
1769        AllInvariant = true;
1770        for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
1771          if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
1772            AllInvariant = false;
1773            break;
1774          }
1775        if (AllInvariant)
1776          // Ok, both add recurrences are valid after the transformation.
1777          return getAddRecExpr(NestedOperands, NestedLoop);
1778      }
1779      // Reset Operands to its original state.
1780      Operands[0] = NestedAR;
1781    }
1782  }
1783
1784  FoldingSetNodeID ID;
1785  ID.AddInteger(scAddRecExpr);
1786  ID.AddInteger(Operands.size());
1787  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1788    ID.AddPointer(Operands[i]);
1789  ID.AddPointer(L);
1790  void *IP = 0;
1791  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1792  SCEV *S = SCEVAllocator.Allocate<SCEVAddRecExpr>();
1793  new (S) SCEVAddRecExpr(ID, Operands, L);
1794  UniqueSCEVs.InsertNode(S, IP);
1795  return S;
1796}
1797
1798const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
1799                                         const SCEV *RHS) {
1800  SmallVector<const SCEV *, 2> Ops;
1801  Ops.push_back(LHS);
1802  Ops.push_back(RHS);
1803  return getSMaxExpr(Ops);
1804}
1805
1806const SCEV *
1807ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
1808  assert(!Ops.empty() && "Cannot get empty smax!");
1809  if (Ops.size() == 1) return Ops[0];
1810#ifndef NDEBUG
1811  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1812    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1813           getEffectiveSCEVType(Ops[0]->getType()) &&
1814           "SCEVSMaxExpr operand types don't match!");
1815#endif
1816
1817  // Sort by complexity, this groups all similar expression types together.
1818  GroupByComplexity(Ops, LI);
1819
1820  // If there are any constants, fold them together.
1821  unsigned Idx = 0;
1822  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1823    ++Idx;
1824    assert(Idx < Ops.size());
1825    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1826      // We found two constants, fold them together!
1827      ConstantInt *Fold = ConstantInt::get(getContext(),
1828                              APIntOps::smax(LHSC->getValue()->getValue(),
1829                                             RHSC->getValue()->getValue()));
1830      Ops[0] = getConstant(Fold);
1831      Ops.erase(Ops.begin()+1);  // Erase the folded element
1832      if (Ops.size() == 1) return Ops[0];
1833      LHSC = cast<SCEVConstant>(Ops[0]);
1834    }
1835
1836    // If we are left with a constant minimum-int, strip it off.
1837    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1838      Ops.erase(Ops.begin());
1839      --Idx;
1840    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
1841      // If we have an smax with a constant maximum-int, it will always be
1842      // maximum-int.
1843      return Ops[0];
1844    }
1845  }
1846
1847  if (Ops.size() == 1) return Ops[0];
1848
1849  // Find the first SMax
1850  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1851    ++Idx;
1852
1853  // Check to see if one of the operands is an SMax. If so, expand its operands
1854  // onto our operand list, and recurse to simplify.
1855  if (Idx < Ops.size()) {
1856    bool DeletedSMax = false;
1857    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
1858      Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1859      Ops.erase(Ops.begin()+Idx);
1860      DeletedSMax = true;
1861    }
1862
1863    if (DeletedSMax)
1864      return getSMaxExpr(Ops);
1865  }
1866
1867  // Okay, check to see if the same value occurs in the operand list twice.  If
1868  // so, delete one.  Since we sorted the list, these values are required to
1869  // be adjacent.
1870  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1871    if (Ops[i] == Ops[i+1]) {      //  X smax Y smax Y  -->  X smax Y
1872      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1873      --i; --e;
1874    }
1875
1876  if (Ops.size() == 1) return Ops[0];
1877
1878  assert(!Ops.empty() && "Reduced smax down to nothing!");
1879
1880  // Okay, it looks like we really DO need an smax expr.  Check to see if we
1881  // already have one, otherwise create a new one.
1882  FoldingSetNodeID ID;
1883  ID.AddInteger(scSMaxExpr);
1884  ID.AddInteger(Ops.size());
1885  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1886    ID.AddPointer(Ops[i]);
1887  void *IP = 0;
1888  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1889  SCEV *S = SCEVAllocator.Allocate<SCEVSMaxExpr>();
1890  new (S) SCEVSMaxExpr(ID, Ops);
1891  UniqueSCEVs.InsertNode(S, IP);
1892  return S;
1893}
1894
1895const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
1896                                         const SCEV *RHS) {
1897  SmallVector<const SCEV *, 2> Ops;
1898  Ops.push_back(LHS);
1899  Ops.push_back(RHS);
1900  return getUMaxExpr(Ops);
1901}
1902
1903const SCEV *
1904ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
1905  assert(!Ops.empty() && "Cannot get empty umax!");
1906  if (Ops.size() == 1) return Ops[0];
1907#ifndef NDEBUG
1908  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1909    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1910           getEffectiveSCEVType(Ops[0]->getType()) &&
1911           "SCEVUMaxExpr operand types don't match!");
1912#endif
1913
1914  // Sort by complexity, this groups all similar expression types together.
1915  GroupByComplexity(Ops, LI);
1916
1917  // If there are any constants, fold them together.
1918  unsigned Idx = 0;
1919  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1920    ++Idx;
1921    assert(Idx < Ops.size());
1922    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1923      // We found two constants, fold them together!
1924      ConstantInt *Fold = ConstantInt::get(getContext(),
1925                              APIntOps::umax(LHSC->getValue()->getValue(),
1926                                             RHSC->getValue()->getValue()));
1927      Ops[0] = getConstant(Fold);
1928      Ops.erase(Ops.begin()+1);  // Erase the folded element
1929      if (Ops.size() == 1) return Ops[0];
1930      LHSC = cast<SCEVConstant>(Ops[0]);
1931    }
1932
1933    // If we are left with a constant minimum-int, strip it off.
1934    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
1935      Ops.erase(Ops.begin());
1936      --Idx;
1937    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
1938      // If we have an umax with a constant maximum-int, it will always be
1939      // maximum-int.
1940      return Ops[0];
1941    }
1942  }
1943
1944  if (Ops.size() == 1) return Ops[0];
1945
1946  // Find the first UMax
1947  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
1948    ++Idx;
1949
1950  // Check to see if one of the operands is a UMax. If so, expand its operands
1951  // onto our operand list, and recurse to simplify.
1952  if (Idx < Ops.size()) {
1953    bool DeletedUMax = false;
1954    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
1955      Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
1956      Ops.erase(Ops.begin()+Idx);
1957      DeletedUMax = true;
1958    }
1959
1960    if (DeletedUMax)
1961      return getUMaxExpr(Ops);
1962  }
1963
1964  // Okay, check to see if the same value occurs in the operand list twice.  If
1965  // so, delete one.  Since we sorted the list, these values are required to
1966  // be adjacent.
1967  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1968    if (Ops[i] == Ops[i+1]) {      //  X umax Y umax Y  -->  X umax Y
1969      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1970      --i; --e;
1971    }
1972
1973  if (Ops.size() == 1) return Ops[0];
1974
1975  assert(!Ops.empty() && "Reduced umax down to nothing!");
1976
1977  // Okay, it looks like we really DO need a umax expr.  Check to see if we
1978  // already have one, otherwise create a new one.
1979  FoldingSetNodeID ID;
1980  ID.AddInteger(scUMaxExpr);
1981  ID.AddInteger(Ops.size());
1982  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1983    ID.AddPointer(Ops[i]);
1984  void *IP = 0;
1985  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1986  SCEV *S = SCEVAllocator.Allocate<SCEVUMaxExpr>();
1987  new (S) SCEVUMaxExpr(ID, Ops);
1988  UniqueSCEVs.InsertNode(S, IP);
1989  return S;
1990}
1991
1992const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
1993                                         const SCEV *RHS) {
1994  // ~smax(~x, ~y) == smin(x, y).
1995  return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
1996}
1997
1998const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
1999                                         const SCEV *RHS) {
2000  // ~umax(~x, ~y) == umin(x, y)
2001  return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2002}
2003
2004const SCEV *ScalarEvolution::getUnknown(Value *V) {
2005  // Don't attempt to do anything other than create a SCEVUnknown object
2006  // here.  createSCEV only calls getUnknown after checking for all other
2007  // interesting possibilities, and any other code that calls getUnknown
2008  // is doing so in order to hide a value from SCEV canonicalization.
2009
2010  FoldingSetNodeID ID;
2011  ID.AddInteger(scUnknown);
2012  ID.AddPointer(V);
2013  void *IP = 0;
2014  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2015  SCEV *S = SCEVAllocator.Allocate<SCEVUnknown>();
2016  new (S) SCEVUnknown(ID, V);
2017  UniqueSCEVs.InsertNode(S, IP);
2018  return S;
2019}
2020
2021//===----------------------------------------------------------------------===//
2022//            Basic SCEV Analysis and PHI Idiom Recognition Code
2023//
2024
2025/// isSCEVable - Test if values of the given type are analyzable within
2026/// the SCEV framework. This primarily includes integer types, and it
2027/// can optionally include pointer types if the ScalarEvolution class
2028/// has access to target-specific information.
2029bool ScalarEvolution::isSCEVable(const Type *Ty) const {
2030  // Integers are always SCEVable.
2031  if (Ty->isInteger())
2032    return true;
2033
2034  // Pointers are SCEVable if TargetData information is available
2035  // to provide pointer size information.
2036  if (isa<PointerType>(Ty))
2037    return TD != NULL;
2038
2039  // Otherwise it's not SCEVable.
2040  return false;
2041}
2042
2043/// getTypeSizeInBits - Return the size in bits of the specified type,
2044/// for which isSCEVable must return true.
2045uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
2046  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2047
2048  // If we have a TargetData, use it!
2049  if (TD)
2050    return TD->getTypeSizeInBits(Ty);
2051
2052  // Otherwise, we support only integer types.
2053  assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!");
2054  return Ty->getPrimitiveSizeInBits();
2055}
2056
2057/// getEffectiveSCEVType - Return a type with the same bitwidth as
2058/// the given type and which represents how SCEV will treat the given
2059/// type, for which isSCEVable must return true. For pointer types,
2060/// this is the pointer-sized integer type.
2061const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
2062  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2063
2064  if (Ty->isInteger())
2065    return Ty;
2066
2067  assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
2068  return TD->getIntPtrType();
2069}
2070
2071const SCEV *ScalarEvolution::getCouldNotCompute() {
2072  return &CouldNotCompute;
2073}
2074
2075/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2076/// expression and create a new one.
2077const SCEV *ScalarEvolution::getSCEV(Value *V) {
2078  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
2079
2080  std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V);
2081  if (I != Scalars.end()) return I->second;
2082  const SCEV *S = createSCEV(V);
2083  Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
2084  return S;
2085}
2086
2087/// getIntegerSCEV - Given a SCEVable type, create a constant for the
2088/// specified signed integer value and return a SCEV for the constant.
2089const SCEV *ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
2090  const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
2091  return getConstant(ConstantInt::get(ITy, Val));
2092}
2093
2094/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2095///
2096const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
2097  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2098    return getConstant(
2099               cast<ConstantInt>(getContext().getConstantExprNeg(VC->getValue())));
2100
2101  const Type *Ty = V->getType();
2102  Ty = getEffectiveSCEVType(Ty);
2103  return getMulExpr(V,
2104                  getConstant(cast<ConstantInt>(getContext().getAllOnesValue(Ty))));
2105}
2106
2107/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2108const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
2109  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2110    return getConstant(
2111                cast<ConstantInt>(getContext().getConstantExprNot(VC->getValue())));
2112
2113  const Type *Ty = V->getType();
2114  Ty = getEffectiveSCEVType(Ty);
2115  const SCEV *AllOnes =
2116                   getConstant(cast<ConstantInt>(getContext().getAllOnesValue(Ty)));
2117  return getMinusSCEV(AllOnes, V);
2118}
2119
2120/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2121///
2122const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2123                                          const SCEV *RHS) {
2124  // X - Y --> X + -Y
2125  return getAddExpr(LHS, getNegativeSCEV(RHS));
2126}
2127
2128/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2129/// input value to the specified type.  If the type must be extended, it is zero
2130/// extended.
2131const SCEV *
2132ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
2133                                         const Type *Ty) {
2134  const Type *SrcTy = V->getType();
2135  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2136         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2137         "Cannot truncate or zero extend with non-integer arguments!");
2138  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2139    return V;  // No conversion
2140  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2141    return getTruncateExpr(V, Ty);
2142  return getZeroExtendExpr(V, Ty);
2143}
2144
2145/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2146/// input value to the specified type.  If the type must be extended, it is sign
2147/// extended.
2148const SCEV *
2149ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
2150                                         const Type *Ty) {
2151  const Type *SrcTy = V->getType();
2152  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2153         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2154         "Cannot truncate or zero extend with non-integer arguments!");
2155  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2156    return V;  // No conversion
2157  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2158    return getTruncateExpr(V, Ty);
2159  return getSignExtendExpr(V, Ty);
2160}
2161
2162/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2163/// input value to the specified type.  If the type must be extended, it is zero
2164/// extended.  The conversion must not be narrowing.
2165const SCEV *
2166ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
2167  const Type *SrcTy = V->getType();
2168  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2169         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2170         "Cannot noop or zero extend with non-integer arguments!");
2171  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2172         "getNoopOrZeroExtend cannot truncate!");
2173  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2174    return V;  // No conversion
2175  return getZeroExtendExpr(V, Ty);
2176}
2177
2178/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2179/// input value to the specified type.  If the type must be extended, it is sign
2180/// extended.  The conversion must not be narrowing.
2181const SCEV *
2182ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
2183  const Type *SrcTy = V->getType();
2184  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2185         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2186         "Cannot noop or sign extend with non-integer arguments!");
2187  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2188         "getNoopOrSignExtend cannot truncate!");
2189  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2190    return V;  // No conversion
2191  return getSignExtendExpr(V, Ty);
2192}
2193
2194/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2195/// the input value to the specified type. If the type must be extended,
2196/// it is extended with unspecified bits. The conversion must not be
2197/// narrowing.
2198const SCEV *
2199ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
2200  const Type *SrcTy = V->getType();
2201  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2202         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2203         "Cannot noop or any extend with non-integer arguments!");
2204  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2205         "getNoopOrAnyExtend cannot truncate!");
2206  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2207    return V;  // No conversion
2208  return getAnyExtendExpr(V, Ty);
2209}
2210
2211/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2212/// input value to the specified type.  The conversion must not be widening.
2213const SCEV *
2214ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
2215  const Type *SrcTy = V->getType();
2216  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2217         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2218         "Cannot truncate or noop with non-integer arguments!");
2219  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2220         "getTruncateOrNoop cannot extend!");
2221  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2222    return V;  // No conversion
2223  return getTruncateExpr(V, Ty);
2224}
2225
2226/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2227/// the types using zero-extension, and then perform a umax operation
2228/// with them.
2229const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2230                                                        const SCEV *RHS) {
2231  const SCEV *PromotedLHS = LHS;
2232  const SCEV *PromotedRHS = RHS;
2233
2234  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2235    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2236  else
2237    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2238
2239  return getUMaxExpr(PromotedLHS, PromotedRHS);
2240}
2241
2242/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2243/// the types using zero-extension, and then perform a umin operation
2244/// with them.
2245const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2246                                                        const SCEV *RHS) {
2247  const SCEV *PromotedLHS = LHS;
2248  const SCEV *PromotedRHS = RHS;
2249
2250  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2251    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2252  else
2253    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2254
2255  return getUMinExpr(PromotedLHS, PromotedRHS);
2256}
2257
2258/// PushDefUseChildren - Push users of the given Instruction
2259/// onto the given Worklist.
2260static void
2261PushDefUseChildren(Instruction *I,
2262                   SmallVectorImpl<Instruction *> &Worklist) {
2263  // Push the def-use children onto the Worklist stack.
2264  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2265       UI != UE; ++UI)
2266    Worklist.push_back(cast<Instruction>(UI));
2267}
2268
2269/// ForgetSymbolicValue - This looks up computed SCEV values for all
2270/// instructions that depend on the given instruction and removes them from
2271/// the Scalars map if they reference SymName. This is used during PHI
2272/// resolution.
2273void
2274ScalarEvolution::ForgetSymbolicName(Instruction *I, const SCEV *SymName) {
2275  SmallVector<Instruction *, 16> Worklist;
2276  PushDefUseChildren(I, Worklist);
2277
2278  SmallPtrSet<Instruction *, 8> Visited;
2279  Visited.insert(I);
2280  while (!Worklist.empty()) {
2281    Instruction *I = Worklist.pop_back_val();
2282    if (!Visited.insert(I)) continue;
2283
2284    std::map<SCEVCallbackVH, const SCEV*>::iterator It =
2285      Scalars.find(static_cast<Value *>(I));
2286    if (It != Scalars.end()) {
2287      // Short-circuit the def-use traversal if the symbolic name
2288      // ceases to appear in expressions.
2289      if (!It->second->hasOperand(SymName))
2290        continue;
2291
2292      // SCEVUnknown for a PHI either means that it has an unrecognized
2293      // structure, or it's a PHI that's in the progress of being computed
2294      // by createNodeForPHI.  In the former case, additional loop trip
2295      // count information isn't going to change anything. In the later
2296      // case, createNodeForPHI will perform the necessary updates on its
2297      // own when it gets to that point.
2298      if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second))
2299        Scalars.erase(It);
2300      ValuesAtScopes.erase(I);
2301    }
2302
2303    PushDefUseChildren(I, Worklist);
2304  }
2305}
2306
2307/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
2308/// a loop header, making it a potential recurrence, or it doesn't.
2309///
2310const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
2311  if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
2312    if (const Loop *L = LI->getLoopFor(PN->getParent()))
2313      if (L->getHeader() == PN->getParent()) {
2314        // If it lives in the loop header, it has two incoming values, one
2315        // from outside the loop, and one from inside.
2316        unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
2317        unsigned BackEdge     = IncomingEdge^1;
2318
2319        // While we are analyzing this PHI node, handle its value symbolically.
2320        const SCEV *SymbolicName = getUnknown(PN);
2321        assert(Scalars.find(PN) == Scalars.end() &&
2322               "PHI node already processed?");
2323        Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
2324
2325        // Using this symbolic name for the PHI, analyze the value coming around
2326        // the back-edge.
2327        Value *BEValueV = PN->getIncomingValue(BackEdge);
2328        const SCEV *BEValue = getSCEV(BEValueV);
2329
2330        // NOTE: If BEValue is loop invariant, we know that the PHI node just
2331        // has a special value for the first iteration of the loop.
2332
2333        // If the value coming around the backedge is an add with the symbolic
2334        // value we just inserted, then we found a simple induction variable!
2335        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
2336          // If there is a single occurrence of the symbolic value, replace it
2337          // with a recurrence.
2338          unsigned FoundIndex = Add->getNumOperands();
2339          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2340            if (Add->getOperand(i) == SymbolicName)
2341              if (FoundIndex == e) {
2342                FoundIndex = i;
2343                break;
2344              }
2345
2346          if (FoundIndex != Add->getNumOperands()) {
2347            // Create an add with everything but the specified operand.
2348            SmallVector<const SCEV *, 8> Ops;
2349            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2350              if (i != FoundIndex)
2351                Ops.push_back(Add->getOperand(i));
2352            const SCEV *Accum = getAddExpr(Ops);
2353
2354            // This is not a valid addrec if the step amount is varying each
2355            // loop iteration, but is not itself an addrec in this loop.
2356            if (Accum->isLoopInvariant(L) ||
2357                (isa<SCEVAddRecExpr>(Accum) &&
2358                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
2359              const SCEV *StartVal =
2360                getSCEV(PN->getIncomingValue(IncomingEdge));
2361              const SCEVAddRecExpr *PHISCEV =
2362                cast<SCEVAddRecExpr>(getAddRecExpr(StartVal, Accum, L));
2363
2364              // If the increment doesn't overflow, then neither the addrec nor the
2365              // post-increment will overflow.
2366              if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV))
2367                if (OBO->getOperand(0) == PN &&
2368                    getSCEV(OBO->getOperand(1)) ==
2369                      PHISCEV->getStepRecurrence(*this)) {
2370                  const SCEVAddRecExpr *PostInc = PHISCEV->getPostIncExpr(*this);
2371                  if (OBO->hasNoUnsignedOverflow()) {
2372                    const_cast<SCEVAddRecExpr *>(PHISCEV)
2373                      ->setHasNoUnsignedOverflow(true);
2374                    const_cast<SCEVAddRecExpr *>(PostInc)
2375                      ->setHasNoUnsignedOverflow(true);
2376                  }
2377                  if (OBO->hasNoSignedOverflow()) {
2378                    const_cast<SCEVAddRecExpr *>(PHISCEV)
2379                      ->setHasNoSignedOverflow(true);
2380                    const_cast<SCEVAddRecExpr *>(PostInc)
2381                      ->setHasNoSignedOverflow(true);
2382                  }
2383                }
2384
2385              // Okay, for the entire analysis of this edge we assumed the PHI
2386              // to be symbolic.  We now need to go back and purge all of the
2387              // entries for the scalars that use the symbolic expression.
2388              ForgetSymbolicName(PN, SymbolicName);
2389              Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
2390              return PHISCEV;
2391            }
2392          }
2393        } else if (const SCEVAddRecExpr *AddRec =
2394                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
2395          // Otherwise, this could be a loop like this:
2396          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
2397          // In this case, j = {1,+,1}  and BEValue is j.
2398          // Because the other in-value of i (0) fits the evolution of BEValue
2399          // i really is an addrec evolution.
2400          if (AddRec->getLoop() == L && AddRec->isAffine()) {
2401            const SCEV *StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
2402
2403            // If StartVal = j.start - j.stride, we can use StartVal as the
2404            // initial step of the addrec evolution.
2405            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
2406                                            AddRec->getOperand(1))) {
2407              const SCEV *PHISCEV =
2408                 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
2409
2410              // Okay, for the entire analysis of this edge we assumed the PHI
2411              // to be symbolic.  We now need to go back and purge all of the
2412              // entries for the scalars that use the symbolic expression.
2413              ForgetSymbolicName(PN, SymbolicName);
2414              Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
2415              return PHISCEV;
2416            }
2417          }
2418        }
2419
2420        return SymbolicName;
2421      }
2422
2423  // It's tempting to recognize PHIs with a unique incoming value, however
2424  // this leads passes like indvars to break LCSSA form. Fortunately, such
2425  // PHIs are rare, as instcombine zaps them.
2426
2427  // If it's not a loop phi, we can't handle it yet.
2428  return getUnknown(PN);
2429}
2430
2431/// createNodeForGEP - Expand GEP instructions into add and multiply
2432/// operations. This allows them to be analyzed by regular SCEV code.
2433///
2434const SCEV *ScalarEvolution::createNodeForGEP(Operator *GEP) {
2435
2436  const Type *IntPtrTy = TD->getIntPtrType();
2437  Value *Base = GEP->getOperand(0);
2438  // Don't attempt to analyze GEPs over unsized objects.
2439  if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2440    return getUnknown(GEP);
2441  const SCEV *TotalOffset = getIntegerSCEV(0, IntPtrTy);
2442  gep_type_iterator GTI = gep_type_begin(GEP);
2443  for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2444                                      E = GEP->op_end();
2445       I != E; ++I) {
2446    Value *Index = *I;
2447    // Compute the (potentially symbolic) offset in bytes for this index.
2448    if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2449      // For a struct, add the member offset.
2450      const StructLayout &SL = *TD->getStructLayout(STy);
2451      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2452      uint64_t Offset = SL.getElementOffset(FieldNo);
2453      TotalOffset = getAddExpr(TotalOffset, getIntegerSCEV(Offset, IntPtrTy));
2454    } else {
2455      // For an array, add the element offset, explicitly scaled.
2456      const SCEV *LocalOffset = getSCEV(Index);
2457      if (!isa<PointerType>(LocalOffset->getType()))
2458        // Getelementptr indicies are signed.
2459        LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy);
2460      LocalOffset =
2461        getMulExpr(LocalOffset,
2462                   getIntegerSCEV(TD->getTypeAllocSize(*GTI), IntPtrTy));
2463      TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2464    }
2465  }
2466  return getAddExpr(getSCEV(Base), TotalOffset);
2467}
2468
2469/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2470/// guaranteed to end in (at every loop iteration).  It is, at the same time,
2471/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
2472/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
2473uint32_t
2474ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
2475  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2476    return C->getValue()->getValue().countTrailingZeros();
2477
2478  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
2479    return std::min(GetMinTrailingZeros(T->getOperand()),
2480                    (uint32_t)getTypeSizeInBits(T->getType()));
2481
2482  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
2483    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2484    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2485             getTypeSizeInBits(E->getType()) : OpRes;
2486  }
2487
2488  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
2489    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2490    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2491             getTypeSizeInBits(E->getType()) : OpRes;
2492  }
2493
2494  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
2495    // The result is the min of all operands results.
2496    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2497    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2498      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2499    return MinOpRes;
2500  }
2501
2502  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
2503    // The result is the sum of all operands results.
2504    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2505    uint32_t BitWidth = getTypeSizeInBits(M->getType());
2506    for (unsigned i = 1, e = M->getNumOperands();
2507         SumOpRes != BitWidth && i != e; ++i)
2508      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
2509                          BitWidth);
2510    return SumOpRes;
2511  }
2512
2513  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
2514    // The result is the min of all operands results.
2515    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2516    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2517      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2518    return MinOpRes;
2519  }
2520
2521  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
2522    // The result is the min of all operands results.
2523    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2524    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2525      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2526    return MinOpRes;
2527  }
2528
2529  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
2530    // The result is the min of all operands results.
2531    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2532    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2533      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2534    return MinOpRes;
2535  }
2536
2537  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2538    // For a SCEVUnknown, ask ValueTracking.
2539    unsigned BitWidth = getTypeSizeInBits(U->getType());
2540    APInt Mask = APInt::getAllOnesValue(BitWidth);
2541    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2542    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2543    return Zeros.countTrailingOnes();
2544  }
2545
2546  // SCEVUDivExpr
2547  return 0;
2548}
2549
2550/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2551///
2552ConstantRange
2553ScalarEvolution::getUnsignedRange(const SCEV *S) {
2554
2555  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2556    return ConstantRange(C->getValue()->getValue());
2557
2558  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2559    ConstantRange X = getUnsignedRange(Add->getOperand(0));
2560    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2561      X = X.add(getUnsignedRange(Add->getOperand(i)));
2562    return X;
2563  }
2564
2565  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2566    ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2567    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2568      X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
2569    return X;
2570  }
2571
2572  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2573    ConstantRange X = getUnsignedRange(SMax->getOperand(0));
2574    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2575      X = X.smax(getUnsignedRange(SMax->getOperand(i)));
2576    return X;
2577  }
2578
2579  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2580    ConstantRange X = getUnsignedRange(UMax->getOperand(0));
2581    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2582      X = X.umax(getUnsignedRange(UMax->getOperand(i)));
2583    return X;
2584  }
2585
2586  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2587    ConstantRange X = getUnsignedRange(UDiv->getLHS());
2588    ConstantRange Y = getUnsignedRange(UDiv->getRHS());
2589    return X.udiv(Y);
2590  }
2591
2592  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2593    ConstantRange X = getUnsignedRange(ZExt->getOperand());
2594    return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
2595  }
2596
2597  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2598    ConstantRange X = getUnsignedRange(SExt->getOperand());
2599    return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
2600  }
2601
2602  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2603    ConstantRange X = getUnsignedRange(Trunc->getOperand());
2604    return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
2605  }
2606
2607  ConstantRange FullSet(getTypeSizeInBits(S->getType()), true);
2608
2609  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
2610    const SCEV *T = getBackedgeTakenCount(AddRec->getLoop());
2611    const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
2612    if (!Trip) return FullSet;
2613
2614    // TODO: non-affine addrec
2615    if (AddRec->isAffine()) {
2616      const Type *Ty = AddRec->getType();
2617      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
2618      if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) {
2619        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
2620
2621        const SCEV *Start = AddRec->getStart();
2622        const SCEV *Step = AddRec->getStepRecurrence(*this);
2623        const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
2624
2625        // Check for overflow.
2626        // TODO: This is very conservative.
2627        if (!(Step->isOne() &&
2628              isKnownPredicate(ICmpInst::ICMP_ULT, Start, End)) &&
2629            !(Step->isAllOnesValue() &&
2630              isKnownPredicate(ICmpInst::ICMP_UGT, Start, End)))
2631          return FullSet;
2632
2633        ConstantRange StartRange = getUnsignedRange(Start);
2634        ConstantRange EndRange = getUnsignedRange(End);
2635        APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
2636                                   EndRange.getUnsignedMin());
2637        APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
2638                                   EndRange.getUnsignedMax());
2639        if (Min.isMinValue() && Max.isMaxValue())
2640          return FullSet;
2641        return ConstantRange(Min, Max+1);
2642      }
2643    }
2644  }
2645
2646  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2647    // For a SCEVUnknown, ask ValueTracking.
2648    unsigned BitWidth = getTypeSizeInBits(U->getType());
2649    APInt Mask = APInt::getAllOnesValue(BitWidth);
2650    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2651    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
2652    if (Ones == ~Zeros + 1)
2653      return FullSet;
2654    return ConstantRange(Ones, ~Zeros + 1);
2655  }
2656
2657  return FullSet;
2658}
2659
2660/// getSignedRange - Determine the signed range for a particular SCEV.
2661///
2662ConstantRange
2663ScalarEvolution::getSignedRange(const SCEV *S) {
2664
2665  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2666    return ConstantRange(C->getValue()->getValue());
2667
2668  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2669    ConstantRange X = getSignedRange(Add->getOperand(0));
2670    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2671      X = X.add(getSignedRange(Add->getOperand(i)));
2672    return X;
2673  }
2674
2675  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2676    ConstantRange X = getSignedRange(Mul->getOperand(0));
2677    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2678      X = X.multiply(getSignedRange(Mul->getOperand(i)));
2679    return X;
2680  }
2681
2682  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2683    ConstantRange X = getSignedRange(SMax->getOperand(0));
2684    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2685      X = X.smax(getSignedRange(SMax->getOperand(i)));
2686    return X;
2687  }
2688
2689  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2690    ConstantRange X = getSignedRange(UMax->getOperand(0));
2691    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2692      X = X.umax(getSignedRange(UMax->getOperand(i)));
2693    return X;
2694  }
2695
2696  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2697    ConstantRange X = getSignedRange(UDiv->getLHS());
2698    ConstantRange Y = getSignedRange(UDiv->getRHS());
2699    return X.udiv(Y);
2700  }
2701
2702  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2703    ConstantRange X = getSignedRange(ZExt->getOperand());
2704    return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
2705  }
2706
2707  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2708    ConstantRange X = getSignedRange(SExt->getOperand());
2709    return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
2710  }
2711
2712  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2713    ConstantRange X = getSignedRange(Trunc->getOperand());
2714    return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
2715  }
2716
2717  ConstantRange FullSet(getTypeSizeInBits(S->getType()), true);
2718
2719  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
2720    const SCEV *T = getBackedgeTakenCount(AddRec->getLoop());
2721    const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
2722    if (!Trip) return FullSet;
2723
2724    // TODO: non-affine addrec
2725    if (AddRec->isAffine()) {
2726      const Type *Ty = AddRec->getType();
2727      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
2728      if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) {
2729        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
2730
2731        const SCEV *Start = AddRec->getStart();
2732        const SCEV *Step = AddRec->getStepRecurrence(*this);
2733        const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
2734
2735        // Check for overflow.
2736        // TODO: This is very conservative.
2737        if (!(Step->isOne() &&
2738              isKnownPredicate(ICmpInst::ICMP_SLT, Start, End)) &&
2739            !(Step->isAllOnesValue() &&
2740              isKnownPredicate(ICmpInst::ICMP_SGT, Start, End)))
2741          return FullSet;
2742
2743        ConstantRange StartRange = getSignedRange(Start);
2744        ConstantRange EndRange = getSignedRange(End);
2745        APInt Min = APIntOps::smin(StartRange.getSignedMin(),
2746                                   EndRange.getSignedMin());
2747        APInt Max = APIntOps::smax(StartRange.getSignedMax(),
2748                                   EndRange.getSignedMax());
2749        if (Min.isMinSignedValue() && Max.isMaxSignedValue())
2750          return FullSet;
2751        return ConstantRange(Min, Max+1);
2752      }
2753    }
2754  }
2755
2756  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2757    // For a SCEVUnknown, ask ValueTracking.
2758    unsigned BitWidth = getTypeSizeInBits(U->getType());
2759    unsigned NS = ComputeNumSignBits(U->getValue(), TD);
2760    if (NS == 1)
2761      return FullSet;
2762    return
2763      ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
2764                    APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1);
2765  }
2766
2767  return FullSet;
2768}
2769
2770/// createSCEV - We know that there is no SCEV for the specified value.
2771/// Analyze the expression.
2772///
2773const SCEV *ScalarEvolution::createSCEV(Value *V) {
2774  if (!isSCEVable(V->getType()))
2775    return getUnknown(V);
2776
2777  unsigned Opcode = Instruction::UserOp1;
2778  if (Instruction *I = dyn_cast<Instruction>(V))
2779    Opcode = I->getOpcode();
2780  else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2781    Opcode = CE->getOpcode();
2782  else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
2783    return getConstant(CI);
2784  else if (isa<ConstantPointerNull>(V))
2785    return getIntegerSCEV(0, V->getType());
2786  else if (isa<UndefValue>(V))
2787    return getIntegerSCEV(0, V->getType());
2788  else
2789    return getUnknown(V);
2790
2791  Operator *U = cast<Operator>(V);
2792  switch (Opcode) {
2793  case Instruction::Add:
2794    return getAddExpr(getSCEV(U->getOperand(0)),
2795                      getSCEV(U->getOperand(1)));
2796  case Instruction::Mul:
2797    return getMulExpr(getSCEV(U->getOperand(0)),
2798                      getSCEV(U->getOperand(1)));
2799  case Instruction::UDiv:
2800    return getUDivExpr(getSCEV(U->getOperand(0)),
2801                       getSCEV(U->getOperand(1)));
2802  case Instruction::Sub:
2803    return getMinusSCEV(getSCEV(U->getOperand(0)),
2804                        getSCEV(U->getOperand(1)));
2805  case Instruction::And:
2806    // For an expression like x&255 that merely masks off the high bits,
2807    // use zext(trunc(x)) as the SCEV expression.
2808    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2809      if (CI->isNullValue())
2810        return getSCEV(U->getOperand(1));
2811      if (CI->isAllOnesValue())
2812        return getSCEV(U->getOperand(0));
2813      const APInt &A = CI->getValue();
2814
2815      // Instcombine's ShrinkDemandedConstant may strip bits out of
2816      // constants, obscuring what would otherwise be a low-bits mask.
2817      // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
2818      // knew about to reconstruct a low-bits mask value.
2819      unsigned LZ = A.countLeadingZeros();
2820      unsigned BitWidth = A.getBitWidth();
2821      APInt AllOnes = APInt::getAllOnesValue(BitWidth);
2822      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2823      ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
2824
2825      APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
2826
2827      if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
2828        return
2829          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
2830                                            IntegerType::get(BitWidth - LZ)),
2831                            U->getType());
2832    }
2833    break;
2834
2835  case Instruction::Or:
2836    // If the RHS of the Or is a constant, we may have something like:
2837    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
2838    // optimizations will transparently handle this case.
2839    //
2840    // In order for this transformation to be safe, the LHS must be of the
2841    // form X*(2^n) and the Or constant must be less than 2^n.
2842    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2843      const SCEV *LHS = getSCEV(U->getOperand(0));
2844      const APInt &CIVal = CI->getValue();
2845      if (GetMinTrailingZeros(LHS) >=
2846          (CIVal.getBitWidth() - CIVal.countLeadingZeros()))
2847        return getAddExpr(LHS, getSCEV(U->getOperand(1)));
2848    }
2849    break;
2850  case Instruction::Xor:
2851    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2852      // If the RHS of the xor is a signbit, then this is just an add.
2853      // Instcombine turns add of signbit into xor as a strength reduction step.
2854      if (CI->getValue().isSignBit())
2855        return getAddExpr(getSCEV(U->getOperand(0)),
2856                          getSCEV(U->getOperand(1)));
2857
2858      // If the RHS of xor is -1, then this is a not operation.
2859      if (CI->isAllOnesValue())
2860        return getNotSCEV(getSCEV(U->getOperand(0)));
2861
2862      // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
2863      // This is a variant of the check for xor with -1, and it handles
2864      // the case where instcombine has trimmed non-demanded bits out
2865      // of an xor with -1.
2866      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
2867        if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
2868          if (BO->getOpcode() == Instruction::And &&
2869              LCI->getValue() == CI->getValue())
2870            if (const SCEVZeroExtendExpr *Z =
2871                  dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
2872              const Type *UTy = U->getType();
2873              const SCEV *Z0 = Z->getOperand();
2874              const Type *Z0Ty = Z0->getType();
2875              unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
2876
2877              // If C is a low-bits mask, the zero extend is zerving to
2878              // mask off the high bits. Complement the operand and
2879              // re-apply the zext.
2880              if (APIntOps::isMask(Z0TySize, CI->getValue()))
2881                return getZeroExtendExpr(getNotSCEV(Z0), UTy);
2882
2883              // If C is a single bit, it may be in the sign-bit position
2884              // before the zero-extend. In this case, represent the xor
2885              // using an add, which is equivalent, and re-apply the zext.
2886              APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
2887              if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
2888                  Trunc.isSignBit())
2889                return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
2890                                         UTy);
2891            }
2892    }
2893    break;
2894
2895  case Instruction::Shl:
2896    // Turn shift left of a constant amount into a multiply.
2897    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2898      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2899      Constant *X = ConstantInt::get(getContext(),
2900        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
2901      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
2902    }
2903    break;
2904
2905  case Instruction::LShr:
2906    // Turn logical shift right of a constant into a unsigned divide.
2907    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2908      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2909      Constant *X = ConstantInt::get(getContext(),
2910        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
2911      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
2912    }
2913    break;
2914
2915  case Instruction::AShr:
2916    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
2917    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
2918      if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
2919        if (L->getOpcode() == Instruction::Shl &&
2920            L->getOperand(1) == U->getOperand(1)) {
2921          unsigned BitWidth = getTypeSizeInBits(U->getType());
2922          uint64_t Amt = BitWidth - CI->getZExtValue();
2923          if (Amt == BitWidth)
2924            return getSCEV(L->getOperand(0));       // shift by zero --> noop
2925          if (Amt > BitWidth)
2926            return getIntegerSCEV(0, U->getType()); // value is undefined
2927          return
2928            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
2929                                                      IntegerType::get(Amt)),
2930                                 U->getType());
2931        }
2932    break;
2933
2934  case Instruction::Trunc:
2935    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
2936
2937  case Instruction::ZExt:
2938    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
2939
2940  case Instruction::SExt:
2941    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
2942
2943  case Instruction::BitCast:
2944    // BitCasts are no-op casts so we just eliminate the cast.
2945    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
2946      return getSCEV(U->getOperand(0));
2947    break;
2948
2949    // It's tempting to handle inttoptr and ptrtoint, however this can
2950    // lead to pointer expressions which cannot be expanded to GEPs
2951    // (because they may overflow). For now, the only pointer-typed
2952    // expressions we handle are GEPs and address literals.
2953
2954  case Instruction::GetElementPtr:
2955    if (!TD) break; // Without TD we can't analyze pointers.
2956    return createNodeForGEP(U);
2957
2958  case Instruction::PHI:
2959    return createNodeForPHI(cast<PHINode>(U));
2960
2961  case Instruction::Select:
2962    // This could be a smax or umax that was lowered earlier.
2963    // Try to recover it.
2964    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
2965      Value *LHS = ICI->getOperand(0);
2966      Value *RHS = ICI->getOperand(1);
2967      switch (ICI->getPredicate()) {
2968      case ICmpInst::ICMP_SLT:
2969      case ICmpInst::ICMP_SLE:
2970        std::swap(LHS, RHS);
2971        // fall through
2972      case ICmpInst::ICMP_SGT:
2973      case ICmpInst::ICMP_SGE:
2974        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2975          return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
2976        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2977          return getSMinExpr(getSCEV(LHS), getSCEV(RHS));
2978        break;
2979      case ICmpInst::ICMP_ULT:
2980      case ICmpInst::ICMP_ULE:
2981        std::swap(LHS, RHS);
2982        // fall through
2983      case ICmpInst::ICMP_UGT:
2984      case ICmpInst::ICMP_UGE:
2985        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2986          return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
2987        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2988          return getUMinExpr(getSCEV(LHS), getSCEV(RHS));
2989        break;
2990      case ICmpInst::ICMP_NE:
2991        // n != 0 ? n : 1  ->  umax(n, 1)
2992        if (LHS == U->getOperand(1) &&
2993            isa<ConstantInt>(U->getOperand(2)) &&
2994            cast<ConstantInt>(U->getOperand(2))->isOne() &&
2995            isa<ConstantInt>(RHS) &&
2996            cast<ConstantInt>(RHS)->isZero())
2997          return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(2)));
2998        break;
2999      case ICmpInst::ICMP_EQ:
3000        // n == 0 ? 1 : n  ->  umax(n, 1)
3001        if (LHS == U->getOperand(2) &&
3002            isa<ConstantInt>(U->getOperand(1)) &&
3003            cast<ConstantInt>(U->getOperand(1))->isOne() &&
3004            isa<ConstantInt>(RHS) &&
3005            cast<ConstantInt>(RHS)->isZero())
3006          return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(1)));
3007        break;
3008      default:
3009        break;
3010      }
3011    }
3012
3013  default: // We cannot analyze this expression.
3014    break;
3015  }
3016
3017  return getUnknown(V);
3018}
3019
3020
3021
3022//===----------------------------------------------------------------------===//
3023//                   Iteration Count Computation Code
3024//
3025
3026/// getBackedgeTakenCount - If the specified loop has a predictable
3027/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3028/// object. The backedge-taken count is the number of times the loop header
3029/// will be branched to from within the loop. This is one less than the
3030/// trip count of the loop, since it doesn't count the first iteration,
3031/// when the header is branched to from outside the loop.
3032///
3033/// Note that it is not valid to call this method on a loop without a
3034/// loop-invariant backedge-taken count (see
3035/// hasLoopInvariantBackedgeTakenCount).
3036///
3037const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
3038  return getBackedgeTakenInfo(L).Exact;
3039}
3040
3041/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3042/// return the least SCEV value that is known never to be less than the
3043/// actual backedge taken count.
3044const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
3045  return getBackedgeTakenInfo(L).Max;
3046}
3047
3048/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3049/// onto the given Worklist.
3050static void
3051PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3052  BasicBlock *Header = L->getHeader();
3053
3054  // Push all Loop-header PHIs onto the Worklist stack.
3055  for (BasicBlock::iterator I = Header->begin();
3056       PHINode *PN = dyn_cast<PHINode>(I); ++I)
3057    Worklist.push_back(PN);
3058}
3059
3060const ScalarEvolution::BackedgeTakenInfo &
3061ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
3062  // Initially insert a CouldNotCompute for this loop. If the insertion
3063  // succeeds, procede to actually compute a backedge-taken count and
3064  // update the value. The temporary CouldNotCompute value tells SCEV
3065  // code elsewhere that it shouldn't attempt to request a new
3066  // backedge-taken count, which could result in infinite recursion.
3067  std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair =
3068    BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3069  if (Pair.second) {
3070    BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
3071    if (ItCount.Exact != getCouldNotCompute()) {
3072      assert(ItCount.Exact->isLoopInvariant(L) &&
3073             ItCount.Max->isLoopInvariant(L) &&
3074             "Computed trip count isn't loop invariant for loop!");
3075      ++NumTripCountsComputed;
3076
3077      // Update the value in the map.
3078      Pair.first->second = ItCount;
3079    } else {
3080      if (ItCount.Max != getCouldNotCompute())
3081        // Update the value in the map.
3082        Pair.first->second = ItCount;
3083      if (isa<PHINode>(L->getHeader()->begin()))
3084        // Only count loops that have phi nodes as not being computable.
3085        ++NumTripCountsNotComputed;
3086    }
3087
3088    // Now that we know more about the trip count for this loop, forget any
3089    // existing SCEV values for PHI nodes in this loop since they are only
3090    // conservative estimates made without the benefit of trip count
3091    // information. This is similar to the code in
3092    // forgetLoopBackedgeTakenCount, except that it handles SCEVUnknown PHI
3093    // nodes specially.
3094    if (ItCount.hasAnyInfo()) {
3095      SmallVector<Instruction *, 16> Worklist;
3096      PushLoopPHIs(L, Worklist);
3097
3098      SmallPtrSet<Instruction *, 8> Visited;
3099      while (!Worklist.empty()) {
3100        Instruction *I = Worklist.pop_back_val();
3101        if (!Visited.insert(I)) continue;
3102
3103        std::map<SCEVCallbackVH, const SCEV*>::iterator It =
3104          Scalars.find(static_cast<Value *>(I));
3105        if (It != Scalars.end()) {
3106          // SCEVUnknown for a PHI either means that it has an unrecognized
3107          // structure, or it's a PHI that's in the progress of being computed
3108          // by createNodeForPHI.  In the former case, additional loop trip
3109          // count information isn't going to change anything. In the later
3110          // case, createNodeForPHI will perform the necessary updates on its
3111          // own when it gets to that point.
3112          if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second))
3113            Scalars.erase(It);
3114          ValuesAtScopes.erase(I);
3115          if (PHINode *PN = dyn_cast<PHINode>(I))
3116            ConstantEvolutionLoopExitValue.erase(PN);
3117        }
3118
3119        PushDefUseChildren(I, Worklist);
3120      }
3121    }
3122  }
3123  return Pair.first->second;
3124}
3125
3126/// forgetLoopBackedgeTakenCount - This method should be called by the
3127/// client when it has changed a loop in a way that may effect
3128/// ScalarEvolution's ability to compute a trip count, or if the loop
3129/// is deleted.
3130void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) {
3131  BackedgeTakenCounts.erase(L);
3132
3133  SmallVector<Instruction *, 16> Worklist;
3134  PushLoopPHIs(L, Worklist);
3135
3136  SmallPtrSet<Instruction *, 8> Visited;
3137  while (!Worklist.empty()) {
3138    Instruction *I = Worklist.pop_back_val();
3139    if (!Visited.insert(I)) continue;
3140
3141    std::map<SCEVCallbackVH, const SCEV*>::iterator It =
3142      Scalars.find(static_cast<Value *>(I));
3143    if (It != Scalars.end()) {
3144      Scalars.erase(It);
3145      ValuesAtScopes.erase(I);
3146      if (PHINode *PN = dyn_cast<PHINode>(I))
3147        ConstantEvolutionLoopExitValue.erase(PN);
3148    }
3149
3150    PushDefUseChildren(I, Worklist);
3151  }
3152}
3153
3154/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3155/// of the specified loop will execute.
3156ScalarEvolution::BackedgeTakenInfo
3157ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
3158  SmallVector<BasicBlock*, 8> ExitingBlocks;
3159  L->getExitingBlocks(ExitingBlocks);
3160
3161  // Examine all exits and pick the most conservative values.
3162  const SCEV *BECount = getCouldNotCompute();
3163  const SCEV *MaxBECount = getCouldNotCompute();
3164  bool CouldNotComputeBECount = false;
3165  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3166    BackedgeTakenInfo NewBTI =
3167      ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
3168
3169    if (NewBTI.Exact == getCouldNotCompute()) {
3170      // We couldn't compute an exact value for this exit, so
3171      // we won't be able to compute an exact value for the loop.
3172      CouldNotComputeBECount = true;
3173      BECount = getCouldNotCompute();
3174    } else if (!CouldNotComputeBECount) {
3175      if (BECount == getCouldNotCompute())
3176        BECount = NewBTI.Exact;
3177      else
3178        BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
3179    }
3180    if (MaxBECount == getCouldNotCompute())
3181      MaxBECount = NewBTI.Max;
3182    else if (NewBTI.Max != getCouldNotCompute())
3183      MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
3184  }
3185
3186  return BackedgeTakenInfo(BECount, MaxBECount);
3187}
3188
3189/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3190/// of the specified loop will execute if it exits via the specified block.
3191ScalarEvolution::BackedgeTakenInfo
3192ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3193                                                   BasicBlock *ExitingBlock) {
3194
3195  // Okay, we've chosen an exiting block.  See what condition causes us to
3196  // exit at this block.
3197  //
3198  // FIXME: we should be able to handle switch instructions (with a single exit)
3199  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
3200  if (ExitBr == 0) return getCouldNotCompute();
3201  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
3202
3203  // At this point, we know we have a conditional branch that determines whether
3204  // the loop is exited.  However, we don't know if the branch is executed each
3205  // time through the loop.  If not, then the execution count of the branch will
3206  // not be equal to the trip count of the loop.
3207  //
3208  // Currently we check for this by checking to see if the Exit branch goes to
3209  // the loop header.  If so, we know it will always execute the same number of
3210  // times as the loop.  We also handle the case where the exit block *is* the
3211  // loop header.  This is common for un-rotated loops.
3212  //
3213  // If both of those tests fail, walk up the unique predecessor chain to the
3214  // header, stopping if there is an edge that doesn't exit the loop. If the
3215  // header is reached, the execution count of the branch will be equal to the
3216  // trip count of the loop.
3217  //
3218  //  More extensive analysis could be done to handle more cases here.
3219  //
3220  if (ExitBr->getSuccessor(0) != L->getHeader() &&
3221      ExitBr->getSuccessor(1) != L->getHeader() &&
3222      ExitBr->getParent() != L->getHeader()) {
3223    // The simple checks failed, try climbing the unique predecessor chain
3224    // up to the header.
3225    bool Ok = false;
3226    for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3227      BasicBlock *Pred = BB->getUniquePredecessor();
3228      if (!Pred)
3229        return getCouldNotCompute();
3230      TerminatorInst *PredTerm = Pred->getTerminator();
3231      for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3232        BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3233        if (PredSucc == BB)
3234          continue;
3235        // If the predecessor has a successor that isn't BB and isn't
3236        // outside the loop, assume the worst.
3237        if (L->contains(PredSucc))
3238          return getCouldNotCompute();
3239      }
3240      if (Pred == L->getHeader()) {
3241        Ok = true;
3242        break;
3243      }
3244      BB = Pred;
3245    }
3246    if (!Ok)
3247      return getCouldNotCompute();
3248  }
3249
3250  // Procede to the next level to examine the exit condition expression.
3251  return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3252                                               ExitBr->getSuccessor(0),
3253                                               ExitBr->getSuccessor(1));
3254}
3255
3256/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3257/// backedge of the specified loop will execute if its exit condition
3258/// were a conditional branch of ExitCond, TBB, and FBB.
3259ScalarEvolution::BackedgeTakenInfo
3260ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3261                                                       Value *ExitCond,
3262                                                       BasicBlock *TBB,
3263                                                       BasicBlock *FBB) {
3264  // Check if the controlling expression for this loop is an And or Or.
3265  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3266    if (BO->getOpcode() == Instruction::And) {
3267      // Recurse on the operands of the and.
3268      BackedgeTakenInfo BTI0 =
3269        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3270      BackedgeTakenInfo BTI1 =
3271        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3272      const SCEV *BECount = getCouldNotCompute();
3273      const SCEV *MaxBECount = getCouldNotCompute();
3274      if (L->contains(TBB)) {
3275        // Both conditions must be true for the loop to continue executing.
3276        // Choose the less conservative count.
3277        if (BTI0.Exact == getCouldNotCompute() ||
3278            BTI1.Exact == getCouldNotCompute())
3279          BECount = getCouldNotCompute();
3280        else
3281          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3282        if (BTI0.Max == getCouldNotCompute())
3283          MaxBECount = BTI1.Max;
3284        else if (BTI1.Max == getCouldNotCompute())
3285          MaxBECount = BTI0.Max;
3286        else
3287          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3288      } else {
3289        // Both conditions must be true for the loop to exit.
3290        assert(L->contains(FBB) && "Loop block has no successor in loop!");
3291        if (BTI0.Exact != getCouldNotCompute() &&
3292            BTI1.Exact != getCouldNotCompute())
3293          BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3294        if (BTI0.Max != getCouldNotCompute() &&
3295            BTI1.Max != getCouldNotCompute())
3296          MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3297      }
3298
3299      return BackedgeTakenInfo(BECount, MaxBECount);
3300    }
3301    if (BO->getOpcode() == Instruction::Or) {
3302      // Recurse on the operands of the or.
3303      BackedgeTakenInfo BTI0 =
3304        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3305      BackedgeTakenInfo BTI1 =
3306        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3307      const SCEV *BECount = getCouldNotCompute();
3308      const SCEV *MaxBECount = getCouldNotCompute();
3309      if (L->contains(FBB)) {
3310        // Both conditions must be false for the loop to continue executing.
3311        // Choose the less conservative count.
3312        if (BTI0.Exact == getCouldNotCompute() ||
3313            BTI1.Exact == getCouldNotCompute())
3314          BECount = getCouldNotCompute();
3315        else
3316          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3317        if (BTI0.Max == getCouldNotCompute())
3318          MaxBECount = BTI1.Max;
3319        else if (BTI1.Max == getCouldNotCompute())
3320          MaxBECount = BTI0.Max;
3321        else
3322          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3323      } else {
3324        // Both conditions must be false for the loop to exit.
3325        assert(L->contains(TBB) && "Loop block has no successor in loop!");
3326        if (BTI0.Exact != getCouldNotCompute() &&
3327            BTI1.Exact != getCouldNotCompute())
3328          BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3329        if (BTI0.Max != getCouldNotCompute() &&
3330            BTI1.Max != getCouldNotCompute())
3331          MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3332      }
3333
3334      return BackedgeTakenInfo(BECount, MaxBECount);
3335    }
3336  }
3337
3338  // With an icmp, it may be feasible to compute an exact backedge-taken count.
3339  // Procede to the next level to examine the icmp.
3340  if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3341    return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
3342
3343  // If it's not an integer or pointer comparison then compute it the hard way.
3344  return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3345}
3346
3347/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
3348/// backedge of the specified loop will execute if its exit condition
3349/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
3350ScalarEvolution::BackedgeTakenInfo
3351ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
3352                                                           ICmpInst *ExitCond,
3353                                                           BasicBlock *TBB,
3354                                                           BasicBlock *FBB) {
3355
3356  // If the condition was exit on true, convert the condition to exit on false
3357  ICmpInst::Predicate Cond;
3358  if (!L->contains(FBB))
3359    Cond = ExitCond->getPredicate();
3360  else
3361    Cond = ExitCond->getInversePredicate();
3362
3363  // Handle common loops like: for (X = "string"; *X; ++X)
3364  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
3365    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
3366      const SCEV *ItCnt =
3367        ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
3368      if (!isa<SCEVCouldNotCompute>(ItCnt)) {
3369        unsigned BitWidth = getTypeSizeInBits(ItCnt->getType());
3370        return BackedgeTakenInfo(ItCnt,
3371                                 isa<SCEVConstant>(ItCnt) ? ItCnt :
3372                                   getConstant(APInt::getMaxValue(BitWidth)-1));
3373      }
3374    }
3375
3376  const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
3377  const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
3378
3379  // Try to evaluate any dependencies out of the loop.
3380  LHS = getSCEVAtScope(LHS, L);
3381  RHS = getSCEVAtScope(RHS, L);
3382
3383  // At this point, we would like to compute how many iterations of the
3384  // loop the predicate will return true for these inputs.
3385  if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
3386    // If there is a loop-invariant, force it into the RHS.
3387    std::swap(LHS, RHS);
3388    Cond = ICmpInst::getSwappedPredicate(Cond);
3389  }
3390
3391  // If we have a comparison of a chrec against a constant, try to use value
3392  // ranges to answer this query.
3393  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
3394    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
3395      if (AddRec->getLoop() == L) {
3396        // Form the constant range.
3397        ConstantRange CompRange(
3398            ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
3399
3400        const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
3401        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
3402      }
3403
3404  switch (Cond) {
3405  case ICmpInst::ICMP_NE: {                     // while (X != Y)
3406    // Convert to: while (X-Y != 0)
3407    const SCEV *TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
3408    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
3409    break;
3410  }
3411  case ICmpInst::ICMP_EQ: {
3412    // Convert to: while (X-Y == 0)           // while (X == Y)
3413    const SCEV *TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
3414    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
3415    break;
3416  }
3417  case ICmpInst::ICMP_SLT: {
3418    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
3419    if (BTI.hasAnyInfo()) return BTI;
3420    break;
3421  }
3422  case ICmpInst::ICMP_SGT: {
3423    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3424                                             getNotSCEV(RHS), L, true);
3425    if (BTI.hasAnyInfo()) return BTI;
3426    break;
3427  }
3428  case ICmpInst::ICMP_ULT: {
3429    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
3430    if (BTI.hasAnyInfo()) return BTI;
3431    break;
3432  }
3433  case ICmpInst::ICMP_UGT: {
3434    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3435                                             getNotSCEV(RHS), L, false);
3436    if (BTI.hasAnyInfo()) return BTI;
3437    break;
3438  }
3439  default:
3440#if 0
3441    errs() << "ComputeBackedgeTakenCount ";
3442    if (ExitCond->getOperand(0)->getType()->isUnsigned())
3443      errs() << "[unsigned] ";
3444    errs() << *LHS << "   "
3445         << Instruction::getOpcodeName(Instruction::ICmp)
3446         << "   " << *RHS << "\n";
3447#endif
3448    break;
3449  }
3450  return
3451    ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3452}
3453
3454static ConstantInt *
3455EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
3456                                ScalarEvolution &SE) {
3457  const SCEV *InVal = SE.getConstant(C);
3458  const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
3459  assert(isa<SCEVConstant>(Val) &&
3460         "Evaluation of SCEV at constant didn't fold correctly?");
3461  return cast<SCEVConstant>(Val)->getValue();
3462}
3463
3464/// GetAddressedElementFromGlobal - Given a global variable with an initializer
3465/// and a GEP expression (missing the pointer index) indexing into it, return
3466/// the addressed element of the initializer or null if the index expression is
3467/// invalid.
3468static Constant *
3469GetAddressedElementFromGlobal(LLVMContext &Context, GlobalVariable *GV,
3470                              const std::vector<ConstantInt*> &Indices) {
3471  Constant *Init = GV->getInitializer();
3472  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
3473    uint64_t Idx = Indices[i]->getZExtValue();
3474    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
3475      assert(Idx < CS->getNumOperands() && "Bad struct index!");
3476      Init = cast<Constant>(CS->getOperand(Idx));
3477    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
3478      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
3479      Init = cast<Constant>(CA->getOperand(Idx));
3480    } else if (isa<ConstantAggregateZero>(Init)) {
3481      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
3482        assert(Idx < STy->getNumElements() && "Bad struct index!");
3483        Init = Context.getNullValue(STy->getElementType(Idx));
3484      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
3485        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
3486        Init = Context.getNullValue(ATy->getElementType());
3487      } else {
3488        llvm_unreachable("Unknown constant aggregate type!");
3489      }
3490      return 0;
3491    } else {
3492      return 0; // Unknown initializer type
3493    }
3494  }
3495  return Init;
3496}
3497
3498/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
3499/// 'icmp op load X, cst', try to see if we can compute the backedge
3500/// execution count.
3501const SCEV *
3502ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
3503                                                LoadInst *LI,
3504                                                Constant *RHS,
3505                                                const Loop *L,
3506                                                ICmpInst::Predicate predicate) {
3507  if (LI->isVolatile()) return getCouldNotCompute();
3508
3509  // Check to see if the loaded pointer is a getelementptr of a global.
3510  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
3511  if (!GEP) return getCouldNotCompute();
3512
3513  // Make sure that it is really a constant global we are gepping, with an
3514  // initializer, and make sure the first IDX is really 0.
3515  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
3516  if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
3517      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
3518      !cast<Constant>(GEP->getOperand(1))->isNullValue())
3519    return getCouldNotCompute();
3520
3521  // Okay, we allow one non-constant index into the GEP instruction.
3522  Value *VarIdx = 0;
3523  std::vector<ConstantInt*> Indexes;
3524  unsigned VarIdxNum = 0;
3525  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
3526    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
3527      Indexes.push_back(CI);
3528    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
3529      if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
3530      VarIdx = GEP->getOperand(i);
3531      VarIdxNum = i-2;
3532      Indexes.push_back(0);
3533    }
3534
3535  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
3536  // Check to see if X is a loop variant variable value now.
3537  const SCEV *Idx = getSCEV(VarIdx);
3538  Idx = getSCEVAtScope(Idx, L);
3539
3540  // We can only recognize very limited forms of loop index expressions, in
3541  // particular, only affine AddRec's like {C1,+,C2}.
3542  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
3543  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
3544      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
3545      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
3546    return getCouldNotCompute();
3547
3548  unsigned MaxSteps = MaxBruteForceIterations;
3549  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
3550    ConstantInt *ItCst = ConstantInt::get(
3551                           cast<IntegerType>(IdxExpr->getType()), IterationNum);
3552    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
3553
3554    // Form the GEP offset.
3555    Indexes[VarIdxNum] = Val;
3556
3557    Constant *Result = GetAddressedElementFromGlobal(getContext(), GV, Indexes);
3558    if (Result == 0) break;  // Cannot compute!
3559
3560    // Evaluate the condition for this iteration.
3561    Result = ConstantExpr::getICmp(predicate, Result, RHS);
3562    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
3563    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
3564#if 0
3565      errs() << "\n***\n*** Computed loop count " << *ItCst
3566             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
3567             << "***\n";
3568#endif
3569      ++NumArrayLenItCounts;
3570      return getConstant(ItCst);   // Found terminating iteration!
3571    }
3572  }
3573  return getCouldNotCompute();
3574}
3575
3576
3577/// CanConstantFold - Return true if we can constant fold an instruction of the
3578/// specified type, assuming that all operands were constants.
3579static bool CanConstantFold(const Instruction *I) {
3580  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
3581      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
3582    return true;
3583
3584  if (const CallInst *CI = dyn_cast<CallInst>(I))
3585    if (const Function *F = CI->getCalledFunction())
3586      return canConstantFoldCallTo(F);
3587  return false;
3588}
3589
3590/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
3591/// in the loop that V is derived from.  We allow arbitrary operations along the
3592/// way, but the operands of an operation must either be constants or a value
3593/// derived from a constant PHI.  If this expression does not fit with these
3594/// constraints, return null.
3595static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
3596  // If this is not an instruction, or if this is an instruction outside of the
3597  // loop, it can't be derived from a loop PHI.
3598  Instruction *I = dyn_cast<Instruction>(V);
3599  if (I == 0 || !L->contains(I->getParent())) return 0;
3600
3601  if (PHINode *PN = dyn_cast<PHINode>(I)) {
3602    if (L->getHeader() == I->getParent())
3603      return PN;
3604    else
3605      // We don't currently keep track of the control flow needed to evaluate
3606      // PHIs, so we cannot handle PHIs inside of loops.
3607      return 0;
3608  }
3609
3610  // If we won't be able to constant fold this expression even if the operands
3611  // are constants, return early.
3612  if (!CanConstantFold(I)) return 0;
3613
3614  // Otherwise, we can evaluate this instruction if all of its operands are
3615  // constant or derived from a PHI node themselves.
3616  PHINode *PHI = 0;
3617  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
3618    if (!(isa<Constant>(I->getOperand(Op)) ||
3619          isa<GlobalValue>(I->getOperand(Op)))) {
3620      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
3621      if (P == 0) return 0;  // Not evolving from PHI
3622      if (PHI == 0)
3623        PHI = P;
3624      else if (PHI != P)
3625        return 0;  // Evolving from multiple different PHIs.
3626    }
3627
3628  // This is a expression evolving from a constant PHI!
3629  return PHI;
3630}
3631
3632/// EvaluateExpression - Given an expression that passes the
3633/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
3634/// in the loop has the value PHIVal.  If we can't fold this expression for some
3635/// reason, return null.
3636static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
3637  if (isa<PHINode>(V)) return PHIVal;
3638  if (Constant *C = dyn_cast<Constant>(V)) return C;
3639  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
3640  Instruction *I = cast<Instruction>(V);
3641  LLVMContext &Context = I->getParent()->getContext();
3642
3643  std::vector<Constant*> Operands;
3644  Operands.resize(I->getNumOperands());
3645
3646  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3647    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
3648    if (Operands[i] == 0) return 0;
3649  }
3650
3651  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
3652    return ConstantFoldCompareInstOperands(CI->getPredicate(),
3653                                           &Operands[0], Operands.size(),
3654                                           Context);
3655  else
3656    return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
3657                                    &Operands[0], Operands.size(),
3658                                    Context);
3659}
3660
3661/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
3662/// in the header of its containing loop, we know the loop executes a
3663/// constant number of times, and the PHI node is just a recurrence
3664/// involving constants, fold it.
3665Constant *
3666ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
3667                                                   const APInt& BEs,
3668                                                   const Loop *L) {
3669  std::map<PHINode*, Constant*>::iterator I =
3670    ConstantEvolutionLoopExitValue.find(PN);
3671  if (I != ConstantEvolutionLoopExitValue.end())
3672    return I->second;
3673
3674  if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
3675    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
3676
3677  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
3678
3679  // Since the loop is canonicalized, the PHI node must have two entries.  One
3680  // entry must be a constant (coming in from outside of the loop), and the
3681  // second must be derived from the same PHI.
3682  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
3683  Constant *StartCST =
3684    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
3685  if (StartCST == 0)
3686    return RetVal = 0;  // Must be a constant.
3687
3688  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
3689  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
3690  if (PN2 != PN)
3691    return RetVal = 0;  // Not derived from same PHI.
3692
3693  // Execute the loop symbolically to determine the exit value.
3694  if (BEs.getActiveBits() >= 32)
3695    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
3696
3697  unsigned NumIterations = BEs.getZExtValue(); // must be in range
3698  unsigned IterationNum = 0;
3699  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
3700    if (IterationNum == NumIterations)
3701      return RetVal = PHIVal;  // Got exit value!
3702
3703    // Compute the value of the PHI node for the next iteration.
3704    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
3705    if (NextPHI == PHIVal)
3706      return RetVal = NextPHI;  // Stopped evolving!
3707    if (NextPHI == 0)
3708      return 0;        // Couldn't evaluate!
3709    PHIVal = NextPHI;
3710  }
3711}
3712
3713/// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a
3714/// constant number of times (the condition evolves only from constants),
3715/// try to evaluate a few iterations of the loop until we get the exit
3716/// condition gets a value of ExitWhen (true or false).  If we cannot
3717/// evaluate the trip count of the loop, return getCouldNotCompute().
3718const SCEV *
3719ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
3720                                                       Value *Cond,
3721                                                       bool ExitWhen) {
3722  PHINode *PN = getConstantEvolvingPHI(Cond, L);
3723  if (PN == 0) return getCouldNotCompute();
3724
3725  // Since the loop is canonicalized, the PHI node must have two entries.  One
3726  // entry must be a constant (coming in from outside of the loop), and the
3727  // second must be derived from the same PHI.
3728  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
3729  Constant *StartCST =
3730    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
3731  if (StartCST == 0) return getCouldNotCompute();  // Must be a constant.
3732
3733  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
3734  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
3735  if (PN2 != PN) return getCouldNotCompute();  // Not derived from same PHI.
3736
3737  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
3738  // the loop symbolically to determine when the condition gets a value of
3739  // "ExitWhen".
3740  unsigned IterationNum = 0;
3741  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
3742  for (Constant *PHIVal = StartCST;
3743       IterationNum != MaxIterations; ++IterationNum) {
3744    ConstantInt *CondVal =
3745      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
3746
3747    // Couldn't symbolically evaluate.
3748    if (!CondVal) return getCouldNotCompute();
3749
3750    if (CondVal->getValue() == uint64_t(ExitWhen)) {
3751      ++NumBruteForceTripCountsComputed;
3752      return getConstant(Type::Int32Ty, IterationNum);
3753    }
3754
3755    // Compute the value of the PHI node for the next iteration.
3756    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
3757    if (NextPHI == 0 || NextPHI == PHIVal)
3758      return getCouldNotCompute();// Couldn't evaluate or not making progress...
3759    PHIVal = NextPHI;
3760  }
3761
3762  // Too many iterations were needed to evaluate.
3763  return getCouldNotCompute();
3764}
3765
3766/// getSCEVAtScope - Return a SCEV expression handle for the specified value
3767/// at the specified scope in the program.  The L value specifies a loop
3768/// nest to evaluate the expression at, where null is the top-level or a
3769/// specified loop is immediately inside of the loop.
3770///
3771/// This method can be used to compute the exit value for a variable defined
3772/// in a loop by querying what the value will hold in the parent loop.
3773///
3774/// In the case that a relevant loop exit value cannot be computed, the
3775/// original value V is returned.
3776const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
3777  // FIXME: this should be turned into a virtual method on SCEV!
3778
3779  if (isa<SCEVConstant>(V)) return V;
3780
3781  // If this instruction is evolved from a constant-evolving PHI, compute the
3782  // exit value from the loop without using SCEVs.
3783  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
3784    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
3785      const Loop *LI = (*this->LI)[I->getParent()];
3786      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
3787        if (PHINode *PN = dyn_cast<PHINode>(I))
3788          if (PN->getParent() == LI->getHeader()) {
3789            // Okay, there is no closed form solution for the PHI node.  Check
3790            // to see if the loop that contains it has a known backedge-taken
3791            // count.  If so, we may be able to force computation of the exit
3792            // value.
3793            const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
3794            if (const SCEVConstant *BTCC =
3795                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
3796              // Okay, we know how many times the containing loop executes.  If
3797              // this is a constant evolving PHI node, get the final value at
3798              // the specified iteration number.
3799              Constant *RV = getConstantEvolutionLoopExitValue(PN,
3800                                                   BTCC->getValue()->getValue(),
3801                                                               LI);
3802              if (RV) return getSCEV(RV);
3803            }
3804          }
3805
3806      // Okay, this is an expression that we cannot symbolically evaluate
3807      // into a SCEV.  Check to see if it's possible to symbolically evaluate
3808      // the arguments into constants, and if so, try to constant propagate the
3809      // result.  This is particularly useful for computing loop exit values.
3810      if (CanConstantFold(I)) {
3811        // Check to see if we've folded this instruction at this loop before.
3812        std::map<const Loop *, Constant *> &Values = ValuesAtScopes[I];
3813        std::pair<std::map<const Loop *, Constant *>::iterator, bool> Pair =
3814          Values.insert(std::make_pair(L, static_cast<Constant *>(0)));
3815        if (!Pair.second)
3816          return Pair.first->second ? &*getSCEV(Pair.first->second) : V;
3817
3818        std::vector<Constant*> Operands;
3819        Operands.reserve(I->getNumOperands());
3820        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3821          Value *Op = I->getOperand(i);
3822          if (Constant *C = dyn_cast<Constant>(Op)) {
3823            Operands.push_back(C);
3824          } else {
3825            // If any of the operands is non-constant and if they are
3826            // non-integer and non-pointer, don't even try to analyze them
3827            // with scev techniques.
3828            if (!isSCEVable(Op->getType()))
3829              return V;
3830
3831            const SCEV* OpV = getSCEVAtScope(Op, L);
3832            if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
3833              Constant *C = SC->getValue();
3834              if (C->getType() != Op->getType())
3835                C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3836                                                                  Op->getType(),
3837                                                                  false),
3838                                          C, Op->getType());
3839              Operands.push_back(C);
3840            } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
3841              if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
3842                if (C->getType() != Op->getType())
3843                  C =
3844                    ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3845                                                                  Op->getType(),
3846                                                                  false),
3847                                          C, Op->getType());
3848                Operands.push_back(C);
3849              } else
3850                return V;
3851            } else {
3852              return V;
3853            }
3854          }
3855        }
3856
3857        Constant *C;
3858        if (const CmpInst *CI = dyn_cast<CmpInst>(I))
3859          C = ConstantFoldCompareInstOperands(CI->getPredicate(),
3860                                              &Operands[0], Operands.size(),
3861                                              getContext());
3862        else
3863          C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
3864                                       &Operands[0], Operands.size(),
3865                                       getContext());
3866        Pair.first->second = C;
3867        return getSCEV(C);
3868      }
3869    }
3870
3871    // This is some other type of SCEVUnknown, just return it.
3872    return V;
3873  }
3874
3875  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
3876    // Avoid performing the look-up in the common case where the specified
3877    // expression has no loop-variant portions.
3878    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
3879      const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
3880      if (OpAtScope != Comm->getOperand(i)) {
3881        // Okay, at least one of these operands is loop variant but might be
3882        // foldable.  Build a new instance of the folded commutative expression.
3883        SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
3884                                            Comm->op_begin()+i);
3885        NewOps.push_back(OpAtScope);
3886
3887        for (++i; i != e; ++i) {
3888          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
3889          NewOps.push_back(OpAtScope);
3890        }
3891        if (isa<SCEVAddExpr>(Comm))
3892          return getAddExpr(NewOps);
3893        if (isa<SCEVMulExpr>(Comm))
3894          return getMulExpr(NewOps);
3895        if (isa<SCEVSMaxExpr>(Comm))
3896          return getSMaxExpr(NewOps);
3897        if (isa<SCEVUMaxExpr>(Comm))
3898          return getUMaxExpr(NewOps);
3899        llvm_unreachable("Unknown commutative SCEV type!");
3900      }
3901    }
3902    // If we got here, all operands are loop invariant.
3903    return Comm;
3904  }
3905
3906  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
3907    const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
3908    const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
3909    if (LHS == Div->getLHS() && RHS == Div->getRHS())
3910      return Div;   // must be loop invariant
3911    return getUDivExpr(LHS, RHS);
3912  }
3913
3914  // If this is a loop recurrence for a loop that does not contain L, then we
3915  // are dealing with the final value computed by the loop.
3916  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
3917    if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
3918      // To evaluate this recurrence, we need to know how many times the AddRec
3919      // loop iterates.  Compute this now.
3920      const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
3921      if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
3922
3923      // Then, evaluate the AddRec.
3924      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
3925    }
3926    return AddRec;
3927  }
3928
3929  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
3930    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
3931    if (Op == Cast->getOperand())
3932      return Cast;  // must be loop invariant
3933    return getZeroExtendExpr(Op, Cast->getType());
3934  }
3935
3936  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
3937    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
3938    if (Op == Cast->getOperand())
3939      return Cast;  // must be loop invariant
3940    return getSignExtendExpr(Op, Cast->getType());
3941  }
3942
3943  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
3944    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
3945    if (Op == Cast->getOperand())
3946      return Cast;  // must be loop invariant
3947    return getTruncateExpr(Op, Cast->getType());
3948  }
3949
3950  llvm_unreachable("Unknown SCEV type!");
3951  return 0;
3952}
3953
3954/// getSCEVAtScope - This is a convenience function which does
3955/// getSCEVAtScope(getSCEV(V), L).
3956const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
3957  return getSCEVAtScope(getSCEV(V), L);
3958}
3959
3960/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
3961/// following equation:
3962///
3963///     A * X = B (mod N)
3964///
3965/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
3966/// A and B isn't important.
3967///
3968/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
3969static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
3970                                               ScalarEvolution &SE) {
3971  uint32_t BW = A.getBitWidth();
3972  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
3973  assert(A != 0 && "A must be non-zero.");
3974
3975  // 1. D = gcd(A, N)
3976  //
3977  // The gcd of A and N may have only one prime factor: 2. The number of
3978  // trailing zeros in A is its multiplicity
3979  uint32_t Mult2 = A.countTrailingZeros();
3980  // D = 2^Mult2
3981
3982  // 2. Check if B is divisible by D.
3983  //
3984  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
3985  // is not less than multiplicity of this prime factor for D.
3986  if (B.countTrailingZeros() < Mult2)
3987    return SE.getCouldNotCompute();
3988
3989  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
3990  // modulo (N / D).
3991  //
3992  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
3993  // bit width during computations.
3994  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
3995  APInt Mod(BW + 1, 0);
3996  Mod.set(BW - Mult2);  // Mod = N / D
3997  APInt I = AD.multiplicativeInverse(Mod);
3998
3999  // 4. Compute the minimum unsigned root of the equation:
4000  // I * (B / D) mod (N / D)
4001  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4002
4003  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4004  // bits.
4005  return SE.getConstant(Result.trunc(BW));
4006}
4007
4008/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4009/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
4010/// might be the same) or two SCEVCouldNotCompute objects.
4011///
4012static std::pair<const SCEV *,const SCEV *>
4013SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
4014  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
4015  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4016  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4017  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
4018
4019  // We currently can only solve this if the coefficients are constants.
4020  if (!LC || !MC || !NC) {
4021    const SCEV *CNC = SE.getCouldNotCompute();
4022    return std::make_pair(CNC, CNC);
4023  }
4024
4025  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
4026  const APInt &L = LC->getValue()->getValue();
4027  const APInt &M = MC->getValue()->getValue();
4028  const APInt &N = NC->getValue()->getValue();
4029  APInt Two(BitWidth, 2);
4030  APInt Four(BitWidth, 4);
4031
4032  {
4033    using namespace APIntOps;
4034    const APInt& C = L;
4035    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4036    // The B coefficient is M-N/2
4037    APInt B(M);
4038    B -= sdiv(N,Two);
4039
4040    // The A coefficient is N/2
4041    APInt A(N.sdiv(Two));
4042
4043    // Compute the B^2-4ac term.
4044    APInt SqrtTerm(B);
4045    SqrtTerm *= B;
4046    SqrtTerm -= Four * (A * C);
4047
4048    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4049    // integer value or else APInt::sqrt() will assert.
4050    APInt SqrtVal(SqrtTerm.sqrt());
4051
4052    // Compute the two solutions for the quadratic formula.
4053    // The divisions must be performed as signed divisions.
4054    APInt NegB(-B);
4055    APInt TwoA( A << 1 );
4056    if (TwoA.isMinValue()) {
4057      const SCEV *CNC = SE.getCouldNotCompute();
4058      return std::make_pair(CNC, CNC);
4059    }
4060
4061    LLVMContext &Context = SE.getContext();
4062
4063    ConstantInt *Solution1 =
4064      ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
4065    ConstantInt *Solution2 =
4066      ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
4067
4068    return std::make_pair(SE.getConstant(Solution1),
4069                          SE.getConstant(Solution2));
4070    } // end APIntOps namespace
4071}
4072
4073/// HowFarToZero - Return the number of times a backedge comparing the specified
4074/// value to zero will execute.  If not computable, return CouldNotCompute.
4075const SCEV *ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
4076  // If the value is a constant
4077  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4078    // If the value is already zero, the branch will execute zero times.
4079    if (C->getValue()->isZero()) return C;
4080    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4081  }
4082
4083  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
4084  if (!AddRec || AddRec->getLoop() != L)
4085    return getCouldNotCompute();
4086
4087  if (AddRec->isAffine()) {
4088    // If this is an affine expression, the execution count of this branch is
4089    // the minimum unsigned root of the following equation:
4090    //
4091    //     Start + Step*N = 0 (mod 2^BW)
4092    //
4093    // equivalent to:
4094    //
4095    //             Step*N = -Start (mod 2^BW)
4096    //
4097    // where BW is the common bit width of Start and Step.
4098
4099    // Get the initial value for the loop.
4100    const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4101                                       L->getParentLoop());
4102    const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4103                                      L->getParentLoop());
4104
4105    if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
4106      // For now we handle only constant steps.
4107
4108      // First, handle unitary steps.
4109      if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so:
4110        return getNegativeSCEV(Start);       //   N = -Start (as unsigned)
4111      if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so:
4112        return Start;                           //    N = Start (as unsigned)
4113
4114      // Then, try to solve the above equation provided that Start is constant.
4115      if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
4116        return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
4117                                            -StartC->getValue()->getValue(),
4118                                            *this);
4119    }
4120  } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
4121    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4122    // the quadratic equation to solve it.
4123    std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
4124                                                                    *this);
4125    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4126    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
4127    if (R1) {
4128#if 0
4129      errs() << "HFTZ: " << *V << " - sol#1: " << *R1
4130             << "  sol#2: " << *R2 << "\n";
4131#endif
4132      // Pick the smallest positive root value.
4133      if (ConstantInt *CB =
4134          dyn_cast<ConstantInt>(getContext().getConstantExprICmp(ICmpInst::ICMP_ULT,
4135                                   R1->getValue(), R2->getValue()))) {
4136        if (CB->getZExtValue() == false)
4137          std::swap(R1, R2);   // R1 is the minimum root now.
4138
4139        // We can only use this value if the chrec ends up with an exact zero
4140        // value at this index.  When solving for "X*X != 5", for example, we
4141        // should not accept a root of 2.
4142        const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
4143        if (Val->isZero())
4144          return R1;  // We found a quadratic root!
4145      }
4146    }
4147  }
4148
4149  return getCouldNotCompute();
4150}
4151
4152/// HowFarToNonZero - Return the number of times a backedge checking the
4153/// specified value for nonzero will execute.  If not computable, return
4154/// CouldNotCompute
4155const SCEV *ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
4156  // Loops that look like: while (X == 0) are very strange indeed.  We don't
4157  // handle them yet except for the trivial case.  This could be expanded in the
4158  // future as needed.
4159
4160  // If the value is a constant, check to see if it is known to be non-zero
4161  // already.  If so, the backedge will execute zero times.
4162  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4163    if (!C->getValue()->isNullValue())
4164      return getIntegerSCEV(0, C->getType());
4165    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4166  }
4167
4168  // We could implement others, but I really doubt anyone writes loops like
4169  // this, and if they did, they would already be constant folded.
4170  return getCouldNotCompute();
4171}
4172
4173/// getLoopPredecessor - If the given loop's header has exactly one unique
4174/// predecessor outside the loop, return it. Otherwise return null.
4175///
4176BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
4177  BasicBlock *Header = L->getHeader();
4178  BasicBlock *Pred = 0;
4179  for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
4180       PI != E; ++PI)
4181    if (!L->contains(*PI)) {
4182      if (Pred && Pred != *PI) return 0; // Multiple predecessors.
4183      Pred = *PI;
4184    }
4185  return Pred;
4186}
4187
4188/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4189/// (which may not be an immediate predecessor) which has exactly one
4190/// successor from which BB is reachable, or null if no such block is
4191/// found.
4192///
4193BasicBlock *
4194ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
4195  // If the block has a unique predecessor, then there is no path from the
4196  // predecessor to the block that does not go through the direct edge
4197  // from the predecessor to the block.
4198  if (BasicBlock *Pred = BB->getSinglePredecessor())
4199    return Pred;
4200
4201  // A loop's header is defined to be a block that dominates the loop.
4202  // If the header has a unique predecessor outside the loop, it must be
4203  // a block that has exactly one successor that can reach the loop.
4204  if (Loop *L = LI->getLoopFor(BB))
4205    return getLoopPredecessor(L);
4206
4207  return 0;
4208}
4209
4210/// HasSameValue - SCEV structural equivalence is usually sufficient for
4211/// testing whether two expressions are equal, however for the purposes of
4212/// looking for a condition guarding a loop, it can be useful to be a little
4213/// more general, since a front-end may have replicated the controlling
4214/// expression.
4215///
4216static bool HasSameValue(const SCEV *A, const SCEV *B) {
4217  // Quick check to see if they are the same SCEV.
4218  if (A == B) return true;
4219
4220  // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4221  // two different instructions with the same value. Check for this case.
4222  if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4223    if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4224      if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4225        if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
4226          if (AI->isIdenticalTo(BI))
4227            return true;
4228
4229  // Otherwise assume they may have a different value.
4230  return false;
4231}
4232
4233bool ScalarEvolution::isKnownNegative(const SCEV *S) {
4234  return getSignedRange(S).getSignedMax().isNegative();
4235}
4236
4237bool ScalarEvolution::isKnownPositive(const SCEV *S) {
4238  return getSignedRange(S).getSignedMin().isStrictlyPositive();
4239}
4240
4241bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
4242  return !getSignedRange(S).getSignedMin().isNegative();
4243}
4244
4245bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
4246  return !getSignedRange(S).getSignedMax().isStrictlyPositive();
4247}
4248
4249bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
4250  return isKnownNegative(S) || isKnownPositive(S);
4251}
4252
4253bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
4254                                       const SCEV *LHS, const SCEV *RHS) {
4255
4256  if (HasSameValue(LHS, RHS))
4257    return ICmpInst::isTrueWhenEqual(Pred);
4258
4259  switch (Pred) {
4260  default:
4261    llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4262    break;
4263  case ICmpInst::ICMP_SGT:
4264    Pred = ICmpInst::ICMP_SLT;
4265    std::swap(LHS, RHS);
4266  case ICmpInst::ICMP_SLT: {
4267    ConstantRange LHSRange = getSignedRange(LHS);
4268    ConstantRange RHSRange = getSignedRange(RHS);
4269    if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
4270      return true;
4271    if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
4272      return false;
4273    break;
4274  }
4275  case ICmpInst::ICMP_SGE:
4276    Pred = ICmpInst::ICMP_SLE;
4277    std::swap(LHS, RHS);
4278  case ICmpInst::ICMP_SLE: {
4279    ConstantRange LHSRange = getSignedRange(LHS);
4280    ConstantRange RHSRange = getSignedRange(RHS);
4281    if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
4282      return true;
4283    if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
4284      return false;
4285    break;
4286  }
4287  case ICmpInst::ICMP_UGT:
4288    Pred = ICmpInst::ICMP_ULT;
4289    std::swap(LHS, RHS);
4290  case ICmpInst::ICMP_ULT: {
4291    ConstantRange LHSRange = getUnsignedRange(LHS);
4292    ConstantRange RHSRange = getUnsignedRange(RHS);
4293    if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
4294      return true;
4295    if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
4296      return false;
4297    break;
4298  }
4299  case ICmpInst::ICMP_UGE:
4300    Pred = ICmpInst::ICMP_ULE;
4301    std::swap(LHS, RHS);
4302  case ICmpInst::ICMP_ULE: {
4303    ConstantRange LHSRange = getUnsignedRange(LHS);
4304    ConstantRange RHSRange = getUnsignedRange(RHS);
4305    if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
4306      return true;
4307    if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
4308      return false;
4309    break;
4310  }
4311  case ICmpInst::ICMP_NE: {
4312    if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
4313      return true;
4314    if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
4315      return true;
4316
4317    const SCEV *Diff = getMinusSCEV(LHS, RHS);
4318    if (isKnownNonZero(Diff))
4319      return true;
4320    break;
4321  }
4322  case ICmpInst::ICMP_EQ:
4323    // The check at the top of the function catches the case where
4324    // the values are known to be equal.
4325    break;
4326  }
4327  return false;
4328}
4329
4330/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
4331/// protected by a conditional between LHS and RHS.  This is used to
4332/// to eliminate casts.
4333bool
4334ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
4335                                             ICmpInst::Predicate Pred,
4336                                             const SCEV *LHS, const SCEV *RHS) {
4337  // Interpret a null as meaning no loop, where there is obviously no guard
4338  // (interprocedural conditions notwithstanding).
4339  if (!L) return true;
4340
4341  BasicBlock *Latch = L->getLoopLatch();
4342  if (!Latch)
4343    return false;
4344
4345  BranchInst *LoopContinuePredicate =
4346    dyn_cast<BranchInst>(Latch->getTerminator());
4347  if (!LoopContinuePredicate ||
4348      LoopContinuePredicate->isUnconditional())
4349    return false;
4350
4351  return isImpliedCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS,
4352                       LoopContinuePredicate->getSuccessor(0) != L->getHeader());
4353}
4354
4355/// isLoopGuardedByCond - Test whether entry to the loop is protected
4356/// by a conditional between LHS and RHS.  This is used to help avoid max
4357/// expressions in loop trip counts, and to eliminate casts.
4358bool
4359ScalarEvolution::isLoopGuardedByCond(const Loop *L,
4360                                     ICmpInst::Predicate Pred,
4361                                     const SCEV *LHS, const SCEV *RHS) {
4362  // Interpret a null as meaning no loop, where there is obviously no guard
4363  // (interprocedural conditions notwithstanding).
4364  if (!L) return false;
4365
4366  BasicBlock *Predecessor = getLoopPredecessor(L);
4367  BasicBlock *PredecessorDest = L->getHeader();
4368
4369  // Starting at the loop predecessor, climb up the predecessor chain, as long
4370  // as there are predecessors that can be found that have unique successors
4371  // leading to the original header.
4372  for (; Predecessor;
4373       PredecessorDest = Predecessor,
4374       Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) {
4375
4376    BranchInst *LoopEntryPredicate =
4377      dyn_cast<BranchInst>(Predecessor->getTerminator());
4378    if (!LoopEntryPredicate ||
4379        LoopEntryPredicate->isUnconditional())
4380      continue;
4381
4382    if (isImpliedCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS,
4383                      LoopEntryPredicate->getSuccessor(0) != PredecessorDest))
4384      return true;
4385  }
4386
4387  return false;
4388}
4389
4390/// isImpliedCond - Test whether the condition described by Pred, LHS,
4391/// and RHS is true whenever the given Cond value evaluates to true.
4392bool ScalarEvolution::isImpliedCond(Value *CondValue,
4393                                    ICmpInst::Predicate Pred,
4394                                    const SCEV *LHS, const SCEV *RHS,
4395                                    bool Inverse) {
4396  // Recursivly handle And and Or conditions.
4397  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) {
4398    if (BO->getOpcode() == Instruction::And) {
4399      if (!Inverse)
4400        return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
4401               isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
4402    } else if (BO->getOpcode() == Instruction::Or) {
4403      if (Inverse)
4404        return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
4405               isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
4406    }
4407  }
4408
4409  ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue);
4410  if (!ICI) return false;
4411
4412  // Bail if the ICmp's operands' types are wider than the needed type
4413  // before attempting to call getSCEV on them. This avoids infinite
4414  // recursion, since the analysis of widening casts can require loop
4415  // exit condition information for overflow checking, which would
4416  // lead back here.
4417  if (getTypeSizeInBits(LHS->getType()) <
4418      getTypeSizeInBits(ICI->getOperand(0)->getType()))
4419    return false;
4420
4421  // Now that we found a conditional branch that dominates the loop, check to
4422  // see if it is the comparison we are looking for.
4423  ICmpInst::Predicate FoundPred;
4424  if (Inverse)
4425    FoundPred = ICI->getInversePredicate();
4426  else
4427    FoundPred = ICI->getPredicate();
4428
4429  const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
4430  const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
4431
4432  // Balance the types. The case where FoundLHS' type is wider than
4433  // LHS' type is checked for above.
4434  if (getTypeSizeInBits(LHS->getType()) >
4435      getTypeSizeInBits(FoundLHS->getType())) {
4436    if (CmpInst::isSigned(Pred)) {
4437      FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
4438      FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
4439    } else {
4440      FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
4441      FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
4442    }
4443  }
4444
4445  // Canonicalize the query to match the way instcombine will have
4446  // canonicalized the comparison.
4447  // First, put a constant operand on the right.
4448  if (isa<SCEVConstant>(LHS)) {
4449    std::swap(LHS, RHS);
4450    Pred = ICmpInst::getSwappedPredicate(Pred);
4451  }
4452  // Then, canonicalize comparisons with boundary cases.
4453  if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4454    const APInt &RA = RC->getValue()->getValue();
4455    switch (Pred) {
4456    default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4457    case ICmpInst::ICMP_EQ:
4458    case ICmpInst::ICMP_NE:
4459      break;
4460    case ICmpInst::ICMP_UGE:
4461      if ((RA - 1).isMinValue()) {
4462        Pred = ICmpInst::ICMP_NE;
4463        RHS = getConstant(RA - 1);
4464        break;
4465      }
4466      if (RA.isMaxValue()) {
4467        Pred = ICmpInst::ICMP_EQ;
4468        break;
4469      }
4470      if (RA.isMinValue()) return true;
4471      break;
4472    case ICmpInst::ICMP_ULE:
4473      if ((RA + 1).isMaxValue()) {
4474        Pred = ICmpInst::ICMP_NE;
4475        RHS = getConstant(RA + 1);
4476        break;
4477      }
4478      if (RA.isMinValue()) {
4479        Pred = ICmpInst::ICMP_EQ;
4480        break;
4481      }
4482      if (RA.isMaxValue()) return true;
4483      break;
4484    case ICmpInst::ICMP_SGE:
4485      if ((RA - 1).isMinSignedValue()) {
4486        Pred = ICmpInst::ICMP_NE;
4487        RHS = getConstant(RA - 1);
4488        break;
4489      }
4490      if (RA.isMaxSignedValue()) {
4491        Pred = ICmpInst::ICMP_EQ;
4492        break;
4493      }
4494      if (RA.isMinSignedValue()) return true;
4495      break;
4496    case ICmpInst::ICMP_SLE:
4497      if ((RA + 1).isMaxSignedValue()) {
4498        Pred = ICmpInst::ICMP_NE;
4499        RHS = getConstant(RA + 1);
4500        break;
4501      }
4502      if (RA.isMinSignedValue()) {
4503        Pred = ICmpInst::ICMP_EQ;
4504        break;
4505      }
4506      if (RA.isMaxSignedValue()) return true;
4507      break;
4508    case ICmpInst::ICMP_UGT:
4509      if (RA.isMinValue()) {
4510        Pred = ICmpInst::ICMP_NE;
4511        break;
4512      }
4513      if ((RA + 1).isMaxValue()) {
4514        Pred = ICmpInst::ICMP_EQ;
4515        RHS = getConstant(RA + 1);
4516        break;
4517      }
4518      if (RA.isMaxValue()) return false;
4519      break;
4520    case ICmpInst::ICMP_ULT:
4521      if (RA.isMaxValue()) {
4522        Pred = ICmpInst::ICMP_NE;
4523        break;
4524      }
4525      if ((RA - 1).isMinValue()) {
4526        Pred = ICmpInst::ICMP_EQ;
4527        RHS = getConstant(RA - 1);
4528        break;
4529      }
4530      if (RA.isMinValue()) return false;
4531      break;
4532    case ICmpInst::ICMP_SGT:
4533      if (RA.isMinSignedValue()) {
4534        Pred = ICmpInst::ICMP_NE;
4535        break;
4536      }
4537      if ((RA + 1).isMaxSignedValue()) {
4538        Pred = ICmpInst::ICMP_EQ;
4539        RHS = getConstant(RA + 1);
4540        break;
4541      }
4542      if (RA.isMaxSignedValue()) return false;
4543      break;
4544    case ICmpInst::ICMP_SLT:
4545      if (RA.isMaxSignedValue()) {
4546        Pred = ICmpInst::ICMP_NE;
4547        break;
4548      }
4549      if ((RA - 1).isMinSignedValue()) {
4550       Pred = ICmpInst::ICMP_EQ;
4551       RHS = getConstant(RA - 1);
4552       break;
4553      }
4554      if (RA.isMinSignedValue()) return false;
4555      break;
4556    }
4557  }
4558
4559  // Check to see if we can make the LHS or RHS match.
4560  if (LHS == FoundRHS || RHS == FoundLHS) {
4561    if (isa<SCEVConstant>(RHS)) {
4562      std::swap(FoundLHS, FoundRHS);
4563      FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
4564    } else {
4565      std::swap(LHS, RHS);
4566      Pred = ICmpInst::getSwappedPredicate(Pred);
4567    }
4568  }
4569
4570  // Check whether the found predicate is the same as the desired predicate.
4571  if (FoundPred == Pred)
4572    return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
4573
4574  // Check whether swapping the found predicate makes it the same as the
4575  // desired predicate.
4576  if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
4577    if (isa<SCEVConstant>(RHS))
4578      return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
4579    else
4580      return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
4581                                   RHS, LHS, FoundLHS, FoundRHS);
4582  }
4583
4584  // Check whether the actual condition is beyond sufficient.
4585  if (FoundPred == ICmpInst::ICMP_EQ)
4586    if (ICmpInst::isTrueWhenEqual(Pred))
4587      if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
4588        return true;
4589  if (Pred == ICmpInst::ICMP_NE)
4590    if (!ICmpInst::isTrueWhenEqual(FoundPred))
4591      if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
4592        return true;
4593
4594  // Otherwise assume the worst.
4595  return false;
4596}
4597
4598/// isImpliedCondOperands - Test whether the condition described by Pred,
4599/// LHS, and RHS is true whenever the condition desribed by Pred, FoundLHS,
4600/// and FoundRHS is true.
4601bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
4602                                            const SCEV *LHS, const SCEV *RHS,
4603                                            const SCEV *FoundLHS,
4604                                            const SCEV *FoundRHS) {
4605  return isImpliedCondOperandsHelper(Pred, LHS, RHS,
4606                                     FoundLHS, FoundRHS) ||
4607         // ~x < ~y --> x > y
4608         isImpliedCondOperandsHelper(Pred, LHS, RHS,
4609                                     getNotSCEV(FoundRHS),
4610                                     getNotSCEV(FoundLHS));
4611}
4612
4613/// isImpliedCondOperandsHelper - Test whether the condition described by
4614/// Pred, LHS, and RHS is true whenever the condition desribed by Pred,
4615/// FoundLHS, and FoundRHS is true.
4616bool
4617ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
4618                                             const SCEV *LHS, const SCEV *RHS,
4619                                             const SCEV *FoundLHS,
4620                                             const SCEV *FoundRHS) {
4621  switch (Pred) {
4622  default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4623  case ICmpInst::ICMP_EQ:
4624  case ICmpInst::ICMP_NE:
4625    if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
4626      return true;
4627    break;
4628  case ICmpInst::ICMP_SLT:
4629  case ICmpInst::ICMP_SLE:
4630    if (isKnownPredicate(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
4631        isKnownPredicate(ICmpInst::ICMP_SGE, RHS, FoundRHS))
4632      return true;
4633    break;
4634  case ICmpInst::ICMP_SGT:
4635  case ICmpInst::ICMP_SGE:
4636    if (isKnownPredicate(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
4637        isKnownPredicate(ICmpInst::ICMP_SLE, RHS, FoundRHS))
4638      return true;
4639    break;
4640  case ICmpInst::ICMP_ULT:
4641  case ICmpInst::ICMP_ULE:
4642    if (isKnownPredicate(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
4643        isKnownPredicate(ICmpInst::ICMP_UGE, RHS, FoundRHS))
4644      return true;
4645    break;
4646  case ICmpInst::ICMP_UGT:
4647  case ICmpInst::ICMP_UGE:
4648    if (isKnownPredicate(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
4649        isKnownPredicate(ICmpInst::ICMP_ULE, RHS, FoundRHS))
4650      return true;
4651    break;
4652  }
4653
4654  return false;
4655}
4656
4657/// getBECount - Subtract the end and start values and divide by the step,
4658/// rounding up, to get the number of times the backedge is executed. Return
4659/// CouldNotCompute if an intermediate computation overflows.
4660const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
4661                                        const SCEV *End,
4662                                        const SCEV *Step) {
4663  const Type *Ty = Start->getType();
4664  const SCEV *NegOne = getIntegerSCEV(-1, Ty);
4665  const SCEV *Diff = getMinusSCEV(End, Start);
4666  const SCEV *RoundUp = getAddExpr(Step, NegOne);
4667
4668  // Add an adjustment to the difference between End and Start so that
4669  // the division will effectively round up.
4670  const SCEV *Add = getAddExpr(Diff, RoundUp);
4671
4672  // Check Add for unsigned overflow.
4673  // TODO: More sophisticated things could be done here.
4674  const Type *WideTy = getContext().getIntegerType(getTypeSizeInBits(Ty) + 1);
4675  const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
4676  const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
4677  const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
4678  if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
4679    return getCouldNotCompute();
4680
4681  return getUDivExpr(Add, Step);
4682}
4683
4684/// HowManyLessThans - Return the number of times a backedge containing the
4685/// specified less-than comparison will execute.  If not computable, return
4686/// CouldNotCompute.
4687ScalarEvolution::BackedgeTakenInfo
4688ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
4689                                  const Loop *L, bool isSigned) {
4690  // Only handle:  "ADDREC < LoopInvariant".
4691  if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
4692
4693  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
4694  if (!AddRec || AddRec->getLoop() != L)
4695    return getCouldNotCompute();
4696
4697  if (AddRec->isAffine()) {
4698    // FORNOW: We only support unit strides.
4699    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
4700    const SCEV *Step = AddRec->getStepRecurrence(*this);
4701
4702    // TODO: handle non-constant strides.
4703    const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
4704    if (!CStep || CStep->isZero())
4705      return getCouldNotCompute();
4706    if (CStep->isOne()) {
4707      // With unit stride, the iteration never steps past the limit value.
4708    } else if (CStep->getValue()->getValue().isStrictlyPositive()) {
4709      if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) {
4710        // Test whether a positive iteration iteration can step past the limit
4711        // value and past the maximum value for its type in a single step.
4712        if (isSigned) {
4713          APInt Max = APInt::getSignedMaxValue(BitWidth);
4714          if ((Max - CStep->getValue()->getValue())
4715                .slt(CLimit->getValue()->getValue()))
4716            return getCouldNotCompute();
4717        } else {
4718          APInt Max = APInt::getMaxValue(BitWidth);
4719          if ((Max - CStep->getValue()->getValue())
4720                .ult(CLimit->getValue()->getValue()))
4721            return getCouldNotCompute();
4722        }
4723      } else
4724        // TODO: handle non-constant limit values below.
4725        return getCouldNotCompute();
4726    } else
4727      // TODO: handle negative strides below.
4728      return getCouldNotCompute();
4729
4730    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
4731    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
4732    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
4733    // treat m-n as signed nor unsigned due to overflow possibility.
4734
4735    // First, we get the value of the LHS in the first iteration: n
4736    const SCEV *Start = AddRec->getOperand(0);
4737
4738    // Determine the minimum constant start value.
4739    const SCEV *MinStart = getConstant(isSigned ?
4740      getSignedRange(Start).getSignedMin() :
4741      getUnsignedRange(Start).getUnsignedMin());
4742
4743    // If we know that the condition is true in order to enter the loop,
4744    // then we know that it will run exactly (m-n)/s times. Otherwise, we
4745    // only know that it will execute (max(m,n)-n)/s times. In both cases,
4746    // the division must round up.
4747    const SCEV *End = RHS;
4748    if (!isLoopGuardedByCond(L,
4749                             isSigned ? ICmpInst::ICMP_SLT :
4750                                        ICmpInst::ICMP_ULT,
4751                             getMinusSCEV(Start, Step), RHS))
4752      End = isSigned ? getSMaxExpr(RHS, Start)
4753                     : getUMaxExpr(RHS, Start);
4754
4755    // Determine the maximum constant end value.
4756    const SCEV *MaxEnd = getConstant(isSigned ?
4757      getSignedRange(End).getSignedMax() :
4758      getUnsignedRange(End).getUnsignedMax());
4759
4760    // Finally, we subtract these two values and divide, rounding up, to get
4761    // the number of times the backedge is executed.
4762    const SCEV *BECount = getBECount(Start, End, Step);
4763
4764    // The maximum backedge count is similar, except using the minimum start
4765    // value and the maximum end value.
4766    const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step);
4767
4768    return BackedgeTakenInfo(BECount, MaxBECount);
4769  }
4770
4771  return getCouldNotCompute();
4772}
4773
4774/// getNumIterationsInRange - Return the number of iterations of this loop that
4775/// produce values in the specified constant range.  Another way of looking at
4776/// this is that it returns the first iteration number where the value is not in
4777/// the condition, thus computing the exit count. If the iteration count can't
4778/// be computed, an instance of SCEVCouldNotCompute is returned.
4779const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
4780                                                    ScalarEvolution &SE) const {
4781  if (Range.isFullSet())  // Infinite loop.
4782    return SE.getCouldNotCompute();
4783
4784  // If the start is a non-zero constant, shift the range to simplify things.
4785  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
4786    if (!SC->getValue()->isZero()) {
4787      SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
4788      Operands[0] = SE.getIntegerSCEV(0, SC->getType());
4789      const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
4790      if (const SCEVAddRecExpr *ShiftedAddRec =
4791            dyn_cast<SCEVAddRecExpr>(Shifted))
4792        return ShiftedAddRec->getNumIterationsInRange(
4793                           Range.subtract(SC->getValue()->getValue()), SE);
4794      // This is strange and shouldn't happen.
4795      return SE.getCouldNotCompute();
4796    }
4797
4798  // The only time we can solve this is when we have all constant indices.
4799  // Otherwise, we cannot determine the overflow conditions.
4800  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4801    if (!isa<SCEVConstant>(getOperand(i)))
4802      return SE.getCouldNotCompute();
4803
4804
4805  // Okay at this point we know that all elements of the chrec are constants and
4806  // that the start element is zero.
4807
4808  // First check to see if the range contains zero.  If not, the first
4809  // iteration exits.
4810  unsigned BitWidth = SE.getTypeSizeInBits(getType());
4811  if (!Range.contains(APInt(BitWidth, 0)))
4812    return SE.getIntegerSCEV(0, getType());
4813
4814  if (isAffine()) {
4815    // If this is an affine expression then we have this situation:
4816    //   Solve {0,+,A} in Range  ===  Ax in Range
4817
4818    // We know that zero is in the range.  If A is positive then we know that
4819    // the upper value of the range must be the first possible exit value.
4820    // If A is negative then the lower of the range is the last possible loop
4821    // value.  Also note that we already checked for a full range.
4822    APInt One(BitWidth,1);
4823    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
4824    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
4825
4826    // The exit value should be (End+A)/A.
4827    APInt ExitVal = (End + A).udiv(A);
4828    ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
4829
4830    // Evaluate at the exit value.  If we really did fall out of the valid
4831    // range, then we computed our trip count, otherwise wrap around or other
4832    // things must have happened.
4833    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
4834    if (Range.contains(Val->getValue()))
4835      return SE.getCouldNotCompute();  // Something strange happened
4836
4837    // Ensure that the previous value is in the range.  This is a sanity check.
4838    assert(Range.contains(
4839           EvaluateConstantChrecAtConstant(this,
4840           ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
4841           "Linear scev computation is off in a bad way!");
4842    return SE.getConstant(ExitValue);
4843  } else if (isQuadratic()) {
4844    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
4845    // quadratic equation to solve it.  To do this, we must frame our problem in
4846    // terms of figuring out when zero is crossed, instead of when
4847    // Range.getUpper() is crossed.
4848    SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
4849    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
4850    const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
4851
4852    // Next, solve the constructed addrec
4853    std::pair<const SCEV *,const SCEV *> Roots =
4854      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
4855    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4856    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
4857    if (R1) {
4858      // Pick the smallest positive root value.
4859      if (ConstantInt *CB =
4860          dyn_cast<ConstantInt>(
4861                       SE.getContext().getConstantExprICmp(ICmpInst::ICMP_ULT,
4862                         R1->getValue(), R2->getValue()))) {
4863        if (CB->getZExtValue() == false)
4864          std::swap(R1, R2);   // R1 is the minimum root now.
4865
4866        // Make sure the root is not off by one.  The returned iteration should
4867        // not be in the range, but the previous one should be.  When solving
4868        // for "X*X < 5", for example, we should not return a root of 2.
4869        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
4870                                                             R1->getValue(),
4871                                                             SE);
4872        if (Range.contains(R1Val->getValue())) {
4873          // The next iteration must be out of the range...
4874          ConstantInt *NextVal =
4875                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
4876
4877          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
4878          if (!Range.contains(R1Val->getValue()))
4879            return SE.getConstant(NextVal);
4880          return SE.getCouldNotCompute();  // Something strange happened
4881        }
4882
4883        // If R1 was not in the range, then it is a good return value.  Make
4884        // sure that R1-1 WAS in the range though, just in case.
4885        ConstantInt *NextVal =
4886               ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
4887        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
4888        if (Range.contains(R1Val->getValue()))
4889          return R1;
4890        return SE.getCouldNotCompute();  // Something strange happened
4891      }
4892    }
4893  }
4894
4895  return SE.getCouldNotCompute();
4896}
4897
4898
4899
4900//===----------------------------------------------------------------------===//
4901//                   SCEVCallbackVH Class Implementation
4902//===----------------------------------------------------------------------===//
4903
4904void ScalarEvolution::SCEVCallbackVH::deleted() {
4905  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
4906  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
4907    SE->ConstantEvolutionLoopExitValue.erase(PN);
4908  if (Instruction *I = dyn_cast<Instruction>(getValPtr()))
4909    SE->ValuesAtScopes.erase(I);
4910  SE->Scalars.erase(getValPtr());
4911  // this now dangles!
4912}
4913
4914void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
4915  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
4916
4917  // Forget all the expressions associated with users of the old value,
4918  // so that future queries will recompute the expressions using the new
4919  // value.
4920  SmallVector<User *, 16> Worklist;
4921  SmallPtrSet<User *, 8> Visited;
4922  Value *Old = getValPtr();
4923  bool DeleteOld = false;
4924  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
4925       UI != UE; ++UI)
4926    Worklist.push_back(*UI);
4927  while (!Worklist.empty()) {
4928    User *U = Worklist.pop_back_val();
4929    // Deleting the Old value will cause this to dangle. Postpone
4930    // that until everything else is done.
4931    if (U == Old) {
4932      DeleteOld = true;
4933      continue;
4934    }
4935    if (!Visited.insert(U))
4936      continue;
4937    if (PHINode *PN = dyn_cast<PHINode>(U))
4938      SE->ConstantEvolutionLoopExitValue.erase(PN);
4939    if (Instruction *I = dyn_cast<Instruction>(U))
4940      SE->ValuesAtScopes.erase(I);
4941    SE->Scalars.erase(U);
4942    for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
4943         UI != UE; ++UI)
4944      Worklist.push_back(*UI);
4945  }
4946  // Delete the Old value if it (indirectly) references itself.
4947  if (DeleteOld) {
4948    if (PHINode *PN = dyn_cast<PHINode>(Old))
4949      SE->ConstantEvolutionLoopExitValue.erase(PN);
4950    if (Instruction *I = dyn_cast<Instruction>(Old))
4951      SE->ValuesAtScopes.erase(I);
4952    SE->Scalars.erase(Old);
4953    // this now dangles!
4954  }
4955  // this may dangle!
4956}
4957
4958ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
4959  : CallbackVH(V), SE(se) {}
4960
4961//===----------------------------------------------------------------------===//
4962//                   ScalarEvolution Class Implementation
4963//===----------------------------------------------------------------------===//
4964
4965ScalarEvolution::ScalarEvolution()
4966  : FunctionPass(&ID) {
4967}
4968
4969bool ScalarEvolution::runOnFunction(Function &F) {
4970  this->F = &F;
4971  LI = &getAnalysis<LoopInfo>();
4972  TD = getAnalysisIfAvailable<TargetData>();
4973  return false;
4974}
4975
4976void ScalarEvolution::releaseMemory() {
4977  Scalars.clear();
4978  BackedgeTakenCounts.clear();
4979  ConstantEvolutionLoopExitValue.clear();
4980  ValuesAtScopes.clear();
4981  UniqueSCEVs.clear();
4982  SCEVAllocator.Reset();
4983}
4984
4985void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
4986  AU.setPreservesAll();
4987  AU.addRequiredTransitive<LoopInfo>();
4988}
4989
4990bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
4991  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
4992}
4993
4994static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
4995                          const Loop *L) {
4996  // Print all inner loops first
4997  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4998    PrintLoopInfo(OS, SE, *I);
4999
5000  OS << "Loop " << L->getHeader()->getName() << ": ";
5001
5002  SmallVector<BasicBlock*, 8> ExitBlocks;
5003  L->getExitBlocks(ExitBlocks);
5004  if (ExitBlocks.size() != 1)
5005    OS << "<multiple exits> ";
5006
5007  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5008    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
5009  } else {
5010    OS << "Unpredictable backedge-taken count. ";
5011  }
5012
5013  OS << "\n";
5014  OS << "Loop " << L->getHeader()->getName() << ": ";
5015
5016  if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5017    OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5018  } else {
5019    OS << "Unpredictable max backedge-taken count. ";
5020  }
5021
5022  OS << "\n";
5023}
5024
5025void ScalarEvolution::print(raw_ostream &OS, const Module* ) const {
5026  // ScalarEvolution's implementaiton of the print method is to print
5027  // out SCEV values of all instructions that are interesting. Doing
5028  // this potentially causes it to create new SCEV objects though,
5029  // which technically conflicts with the const qualifier. This isn't
5030  // observable from outside the class though, so casting away the
5031  // const isn't dangerous.
5032  ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this);
5033
5034  OS << "Classifying expressions for: " << F->getName() << "\n";
5035  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
5036    if (isSCEVable(I->getType())) {
5037      OS << *I << '\n';
5038      OS << "  -->  ";
5039      const SCEV *SV = SE.getSCEV(&*I);
5040      SV->print(OS);
5041
5042      const Loop *L = LI->getLoopFor((*I).getParent());
5043
5044      const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
5045      if (AtUse != SV) {
5046        OS << "  -->  ";
5047        AtUse->print(OS);
5048      }
5049
5050      if (L) {
5051        OS << "\t\t" "Exits: ";
5052        const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
5053        if (!ExitValue->isLoopInvariant(L)) {
5054          OS << "<<Unknown>>";
5055        } else {
5056          OS << *ExitValue;
5057        }
5058      }
5059
5060      OS << "\n";
5061    }
5062
5063  OS << "Determining loop execution counts for: " << F->getName() << "\n";
5064  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5065    PrintLoopInfo(OS, &SE, *I);
5066}
5067
5068void ScalarEvolution::print(std::ostream &o, const Module *M) const {
5069  raw_os_ostream OS(o);
5070  print(OS, M);
5071}
5072