ScalarEvolution.cpp revision f9a77b77c2324b2ca5c644909ebda387daf82fe3
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle.  These classes are reference counted, managed by the SCEVHandle
18// class.  We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression.  These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
36// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43//  Chains of recurrences -- a method to expedite the evaluation
44//  of closed-form functions
45//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47//  On computational properties of chains of recurrences
48//  Eugene V. Zima
49//
50//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51//  Robert A. van Engelen
52//
53//  Efficient Symbolic Analysis for Optimizing Compilers
54//  Robert A. van Engelen
55//
56//  Using the chains of recurrences algebra for data dependence testing and
57//  induction variable substitution
58//  MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
62#define DEBUG_TYPE "scalar-evolution"
63#include "llvm/Analysis/ScalarEvolutionExpressions.h"
64#include "llvm/Constants.h"
65#include "llvm/DerivedTypes.h"
66#include "llvm/GlobalVariable.h"
67#include "llvm/Instructions.h"
68#include "llvm/Analysis/ConstantFolding.h"
69#include "llvm/Analysis/Dominators.h"
70#include "llvm/Analysis/LoopInfo.h"
71#include "llvm/Assembly/Writer.h"
72#include "llvm/Target/TargetData.h"
73#include "llvm/Transforms/Scalar.h"
74#include "llvm/Support/CFG.h"
75#include "llvm/Support/CommandLine.h"
76#include "llvm/Support/Compiler.h"
77#include "llvm/Support/ConstantRange.h"
78#include "llvm/Support/GetElementPtrTypeIterator.h"
79#include "llvm/Support/InstIterator.h"
80#include "llvm/Support/ManagedStatic.h"
81#include "llvm/Support/MathExtras.h"
82#include "llvm/Support/raw_ostream.h"
83#include "llvm/ADT/Statistic.h"
84#include "llvm/ADT/STLExtras.h"
85#include <ostream>
86#include <algorithm>
87#include <cmath>
88using namespace llvm;
89
90STATISTIC(NumArrayLenItCounts,
91          "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93          "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95          "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97          "Number of loops with trip counts computed by force");
98
99static cl::opt<unsigned>
100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101                        cl::desc("Maximum number of iterations SCEV will "
102                                 "symbolically execute a constant derived loop"),
103                        cl::init(100));
104
105static RegisterPass<ScalarEvolution>
106R("scalar-evolution", "Scalar Evolution Analysis", false, true);
107char ScalarEvolution::ID = 0;
108
109//===----------------------------------------------------------------------===//
110//                           SCEV class definitions
111//===----------------------------------------------------------------------===//
112
113//===----------------------------------------------------------------------===//
114// Implementation of the SCEV class.
115//
116SCEV::~SCEV() {}
117void SCEV::dump() const {
118  print(errs());
119  errs() << '\n';
120}
121
122void SCEV::print(std::ostream &o) const {
123  raw_os_ostream OS(o);
124  print(OS);
125}
126
127bool SCEV::isZero() const {
128  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
129    return SC->getValue()->isZero();
130  return false;
131}
132
133
134SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
135SCEVCouldNotCompute::~SCEVCouldNotCompute() {}
136
137bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
138  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
139  return false;
140}
141
142const Type *SCEVCouldNotCompute::getType() const {
143  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
144  return 0;
145}
146
147bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
148  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
149  return false;
150}
151
152SCEVHandle SCEVCouldNotCompute::
153replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
154                                  const SCEVHandle &Conc,
155                                  ScalarEvolution &SE) const {
156  return this;
157}
158
159void SCEVCouldNotCompute::print(raw_ostream &OS) const {
160  OS << "***COULDNOTCOMPUTE***";
161}
162
163bool SCEVCouldNotCompute::classof(const SCEV *S) {
164  return S->getSCEVType() == scCouldNotCompute;
165}
166
167
168// SCEVConstants - Only allow the creation of one SCEVConstant for any
169// particular value.  Don't use a SCEVHandle here, or else the object will
170// never be deleted!
171static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
172
173
174SCEVConstant::~SCEVConstant() {
175  SCEVConstants->erase(V);
176}
177
178SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) {
179  SCEVConstant *&R = (*SCEVConstants)[V];
180  if (R == 0) R = new SCEVConstant(V);
181  return R;
182}
183
184SCEVHandle ScalarEvolution::getConstant(const APInt& Val) {
185  return getConstant(ConstantInt::get(Val));
186}
187
188const Type *SCEVConstant::getType() const { return V->getType(); }
189
190void SCEVConstant::print(raw_ostream &OS) const {
191  WriteAsOperand(OS, V, false);
192}
193
194SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy,
195                           const SCEVHandle &op, const Type *ty)
196  : SCEV(SCEVTy), Op(op), Ty(ty) {}
197
198SCEVCastExpr::~SCEVCastExpr() {}
199
200bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
201  return Op->dominates(BB, DT);
202}
203
204// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
205// particular input.  Don't use a SCEVHandle here, or else the object will
206// never be deleted!
207static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
208                     SCEVTruncateExpr*> > SCEVTruncates;
209
210SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
211  : SCEVCastExpr(scTruncate, op, ty) {
212  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
213         (Ty->isInteger() || isa<PointerType>(Ty)) &&
214         "Cannot truncate non-integer value!");
215}
216
217SCEVTruncateExpr::~SCEVTruncateExpr() {
218  SCEVTruncates->erase(std::make_pair(Op, Ty));
219}
220
221void SCEVTruncateExpr::print(raw_ostream &OS) const {
222  OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
223}
224
225// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
226// particular input.  Don't use a SCEVHandle here, or else the object will never
227// be deleted!
228static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
229                     SCEVZeroExtendExpr*> > SCEVZeroExtends;
230
231SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
232  : SCEVCastExpr(scZeroExtend, op, ty) {
233  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
234         (Ty->isInteger() || isa<PointerType>(Ty)) &&
235         "Cannot zero extend non-integer value!");
236}
237
238SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
239  SCEVZeroExtends->erase(std::make_pair(Op, Ty));
240}
241
242void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
243  OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
244}
245
246// SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any
247// particular input.  Don't use a SCEVHandle here, or else the object will never
248// be deleted!
249static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
250                     SCEVSignExtendExpr*> > SCEVSignExtends;
251
252SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty)
253  : SCEVCastExpr(scSignExtend, op, ty) {
254  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
255         (Ty->isInteger() || isa<PointerType>(Ty)) &&
256         "Cannot sign extend non-integer value!");
257}
258
259SCEVSignExtendExpr::~SCEVSignExtendExpr() {
260  SCEVSignExtends->erase(std::make_pair(Op, Ty));
261}
262
263void SCEVSignExtendExpr::print(raw_ostream &OS) const {
264  OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
265}
266
267// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
268// particular input.  Don't use a SCEVHandle here, or else the object will never
269// be deleted!
270static ManagedStatic<std::map<std::pair<unsigned, std::vector<SCEV*> >,
271                     SCEVCommutativeExpr*> > SCEVCommExprs;
272
273SCEVCommutativeExpr::~SCEVCommutativeExpr() {
274  SCEVCommExprs->erase(std::make_pair(getSCEVType(),
275                                      std::vector<SCEV*>(Operands.begin(),
276                                                         Operands.end())));
277}
278
279void SCEVCommutativeExpr::print(raw_ostream &OS) const {
280  assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
281  const char *OpStr = getOperationStr();
282  OS << "(" << *Operands[0];
283  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
284    OS << OpStr << *Operands[i];
285  OS << ")";
286}
287
288SCEVHandle SCEVCommutativeExpr::
289replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
290                                  const SCEVHandle &Conc,
291                                  ScalarEvolution &SE) const {
292  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
293    SCEVHandle H =
294      getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
295    if (H != getOperand(i)) {
296      std::vector<SCEVHandle> NewOps;
297      NewOps.reserve(getNumOperands());
298      for (unsigned j = 0; j != i; ++j)
299        NewOps.push_back(getOperand(j));
300      NewOps.push_back(H);
301      for (++i; i != e; ++i)
302        NewOps.push_back(getOperand(i)->
303                         replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
304
305      if (isa<SCEVAddExpr>(this))
306        return SE.getAddExpr(NewOps);
307      else if (isa<SCEVMulExpr>(this))
308        return SE.getMulExpr(NewOps);
309      else if (isa<SCEVSMaxExpr>(this))
310        return SE.getSMaxExpr(NewOps);
311      else if (isa<SCEVUMaxExpr>(this))
312        return SE.getUMaxExpr(NewOps);
313      else
314        assert(0 && "Unknown commutative expr!");
315    }
316  }
317  return this;
318}
319
320bool SCEVCommutativeExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
321  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
322    if (!getOperand(i)->dominates(BB, DT))
323      return false;
324  }
325  return true;
326}
327
328
329// SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
330// input.  Don't use a SCEVHandle here, or else the object will never be
331// deleted!
332static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>,
333                     SCEVUDivExpr*> > SCEVUDivs;
334
335SCEVUDivExpr::~SCEVUDivExpr() {
336  SCEVUDivs->erase(std::make_pair(LHS, RHS));
337}
338
339bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
340  return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
341}
342
343void SCEVUDivExpr::print(raw_ostream &OS) const {
344  OS << "(" << *LHS << " /u " << *RHS << ")";
345}
346
347const Type *SCEVUDivExpr::getType() const {
348  return LHS->getType();
349}
350
351// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
352// particular input.  Don't use a SCEVHandle here, or else the object will never
353// be deleted!
354static ManagedStatic<std::map<std::pair<const Loop *, std::vector<SCEV*> >,
355                     SCEVAddRecExpr*> > SCEVAddRecExprs;
356
357SCEVAddRecExpr::~SCEVAddRecExpr() {
358  SCEVAddRecExprs->erase(std::make_pair(L,
359                                        std::vector<SCEV*>(Operands.begin(),
360                                                           Operands.end())));
361}
362
363bool SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
364  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
365    if (!getOperand(i)->dominates(BB, DT))
366      return false;
367  }
368  return true;
369}
370
371
372SCEVHandle SCEVAddRecExpr::
373replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
374                                  const SCEVHandle &Conc,
375                                  ScalarEvolution &SE) const {
376  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
377    SCEVHandle H =
378      getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
379    if (H != getOperand(i)) {
380      std::vector<SCEVHandle> NewOps;
381      NewOps.reserve(getNumOperands());
382      for (unsigned j = 0; j != i; ++j)
383        NewOps.push_back(getOperand(j));
384      NewOps.push_back(H);
385      for (++i; i != e; ++i)
386        NewOps.push_back(getOperand(i)->
387                         replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
388
389      return SE.getAddRecExpr(NewOps, L);
390    }
391  }
392  return this;
393}
394
395
396bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
397  // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
398  // contain L and if the start is invariant.
399  return !QueryLoop->contains(L->getHeader()) &&
400         getOperand(0)->isLoopInvariant(QueryLoop);
401}
402
403
404void SCEVAddRecExpr::print(raw_ostream &OS) const {
405  OS << "{" << *Operands[0];
406  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
407    OS << ",+," << *Operands[i];
408  OS << "}<" << L->getHeader()->getName() + ">";
409}
410
411// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
412// value.  Don't use a SCEVHandle here, or else the object will never be
413// deleted!
414static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
415
416SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
417
418bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
419  // All non-instruction values are loop invariant.  All instructions are loop
420  // invariant if they are not contained in the specified loop.
421  if (Instruction *I = dyn_cast<Instruction>(V))
422    return !L->contains(I->getParent());
423  return true;
424}
425
426bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
427  if (Instruction *I = dyn_cast<Instruction>(getValue()))
428    return DT->dominates(I->getParent(), BB);
429  return true;
430}
431
432const Type *SCEVUnknown::getType() const {
433  return V->getType();
434}
435
436void SCEVUnknown::print(raw_ostream &OS) const {
437  WriteAsOperand(OS, V, false);
438}
439
440//===----------------------------------------------------------------------===//
441//                               SCEV Utilities
442//===----------------------------------------------------------------------===//
443
444namespace {
445  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
446  /// than the complexity of the RHS.  This comparator is used to canonicalize
447  /// expressions.
448  struct VISIBILITY_HIDDEN SCEVComplexityCompare {
449    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
450      return LHS->getSCEVType() < RHS->getSCEVType();
451    }
452  };
453}
454
455/// GroupByComplexity - Given a list of SCEV objects, order them by their
456/// complexity, and group objects of the same complexity together by value.
457/// When this routine is finished, we know that any duplicates in the vector are
458/// consecutive and that complexity is monotonically increasing.
459///
460/// Note that we go take special precautions to ensure that we get determinstic
461/// results from this routine.  In other words, we don't want the results of
462/// this to depend on where the addresses of various SCEV objects happened to
463/// land in memory.
464///
465static void GroupByComplexity(std::vector<SCEVHandle> &Ops) {
466  if (Ops.size() < 2) return;  // Noop
467  if (Ops.size() == 2) {
468    // This is the common case, which also happens to be trivially simple.
469    // Special case it.
470    if (SCEVComplexityCompare()(Ops[1], Ops[0]))
471      std::swap(Ops[0], Ops[1]);
472    return;
473  }
474
475  // Do the rough sort by complexity.
476  std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());
477
478  // Now that we are sorted by complexity, group elements of the same
479  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
480  // be extremely short in practice.  Note that we take this approach because we
481  // do not want to depend on the addresses of the objects we are grouping.
482  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
483    SCEV *S = Ops[i];
484    unsigned Complexity = S->getSCEVType();
485
486    // If there are any objects of the same complexity and same value as this
487    // one, group them.
488    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
489      if (Ops[j] == S) { // Found a duplicate.
490        // Move it to immediately after i'th element.
491        std::swap(Ops[i+1], Ops[j]);
492        ++i;   // no need to rescan it.
493        if (i == e-2) return;  // Done!
494      }
495    }
496  }
497}
498
499
500
501//===----------------------------------------------------------------------===//
502//                      Simple SCEV method implementations
503//===----------------------------------------------------------------------===//
504
505/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
506// Assume, K > 0.
507static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K,
508                                      ScalarEvolution &SE,
509                                      const Type* ResultTy) {
510  // Handle the simplest case efficiently.
511  if (K == 1)
512    return SE.getTruncateOrZeroExtend(It, ResultTy);
513
514  // We are using the following formula for BC(It, K):
515  //
516  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
517  //
518  // Suppose, W is the bitwidth of the return value.  We must be prepared for
519  // overflow.  Hence, we must assure that the result of our computation is
520  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
521  // safe in modular arithmetic.
522  //
523  // However, this code doesn't use exactly that formula; the formula it uses
524  // is something like the following, where T is the number of factors of 2 in
525  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
526  // exponentiation:
527  //
528  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
529  //
530  // This formula is trivially equivalent to the previous formula.  However,
531  // this formula can be implemented much more efficiently.  The trick is that
532  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
533  // arithmetic.  To do exact division in modular arithmetic, all we have
534  // to do is multiply by the inverse.  Therefore, this step can be done at
535  // width W.
536  //
537  // The next issue is how to safely do the division by 2^T.  The way this
538  // is done is by doing the multiplication step at a width of at least W + T
539  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
540  // when we perform the division by 2^T (which is equivalent to a right shift
541  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
542  // truncated out after the division by 2^T.
543  //
544  // In comparison to just directly using the first formula, this technique
545  // is much more efficient; using the first formula requires W * K bits,
546  // but this formula less than W + K bits. Also, the first formula requires
547  // a division step, whereas this formula only requires multiplies and shifts.
548  //
549  // It doesn't matter whether the subtraction step is done in the calculation
550  // width or the input iteration count's width; if the subtraction overflows,
551  // the result must be zero anyway.  We prefer here to do it in the width of
552  // the induction variable because it helps a lot for certain cases; CodeGen
553  // isn't smart enough to ignore the overflow, which leads to much less
554  // efficient code if the width of the subtraction is wider than the native
555  // register width.
556  //
557  // (It's possible to not widen at all by pulling out factors of 2 before
558  // the multiplication; for example, K=2 can be calculated as
559  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
560  // extra arithmetic, so it's not an obvious win, and it gets
561  // much more complicated for K > 3.)
562
563  // Protection from insane SCEVs; this bound is conservative,
564  // but it probably doesn't matter.
565  if (K > 1000)
566    return SE.getCouldNotCompute();
567
568  unsigned W = SE.getTypeSizeInBits(ResultTy);
569
570  // Calculate K! / 2^T and T; we divide out the factors of two before
571  // multiplying for calculating K! / 2^T to avoid overflow.
572  // Other overflow doesn't matter because we only care about the bottom
573  // W bits of the result.
574  APInt OddFactorial(W, 1);
575  unsigned T = 1;
576  for (unsigned i = 3; i <= K; ++i) {
577    APInt Mult(W, i);
578    unsigned TwoFactors = Mult.countTrailingZeros();
579    T += TwoFactors;
580    Mult = Mult.lshr(TwoFactors);
581    OddFactorial *= Mult;
582  }
583
584  // We need at least W + T bits for the multiplication step
585  unsigned CalculationBits = W + T;
586
587  // Calcuate 2^T, at width T+W.
588  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
589
590  // Calculate the multiplicative inverse of K! / 2^T;
591  // this multiplication factor will perform the exact division by
592  // K! / 2^T.
593  APInt Mod = APInt::getSignedMinValue(W+1);
594  APInt MultiplyFactor = OddFactorial.zext(W+1);
595  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
596  MultiplyFactor = MultiplyFactor.trunc(W);
597
598  // Calculate the product, at width T+W
599  const IntegerType *CalculationTy = IntegerType::get(CalculationBits);
600  SCEVHandle Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
601  for (unsigned i = 1; i != K; ++i) {
602    SCEVHandle S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
603    Dividend = SE.getMulExpr(Dividend,
604                             SE.getTruncateOrZeroExtend(S, CalculationTy));
605  }
606
607  // Divide by 2^T
608  SCEVHandle DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
609
610  // Truncate the result, and divide by K! / 2^T.
611
612  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
613                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
614}
615
616/// evaluateAtIteration - Return the value of this chain of recurrences at
617/// the specified iteration number.  We can evaluate this recurrence by
618/// multiplying each element in the chain by the binomial coefficient
619/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
620///
621///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
622///
623/// where BC(It, k) stands for binomial coefficient.
624///
625SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It,
626                                               ScalarEvolution &SE) const {
627  SCEVHandle Result = getStart();
628  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
629    // The computation is correct in the face of overflow provided that the
630    // multiplication is performed _after_ the evaluation of the binomial
631    // coefficient.
632    SCEVHandle Coeff = BinomialCoefficient(It, i, SE, getType());
633    if (isa<SCEVCouldNotCompute>(Coeff))
634      return Coeff;
635
636    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
637  }
638  return Result;
639}
640
641//===----------------------------------------------------------------------===//
642//                    SCEV Expression folder implementations
643//===----------------------------------------------------------------------===//
644
645SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op,
646                                            const Type *Ty) {
647  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
648         "This is not a truncating conversion!");
649  assert(isSCEVable(Ty) &&
650         "This is not a conversion to a SCEVable type!");
651  Ty = getEffectiveSCEVType(Ty);
652
653  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
654    return getUnknown(
655        ConstantExpr::getTrunc(SC->getValue(), Ty));
656
657  // trunc(trunc(x)) --> trunc(x)
658  if (SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
659    return getTruncateExpr(ST->getOperand(), Ty);
660
661  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
662  if (SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
663    return getTruncateOrSignExtend(SS->getOperand(), Ty);
664
665  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
666  if (SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
667    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
668
669  // If the input value is a chrec scev made out of constants, truncate
670  // all of the constants.
671  if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
672    std::vector<SCEVHandle> Operands;
673    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
674      // FIXME: This should allow truncation of other expression types!
675      if (isa<SCEVConstant>(AddRec->getOperand(i)))
676        Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
677      else
678        break;
679    if (Operands.size() == AddRec->getNumOperands())
680      return getAddRecExpr(Operands, AddRec->getLoop());
681  }
682
683  SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
684  if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
685  return Result;
686}
687
688SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op,
689                                              const Type *Ty) {
690  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
691         "This is not an extending conversion!");
692  assert(isSCEVable(Ty) &&
693         "This is not a conversion to a SCEVable type!");
694  Ty = getEffectiveSCEVType(Ty);
695
696  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
697    const Type *IntTy = getEffectiveSCEVType(Ty);
698    Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
699    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
700    return getUnknown(C);
701  }
702
703  // zext(zext(x)) --> zext(x)
704  if (SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
705    return getZeroExtendExpr(SZ->getOperand(), Ty);
706
707  // If the input value is a chrec scev, and we can prove that the value
708  // did not overflow the old, smaller, value, we can zero extend all of the
709  // operands (often constants).  This allows analysis of something like
710  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
711  if (SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
712    if (AR->isAffine()) {
713      // Check whether the backedge-taken count is SCEVCouldNotCompute.
714      // Note that this serves two purposes: It filters out loops that are
715      // simply not analyzable, and it covers the case where this code is
716      // being called from within backedge-taken count analysis, such that
717      // attempting to ask for the backedge-taken count would likely result
718      // in infinite recursion. In the later case, the analysis code will
719      // cope with a conservative value, and it will take care to purge
720      // that value once it has finished.
721      SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
722      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
723        // Manually compute the final value for AR, checking for
724        // overflow.
725        SCEVHandle Start = AR->getStart();
726        SCEVHandle Step = AR->getStepRecurrence(*this);
727
728        // Check whether the backedge-taken count can be losslessly casted to
729        // the addrec's type. The count is always unsigned.
730        SCEVHandle CastedMaxBECount =
731          getTruncateOrZeroExtend(MaxBECount, Start->getType());
732        if (MaxBECount ==
733            getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType())) {
734          const Type *WideTy =
735            IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
736          // Check whether Start+Step*MaxBECount has no unsigned overflow.
737          SCEVHandle ZMul =
738            getMulExpr(CastedMaxBECount,
739                       getTruncateOrZeroExtend(Step, Start->getType()));
740          SCEVHandle Add = getAddExpr(Start, ZMul);
741          if (getZeroExtendExpr(Add, WideTy) ==
742              getAddExpr(getZeroExtendExpr(Start, WideTy),
743                         getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
744                                    getZeroExtendExpr(Step, WideTy))))
745            // Return the expression with the addrec on the outside.
746            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
747                                 getZeroExtendExpr(Step, Ty),
748                                 AR->getLoop());
749
750          // Similar to above, only this time treat the step value as signed.
751          // This covers loops that count down.
752          SCEVHandle SMul =
753            getMulExpr(CastedMaxBECount,
754                       getTruncateOrSignExtend(Step, Start->getType()));
755          Add = getAddExpr(Start, SMul);
756          if (getZeroExtendExpr(Add, WideTy) ==
757              getAddExpr(getZeroExtendExpr(Start, WideTy),
758                         getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
759                                    getSignExtendExpr(Step, WideTy))))
760            // Return the expression with the addrec on the outside.
761            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
762                                 getSignExtendExpr(Step, Ty),
763                                 AR->getLoop());
764        }
765      }
766    }
767
768  SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
769  if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
770  return Result;
771}
772
773SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op,
774                                              const Type *Ty) {
775  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
776         "This is not an extending conversion!");
777  assert(isSCEVable(Ty) &&
778         "This is not a conversion to a SCEVable type!");
779  Ty = getEffectiveSCEVType(Ty);
780
781  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
782    const Type *IntTy = getEffectiveSCEVType(Ty);
783    Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
784    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
785    return getUnknown(C);
786  }
787
788  // sext(sext(x)) --> sext(x)
789  if (SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
790    return getSignExtendExpr(SS->getOperand(), Ty);
791
792  // If the input value is a chrec scev, and we can prove that the value
793  // did not overflow the old, smaller, value, we can sign extend all of the
794  // operands (often constants).  This allows analysis of something like
795  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
796  if (SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
797    if (AR->isAffine()) {
798      // Check whether the backedge-taken count is SCEVCouldNotCompute.
799      // Note that this serves two purposes: It filters out loops that are
800      // simply not analyzable, and it covers the case where this code is
801      // being called from within backedge-taken count analysis, such that
802      // attempting to ask for the backedge-taken count would likely result
803      // in infinite recursion. In the later case, the analysis code will
804      // cope with a conservative value, and it will take care to purge
805      // that value once it has finished.
806      SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
807      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
808        // Manually compute the final value for AR, checking for
809        // overflow.
810        SCEVHandle Start = AR->getStart();
811        SCEVHandle Step = AR->getStepRecurrence(*this);
812
813        // Check whether the backedge-taken count can be losslessly casted to
814        // the addrec's type. The count is always unsigned.
815        SCEVHandle CastedMaxBECount =
816          getTruncateOrZeroExtend(MaxBECount, Start->getType());
817        if (MaxBECount ==
818            getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType())) {
819          const Type *WideTy =
820            IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
821          // Check whether Start+Step*MaxBECount has no signed overflow.
822          SCEVHandle SMul =
823            getMulExpr(CastedMaxBECount,
824                       getTruncateOrSignExtend(Step, Start->getType()));
825          SCEVHandle Add = getAddExpr(Start, SMul);
826          if (getSignExtendExpr(Add, WideTy) ==
827              getAddExpr(getSignExtendExpr(Start, WideTy),
828                         getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
829                                    getSignExtendExpr(Step, WideTy))))
830            // Return the expression with the addrec on the outside.
831            return getAddRecExpr(getSignExtendExpr(Start, Ty),
832                                 getSignExtendExpr(Step, Ty),
833                                 AR->getLoop());
834        }
835      }
836    }
837
838  SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)];
839  if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty);
840  return Result;
841}
842
843// get - Get a canonical add expression, or something simpler if possible.
844SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) {
845  assert(!Ops.empty() && "Cannot get empty add!");
846  if (Ops.size() == 1) return Ops[0];
847
848  // Sort by complexity, this groups all similar expression types together.
849  GroupByComplexity(Ops);
850
851  // If there are any constants, fold them together.
852  unsigned Idx = 0;
853  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
854    ++Idx;
855    assert(Idx < Ops.size());
856    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
857      // We found two constants, fold them together!
858      ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() +
859                                           RHSC->getValue()->getValue());
860      Ops[0] = getConstant(Fold);
861      Ops.erase(Ops.begin()+1);  // Erase the folded element
862      if (Ops.size() == 1) return Ops[0];
863      LHSC = cast<SCEVConstant>(Ops[0]);
864    }
865
866    // If we are left with a constant zero being added, strip it off.
867    if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
868      Ops.erase(Ops.begin());
869      --Idx;
870    }
871  }
872
873  if (Ops.size() == 1) return Ops[0];
874
875  // Okay, check to see if the same value occurs in the operand list twice.  If
876  // so, merge them together into an multiply expression.  Since we sorted the
877  // list, these values are required to be adjacent.
878  const Type *Ty = Ops[0]->getType();
879  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
880    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
881      // Found a match, merge the two values into a multiply, and add any
882      // remaining values to the result.
883      SCEVHandle Two = getIntegerSCEV(2, Ty);
884      SCEVHandle Mul = getMulExpr(Ops[i], Two);
885      if (Ops.size() == 2)
886        return Mul;
887      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
888      Ops.push_back(Mul);
889      return getAddExpr(Ops);
890    }
891
892  // Now we know the first non-constant operand.  Skip past any cast SCEVs.
893  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
894    ++Idx;
895
896  // If there are add operands they would be next.
897  if (Idx < Ops.size()) {
898    bool DeletedAdd = false;
899    while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
900      // If we have an add, expand the add operands onto the end of the operands
901      // list.
902      Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
903      Ops.erase(Ops.begin()+Idx);
904      DeletedAdd = true;
905    }
906
907    // If we deleted at least one add, we added operands to the end of the list,
908    // and they are not necessarily sorted.  Recurse to resort and resimplify
909    // any operands we just aquired.
910    if (DeletedAdd)
911      return getAddExpr(Ops);
912  }
913
914  // Skip over the add expression until we get to a multiply.
915  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
916    ++Idx;
917
918  // If we are adding something to a multiply expression, make sure the
919  // something is not already an operand of the multiply.  If so, merge it into
920  // the multiply.
921  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
922    SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
923    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
924      SCEV *MulOpSCEV = Mul->getOperand(MulOp);
925      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
926        if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
927          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
928          SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
929          if (Mul->getNumOperands() != 2) {
930            // If the multiply has more than two operands, we must get the
931            // Y*Z term.
932            std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
933            MulOps.erase(MulOps.begin()+MulOp);
934            InnerMul = getMulExpr(MulOps);
935          }
936          SCEVHandle One = getIntegerSCEV(1, Ty);
937          SCEVHandle AddOne = getAddExpr(InnerMul, One);
938          SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]);
939          if (Ops.size() == 2) return OuterMul;
940          if (AddOp < Idx) {
941            Ops.erase(Ops.begin()+AddOp);
942            Ops.erase(Ops.begin()+Idx-1);
943          } else {
944            Ops.erase(Ops.begin()+Idx);
945            Ops.erase(Ops.begin()+AddOp-1);
946          }
947          Ops.push_back(OuterMul);
948          return getAddExpr(Ops);
949        }
950
951      // Check this multiply against other multiplies being added together.
952      for (unsigned OtherMulIdx = Idx+1;
953           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
954           ++OtherMulIdx) {
955        SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
956        // If MulOp occurs in OtherMul, we can fold the two multiplies
957        // together.
958        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
959             OMulOp != e; ++OMulOp)
960          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
961            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
962            SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
963            if (Mul->getNumOperands() != 2) {
964              std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
965              MulOps.erase(MulOps.begin()+MulOp);
966              InnerMul1 = getMulExpr(MulOps);
967            }
968            SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
969            if (OtherMul->getNumOperands() != 2) {
970              std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
971                                             OtherMul->op_end());
972              MulOps.erase(MulOps.begin()+OMulOp);
973              InnerMul2 = getMulExpr(MulOps);
974            }
975            SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
976            SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
977            if (Ops.size() == 2) return OuterMul;
978            Ops.erase(Ops.begin()+Idx);
979            Ops.erase(Ops.begin()+OtherMulIdx-1);
980            Ops.push_back(OuterMul);
981            return getAddExpr(Ops);
982          }
983      }
984    }
985  }
986
987  // If there are any add recurrences in the operands list, see if any other
988  // added values are loop invariant.  If so, we can fold them into the
989  // recurrence.
990  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
991    ++Idx;
992
993  // Scan over all recurrences, trying to fold loop invariants into them.
994  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
995    // Scan all of the other operands to this add and add them to the vector if
996    // they are loop invariant w.r.t. the recurrence.
997    std::vector<SCEVHandle> LIOps;
998    SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
999    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1000      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1001        LIOps.push_back(Ops[i]);
1002        Ops.erase(Ops.begin()+i);
1003        --i; --e;
1004      }
1005
1006    // If we found some loop invariants, fold them into the recurrence.
1007    if (!LIOps.empty()) {
1008      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1009      LIOps.push_back(AddRec->getStart());
1010
1011      std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
1012      AddRecOps[0] = getAddExpr(LIOps);
1013
1014      SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
1015      // If all of the other operands were loop invariant, we are done.
1016      if (Ops.size() == 1) return NewRec;
1017
1018      // Otherwise, add the folded AddRec by the non-liv parts.
1019      for (unsigned i = 0;; ++i)
1020        if (Ops[i] == AddRec) {
1021          Ops[i] = NewRec;
1022          break;
1023        }
1024      return getAddExpr(Ops);
1025    }
1026
1027    // Okay, if there weren't any loop invariants to be folded, check to see if
1028    // there are multiple AddRec's with the same loop induction variable being
1029    // added together.  If so, we can fold them.
1030    for (unsigned OtherIdx = Idx+1;
1031         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1032      if (OtherIdx != Idx) {
1033        SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1034        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1035          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
1036          std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
1037          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1038            if (i >= NewOps.size()) {
1039              NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1040                            OtherAddRec->op_end());
1041              break;
1042            }
1043            NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
1044          }
1045          SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
1046
1047          if (Ops.size() == 2) return NewAddRec;
1048
1049          Ops.erase(Ops.begin()+Idx);
1050          Ops.erase(Ops.begin()+OtherIdx-1);
1051          Ops.push_back(NewAddRec);
1052          return getAddExpr(Ops);
1053        }
1054      }
1055
1056    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1057    // next one.
1058  }
1059
1060  // Okay, it looks like we really DO need an add expr.  Check to see if we
1061  // already have one, otherwise create a new one.
1062  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
1063  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
1064                                                                 SCEVOps)];
1065  if (Result == 0) Result = new SCEVAddExpr(Ops);
1066  return Result;
1067}
1068
1069
1070SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) {
1071  assert(!Ops.empty() && "Cannot get empty mul!");
1072
1073  // Sort by complexity, this groups all similar expression types together.
1074  GroupByComplexity(Ops);
1075
1076  // If there are any constants, fold them together.
1077  unsigned Idx = 0;
1078  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1079
1080    // C1*(C2+V) -> C1*C2 + C1*V
1081    if (Ops.size() == 2)
1082      if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1083        if (Add->getNumOperands() == 2 &&
1084            isa<SCEVConstant>(Add->getOperand(0)))
1085          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1086                            getMulExpr(LHSC, Add->getOperand(1)));
1087
1088
1089    ++Idx;
1090    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1091      // We found two constants, fold them together!
1092      ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() *
1093                                           RHSC->getValue()->getValue());
1094      Ops[0] = getConstant(Fold);
1095      Ops.erase(Ops.begin()+1);  // Erase the folded element
1096      if (Ops.size() == 1) return Ops[0];
1097      LHSC = cast<SCEVConstant>(Ops[0]);
1098    }
1099
1100    // If we are left with a constant one being multiplied, strip it off.
1101    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1102      Ops.erase(Ops.begin());
1103      --Idx;
1104    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1105      // If we have a multiply of zero, it will always be zero.
1106      return Ops[0];
1107    }
1108  }
1109
1110  // Skip over the add expression until we get to a multiply.
1111  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1112    ++Idx;
1113
1114  if (Ops.size() == 1)
1115    return Ops[0];
1116
1117  // If there are mul operands inline them all into this expression.
1118  if (Idx < Ops.size()) {
1119    bool DeletedMul = false;
1120    while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1121      // If we have an mul, expand the mul operands onto the end of the operands
1122      // list.
1123      Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1124      Ops.erase(Ops.begin()+Idx);
1125      DeletedMul = true;
1126    }
1127
1128    // If we deleted at least one mul, we added operands to the end of the list,
1129    // and they are not necessarily sorted.  Recurse to resort and resimplify
1130    // any operands we just aquired.
1131    if (DeletedMul)
1132      return getMulExpr(Ops);
1133  }
1134
1135  // If there are any add recurrences in the operands list, see if any other
1136  // added values are loop invariant.  If so, we can fold them into the
1137  // recurrence.
1138  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1139    ++Idx;
1140
1141  // Scan over all recurrences, trying to fold loop invariants into them.
1142  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1143    // Scan all of the other operands to this mul and add them to the vector if
1144    // they are loop invariant w.r.t. the recurrence.
1145    std::vector<SCEVHandle> LIOps;
1146    SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1147    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1148      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1149        LIOps.push_back(Ops[i]);
1150        Ops.erase(Ops.begin()+i);
1151        --i; --e;
1152      }
1153
1154    // If we found some loop invariants, fold them into the recurrence.
1155    if (!LIOps.empty()) {
1156      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1157      std::vector<SCEVHandle> NewOps;
1158      NewOps.reserve(AddRec->getNumOperands());
1159      if (LIOps.size() == 1) {
1160        SCEV *Scale = LIOps[0];
1161        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1162          NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1163      } else {
1164        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
1165          std::vector<SCEVHandle> MulOps(LIOps);
1166          MulOps.push_back(AddRec->getOperand(i));
1167          NewOps.push_back(getMulExpr(MulOps));
1168        }
1169      }
1170
1171      SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
1172
1173      // If all of the other operands were loop invariant, we are done.
1174      if (Ops.size() == 1) return NewRec;
1175
1176      // Otherwise, multiply the folded AddRec by the non-liv parts.
1177      for (unsigned i = 0;; ++i)
1178        if (Ops[i] == AddRec) {
1179          Ops[i] = NewRec;
1180          break;
1181        }
1182      return getMulExpr(Ops);
1183    }
1184
1185    // Okay, if there weren't any loop invariants to be folded, check to see if
1186    // there are multiple AddRec's with the same loop induction variable being
1187    // multiplied together.  If so, we can fold them.
1188    for (unsigned OtherIdx = Idx+1;
1189         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1190      if (OtherIdx != Idx) {
1191        SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1192        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1193          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
1194          SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1195          SCEVHandle NewStart = getMulExpr(F->getStart(),
1196                                                 G->getStart());
1197          SCEVHandle B = F->getStepRecurrence(*this);
1198          SCEVHandle D = G->getStepRecurrence(*this);
1199          SCEVHandle NewStep = getAddExpr(getMulExpr(F, D),
1200                                          getMulExpr(G, B),
1201                                          getMulExpr(B, D));
1202          SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep,
1203                                               F->getLoop());
1204          if (Ops.size() == 2) return NewAddRec;
1205
1206          Ops.erase(Ops.begin()+Idx);
1207          Ops.erase(Ops.begin()+OtherIdx-1);
1208          Ops.push_back(NewAddRec);
1209          return getMulExpr(Ops);
1210        }
1211      }
1212
1213    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1214    // next one.
1215  }
1216
1217  // Okay, it looks like we really DO need an mul expr.  Check to see if we
1218  // already have one, otherwise create a new one.
1219  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
1220  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
1221                                                                 SCEVOps)];
1222  if (Result == 0)
1223    Result = new SCEVMulExpr(Ops);
1224  return Result;
1225}
1226
1227SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS, const SCEVHandle &RHS) {
1228  if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1229    if (RHSC->getValue()->equalsInt(1))
1230      return LHS;                            // X udiv 1 --> x
1231
1232    if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1233      Constant *LHSCV = LHSC->getValue();
1234      Constant *RHSCV = RHSC->getValue();
1235      return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV));
1236    }
1237  }
1238
1239  // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
1240
1241  SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)];
1242  if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
1243  return Result;
1244}
1245
1246
1247/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1248/// specified loop.  Simplify the expression as much as possible.
1249SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start,
1250                               const SCEVHandle &Step, const Loop *L) {
1251  std::vector<SCEVHandle> Operands;
1252  Operands.push_back(Start);
1253  if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1254    if (StepChrec->getLoop() == L) {
1255      Operands.insert(Operands.end(), StepChrec->op_begin(),
1256                      StepChrec->op_end());
1257      return getAddRecExpr(Operands, L);
1258    }
1259
1260  Operands.push_back(Step);
1261  return getAddRecExpr(Operands, L);
1262}
1263
1264/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1265/// specified loop.  Simplify the expression as much as possible.
1266SCEVHandle ScalarEvolution::getAddRecExpr(std::vector<SCEVHandle> &Operands,
1267                                          const Loop *L) {
1268  if (Operands.size() == 1) return Operands[0];
1269
1270  if (Operands.back()->isZero()) {
1271    Operands.pop_back();
1272    return getAddRecExpr(Operands, L);             // {X,+,0}  -->  X
1273  }
1274
1275  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
1276  if (SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
1277    const Loop* NestedLoop = NestedAR->getLoop();
1278    if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
1279      std::vector<SCEVHandle> NestedOperands(NestedAR->op_begin(),
1280                                             NestedAR->op_end());
1281      SCEVHandle NestedARHandle(NestedAR);
1282      Operands[0] = NestedAR->getStart();
1283      NestedOperands[0] = getAddRecExpr(Operands, L);
1284      return getAddRecExpr(NestedOperands, NestedLoop);
1285    }
1286  }
1287
1288  SCEVAddRecExpr *&Result =
1289    (*SCEVAddRecExprs)[std::make_pair(L, std::vector<SCEV*>(Operands.begin(),
1290                                                            Operands.end()))];
1291  if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1292  return Result;
1293}
1294
1295SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS,
1296                                        const SCEVHandle &RHS) {
1297  std::vector<SCEVHandle> Ops;
1298  Ops.push_back(LHS);
1299  Ops.push_back(RHS);
1300  return getSMaxExpr(Ops);
1301}
1302
1303SCEVHandle ScalarEvolution::getSMaxExpr(std::vector<SCEVHandle> Ops) {
1304  assert(!Ops.empty() && "Cannot get empty smax!");
1305  if (Ops.size() == 1) return Ops[0];
1306
1307  // Sort by complexity, this groups all similar expression types together.
1308  GroupByComplexity(Ops);
1309
1310  // If there are any constants, fold them together.
1311  unsigned Idx = 0;
1312  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1313    ++Idx;
1314    assert(Idx < Ops.size());
1315    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1316      // We found two constants, fold them together!
1317      ConstantInt *Fold = ConstantInt::get(
1318                              APIntOps::smax(LHSC->getValue()->getValue(),
1319                                             RHSC->getValue()->getValue()));
1320      Ops[0] = getConstant(Fold);
1321      Ops.erase(Ops.begin()+1);  // Erase the folded element
1322      if (Ops.size() == 1) return Ops[0];
1323      LHSC = cast<SCEVConstant>(Ops[0]);
1324    }
1325
1326    // If we are left with a constant -inf, strip it off.
1327    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1328      Ops.erase(Ops.begin());
1329      --Idx;
1330    }
1331  }
1332
1333  if (Ops.size() == 1) return Ops[0];
1334
1335  // Find the first SMax
1336  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1337    ++Idx;
1338
1339  // Check to see if one of the operands is an SMax. If so, expand its operands
1340  // onto our operand list, and recurse to simplify.
1341  if (Idx < Ops.size()) {
1342    bool DeletedSMax = false;
1343    while (SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
1344      Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1345      Ops.erase(Ops.begin()+Idx);
1346      DeletedSMax = true;
1347    }
1348
1349    if (DeletedSMax)
1350      return getSMaxExpr(Ops);
1351  }
1352
1353  // Okay, check to see if the same value occurs in the operand list twice.  If
1354  // so, delete one.  Since we sorted the list, these values are required to
1355  // be adjacent.
1356  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1357    if (Ops[i] == Ops[i+1]) {      //  X smax Y smax Y  -->  X smax Y
1358      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1359      --i; --e;
1360    }
1361
1362  if (Ops.size() == 1) return Ops[0];
1363
1364  assert(!Ops.empty() && "Reduced smax down to nothing!");
1365
1366  // Okay, it looks like we really DO need an smax expr.  Check to see if we
1367  // already have one, otherwise create a new one.
1368  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
1369  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr,
1370                                                                 SCEVOps)];
1371  if (Result == 0) Result = new SCEVSMaxExpr(Ops);
1372  return Result;
1373}
1374
1375SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS,
1376                                        const SCEVHandle &RHS) {
1377  std::vector<SCEVHandle> Ops;
1378  Ops.push_back(LHS);
1379  Ops.push_back(RHS);
1380  return getUMaxExpr(Ops);
1381}
1382
1383SCEVHandle ScalarEvolution::getUMaxExpr(std::vector<SCEVHandle> Ops) {
1384  assert(!Ops.empty() && "Cannot get empty umax!");
1385  if (Ops.size() == 1) return Ops[0];
1386
1387  // Sort by complexity, this groups all similar expression types together.
1388  GroupByComplexity(Ops);
1389
1390  // If there are any constants, fold them together.
1391  unsigned Idx = 0;
1392  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1393    ++Idx;
1394    assert(Idx < Ops.size());
1395    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1396      // We found two constants, fold them together!
1397      ConstantInt *Fold = ConstantInt::get(
1398                              APIntOps::umax(LHSC->getValue()->getValue(),
1399                                             RHSC->getValue()->getValue()));
1400      Ops[0] = getConstant(Fold);
1401      Ops.erase(Ops.begin()+1);  // Erase the folded element
1402      if (Ops.size() == 1) return Ops[0];
1403      LHSC = cast<SCEVConstant>(Ops[0]);
1404    }
1405
1406    // If we are left with a constant zero, strip it off.
1407    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
1408      Ops.erase(Ops.begin());
1409      --Idx;
1410    }
1411  }
1412
1413  if (Ops.size() == 1) return Ops[0];
1414
1415  // Find the first UMax
1416  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
1417    ++Idx;
1418
1419  // Check to see if one of the operands is a UMax. If so, expand its operands
1420  // onto our operand list, and recurse to simplify.
1421  if (Idx < Ops.size()) {
1422    bool DeletedUMax = false;
1423    while (SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
1424      Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
1425      Ops.erase(Ops.begin()+Idx);
1426      DeletedUMax = true;
1427    }
1428
1429    if (DeletedUMax)
1430      return getUMaxExpr(Ops);
1431  }
1432
1433  // Okay, check to see if the same value occurs in the operand list twice.  If
1434  // so, delete one.  Since we sorted the list, these values are required to
1435  // be adjacent.
1436  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1437    if (Ops[i] == Ops[i+1]) {      //  X umax Y umax Y  -->  X umax Y
1438      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1439      --i; --e;
1440    }
1441
1442  if (Ops.size() == 1) return Ops[0];
1443
1444  assert(!Ops.empty() && "Reduced umax down to nothing!");
1445
1446  // Okay, it looks like we really DO need a umax expr.  Check to see if we
1447  // already have one, otherwise create a new one.
1448  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
1449  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr,
1450                                                                 SCEVOps)];
1451  if (Result == 0) Result = new SCEVUMaxExpr(Ops);
1452  return Result;
1453}
1454
1455SCEVHandle ScalarEvolution::getUnknown(Value *V) {
1456  if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
1457    return getConstant(CI);
1458  if (isa<ConstantPointerNull>(V))
1459    return getIntegerSCEV(0, V->getType());
1460  SCEVUnknown *&Result = (*SCEVUnknowns)[V];
1461  if (Result == 0) Result = new SCEVUnknown(V);
1462  return Result;
1463}
1464
1465//===----------------------------------------------------------------------===//
1466//            Basic SCEV Analysis and PHI Idiom Recognition Code
1467//
1468
1469/// deleteValueFromRecords - This method should be called by the
1470/// client before it removes an instruction from the program, to make sure
1471/// that no dangling references are left around.
1472void ScalarEvolution::deleteValueFromRecords(Value *V) {
1473  SmallVector<Value *, 16> Worklist;
1474
1475  if (Scalars.erase(V)) {
1476    if (PHINode *PN = dyn_cast<PHINode>(V))
1477      ConstantEvolutionLoopExitValue.erase(PN);
1478    Worklist.push_back(V);
1479  }
1480
1481  while (!Worklist.empty()) {
1482    Value *VV = Worklist.back();
1483    Worklist.pop_back();
1484
1485    for (Instruction::use_iterator UI = VV->use_begin(), UE = VV->use_end();
1486         UI != UE; ++UI) {
1487      Instruction *Inst = cast<Instruction>(*UI);
1488      if (Scalars.erase(Inst)) {
1489        if (PHINode *PN = dyn_cast<PHINode>(VV))
1490          ConstantEvolutionLoopExitValue.erase(PN);
1491        Worklist.push_back(Inst);
1492      }
1493    }
1494  }
1495}
1496
1497/// isSCEVable - Test if values of the given type are analyzable within
1498/// the SCEV framework. This primarily includes integer types, and it
1499/// can optionally include pointer types if the ScalarEvolution class
1500/// has access to target-specific information.
1501bool ScalarEvolution::isSCEVable(const Type *Ty) const {
1502  // Integers are always SCEVable.
1503  if (Ty->isInteger())
1504    return true;
1505
1506  // Pointers are SCEVable if TargetData information is available
1507  // to provide pointer size information.
1508  if (isa<PointerType>(Ty))
1509    return TD != NULL;
1510
1511  // Otherwise it's not SCEVable.
1512  return false;
1513}
1514
1515/// getTypeSizeInBits - Return the size in bits of the specified type,
1516/// for which isSCEVable must return true.
1517uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
1518  assert(isSCEVable(Ty) && "Type is not SCEVable!");
1519
1520  // If we have a TargetData, use it!
1521  if (TD)
1522    return TD->getTypeSizeInBits(Ty);
1523
1524  // Otherwise, we support only integer types.
1525  assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!");
1526  return Ty->getPrimitiveSizeInBits();
1527}
1528
1529/// getEffectiveSCEVType - Return a type with the same bitwidth as
1530/// the given type and which represents how SCEV will treat the given
1531/// type, for which isSCEVable must return true. For pointer types,
1532/// this is the pointer-sized integer type.
1533const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
1534  assert(isSCEVable(Ty) && "Type is not SCEVable!");
1535
1536  if (Ty->isInteger())
1537    return Ty;
1538
1539  assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
1540  return TD->getIntPtrType();
1541}
1542
1543SCEVHandle ScalarEvolution::getCouldNotCompute() {
1544  return UnknownValue;
1545}
1546
1547// hasSCEV - Return true if the SCEV for this value has already been
1548/// computed.
1549bool ScalarEvolution::hasSCEV(Value *V) const {
1550  return Scalars.count(V);
1551}
1552
1553/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1554/// expression and create a new one.
1555SCEVHandle ScalarEvolution::getSCEV(Value *V) {
1556  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
1557
1558  std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V);
1559  if (I != Scalars.end()) return I->second;
1560  SCEVHandle S = createSCEV(V);
1561  Scalars.insert(std::make_pair(V, S));
1562  return S;
1563}
1564
1565/// getIntegerSCEV - Given an integer or FP type, create a constant for the
1566/// specified signed integer value and return a SCEV for the constant.
1567SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
1568  Ty = getEffectiveSCEVType(Ty);
1569  Constant *C;
1570  if (Val == 0)
1571    C = Constant::getNullValue(Ty);
1572  else if (Ty->isFloatingPoint())
1573    C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle :
1574                                APFloat::IEEEdouble, Val));
1575  else
1576    C = ConstantInt::get(Ty, Val);
1577  return getUnknown(C);
1578}
1579
1580/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
1581///
1582SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) {
1583  if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
1584    return getUnknown(ConstantExpr::getNeg(VC->getValue()));
1585
1586  const Type *Ty = V->getType();
1587  Ty = getEffectiveSCEVType(Ty);
1588  return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(Ty)));
1589}
1590
1591/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
1592SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) {
1593  if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
1594    return getUnknown(ConstantExpr::getNot(VC->getValue()));
1595
1596  const Type *Ty = V->getType();
1597  Ty = getEffectiveSCEVType(Ty);
1598  SCEVHandle AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty));
1599  return getMinusSCEV(AllOnes, V);
1600}
1601
1602/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
1603///
1604SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS,
1605                                         const SCEVHandle &RHS) {
1606  // X - Y --> X + -Y
1607  return getAddExpr(LHS, getNegativeSCEV(RHS));
1608}
1609
1610/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
1611/// input value to the specified type.  If the type must be extended, it is zero
1612/// extended.
1613SCEVHandle
1614ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V,
1615                                         const Type *Ty) {
1616  const Type *SrcTy = V->getType();
1617  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1618         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1619         "Cannot truncate or zero extend with non-integer arguments!");
1620  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1621    return V;  // No conversion
1622  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
1623    return getTruncateExpr(V, Ty);
1624  return getZeroExtendExpr(V, Ty);
1625}
1626
1627/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
1628/// input value to the specified type.  If the type must be extended, it is sign
1629/// extended.
1630SCEVHandle
1631ScalarEvolution::getTruncateOrSignExtend(const SCEVHandle &V,
1632                                         const Type *Ty) {
1633  const Type *SrcTy = V->getType();
1634  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1635         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1636         "Cannot truncate or zero extend with non-integer arguments!");
1637  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1638    return V;  // No conversion
1639  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
1640    return getTruncateExpr(V, Ty);
1641  return getSignExtendExpr(V, Ty);
1642}
1643
1644/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1645/// the specified instruction and replaces any references to the symbolic value
1646/// SymName with the specified value.  This is used during PHI resolution.
1647void ScalarEvolution::
1648ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1649                                 const SCEVHandle &NewVal) {
1650  std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I);
1651  if (SI == Scalars.end()) return;
1652
1653  SCEVHandle NV =
1654    SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this);
1655  if (NV == SI->second) return;  // No change.
1656
1657  SI->second = NV;       // Update the scalars map!
1658
1659  // Any instruction values that use this instruction might also need to be
1660  // updated!
1661  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1662       UI != E; ++UI)
1663    ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1664}
1665
1666/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
1667/// a loop header, making it a potential recurrence, or it doesn't.
1668///
1669SCEVHandle ScalarEvolution::createNodeForPHI(PHINode *PN) {
1670  if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
1671    if (const Loop *L = LI->getLoopFor(PN->getParent()))
1672      if (L->getHeader() == PN->getParent()) {
1673        // If it lives in the loop header, it has two incoming values, one
1674        // from outside the loop, and one from inside.
1675        unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1676        unsigned BackEdge     = IncomingEdge^1;
1677
1678        // While we are analyzing this PHI node, handle its value symbolically.
1679        SCEVHandle SymbolicName = getUnknown(PN);
1680        assert(Scalars.find(PN) == Scalars.end() &&
1681               "PHI node already processed?");
1682        Scalars.insert(std::make_pair(PN, SymbolicName));
1683
1684        // Using this symbolic name for the PHI, analyze the value coming around
1685        // the back-edge.
1686        SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1687
1688        // NOTE: If BEValue is loop invariant, we know that the PHI node just
1689        // has a special value for the first iteration of the loop.
1690
1691        // If the value coming around the backedge is an add with the symbolic
1692        // value we just inserted, then we found a simple induction variable!
1693        if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
1694          // If there is a single occurrence of the symbolic value, replace it
1695          // with a recurrence.
1696          unsigned FoundIndex = Add->getNumOperands();
1697          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1698            if (Add->getOperand(i) == SymbolicName)
1699              if (FoundIndex == e) {
1700                FoundIndex = i;
1701                break;
1702              }
1703
1704          if (FoundIndex != Add->getNumOperands()) {
1705            // Create an add with everything but the specified operand.
1706            std::vector<SCEVHandle> Ops;
1707            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1708              if (i != FoundIndex)
1709                Ops.push_back(Add->getOperand(i));
1710            SCEVHandle Accum = getAddExpr(Ops);
1711
1712            // This is not a valid addrec if the step amount is varying each
1713            // loop iteration, but is not itself an addrec in this loop.
1714            if (Accum->isLoopInvariant(L) ||
1715                (isa<SCEVAddRecExpr>(Accum) &&
1716                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1717              SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1718              SCEVHandle PHISCEV  = getAddRecExpr(StartVal, Accum, L);
1719
1720              // Okay, for the entire analysis of this edge we assumed the PHI
1721              // to be symbolic.  We now need to go back and update all of the
1722              // entries for the scalars that use the PHI (except for the PHI
1723              // itself) to use the new analyzed value instead of the "symbolic"
1724              // value.
1725              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1726              return PHISCEV;
1727            }
1728          }
1729        } else if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) {
1730          // Otherwise, this could be a loop like this:
1731          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
1732          // In this case, j = {1,+,1}  and BEValue is j.
1733          // Because the other in-value of i (0) fits the evolution of BEValue
1734          // i really is an addrec evolution.
1735          if (AddRec->getLoop() == L && AddRec->isAffine()) {
1736            SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1737
1738            // If StartVal = j.start - j.stride, we can use StartVal as the
1739            // initial step of the addrec evolution.
1740            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
1741                                            AddRec->getOperand(1))) {
1742              SCEVHandle PHISCEV =
1743                 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
1744
1745              // Okay, for the entire analysis of this edge we assumed the PHI
1746              // to be symbolic.  We now need to go back and update all of the
1747              // entries for the scalars that use the PHI (except for the PHI
1748              // itself) to use the new analyzed value instead of the "symbolic"
1749              // value.
1750              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1751              return PHISCEV;
1752            }
1753          }
1754        }
1755
1756        return SymbolicName;
1757      }
1758
1759  // If it's not a loop phi, we can't handle it yet.
1760  return getUnknown(PN);
1761}
1762
1763/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
1764/// guaranteed to end in (at every loop iteration).  It is, at the same time,
1765/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
1766/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
1767static uint32_t GetMinTrailingZeros(SCEVHandle S, const ScalarEvolution &SE) {
1768  if (SCEVConstant *C = dyn_cast<SCEVConstant>(S))
1769    return C->getValue()->getValue().countTrailingZeros();
1770
1771  if (SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
1772    return std::min(GetMinTrailingZeros(T->getOperand(), SE),
1773                    (uint32_t)SE.getTypeSizeInBits(T->getType()));
1774
1775  if (SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
1776    uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE);
1777    return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ?
1778             SE.getTypeSizeInBits(E->getOperand()->getType()) : OpRes;
1779  }
1780
1781  if (SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
1782    uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE);
1783    return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ?
1784             SE.getTypeSizeInBits(E->getOperand()->getType()) : OpRes;
1785  }
1786
1787  if (SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
1788    // The result is the min of all operands results.
1789    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE);
1790    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
1791      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE));
1792    return MinOpRes;
1793  }
1794
1795  if (SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
1796    // The result is the sum of all operands results.
1797    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
1798    uint32_t BitWidth = SE.getTypeSizeInBits(M->getType());
1799    for (unsigned i = 1, e = M->getNumOperands();
1800         SumOpRes != BitWidth && i != e; ++i)
1801      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i), SE),
1802                          BitWidth);
1803    return SumOpRes;
1804  }
1805
1806  if (SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
1807    // The result is the min of all operands results.
1808    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE);
1809    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
1810      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE));
1811    return MinOpRes;
1812  }
1813
1814  if (SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
1815    // The result is the min of all operands results.
1816    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
1817    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
1818      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE));
1819    return MinOpRes;
1820  }
1821
1822  if (SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
1823    // The result is the min of all operands results.
1824    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
1825    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
1826      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE));
1827    return MinOpRes;
1828  }
1829
1830  // SCEVUDivExpr, SCEVUnknown
1831  return 0;
1832}
1833
1834/// createSCEV - We know that there is no SCEV for the specified value.
1835/// Analyze the expression.
1836///
1837SCEVHandle ScalarEvolution::createSCEV(Value *V) {
1838  if (!isSCEVable(V->getType()))
1839    return getUnknown(V);
1840
1841  unsigned Opcode = Instruction::UserOp1;
1842  if (Instruction *I = dyn_cast<Instruction>(V))
1843    Opcode = I->getOpcode();
1844  else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1845    Opcode = CE->getOpcode();
1846  else
1847    return getUnknown(V);
1848
1849  User *U = cast<User>(V);
1850  switch (Opcode) {
1851  case Instruction::Add:
1852    return getAddExpr(getSCEV(U->getOperand(0)),
1853                      getSCEV(U->getOperand(1)));
1854  case Instruction::Mul:
1855    return getMulExpr(getSCEV(U->getOperand(0)),
1856                      getSCEV(U->getOperand(1)));
1857  case Instruction::UDiv:
1858    return getUDivExpr(getSCEV(U->getOperand(0)),
1859                       getSCEV(U->getOperand(1)));
1860  case Instruction::Sub:
1861    return getMinusSCEV(getSCEV(U->getOperand(0)),
1862                        getSCEV(U->getOperand(1)));
1863  case Instruction::And:
1864    // For an expression like x&255 that merely masks off the high bits,
1865    // use zext(trunc(x)) as the SCEV expression.
1866    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
1867      if (CI->isNullValue())
1868        return getSCEV(U->getOperand(1));
1869      if (CI->isAllOnesValue())
1870        return getSCEV(U->getOperand(0));
1871      const APInt &A = CI->getValue();
1872      unsigned Ones = A.countTrailingOnes();
1873      if (APIntOps::isMask(Ones, A))
1874        return
1875          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
1876                                            IntegerType::get(Ones)),
1877                            U->getType());
1878    }
1879    break;
1880  case Instruction::Or:
1881    // If the RHS of the Or is a constant, we may have something like:
1882    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
1883    // optimizations will transparently handle this case.
1884    //
1885    // In order for this transformation to be safe, the LHS must be of the
1886    // form X*(2^n) and the Or constant must be less than 2^n.
1887    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
1888      SCEVHandle LHS = getSCEV(U->getOperand(0));
1889      const APInt &CIVal = CI->getValue();
1890      if (GetMinTrailingZeros(LHS, *this) >=
1891          (CIVal.getBitWidth() - CIVal.countLeadingZeros()))
1892        return getAddExpr(LHS, getSCEV(U->getOperand(1)));
1893    }
1894    break;
1895  case Instruction::Xor:
1896    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
1897      // If the RHS of the xor is a signbit, then this is just an add.
1898      // Instcombine turns add of signbit into xor as a strength reduction step.
1899      if (CI->getValue().isSignBit())
1900        return getAddExpr(getSCEV(U->getOperand(0)),
1901                          getSCEV(U->getOperand(1)));
1902
1903      // If the RHS of xor is -1, then this is a not operation.
1904      else if (CI->isAllOnesValue())
1905        return getNotSCEV(getSCEV(U->getOperand(0)));
1906    }
1907    break;
1908
1909  case Instruction::Shl:
1910    // Turn shift left of a constant amount into a multiply.
1911    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
1912      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
1913      Constant *X = ConstantInt::get(
1914        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
1915      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
1916    }
1917    break;
1918
1919  case Instruction::LShr:
1920    // Turn logical shift right of a constant into a unsigned divide.
1921    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
1922      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
1923      Constant *X = ConstantInt::get(
1924        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
1925      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
1926    }
1927    break;
1928
1929  case Instruction::AShr:
1930    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
1931    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
1932      if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
1933        if (L->getOpcode() == Instruction::Shl &&
1934            L->getOperand(1) == U->getOperand(1)) {
1935          unsigned BitWidth = getTypeSizeInBits(U->getType());
1936          uint64_t Amt = BitWidth - CI->getZExtValue();
1937          if (Amt == BitWidth)
1938            return getSCEV(L->getOperand(0));       // shift by zero --> noop
1939          if (Amt > BitWidth)
1940            return getIntegerSCEV(0, U->getType()); // value is undefined
1941          return
1942            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
1943                                                      IntegerType::get(Amt)),
1944                                 U->getType());
1945        }
1946    break;
1947
1948  case Instruction::Trunc:
1949    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
1950
1951  case Instruction::ZExt:
1952    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
1953
1954  case Instruction::SExt:
1955    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
1956
1957  case Instruction::BitCast:
1958    // BitCasts are no-op casts so we just eliminate the cast.
1959    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
1960      return getSCEV(U->getOperand(0));
1961    break;
1962
1963  case Instruction::IntToPtr:
1964    if (!TD) break; // Without TD we can't analyze pointers.
1965    return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
1966                                   TD->getIntPtrType());
1967
1968  case Instruction::PtrToInt:
1969    if (!TD) break; // Without TD we can't analyze pointers.
1970    return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
1971                                   U->getType());
1972
1973  case Instruction::GetElementPtr: {
1974    if (!TD) break; // Without TD we can't analyze pointers.
1975    const Type *IntPtrTy = TD->getIntPtrType();
1976    Value *Base = U->getOperand(0);
1977    SCEVHandle TotalOffset = getIntegerSCEV(0, IntPtrTy);
1978    gep_type_iterator GTI = gep_type_begin(U);
1979    for (GetElementPtrInst::op_iterator I = next(U->op_begin()),
1980                                        E = U->op_end();
1981         I != E; ++I) {
1982      Value *Index = *I;
1983      // Compute the (potentially symbolic) offset in bytes for this index.
1984      if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
1985        // For a struct, add the member offset.
1986        const StructLayout &SL = *TD->getStructLayout(STy);
1987        unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
1988        uint64_t Offset = SL.getElementOffset(FieldNo);
1989        TotalOffset = getAddExpr(TotalOffset,
1990                                    getIntegerSCEV(Offset, IntPtrTy));
1991      } else {
1992        // For an array, add the element offset, explicitly scaled.
1993        SCEVHandle LocalOffset = getSCEV(Index);
1994        if (!isa<PointerType>(LocalOffset->getType()))
1995          // Getelementptr indicies are signed.
1996          LocalOffset = getTruncateOrSignExtend(LocalOffset,
1997                                                IntPtrTy);
1998        LocalOffset =
1999          getMulExpr(LocalOffset,
2000                     getIntegerSCEV(TD->getTypePaddedSize(*GTI),
2001                                    IntPtrTy));
2002        TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2003      }
2004    }
2005    return getAddExpr(getSCEV(Base), TotalOffset);
2006  }
2007
2008  case Instruction::PHI:
2009    return createNodeForPHI(cast<PHINode>(U));
2010
2011  case Instruction::Select:
2012    // This could be a smax or umax that was lowered earlier.
2013    // Try to recover it.
2014    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
2015      Value *LHS = ICI->getOperand(0);
2016      Value *RHS = ICI->getOperand(1);
2017      switch (ICI->getPredicate()) {
2018      case ICmpInst::ICMP_SLT:
2019      case ICmpInst::ICMP_SLE:
2020        std::swap(LHS, RHS);
2021        // fall through
2022      case ICmpInst::ICMP_SGT:
2023      case ICmpInst::ICMP_SGE:
2024        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2025          return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
2026        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2027          // ~smax(~x, ~y) == smin(x, y).
2028          return getNotSCEV(getSMaxExpr(
2029                                   getNotSCEV(getSCEV(LHS)),
2030                                   getNotSCEV(getSCEV(RHS))));
2031        break;
2032      case ICmpInst::ICMP_ULT:
2033      case ICmpInst::ICMP_ULE:
2034        std::swap(LHS, RHS);
2035        // fall through
2036      case ICmpInst::ICMP_UGT:
2037      case ICmpInst::ICMP_UGE:
2038        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2039          return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
2040        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2041          // ~umax(~x, ~y) == umin(x, y)
2042          return getNotSCEV(getUMaxExpr(getNotSCEV(getSCEV(LHS)),
2043                                        getNotSCEV(getSCEV(RHS))));
2044        break;
2045      default:
2046        break;
2047      }
2048    }
2049
2050  default: // We cannot analyze this expression.
2051    break;
2052  }
2053
2054  return getUnknown(V);
2055}
2056
2057
2058
2059//===----------------------------------------------------------------------===//
2060//                   Iteration Count Computation Code
2061//
2062
2063/// getBackedgeTakenCount - If the specified loop has a predictable
2064/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
2065/// object. The backedge-taken count is the number of times the loop header
2066/// will be branched to from within the loop. This is one less than the
2067/// trip count of the loop, since it doesn't count the first iteration,
2068/// when the header is branched to from outside the loop.
2069///
2070/// Note that it is not valid to call this method on a loop without a
2071/// loop-invariant backedge-taken count (see
2072/// hasLoopInvariantBackedgeTakenCount).
2073///
2074SCEVHandle ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
2075  return getBackedgeTakenInfo(L).Exact;
2076}
2077
2078/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
2079/// return the least SCEV value that is known never to be less than the
2080/// actual backedge taken count.
2081SCEVHandle ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
2082  return getBackedgeTakenInfo(L).Max;
2083}
2084
2085const ScalarEvolution::BackedgeTakenInfo &
2086ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
2087  // Initially insert a CouldNotCompute for this loop. If the insertion
2088  // succeeds, procede to actually compute a backedge-taken count and
2089  // update the value. The temporary CouldNotCompute value tells SCEV
2090  // code elsewhere that it shouldn't attempt to request a new
2091  // backedge-taken count, which could result in infinite recursion.
2092  std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair =
2093    BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
2094  if (Pair.second) {
2095    BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
2096    if (ItCount.Exact != UnknownValue) {
2097      assert(ItCount.Exact->isLoopInvariant(L) &&
2098             ItCount.Max->isLoopInvariant(L) &&
2099             "Computed trip count isn't loop invariant for loop!");
2100      ++NumTripCountsComputed;
2101
2102      // Update the value in the map.
2103      Pair.first->second = ItCount;
2104    } else if (isa<PHINode>(L->getHeader()->begin())) {
2105      // Only count loops that have phi nodes as not being computable.
2106      ++NumTripCountsNotComputed;
2107    }
2108
2109    // Now that we know more about the trip count for this loop, forget any
2110    // existing SCEV values for PHI nodes in this loop since they are only
2111    // conservative estimates made without the benefit
2112    // of trip count information.
2113    if (ItCount.hasAnyInfo())
2114      forgetLoopPHIs(L);
2115  }
2116  return Pair.first->second;
2117}
2118
2119/// forgetLoopBackedgeTakenCount - This method should be called by the
2120/// client when it has changed a loop in a way that may effect
2121/// ScalarEvolution's ability to compute a trip count, or if the loop
2122/// is deleted.
2123void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) {
2124  BackedgeTakenCounts.erase(L);
2125  forgetLoopPHIs(L);
2126}
2127
2128/// forgetLoopPHIs - Delete the memoized SCEVs associated with the
2129/// PHI nodes in the given loop. This is used when the trip count of
2130/// the loop may have changed.
2131void ScalarEvolution::forgetLoopPHIs(const Loop *L) {
2132  for (BasicBlock::iterator I = L->getHeader()->begin();
2133       PHINode *PN = dyn_cast<PHINode>(I); ++I)
2134    deleteValueFromRecords(PN);
2135}
2136
2137/// ComputeBackedgeTakenCount - Compute the number of times the backedge
2138/// of the specified loop will execute.
2139ScalarEvolution::BackedgeTakenInfo
2140ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
2141  // If the loop has a non-one exit block count, we can't analyze it.
2142  SmallVector<BasicBlock*, 8> ExitBlocks;
2143  L->getExitBlocks(ExitBlocks);
2144  if (ExitBlocks.size() != 1) return UnknownValue;
2145
2146  // Okay, there is one exit block.  Try to find the condition that causes the
2147  // loop to be exited.
2148  BasicBlock *ExitBlock = ExitBlocks[0];
2149
2150  BasicBlock *ExitingBlock = 0;
2151  for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
2152       PI != E; ++PI)
2153    if (L->contains(*PI)) {
2154      if (ExitingBlock == 0)
2155        ExitingBlock = *PI;
2156      else
2157        return UnknownValue;   // More than one block exiting!
2158    }
2159  assert(ExitingBlock && "No exits from loop, something is broken!");
2160
2161  // Okay, we've computed the exiting block.  See what condition causes us to
2162  // exit.
2163  //
2164  // FIXME: we should be able to handle switch instructions (with a single exit)
2165  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2166  if (ExitBr == 0) return UnknownValue;
2167  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
2168
2169  // At this point, we know we have a conditional branch that determines whether
2170  // the loop is exited.  However, we don't know if the branch is executed each
2171  // time through the loop.  If not, then the execution count of the branch will
2172  // not be equal to the trip count of the loop.
2173  //
2174  // Currently we check for this by checking to see if the Exit branch goes to
2175  // the loop header.  If so, we know it will always execute the same number of
2176  // times as the loop.  We also handle the case where the exit block *is* the
2177  // loop header.  This is common for un-rotated loops.  More extensive analysis
2178  // could be done to handle more cases here.
2179  if (ExitBr->getSuccessor(0) != L->getHeader() &&
2180      ExitBr->getSuccessor(1) != L->getHeader() &&
2181      ExitBr->getParent() != L->getHeader())
2182    return UnknownValue;
2183
2184  ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition());
2185
2186  // If it's not an integer comparison then compute it the hard way.
2187  // Note that ICmpInst deals with pointer comparisons too so we must check
2188  // the type of the operand.
2189  if (ExitCond == 0 || isa<PointerType>(ExitCond->getOperand(0)->getType()))
2190    return ComputeBackedgeTakenCountExhaustively(L, ExitBr->getCondition(),
2191                                          ExitBr->getSuccessor(0) == ExitBlock);
2192
2193  // If the condition was exit on true, convert the condition to exit on false
2194  ICmpInst::Predicate Cond;
2195  if (ExitBr->getSuccessor(1) == ExitBlock)
2196    Cond = ExitCond->getPredicate();
2197  else
2198    Cond = ExitCond->getInversePredicate();
2199
2200  // Handle common loops like: for (X = "string"; *X; ++X)
2201  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
2202    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
2203      SCEVHandle ItCnt =
2204        ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
2205      if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
2206    }
2207
2208  SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
2209  SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
2210
2211  // Try to evaluate any dependencies out of the loop.
2212  SCEVHandle Tmp = getSCEVAtScope(LHS, L);
2213  if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
2214  Tmp = getSCEVAtScope(RHS, L);
2215  if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
2216
2217  // At this point, we would like to compute how many iterations of the
2218  // loop the predicate will return true for these inputs.
2219  if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
2220    // If there is a loop-invariant, force it into the RHS.
2221    std::swap(LHS, RHS);
2222    Cond = ICmpInst::getSwappedPredicate(Cond);
2223  }
2224
2225  // If we have a comparison of a chrec against a constant, try to use value
2226  // ranges to answer this query.
2227  if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
2228    if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
2229      if (AddRec->getLoop() == L) {
2230        // Form the comparison range using the constant of the correct type so
2231        // that the ConstantRange class knows to do a signed or unsigned
2232        // comparison.
2233        ConstantInt *CompVal = RHSC->getValue();
2234        const Type *RealTy = ExitCond->getOperand(0)->getType();
2235        CompVal = dyn_cast<ConstantInt>(
2236          ConstantExpr::getBitCast(CompVal, RealTy));
2237        if (CompVal) {
2238          // Form the constant range.
2239          ConstantRange CompRange(
2240              ICmpInst::makeConstantRange(Cond, CompVal->getValue()));
2241
2242          SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, *this);
2243          if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
2244        }
2245      }
2246
2247  switch (Cond) {
2248  case ICmpInst::ICMP_NE: {                     // while (X != Y)
2249    // Convert to: while (X-Y != 0)
2250    SCEVHandle TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
2251    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2252    break;
2253  }
2254  case ICmpInst::ICMP_EQ: {
2255    // Convert to: while (X-Y == 0)           // while (X == Y)
2256    SCEVHandle TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
2257    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2258    break;
2259  }
2260  case ICmpInst::ICMP_SLT: {
2261    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
2262    if (BTI.hasAnyInfo()) return BTI;
2263    break;
2264  }
2265  case ICmpInst::ICMP_SGT: {
2266    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
2267                                             getNotSCEV(RHS), L, true);
2268    if (BTI.hasAnyInfo()) return BTI;
2269    break;
2270  }
2271  case ICmpInst::ICMP_ULT: {
2272    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
2273    if (BTI.hasAnyInfo()) return BTI;
2274    break;
2275  }
2276  case ICmpInst::ICMP_UGT: {
2277    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
2278                                             getNotSCEV(RHS), L, false);
2279    if (BTI.hasAnyInfo()) return BTI;
2280    break;
2281  }
2282  default:
2283#if 0
2284    errs() << "ComputeBackedgeTakenCount ";
2285    if (ExitCond->getOperand(0)->getType()->isUnsigned())
2286      errs() << "[unsigned] ";
2287    errs() << *LHS << "   "
2288         << Instruction::getOpcodeName(Instruction::ICmp)
2289         << "   " << *RHS << "\n";
2290#endif
2291    break;
2292  }
2293  return
2294    ComputeBackedgeTakenCountExhaustively(L, ExitCond,
2295                                          ExitBr->getSuccessor(0) == ExitBlock);
2296}
2297
2298static ConstantInt *
2299EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
2300                                ScalarEvolution &SE) {
2301  SCEVHandle InVal = SE.getConstant(C);
2302  SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE);
2303  assert(isa<SCEVConstant>(Val) &&
2304         "Evaluation of SCEV at constant didn't fold correctly?");
2305  return cast<SCEVConstant>(Val)->getValue();
2306}
2307
2308/// GetAddressedElementFromGlobal - Given a global variable with an initializer
2309/// and a GEP expression (missing the pointer index) indexing into it, return
2310/// the addressed element of the initializer or null if the index expression is
2311/// invalid.
2312static Constant *
2313GetAddressedElementFromGlobal(GlobalVariable *GV,
2314                              const std::vector<ConstantInt*> &Indices) {
2315  Constant *Init = GV->getInitializer();
2316  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
2317    uint64_t Idx = Indices[i]->getZExtValue();
2318    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
2319      assert(Idx < CS->getNumOperands() && "Bad struct index!");
2320      Init = cast<Constant>(CS->getOperand(Idx));
2321    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
2322      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
2323      Init = cast<Constant>(CA->getOperand(Idx));
2324    } else if (isa<ConstantAggregateZero>(Init)) {
2325      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
2326        assert(Idx < STy->getNumElements() && "Bad struct index!");
2327        Init = Constant::getNullValue(STy->getElementType(Idx));
2328      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
2329        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
2330        Init = Constant::getNullValue(ATy->getElementType());
2331      } else {
2332        assert(0 && "Unknown constant aggregate type!");
2333      }
2334      return 0;
2335    } else {
2336      return 0; // Unknown initializer type
2337    }
2338  }
2339  return Init;
2340}
2341
2342/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
2343/// 'icmp op load X, cst', try to see if we can compute the backedge
2344/// execution count.
2345SCEVHandle ScalarEvolution::
2346ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS,
2347                                             const Loop *L,
2348                                             ICmpInst::Predicate predicate) {
2349  if (LI->isVolatile()) return UnknownValue;
2350
2351  // Check to see if the loaded pointer is a getelementptr of a global.
2352  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
2353  if (!GEP) return UnknownValue;
2354
2355  // Make sure that it is really a constant global we are gepping, with an
2356  // initializer, and make sure the first IDX is really 0.
2357  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
2358  if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
2359      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
2360      !cast<Constant>(GEP->getOperand(1))->isNullValue())
2361    return UnknownValue;
2362
2363  // Okay, we allow one non-constant index into the GEP instruction.
2364  Value *VarIdx = 0;
2365  std::vector<ConstantInt*> Indexes;
2366  unsigned VarIdxNum = 0;
2367  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
2368    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
2369      Indexes.push_back(CI);
2370    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
2371      if (VarIdx) return UnknownValue;  // Multiple non-constant idx's.
2372      VarIdx = GEP->getOperand(i);
2373      VarIdxNum = i-2;
2374      Indexes.push_back(0);
2375    }
2376
2377  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
2378  // Check to see if X is a loop variant variable value now.
2379  SCEVHandle Idx = getSCEV(VarIdx);
2380  SCEVHandle Tmp = getSCEVAtScope(Idx, L);
2381  if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
2382
2383  // We can only recognize very limited forms of loop index expressions, in
2384  // particular, only affine AddRec's like {C1,+,C2}.
2385  SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
2386  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
2387      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
2388      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
2389    return UnknownValue;
2390
2391  unsigned MaxSteps = MaxBruteForceIterations;
2392  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
2393    ConstantInt *ItCst =
2394      ConstantInt::get(IdxExpr->getType(), IterationNum);
2395    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
2396
2397    // Form the GEP offset.
2398    Indexes[VarIdxNum] = Val;
2399
2400    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
2401    if (Result == 0) break;  // Cannot compute!
2402
2403    // Evaluate the condition for this iteration.
2404    Result = ConstantExpr::getICmp(predicate, Result, RHS);
2405    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
2406    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
2407#if 0
2408      errs() << "\n***\n*** Computed loop count " << *ItCst
2409             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
2410             << "***\n";
2411#endif
2412      ++NumArrayLenItCounts;
2413      return getConstant(ItCst);   // Found terminating iteration!
2414    }
2415  }
2416  return UnknownValue;
2417}
2418
2419
2420/// CanConstantFold - Return true if we can constant fold an instruction of the
2421/// specified type, assuming that all operands were constants.
2422static bool CanConstantFold(const Instruction *I) {
2423  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
2424      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
2425    return true;
2426
2427  if (const CallInst *CI = dyn_cast<CallInst>(I))
2428    if (const Function *F = CI->getCalledFunction())
2429      return canConstantFoldCallTo(F);
2430  return false;
2431}
2432
2433/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
2434/// in the loop that V is derived from.  We allow arbitrary operations along the
2435/// way, but the operands of an operation must either be constants or a value
2436/// derived from a constant PHI.  If this expression does not fit with these
2437/// constraints, return null.
2438static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
2439  // If this is not an instruction, or if this is an instruction outside of the
2440  // loop, it can't be derived from a loop PHI.
2441  Instruction *I = dyn_cast<Instruction>(V);
2442  if (I == 0 || !L->contains(I->getParent())) return 0;
2443
2444  if (PHINode *PN = dyn_cast<PHINode>(I)) {
2445    if (L->getHeader() == I->getParent())
2446      return PN;
2447    else
2448      // We don't currently keep track of the control flow needed to evaluate
2449      // PHIs, so we cannot handle PHIs inside of loops.
2450      return 0;
2451  }
2452
2453  // If we won't be able to constant fold this expression even if the operands
2454  // are constants, return early.
2455  if (!CanConstantFold(I)) return 0;
2456
2457  // Otherwise, we can evaluate this instruction if all of its operands are
2458  // constant or derived from a PHI node themselves.
2459  PHINode *PHI = 0;
2460  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
2461    if (!(isa<Constant>(I->getOperand(Op)) ||
2462          isa<GlobalValue>(I->getOperand(Op)))) {
2463      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
2464      if (P == 0) return 0;  // Not evolving from PHI
2465      if (PHI == 0)
2466        PHI = P;
2467      else if (PHI != P)
2468        return 0;  // Evolving from multiple different PHIs.
2469    }
2470
2471  // This is a expression evolving from a constant PHI!
2472  return PHI;
2473}
2474
2475/// EvaluateExpression - Given an expression that passes the
2476/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
2477/// in the loop has the value PHIVal.  If we can't fold this expression for some
2478/// reason, return null.
2479static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
2480  if (isa<PHINode>(V)) return PHIVal;
2481  if (Constant *C = dyn_cast<Constant>(V)) return C;
2482  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
2483  Instruction *I = cast<Instruction>(V);
2484
2485  std::vector<Constant*> Operands;
2486  Operands.resize(I->getNumOperands());
2487
2488  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2489    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
2490    if (Operands[i] == 0) return 0;
2491  }
2492
2493  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2494    return ConstantFoldCompareInstOperands(CI->getPredicate(),
2495                                           &Operands[0], Operands.size());
2496  else
2497    return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2498                                    &Operands[0], Operands.size());
2499}
2500
2501/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
2502/// in the header of its containing loop, we know the loop executes a
2503/// constant number of times, and the PHI node is just a recurrence
2504/// involving constants, fold it.
2505Constant *ScalarEvolution::
2506getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L){
2507  std::map<PHINode*, Constant*>::iterator I =
2508    ConstantEvolutionLoopExitValue.find(PN);
2509  if (I != ConstantEvolutionLoopExitValue.end())
2510    return I->second;
2511
2512  if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
2513    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
2514
2515  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
2516
2517  // Since the loop is canonicalized, the PHI node must have two entries.  One
2518  // entry must be a constant (coming in from outside of the loop), and the
2519  // second must be derived from the same PHI.
2520  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2521  Constant *StartCST =
2522    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2523  if (StartCST == 0)
2524    return RetVal = 0;  // Must be a constant.
2525
2526  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2527  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2528  if (PN2 != PN)
2529    return RetVal = 0;  // Not derived from same PHI.
2530
2531  // Execute the loop symbolically to determine the exit value.
2532  if (BEs.getActiveBits() >= 32)
2533    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
2534
2535  unsigned NumIterations = BEs.getZExtValue(); // must be in range
2536  unsigned IterationNum = 0;
2537  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
2538    if (IterationNum == NumIterations)
2539      return RetVal = PHIVal;  // Got exit value!
2540
2541    // Compute the value of the PHI node for the next iteration.
2542    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2543    if (NextPHI == PHIVal)
2544      return RetVal = NextPHI;  // Stopped evolving!
2545    if (NextPHI == 0)
2546      return 0;        // Couldn't evaluate!
2547    PHIVal = NextPHI;
2548  }
2549}
2550
2551/// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a
2552/// constant number of times (the condition evolves only from constants),
2553/// try to evaluate a few iterations of the loop until we get the exit
2554/// condition gets a value of ExitWhen (true or false).  If we cannot
2555/// evaluate the trip count of the loop, return UnknownValue.
2556SCEVHandle ScalarEvolution::
2557ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
2558  PHINode *PN = getConstantEvolvingPHI(Cond, L);
2559  if (PN == 0) return UnknownValue;
2560
2561  // Since the loop is canonicalized, the PHI node must have two entries.  One
2562  // entry must be a constant (coming in from outside of the loop), and the
2563  // second must be derived from the same PHI.
2564  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2565  Constant *StartCST =
2566    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2567  if (StartCST == 0) return UnknownValue;  // Must be a constant.
2568
2569  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2570  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2571  if (PN2 != PN) return UnknownValue;  // Not derived from same PHI.
2572
2573  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
2574  // the loop symbolically to determine when the condition gets a value of
2575  // "ExitWhen".
2576  unsigned IterationNum = 0;
2577  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
2578  for (Constant *PHIVal = StartCST;
2579       IterationNum != MaxIterations; ++IterationNum) {
2580    ConstantInt *CondVal =
2581      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
2582
2583    // Couldn't symbolically evaluate.
2584    if (!CondVal) return UnknownValue;
2585
2586    if (CondVal->getValue() == uint64_t(ExitWhen)) {
2587      ConstantEvolutionLoopExitValue[PN] = PHIVal;
2588      ++NumBruteForceTripCountsComputed;
2589      return getConstant(ConstantInt::get(Type::Int32Ty, IterationNum));
2590    }
2591
2592    // Compute the value of the PHI node for the next iteration.
2593    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2594    if (NextPHI == 0 || NextPHI == PHIVal)
2595      return UnknownValue;  // Couldn't evaluate or not making progress...
2596    PHIVal = NextPHI;
2597  }
2598
2599  // Too many iterations were needed to evaluate.
2600  return UnknownValue;
2601}
2602
2603/// getSCEVAtScope - Compute the value of the specified expression within the
2604/// indicated loop (which may be null to indicate in no loop).  If the
2605/// expression cannot be evaluated, return UnknownValue.
2606SCEVHandle ScalarEvolution::getSCEVAtScope(SCEV *V, const Loop *L) {
2607  // FIXME: this should be turned into a virtual method on SCEV!
2608
2609  if (isa<SCEVConstant>(V)) return V;
2610
2611  // If this instruction is evolved from a constant-evolving PHI, compute the
2612  // exit value from the loop without using SCEVs.
2613  if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
2614    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
2615      const Loop *LI = (*this->LI)[I->getParent()];
2616      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
2617        if (PHINode *PN = dyn_cast<PHINode>(I))
2618          if (PN->getParent() == LI->getHeader()) {
2619            // Okay, there is no closed form solution for the PHI node.  Check
2620            // to see if the loop that contains it has a known backedge-taken
2621            // count.  If so, we may be able to force computation of the exit
2622            // value.
2623            SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(LI);
2624            if (SCEVConstant *BTCC =
2625                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
2626              // Okay, we know how many times the containing loop executes.  If
2627              // this is a constant evolving PHI node, get the final value at
2628              // the specified iteration number.
2629              Constant *RV = getConstantEvolutionLoopExitValue(PN,
2630                                                   BTCC->getValue()->getValue(),
2631                                                               LI);
2632              if (RV) return getUnknown(RV);
2633            }
2634          }
2635
2636      // Okay, this is an expression that we cannot symbolically evaluate
2637      // into a SCEV.  Check to see if it's possible to symbolically evaluate
2638      // the arguments into constants, and if so, try to constant propagate the
2639      // result.  This is particularly useful for computing loop exit values.
2640      if (CanConstantFold(I)) {
2641        std::vector<Constant*> Operands;
2642        Operands.reserve(I->getNumOperands());
2643        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2644          Value *Op = I->getOperand(i);
2645          if (Constant *C = dyn_cast<Constant>(Op)) {
2646            Operands.push_back(C);
2647          } else {
2648            // If any of the operands is non-constant and if they are
2649            // non-integer and non-pointer, don't even try to analyze them
2650            // with scev techniques.
2651            if (!isSCEVable(Op->getType()))
2652              return V;
2653
2654            SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
2655            if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
2656              Constant *C = SC->getValue();
2657              if (C->getType() != Op->getType())
2658                C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
2659                                                                  Op->getType(),
2660                                                                  false),
2661                                          C, Op->getType());
2662              Operands.push_back(C);
2663            } else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
2664              if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
2665                if (C->getType() != Op->getType())
2666                  C =
2667                    ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
2668                                                                  Op->getType(),
2669                                                                  false),
2670                                          C, Op->getType());
2671                Operands.push_back(C);
2672              } else
2673                return V;
2674            } else {
2675              return V;
2676            }
2677          }
2678        }
2679
2680        Constant *C;
2681        if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2682          C = ConstantFoldCompareInstOperands(CI->getPredicate(),
2683                                              &Operands[0], Operands.size());
2684        else
2685          C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2686                                       &Operands[0], Operands.size());
2687        return getUnknown(C);
2688      }
2689    }
2690
2691    // This is some other type of SCEVUnknown, just return it.
2692    return V;
2693  }
2694
2695  if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
2696    // Avoid performing the look-up in the common case where the specified
2697    // expression has no loop-variant portions.
2698    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
2699      SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2700      if (OpAtScope != Comm->getOperand(i)) {
2701        if (OpAtScope == UnknownValue) return UnknownValue;
2702        // Okay, at least one of these operands is loop variant but might be
2703        // foldable.  Build a new instance of the folded commutative expression.
2704        std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
2705        NewOps.push_back(OpAtScope);
2706
2707        for (++i; i != e; ++i) {
2708          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2709          if (OpAtScope == UnknownValue) return UnknownValue;
2710          NewOps.push_back(OpAtScope);
2711        }
2712        if (isa<SCEVAddExpr>(Comm))
2713          return getAddExpr(NewOps);
2714        if (isa<SCEVMulExpr>(Comm))
2715          return getMulExpr(NewOps);
2716        if (isa<SCEVSMaxExpr>(Comm))
2717          return getSMaxExpr(NewOps);
2718        if (isa<SCEVUMaxExpr>(Comm))
2719          return getUMaxExpr(NewOps);
2720        assert(0 && "Unknown commutative SCEV type!");
2721      }
2722    }
2723    // If we got here, all operands are loop invariant.
2724    return Comm;
2725  }
2726
2727  if (SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
2728    SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
2729    if (LHS == UnknownValue) return LHS;
2730    SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
2731    if (RHS == UnknownValue) return RHS;
2732    if (LHS == Div->getLHS() && RHS == Div->getRHS())
2733      return Div;   // must be loop invariant
2734    return getUDivExpr(LHS, RHS);
2735  }
2736
2737  // If this is a loop recurrence for a loop that does not contain L, then we
2738  // are dealing with the final value computed by the loop.
2739  if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
2740    if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
2741      // To evaluate this recurrence, we need to know how many times the AddRec
2742      // loop iterates.  Compute this now.
2743      SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
2744      if (BackedgeTakenCount == UnknownValue) return UnknownValue;
2745
2746      // Then, evaluate the AddRec.
2747      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
2748    }
2749    return UnknownValue;
2750  }
2751
2752  if (SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
2753    SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
2754    if (Op == UnknownValue) return Op;
2755    if (Op == Cast->getOperand())
2756      return Cast;  // must be loop invariant
2757    return getZeroExtendExpr(Op, Cast->getType());
2758  }
2759
2760  if (SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
2761    SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
2762    if (Op == UnknownValue) return Op;
2763    if (Op == Cast->getOperand())
2764      return Cast;  // must be loop invariant
2765    return getSignExtendExpr(Op, Cast->getType());
2766  }
2767
2768  if (SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
2769    SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
2770    if (Op == UnknownValue) return Op;
2771    if (Op == Cast->getOperand())
2772      return Cast;  // must be loop invariant
2773    return getTruncateExpr(Op, Cast->getType());
2774  }
2775
2776  assert(0 && "Unknown SCEV type!");
2777}
2778
2779/// getSCEVAtScope - Return a SCEV expression handle for the specified value
2780/// at the specified scope in the program.  The L value specifies a loop
2781/// nest to evaluate the expression at, where null is the top-level or a
2782/// specified loop is immediately inside of the loop.
2783///
2784/// This method can be used to compute the exit value for a variable defined
2785/// in a loop by querying what the value will hold in the parent loop.
2786///
2787/// If this value is not computable at this scope, a SCEVCouldNotCompute
2788/// object is returned.
2789SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
2790  return getSCEVAtScope(getSCEV(V), L);
2791}
2792
2793/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
2794/// following equation:
2795///
2796///     A * X = B (mod N)
2797///
2798/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
2799/// A and B isn't important.
2800///
2801/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
2802static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
2803                                               ScalarEvolution &SE) {
2804  uint32_t BW = A.getBitWidth();
2805  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
2806  assert(A != 0 && "A must be non-zero.");
2807
2808  // 1. D = gcd(A, N)
2809  //
2810  // The gcd of A and N may have only one prime factor: 2. The number of
2811  // trailing zeros in A is its multiplicity
2812  uint32_t Mult2 = A.countTrailingZeros();
2813  // D = 2^Mult2
2814
2815  // 2. Check if B is divisible by D.
2816  //
2817  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
2818  // is not less than multiplicity of this prime factor for D.
2819  if (B.countTrailingZeros() < Mult2)
2820    return SE.getCouldNotCompute();
2821
2822  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
2823  // modulo (N / D).
2824  //
2825  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
2826  // bit width during computations.
2827  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
2828  APInt Mod(BW + 1, 0);
2829  Mod.set(BW - Mult2);  // Mod = N / D
2830  APInt I = AD.multiplicativeInverse(Mod);
2831
2832  // 4. Compute the minimum unsigned root of the equation:
2833  // I * (B / D) mod (N / D)
2834  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
2835
2836  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
2837  // bits.
2838  return SE.getConstant(Result.trunc(BW));
2839}
2840
2841/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
2842/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
2843/// might be the same) or two SCEVCouldNotCompute objects.
2844///
2845static std::pair<SCEVHandle,SCEVHandle>
2846SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
2847  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
2848  SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
2849  SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
2850  SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
2851
2852  // We currently can only solve this if the coefficients are constants.
2853  if (!LC || !MC || !NC) {
2854    SCEV *CNC = SE.getCouldNotCompute();
2855    return std::make_pair(CNC, CNC);
2856  }
2857
2858  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
2859  const APInt &L = LC->getValue()->getValue();
2860  const APInt &M = MC->getValue()->getValue();
2861  const APInt &N = NC->getValue()->getValue();
2862  APInt Two(BitWidth, 2);
2863  APInt Four(BitWidth, 4);
2864
2865  {
2866    using namespace APIntOps;
2867    const APInt& C = L;
2868    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
2869    // The B coefficient is M-N/2
2870    APInt B(M);
2871    B -= sdiv(N,Two);
2872
2873    // The A coefficient is N/2
2874    APInt A(N.sdiv(Two));
2875
2876    // Compute the B^2-4ac term.
2877    APInt SqrtTerm(B);
2878    SqrtTerm *= B;
2879    SqrtTerm -= Four * (A * C);
2880
2881    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
2882    // integer value or else APInt::sqrt() will assert.
2883    APInt SqrtVal(SqrtTerm.sqrt());
2884
2885    // Compute the two solutions for the quadratic formula.
2886    // The divisions must be performed as signed divisions.
2887    APInt NegB(-B);
2888    APInt TwoA( A << 1 );
2889    if (TwoA.isMinValue()) {
2890      SCEV *CNC = SE.getCouldNotCompute();
2891      return std::make_pair(CNC, CNC);
2892    }
2893
2894    ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA));
2895    ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA));
2896
2897    return std::make_pair(SE.getConstant(Solution1),
2898                          SE.getConstant(Solution2));
2899    } // end APIntOps namespace
2900}
2901
2902/// HowFarToZero - Return the number of times a backedge comparing the specified
2903/// value to zero will execute.  If not computable, return UnknownValue
2904SCEVHandle ScalarEvolution::HowFarToZero(SCEV *V, const Loop *L) {
2905  // If the value is a constant
2906  if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2907    // If the value is already zero, the branch will execute zero times.
2908    if (C->getValue()->isZero()) return C;
2909    return UnknownValue;  // Otherwise it will loop infinitely.
2910  }
2911
2912  SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
2913  if (!AddRec || AddRec->getLoop() != L)
2914    return UnknownValue;
2915
2916  if (AddRec->isAffine()) {
2917    // If this is an affine expression, the execution count of this branch is
2918    // the minimum unsigned root of the following equation:
2919    //
2920    //     Start + Step*N = 0 (mod 2^BW)
2921    //
2922    // equivalent to:
2923    //
2924    //             Step*N = -Start (mod 2^BW)
2925    //
2926    // where BW is the common bit width of Start and Step.
2927
2928    // Get the initial value for the loop.
2929    SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
2930    if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
2931
2932    SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
2933
2934    if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
2935      // For now we handle only constant steps.
2936
2937      // First, handle unitary steps.
2938      if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so:
2939        return getNegativeSCEV(Start);       //   N = -Start (as unsigned)
2940      if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so:
2941        return Start;                           //    N = Start (as unsigned)
2942
2943      // Then, try to solve the above equation provided that Start is constant.
2944      if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
2945        return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
2946                                            -StartC->getValue()->getValue(),
2947                                            *this);
2948    }
2949  } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
2950    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
2951    // the quadratic equation to solve it.
2952    std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec,
2953                                                                    *this);
2954    SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2955    SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2956    if (R1) {
2957#if 0
2958      errs() << "HFTZ: " << *V << " - sol#1: " << *R1
2959             << "  sol#2: " << *R2 << "\n";
2960#endif
2961      // Pick the smallest positive root value.
2962      if (ConstantInt *CB =
2963          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
2964                                   R1->getValue(), R2->getValue()))) {
2965        if (CB->getZExtValue() == false)
2966          std::swap(R1, R2);   // R1 is the minimum root now.
2967
2968        // We can only use this value if the chrec ends up with an exact zero
2969        // value at this index.  When solving for "X*X != 5", for example, we
2970        // should not accept a root of 2.
2971        SCEVHandle Val = AddRec->evaluateAtIteration(R1, *this);
2972        if (Val->isZero())
2973          return R1;  // We found a quadratic root!
2974      }
2975    }
2976  }
2977
2978  return UnknownValue;
2979}
2980
2981/// HowFarToNonZero - Return the number of times a backedge checking the
2982/// specified value for nonzero will execute.  If not computable, return
2983/// UnknownValue
2984SCEVHandle ScalarEvolution::HowFarToNonZero(SCEV *V, const Loop *L) {
2985  // Loops that look like: while (X == 0) are very strange indeed.  We don't
2986  // handle them yet except for the trivial case.  This could be expanded in the
2987  // future as needed.
2988
2989  // If the value is a constant, check to see if it is known to be non-zero
2990  // already.  If so, the backedge will execute zero times.
2991  if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2992    if (!C->getValue()->isNullValue())
2993      return getIntegerSCEV(0, C->getType());
2994    return UnknownValue;  // Otherwise it will loop infinitely.
2995  }
2996
2997  // We could implement others, but I really doubt anyone writes loops like
2998  // this, and if they did, they would already be constant folded.
2999  return UnknownValue;
3000}
3001
3002/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
3003/// (which may not be an immediate predecessor) which has exactly one
3004/// successor from which BB is reachable, or null if no such block is
3005/// found.
3006///
3007BasicBlock *
3008ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
3009  // If the block has a unique predecessor, then there is no path from the
3010  // predecessor to the block that does not go through the direct edge
3011  // from the predecessor to the block.
3012  if (BasicBlock *Pred = BB->getSinglePredecessor())
3013    return Pred;
3014
3015  // A loop's header is defined to be a block that dominates the loop.
3016  // If the loop has a preheader, it must be a block that has exactly
3017  // one successor that can reach BB. This is slightly more strict
3018  // than necessary, but works if critical edges are split.
3019  if (Loop *L = LI->getLoopFor(BB))
3020    return L->getLoopPreheader();
3021
3022  return 0;
3023}
3024
3025/// isLoopGuardedByCond - Test whether entry to the loop is protected by
3026/// a conditional between LHS and RHS.  This is used to help avoid max
3027/// expressions in loop trip counts.
3028bool ScalarEvolution::isLoopGuardedByCond(const Loop *L,
3029                                          ICmpInst::Predicate Pred,
3030                                          SCEV *LHS, SCEV *RHS) {
3031  BasicBlock *Preheader = L->getLoopPreheader();
3032  BasicBlock *PreheaderDest = L->getHeader();
3033
3034  // Starting at the preheader, climb up the predecessor chain, as long as
3035  // there are predecessors that can be found that have unique successors
3036  // leading to the original header.
3037  for (; Preheader;
3038       PreheaderDest = Preheader,
3039       Preheader = getPredecessorWithUniqueSuccessorForBB(Preheader)) {
3040
3041    BranchInst *LoopEntryPredicate =
3042      dyn_cast<BranchInst>(Preheader->getTerminator());
3043    if (!LoopEntryPredicate ||
3044        LoopEntryPredicate->isUnconditional())
3045      continue;
3046
3047    ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition());
3048    if (!ICI) continue;
3049
3050    // Now that we found a conditional branch that dominates the loop, check to
3051    // see if it is the comparison we are looking for.
3052    Value *PreCondLHS = ICI->getOperand(0);
3053    Value *PreCondRHS = ICI->getOperand(1);
3054    ICmpInst::Predicate Cond;
3055    if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest)
3056      Cond = ICI->getPredicate();
3057    else
3058      Cond = ICI->getInversePredicate();
3059
3060    if (Cond == Pred)
3061      ; // An exact match.
3062    else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE)
3063      ; // The actual condition is beyond sufficient.
3064    else
3065      // Check a few special cases.
3066      switch (Cond) {
3067      case ICmpInst::ICMP_UGT:
3068        if (Pred == ICmpInst::ICMP_ULT) {
3069          std::swap(PreCondLHS, PreCondRHS);
3070          Cond = ICmpInst::ICMP_ULT;
3071          break;
3072        }
3073        continue;
3074      case ICmpInst::ICMP_SGT:
3075        if (Pred == ICmpInst::ICMP_SLT) {
3076          std::swap(PreCondLHS, PreCondRHS);
3077          Cond = ICmpInst::ICMP_SLT;
3078          break;
3079        }
3080        continue;
3081      case ICmpInst::ICMP_NE:
3082        // Expressions like (x >u 0) are often canonicalized to (x != 0),
3083        // so check for this case by checking if the NE is comparing against
3084        // a minimum or maximum constant.
3085        if (!ICmpInst::isTrueWhenEqual(Pred))
3086          if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) {
3087            const APInt &A = CI->getValue();
3088            switch (Pred) {
3089            case ICmpInst::ICMP_SLT:
3090              if (A.isMaxSignedValue()) break;
3091              continue;
3092            case ICmpInst::ICMP_SGT:
3093              if (A.isMinSignedValue()) break;
3094              continue;
3095            case ICmpInst::ICMP_ULT:
3096              if (A.isMaxValue()) break;
3097              continue;
3098            case ICmpInst::ICMP_UGT:
3099              if (A.isMinValue()) break;
3100              continue;
3101            default:
3102              continue;
3103            }
3104            Cond = ICmpInst::ICMP_NE;
3105            // NE is symmetric but the original comparison may not be. Swap
3106            // the operands if necessary so that they match below.
3107            if (isa<SCEVConstant>(LHS))
3108              std::swap(PreCondLHS, PreCondRHS);
3109            break;
3110          }
3111        continue;
3112      default:
3113        // We weren't able to reconcile the condition.
3114        continue;
3115      }
3116
3117    if (!PreCondLHS->getType()->isInteger()) continue;
3118
3119    SCEVHandle PreCondLHSSCEV = getSCEV(PreCondLHS);
3120    SCEVHandle PreCondRHSSCEV = getSCEV(PreCondRHS);
3121    if ((LHS == PreCondLHSSCEV && RHS == PreCondRHSSCEV) ||
3122        (LHS == getNotSCEV(PreCondRHSSCEV) &&
3123         RHS == getNotSCEV(PreCondLHSSCEV)))
3124      return true;
3125  }
3126
3127  return false;
3128}
3129
3130/// HowManyLessThans - Return the number of times a backedge containing the
3131/// specified less-than comparison will execute.  If not computable, return
3132/// UnknownValue.
3133ScalarEvolution::BackedgeTakenInfo ScalarEvolution::
3134HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L, bool isSigned) {
3135  // Only handle:  "ADDREC < LoopInvariant".
3136  if (!RHS->isLoopInvariant(L)) return UnknownValue;
3137
3138  SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
3139  if (!AddRec || AddRec->getLoop() != L)
3140    return UnknownValue;
3141
3142  if (AddRec->isAffine()) {
3143    // FORNOW: We only support unit strides.
3144    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
3145    SCEVHandle Step = AddRec->getStepRecurrence(*this);
3146    SCEVHandle NegOne = getIntegerSCEV(-1, AddRec->getType());
3147
3148    // TODO: handle non-constant strides.
3149    const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
3150    if (!CStep || CStep->isZero())
3151      return UnknownValue;
3152    if (CStep->getValue()->getValue() == 1) {
3153      // With unit stride, the iteration never steps past the limit value.
3154    } else if (CStep->getValue()->getValue().isStrictlyPositive()) {
3155      if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) {
3156        // Test whether a positive iteration iteration can step past the limit
3157        // value and past the maximum value for its type in a single step.
3158        if (isSigned) {
3159          APInt Max = APInt::getSignedMaxValue(BitWidth);
3160          if ((Max - CStep->getValue()->getValue())
3161                .slt(CLimit->getValue()->getValue()))
3162            return UnknownValue;
3163        } else {
3164          APInt Max = APInt::getMaxValue(BitWidth);
3165          if ((Max - CStep->getValue()->getValue())
3166                .ult(CLimit->getValue()->getValue()))
3167            return UnknownValue;
3168        }
3169      } else
3170        // TODO: handle non-constant limit values below.
3171        return UnknownValue;
3172    } else
3173      // TODO: handle negative strides below.
3174      return UnknownValue;
3175
3176    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
3177    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
3178    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
3179    // treat m-n as signed nor unsigned due to overflow possibility.
3180
3181    // First, we get the value of the LHS in the first iteration: n
3182    SCEVHandle Start = AddRec->getOperand(0);
3183
3184    // Determine the minimum constant start value.
3185    SCEVHandle MinStart = isa<SCEVConstant>(Start) ? Start :
3186      getConstant(isSigned ? APInt::getSignedMinValue(BitWidth) :
3187                             APInt::getMinValue(BitWidth));
3188
3189    // If we know that the condition is true in order to enter the loop,
3190    // then we know that it will run exactly (m-n)/s times. Otherwise, we
3191    // only know if will execute (max(m,n)-n)/s times. In both cases, the
3192    // division must round up.
3193    SCEVHandle End = RHS;
3194    if (!isLoopGuardedByCond(L,
3195                             isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
3196                             getMinusSCEV(Start, Step), RHS))
3197      End = isSigned ? getSMaxExpr(RHS, Start)
3198                     : getUMaxExpr(RHS, Start);
3199
3200    // Determine the maximum constant end value.
3201    SCEVHandle MaxEnd = isa<SCEVConstant>(End) ? End :
3202      getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth) :
3203                             APInt::getMaxValue(BitWidth));
3204
3205    // Finally, we subtract these two values and divide, rounding up, to get
3206    // the number of times the backedge is executed.
3207    SCEVHandle BECount = getUDivExpr(getAddExpr(getMinusSCEV(End, Start),
3208                                                getAddExpr(Step, NegOne)),
3209                                     Step);
3210
3211    // The maximum backedge count is similar, except using the minimum start
3212    // value and the maximum end value.
3213    SCEVHandle MaxBECount = getUDivExpr(getAddExpr(getMinusSCEV(MaxEnd,
3214                                                                MinStart),
3215                                                   getAddExpr(Step, NegOne)),
3216                                        Step);
3217
3218    return BackedgeTakenInfo(BECount, MaxBECount);
3219  }
3220
3221  return UnknownValue;
3222}
3223
3224/// getNumIterationsInRange - Return the number of iterations of this loop that
3225/// produce values in the specified constant range.  Another way of looking at
3226/// this is that it returns the first iteration number where the value is not in
3227/// the condition, thus computing the exit count. If the iteration count can't
3228/// be computed, an instance of SCEVCouldNotCompute is returned.
3229SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
3230                                                   ScalarEvolution &SE) const {
3231  if (Range.isFullSet())  // Infinite loop.
3232    return SE.getCouldNotCompute();
3233
3234  // If the start is a non-zero constant, shift the range to simplify things.
3235  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
3236    if (!SC->getValue()->isZero()) {
3237      std::vector<SCEVHandle> Operands(op_begin(), op_end());
3238      Operands[0] = SE.getIntegerSCEV(0, SC->getType());
3239      SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop());
3240      if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
3241        return ShiftedAddRec->getNumIterationsInRange(
3242                           Range.subtract(SC->getValue()->getValue()), SE);
3243      // This is strange and shouldn't happen.
3244      return SE.getCouldNotCompute();
3245    }
3246
3247  // The only time we can solve this is when we have all constant indices.
3248  // Otherwise, we cannot determine the overflow conditions.
3249  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
3250    if (!isa<SCEVConstant>(getOperand(i)))
3251      return SE.getCouldNotCompute();
3252
3253
3254  // Okay at this point we know that all elements of the chrec are constants and
3255  // that the start element is zero.
3256
3257  // First check to see if the range contains zero.  If not, the first
3258  // iteration exits.
3259  unsigned BitWidth = SE.getTypeSizeInBits(getType());
3260  if (!Range.contains(APInt(BitWidth, 0)))
3261    return SE.getConstant(ConstantInt::get(getType(),0));
3262
3263  if (isAffine()) {
3264    // If this is an affine expression then we have this situation:
3265    //   Solve {0,+,A} in Range  ===  Ax in Range
3266
3267    // We know that zero is in the range.  If A is positive then we know that
3268    // the upper value of the range must be the first possible exit value.
3269    // If A is negative then the lower of the range is the last possible loop
3270    // value.  Also note that we already checked for a full range.
3271    APInt One(BitWidth,1);
3272    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
3273    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
3274
3275    // The exit value should be (End+A)/A.
3276    APInt ExitVal = (End + A).udiv(A);
3277    ConstantInt *ExitValue = ConstantInt::get(ExitVal);
3278
3279    // Evaluate at the exit value.  If we really did fall out of the valid
3280    // range, then we computed our trip count, otherwise wrap around or other
3281    // things must have happened.
3282    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
3283    if (Range.contains(Val->getValue()))
3284      return SE.getCouldNotCompute();  // Something strange happened
3285
3286    // Ensure that the previous value is in the range.  This is a sanity check.
3287    assert(Range.contains(
3288           EvaluateConstantChrecAtConstant(this,
3289           ConstantInt::get(ExitVal - One), SE)->getValue()) &&
3290           "Linear scev computation is off in a bad way!");
3291    return SE.getConstant(ExitValue);
3292  } else if (isQuadratic()) {
3293    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
3294    // quadratic equation to solve it.  To do this, we must frame our problem in
3295    // terms of figuring out when zero is crossed, instead of when
3296    // Range.getUpper() is crossed.
3297    std::vector<SCEVHandle> NewOps(op_begin(), op_end());
3298    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
3299    SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
3300
3301    // Next, solve the constructed addrec
3302    std::pair<SCEVHandle,SCEVHandle> Roots =
3303      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
3304    SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
3305    SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
3306    if (R1) {
3307      // Pick the smallest positive root value.
3308      if (ConstantInt *CB =
3309          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
3310                                   R1->getValue(), R2->getValue()))) {
3311        if (CB->getZExtValue() == false)
3312          std::swap(R1, R2);   // R1 is the minimum root now.
3313
3314        // Make sure the root is not off by one.  The returned iteration should
3315        // not be in the range, but the previous one should be.  When solving
3316        // for "X*X < 5", for example, we should not return a root of 2.
3317        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
3318                                                             R1->getValue(),
3319                                                             SE);
3320        if (Range.contains(R1Val->getValue())) {
3321          // The next iteration must be out of the range...
3322          ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1);
3323
3324          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
3325          if (!Range.contains(R1Val->getValue()))
3326            return SE.getConstant(NextVal);
3327          return SE.getCouldNotCompute();  // Something strange happened
3328        }
3329
3330        // If R1 was not in the range, then it is a good return value.  Make
3331        // sure that R1-1 WAS in the range though, just in case.
3332        ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1);
3333        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
3334        if (Range.contains(R1Val->getValue()))
3335          return R1;
3336        return SE.getCouldNotCompute();  // Something strange happened
3337      }
3338    }
3339  }
3340
3341  return SE.getCouldNotCompute();
3342}
3343
3344
3345
3346//===----------------------------------------------------------------------===//
3347//                   ScalarEvolution Class Implementation
3348//===----------------------------------------------------------------------===//
3349
3350ScalarEvolution::ScalarEvolution()
3351  : FunctionPass(&ID), UnknownValue(new SCEVCouldNotCompute()) {
3352}
3353
3354bool ScalarEvolution::runOnFunction(Function &F) {
3355  this->F = &F;
3356  LI = &getAnalysis<LoopInfo>();
3357  TD = getAnalysisIfAvailable<TargetData>();
3358  return false;
3359}
3360
3361void ScalarEvolution::releaseMemory() {
3362  Scalars.clear();
3363  BackedgeTakenCounts.clear();
3364  ConstantEvolutionLoopExitValue.clear();
3365}
3366
3367void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
3368  AU.setPreservesAll();
3369  AU.addRequiredTransitive<LoopInfo>();
3370}
3371
3372bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
3373  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
3374}
3375
3376static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
3377                          const Loop *L) {
3378  // Print all inner loops first
3379  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3380    PrintLoopInfo(OS, SE, *I);
3381
3382  OS << "Loop " << L->getHeader()->getName() << ": ";
3383
3384  SmallVector<BasicBlock*, 8> ExitBlocks;
3385  L->getExitBlocks(ExitBlocks);
3386  if (ExitBlocks.size() != 1)
3387    OS << "<multiple exits> ";
3388
3389  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
3390    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
3391  } else {
3392    OS << "Unpredictable backedge-taken count. ";
3393  }
3394
3395  OS << "\n";
3396}
3397
3398void ScalarEvolution::print(raw_ostream &OS, const Module* ) const {
3399  // ScalarEvolution's implementaiton of the print method is to print
3400  // out SCEV values of all instructions that are interesting. Doing
3401  // this potentially causes it to create new SCEV objects though,
3402  // which technically conflicts with the const qualifier. This isn't
3403  // observable from outside the class though (the hasSCEV function
3404  // notwithstanding), so casting away the const isn't dangerous.
3405  ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this);
3406
3407  OS << "Classifying expressions for: " << F->getName() << "\n";
3408  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
3409    if (isSCEVable(I->getType())) {
3410      OS << *I;
3411      OS << "  -->  ";
3412      SCEVHandle SV = SE.getSCEV(&*I);
3413      SV->print(OS);
3414      OS << "\t\t";
3415
3416      if (const Loop *L = LI->getLoopFor((*I).getParent())) {
3417        OS << "Exits: ";
3418        SCEVHandle ExitValue = SE.getSCEVAtScope(&*I, L->getParentLoop());
3419        if (isa<SCEVCouldNotCompute>(ExitValue)) {
3420          OS << "<<Unknown>>";
3421        } else {
3422          OS << *ExitValue;
3423        }
3424      }
3425
3426
3427      OS << "\n";
3428    }
3429
3430  OS << "Determining loop execution counts for: " << F->getName() << "\n";
3431  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
3432    PrintLoopInfo(OS, &SE, *I);
3433}
3434
3435void ScalarEvolution::print(std::ostream &o, const Module *M) const {
3436  raw_os_ostream OS(o);
3437  print(OS, M);
3438}
3439