ScalarEvolution.cpp revision fcb4356dee96563def584fe38eeafb3eb63c5cd8
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
19//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression.  These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
30//
31// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
35// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42//  Chains of recurrences -- a method to expedite the evaluation
43//  of closed-form functions
44//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46//  On computational properties of chains of recurrences
47//  Eugene V. Zima
48//
49//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50//  Robert A. van Engelen
51//
52//  Efficient Symbolic Analysis for Optimizing Compilers
53//  Robert A. van Engelen
54//
55//  Using the chains of recurrences algebra for data dependence testing and
56//  induction variable substitution
57//  MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
61#define DEBUG_TYPE "scalar-evolution"
62#include "llvm/Analysis/ScalarEvolutionExpressions.h"
63#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
65#include "llvm/GlobalVariable.h"
66#include "llvm/GlobalAlias.h"
67#include "llvm/Instructions.h"
68#include "llvm/LLVMContext.h"
69#include "llvm/Operator.h"
70#include "llvm/Analysis/ConstantFolding.h"
71#include "llvm/Analysis/Dominators.h"
72#include "llvm/Analysis/InstructionSimplify.h"
73#include "llvm/Analysis/LoopInfo.h"
74#include "llvm/Analysis/ValueTracking.h"
75#include "llvm/Assembly/Writer.h"
76#include "llvm/Target/TargetData.h"
77#include "llvm/Support/CommandLine.h"
78#include "llvm/Support/ConstantRange.h"
79#include "llvm/Support/Debug.h"
80#include "llvm/Support/ErrorHandling.h"
81#include "llvm/Support/GetElementPtrTypeIterator.h"
82#include "llvm/Support/InstIterator.h"
83#include "llvm/Support/MathExtras.h"
84#include "llvm/Support/raw_ostream.h"
85#include "llvm/ADT/Statistic.h"
86#include "llvm/ADT/STLExtras.h"
87#include "llvm/ADT/SmallPtrSet.h"
88#include <algorithm>
89using namespace llvm;
90
91STATISTIC(NumArrayLenItCounts,
92          "Number of trip counts computed with array length");
93STATISTIC(NumTripCountsComputed,
94          "Number of loops with predictable loop counts");
95STATISTIC(NumTripCountsNotComputed,
96          "Number of loops without predictable loop counts");
97STATISTIC(NumBruteForceTripCountsComputed,
98          "Number of loops with trip counts computed by force");
99
100static cl::opt<unsigned>
101MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
102                        cl::desc("Maximum number of iterations SCEV will "
103                                 "symbolically execute a constant "
104                                 "derived loop"),
105                        cl::init(100));
106
107INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
108                "Scalar Evolution Analysis", false, true)
109INITIALIZE_PASS_DEPENDENCY(LoopInfo)
110INITIALIZE_PASS_DEPENDENCY(DominatorTree)
111INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
112                "Scalar Evolution Analysis", false, true)
113char ScalarEvolution::ID = 0;
114
115//===----------------------------------------------------------------------===//
116//                           SCEV class definitions
117//===----------------------------------------------------------------------===//
118
119//===----------------------------------------------------------------------===//
120// Implementation of the SCEV class.
121//
122
123void SCEV::dump() const {
124  print(dbgs());
125  dbgs() << '\n';
126}
127
128void SCEV::print(raw_ostream &OS) const {
129  switch (getSCEVType()) {
130  case scConstant:
131    WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
132    return;
133  case scTruncate: {
134    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
135    const SCEV *Op = Trunc->getOperand();
136    OS << "(trunc " << *Op->getType() << " " << *Op << " to "
137       << *Trunc->getType() << ")";
138    return;
139  }
140  case scZeroExtend: {
141    const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
142    const SCEV *Op = ZExt->getOperand();
143    OS << "(zext " << *Op->getType() << " " << *Op << " to "
144       << *ZExt->getType() << ")";
145    return;
146  }
147  case scSignExtend: {
148    const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
149    const SCEV *Op = SExt->getOperand();
150    OS << "(sext " << *Op->getType() << " " << *Op << " to "
151       << *SExt->getType() << ")";
152    return;
153  }
154  case scAddRecExpr: {
155    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
156    OS << "{" << *AR->getOperand(0);
157    for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
158      OS << ",+," << *AR->getOperand(i);
159    OS << "}<";
160    if (AR->getNoWrapFlags(FlagNUW))
161      OS << "nuw><";
162    if (AR->getNoWrapFlags(FlagNSW))
163      OS << "nsw><";
164    if (AR->getNoWrapFlags(FlagNW) &&
165        !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
166      OS << "nw><";
167    WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
168    OS << ">";
169    return;
170  }
171  case scAddExpr:
172  case scMulExpr:
173  case scUMaxExpr:
174  case scSMaxExpr: {
175    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
176    const char *OpStr = 0;
177    switch (NAry->getSCEVType()) {
178    case scAddExpr: OpStr = " + "; break;
179    case scMulExpr: OpStr = " * "; break;
180    case scUMaxExpr: OpStr = " umax "; break;
181    case scSMaxExpr: OpStr = " smax "; break;
182    }
183    OS << "(";
184    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
185         I != E; ++I) {
186      OS << **I;
187      if (llvm::next(I) != E)
188        OS << OpStr;
189    }
190    OS << ")";
191    return;
192  }
193  case scUDivExpr: {
194    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
195    OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
196    return;
197  }
198  case scUnknown: {
199    const SCEVUnknown *U = cast<SCEVUnknown>(this);
200    Type *AllocTy;
201    if (U->isSizeOf(AllocTy)) {
202      OS << "sizeof(" << *AllocTy << ")";
203      return;
204    }
205    if (U->isAlignOf(AllocTy)) {
206      OS << "alignof(" << *AllocTy << ")";
207      return;
208    }
209
210    Type *CTy;
211    Constant *FieldNo;
212    if (U->isOffsetOf(CTy, FieldNo)) {
213      OS << "offsetof(" << *CTy << ", ";
214      WriteAsOperand(OS, FieldNo, false);
215      OS << ")";
216      return;
217    }
218
219    // Otherwise just print it normally.
220    WriteAsOperand(OS, U->getValue(), false);
221    return;
222  }
223  case scCouldNotCompute:
224    OS << "***COULDNOTCOMPUTE***";
225    return;
226  default: break;
227  }
228  llvm_unreachable("Unknown SCEV kind!");
229}
230
231Type *SCEV::getType() const {
232  switch (getSCEVType()) {
233  case scConstant:
234    return cast<SCEVConstant>(this)->getType();
235  case scTruncate:
236  case scZeroExtend:
237  case scSignExtend:
238    return cast<SCEVCastExpr>(this)->getType();
239  case scAddRecExpr:
240  case scMulExpr:
241  case scUMaxExpr:
242  case scSMaxExpr:
243    return cast<SCEVNAryExpr>(this)->getType();
244  case scAddExpr:
245    return cast<SCEVAddExpr>(this)->getType();
246  case scUDivExpr:
247    return cast<SCEVUDivExpr>(this)->getType();
248  case scUnknown:
249    return cast<SCEVUnknown>(this)->getType();
250  case scCouldNotCompute:
251    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
252    return 0;
253  default: break;
254  }
255  llvm_unreachable("Unknown SCEV kind!");
256  return 0;
257}
258
259bool SCEV::isZero() const {
260  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
261    return SC->getValue()->isZero();
262  return false;
263}
264
265bool SCEV::isOne() const {
266  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
267    return SC->getValue()->isOne();
268  return false;
269}
270
271bool SCEV::isAllOnesValue() const {
272  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
273    return SC->getValue()->isAllOnesValue();
274  return false;
275}
276
277SCEVCouldNotCompute::SCEVCouldNotCompute() :
278  SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
279
280bool SCEVCouldNotCompute::classof(const SCEV *S) {
281  return S->getSCEVType() == scCouldNotCompute;
282}
283
284const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
285  FoldingSetNodeID ID;
286  ID.AddInteger(scConstant);
287  ID.AddPointer(V);
288  void *IP = 0;
289  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
290  SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
291  UniqueSCEVs.InsertNode(S, IP);
292  return S;
293}
294
295const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
296  return getConstant(ConstantInt::get(getContext(), Val));
297}
298
299const SCEV *
300ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
301  IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
302  return getConstant(ConstantInt::get(ITy, V, isSigned));
303}
304
305SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
306                           unsigned SCEVTy, const SCEV *op, Type *ty)
307  : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
308
309SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
310                                   const SCEV *op, Type *ty)
311  : SCEVCastExpr(ID, scTruncate, op, ty) {
312  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
313         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
314         "Cannot truncate non-integer value!");
315}
316
317SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
318                                       const SCEV *op, Type *ty)
319  : SCEVCastExpr(ID, scZeroExtend, op, ty) {
320  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
321         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
322         "Cannot zero extend non-integer value!");
323}
324
325SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
326                                       const SCEV *op, Type *ty)
327  : SCEVCastExpr(ID, scSignExtend, op, ty) {
328  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
329         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
330         "Cannot sign extend non-integer value!");
331}
332
333void SCEVUnknown::deleted() {
334  // Clear this SCEVUnknown from various maps.
335  SE->forgetMemoizedResults(this);
336
337  // Remove this SCEVUnknown from the uniquing map.
338  SE->UniqueSCEVs.RemoveNode(this);
339
340  // Release the value.
341  setValPtr(0);
342}
343
344void SCEVUnknown::allUsesReplacedWith(Value *New) {
345  // Clear this SCEVUnknown from various maps.
346  SE->forgetMemoizedResults(this);
347
348  // Remove this SCEVUnknown from the uniquing map.
349  SE->UniqueSCEVs.RemoveNode(this);
350
351  // Update this SCEVUnknown to point to the new value. This is needed
352  // because there may still be outstanding SCEVs which still point to
353  // this SCEVUnknown.
354  setValPtr(New);
355}
356
357bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
358  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
359    if (VCE->getOpcode() == Instruction::PtrToInt)
360      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
361        if (CE->getOpcode() == Instruction::GetElementPtr &&
362            CE->getOperand(0)->isNullValue() &&
363            CE->getNumOperands() == 2)
364          if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
365            if (CI->isOne()) {
366              AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
367                                 ->getElementType();
368              return true;
369            }
370
371  return false;
372}
373
374bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
375  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
376    if (VCE->getOpcode() == Instruction::PtrToInt)
377      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
378        if (CE->getOpcode() == Instruction::GetElementPtr &&
379            CE->getOperand(0)->isNullValue()) {
380          Type *Ty =
381            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
382          if (StructType *STy = dyn_cast<StructType>(Ty))
383            if (!STy->isPacked() &&
384                CE->getNumOperands() == 3 &&
385                CE->getOperand(1)->isNullValue()) {
386              if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
387                if (CI->isOne() &&
388                    STy->getNumElements() == 2 &&
389                    STy->getElementType(0)->isIntegerTy(1)) {
390                  AllocTy = STy->getElementType(1);
391                  return true;
392                }
393            }
394        }
395
396  return false;
397}
398
399bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
400  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
401    if (VCE->getOpcode() == Instruction::PtrToInt)
402      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
403        if (CE->getOpcode() == Instruction::GetElementPtr &&
404            CE->getNumOperands() == 3 &&
405            CE->getOperand(0)->isNullValue() &&
406            CE->getOperand(1)->isNullValue()) {
407          Type *Ty =
408            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
409          // Ignore vector types here so that ScalarEvolutionExpander doesn't
410          // emit getelementptrs that index into vectors.
411          if (Ty->isStructTy() || Ty->isArrayTy()) {
412            CTy = Ty;
413            FieldNo = CE->getOperand(2);
414            return true;
415          }
416        }
417
418  return false;
419}
420
421//===----------------------------------------------------------------------===//
422//                               SCEV Utilities
423//===----------------------------------------------------------------------===//
424
425namespace {
426  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
427  /// than the complexity of the RHS.  This comparator is used to canonicalize
428  /// expressions.
429  class SCEVComplexityCompare {
430    const LoopInfo *const LI;
431  public:
432    explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
433
434    // Return true or false if LHS is less than, or at least RHS, respectively.
435    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
436      return compare(LHS, RHS) < 0;
437    }
438
439    // Return negative, zero, or positive, if LHS is less than, equal to, or
440    // greater than RHS, respectively. A three-way result allows recursive
441    // comparisons to be more efficient.
442    int compare(const SCEV *LHS, const SCEV *RHS) const {
443      // Fast-path: SCEVs are uniqued so we can do a quick equality check.
444      if (LHS == RHS)
445        return 0;
446
447      // Primarily, sort the SCEVs by their getSCEVType().
448      unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
449      if (LType != RType)
450        return (int)LType - (int)RType;
451
452      // Aside from the getSCEVType() ordering, the particular ordering
453      // isn't very important except that it's beneficial to be consistent,
454      // so that (a + b) and (b + a) don't end up as different expressions.
455      switch (LType) {
456      case scUnknown: {
457        const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
458        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
459
460        // Sort SCEVUnknown values with some loose heuristics. TODO: This is
461        // not as complete as it could be.
462        const Value *LV = LU->getValue(), *RV = RU->getValue();
463
464        // Order pointer values after integer values. This helps SCEVExpander
465        // form GEPs.
466        bool LIsPointer = LV->getType()->isPointerTy(),
467             RIsPointer = RV->getType()->isPointerTy();
468        if (LIsPointer != RIsPointer)
469          return (int)LIsPointer - (int)RIsPointer;
470
471        // Compare getValueID values.
472        unsigned LID = LV->getValueID(),
473                 RID = RV->getValueID();
474        if (LID != RID)
475          return (int)LID - (int)RID;
476
477        // Sort arguments by their position.
478        if (const Argument *LA = dyn_cast<Argument>(LV)) {
479          const Argument *RA = cast<Argument>(RV);
480          unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
481          return (int)LArgNo - (int)RArgNo;
482        }
483
484        // For instructions, compare their loop depth, and their operand
485        // count.  This is pretty loose.
486        if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
487          const Instruction *RInst = cast<Instruction>(RV);
488
489          // Compare loop depths.
490          const BasicBlock *LParent = LInst->getParent(),
491                           *RParent = RInst->getParent();
492          if (LParent != RParent) {
493            unsigned LDepth = LI->getLoopDepth(LParent),
494                     RDepth = LI->getLoopDepth(RParent);
495            if (LDepth != RDepth)
496              return (int)LDepth - (int)RDepth;
497          }
498
499          // Compare the number of operands.
500          unsigned LNumOps = LInst->getNumOperands(),
501                   RNumOps = RInst->getNumOperands();
502          return (int)LNumOps - (int)RNumOps;
503        }
504
505        return 0;
506      }
507
508      case scConstant: {
509        const SCEVConstant *LC = cast<SCEVConstant>(LHS);
510        const SCEVConstant *RC = cast<SCEVConstant>(RHS);
511
512        // Compare constant values.
513        const APInt &LA = LC->getValue()->getValue();
514        const APInt &RA = RC->getValue()->getValue();
515        unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
516        if (LBitWidth != RBitWidth)
517          return (int)LBitWidth - (int)RBitWidth;
518        return LA.ult(RA) ? -1 : 1;
519      }
520
521      case scAddRecExpr: {
522        const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
523        const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
524
525        // Compare addrec loop depths.
526        const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
527        if (LLoop != RLoop) {
528          unsigned LDepth = LLoop->getLoopDepth(),
529                   RDepth = RLoop->getLoopDepth();
530          if (LDepth != RDepth)
531            return (int)LDepth - (int)RDepth;
532        }
533
534        // Addrec complexity grows with operand count.
535        unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
536        if (LNumOps != RNumOps)
537          return (int)LNumOps - (int)RNumOps;
538
539        // Lexicographically compare.
540        for (unsigned i = 0; i != LNumOps; ++i) {
541          long X = compare(LA->getOperand(i), RA->getOperand(i));
542          if (X != 0)
543            return X;
544        }
545
546        return 0;
547      }
548
549      case scAddExpr:
550      case scMulExpr:
551      case scSMaxExpr:
552      case scUMaxExpr: {
553        const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
554        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
555
556        // Lexicographically compare n-ary expressions.
557        unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
558        for (unsigned i = 0; i != LNumOps; ++i) {
559          if (i >= RNumOps)
560            return 1;
561          long X = compare(LC->getOperand(i), RC->getOperand(i));
562          if (X != 0)
563            return X;
564        }
565        return (int)LNumOps - (int)RNumOps;
566      }
567
568      case scUDivExpr: {
569        const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
570        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
571
572        // Lexicographically compare udiv expressions.
573        long X = compare(LC->getLHS(), RC->getLHS());
574        if (X != 0)
575          return X;
576        return compare(LC->getRHS(), RC->getRHS());
577      }
578
579      case scTruncate:
580      case scZeroExtend:
581      case scSignExtend: {
582        const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
583        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
584
585        // Compare cast expressions by operand.
586        return compare(LC->getOperand(), RC->getOperand());
587      }
588
589      default:
590        break;
591      }
592
593      llvm_unreachable("Unknown SCEV kind!");
594      return 0;
595    }
596  };
597}
598
599/// GroupByComplexity - Given a list of SCEV objects, order them by their
600/// complexity, and group objects of the same complexity together by value.
601/// When this routine is finished, we know that any duplicates in the vector are
602/// consecutive and that complexity is monotonically increasing.
603///
604/// Note that we go take special precautions to ensure that we get deterministic
605/// results from this routine.  In other words, we don't want the results of
606/// this to depend on where the addresses of various SCEV objects happened to
607/// land in memory.
608///
609static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
610                              LoopInfo *LI) {
611  if (Ops.size() < 2) return;  // Noop
612  if (Ops.size() == 2) {
613    // This is the common case, which also happens to be trivially simple.
614    // Special case it.
615    const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
616    if (SCEVComplexityCompare(LI)(RHS, LHS))
617      std::swap(LHS, RHS);
618    return;
619  }
620
621  // Do the rough sort by complexity.
622  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
623
624  // Now that we are sorted by complexity, group elements of the same
625  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
626  // be extremely short in practice.  Note that we take this approach because we
627  // do not want to depend on the addresses of the objects we are grouping.
628  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
629    const SCEV *S = Ops[i];
630    unsigned Complexity = S->getSCEVType();
631
632    // If there are any objects of the same complexity and same value as this
633    // one, group them.
634    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
635      if (Ops[j] == S) { // Found a duplicate.
636        // Move it to immediately after i'th element.
637        std::swap(Ops[i+1], Ops[j]);
638        ++i;   // no need to rescan it.
639        if (i == e-2) return;  // Done!
640      }
641    }
642  }
643}
644
645
646
647//===----------------------------------------------------------------------===//
648//                      Simple SCEV method implementations
649//===----------------------------------------------------------------------===//
650
651/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
652/// Assume, K > 0.
653static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
654                                       ScalarEvolution &SE,
655                                       Type* ResultTy) {
656  // Handle the simplest case efficiently.
657  if (K == 1)
658    return SE.getTruncateOrZeroExtend(It, ResultTy);
659
660  // We are using the following formula for BC(It, K):
661  //
662  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
663  //
664  // Suppose, W is the bitwidth of the return value.  We must be prepared for
665  // overflow.  Hence, we must assure that the result of our computation is
666  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
667  // safe in modular arithmetic.
668  //
669  // However, this code doesn't use exactly that formula; the formula it uses
670  // is something like the following, where T is the number of factors of 2 in
671  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
672  // exponentiation:
673  //
674  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
675  //
676  // This formula is trivially equivalent to the previous formula.  However,
677  // this formula can be implemented much more efficiently.  The trick is that
678  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
679  // arithmetic.  To do exact division in modular arithmetic, all we have
680  // to do is multiply by the inverse.  Therefore, this step can be done at
681  // width W.
682  //
683  // The next issue is how to safely do the division by 2^T.  The way this
684  // is done is by doing the multiplication step at a width of at least W + T
685  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
686  // when we perform the division by 2^T (which is equivalent to a right shift
687  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
688  // truncated out after the division by 2^T.
689  //
690  // In comparison to just directly using the first formula, this technique
691  // is much more efficient; using the first formula requires W * K bits,
692  // but this formula less than W + K bits. Also, the first formula requires
693  // a division step, whereas this formula only requires multiplies and shifts.
694  //
695  // It doesn't matter whether the subtraction step is done in the calculation
696  // width or the input iteration count's width; if the subtraction overflows,
697  // the result must be zero anyway.  We prefer here to do it in the width of
698  // the induction variable because it helps a lot for certain cases; CodeGen
699  // isn't smart enough to ignore the overflow, which leads to much less
700  // efficient code if the width of the subtraction is wider than the native
701  // register width.
702  //
703  // (It's possible to not widen at all by pulling out factors of 2 before
704  // the multiplication; for example, K=2 can be calculated as
705  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
706  // extra arithmetic, so it's not an obvious win, and it gets
707  // much more complicated for K > 3.)
708
709  // Protection from insane SCEVs; this bound is conservative,
710  // but it probably doesn't matter.
711  if (K > 1000)
712    return SE.getCouldNotCompute();
713
714  unsigned W = SE.getTypeSizeInBits(ResultTy);
715
716  // Calculate K! / 2^T and T; we divide out the factors of two before
717  // multiplying for calculating K! / 2^T to avoid overflow.
718  // Other overflow doesn't matter because we only care about the bottom
719  // W bits of the result.
720  APInt OddFactorial(W, 1);
721  unsigned T = 1;
722  for (unsigned i = 3; i <= K; ++i) {
723    APInt Mult(W, i);
724    unsigned TwoFactors = Mult.countTrailingZeros();
725    T += TwoFactors;
726    Mult = Mult.lshr(TwoFactors);
727    OddFactorial *= Mult;
728  }
729
730  // We need at least W + T bits for the multiplication step
731  unsigned CalculationBits = W + T;
732
733  // Calculate 2^T, at width T+W.
734  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
735
736  // Calculate the multiplicative inverse of K! / 2^T;
737  // this multiplication factor will perform the exact division by
738  // K! / 2^T.
739  APInt Mod = APInt::getSignedMinValue(W+1);
740  APInt MultiplyFactor = OddFactorial.zext(W+1);
741  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
742  MultiplyFactor = MultiplyFactor.trunc(W);
743
744  // Calculate the product, at width T+W
745  IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
746                                                      CalculationBits);
747  const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
748  for (unsigned i = 1; i != K; ++i) {
749    const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
750    Dividend = SE.getMulExpr(Dividend,
751                             SE.getTruncateOrZeroExtend(S, CalculationTy));
752  }
753
754  // Divide by 2^T
755  const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
756
757  // Truncate the result, and divide by K! / 2^T.
758
759  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
760                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
761}
762
763/// evaluateAtIteration - Return the value of this chain of recurrences at
764/// the specified iteration number.  We can evaluate this recurrence by
765/// multiplying each element in the chain by the binomial coefficient
766/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
767///
768///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
769///
770/// where BC(It, k) stands for binomial coefficient.
771///
772const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
773                                                ScalarEvolution &SE) const {
774  const SCEV *Result = getStart();
775  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
776    // The computation is correct in the face of overflow provided that the
777    // multiplication is performed _after_ the evaluation of the binomial
778    // coefficient.
779    const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
780    if (isa<SCEVCouldNotCompute>(Coeff))
781      return Coeff;
782
783    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
784  }
785  return Result;
786}
787
788//===----------------------------------------------------------------------===//
789//                    SCEV Expression folder implementations
790//===----------------------------------------------------------------------===//
791
792const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
793                                             Type *Ty) {
794  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
795         "This is not a truncating conversion!");
796  assert(isSCEVable(Ty) &&
797         "This is not a conversion to a SCEVable type!");
798  Ty = getEffectiveSCEVType(Ty);
799
800  FoldingSetNodeID ID;
801  ID.AddInteger(scTruncate);
802  ID.AddPointer(Op);
803  ID.AddPointer(Ty);
804  void *IP = 0;
805  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
806
807  // Fold if the operand is constant.
808  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
809    return getConstant(
810      cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
811                                               getEffectiveSCEVType(Ty))));
812
813  // trunc(trunc(x)) --> trunc(x)
814  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
815    return getTruncateExpr(ST->getOperand(), Ty);
816
817  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
818  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
819    return getTruncateOrSignExtend(SS->getOperand(), Ty);
820
821  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
822  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
823    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
824
825  // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
826  // eliminate all the truncates.
827  if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
828    SmallVector<const SCEV *, 4> Operands;
829    bool hasTrunc = false;
830    for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
831      const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
832      hasTrunc = isa<SCEVTruncateExpr>(S);
833      Operands.push_back(S);
834    }
835    if (!hasTrunc)
836      return getAddExpr(Operands);
837    UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
838  }
839
840  // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
841  // eliminate all the truncates.
842  if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
843    SmallVector<const SCEV *, 4> Operands;
844    bool hasTrunc = false;
845    for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
846      const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
847      hasTrunc = isa<SCEVTruncateExpr>(S);
848      Operands.push_back(S);
849    }
850    if (!hasTrunc)
851      return getMulExpr(Operands);
852    UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
853  }
854
855  // If the input value is a chrec scev, truncate the chrec's operands.
856  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
857    SmallVector<const SCEV *, 4> Operands;
858    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
859      Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
860    return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
861  }
862
863  // As a special case, fold trunc(undef) to undef. We don't want to
864  // know too much about SCEVUnknowns, but this special case is handy
865  // and harmless.
866  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
867    if (isa<UndefValue>(U->getValue()))
868      return getSCEV(UndefValue::get(Ty));
869
870  // The cast wasn't folded; create an explicit cast node. We can reuse
871  // the existing insert position since if we get here, we won't have
872  // made any changes which would invalidate it.
873  SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
874                                                 Op, Ty);
875  UniqueSCEVs.InsertNode(S, IP);
876  return S;
877}
878
879const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
880                                               Type *Ty) {
881  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
882         "This is not an extending conversion!");
883  assert(isSCEVable(Ty) &&
884         "This is not a conversion to a SCEVable type!");
885  Ty = getEffectiveSCEVType(Ty);
886
887  // Fold if the operand is constant.
888  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
889    return getConstant(
890      cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
891                                              getEffectiveSCEVType(Ty))));
892
893  // zext(zext(x)) --> zext(x)
894  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
895    return getZeroExtendExpr(SZ->getOperand(), Ty);
896
897  // Before doing any expensive analysis, check to see if we've already
898  // computed a SCEV for this Op and Ty.
899  FoldingSetNodeID ID;
900  ID.AddInteger(scZeroExtend);
901  ID.AddPointer(Op);
902  ID.AddPointer(Ty);
903  void *IP = 0;
904  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
905
906  // zext(trunc(x)) --> zext(x) or x or trunc(x)
907  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
908    // It's possible the bits taken off by the truncate were all zero bits. If
909    // so, we should be able to simplify this further.
910    const SCEV *X = ST->getOperand();
911    ConstantRange CR = getUnsignedRange(X);
912    unsigned TruncBits = getTypeSizeInBits(ST->getType());
913    unsigned NewBits = getTypeSizeInBits(Ty);
914    if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
915            CR.zextOrTrunc(NewBits)))
916      return getTruncateOrZeroExtend(X, Ty);
917  }
918
919  // If the input value is a chrec scev, and we can prove that the value
920  // did not overflow the old, smaller, value, we can zero extend all of the
921  // operands (often constants).  This allows analysis of something like
922  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
923  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
924    if (AR->isAffine()) {
925      const SCEV *Start = AR->getStart();
926      const SCEV *Step = AR->getStepRecurrence(*this);
927      unsigned BitWidth = getTypeSizeInBits(AR->getType());
928      const Loop *L = AR->getLoop();
929
930      // If we have special knowledge that this addrec won't overflow,
931      // we don't need to do any further analysis.
932      if (AR->getNoWrapFlags(SCEV::FlagNUW))
933        return getAddRecExpr(getZeroExtendExpr(Start, Ty),
934                             getZeroExtendExpr(Step, Ty),
935                             L, AR->getNoWrapFlags());
936
937      // Check whether the backedge-taken count is SCEVCouldNotCompute.
938      // Note that this serves two purposes: It filters out loops that are
939      // simply not analyzable, and it covers the case where this code is
940      // being called from within backedge-taken count analysis, such that
941      // attempting to ask for the backedge-taken count would likely result
942      // in infinite recursion. In the later case, the analysis code will
943      // cope with a conservative value, and it will take care to purge
944      // that value once it has finished.
945      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
946      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
947        // Manually compute the final value for AR, checking for
948        // overflow.
949
950        // Check whether the backedge-taken count can be losslessly casted to
951        // the addrec's type. The count is always unsigned.
952        const SCEV *CastedMaxBECount =
953          getTruncateOrZeroExtend(MaxBECount, Start->getType());
954        const SCEV *RecastedMaxBECount =
955          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
956        if (MaxBECount == RecastedMaxBECount) {
957          Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
958          // Check whether Start+Step*MaxBECount has no unsigned overflow.
959          const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
960          const SCEV *Add = getAddExpr(Start, ZMul);
961          const SCEV *OperandExtendedAdd =
962            getAddExpr(getZeroExtendExpr(Start, WideTy),
963                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
964                                  getZeroExtendExpr(Step, WideTy)));
965          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) {
966            // Cache knowledge of AR NUW, which is propagated to this AddRec.
967            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
968            // Return the expression with the addrec on the outside.
969            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
970                                 getZeroExtendExpr(Step, Ty),
971                                 L, AR->getNoWrapFlags());
972          }
973          // Similar to above, only this time treat the step value as signed.
974          // This covers loops that count down.
975          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
976          Add = getAddExpr(Start, SMul);
977          OperandExtendedAdd =
978            getAddExpr(getZeroExtendExpr(Start, WideTy),
979                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
980                                  getSignExtendExpr(Step, WideTy)));
981          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) {
982            // Cache knowledge of AR NW, which is propagated to this AddRec.
983            // Negative step causes unsigned wrap, but it still can't self-wrap.
984            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
985            // Return the expression with the addrec on the outside.
986            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
987                                 getSignExtendExpr(Step, Ty),
988                                 L, AR->getNoWrapFlags());
989          }
990        }
991
992        // If the backedge is guarded by a comparison with the pre-inc value
993        // the addrec is safe. Also, if the entry is guarded by a comparison
994        // with the start value and the backedge is guarded by a comparison
995        // with the post-inc value, the addrec is safe.
996        if (isKnownPositive(Step)) {
997          const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
998                                      getUnsignedRange(Step).getUnsignedMax());
999          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1000              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1001               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1002                                           AR->getPostIncExpr(*this), N))) {
1003            // Cache knowledge of AR NUW, which is propagated to this AddRec.
1004            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1005            // Return the expression with the addrec on the outside.
1006            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1007                                 getZeroExtendExpr(Step, Ty),
1008                                 L, AR->getNoWrapFlags());
1009          }
1010        } else if (isKnownNegative(Step)) {
1011          const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1012                                      getSignedRange(Step).getSignedMin());
1013          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1014              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1015               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1016                                           AR->getPostIncExpr(*this), N))) {
1017            // Cache knowledge of AR NW, which is propagated to this AddRec.
1018            // Negative step causes unsigned wrap, but it still can't self-wrap.
1019            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1020            // Return the expression with the addrec on the outside.
1021            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1022                                 getSignExtendExpr(Step, Ty),
1023                                 L, AR->getNoWrapFlags());
1024          }
1025        }
1026      }
1027    }
1028
1029  // The cast wasn't folded; create an explicit cast node.
1030  // Recompute the insert position, as it may have been invalidated.
1031  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1032  SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1033                                                   Op, Ty);
1034  UniqueSCEVs.InsertNode(S, IP);
1035  return S;
1036}
1037
1038// Get the limit of a recurrence such that incrementing by Step cannot cause
1039// signed overflow as long as the value of the recurrence within the loop does
1040// not exceed this limit before incrementing.
1041static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1042                                           ICmpInst::Predicate *Pred,
1043                                           ScalarEvolution *SE) {
1044  unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1045  if (SE->isKnownPositive(Step)) {
1046    *Pred = ICmpInst::ICMP_SLT;
1047    return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1048                           SE->getSignedRange(Step).getSignedMax());
1049  }
1050  if (SE->isKnownNegative(Step)) {
1051    *Pred = ICmpInst::ICMP_SGT;
1052    return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1053                       SE->getSignedRange(Step).getSignedMin());
1054  }
1055  return 0;
1056}
1057
1058// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1059// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1060// or postincrement sibling. This allows normalizing a sign extended AddRec as
1061// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1062// result, the expression "Step + sext(PreIncAR)" is congruent with
1063// "sext(PostIncAR)"
1064static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
1065                                            Type *Ty,
1066                                            ScalarEvolution *SE) {
1067  const Loop *L = AR->getLoop();
1068  const SCEV *Start = AR->getStart();
1069  const SCEV *Step = AR->getStepRecurrence(*SE);
1070
1071  // Check for a simple looking step prior to loop entry.
1072  const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1073  if (!SA || SA->getNumOperands() != 2 || SA->getOperand(0) != Step)
1074    return 0;
1075
1076  // This is a postinc AR. Check for overflow on the preinc recurrence using the
1077  // same three conditions that getSignExtendedExpr checks.
1078
1079  // 1. NSW flags on the step increment.
1080  const SCEV *PreStart = SA->getOperand(1);
1081  const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1082    SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1083
1084  if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
1085    return PreStart;
1086
1087  // 2. Direct overflow check on the step operation's expression.
1088  unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1089  Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1090  const SCEV *OperandExtendedStart =
1091    SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1092                   SE->getSignExtendExpr(Step, WideTy));
1093  if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1094    // Cache knowledge of PreAR NSW.
1095    if (PreAR)
1096      const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1097    // FIXME: this optimization needs a unit test
1098    DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1099    return PreStart;
1100  }
1101
1102  // 3. Loop precondition.
1103  ICmpInst::Predicate Pred;
1104  const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1105
1106  if (OverflowLimit &&
1107      SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
1108    return PreStart;
1109  }
1110  return 0;
1111}
1112
1113// Get the normalized sign-extended expression for this AddRec's Start.
1114static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
1115                                            Type *Ty,
1116                                            ScalarEvolution *SE) {
1117  const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1118  if (!PreStart)
1119    return SE->getSignExtendExpr(AR->getStart(), Ty);
1120
1121  return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1122                        SE->getSignExtendExpr(PreStart, Ty));
1123}
1124
1125const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1126                                               Type *Ty) {
1127  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1128         "This is not an extending conversion!");
1129  assert(isSCEVable(Ty) &&
1130         "This is not a conversion to a SCEVable type!");
1131  Ty = getEffectiveSCEVType(Ty);
1132
1133  // Fold if the operand is constant.
1134  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1135    return getConstant(
1136      cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1137                                              getEffectiveSCEVType(Ty))));
1138
1139  // sext(sext(x)) --> sext(x)
1140  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1141    return getSignExtendExpr(SS->getOperand(), Ty);
1142
1143  // sext(zext(x)) --> zext(x)
1144  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1145    return getZeroExtendExpr(SZ->getOperand(), Ty);
1146
1147  // Before doing any expensive analysis, check to see if we've already
1148  // computed a SCEV for this Op and Ty.
1149  FoldingSetNodeID ID;
1150  ID.AddInteger(scSignExtend);
1151  ID.AddPointer(Op);
1152  ID.AddPointer(Ty);
1153  void *IP = 0;
1154  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1155
1156  // If the input value is provably positive, build a zext instead.
1157  if (isKnownNonNegative(Op))
1158    return getZeroExtendExpr(Op, Ty);
1159
1160  // sext(trunc(x)) --> sext(x) or x or trunc(x)
1161  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1162    // It's possible the bits taken off by the truncate were all sign bits. If
1163    // so, we should be able to simplify this further.
1164    const SCEV *X = ST->getOperand();
1165    ConstantRange CR = getSignedRange(X);
1166    unsigned TruncBits = getTypeSizeInBits(ST->getType());
1167    unsigned NewBits = getTypeSizeInBits(Ty);
1168    if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1169            CR.sextOrTrunc(NewBits)))
1170      return getTruncateOrSignExtend(X, Ty);
1171  }
1172
1173  // If the input value is a chrec scev, and we can prove that the value
1174  // did not overflow the old, smaller, value, we can sign extend all of the
1175  // operands (often constants).  This allows analysis of something like
1176  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1177  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1178    if (AR->isAffine()) {
1179      const SCEV *Start = AR->getStart();
1180      const SCEV *Step = AR->getStepRecurrence(*this);
1181      unsigned BitWidth = getTypeSizeInBits(AR->getType());
1182      const Loop *L = AR->getLoop();
1183
1184      // If we have special knowledge that this addrec won't overflow,
1185      // we don't need to do any further analysis.
1186      if (AR->getNoWrapFlags(SCEV::FlagNSW))
1187        return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1188                             getSignExtendExpr(Step, Ty),
1189                             L, SCEV::FlagNSW);
1190
1191      // Check whether the backedge-taken count is SCEVCouldNotCompute.
1192      // Note that this serves two purposes: It filters out loops that are
1193      // simply not analyzable, and it covers the case where this code is
1194      // being called from within backedge-taken count analysis, such that
1195      // attempting to ask for the backedge-taken count would likely result
1196      // in infinite recursion. In the later case, the analysis code will
1197      // cope with a conservative value, and it will take care to purge
1198      // that value once it has finished.
1199      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1200      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1201        // Manually compute the final value for AR, checking for
1202        // overflow.
1203
1204        // Check whether the backedge-taken count can be losslessly casted to
1205        // the addrec's type. The count is always unsigned.
1206        const SCEV *CastedMaxBECount =
1207          getTruncateOrZeroExtend(MaxBECount, Start->getType());
1208        const SCEV *RecastedMaxBECount =
1209          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1210        if (MaxBECount == RecastedMaxBECount) {
1211          Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1212          // Check whether Start+Step*MaxBECount has no signed overflow.
1213          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1214          const SCEV *Add = getAddExpr(Start, SMul);
1215          const SCEV *OperandExtendedAdd =
1216            getAddExpr(getSignExtendExpr(Start, WideTy),
1217                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1218                                  getSignExtendExpr(Step, WideTy)));
1219          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) {
1220            // Cache knowledge of AR NSW, which is propagated to this AddRec.
1221            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1222            // Return the expression with the addrec on the outside.
1223            return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1224                                 getSignExtendExpr(Step, Ty),
1225                                 L, AR->getNoWrapFlags());
1226          }
1227          // Similar to above, only this time treat the step value as unsigned.
1228          // This covers loops that count up with an unsigned step.
1229          const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
1230          Add = getAddExpr(Start, UMul);
1231          OperandExtendedAdd =
1232            getAddExpr(getSignExtendExpr(Start, WideTy),
1233                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1234                                  getZeroExtendExpr(Step, WideTy)));
1235          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) {
1236            // Cache knowledge of AR NSW, which is propagated to this AddRec.
1237            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1238            // Return the expression with the addrec on the outside.
1239            return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1240                                 getZeroExtendExpr(Step, Ty),
1241                                 L, AR->getNoWrapFlags());
1242          }
1243        }
1244
1245        // If the backedge is guarded by a comparison with the pre-inc value
1246        // the addrec is safe. Also, if the entry is guarded by a comparison
1247        // with the start value and the backedge is guarded by a comparison
1248        // with the post-inc value, the addrec is safe.
1249        ICmpInst::Predicate Pred;
1250        const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1251        if (OverflowLimit &&
1252            (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1253             (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1254              isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1255                                          OverflowLimit)))) {
1256          // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1257          const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1258          return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1259                               getSignExtendExpr(Step, Ty),
1260                               L, AR->getNoWrapFlags());
1261        }
1262      }
1263    }
1264
1265  // The cast wasn't folded; create an explicit cast node.
1266  // Recompute the insert position, as it may have been invalidated.
1267  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1268  SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1269                                                   Op, Ty);
1270  UniqueSCEVs.InsertNode(S, IP);
1271  return S;
1272}
1273
1274/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1275/// unspecified bits out to the given type.
1276///
1277const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1278                                              Type *Ty) {
1279  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1280         "This is not an extending conversion!");
1281  assert(isSCEVable(Ty) &&
1282         "This is not a conversion to a SCEVable type!");
1283  Ty = getEffectiveSCEVType(Ty);
1284
1285  // Sign-extend negative constants.
1286  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1287    if (SC->getValue()->getValue().isNegative())
1288      return getSignExtendExpr(Op, Ty);
1289
1290  // Peel off a truncate cast.
1291  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1292    const SCEV *NewOp = T->getOperand();
1293    if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1294      return getAnyExtendExpr(NewOp, Ty);
1295    return getTruncateOrNoop(NewOp, Ty);
1296  }
1297
1298  // Next try a zext cast. If the cast is folded, use it.
1299  const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1300  if (!isa<SCEVZeroExtendExpr>(ZExt))
1301    return ZExt;
1302
1303  // Next try a sext cast. If the cast is folded, use it.
1304  const SCEV *SExt = getSignExtendExpr(Op, Ty);
1305  if (!isa<SCEVSignExtendExpr>(SExt))
1306    return SExt;
1307
1308  // Force the cast to be folded into the operands of an addrec.
1309  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1310    SmallVector<const SCEV *, 4> Ops;
1311    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1312         I != E; ++I)
1313      Ops.push_back(getAnyExtendExpr(*I, Ty));
1314    return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
1315  }
1316
1317  // As a special case, fold anyext(undef) to undef. We don't want to
1318  // know too much about SCEVUnknowns, but this special case is handy
1319  // and harmless.
1320  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1321    if (isa<UndefValue>(U->getValue()))
1322      return getSCEV(UndefValue::get(Ty));
1323
1324  // If the expression is obviously signed, use the sext cast value.
1325  if (isa<SCEVSMaxExpr>(Op))
1326    return SExt;
1327
1328  // Absent any other information, use the zext cast value.
1329  return ZExt;
1330}
1331
1332/// CollectAddOperandsWithScales - Process the given Ops list, which is
1333/// a list of operands to be added under the given scale, update the given
1334/// map. This is a helper function for getAddRecExpr. As an example of
1335/// what it does, given a sequence of operands that would form an add
1336/// expression like this:
1337///
1338///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1339///
1340/// where A and B are constants, update the map with these values:
1341///
1342///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1343///
1344/// and add 13 + A*B*29 to AccumulatedConstant.
1345/// This will allow getAddRecExpr to produce this:
1346///
1347///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1348///
1349/// This form often exposes folding opportunities that are hidden in
1350/// the original operand list.
1351///
1352/// Return true iff it appears that any interesting folding opportunities
1353/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1354/// the common case where no interesting opportunities are present, and
1355/// is also used as a check to avoid infinite recursion.
1356///
1357static bool
1358CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1359                             SmallVector<const SCEV *, 8> &NewOps,
1360                             APInt &AccumulatedConstant,
1361                             const SCEV *const *Ops, size_t NumOperands,
1362                             const APInt &Scale,
1363                             ScalarEvolution &SE) {
1364  bool Interesting = false;
1365
1366  // Iterate over the add operands. They are sorted, with constants first.
1367  unsigned i = 0;
1368  while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1369    ++i;
1370    // Pull a buried constant out to the outside.
1371    if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1372      Interesting = true;
1373    AccumulatedConstant += Scale * C->getValue()->getValue();
1374  }
1375
1376  // Next comes everything else. We're especially interested in multiplies
1377  // here, but they're in the middle, so just visit the rest with one loop.
1378  for (; i != NumOperands; ++i) {
1379    const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1380    if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1381      APInt NewScale =
1382        Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1383      if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1384        // A multiplication of a constant with another add; recurse.
1385        const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1386        Interesting |=
1387          CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1388                                       Add->op_begin(), Add->getNumOperands(),
1389                                       NewScale, SE);
1390      } else {
1391        // A multiplication of a constant with some other value. Update
1392        // the map.
1393        SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1394        const SCEV *Key = SE.getMulExpr(MulOps);
1395        std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1396          M.insert(std::make_pair(Key, NewScale));
1397        if (Pair.second) {
1398          NewOps.push_back(Pair.first->first);
1399        } else {
1400          Pair.first->second += NewScale;
1401          // The map already had an entry for this value, which may indicate
1402          // a folding opportunity.
1403          Interesting = true;
1404        }
1405      }
1406    } else {
1407      // An ordinary operand. Update the map.
1408      std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1409        M.insert(std::make_pair(Ops[i], Scale));
1410      if (Pair.second) {
1411        NewOps.push_back(Pair.first->first);
1412      } else {
1413        Pair.first->second += Scale;
1414        // The map already had an entry for this value, which may indicate
1415        // a folding opportunity.
1416        Interesting = true;
1417      }
1418    }
1419  }
1420
1421  return Interesting;
1422}
1423
1424namespace {
1425  struct APIntCompare {
1426    bool operator()(const APInt &LHS, const APInt &RHS) const {
1427      return LHS.ult(RHS);
1428    }
1429  };
1430}
1431
1432/// getAddExpr - Get a canonical add expression, or something simpler if
1433/// possible.
1434const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1435                                        SCEV::NoWrapFlags Flags) {
1436  assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1437         "only nuw or nsw allowed");
1438  assert(!Ops.empty() && "Cannot get empty add!");
1439  if (Ops.size() == 1) return Ops[0];
1440#ifndef NDEBUG
1441  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1442  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1443    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1444           "SCEVAddExpr operand types don't match!");
1445#endif
1446
1447  // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1448  // And vice-versa.
1449  int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1450  SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1451  if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
1452    bool All = true;
1453    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1454         E = Ops.end(); I != E; ++I)
1455      if (!isKnownNonNegative(*I)) {
1456        All = false;
1457        break;
1458      }
1459    if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1460  }
1461
1462  // Sort by complexity, this groups all similar expression types together.
1463  GroupByComplexity(Ops, LI);
1464
1465  // If there are any constants, fold them together.
1466  unsigned Idx = 0;
1467  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1468    ++Idx;
1469    assert(Idx < Ops.size());
1470    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1471      // We found two constants, fold them together!
1472      Ops[0] = getConstant(LHSC->getValue()->getValue() +
1473                           RHSC->getValue()->getValue());
1474      if (Ops.size() == 2) return Ops[0];
1475      Ops.erase(Ops.begin()+1);  // Erase the folded element
1476      LHSC = cast<SCEVConstant>(Ops[0]);
1477    }
1478
1479    // If we are left with a constant zero being added, strip it off.
1480    if (LHSC->getValue()->isZero()) {
1481      Ops.erase(Ops.begin());
1482      --Idx;
1483    }
1484
1485    if (Ops.size() == 1) return Ops[0];
1486  }
1487
1488  // Okay, check to see if the same value occurs in the operand list more than
1489  // once.  If so, merge them together into an multiply expression.  Since we
1490  // sorted the list, these values are required to be adjacent.
1491  Type *Ty = Ops[0]->getType();
1492  bool FoundMatch = false;
1493  for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
1494    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
1495      // Scan ahead to count how many equal operands there are.
1496      unsigned Count = 2;
1497      while (i+Count != e && Ops[i+Count] == Ops[i])
1498        ++Count;
1499      // Merge the values into a multiply.
1500      const SCEV *Scale = getConstant(Ty, Count);
1501      const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1502      if (Ops.size() == Count)
1503        return Mul;
1504      Ops[i] = Mul;
1505      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
1506      --i; e -= Count - 1;
1507      FoundMatch = true;
1508    }
1509  if (FoundMatch)
1510    return getAddExpr(Ops, Flags);
1511
1512  // Check for truncates. If all the operands are truncated from the same
1513  // type, see if factoring out the truncate would permit the result to be
1514  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1515  // if the contents of the resulting outer trunc fold to something simple.
1516  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1517    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1518    Type *DstType = Trunc->getType();
1519    Type *SrcType = Trunc->getOperand()->getType();
1520    SmallVector<const SCEV *, 8> LargeOps;
1521    bool Ok = true;
1522    // Check all the operands to see if they can be represented in the
1523    // source type of the truncate.
1524    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1525      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1526        if (T->getOperand()->getType() != SrcType) {
1527          Ok = false;
1528          break;
1529        }
1530        LargeOps.push_back(T->getOperand());
1531      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1532        LargeOps.push_back(getAnyExtendExpr(C, SrcType));
1533      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1534        SmallVector<const SCEV *, 8> LargeMulOps;
1535        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1536          if (const SCEVTruncateExpr *T =
1537                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1538            if (T->getOperand()->getType() != SrcType) {
1539              Ok = false;
1540              break;
1541            }
1542            LargeMulOps.push_back(T->getOperand());
1543          } else if (const SCEVConstant *C =
1544                       dyn_cast<SCEVConstant>(M->getOperand(j))) {
1545            LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
1546          } else {
1547            Ok = false;
1548            break;
1549          }
1550        }
1551        if (Ok)
1552          LargeOps.push_back(getMulExpr(LargeMulOps));
1553      } else {
1554        Ok = false;
1555        break;
1556      }
1557    }
1558    if (Ok) {
1559      // Evaluate the expression in the larger type.
1560      const SCEV *Fold = getAddExpr(LargeOps, Flags);
1561      // If it folds to something simple, use it. Otherwise, don't.
1562      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1563        return getTruncateExpr(Fold, DstType);
1564    }
1565  }
1566
1567  // Skip past any other cast SCEVs.
1568  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1569    ++Idx;
1570
1571  // If there are add operands they would be next.
1572  if (Idx < Ops.size()) {
1573    bool DeletedAdd = false;
1574    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1575      // If we have an add, expand the add operands onto the end of the operands
1576      // list.
1577      Ops.erase(Ops.begin()+Idx);
1578      Ops.append(Add->op_begin(), Add->op_end());
1579      DeletedAdd = true;
1580    }
1581
1582    // If we deleted at least one add, we added operands to the end of the list,
1583    // and they are not necessarily sorted.  Recurse to resort and resimplify
1584    // any operands we just acquired.
1585    if (DeletedAdd)
1586      return getAddExpr(Ops);
1587  }
1588
1589  // Skip over the add expression until we get to a multiply.
1590  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1591    ++Idx;
1592
1593  // Check to see if there are any folding opportunities present with
1594  // operands multiplied by constant values.
1595  if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1596    uint64_t BitWidth = getTypeSizeInBits(Ty);
1597    DenseMap<const SCEV *, APInt> M;
1598    SmallVector<const SCEV *, 8> NewOps;
1599    APInt AccumulatedConstant(BitWidth, 0);
1600    if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1601                                     Ops.data(), Ops.size(),
1602                                     APInt(BitWidth, 1), *this)) {
1603      // Some interesting folding opportunity is present, so its worthwhile to
1604      // re-generate the operands list. Group the operands by constant scale,
1605      // to avoid multiplying by the same constant scale multiple times.
1606      std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1607      for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
1608           E = NewOps.end(); I != E; ++I)
1609        MulOpLists[M.find(*I)->second].push_back(*I);
1610      // Re-generate the operands list.
1611      Ops.clear();
1612      if (AccumulatedConstant != 0)
1613        Ops.push_back(getConstant(AccumulatedConstant));
1614      for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1615           I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1616        if (I->first != 0)
1617          Ops.push_back(getMulExpr(getConstant(I->first),
1618                                   getAddExpr(I->second)));
1619      if (Ops.empty())
1620        return getConstant(Ty, 0);
1621      if (Ops.size() == 1)
1622        return Ops[0];
1623      return getAddExpr(Ops);
1624    }
1625  }
1626
1627  // If we are adding something to a multiply expression, make sure the
1628  // something is not already an operand of the multiply.  If so, merge it into
1629  // the multiply.
1630  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1631    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1632    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1633      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1634      if (isa<SCEVConstant>(MulOpSCEV))
1635        continue;
1636      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1637        if (MulOpSCEV == Ops[AddOp]) {
1638          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1639          const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1640          if (Mul->getNumOperands() != 2) {
1641            // If the multiply has more than two operands, we must get the
1642            // Y*Z term.
1643            SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1644                                                Mul->op_begin()+MulOp);
1645            MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1646            InnerMul = getMulExpr(MulOps);
1647          }
1648          const SCEV *One = getConstant(Ty, 1);
1649          const SCEV *AddOne = getAddExpr(One, InnerMul);
1650          const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
1651          if (Ops.size() == 2) return OuterMul;
1652          if (AddOp < Idx) {
1653            Ops.erase(Ops.begin()+AddOp);
1654            Ops.erase(Ops.begin()+Idx-1);
1655          } else {
1656            Ops.erase(Ops.begin()+Idx);
1657            Ops.erase(Ops.begin()+AddOp-1);
1658          }
1659          Ops.push_back(OuterMul);
1660          return getAddExpr(Ops);
1661        }
1662
1663      // Check this multiply against other multiplies being added together.
1664      for (unsigned OtherMulIdx = Idx+1;
1665           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1666           ++OtherMulIdx) {
1667        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1668        // If MulOp occurs in OtherMul, we can fold the two multiplies
1669        // together.
1670        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1671             OMulOp != e; ++OMulOp)
1672          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1673            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1674            const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
1675            if (Mul->getNumOperands() != 2) {
1676              SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1677                                                  Mul->op_begin()+MulOp);
1678              MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1679              InnerMul1 = getMulExpr(MulOps);
1680            }
1681            const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1682            if (OtherMul->getNumOperands() != 2) {
1683              SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1684                                                  OtherMul->op_begin()+OMulOp);
1685              MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
1686              InnerMul2 = getMulExpr(MulOps);
1687            }
1688            const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1689            const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1690            if (Ops.size() == 2) return OuterMul;
1691            Ops.erase(Ops.begin()+Idx);
1692            Ops.erase(Ops.begin()+OtherMulIdx-1);
1693            Ops.push_back(OuterMul);
1694            return getAddExpr(Ops);
1695          }
1696      }
1697    }
1698  }
1699
1700  // If there are any add recurrences in the operands list, see if any other
1701  // added values are loop invariant.  If so, we can fold them into the
1702  // recurrence.
1703  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1704    ++Idx;
1705
1706  // Scan over all recurrences, trying to fold loop invariants into them.
1707  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1708    // Scan all of the other operands to this add and add them to the vector if
1709    // they are loop invariant w.r.t. the recurrence.
1710    SmallVector<const SCEV *, 8> LIOps;
1711    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1712    const Loop *AddRecLoop = AddRec->getLoop();
1713    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1714      if (isLoopInvariant(Ops[i], AddRecLoop)) {
1715        LIOps.push_back(Ops[i]);
1716        Ops.erase(Ops.begin()+i);
1717        --i; --e;
1718      }
1719
1720    // If we found some loop invariants, fold them into the recurrence.
1721    if (!LIOps.empty()) {
1722      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1723      LIOps.push_back(AddRec->getStart());
1724
1725      SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1726                                             AddRec->op_end());
1727      AddRecOps[0] = getAddExpr(LIOps);
1728
1729      // Build the new addrec. Propagate the NUW and NSW flags if both the
1730      // outer add and the inner addrec are guaranteed to have no overflow.
1731      // Always propagate NW.
1732      Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
1733      const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
1734
1735      // If all of the other operands were loop invariant, we are done.
1736      if (Ops.size() == 1) return NewRec;
1737
1738      // Otherwise, add the folded AddRec by the non-liv parts.
1739      for (unsigned i = 0;; ++i)
1740        if (Ops[i] == AddRec) {
1741          Ops[i] = NewRec;
1742          break;
1743        }
1744      return getAddExpr(Ops);
1745    }
1746
1747    // Okay, if there weren't any loop invariants to be folded, check to see if
1748    // there are multiple AddRec's with the same loop induction variable being
1749    // added together.  If so, we can fold them.
1750    for (unsigned OtherIdx = Idx+1;
1751         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1752         ++OtherIdx)
1753      if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1754        // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
1755        SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1756                                               AddRec->op_end());
1757        for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1758             ++OtherIdx)
1759          if (const SCEVAddRecExpr *OtherAddRec =
1760                dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1761            if (OtherAddRec->getLoop() == AddRecLoop) {
1762              for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1763                   i != e; ++i) {
1764                if (i >= AddRecOps.size()) {
1765                  AddRecOps.append(OtherAddRec->op_begin()+i,
1766                                   OtherAddRec->op_end());
1767                  break;
1768                }
1769                AddRecOps[i] = getAddExpr(AddRecOps[i],
1770                                          OtherAddRec->getOperand(i));
1771              }
1772              Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1773            }
1774        // Step size has changed, so we cannot guarantee no self-wraparound.
1775        Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
1776        return getAddExpr(Ops);
1777      }
1778
1779    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1780    // next one.
1781  }
1782
1783  // Okay, it looks like we really DO need an add expr.  Check to see if we
1784  // already have one, otherwise create a new one.
1785  FoldingSetNodeID ID;
1786  ID.AddInteger(scAddExpr);
1787  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1788    ID.AddPointer(Ops[i]);
1789  void *IP = 0;
1790  SCEVAddExpr *S =
1791    static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1792  if (!S) {
1793    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1794    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1795    S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1796                                        O, Ops.size());
1797    UniqueSCEVs.InsertNode(S, IP);
1798  }
1799  S->setNoWrapFlags(Flags);
1800  return S;
1801}
1802
1803/// getMulExpr - Get a canonical multiply expression, or something simpler if
1804/// possible.
1805const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1806                                        SCEV::NoWrapFlags Flags) {
1807  assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
1808         "only nuw or nsw allowed");
1809  assert(!Ops.empty() && "Cannot get empty mul!");
1810  if (Ops.size() == 1) return Ops[0];
1811#ifndef NDEBUG
1812  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1813  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1814    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1815           "SCEVMulExpr operand types don't match!");
1816#endif
1817
1818  // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1819  // And vice-versa.
1820  int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1821  SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1822  if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
1823    bool All = true;
1824    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1825         E = Ops.end(); I != E; ++I)
1826      if (!isKnownNonNegative(*I)) {
1827        All = false;
1828        break;
1829      }
1830    if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1831  }
1832
1833  // Sort by complexity, this groups all similar expression types together.
1834  GroupByComplexity(Ops, LI);
1835
1836  // If there are any constants, fold them together.
1837  unsigned Idx = 0;
1838  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1839
1840    // C1*(C2+V) -> C1*C2 + C1*V
1841    if (Ops.size() == 2)
1842      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1843        if (Add->getNumOperands() == 2 &&
1844            isa<SCEVConstant>(Add->getOperand(0)))
1845          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1846                            getMulExpr(LHSC, Add->getOperand(1)));
1847
1848    ++Idx;
1849    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1850      // We found two constants, fold them together!
1851      ConstantInt *Fold = ConstantInt::get(getContext(),
1852                                           LHSC->getValue()->getValue() *
1853                                           RHSC->getValue()->getValue());
1854      Ops[0] = getConstant(Fold);
1855      Ops.erase(Ops.begin()+1);  // Erase the folded element
1856      if (Ops.size() == 1) return Ops[0];
1857      LHSC = cast<SCEVConstant>(Ops[0]);
1858    }
1859
1860    // If we are left with a constant one being multiplied, strip it off.
1861    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1862      Ops.erase(Ops.begin());
1863      --Idx;
1864    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1865      // If we have a multiply of zero, it will always be zero.
1866      return Ops[0];
1867    } else if (Ops[0]->isAllOnesValue()) {
1868      // If we have a mul by -1 of an add, try distributing the -1 among the
1869      // add operands.
1870      if (Ops.size() == 2) {
1871        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1872          SmallVector<const SCEV *, 4> NewOps;
1873          bool AnyFolded = false;
1874          for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
1875                 E = Add->op_end(); I != E; ++I) {
1876            const SCEV *Mul = getMulExpr(Ops[0], *I);
1877            if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1878            NewOps.push_back(Mul);
1879          }
1880          if (AnyFolded)
1881            return getAddExpr(NewOps);
1882        }
1883        else if (const SCEVAddRecExpr *
1884                 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
1885          // Negation preserves a recurrence's no self-wrap property.
1886          SmallVector<const SCEV *, 4> Operands;
1887          for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
1888                 E = AddRec->op_end(); I != E; ++I) {
1889            Operands.push_back(getMulExpr(Ops[0], *I));
1890          }
1891          return getAddRecExpr(Operands, AddRec->getLoop(),
1892                               AddRec->getNoWrapFlags(SCEV::FlagNW));
1893        }
1894      }
1895    }
1896
1897    if (Ops.size() == 1)
1898      return Ops[0];
1899  }
1900
1901  // Skip over the add expression until we get to a multiply.
1902  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1903    ++Idx;
1904
1905  // If there are mul operands inline them all into this expression.
1906  if (Idx < Ops.size()) {
1907    bool DeletedMul = false;
1908    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1909      // If we have an mul, expand the mul operands onto the end of the operands
1910      // list.
1911      Ops.erase(Ops.begin()+Idx);
1912      Ops.append(Mul->op_begin(), Mul->op_end());
1913      DeletedMul = true;
1914    }
1915
1916    // If we deleted at least one mul, we added operands to the end of the list,
1917    // and they are not necessarily sorted.  Recurse to resort and resimplify
1918    // any operands we just acquired.
1919    if (DeletedMul)
1920      return getMulExpr(Ops);
1921  }
1922
1923  // If there are any add recurrences in the operands list, see if any other
1924  // added values are loop invariant.  If so, we can fold them into the
1925  // recurrence.
1926  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1927    ++Idx;
1928
1929  // Scan over all recurrences, trying to fold loop invariants into them.
1930  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1931    // Scan all of the other operands to this mul and add them to the vector if
1932    // they are loop invariant w.r.t. the recurrence.
1933    SmallVector<const SCEV *, 8> LIOps;
1934    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1935    const Loop *AddRecLoop = AddRec->getLoop();
1936    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1937      if (isLoopInvariant(Ops[i], AddRecLoop)) {
1938        LIOps.push_back(Ops[i]);
1939        Ops.erase(Ops.begin()+i);
1940        --i; --e;
1941      }
1942
1943    // If we found some loop invariants, fold them into the recurrence.
1944    if (!LIOps.empty()) {
1945      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1946      SmallVector<const SCEV *, 4> NewOps;
1947      NewOps.reserve(AddRec->getNumOperands());
1948      const SCEV *Scale = getMulExpr(LIOps);
1949      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1950        NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1951
1952      // Build the new addrec. Propagate the NUW and NSW flags if both the
1953      // outer mul and the inner addrec are guaranteed to have no overflow.
1954      //
1955      // No self-wrap cannot be guaranteed after changing the step size, but
1956      // will be inferred if either NUW or NSW is true.
1957      Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
1958      const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
1959
1960      // If all of the other operands were loop invariant, we are done.
1961      if (Ops.size() == 1) return NewRec;
1962
1963      // Otherwise, multiply the folded AddRec by the non-liv parts.
1964      for (unsigned i = 0;; ++i)
1965        if (Ops[i] == AddRec) {
1966          Ops[i] = NewRec;
1967          break;
1968        }
1969      return getMulExpr(Ops);
1970    }
1971
1972    // Okay, if there weren't any loop invariants to be folded, check to see if
1973    // there are multiple AddRec's with the same loop induction variable being
1974    // multiplied together.  If so, we can fold them.
1975    for (unsigned OtherIdx = Idx+1;
1976         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1977         ++OtherIdx)
1978      if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1979        // F * G, where F = {A,+,B}<L> and G = {C,+,D}<L>  -->
1980        // {A*C,+,F*D + G*B + B*D}<L>
1981        for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1982             ++OtherIdx)
1983          if (const SCEVAddRecExpr *OtherAddRec =
1984                dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1985            if (OtherAddRec->getLoop() == AddRecLoop) {
1986              const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1987              const SCEV *NewStart = getMulExpr(F->getStart(), G->getStart());
1988              const SCEV *B = F->getStepRecurrence(*this);
1989              const SCEV *D = G->getStepRecurrence(*this);
1990              const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1991                                               getMulExpr(G, B),
1992                                               getMulExpr(B, D));
1993              const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1994                                                    F->getLoop(),
1995                                                    SCEV::FlagAnyWrap);
1996              if (Ops.size() == 2) return NewAddRec;
1997              Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
1998              Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1999            }
2000        return getMulExpr(Ops);
2001      }
2002
2003    // Otherwise couldn't fold anything into this recurrence.  Move onto the
2004    // next one.
2005  }
2006
2007  // Okay, it looks like we really DO need an mul expr.  Check to see if we
2008  // already have one, otherwise create a new one.
2009  FoldingSetNodeID ID;
2010  ID.AddInteger(scMulExpr);
2011  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2012    ID.AddPointer(Ops[i]);
2013  void *IP = 0;
2014  SCEVMulExpr *S =
2015    static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2016  if (!S) {
2017    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2018    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2019    S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2020                                        O, Ops.size());
2021    UniqueSCEVs.InsertNode(S, IP);
2022  }
2023  S->setNoWrapFlags(Flags);
2024  return S;
2025}
2026
2027/// getUDivExpr - Get a canonical unsigned division expression, or something
2028/// simpler if possible.
2029const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2030                                         const SCEV *RHS) {
2031  assert(getEffectiveSCEVType(LHS->getType()) ==
2032         getEffectiveSCEVType(RHS->getType()) &&
2033         "SCEVUDivExpr operand types don't match!");
2034
2035  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2036    if (RHSC->getValue()->equalsInt(1))
2037      return LHS;                               // X udiv 1 --> x
2038    // If the denominator is zero, the result of the udiv is undefined. Don't
2039    // try to analyze it, because the resolution chosen here may differ from
2040    // the resolution chosen in other parts of the compiler.
2041    if (!RHSC->getValue()->isZero()) {
2042      // Determine if the division can be folded into the operands of
2043      // its operands.
2044      // TODO: Generalize this to non-constants by using known-bits information.
2045      Type *Ty = LHS->getType();
2046      unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
2047      unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
2048      // For non-power-of-two values, effectively round the value up to the
2049      // nearest power of two.
2050      if (!RHSC->getValue()->getValue().isPowerOf2())
2051        ++MaxShiftAmt;
2052      IntegerType *ExtTy =
2053        IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
2054      // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2055      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2056        if (const SCEVConstant *Step =
2057              dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
2058          if (!Step->getValue()->getValue()
2059                .urem(RHSC->getValue()->getValue()) &&
2060              getZeroExtendExpr(AR, ExtTy) ==
2061              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2062                            getZeroExtendExpr(Step, ExtTy),
2063                            AR->getLoop(), SCEV::FlagAnyWrap)) {
2064            SmallVector<const SCEV *, 4> Operands;
2065            for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2066              Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
2067            return getAddRecExpr(Operands, AR->getLoop(),
2068                                 SCEV::FlagNW);
2069          }
2070      // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2071      if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2072        SmallVector<const SCEV *, 4> Operands;
2073        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2074          Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2075        if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2076          // Find an operand that's safely divisible.
2077          for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2078            const SCEV *Op = M->getOperand(i);
2079            const SCEV *Div = getUDivExpr(Op, RHSC);
2080            if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2081              Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2082                                                      M->op_end());
2083              Operands[i] = Div;
2084              return getMulExpr(Operands);
2085            }
2086          }
2087      }
2088      // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2089      if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
2090        SmallVector<const SCEV *, 4> Operands;
2091        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2092          Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2093        if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2094          Operands.clear();
2095          for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2096            const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2097            if (isa<SCEVUDivExpr>(Op) ||
2098                getMulExpr(Op, RHS) != A->getOperand(i))
2099              break;
2100            Operands.push_back(Op);
2101          }
2102          if (Operands.size() == A->getNumOperands())
2103            return getAddExpr(Operands);
2104        }
2105      }
2106
2107      // Fold if both operands are constant.
2108      if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2109        Constant *LHSCV = LHSC->getValue();
2110        Constant *RHSCV = RHSC->getValue();
2111        return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2112                                                                   RHSCV)));
2113      }
2114    }
2115  }
2116
2117  FoldingSetNodeID ID;
2118  ID.AddInteger(scUDivExpr);
2119  ID.AddPointer(LHS);
2120  ID.AddPointer(RHS);
2121  void *IP = 0;
2122  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2123  SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2124                                             LHS, RHS);
2125  UniqueSCEVs.InsertNode(S, IP);
2126  return S;
2127}
2128
2129
2130/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2131/// Simplify the expression as much as possible.
2132const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2133                                           const Loop *L,
2134                                           SCEV::NoWrapFlags Flags) {
2135  SmallVector<const SCEV *, 4> Operands;
2136  Operands.push_back(Start);
2137  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2138    if (StepChrec->getLoop() == L) {
2139      Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2140      return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
2141    }
2142
2143  Operands.push_back(Step);
2144  return getAddRecExpr(Operands, L, Flags);
2145}
2146
2147/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2148/// Simplify the expression as much as possible.
2149const SCEV *
2150ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2151                               const Loop *L, SCEV::NoWrapFlags Flags) {
2152  if (Operands.size() == 1) return Operands[0];
2153#ifndef NDEBUG
2154  Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2155  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2156    assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2157           "SCEVAddRecExpr operand types don't match!");
2158  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2159    assert(isLoopInvariant(Operands[i], L) &&
2160           "SCEVAddRecExpr operand is not loop-invariant!");
2161#endif
2162
2163  if (Operands.back()->isZero()) {
2164    Operands.pop_back();
2165    return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
2166  }
2167
2168  // It's tempting to want to call getMaxBackedgeTakenCount count here and
2169  // use that information to infer NUW and NSW flags. However, computing a
2170  // BE count requires calling getAddRecExpr, so we may not yet have a
2171  // meaningful BE count at this point (and if we don't, we'd be stuck
2172  // with a SCEVCouldNotCompute as the cached BE count).
2173
2174  // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2175  // And vice-versa.
2176  int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2177  SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2178  if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
2179    bool All = true;
2180    for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2181         E = Operands.end(); I != E; ++I)
2182      if (!isKnownNonNegative(*I)) {
2183        All = false;
2184        break;
2185      }
2186    if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2187  }
2188
2189  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2190  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2191    const Loop *NestedLoop = NestedAR->getLoop();
2192    if (L->contains(NestedLoop) ?
2193        (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
2194        (!NestedLoop->contains(L) &&
2195         DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
2196      SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2197                                                  NestedAR->op_end());
2198      Operands[0] = NestedAR->getStart();
2199      // AddRecs require their operands be loop-invariant with respect to their
2200      // loops. Don't perform this transformation if it would break this
2201      // requirement.
2202      bool AllInvariant = true;
2203      for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2204        if (!isLoopInvariant(Operands[i], L)) {
2205          AllInvariant = false;
2206          break;
2207        }
2208      if (AllInvariant) {
2209        // Create a recurrence for the outer loop with the same step size.
2210        //
2211        // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2212        // inner recurrence has the same property.
2213        SCEV::NoWrapFlags OuterFlags =
2214          maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
2215
2216        NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
2217        AllInvariant = true;
2218        for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2219          if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
2220            AllInvariant = false;
2221            break;
2222          }
2223        if (AllInvariant) {
2224          // Ok, both add recurrences are valid after the transformation.
2225          //
2226          // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2227          // the outer recurrence has the same property.
2228          SCEV::NoWrapFlags InnerFlags =
2229            maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
2230          return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2231        }
2232      }
2233      // Reset Operands to its original state.
2234      Operands[0] = NestedAR;
2235    }
2236  }
2237
2238  // Okay, it looks like we really DO need an addrec expr.  Check to see if we
2239  // already have one, otherwise create a new one.
2240  FoldingSetNodeID ID;
2241  ID.AddInteger(scAddRecExpr);
2242  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2243    ID.AddPointer(Operands[i]);
2244  ID.AddPointer(L);
2245  void *IP = 0;
2246  SCEVAddRecExpr *S =
2247    static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2248  if (!S) {
2249    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2250    std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2251    S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2252                                           O, Operands.size(), L);
2253    UniqueSCEVs.InsertNode(S, IP);
2254  }
2255  S->setNoWrapFlags(Flags);
2256  return S;
2257}
2258
2259const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2260                                         const SCEV *RHS) {
2261  SmallVector<const SCEV *, 2> Ops;
2262  Ops.push_back(LHS);
2263  Ops.push_back(RHS);
2264  return getSMaxExpr(Ops);
2265}
2266
2267const SCEV *
2268ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2269  assert(!Ops.empty() && "Cannot get empty smax!");
2270  if (Ops.size() == 1) return Ops[0];
2271#ifndef NDEBUG
2272  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2273  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2274    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2275           "SCEVSMaxExpr operand types don't match!");
2276#endif
2277
2278  // Sort by complexity, this groups all similar expression types together.
2279  GroupByComplexity(Ops, LI);
2280
2281  // If there are any constants, fold them together.
2282  unsigned Idx = 0;
2283  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2284    ++Idx;
2285    assert(Idx < Ops.size());
2286    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2287      // We found two constants, fold them together!
2288      ConstantInt *Fold = ConstantInt::get(getContext(),
2289                              APIntOps::smax(LHSC->getValue()->getValue(),
2290                                             RHSC->getValue()->getValue()));
2291      Ops[0] = getConstant(Fold);
2292      Ops.erase(Ops.begin()+1);  // Erase the folded element
2293      if (Ops.size() == 1) return Ops[0];
2294      LHSC = cast<SCEVConstant>(Ops[0]);
2295    }
2296
2297    // If we are left with a constant minimum-int, strip it off.
2298    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2299      Ops.erase(Ops.begin());
2300      --Idx;
2301    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2302      // If we have an smax with a constant maximum-int, it will always be
2303      // maximum-int.
2304      return Ops[0];
2305    }
2306
2307    if (Ops.size() == 1) return Ops[0];
2308  }
2309
2310  // Find the first SMax
2311  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2312    ++Idx;
2313
2314  // Check to see if one of the operands is an SMax. If so, expand its operands
2315  // onto our operand list, and recurse to simplify.
2316  if (Idx < Ops.size()) {
2317    bool DeletedSMax = false;
2318    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
2319      Ops.erase(Ops.begin()+Idx);
2320      Ops.append(SMax->op_begin(), SMax->op_end());
2321      DeletedSMax = true;
2322    }
2323
2324    if (DeletedSMax)
2325      return getSMaxExpr(Ops);
2326  }
2327
2328  // Okay, check to see if the same value occurs in the operand list twice.  If
2329  // so, delete one.  Since we sorted the list, these values are required to
2330  // be adjacent.
2331  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2332    //  X smax Y smax Y  -->  X smax Y
2333    //  X smax Y         -->  X, if X is always greater than Y
2334    if (Ops[i] == Ops[i+1] ||
2335        isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2336      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2337      --i; --e;
2338    } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
2339      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2340      --i; --e;
2341    }
2342
2343  if (Ops.size() == 1) return Ops[0];
2344
2345  assert(!Ops.empty() && "Reduced smax down to nothing!");
2346
2347  // Okay, it looks like we really DO need an smax expr.  Check to see if we
2348  // already have one, otherwise create a new one.
2349  FoldingSetNodeID ID;
2350  ID.AddInteger(scSMaxExpr);
2351  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2352    ID.AddPointer(Ops[i]);
2353  void *IP = 0;
2354  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2355  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2356  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2357  SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2358                                             O, Ops.size());
2359  UniqueSCEVs.InsertNode(S, IP);
2360  return S;
2361}
2362
2363const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2364                                         const SCEV *RHS) {
2365  SmallVector<const SCEV *, 2> Ops;
2366  Ops.push_back(LHS);
2367  Ops.push_back(RHS);
2368  return getUMaxExpr(Ops);
2369}
2370
2371const SCEV *
2372ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2373  assert(!Ops.empty() && "Cannot get empty umax!");
2374  if (Ops.size() == 1) return Ops[0];
2375#ifndef NDEBUG
2376  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2377  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2378    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2379           "SCEVUMaxExpr operand types don't match!");
2380#endif
2381
2382  // Sort by complexity, this groups all similar expression types together.
2383  GroupByComplexity(Ops, LI);
2384
2385  // If there are any constants, fold them together.
2386  unsigned Idx = 0;
2387  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2388    ++Idx;
2389    assert(Idx < Ops.size());
2390    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2391      // We found two constants, fold them together!
2392      ConstantInt *Fold = ConstantInt::get(getContext(),
2393                              APIntOps::umax(LHSC->getValue()->getValue(),
2394                                             RHSC->getValue()->getValue()));
2395      Ops[0] = getConstant(Fold);
2396      Ops.erase(Ops.begin()+1);  // Erase the folded element
2397      if (Ops.size() == 1) return Ops[0];
2398      LHSC = cast<SCEVConstant>(Ops[0]);
2399    }
2400
2401    // If we are left with a constant minimum-int, strip it off.
2402    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2403      Ops.erase(Ops.begin());
2404      --Idx;
2405    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2406      // If we have an umax with a constant maximum-int, it will always be
2407      // maximum-int.
2408      return Ops[0];
2409    }
2410
2411    if (Ops.size() == 1) return Ops[0];
2412  }
2413
2414  // Find the first UMax
2415  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2416    ++Idx;
2417
2418  // Check to see if one of the operands is a UMax. If so, expand its operands
2419  // onto our operand list, and recurse to simplify.
2420  if (Idx < Ops.size()) {
2421    bool DeletedUMax = false;
2422    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
2423      Ops.erase(Ops.begin()+Idx);
2424      Ops.append(UMax->op_begin(), UMax->op_end());
2425      DeletedUMax = true;
2426    }
2427
2428    if (DeletedUMax)
2429      return getUMaxExpr(Ops);
2430  }
2431
2432  // Okay, check to see if the same value occurs in the operand list twice.  If
2433  // so, delete one.  Since we sorted the list, these values are required to
2434  // be adjacent.
2435  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2436    //  X umax Y umax Y  -->  X umax Y
2437    //  X umax Y         -->  X, if X is always greater than Y
2438    if (Ops[i] == Ops[i+1] ||
2439        isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2440      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2441      --i; --e;
2442    } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
2443      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2444      --i; --e;
2445    }
2446
2447  if (Ops.size() == 1) return Ops[0];
2448
2449  assert(!Ops.empty() && "Reduced umax down to nothing!");
2450
2451  // Okay, it looks like we really DO need a umax expr.  Check to see if we
2452  // already have one, otherwise create a new one.
2453  FoldingSetNodeID ID;
2454  ID.AddInteger(scUMaxExpr);
2455  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2456    ID.AddPointer(Ops[i]);
2457  void *IP = 0;
2458  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2459  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2460  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2461  SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2462                                             O, Ops.size());
2463  UniqueSCEVs.InsertNode(S, IP);
2464  return S;
2465}
2466
2467const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2468                                         const SCEV *RHS) {
2469  // ~smax(~x, ~y) == smin(x, y).
2470  return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2471}
2472
2473const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2474                                         const SCEV *RHS) {
2475  // ~umax(~x, ~y) == umin(x, y)
2476  return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2477}
2478
2479const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy) {
2480  // If we have TargetData, we can bypass creating a target-independent
2481  // constant expression and then folding it back into a ConstantInt.
2482  // This is just a compile-time optimization.
2483  if (TD)
2484    return getConstant(TD->getIntPtrType(getContext()),
2485                       TD->getTypeAllocSize(AllocTy));
2486
2487  Constant *C = ConstantExpr::getSizeOf(AllocTy);
2488  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2489    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2490      C = Folded;
2491  Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2492  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2493}
2494
2495const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) {
2496  Constant *C = ConstantExpr::getAlignOf(AllocTy);
2497  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2498    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2499      C = Folded;
2500  Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2501  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2502}
2503
2504const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy,
2505                                             unsigned FieldNo) {
2506  // If we have TargetData, we can bypass creating a target-independent
2507  // constant expression and then folding it back into a ConstantInt.
2508  // This is just a compile-time optimization.
2509  if (TD)
2510    return getConstant(TD->getIntPtrType(getContext()),
2511                       TD->getStructLayout(STy)->getElementOffset(FieldNo));
2512
2513  Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2514  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2515    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2516      C = Folded;
2517  Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2518  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2519}
2520
2521const SCEV *ScalarEvolution::getOffsetOfExpr(Type *CTy,
2522                                             Constant *FieldNo) {
2523  Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
2524  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2525    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2526      C = Folded;
2527  Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
2528  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2529}
2530
2531const SCEV *ScalarEvolution::getUnknown(Value *V) {
2532  // Don't attempt to do anything other than create a SCEVUnknown object
2533  // here.  createSCEV only calls getUnknown after checking for all other
2534  // interesting possibilities, and any other code that calls getUnknown
2535  // is doing so in order to hide a value from SCEV canonicalization.
2536
2537  FoldingSetNodeID ID;
2538  ID.AddInteger(scUnknown);
2539  ID.AddPointer(V);
2540  void *IP = 0;
2541  if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2542    assert(cast<SCEVUnknown>(S)->getValue() == V &&
2543           "Stale SCEVUnknown in uniquing map!");
2544    return S;
2545  }
2546  SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2547                                            FirstUnknown);
2548  FirstUnknown = cast<SCEVUnknown>(S);
2549  UniqueSCEVs.InsertNode(S, IP);
2550  return S;
2551}
2552
2553//===----------------------------------------------------------------------===//
2554//            Basic SCEV Analysis and PHI Idiom Recognition Code
2555//
2556
2557/// isSCEVable - Test if values of the given type are analyzable within
2558/// the SCEV framework. This primarily includes integer types, and it
2559/// can optionally include pointer types if the ScalarEvolution class
2560/// has access to target-specific information.
2561bool ScalarEvolution::isSCEVable(Type *Ty) const {
2562  // Integers and pointers are always SCEVable.
2563  return Ty->isIntegerTy() || Ty->isPointerTy();
2564}
2565
2566/// getTypeSizeInBits - Return the size in bits of the specified type,
2567/// for which isSCEVable must return true.
2568uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
2569  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2570
2571  // If we have a TargetData, use it!
2572  if (TD)
2573    return TD->getTypeSizeInBits(Ty);
2574
2575  // Integer types have fixed sizes.
2576  if (Ty->isIntegerTy())
2577    return Ty->getPrimitiveSizeInBits();
2578
2579  // The only other support type is pointer. Without TargetData, conservatively
2580  // assume pointers are 64-bit.
2581  assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
2582  return 64;
2583}
2584
2585/// getEffectiveSCEVType - Return a type with the same bitwidth as
2586/// the given type and which represents how SCEV will treat the given
2587/// type, for which isSCEVable must return true. For pointer types,
2588/// this is the pointer-sized integer type.
2589Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
2590  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2591
2592  if (Ty->isIntegerTy())
2593    return Ty;
2594
2595  // The only other support type is pointer.
2596  assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
2597  if (TD) return TD->getIntPtrType(getContext());
2598
2599  // Without TargetData, conservatively assume pointers are 64-bit.
2600  return Type::getInt64Ty(getContext());
2601}
2602
2603const SCEV *ScalarEvolution::getCouldNotCompute() {
2604  return &CouldNotCompute;
2605}
2606
2607/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2608/// expression and create a new one.
2609const SCEV *ScalarEvolution::getSCEV(Value *V) {
2610  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
2611
2612  ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2613  if (I != ValueExprMap.end()) return I->second;
2614  const SCEV *S = createSCEV(V);
2615
2616  // The process of creating a SCEV for V may have caused other SCEVs
2617  // to have been created, so it's necessary to insert the new entry
2618  // from scratch, rather than trying to remember the insert position
2619  // above.
2620  ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
2621  return S;
2622}
2623
2624/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2625///
2626const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
2627  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2628    return getConstant(
2629               cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
2630
2631  Type *Ty = V->getType();
2632  Ty = getEffectiveSCEVType(Ty);
2633  return getMulExpr(V,
2634                  getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
2635}
2636
2637/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2638const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
2639  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2640    return getConstant(
2641                cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
2642
2643  Type *Ty = V->getType();
2644  Ty = getEffectiveSCEVType(Ty);
2645  const SCEV *AllOnes =
2646                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
2647  return getMinusSCEV(AllOnes, V);
2648}
2649
2650/// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
2651const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
2652                                          SCEV::NoWrapFlags Flags) {
2653  assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
2654
2655  // Fast path: X - X --> 0.
2656  if (LHS == RHS)
2657    return getConstant(LHS->getType(), 0);
2658
2659  // X - Y --> X + -Y
2660  return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
2661}
2662
2663/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2664/// input value to the specified type.  If the type must be extended, it is zero
2665/// extended.
2666const SCEV *
2667ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
2668  Type *SrcTy = V->getType();
2669  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2670         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2671         "Cannot truncate or zero extend with non-integer arguments!");
2672  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2673    return V;  // No conversion
2674  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2675    return getTruncateExpr(V, Ty);
2676  return getZeroExtendExpr(V, Ty);
2677}
2678
2679/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2680/// input value to the specified type.  If the type must be extended, it is sign
2681/// extended.
2682const SCEV *
2683ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
2684                                         Type *Ty) {
2685  Type *SrcTy = V->getType();
2686  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2687         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2688         "Cannot truncate or zero extend with non-integer arguments!");
2689  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2690    return V;  // No conversion
2691  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2692    return getTruncateExpr(V, Ty);
2693  return getSignExtendExpr(V, Ty);
2694}
2695
2696/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2697/// input value to the specified type.  If the type must be extended, it is zero
2698/// extended.  The conversion must not be narrowing.
2699const SCEV *
2700ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
2701  Type *SrcTy = V->getType();
2702  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2703         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2704         "Cannot noop or zero extend with non-integer arguments!");
2705  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2706         "getNoopOrZeroExtend cannot truncate!");
2707  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2708    return V;  // No conversion
2709  return getZeroExtendExpr(V, Ty);
2710}
2711
2712/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2713/// input value to the specified type.  If the type must be extended, it is sign
2714/// extended.  The conversion must not be narrowing.
2715const SCEV *
2716ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
2717  Type *SrcTy = V->getType();
2718  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2719         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2720         "Cannot noop or sign extend with non-integer arguments!");
2721  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2722         "getNoopOrSignExtend cannot truncate!");
2723  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2724    return V;  // No conversion
2725  return getSignExtendExpr(V, Ty);
2726}
2727
2728/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2729/// the input value to the specified type. If the type must be extended,
2730/// it is extended with unspecified bits. The conversion must not be
2731/// narrowing.
2732const SCEV *
2733ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
2734  Type *SrcTy = V->getType();
2735  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2736         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2737         "Cannot noop or any extend with non-integer arguments!");
2738  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2739         "getNoopOrAnyExtend cannot truncate!");
2740  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2741    return V;  // No conversion
2742  return getAnyExtendExpr(V, Ty);
2743}
2744
2745/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2746/// input value to the specified type.  The conversion must not be widening.
2747const SCEV *
2748ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
2749  Type *SrcTy = V->getType();
2750  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2751         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2752         "Cannot truncate or noop with non-integer arguments!");
2753  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2754         "getTruncateOrNoop cannot extend!");
2755  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2756    return V;  // No conversion
2757  return getTruncateExpr(V, Ty);
2758}
2759
2760/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2761/// the types using zero-extension, and then perform a umax operation
2762/// with them.
2763const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2764                                                        const SCEV *RHS) {
2765  const SCEV *PromotedLHS = LHS;
2766  const SCEV *PromotedRHS = RHS;
2767
2768  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2769    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2770  else
2771    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2772
2773  return getUMaxExpr(PromotedLHS, PromotedRHS);
2774}
2775
2776/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2777/// the types using zero-extension, and then perform a umin operation
2778/// with them.
2779const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2780                                                        const SCEV *RHS) {
2781  const SCEV *PromotedLHS = LHS;
2782  const SCEV *PromotedRHS = RHS;
2783
2784  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2785    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2786  else
2787    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2788
2789  return getUMinExpr(PromotedLHS, PromotedRHS);
2790}
2791
2792/// getPointerBase - Transitively follow the chain of pointer-type operands
2793/// until reaching a SCEV that does not have a single pointer operand. This
2794/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
2795/// but corner cases do exist.
2796const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
2797  // A pointer operand may evaluate to a nonpointer expression, such as null.
2798  if (!V->getType()->isPointerTy())
2799    return V;
2800
2801  if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
2802    return getPointerBase(Cast->getOperand());
2803  }
2804  else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
2805    const SCEV *PtrOp = 0;
2806    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
2807         I != E; ++I) {
2808      if ((*I)->getType()->isPointerTy()) {
2809        // Cannot find the base of an expression with multiple pointer operands.
2810        if (PtrOp)
2811          return V;
2812        PtrOp = *I;
2813      }
2814    }
2815    if (!PtrOp)
2816      return V;
2817    return getPointerBase(PtrOp);
2818  }
2819  return V;
2820}
2821
2822/// PushDefUseChildren - Push users of the given Instruction
2823/// onto the given Worklist.
2824static void
2825PushDefUseChildren(Instruction *I,
2826                   SmallVectorImpl<Instruction *> &Worklist) {
2827  // Push the def-use children onto the Worklist stack.
2828  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2829       UI != UE; ++UI)
2830    Worklist.push_back(cast<Instruction>(*UI));
2831}
2832
2833/// ForgetSymbolicValue - This looks up computed SCEV values for all
2834/// instructions that depend on the given instruction and removes them from
2835/// the ValueExprMapType map if they reference SymName. This is used during PHI
2836/// resolution.
2837void
2838ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
2839  SmallVector<Instruction *, 16> Worklist;
2840  PushDefUseChildren(PN, Worklist);
2841
2842  SmallPtrSet<Instruction *, 8> Visited;
2843  Visited.insert(PN);
2844  while (!Worklist.empty()) {
2845    Instruction *I = Worklist.pop_back_val();
2846    if (!Visited.insert(I)) continue;
2847
2848    ValueExprMapType::iterator It =
2849      ValueExprMap.find(static_cast<Value *>(I));
2850    if (It != ValueExprMap.end()) {
2851      const SCEV *Old = It->second;
2852
2853      // Short-circuit the def-use traversal if the symbolic name
2854      // ceases to appear in expressions.
2855      if (Old != SymName && !hasOperand(Old, SymName))
2856        continue;
2857
2858      // SCEVUnknown for a PHI either means that it has an unrecognized
2859      // structure, it's a PHI that's in the progress of being computed
2860      // by createNodeForPHI, or it's a single-value PHI. In the first case,
2861      // additional loop trip count information isn't going to change anything.
2862      // In the second case, createNodeForPHI will perform the necessary
2863      // updates on its own when it gets to that point. In the third, we do
2864      // want to forget the SCEVUnknown.
2865      if (!isa<PHINode>(I) ||
2866          !isa<SCEVUnknown>(Old) ||
2867          (I != PN && Old == SymName)) {
2868        forgetMemoizedResults(Old);
2869        ValueExprMap.erase(It);
2870      }
2871    }
2872
2873    PushDefUseChildren(I, Worklist);
2874  }
2875}
2876
2877/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
2878/// a loop header, making it a potential recurrence, or it doesn't.
2879///
2880const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
2881  if (const Loop *L = LI->getLoopFor(PN->getParent()))
2882    if (L->getHeader() == PN->getParent()) {
2883      // The loop may have multiple entrances or multiple exits; we can analyze
2884      // this phi as an addrec if it has a unique entry value and a unique
2885      // backedge value.
2886      Value *BEValueV = 0, *StartValueV = 0;
2887      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2888        Value *V = PN->getIncomingValue(i);
2889        if (L->contains(PN->getIncomingBlock(i))) {
2890          if (!BEValueV) {
2891            BEValueV = V;
2892          } else if (BEValueV != V) {
2893            BEValueV = 0;
2894            break;
2895          }
2896        } else if (!StartValueV) {
2897          StartValueV = V;
2898        } else if (StartValueV != V) {
2899          StartValueV = 0;
2900          break;
2901        }
2902      }
2903      if (BEValueV && StartValueV) {
2904        // While we are analyzing this PHI node, handle its value symbolically.
2905        const SCEV *SymbolicName = getUnknown(PN);
2906        assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
2907               "PHI node already processed?");
2908        ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
2909
2910        // Using this symbolic name for the PHI, analyze the value coming around
2911        // the back-edge.
2912        const SCEV *BEValue = getSCEV(BEValueV);
2913
2914        // NOTE: If BEValue is loop invariant, we know that the PHI node just
2915        // has a special value for the first iteration of the loop.
2916
2917        // If the value coming around the backedge is an add with the symbolic
2918        // value we just inserted, then we found a simple induction variable!
2919        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
2920          // If there is a single occurrence of the symbolic value, replace it
2921          // with a recurrence.
2922          unsigned FoundIndex = Add->getNumOperands();
2923          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2924            if (Add->getOperand(i) == SymbolicName)
2925              if (FoundIndex == e) {
2926                FoundIndex = i;
2927                break;
2928              }
2929
2930          if (FoundIndex != Add->getNumOperands()) {
2931            // Create an add with everything but the specified operand.
2932            SmallVector<const SCEV *, 8> Ops;
2933            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2934              if (i != FoundIndex)
2935                Ops.push_back(Add->getOperand(i));
2936            const SCEV *Accum = getAddExpr(Ops);
2937
2938            // This is not a valid addrec if the step amount is varying each
2939            // loop iteration, but is not itself an addrec in this loop.
2940            if (isLoopInvariant(Accum, L) ||
2941                (isa<SCEVAddRecExpr>(Accum) &&
2942                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
2943              SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
2944
2945              // If the increment doesn't overflow, then neither the addrec nor
2946              // the post-increment will overflow.
2947              if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2948                if (OBO->hasNoUnsignedWrap())
2949                  Flags = setFlags(Flags, SCEV::FlagNUW);
2950                if (OBO->hasNoSignedWrap())
2951                  Flags = setFlags(Flags, SCEV::FlagNSW);
2952              } else if (const GEPOperator *GEP =
2953                         dyn_cast<GEPOperator>(BEValueV)) {
2954                // If the increment is an inbounds GEP, then we know the address
2955                // space cannot be wrapped around. We cannot make any guarantee
2956                // about signed or unsigned overflow because pointers are
2957                // unsigned but we may have a negative index from the base
2958                // pointer.
2959                if (GEP->isInBounds())
2960                  Flags = setFlags(Flags, SCEV::FlagNW);
2961              }
2962
2963              const SCEV *StartVal = getSCEV(StartValueV);
2964              const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
2965
2966              // Since the no-wrap flags are on the increment, they apply to the
2967              // post-incremented value as well.
2968              if (isLoopInvariant(Accum, L))
2969                (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2970                                    Accum, L, Flags);
2971
2972              // Okay, for the entire analysis of this edge we assumed the PHI
2973              // to be symbolic.  We now need to go back and purge all of the
2974              // entries for the scalars that use the symbolic expression.
2975              ForgetSymbolicName(PN, SymbolicName);
2976              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
2977              return PHISCEV;
2978            }
2979          }
2980        } else if (const SCEVAddRecExpr *AddRec =
2981                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
2982          // Otherwise, this could be a loop like this:
2983          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
2984          // In this case, j = {1,+,1}  and BEValue is j.
2985          // Because the other in-value of i (0) fits the evolution of BEValue
2986          // i really is an addrec evolution.
2987          if (AddRec->getLoop() == L && AddRec->isAffine()) {
2988            const SCEV *StartVal = getSCEV(StartValueV);
2989
2990            // If StartVal = j.start - j.stride, we can use StartVal as the
2991            // initial step of the addrec evolution.
2992            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
2993                                         AddRec->getOperand(1))) {
2994              // FIXME: For constant StartVal, we should be able to infer
2995              // no-wrap flags.
2996              const SCEV *PHISCEV =
2997                getAddRecExpr(StartVal, AddRec->getOperand(1), L,
2998                              SCEV::FlagAnyWrap);
2999
3000              // Okay, for the entire analysis of this edge we assumed the PHI
3001              // to be symbolic.  We now need to go back and purge all of the
3002              // entries for the scalars that use the symbolic expression.
3003              ForgetSymbolicName(PN, SymbolicName);
3004              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3005              return PHISCEV;
3006            }
3007          }
3008        }
3009      }
3010    }
3011
3012  // If the PHI has a single incoming value, follow that value, unless the
3013  // PHI's incoming blocks are in a different loop, in which case doing so
3014  // risks breaking LCSSA form. Instcombine would normally zap these, but
3015  // it doesn't have DominatorTree information, so it may miss cases.
3016  if (Value *V = SimplifyInstruction(PN, TD, DT))
3017    if (LI->replacementPreservesLCSSAForm(PN, V))
3018      return getSCEV(V);
3019
3020  // If it's not a loop phi, we can't handle it yet.
3021  return getUnknown(PN);
3022}
3023
3024/// createNodeForGEP - Expand GEP instructions into add and multiply
3025/// operations. This allows them to be analyzed by regular SCEV code.
3026///
3027const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
3028
3029  // Don't blindly transfer the inbounds flag from the GEP instruction to the
3030  // Add expression, because the Instruction may be guarded by control flow
3031  // and the no-overflow bits may not be valid for the expression in any
3032  // context.
3033  bool isInBounds = GEP->isInBounds();
3034
3035  Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
3036  Value *Base = GEP->getOperand(0);
3037  // Don't attempt to analyze GEPs over unsized objects.
3038  if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
3039    return getUnknown(GEP);
3040  const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
3041  gep_type_iterator GTI = gep_type_begin(GEP);
3042  for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
3043                                      E = GEP->op_end();
3044       I != E; ++I) {
3045    Value *Index = *I;
3046    // Compute the (potentially symbolic) offset in bytes for this index.
3047    if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
3048      // For a struct, add the member offset.
3049      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
3050      const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
3051
3052      // Add the field offset to the running total offset.
3053      TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3054    } else {
3055      // For an array, add the element offset, explicitly scaled.
3056      const SCEV *ElementSize = getSizeOfExpr(*GTI);
3057      const SCEV *IndexS = getSCEV(Index);
3058      // Getelementptr indices are signed.
3059      IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3060
3061      // Multiply the index by the element size to compute the element offset.
3062      const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize,
3063                                           isInBounds ? SCEV::FlagNSW :
3064                                           SCEV::FlagAnyWrap);
3065
3066      // Add the element offset to the running total offset.
3067      TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3068    }
3069  }
3070
3071  // Get the SCEV for the GEP base.
3072  const SCEV *BaseS = getSCEV(Base);
3073
3074  // Add the total offset from all the GEP indices to the base.
3075  return getAddExpr(BaseS, TotalOffset,
3076                    isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap);
3077}
3078
3079/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3080/// guaranteed to end in (at every loop iteration).  It is, at the same time,
3081/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
3082/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
3083uint32_t
3084ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
3085  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3086    return C->getValue()->getValue().countTrailingZeros();
3087
3088  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
3089    return std::min(GetMinTrailingZeros(T->getOperand()),
3090                    (uint32_t)getTypeSizeInBits(T->getType()));
3091
3092  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
3093    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3094    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3095             getTypeSizeInBits(E->getType()) : OpRes;
3096  }
3097
3098  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
3099    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3100    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3101             getTypeSizeInBits(E->getType()) : OpRes;
3102  }
3103
3104  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
3105    // The result is the min of all operands results.
3106    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
3107    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
3108      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
3109    return MinOpRes;
3110  }
3111
3112  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
3113    // The result is the sum of all operands results.
3114    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3115    uint32_t BitWidth = getTypeSizeInBits(M->getType());
3116    for (unsigned i = 1, e = M->getNumOperands();
3117         SumOpRes != BitWidth && i != e; ++i)
3118      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
3119                          BitWidth);
3120    return SumOpRes;
3121  }
3122
3123  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
3124    // The result is the min of all operands results.
3125    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
3126    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
3127      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
3128    return MinOpRes;
3129  }
3130
3131  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
3132    // The result is the min of all operands results.
3133    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
3134    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3135      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3136    return MinOpRes;
3137  }
3138
3139  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
3140    // The result is the min of all operands results.
3141    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
3142    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3143      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3144    return MinOpRes;
3145  }
3146
3147  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3148    // For a SCEVUnknown, ask ValueTracking.
3149    unsigned BitWidth = getTypeSizeInBits(U->getType());
3150    APInt Mask = APInt::getAllOnesValue(BitWidth);
3151    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3152    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
3153    return Zeros.countTrailingOnes();
3154  }
3155
3156  // SCEVUDivExpr
3157  return 0;
3158}
3159
3160/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3161///
3162ConstantRange
3163ScalarEvolution::getUnsignedRange(const SCEV *S) {
3164  // See if we've computed this range already.
3165  DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3166  if (I != UnsignedRanges.end())
3167    return I->second;
3168
3169  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3170    return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
3171
3172  unsigned BitWidth = getTypeSizeInBits(S->getType());
3173  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3174
3175  // If the value has known zeros, the maximum unsigned value will have those
3176  // known zeros as well.
3177  uint32_t TZ = GetMinTrailingZeros(S);
3178  if (TZ != 0)
3179    ConservativeResult =
3180      ConstantRange(APInt::getMinValue(BitWidth),
3181                    APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3182
3183  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3184    ConstantRange X = getUnsignedRange(Add->getOperand(0));
3185    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3186      X = X.add(getUnsignedRange(Add->getOperand(i)));
3187    return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
3188  }
3189
3190  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3191    ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3192    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3193      X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
3194    return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
3195  }
3196
3197  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3198    ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3199    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3200      X = X.smax(getUnsignedRange(SMax->getOperand(i)));
3201    return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
3202  }
3203
3204  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3205    ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3206    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3207      X = X.umax(getUnsignedRange(UMax->getOperand(i)));
3208    return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
3209  }
3210
3211  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3212    ConstantRange X = getUnsignedRange(UDiv->getLHS());
3213    ConstantRange Y = getUnsignedRange(UDiv->getRHS());
3214    return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
3215  }
3216
3217  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3218    ConstantRange X = getUnsignedRange(ZExt->getOperand());
3219    return setUnsignedRange(ZExt,
3220      ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3221  }
3222
3223  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3224    ConstantRange X = getUnsignedRange(SExt->getOperand());
3225    return setUnsignedRange(SExt,
3226      ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3227  }
3228
3229  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3230    ConstantRange X = getUnsignedRange(Trunc->getOperand());
3231    return setUnsignedRange(Trunc,
3232      ConservativeResult.intersectWith(X.truncate(BitWidth)));
3233  }
3234
3235  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3236    // If there's no unsigned wrap, the value will never be less than its
3237    // initial value.
3238    if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
3239      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
3240        if (!C->getValue()->isZero())
3241          ConservativeResult =
3242            ConservativeResult.intersectWith(
3243              ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
3244
3245    // TODO: non-affine addrec
3246    if (AddRec->isAffine()) {
3247      Type *Ty = AddRec->getType();
3248      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3249      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3250          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3251        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3252
3253        const SCEV *Start = AddRec->getStart();
3254        const SCEV *Step = AddRec->getStepRecurrence(*this);
3255
3256        ConstantRange StartRange = getUnsignedRange(Start);
3257        ConstantRange StepRange = getSignedRange(Step);
3258        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3259        ConstantRange EndRange =
3260          StartRange.add(MaxBECountRange.multiply(StepRange));
3261
3262        // Check for overflow. This must be done with ConstantRange arithmetic
3263        // because we could be called from within the ScalarEvolution overflow
3264        // checking code.
3265        ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3266        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3267        ConstantRange ExtMaxBECountRange =
3268          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3269        ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3270        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3271            ExtEndRange)
3272          return setUnsignedRange(AddRec, ConservativeResult);
3273
3274        APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3275                                   EndRange.getUnsignedMin());
3276        APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3277                                   EndRange.getUnsignedMax());
3278        if (Min.isMinValue() && Max.isMaxValue())
3279          return setUnsignedRange(AddRec, ConservativeResult);
3280        return setUnsignedRange(AddRec,
3281          ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3282      }
3283    }
3284
3285    return setUnsignedRange(AddRec, ConservativeResult);
3286  }
3287
3288  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3289    // For a SCEVUnknown, ask ValueTracking.
3290    APInt Mask = APInt::getAllOnesValue(BitWidth);
3291    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3292    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
3293    if (Ones == ~Zeros + 1)
3294      return setUnsignedRange(U, ConservativeResult);
3295    return setUnsignedRange(U,
3296      ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
3297  }
3298
3299  return setUnsignedRange(S, ConservativeResult);
3300}
3301
3302/// getSignedRange - Determine the signed range for a particular SCEV.
3303///
3304ConstantRange
3305ScalarEvolution::getSignedRange(const SCEV *S) {
3306  // See if we've computed this range already.
3307  DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3308  if (I != SignedRanges.end())
3309    return I->second;
3310
3311  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3312    return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
3313
3314  unsigned BitWidth = getTypeSizeInBits(S->getType());
3315  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3316
3317  // If the value has known zeros, the maximum signed value will have those
3318  // known zeros as well.
3319  uint32_t TZ = GetMinTrailingZeros(S);
3320  if (TZ != 0)
3321    ConservativeResult =
3322      ConstantRange(APInt::getSignedMinValue(BitWidth),
3323                    APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3324
3325  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3326    ConstantRange X = getSignedRange(Add->getOperand(0));
3327    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3328      X = X.add(getSignedRange(Add->getOperand(i)));
3329    return setSignedRange(Add, ConservativeResult.intersectWith(X));
3330  }
3331
3332  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3333    ConstantRange X = getSignedRange(Mul->getOperand(0));
3334    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3335      X = X.multiply(getSignedRange(Mul->getOperand(i)));
3336    return setSignedRange(Mul, ConservativeResult.intersectWith(X));
3337  }
3338
3339  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3340    ConstantRange X = getSignedRange(SMax->getOperand(0));
3341    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3342      X = X.smax(getSignedRange(SMax->getOperand(i)));
3343    return setSignedRange(SMax, ConservativeResult.intersectWith(X));
3344  }
3345
3346  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3347    ConstantRange X = getSignedRange(UMax->getOperand(0));
3348    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3349      X = X.umax(getSignedRange(UMax->getOperand(i)));
3350    return setSignedRange(UMax, ConservativeResult.intersectWith(X));
3351  }
3352
3353  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3354    ConstantRange X = getSignedRange(UDiv->getLHS());
3355    ConstantRange Y = getSignedRange(UDiv->getRHS());
3356    return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
3357  }
3358
3359  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3360    ConstantRange X = getSignedRange(ZExt->getOperand());
3361    return setSignedRange(ZExt,
3362      ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3363  }
3364
3365  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3366    ConstantRange X = getSignedRange(SExt->getOperand());
3367    return setSignedRange(SExt,
3368      ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3369  }
3370
3371  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3372    ConstantRange X = getSignedRange(Trunc->getOperand());
3373    return setSignedRange(Trunc,
3374      ConservativeResult.intersectWith(X.truncate(BitWidth)));
3375  }
3376
3377  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3378    // If there's no signed wrap, and all the operands have the same sign or
3379    // zero, the value won't ever change sign.
3380    if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
3381      bool AllNonNeg = true;
3382      bool AllNonPos = true;
3383      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3384        if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3385        if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3386      }
3387      if (AllNonNeg)
3388        ConservativeResult = ConservativeResult.intersectWith(
3389          ConstantRange(APInt(BitWidth, 0),
3390                        APInt::getSignedMinValue(BitWidth)));
3391      else if (AllNonPos)
3392        ConservativeResult = ConservativeResult.intersectWith(
3393          ConstantRange(APInt::getSignedMinValue(BitWidth),
3394                        APInt(BitWidth, 1)));
3395    }
3396
3397    // TODO: non-affine addrec
3398    if (AddRec->isAffine()) {
3399      Type *Ty = AddRec->getType();
3400      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3401      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3402          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3403        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3404
3405        const SCEV *Start = AddRec->getStart();
3406        const SCEV *Step = AddRec->getStepRecurrence(*this);
3407
3408        ConstantRange StartRange = getSignedRange(Start);
3409        ConstantRange StepRange = getSignedRange(Step);
3410        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3411        ConstantRange EndRange =
3412          StartRange.add(MaxBECountRange.multiply(StepRange));
3413
3414        // Check for overflow. This must be done with ConstantRange arithmetic
3415        // because we could be called from within the ScalarEvolution overflow
3416        // checking code.
3417        ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3418        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3419        ConstantRange ExtMaxBECountRange =
3420          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3421        ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3422        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3423            ExtEndRange)
3424          return setSignedRange(AddRec, ConservativeResult);
3425
3426        APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3427                                   EndRange.getSignedMin());
3428        APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3429                                   EndRange.getSignedMax());
3430        if (Min.isMinSignedValue() && Max.isMaxSignedValue())
3431          return setSignedRange(AddRec, ConservativeResult);
3432        return setSignedRange(AddRec,
3433          ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3434      }
3435    }
3436
3437    return setSignedRange(AddRec, ConservativeResult);
3438  }
3439
3440  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3441    // For a SCEVUnknown, ask ValueTracking.
3442    if (!U->getValue()->getType()->isIntegerTy() && !TD)
3443      return setSignedRange(U, ConservativeResult);
3444    unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3445    if (NS == 1)
3446      return setSignedRange(U, ConservativeResult);
3447    return setSignedRange(U, ConservativeResult.intersectWith(
3448      ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
3449                    APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
3450  }
3451
3452  return setSignedRange(S, ConservativeResult);
3453}
3454
3455/// createSCEV - We know that there is no SCEV for the specified value.
3456/// Analyze the expression.
3457///
3458const SCEV *ScalarEvolution::createSCEV(Value *V) {
3459  if (!isSCEVable(V->getType()))
3460    return getUnknown(V);
3461
3462  unsigned Opcode = Instruction::UserOp1;
3463  if (Instruction *I = dyn_cast<Instruction>(V)) {
3464    Opcode = I->getOpcode();
3465
3466    // Don't attempt to analyze instructions in blocks that aren't
3467    // reachable. Such instructions don't matter, and they aren't required
3468    // to obey basic rules for definitions dominating uses which this
3469    // analysis depends on.
3470    if (!DT->isReachableFromEntry(I->getParent()))
3471      return getUnknown(V);
3472  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
3473    Opcode = CE->getOpcode();
3474  else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3475    return getConstant(CI);
3476  else if (isa<ConstantPointerNull>(V))
3477    return getConstant(V->getType(), 0);
3478  else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3479    return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
3480  else
3481    return getUnknown(V);
3482
3483  Operator *U = cast<Operator>(V);
3484  switch (Opcode) {
3485  case Instruction::Add: {
3486    // The simple thing to do would be to just call getSCEV on both operands
3487    // and call getAddExpr with the result. However if we're looking at a
3488    // bunch of things all added together, this can be quite inefficient,
3489    // because it leads to N-1 getAddExpr calls for N ultimate operands.
3490    // Instead, gather up all the operands and make a single getAddExpr call.
3491    // LLVM IR canonical form means we need only traverse the left operands.
3492    SmallVector<const SCEV *, 4> AddOps;
3493    AddOps.push_back(getSCEV(U->getOperand(1)));
3494    for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3495      unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3496      if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3497        break;
3498      U = cast<Operator>(Op);
3499      const SCEV *Op1 = getSCEV(U->getOperand(1));
3500      if (Opcode == Instruction::Sub)
3501        AddOps.push_back(getNegativeSCEV(Op1));
3502      else
3503        AddOps.push_back(Op1);
3504    }
3505    AddOps.push_back(getSCEV(U->getOperand(0)));
3506    return getAddExpr(AddOps);
3507  }
3508  case Instruction::Mul: {
3509    // See the Add code above.
3510    SmallVector<const SCEV *, 4> MulOps;
3511    MulOps.push_back(getSCEV(U->getOperand(1)));
3512    for (Value *Op = U->getOperand(0);
3513         Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3514         Op = U->getOperand(0)) {
3515      U = cast<Operator>(Op);
3516      MulOps.push_back(getSCEV(U->getOperand(1)));
3517    }
3518    MulOps.push_back(getSCEV(U->getOperand(0)));
3519    return getMulExpr(MulOps);
3520  }
3521  case Instruction::UDiv:
3522    return getUDivExpr(getSCEV(U->getOperand(0)),
3523                       getSCEV(U->getOperand(1)));
3524  case Instruction::Sub:
3525    return getMinusSCEV(getSCEV(U->getOperand(0)),
3526                        getSCEV(U->getOperand(1)));
3527  case Instruction::And:
3528    // For an expression like x&255 that merely masks off the high bits,
3529    // use zext(trunc(x)) as the SCEV expression.
3530    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3531      if (CI->isNullValue())
3532        return getSCEV(U->getOperand(1));
3533      if (CI->isAllOnesValue())
3534        return getSCEV(U->getOperand(0));
3535      const APInt &A = CI->getValue();
3536
3537      // Instcombine's ShrinkDemandedConstant may strip bits out of
3538      // constants, obscuring what would otherwise be a low-bits mask.
3539      // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3540      // knew about to reconstruct a low-bits mask value.
3541      unsigned LZ = A.countLeadingZeros();
3542      unsigned BitWidth = A.getBitWidth();
3543      APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3544      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3545      ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3546
3547      APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3548
3549      if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
3550        return
3551          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
3552                                IntegerType::get(getContext(), BitWidth - LZ)),
3553                            U->getType());
3554    }
3555    break;
3556
3557  case Instruction::Or:
3558    // If the RHS of the Or is a constant, we may have something like:
3559    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
3560    // optimizations will transparently handle this case.
3561    //
3562    // In order for this transformation to be safe, the LHS must be of the
3563    // form X*(2^n) and the Or constant must be less than 2^n.
3564    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3565      const SCEV *LHS = getSCEV(U->getOperand(0));
3566      const APInt &CIVal = CI->getValue();
3567      if (GetMinTrailingZeros(LHS) >=
3568          (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3569        // Build a plain add SCEV.
3570        const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3571        // If the LHS of the add was an addrec and it has no-wrap flags,
3572        // transfer the no-wrap flags, since an or won't introduce a wrap.
3573        if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3574          const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3575          const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
3576            OldAR->getNoWrapFlags());
3577        }
3578        return S;
3579      }
3580    }
3581    break;
3582  case Instruction::Xor:
3583    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3584      // If the RHS of the xor is a signbit, then this is just an add.
3585      // Instcombine turns add of signbit into xor as a strength reduction step.
3586      if (CI->getValue().isSignBit())
3587        return getAddExpr(getSCEV(U->getOperand(0)),
3588                          getSCEV(U->getOperand(1)));
3589
3590      // If the RHS of xor is -1, then this is a not operation.
3591      if (CI->isAllOnesValue())
3592        return getNotSCEV(getSCEV(U->getOperand(0)));
3593
3594      // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3595      // This is a variant of the check for xor with -1, and it handles
3596      // the case where instcombine has trimmed non-demanded bits out
3597      // of an xor with -1.
3598      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3599        if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3600          if (BO->getOpcode() == Instruction::And &&
3601              LCI->getValue() == CI->getValue())
3602            if (const SCEVZeroExtendExpr *Z =
3603                  dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
3604              Type *UTy = U->getType();
3605              const SCEV *Z0 = Z->getOperand();
3606              Type *Z0Ty = Z0->getType();
3607              unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3608
3609              // If C is a low-bits mask, the zero extend is serving to
3610              // mask off the high bits. Complement the operand and
3611              // re-apply the zext.
3612              if (APIntOps::isMask(Z0TySize, CI->getValue()))
3613                return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3614
3615              // If C is a single bit, it may be in the sign-bit position
3616              // before the zero-extend. In this case, represent the xor
3617              // using an add, which is equivalent, and re-apply the zext.
3618              APInt Trunc = CI->getValue().trunc(Z0TySize);
3619              if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3620                  Trunc.isSignBit())
3621                return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3622                                         UTy);
3623            }
3624    }
3625    break;
3626
3627  case Instruction::Shl:
3628    // Turn shift left of a constant amount into a multiply.
3629    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3630      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3631
3632      // If the shift count is not less than the bitwidth, the result of
3633      // the shift is undefined. Don't try to analyze it, because the
3634      // resolution chosen here may differ from the resolution chosen in
3635      // other parts of the compiler.
3636      if (SA->getValue().uge(BitWidth))
3637        break;
3638
3639      Constant *X = ConstantInt::get(getContext(),
3640        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3641      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3642    }
3643    break;
3644
3645  case Instruction::LShr:
3646    // Turn logical shift right of a constant into a unsigned divide.
3647    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3648      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3649
3650      // If the shift count is not less than the bitwidth, the result of
3651      // the shift is undefined. Don't try to analyze it, because the
3652      // resolution chosen here may differ from the resolution chosen in
3653      // other parts of the compiler.
3654      if (SA->getValue().uge(BitWidth))
3655        break;
3656
3657      Constant *X = ConstantInt::get(getContext(),
3658        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3659      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3660    }
3661    break;
3662
3663  case Instruction::AShr:
3664    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3665    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
3666      if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
3667        if (L->getOpcode() == Instruction::Shl &&
3668            L->getOperand(1) == U->getOperand(1)) {
3669          uint64_t BitWidth = getTypeSizeInBits(U->getType());
3670
3671          // If the shift count is not less than the bitwidth, the result of
3672          // the shift is undefined. Don't try to analyze it, because the
3673          // resolution chosen here may differ from the resolution chosen in
3674          // other parts of the compiler.
3675          if (CI->getValue().uge(BitWidth))
3676            break;
3677
3678          uint64_t Amt = BitWidth - CI->getZExtValue();
3679          if (Amt == BitWidth)
3680            return getSCEV(L->getOperand(0));       // shift by zero --> noop
3681          return
3682            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
3683                                              IntegerType::get(getContext(),
3684                                                               Amt)),
3685                              U->getType());
3686        }
3687    break;
3688
3689  case Instruction::Trunc:
3690    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
3691
3692  case Instruction::ZExt:
3693    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3694
3695  case Instruction::SExt:
3696    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3697
3698  case Instruction::BitCast:
3699    // BitCasts are no-op casts so we just eliminate the cast.
3700    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
3701      return getSCEV(U->getOperand(0));
3702    break;
3703
3704  // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3705  // lead to pointer expressions which cannot safely be expanded to GEPs,
3706  // because ScalarEvolution doesn't respect the GEP aliasing rules when
3707  // simplifying integer expressions.
3708
3709  case Instruction::GetElementPtr:
3710    return createNodeForGEP(cast<GEPOperator>(U));
3711
3712  case Instruction::PHI:
3713    return createNodeForPHI(cast<PHINode>(U));
3714
3715  case Instruction::Select:
3716    // This could be a smax or umax that was lowered earlier.
3717    // Try to recover it.
3718    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3719      Value *LHS = ICI->getOperand(0);
3720      Value *RHS = ICI->getOperand(1);
3721      switch (ICI->getPredicate()) {
3722      case ICmpInst::ICMP_SLT:
3723      case ICmpInst::ICMP_SLE:
3724        std::swap(LHS, RHS);
3725        // fall through
3726      case ICmpInst::ICMP_SGT:
3727      case ICmpInst::ICMP_SGE:
3728        // a >s b ? a+x : b+x  ->  smax(a, b)+x
3729        // a >s b ? b+x : a+x  ->  smin(a, b)+x
3730        if (LHS->getType() == U->getType()) {
3731          const SCEV *LS = getSCEV(LHS);
3732          const SCEV *RS = getSCEV(RHS);
3733          const SCEV *LA = getSCEV(U->getOperand(1));
3734          const SCEV *RA = getSCEV(U->getOperand(2));
3735          const SCEV *LDiff = getMinusSCEV(LA, LS);
3736          const SCEV *RDiff = getMinusSCEV(RA, RS);
3737          if (LDiff == RDiff)
3738            return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3739          LDiff = getMinusSCEV(LA, RS);
3740          RDiff = getMinusSCEV(RA, LS);
3741          if (LDiff == RDiff)
3742            return getAddExpr(getSMinExpr(LS, RS), LDiff);
3743        }
3744        break;
3745      case ICmpInst::ICMP_ULT:
3746      case ICmpInst::ICMP_ULE:
3747        std::swap(LHS, RHS);
3748        // fall through
3749      case ICmpInst::ICMP_UGT:
3750      case ICmpInst::ICMP_UGE:
3751        // a >u b ? a+x : b+x  ->  umax(a, b)+x
3752        // a >u b ? b+x : a+x  ->  umin(a, b)+x
3753        if (LHS->getType() == U->getType()) {
3754          const SCEV *LS = getSCEV(LHS);
3755          const SCEV *RS = getSCEV(RHS);
3756          const SCEV *LA = getSCEV(U->getOperand(1));
3757          const SCEV *RA = getSCEV(U->getOperand(2));
3758          const SCEV *LDiff = getMinusSCEV(LA, LS);
3759          const SCEV *RDiff = getMinusSCEV(RA, RS);
3760          if (LDiff == RDiff)
3761            return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3762          LDiff = getMinusSCEV(LA, RS);
3763          RDiff = getMinusSCEV(RA, LS);
3764          if (LDiff == RDiff)
3765            return getAddExpr(getUMinExpr(LS, RS), LDiff);
3766        }
3767        break;
3768      case ICmpInst::ICMP_NE:
3769        // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
3770        if (LHS->getType() == U->getType() &&
3771            isa<ConstantInt>(RHS) &&
3772            cast<ConstantInt>(RHS)->isZero()) {
3773          const SCEV *One = getConstant(LHS->getType(), 1);
3774          const SCEV *LS = getSCEV(LHS);
3775          const SCEV *LA = getSCEV(U->getOperand(1));
3776          const SCEV *RA = getSCEV(U->getOperand(2));
3777          const SCEV *LDiff = getMinusSCEV(LA, LS);
3778          const SCEV *RDiff = getMinusSCEV(RA, One);
3779          if (LDiff == RDiff)
3780            return getAddExpr(getUMaxExpr(One, LS), LDiff);
3781        }
3782        break;
3783      case ICmpInst::ICMP_EQ:
3784        // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
3785        if (LHS->getType() == U->getType() &&
3786            isa<ConstantInt>(RHS) &&
3787            cast<ConstantInt>(RHS)->isZero()) {
3788          const SCEV *One = getConstant(LHS->getType(), 1);
3789          const SCEV *LS = getSCEV(LHS);
3790          const SCEV *LA = getSCEV(U->getOperand(1));
3791          const SCEV *RA = getSCEV(U->getOperand(2));
3792          const SCEV *LDiff = getMinusSCEV(LA, One);
3793          const SCEV *RDiff = getMinusSCEV(RA, LS);
3794          if (LDiff == RDiff)
3795            return getAddExpr(getUMaxExpr(One, LS), LDiff);
3796        }
3797        break;
3798      default:
3799        break;
3800      }
3801    }
3802
3803  default: // We cannot analyze this expression.
3804    break;
3805  }
3806
3807  return getUnknown(V);
3808}
3809
3810
3811
3812//===----------------------------------------------------------------------===//
3813//                   Iteration Count Computation Code
3814//
3815
3816// getExitCount - Get the expression for the number of loop iterations for which
3817// this loop is guaranteed not to exit via ExitintBlock. Otherwise return
3818// SCEVCouldNotCompute.
3819const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
3820  return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
3821}
3822
3823/// getBackedgeTakenCount - If the specified loop has a predictable
3824/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3825/// object. The backedge-taken count is the number of times the loop header
3826/// will be branched to from within the loop. This is one less than the
3827/// trip count of the loop, since it doesn't count the first iteration,
3828/// when the header is branched to from outside the loop.
3829///
3830/// Note that it is not valid to call this method on a loop without a
3831/// loop-invariant backedge-taken count (see
3832/// hasLoopInvariantBackedgeTakenCount).
3833///
3834const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
3835  return getBackedgeTakenInfo(L).getExact(this);
3836}
3837
3838/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3839/// return the least SCEV value that is known never to be less than the
3840/// actual backedge taken count.
3841const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
3842  return getBackedgeTakenInfo(L).getMax(this);
3843}
3844
3845/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3846/// onto the given Worklist.
3847static void
3848PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3849  BasicBlock *Header = L->getHeader();
3850
3851  // Push all Loop-header PHIs onto the Worklist stack.
3852  for (BasicBlock::iterator I = Header->begin();
3853       PHINode *PN = dyn_cast<PHINode>(I); ++I)
3854    Worklist.push_back(PN);
3855}
3856
3857const ScalarEvolution::BackedgeTakenInfo &
3858ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
3859  // Initially insert an invalid entry for this loop. If the insertion
3860  // succeeds, proceed to actually compute a backedge-taken count and
3861  // update the value. The temporary CouldNotCompute value tells SCEV
3862  // code elsewhere that it shouldn't attempt to request a new
3863  // backedge-taken count, which could result in infinite recursion.
3864  std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
3865    BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
3866  if (!Pair.second)
3867    return Pair.first->second;
3868
3869  // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
3870  // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
3871  // must be cleared in this scope.
3872  BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
3873
3874  if (Result.getExact(this) != getCouldNotCompute()) {
3875    assert(isLoopInvariant(Result.getExact(this), L) &&
3876           isLoopInvariant(Result.getMax(this), L) &&
3877           "Computed backedge-taken count isn't loop invariant for loop!");
3878    ++NumTripCountsComputed;
3879  }
3880  else if (Result.getMax(this) == getCouldNotCompute() &&
3881           isa<PHINode>(L->getHeader()->begin())) {
3882    // Only count loops that have phi nodes as not being computable.
3883    ++NumTripCountsNotComputed;
3884  }
3885
3886  // Now that we know more about the trip count for this loop, forget any
3887  // existing SCEV values for PHI nodes in this loop since they are only
3888  // conservative estimates made without the benefit of trip count
3889  // information. This is similar to the code in forgetLoop, except that
3890  // it handles SCEVUnknown PHI nodes specially.
3891  if (Result.hasAnyInfo()) {
3892    SmallVector<Instruction *, 16> Worklist;
3893    PushLoopPHIs(L, Worklist);
3894
3895    SmallPtrSet<Instruction *, 8> Visited;
3896    while (!Worklist.empty()) {
3897      Instruction *I = Worklist.pop_back_val();
3898      if (!Visited.insert(I)) continue;
3899
3900      ValueExprMapType::iterator It =
3901        ValueExprMap.find(static_cast<Value *>(I));
3902      if (It != ValueExprMap.end()) {
3903        const SCEV *Old = It->second;
3904
3905        // SCEVUnknown for a PHI either means that it has an unrecognized
3906        // structure, or it's a PHI that's in the progress of being computed
3907        // by createNodeForPHI.  In the former case, additional loop trip
3908        // count information isn't going to change anything. In the later
3909        // case, createNodeForPHI will perform the necessary updates on its
3910        // own when it gets to that point.
3911        if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
3912          forgetMemoizedResults(Old);
3913          ValueExprMap.erase(It);
3914        }
3915        if (PHINode *PN = dyn_cast<PHINode>(I))
3916          ConstantEvolutionLoopExitValue.erase(PN);
3917      }
3918
3919      PushDefUseChildren(I, Worklist);
3920    }
3921  }
3922
3923  // Re-lookup the insert position, since the call to
3924  // ComputeBackedgeTakenCount above could result in a
3925  // recusive call to getBackedgeTakenInfo (on a different
3926  // loop), which would invalidate the iterator computed
3927  // earlier.
3928  return BackedgeTakenCounts.find(L)->second = Result;
3929}
3930
3931/// forgetLoop - This method should be called by the client when it has
3932/// changed a loop in a way that may effect ScalarEvolution's ability to
3933/// compute a trip count, or if the loop is deleted.
3934void ScalarEvolution::forgetLoop(const Loop *L) {
3935  // Drop any stored trip count value.
3936  DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
3937    BackedgeTakenCounts.find(L);
3938  if (BTCPos != BackedgeTakenCounts.end()) {
3939    BTCPos->second.clear();
3940    BackedgeTakenCounts.erase(BTCPos);
3941  }
3942
3943  // Drop information about expressions based on loop-header PHIs.
3944  SmallVector<Instruction *, 16> Worklist;
3945  PushLoopPHIs(L, Worklist);
3946
3947  SmallPtrSet<Instruction *, 8> Visited;
3948  while (!Worklist.empty()) {
3949    Instruction *I = Worklist.pop_back_val();
3950    if (!Visited.insert(I)) continue;
3951
3952    ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3953    if (It != ValueExprMap.end()) {
3954      forgetMemoizedResults(It->second);
3955      ValueExprMap.erase(It);
3956      if (PHINode *PN = dyn_cast<PHINode>(I))
3957        ConstantEvolutionLoopExitValue.erase(PN);
3958    }
3959
3960    PushDefUseChildren(I, Worklist);
3961  }
3962
3963  // Forget all contained loops too, to avoid dangling entries in the
3964  // ValuesAtScopes map.
3965  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3966    forgetLoop(*I);
3967}
3968
3969/// forgetValue - This method should be called by the client when it has
3970/// changed a value in a way that may effect its value, or which may
3971/// disconnect it from a def-use chain linking it to a loop.
3972void ScalarEvolution::forgetValue(Value *V) {
3973  Instruction *I = dyn_cast<Instruction>(V);
3974  if (!I) return;
3975
3976  // Drop information about expressions based on loop-header PHIs.
3977  SmallVector<Instruction *, 16> Worklist;
3978  Worklist.push_back(I);
3979
3980  SmallPtrSet<Instruction *, 8> Visited;
3981  while (!Worklist.empty()) {
3982    I = Worklist.pop_back_val();
3983    if (!Visited.insert(I)) continue;
3984
3985    ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3986    if (It != ValueExprMap.end()) {
3987      forgetMemoizedResults(It->second);
3988      ValueExprMap.erase(It);
3989      if (PHINode *PN = dyn_cast<PHINode>(I))
3990        ConstantEvolutionLoopExitValue.erase(PN);
3991    }
3992
3993    PushDefUseChildren(I, Worklist);
3994  }
3995}
3996
3997/// getExact - Get the exact loop backedge taken count considering all loop
3998/// exits. If all exits are computable, this is the minimum computed count.
3999const SCEV *
4000ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4001  // If any exits were not computable, the loop is not computable.
4002  if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4003
4004  // We need at least one computable exit.
4005  if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
4006  assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4007
4008  const SCEV *BECount = 0;
4009  for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4010       ENT != 0; ENT = ENT->getNextExit()) {
4011
4012    assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4013
4014    if (!BECount)
4015      BECount = ENT->ExactNotTaken;
4016    else
4017      BECount = SE->getUMinFromMismatchedTypes(BECount, ENT->ExactNotTaken);
4018  }
4019  return BECount;
4020}
4021
4022/// getExact - Get the exact not taken count for this loop exit.
4023const SCEV *
4024ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
4025                                             ScalarEvolution *SE) const {
4026  for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4027       ENT != 0; ENT = ENT->getNextExit()) {
4028
4029    if (ENT->ExitingBlock == ExitingBlock)
4030      return ENT->ExactNotTaken;
4031  }
4032  return SE->getCouldNotCompute();
4033}
4034
4035/// getMax - Get the max backedge taken count for the loop.
4036const SCEV *
4037ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4038  return Max ? Max : SE->getCouldNotCompute();
4039}
4040
4041/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4042/// computable exit into a persistent ExitNotTakenInfo array.
4043ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4044  SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4045  bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4046
4047  if (!Complete)
4048    ExitNotTaken.setIncomplete();
4049
4050  unsigned NumExits = ExitCounts.size();
4051  if (NumExits == 0) return;
4052
4053  ExitNotTaken.ExitingBlock = ExitCounts[0].first;
4054  ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4055  if (NumExits == 1) return;
4056
4057  // Handle the rare case of multiple computable exits.
4058  ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4059
4060  ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4061  for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4062    PrevENT->setNextExit(ENT);
4063    ENT->ExitingBlock = ExitCounts[i].first;
4064    ENT->ExactNotTaken = ExitCounts[i].second;
4065  }
4066}
4067
4068/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4069void ScalarEvolution::BackedgeTakenInfo::clear() {
4070  ExitNotTaken.ExitingBlock = 0;
4071  ExitNotTaken.ExactNotTaken = 0;
4072  delete[] ExitNotTaken.getNextExit();
4073}
4074
4075/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4076/// of the specified loop will execute.
4077ScalarEvolution::BackedgeTakenInfo
4078ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
4079  SmallVector<BasicBlock *, 8> ExitingBlocks;
4080  L->getExitingBlocks(ExitingBlocks);
4081
4082  // Examine all exits and pick the most conservative values.
4083  const SCEV *MaxBECount = getCouldNotCompute();
4084  bool CouldComputeBECount = true;
4085  SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
4086  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
4087    ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]);
4088    if (EL.Exact == getCouldNotCompute())
4089      // We couldn't compute an exact value for this exit, so
4090      // we won't be able to compute an exact value for the loop.
4091      CouldComputeBECount = false;
4092    else
4093      ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact));
4094
4095    if (MaxBECount == getCouldNotCompute())
4096      MaxBECount = EL.Max;
4097    else if (EL.Max != getCouldNotCompute())
4098      MaxBECount = getUMinFromMismatchedTypes(MaxBECount, EL.Max);
4099  }
4100
4101  return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
4102}
4103
4104/// ComputeExitLimit - Compute the number of times the backedge of the specified
4105/// loop will execute if it exits via the specified block.
4106ScalarEvolution::ExitLimit
4107ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
4108
4109  // Okay, we've chosen an exiting block.  See what condition causes us to
4110  // exit at this block.
4111  //
4112  // FIXME: we should be able to handle switch instructions (with a single exit)
4113  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
4114  if (ExitBr == 0) return getCouldNotCompute();
4115  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
4116
4117  // At this point, we know we have a conditional branch that determines whether
4118  // the loop is exited.  However, we don't know if the branch is executed each
4119  // time through the loop.  If not, then the execution count of the branch will
4120  // not be equal to the trip count of the loop.
4121  //
4122  // Currently we check for this by checking to see if the Exit branch goes to
4123  // the loop header.  If so, we know it will always execute the same number of
4124  // times as the loop.  We also handle the case where the exit block *is* the
4125  // loop header.  This is common for un-rotated loops.
4126  //
4127  // If both of those tests fail, walk up the unique predecessor chain to the
4128  // header, stopping if there is an edge that doesn't exit the loop. If the
4129  // header is reached, the execution count of the branch will be equal to the
4130  // trip count of the loop.
4131  //
4132  //  More extensive analysis could be done to handle more cases here.
4133  //
4134  if (ExitBr->getSuccessor(0) != L->getHeader() &&
4135      ExitBr->getSuccessor(1) != L->getHeader() &&
4136      ExitBr->getParent() != L->getHeader()) {
4137    // The simple checks failed, try climbing the unique predecessor chain
4138    // up to the header.
4139    bool Ok = false;
4140    for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
4141      BasicBlock *Pred = BB->getUniquePredecessor();
4142      if (!Pred)
4143        return getCouldNotCompute();
4144      TerminatorInst *PredTerm = Pred->getTerminator();
4145      for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4146        BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4147        if (PredSucc == BB)
4148          continue;
4149        // If the predecessor has a successor that isn't BB and isn't
4150        // outside the loop, assume the worst.
4151        if (L->contains(PredSucc))
4152          return getCouldNotCompute();
4153      }
4154      if (Pred == L->getHeader()) {
4155        Ok = true;
4156        break;
4157      }
4158      BB = Pred;
4159    }
4160    if (!Ok)
4161      return getCouldNotCompute();
4162  }
4163
4164  // Proceed to the next level to examine the exit condition expression.
4165  return ComputeExitLimitFromCond(L, ExitBr->getCondition(),
4166                                  ExitBr->getSuccessor(0),
4167                                  ExitBr->getSuccessor(1));
4168}
4169
4170/// ComputeExitLimitFromCond - Compute the number of times the
4171/// backedge of the specified loop will execute if its exit condition
4172/// were a conditional branch of ExitCond, TBB, and FBB.
4173ScalarEvolution::ExitLimit
4174ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4175                                          Value *ExitCond,
4176                                          BasicBlock *TBB,
4177                                          BasicBlock *FBB) {
4178  // Check if the controlling expression for this loop is an And or Or.
4179  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4180    if (BO->getOpcode() == Instruction::And) {
4181      // Recurse on the operands of the and.
4182      ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4183      ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
4184      const SCEV *BECount = getCouldNotCompute();
4185      const SCEV *MaxBECount = getCouldNotCompute();
4186      if (L->contains(TBB)) {
4187        // Both conditions must be true for the loop to continue executing.
4188        // Choose the less conservative count.
4189        if (EL0.Exact == getCouldNotCompute() ||
4190            EL1.Exact == getCouldNotCompute())
4191          BECount = getCouldNotCompute();
4192        else
4193          BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4194        if (EL0.Max == getCouldNotCompute())
4195          MaxBECount = EL1.Max;
4196        else if (EL1.Max == getCouldNotCompute())
4197          MaxBECount = EL0.Max;
4198        else
4199          MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
4200      } else {
4201        // Both conditions must be true at the same time for the loop to exit.
4202        // For now, be conservative.
4203        assert(L->contains(FBB) && "Loop block has no successor in loop!");
4204        if (EL0.Max == EL1.Max)
4205          MaxBECount = EL0.Max;
4206        if (EL0.Exact == EL1.Exact)
4207          BECount = EL0.Exact;
4208      }
4209
4210      return ExitLimit(BECount, MaxBECount);
4211    }
4212    if (BO->getOpcode() == Instruction::Or) {
4213      // Recurse on the operands of the or.
4214      ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4215      ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
4216      const SCEV *BECount = getCouldNotCompute();
4217      const SCEV *MaxBECount = getCouldNotCompute();
4218      if (L->contains(FBB)) {
4219        // Both conditions must be false for the loop to continue executing.
4220        // Choose the less conservative count.
4221        if (EL0.Exact == getCouldNotCompute() ||
4222            EL1.Exact == getCouldNotCompute())
4223          BECount = getCouldNotCompute();
4224        else
4225          BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4226        if (EL0.Max == getCouldNotCompute())
4227          MaxBECount = EL1.Max;
4228        else if (EL1.Max == getCouldNotCompute())
4229          MaxBECount = EL0.Max;
4230        else
4231          MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
4232      } else {
4233        // Both conditions must be false at the same time for the loop to exit.
4234        // For now, be conservative.
4235        assert(L->contains(TBB) && "Loop block has no successor in loop!");
4236        if (EL0.Max == EL1.Max)
4237          MaxBECount = EL0.Max;
4238        if (EL0.Exact == EL1.Exact)
4239          BECount = EL0.Exact;
4240      }
4241
4242      return ExitLimit(BECount, MaxBECount);
4243    }
4244  }
4245
4246  // With an icmp, it may be feasible to compute an exact backedge-taken count.
4247  // Proceed to the next level to examine the icmp.
4248  if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
4249    return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB);
4250
4251  // Check for a constant condition. These are normally stripped out by
4252  // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4253  // preserve the CFG and is temporarily leaving constant conditions
4254  // in place.
4255  if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4256    if (L->contains(FBB) == !CI->getZExtValue())
4257      // The backedge is always taken.
4258      return getCouldNotCompute();
4259    else
4260      // The backedge is never taken.
4261      return getConstant(CI->getType(), 0);
4262  }
4263
4264  // If it's not an integer or pointer comparison then compute it the hard way.
4265  return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
4266}
4267
4268/// ComputeExitLimitFromICmp - Compute the number of times the
4269/// backedge of the specified loop will execute if its exit condition
4270/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4271ScalarEvolution::ExitLimit
4272ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
4273                                          ICmpInst *ExitCond,
4274                                          BasicBlock *TBB,
4275                                          BasicBlock *FBB) {
4276
4277  // If the condition was exit on true, convert the condition to exit on false
4278  ICmpInst::Predicate Cond;
4279  if (!L->contains(FBB))
4280    Cond = ExitCond->getPredicate();
4281  else
4282    Cond = ExitCond->getInversePredicate();
4283
4284  // Handle common loops like: for (X = "string"; *X; ++X)
4285  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4286    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
4287      ExitLimit ItCnt =
4288        ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
4289      if (ItCnt.hasAnyInfo())
4290        return ItCnt;
4291    }
4292
4293  const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4294  const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
4295
4296  // Try to evaluate any dependencies out of the loop.
4297  LHS = getSCEVAtScope(LHS, L);
4298  RHS = getSCEVAtScope(RHS, L);
4299
4300  // At this point, we would like to compute how many iterations of the
4301  // loop the predicate will return true for these inputs.
4302  if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
4303    // If there is a loop-invariant, force it into the RHS.
4304    std::swap(LHS, RHS);
4305    Cond = ICmpInst::getSwappedPredicate(Cond);
4306  }
4307
4308  // Simplify the operands before analyzing them.
4309  (void)SimplifyICmpOperands(Cond, LHS, RHS);
4310
4311  // If we have a comparison of a chrec against a constant, try to use value
4312  // ranges to answer this query.
4313  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4314    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
4315      if (AddRec->getLoop() == L) {
4316        // Form the constant range.
4317        ConstantRange CompRange(
4318            ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
4319
4320        const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
4321        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
4322      }
4323
4324  switch (Cond) {
4325  case ICmpInst::ICMP_NE: {                     // while (X != Y)
4326    // Convert to: while (X-Y != 0)
4327    ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L);
4328    if (EL.hasAnyInfo()) return EL;
4329    break;
4330  }
4331  case ICmpInst::ICMP_EQ: {                     // while (X == Y)
4332    // Convert to: while (X-Y == 0)
4333    ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4334    if (EL.hasAnyInfo()) return EL;
4335    break;
4336  }
4337  case ICmpInst::ICMP_SLT: {
4338    ExitLimit EL = HowManyLessThans(LHS, RHS, L, true);
4339    if (EL.hasAnyInfo()) return EL;
4340    break;
4341  }
4342  case ICmpInst::ICMP_SGT: {
4343    ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
4344                                             getNotSCEV(RHS), L, true);
4345    if (EL.hasAnyInfo()) return EL;
4346    break;
4347  }
4348  case ICmpInst::ICMP_ULT: {
4349    ExitLimit EL = HowManyLessThans(LHS, RHS, L, false);
4350    if (EL.hasAnyInfo()) return EL;
4351    break;
4352  }
4353  case ICmpInst::ICMP_UGT: {
4354    ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
4355                                             getNotSCEV(RHS), L, false);
4356    if (EL.hasAnyInfo()) return EL;
4357    break;
4358  }
4359  default:
4360#if 0
4361    dbgs() << "ComputeBackedgeTakenCount ";
4362    if (ExitCond->getOperand(0)->getType()->isUnsigned())
4363      dbgs() << "[unsigned] ";
4364    dbgs() << *LHS << "   "
4365         << Instruction::getOpcodeName(Instruction::ICmp)
4366         << "   " << *RHS << "\n";
4367#endif
4368    break;
4369  }
4370  return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
4371}
4372
4373static ConstantInt *
4374EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4375                                ScalarEvolution &SE) {
4376  const SCEV *InVal = SE.getConstant(C);
4377  const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
4378  assert(isa<SCEVConstant>(Val) &&
4379         "Evaluation of SCEV at constant didn't fold correctly?");
4380  return cast<SCEVConstant>(Val)->getValue();
4381}
4382
4383/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4384/// and a GEP expression (missing the pointer index) indexing into it, return
4385/// the addressed element of the initializer or null if the index expression is
4386/// invalid.
4387static Constant *
4388GetAddressedElementFromGlobal(GlobalVariable *GV,
4389                              const std::vector<ConstantInt*> &Indices) {
4390  Constant *Init = GV->getInitializer();
4391  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
4392    uint64_t Idx = Indices[i]->getZExtValue();
4393    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4394      assert(Idx < CS->getNumOperands() && "Bad struct index!");
4395      Init = cast<Constant>(CS->getOperand(Idx));
4396    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4397      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
4398      Init = cast<Constant>(CA->getOperand(Idx));
4399    } else if (isa<ConstantAggregateZero>(Init)) {
4400      if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
4401        assert(Idx < STy->getNumElements() && "Bad struct index!");
4402        Init = Constant::getNullValue(STy->getElementType(Idx));
4403      } else if (ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4404        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
4405        Init = Constant::getNullValue(ATy->getElementType());
4406      } else {
4407        llvm_unreachable("Unknown constant aggregate type!");
4408      }
4409      return 0;
4410    } else {
4411      return 0; // Unknown initializer type
4412    }
4413  }
4414  return Init;
4415}
4416
4417/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
4418/// 'icmp op load X, cst', try to see if we can compute the backedge
4419/// execution count.
4420ScalarEvolution::ExitLimit
4421ScalarEvolution::ComputeLoadConstantCompareExitLimit(
4422  LoadInst *LI,
4423  Constant *RHS,
4424  const Loop *L,
4425  ICmpInst::Predicate predicate) {
4426
4427  if (LI->isVolatile()) return getCouldNotCompute();
4428
4429  // Check to see if the loaded pointer is a getelementptr of a global.
4430  // TODO: Use SCEV instead of manually grubbing with GEPs.
4431  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
4432  if (!GEP) return getCouldNotCompute();
4433
4434  // Make sure that it is really a constant global we are gepping, with an
4435  // initializer, and make sure the first IDX is really 0.
4436  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
4437  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
4438      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4439      !cast<Constant>(GEP->getOperand(1))->isNullValue())
4440    return getCouldNotCompute();
4441
4442  // Okay, we allow one non-constant index into the GEP instruction.
4443  Value *VarIdx = 0;
4444  std::vector<ConstantInt*> Indexes;
4445  unsigned VarIdxNum = 0;
4446  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4447    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4448      Indexes.push_back(CI);
4449    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
4450      if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
4451      VarIdx = GEP->getOperand(i);
4452      VarIdxNum = i-2;
4453      Indexes.push_back(0);
4454    }
4455
4456  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4457  // Check to see if X is a loop variant variable value now.
4458  const SCEV *Idx = getSCEV(VarIdx);
4459  Idx = getSCEVAtScope(Idx, L);
4460
4461  // We can only recognize very limited forms of loop index expressions, in
4462  // particular, only affine AddRec's like {C1,+,C2}.
4463  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
4464  if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
4465      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4466      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
4467    return getCouldNotCompute();
4468
4469  unsigned MaxSteps = MaxBruteForceIterations;
4470  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
4471    ConstantInt *ItCst = ConstantInt::get(
4472                           cast<IntegerType>(IdxExpr->getType()), IterationNum);
4473    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
4474
4475    // Form the GEP offset.
4476    Indexes[VarIdxNum] = Val;
4477
4478    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
4479    if (Result == 0) break;  // Cannot compute!
4480
4481    // Evaluate the condition for this iteration.
4482    Result = ConstantExpr::getICmp(predicate, Result, RHS);
4483    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
4484    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
4485#if 0
4486      dbgs() << "\n***\n*** Computed loop count " << *ItCst
4487             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4488             << "***\n";
4489#endif
4490      ++NumArrayLenItCounts;
4491      return getConstant(ItCst);   // Found terminating iteration!
4492    }
4493  }
4494  return getCouldNotCompute();
4495}
4496
4497
4498/// CanConstantFold - Return true if we can constant fold an instruction of the
4499/// specified type, assuming that all operands were constants.
4500static bool CanConstantFold(const Instruction *I) {
4501  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
4502      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4503    return true;
4504
4505  if (const CallInst *CI = dyn_cast<CallInst>(I))
4506    if (const Function *F = CI->getCalledFunction())
4507      return canConstantFoldCallTo(F);
4508  return false;
4509}
4510
4511/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4512/// in the loop that V is derived from.  We allow arbitrary operations along the
4513/// way, but the operands of an operation must either be constants or a value
4514/// derived from a constant PHI.  If this expression does not fit with these
4515/// constraints, return null.
4516static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4517  // If this is not an instruction, or if this is an instruction outside of the
4518  // loop, it can't be derived from a loop PHI.
4519  Instruction *I = dyn_cast<Instruction>(V);
4520  if (I == 0 || !L->contains(I)) return 0;
4521
4522  if (PHINode *PN = dyn_cast<PHINode>(I)) {
4523    if (L->getHeader() == I->getParent())
4524      return PN;
4525    else
4526      // We don't currently keep track of the control flow needed to evaluate
4527      // PHIs, so we cannot handle PHIs inside of loops.
4528      return 0;
4529  }
4530
4531  // If we won't be able to constant fold this expression even if the operands
4532  // are constants, return early.
4533  if (!CanConstantFold(I)) return 0;
4534
4535  // Otherwise, we can evaluate this instruction if all of its operands are
4536  // constant or derived from a PHI node themselves.
4537  PHINode *PHI = 0;
4538  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
4539    if (!isa<Constant>(I->getOperand(Op))) {
4540      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4541      if (P == 0) return 0;  // Not evolving from PHI
4542      if (PHI == 0)
4543        PHI = P;
4544      else if (PHI != P)
4545        return 0;  // Evolving from multiple different PHIs.
4546    }
4547
4548  // This is a expression evolving from a constant PHI!
4549  return PHI;
4550}
4551
4552/// EvaluateExpression - Given an expression that passes the
4553/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4554/// in the loop has the value PHIVal.  If we can't fold this expression for some
4555/// reason, return null.
4556static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4557                                    const TargetData *TD) {
4558  if (isa<PHINode>(V)) return PHIVal;
4559  if (Constant *C = dyn_cast<Constant>(V)) return C;
4560  Instruction *I = cast<Instruction>(V);
4561
4562  std::vector<Constant*> Operands(I->getNumOperands());
4563
4564  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4565    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
4566    if (Operands[i] == 0) return 0;
4567  }
4568
4569  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4570    return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
4571                                           Operands[1], TD);
4572  return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD);
4573}
4574
4575/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4576/// in the header of its containing loop, we know the loop executes a
4577/// constant number of times, and the PHI node is just a recurrence
4578/// involving constants, fold it.
4579Constant *
4580ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
4581                                                   const APInt &BEs,
4582                                                   const Loop *L) {
4583  DenseMap<PHINode*, Constant*>::const_iterator I =
4584    ConstantEvolutionLoopExitValue.find(PN);
4585  if (I != ConstantEvolutionLoopExitValue.end())
4586    return I->second;
4587
4588  if (BEs.ugt(MaxBruteForceIterations))
4589    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
4590
4591  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4592
4593  // Since the loop is canonicalized, the PHI node must have two entries.  One
4594  // entry must be a constant (coming in from outside of the loop), and the
4595  // second must be derived from the same PHI.
4596  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4597  Constant *StartCST =
4598    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4599  if (StartCST == 0)
4600    return RetVal = 0;  // Must be a constant.
4601
4602  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4603  if (getConstantEvolvingPHI(BEValue, L) != PN &&
4604      !isa<Constant>(BEValue))
4605    return RetVal = 0;  // Not derived from same PHI.
4606
4607  // Execute the loop symbolically to determine the exit value.
4608  if (BEs.getActiveBits() >= 32)
4609    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
4610
4611  unsigned NumIterations = BEs.getZExtValue(); // must be in range
4612  unsigned IterationNum = 0;
4613  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4614    if (IterationNum == NumIterations)
4615      return RetVal = PHIVal;  // Got exit value!
4616
4617    // Compute the value of the PHI node for the next iteration.
4618    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4619    if (NextPHI == PHIVal)
4620      return RetVal = NextPHI;  // Stopped evolving!
4621    if (NextPHI == 0)
4622      return 0;        // Couldn't evaluate!
4623    PHIVal = NextPHI;
4624  }
4625}
4626
4627/// ComputeExitCountExhaustively - If the loop is known to execute a
4628/// constant number of times (the condition evolves only from constants),
4629/// try to evaluate a few iterations of the loop until we get the exit
4630/// condition gets a value of ExitWhen (true or false).  If we cannot
4631/// evaluate the trip count of the loop, return getCouldNotCompute().
4632const SCEV * ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
4633                                                           Value *Cond,
4634                                                           bool ExitWhen) {
4635  PHINode *PN = getConstantEvolvingPHI(Cond, L);
4636  if (PN == 0) return getCouldNotCompute();
4637
4638  // If the loop is canonicalized, the PHI will have exactly two entries.
4639  // That's the only form we support here.
4640  if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4641
4642  // One entry must be a constant (coming in from outside of the loop), and the
4643  // second must be derived from the same PHI.
4644  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4645  Constant *StartCST =
4646    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4647  if (StartCST == 0) return getCouldNotCompute();  // Must be a constant.
4648
4649  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4650  if (getConstantEvolvingPHI(BEValue, L) != PN &&
4651      !isa<Constant>(BEValue))
4652    return getCouldNotCompute();  // Not derived from same PHI.
4653
4654  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
4655  // the loop symbolically to determine when the condition gets a value of
4656  // "ExitWhen".
4657  unsigned IterationNum = 0;
4658  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
4659  for (Constant *PHIVal = StartCST;
4660       IterationNum != MaxIterations; ++IterationNum) {
4661    ConstantInt *CondVal =
4662      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
4663
4664    // Couldn't symbolically evaluate.
4665    if (!CondVal) return getCouldNotCompute();
4666
4667    if (CondVal->getValue() == uint64_t(ExitWhen)) {
4668      ++NumBruteForceTripCountsComputed;
4669      return getConstant(Type::getInt32Ty(getContext()), IterationNum);
4670    }
4671
4672    // Compute the value of the PHI node for the next iteration.
4673    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4674    if (NextPHI == 0 || NextPHI == PHIVal)
4675      return getCouldNotCompute();// Couldn't evaluate or not making progress...
4676    PHIVal = NextPHI;
4677  }
4678
4679  // Too many iterations were needed to evaluate.
4680  return getCouldNotCompute();
4681}
4682
4683/// getSCEVAtScope - Return a SCEV expression for the specified value
4684/// at the specified scope in the program.  The L value specifies a loop
4685/// nest to evaluate the expression at, where null is the top-level or a
4686/// specified loop is immediately inside of the loop.
4687///
4688/// This method can be used to compute the exit value for a variable defined
4689/// in a loop by querying what the value will hold in the parent loop.
4690///
4691/// In the case that a relevant loop exit value cannot be computed, the
4692/// original value V is returned.
4693const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
4694  // Check to see if we've folded this expression at this loop before.
4695  std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4696  std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4697    Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4698  if (!Pair.second)
4699    return Pair.first->second ? Pair.first->second : V;
4700
4701  // Otherwise compute it.
4702  const SCEV *C = computeSCEVAtScope(V, L);
4703  ValuesAtScopes[V][L] = C;
4704  return C;
4705}
4706
4707const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
4708  if (isa<SCEVConstant>(V)) return V;
4709
4710  // If this instruction is evolved from a constant-evolving PHI, compute the
4711  // exit value from the loop without using SCEVs.
4712  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
4713    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
4714      const Loop *LI = (*this->LI)[I->getParent()];
4715      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
4716        if (PHINode *PN = dyn_cast<PHINode>(I))
4717          if (PN->getParent() == LI->getHeader()) {
4718            // Okay, there is no closed form solution for the PHI node.  Check
4719            // to see if the loop that contains it has a known backedge-taken
4720            // count.  If so, we may be able to force computation of the exit
4721            // value.
4722            const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
4723            if (const SCEVConstant *BTCC =
4724                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
4725              // Okay, we know how many times the containing loop executes.  If
4726              // this is a constant evolving PHI node, get the final value at
4727              // the specified iteration number.
4728              Constant *RV = getConstantEvolutionLoopExitValue(PN,
4729                                                   BTCC->getValue()->getValue(),
4730                                                               LI);
4731              if (RV) return getSCEV(RV);
4732            }
4733          }
4734
4735      // Okay, this is an expression that we cannot symbolically evaluate
4736      // into a SCEV.  Check to see if it's possible to symbolically evaluate
4737      // the arguments into constants, and if so, try to constant propagate the
4738      // result.  This is particularly useful for computing loop exit values.
4739      if (CanConstantFold(I)) {
4740        SmallVector<Constant *, 4> Operands;
4741        bool MadeImprovement = false;
4742        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4743          Value *Op = I->getOperand(i);
4744          if (Constant *C = dyn_cast<Constant>(Op)) {
4745            Operands.push_back(C);
4746            continue;
4747          }
4748
4749          // If any of the operands is non-constant and if they are
4750          // non-integer and non-pointer, don't even try to analyze them
4751          // with scev techniques.
4752          if (!isSCEVable(Op->getType()))
4753            return V;
4754
4755          const SCEV *OrigV = getSCEV(Op);
4756          const SCEV *OpV = getSCEVAtScope(OrigV, L);
4757          MadeImprovement |= OrigV != OpV;
4758
4759          Constant *C = 0;
4760          if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4761            C = SC->getValue();
4762          if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4763            C = dyn_cast<Constant>(SU->getValue());
4764          if (!C) return V;
4765          if (C->getType() != Op->getType())
4766            C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4767                                                              Op->getType(),
4768                                                              false),
4769                                      C, Op->getType());
4770          Operands.push_back(C);
4771        }
4772
4773        // Check to see if getSCEVAtScope actually made an improvement.
4774        if (MadeImprovement) {
4775          Constant *C = 0;
4776          if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4777            C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4778                                                Operands[0], Operands[1], TD);
4779          else
4780            C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4781                                         Operands, TD);
4782          if (!C) return V;
4783          return getSCEV(C);
4784        }
4785      }
4786    }
4787
4788    // This is some other type of SCEVUnknown, just return it.
4789    return V;
4790  }
4791
4792  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
4793    // Avoid performing the look-up in the common case where the specified
4794    // expression has no loop-variant portions.
4795    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
4796      const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4797      if (OpAtScope != Comm->getOperand(i)) {
4798        // Okay, at least one of these operands is loop variant but might be
4799        // foldable.  Build a new instance of the folded commutative expression.
4800        SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4801                                            Comm->op_begin()+i);
4802        NewOps.push_back(OpAtScope);
4803
4804        for (++i; i != e; ++i) {
4805          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4806          NewOps.push_back(OpAtScope);
4807        }
4808        if (isa<SCEVAddExpr>(Comm))
4809          return getAddExpr(NewOps);
4810        if (isa<SCEVMulExpr>(Comm))
4811          return getMulExpr(NewOps);
4812        if (isa<SCEVSMaxExpr>(Comm))
4813          return getSMaxExpr(NewOps);
4814        if (isa<SCEVUMaxExpr>(Comm))
4815          return getUMaxExpr(NewOps);
4816        llvm_unreachable("Unknown commutative SCEV type!");
4817      }
4818    }
4819    // If we got here, all operands are loop invariant.
4820    return Comm;
4821  }
4822
4823  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
4824    const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4825    const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
4826    if (LHS == Div->getLHS() && RHS == Div->getRHS())
4827      return Div;   // must be loop invariant
4828    return getUDivExpr(LHS, RHS);
4829  }
4830
4831  // If this is a loop recurrence for a loop that does not contain L, then we
4832  // are dealing with the final value computed by the loop.
4833  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4834    // First, attempt to evaluate each operand.
4835    // Avoid performing the look-up in the common case where the specified
4836    // expression has no loop-variant portions.
4837    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4838      const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4839      if (OpAtScope == AddRec->getOperand(i))
4840        continue;
4841
4842      // Okay, at least one of these operands is loop variant but might be
4843      // foldable.  Build a new instance of the folded commutative expression.
4844      SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4845                                          AddRec->op_begin()+i);
4846      NewOps.push_back(OpAtScope);
4847      for (++i; i != e; ++i)
4848        NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4849
4850      const SCEV *FoldedRec =
4851        getAddRecExpr(NewOps, AddRec->getLoop(),
4852                      AddRec->getNoWrapFlags(SCEV::FlagNW));
4853      AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
4854      // The addrec may be folded to a nonrecurrence, for example, if the
4855      // induction variable is multiplied by zero after constant folding. Go
4856      // ahead and return the folded value.
4857      if (!AddRec)
4858        return FoldedRec;
4859      break;
4860    }
4861
4862    // If the scope is outside the addrec's loop, evaluate it by using the
4863    // loop exit value of the addrec.
4864    if (!AddRec->getLoop()->contains(L)) {
4865      // To evaluate this recurrence, we need to know how many times the AddRec
4866      // loop iterates.  Compute this now.
4867      const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
4868      if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
4869
4870      // Then, evaluate the AddRec.
4871      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
4872    }
4873
4874    return AddRec;
4875  }
4876
4877  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
4878    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4879    if (Op == Cast->getOperand())
4880      return Cast;  // must be loop invariant
4881    return getZeroExtendExpr(Op, Cast->getType());
4882  }
4883
4884  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
4885    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4886    if (Op == Cast->getOperand())
4887      return Cast;  // must be loop invariant
4888    return getSignExtendExpr(Op, Cast->getType());
4889  }
4890
4891  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
4892    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4893    if (Op == Cast->getOperand())
4894      return Cast;  // must be loop invariant
4895    return getTruncateExpr(Op, Cast->getType());
4896  }
4897
4898  llvm_unreachable("Unknown SCEV type!");
4899  return 0;
4900}
4901
4902/// getSCEVAtScope - This is a convenience function which does
4903/// getSCEVAtScope(getSCEV(V), L).
4904const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
4905  return getSCEVAtScope(getSCEV(V), L);
4906}
4907
4908/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4909/// following equation:
4910///
4911///     A * X = B (mod N)
4912///
4913/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4914/// A and B isn't important.
4915///
4916/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
4917static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
4918                                               ScalarEvolution &SE) {
4919  uint32_t BW = A.getBitWidth();
4920  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4921  assert(A != 0 && "A must be non-zero.");
4922
4923  // 1. D = gcd(A, N)
4924  //
4925  // The gcd of A and N may have only one prime factor: 2. The number of
4926  // trailing zeros in A is its multiplicity
4927  uint32_t Mult2 = A.countTrailingZeros();
4928  // D = 2^Mult2
4929
4930  // 2. Check if B is divisible by D.
4931  //
4932  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4933  // is not less than multiplicity of this prime factor for D.
4934  if (B.countTrailingZeros() < Mult2)
4935    return SE.getCouldNotCompute();
4936
4937  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4938  // modulo (N / D).
4939  //
4940  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
4941  // bit width during computations.
4942  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
4943  APInt Mod(BW + 1, 0);
4944  Mod.setBit(BW - Mult2);  // Mod = N / D
4945  APInt I = AD.multiplicativeInverse(Mod);
4946
4947  // 4. Compute the minimum unsigned root of the equation:
4948  // I * (B / D) mod (N / D)
4949  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4950
4951  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4952  // bits.
4953  return SE.getConstant(Result.trunc(BW));
4954}
4955
4956/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4957/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
4958/// might be the same) or two SCEVCouldNotCompute objects.
4959///
4960static std::pair<const SCEV *,const SCEV *>
4961SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
4962  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
4963  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4964  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4965  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
4966
4967  // We currently can only solve this if the coefficients are constants.
4968  if (!LC || !MC || !NC) {
4969    const SCEV *CNC = SE.getCouldNotCompute();
4970    return std::make_pair(CNC, CNC);
4971  }
4972
4973  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
4974  const APInt &L = LC->getValue()->getValue();
4975  const APInt &M = MC->getValue()->getValue();
4976  const APInt &N = NC->getValue()->getValue();
4977  APInt Two(BitWidth, 2);
4978  APInt Four(BitWidth, 4);
4979
4980  {
4981    using namespace APIntOps;
4982    const APInt& C = L;
4983    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4984    // The B coefficient is M-N/2
4985    APInt B(M);
4986    B -= sdiv(N,Two);
4987
4988    // The A coefficient is N/2
4989    APInt A(N.sdiv(Two));
4990
4991    // Compute the B^2-4ac term.
4992    APInt SqrtTerm(B);
4993    SqrtTerm *= B;
4994    SqrtTerm -= Four * (A * C);
4995
4996    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4997    // integer value or else APInt::sqrt() will assert.
4998    APInt SqrtVal(SqrtTerm.sqrt());
4999
5000    // Compute the two solutions for the quadratic formula.
5001    // The divisions must be performed as signed divisions.
5002    APInt NegB(-B);
5003    APInt TwoA( A << 1 );
5004    if (TwoA.isMinValue()) {
5005      const SCEV *CNC = SE.getCouldNotCompute();
5006      return std::make_pair(CNC, CNC);
5007    }
5008
5009    LLVMContext &Context = SE.getContext();
5010
5011    ConstantInt *Solution1 =
5012      ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
5013    ConstantInt *Solution2 =
5014      ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
5015
5016    return std::make_pair(SE.getConstant(Solution1),
5017                          SE.getConstant(Solution2));
5018    } // end APIntOps namespace
5019}
5020
5021/// HowFarToZero - Return the number of times a backedge comparing the specified
5022/// value to zero will execute.  If not computable, return CouldNotCompute.
5023///
5024/// This is only used for loops with a "x != y" exit test. The exit condition is
5025/// now expressed as a single expression, V = x-y. So the exit test is
5026/// effectively V != 0.  We know and take advantage of the fact that this
5027/// expression only being used in a comparison by zero context.
5028ScalarEvolution::ExitLimit
5029ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
5030  // If the value is a constant
5031  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
5032    // If the value is already zero, the branch will execute zero times.
5033    if (C->getValue()->isZero()) return C;
5034    return getCouldNotCompute();  // Otherwise it will loop infinitely.
5035  }
5036
5037  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
5038  if (!AddRec || AddRec->getLoop() != L)
5039    return getCouldNotCompute();
5040
5041  // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
5042  // the quadratic equation to solve it.
5043  if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
5044    std::pair<const SCEV *,const SCEV *> Roots =
5045      SolveQuadraticEquation(AddRec, *this);
5046    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5047    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
5048    if (R1 && R2) {
5049#if 0
5050      dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
5051             << "  sol#2: " << *R2 << "\n";
5052#endif
5053      // Pick the smallest positive root value.
5054      if (ConstantInt *CB =
5055          dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
5056                                                      R1->getValue(),
5057                                                      R2->getValue()))) {
5058        if (CB->getZExtValue() == false)
5059          std::swap(R1, R2);   // R1 is the minimum root now.
5060
5061        // We can only use this value if the chrec ends up with an exact zero
5062        // value at this index.  When solving for "X*X != 5", for example, we
5063        // should not accept a root of 2.
5064        const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
5065        if (Val->isZero())
5066          return R1;  // We found a quadratic root!
5067      }
5068    }
5069    return getCouldNotCompute();
5070  }
5071
5072  // Otherwise we can only handle this if it is affine.
5073  if (!AddRec->isAffine())
5074    return getCouldNotCompute();
5075
5076  // If this is an affine expression, the execution count of this branch is
5077  // the minimum unsigned root of the following equation:
5078  //
5079  //     Start + Step*N = 0 (mod 2^BW)
5080  //
5081  // equivalent to:
5082  //
5083  //             Step*N = -Start (mod 2^BW)
5084  //
5085  // where BW is the common bit width of Start and Step.
5086
5087  // Get the initial value for the loop.
5088  const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
5089  const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
5090
5091  // For now we handle only constant steps.
5092  //
5093  // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
5094  // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
5095  // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
5096  // We have not yet seen any such cases.
5097  const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
5098  if (StepC == 0)
5099    return getCouldNotCompute();
5100
5101  // For positive steps (counting up until unsigned overflow):
5102  //   N = -Start/Step (as unsigned)
5103  // For negative steps (counting down to zero):
5104  //   N = Start/-Step
5105  // First compute the unsigned distance from zero in the direction of Step.
5106  bool CountDown = StepC->getValue()->getValue().isNegative();
5107  const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
5108
5109  // Handle unitary steps, which cannot wraparound.
5110  // 1*N = -Start; -1*N = Start (mod 2^BW), so:
5111  //   N = Distance (as unsigned)
5112  if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue())
5113    return Distance;
5114
5115  // If the recurrence is known not to wraparound, unsigned divide computes the
5116  // back edge count. We know that the value will either become zero (and thus
5117  // the loop terminates), that the loop will terminate through some other exit
5118  // condition first, or that the loop has undefined behavior.  This means
5119  // we can't "miss" the exit value, even with nonunit stride.
5120  //
5121  // FIXME: Prove that loops always exhibits *acceptable* undefined
5122  // behavior. Loops must exhibit defined behavior until a wrapped value is
5123  // actually used. So the trip count computed by udiv could be smaller than the
5124  // number of well-defined iterations.
5125  if (AddRec->getNoWrapFlags(SCEV::FlagNW))
5126    // FIXME: We really want an "isexact" bit for udiv.
5127    return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
5128
5129  // Then, try to solve the above equation provided that Start is constant.
5130  if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
5131    return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
5132                                        -StartC->getValue()->getValue(),
5133                                        *this);
5134  return getCouldNotCompute();
5135}
5136
5137/// HowFarToNonZero - Return the number of times a backedge checking the
5138/// specified value for nonzero will execute.  If not computable, return
5139/// CouldNotCompute
5140ScalarEvolution::ExitLimit
5141ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
5142  // Loops that look like: while (X == 0) are very strange indeed.  We don't
5143  // handle them yet except for the trivial case.  This could be expanded in the
5144  // future as needed.
5145
5146  // If the value is a constant, check to see if it is known to be non-zero
5147  // already.  If so, the backedge will execute zero times.
5148  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
5149    if (!C->getValue()->isNullValue())
5150      return getConstant(C->getType(), 0);
5151    return getCouldNotCompute();  // Otherwise it will loop infinitely.
5152  }
5153
5154  // We could implement others, but I really doubt anyone writes loops like
5155  // this, and if they did, they would already be constant folded.
5156  return getCouldNotCompute();
5157}
5158
5159/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
5160/// (which may not be an immediate predecessor) which has exactly one
5161/// successor from which BB is reachable, or null if no such block is
5162/// found.
5163///
5164std::pair<BasicBlock *, BasicBlock *>
5165ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
5166  // If the block has a unique predecessor, then there is no path from the
5167  // predecessor to the block that does not go through the direct edge
5168  // from the predecessor to the block.
5169  if (BasicBlock *Pred = BB->getSinglePredecessor())
5170    return std::make_pair(Pred, BB);
5171
5172  // A loop's header is defined to be a block that dominates the loop.
5173  // If the header has a unique predecessor outside the loop, it must be
5174  // a block that has exactly one successor that can reach the loop.
5175  if (Loop *L = LI->getLoopFor(BB))
5176    return std::make_pair(L->getLoopPredecessor(), L->getHeader());
5177
5178  return std::pair<BasicBlock *, BasicBlock *>();
5179}
5180
5181/// HasSameValue - SCEV structural equivalence is usually sufficient for
5182/// testing whether two expressions are equal, however for the purposes of
5183/// looking for a condition guarding a loop, it can be useful to be a little
5184/// more general, since a front-end may have replicated the controlling
5185/// expression.
5186///
5187static bool HasSameValue(const SCEV *A, const SCEV *B) {
5188  // Quick check to see if they are the same SCEV.
5189  if (A == B) return true;
5190
5191  // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5192  // two different instructions with the same value. Check for this case.
5193  if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5194    if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5195      if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5196        if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
5197          if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
5198            return true;
5199
5200  // Otherwise assume they may have a different value.
5201  return false;
5202}
5203
5204/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
5205/// predicate Pred. Return true iff any changes were made.
5206///
5207bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
5208                                           const SCEV *&LHS, const SCEV *&RHS) {
5209  bool Changed = false;
5210
5211  // Canonicalize a constant to the right side.
5212  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5213    // Check for both operands constant.
5214    if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5215      if (ConstantExpr::getICmp(Pred,
5216                                LHSC->getValue(),
5217                                RHSC->getValue())->isNullValue())
5218        goto trivially_false;
5219      else
5220        goto trivially_true;
5221    }
5222    // Otherwise swap the operands to put the constant on the right.
5223    std::swap(LHS, RHS);
5224    Pred = ICmpInst::getSwappedPredicate(Pred);
5225    Changed = true;
5226  }
5227
5228  // If we're comparing an addrec with a value which is loop-invariant in the
5229  // addrec's loop, put the addrec on the left. Also make a dominance check,
5230  // as both operands could be addrecs loop-invariant in each other's loop.
5231  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5232    const Loop *L = AR->getLoop();
5233    if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
5234      std::swap(LHS, RHS);
5235      Pred = ICmpInst::getSwappedPredicate(Pred);
5236      Changed = true;
5237    }
5238  }
5239
5240  // If there's a constant operand, canonicalize comparisons with boundary
5241  // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5242  if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5243    const APInt &RA = RC->getValue()->getValue();
5244    switch (Pred) {
5245    default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5246    case ICmpInst::ICMP_EQ:
5247    case ICmpInst::ICMP_NE:
5248      break;
5249    case ICmpInst::ICMP_UGE:
5250      if ((RA - 1).isMinValue()) {
5251        Pred = ICmpInst::ICMP_NE;
5252        RHS = getConstant(RA - 1);
5253        Changed = true;
5254        break;
5255      }
5256      if (RA.isMaxValue()) {
5257        Pred = ICmpInst::ICMP_EQ;
5258        Changed = true;
5259        break;
5260      }
5261      if (RA.isMinValue()) goto trivially_true;
5262
5263      Pred = ICmpInst::ICMP_UGT;
5264      RHS = getConstant(RA - 1);
5265      Changed = true;
5266      break;
5267    case ICmpInst::ICMP_ULE:
5268      if ((RA + 1).isMaxValue()) {
5269        Pred = ICmpInst::ICMP_NE;
5270        RHS = getConstant(RA + 1);
5271        Changed = true;
5272        break;
5273      }
5274      if (RA.isMinValue()) {
5275        Pred = ICmpInst::ICMP_EQ;
5276        Changed = true;
5277        break;
5278      }
5279      if (RA.isMaxValue()) goto trivially_true;
5280
5281      Pred = ICmpInst::ICMP_ULT;
5282      RHS = getConstant(RA + 1);
5283      Changed = true;
5284      break;
5285    case ICmpInst::ICMP_SGE:
5286      if ((RA - 1).isMinSignedValue()) {
5287        Pred = ICmpInst::ICMP_NE;
5288        RHS = getConstant(RA - 1);
5289        Changed = true;
5290        break;
5291      }
5292      if (RA.isMaxSignedValue()) {
5293        Pred = ICmpInst::ICMP_EQ;
5294        Changed = true;
5295        break;
5296      }
5297      if (RA.isMinSignedValue()) goto trivially_true;
5298
5299      Pred = ICmpInst::ICMP_SGT;
5300      RHS = getConstant(RA - 1);
5301      Changed = true;
5302      break;
5303    case ICmpInst::ICMP_SLE:
5304      if ((RA + 1).isMaxSignedValue()) {
5305        Pred = ICmpInst::ICMP_NE;
5306        RHS = getConstant(RA + 1);
5307        Changed = true;
5308        break;
5309      }
5310      if (RA.isMinSignedValue()) {
5311        Pred = ICmpInst::ICMP_EQ;
5312        Changed = true;
5313        break;
5314      }
5315      if (RA.isMaxSignedValue()) goto trivially_true;
5316
5317      Pred = ICmpInst::ICMP_SLT;
5318      RHS = getConstant(RA + 1);
5319      Changed = true;
5320      break;
5321    case ICmpInst::ICMP_UGT:
5322      if (RA.isMinValue()) {
5323        Pred = ICmpInst::ICMP_NE;
5324        Changed = true;
5325        break;
5326      }
5327      if ((RA + 1).isMaxValue()) {
5328        Pred = ICmpInst::ICMP_EQ;
5329        RHS = getConstant(RA + 1);
5330        Changed = true;
5331        break;
5332      }
5333      if (RA.isMaxValue()) goto trivially_false;
5334      break;
5335    case ICmpInst::ICMP_ULT:
5336      if (RA.isMaxValue()) {
5337        Pred = ICmpInst::ICMP_NE;
5338        Changed = true;
5339        break;
5340      }
5341      if ((RA - 1).isMinValue()) {
5342        Pred = ICmpInst::ICMP_EQ;
5343        RHS = getConstant(RA - 1);
5344        Changed = true;
5345        break;
5346      }
5347      if (RA.isMinValue()) goto trivially_false;
5348      break;
5349    case ICmpInst::ICMP_SGT:
5350      if (RA.isMinSignedValue()) {
5351        Pred = ICmpInst::ICMP_NE;
5352        Changed = true;
5353        break;
5354      }
5355      if ((RA + 1).isMaxSignedValue()) {
5356        Pred = ICmpInst::ICMP_EQ;
5357        RHS = getConstant(RA + 1);
5358        Changed = true;
5359        break;
5360      }
5361      if (RA.isMaxSignedValue()) goto trivially_false;
5362      break;
5363    case ICmpInst::ICMP_SLT:
5364      if (RA.isMaxSignedValue()) {
5365        Pred = ICmpInst::ICMP_NE;
5366        Changed = true;
5367        break;
5368      }
5369      if ((RA - 1).isMinSignedValue()) {
5370       Pred = ICmpInst::ICMP_EQ;
5371       RHS = getConstant(RA - 1);
5372        Changed = true;
5373       break;
5374      }
5375      if (RA.isMinSignedValue()) goto trivially_false;
5376      break;
5377    }
5378  }
5379
5380  // Check for obvious equality.
5381  if (HasSameValue(LHS, RHS)) {
5382    if (ICmpInst::isTrueWhenEqual(Pred))
5383      goto trivially_true;
5384    if (ICmpInst::isFalseWhenEqual(Pred))
5385      goto trivially_false;
5386  }
5387
5388  // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5389  // adding or subtracting 1 from one of the operands.
5390  switch (Pred) {
5391  case ICmpInst::ICMP_SLE:
5392    if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5393      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5394                       SCEV::FlagNSW);
5395      Pred = ICmpInst::ICMP_SLT;
5396      Changed = true;
5397    } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
5398      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5399                       SCEV::FlagNSW);
5400      Pred = ICmpInst::ICMP_SLT;
5401      Changed = true;
5402    }
5403    break;
5404  case ICmpInst::ICMP_SGE:
5405    if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
5406      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5407                       SCEV::FlagNSW);
5408      Pred = ICmpInst::ICMP_SGT;
5409      Changed = true;
5410    } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5411      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5412                       SCEV::FlagNSW);
5413      Pred = ICmpInst::ICMP_SGT;
5414      Changed = true;
5415    }
5416    break;
5417  case ICmpInst::ICMP_ULE:
5418    if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
5419      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5420                       SCEV::FlagNUW);
5421      Pred = ICmpInst::ICMP_ULT;
5422      Changed = true;
5423    } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
5424      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5425                       SCEV::FlagNUW);
5426      Pred = ICmpInst::ICMP_ULT;
5427      Changed = true;
5428    }
5429    break;
5430  case ICmpInst::ICMP_UGE:
5431    if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
5432      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5433                       SCEV::FlagNUW);
5434      Pred = ICmpInst::ICMP_UGT;
5435      Changed = true;
5436    } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
5437      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5438                       SCEV::FlagNUW);
5439      Pred = ICmpInst::ICMP_UGT;
5440      Changed = true;
5441    }
5442    break;
5443  default:
5444    break;
5445  }
5446
5447  // TODO: More simplifications are possible here.
5448
5449  return Changed;
5450
5451trivially_true:
5452  // Return 0 == 0.
5453  LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
5454  Pred = ICmpInst::ICMP_EQ;
5455  return true;
5456
5457trivially_false:
5458  // Return 0 != 0.
5459  LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
5460  Pred = ICmpInst::ICMP_NE;
5461  return true;
5462}
5463
5464bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5465  return getSignedRange(S).getSignedMax().isNegative();
5466}
5467
5468bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5469  return getSignedRange(S).getSignedMin().isStrictlyPositive();
5470}
5471
5472bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5473  return !getSignedRange(S).getSignedMin().isNegative();
5474}
5475
5476bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5477  return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5478}
5479
5480bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5481  return isKnownNegative(S) || isKnownPositive(S);
5482}
5483
5484bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5485                                       const SCEV *LHS, const SCEV *RHS) {
5486  // Canonicalize the inputs first.
5487  (void)SimplifyICmpOperands(Pred, LHS, RHS);
5488
5489  // If LHS or RHS is an addrec, check to see if the condition is true in
5490  // every iteration of the loop.
5491  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5492    if (isLoopEntryGuardedByCond(
5493          AR->getLoop(), Pred, AR->getStart(), RHS) &&
5494        isLoopBackedgeGuardedByCond(
5495          AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
5496      return true;
5497  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5498    if (isLoopEntryGuardedByCond(
5499          AR->getLoop(), Pred, LHS, AR->getStart()) &&
5500        isLoopBackedgeGuardedByCond(
5501          AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
5502      return true;
5503
5504  // Otherwise see what can be done with known constant ranges.
5505  return isKnownPredicateWithRanges(Pred, LHS, RHS);
5506}
5507
5508bool
5509ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5510                                            const SCEV *LHS, const SCEV *RHS) {
5511  if (HasSameValue(LHS, RHS))
5512    return ICmpInst::isTrueWhenEqual(Pred);
5513
5514  // This code is split out from isKnownPredicate because it is called from
5515  // within isLoopEntryGuardedByCond.
5516  switch (Pred) {
5517  default:
5518    llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5519    break;
5520  case ICmpInst::ICMP_SGT:
5521    Pred = ICmpInst::ICMP_SLT;
5522    std::swap(LHS, RHS);
5523  case ICmpInst::ICMP_SLT: {
5524    ConstantRange LHSRange = getSignedRange(LHS);
5525    ConstantRange RHSRange = getSignedRange(RHS);
5526    if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5527      return true;
5528    if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5529      return false;
5530    break;
5531  }
5532  case ICmpInst::ICMP_SGE:
5533    Pred = ICmpInst::ICMP_SLE;
5534    std::swap(LHS, RHS);
5535  case ICmpInst::ICMP_SLE: {
5536    ConstantRange LHSRange = getSignedRange(LHS);
5537    ConstantRange RHSRange = getSignedRange(RHS);
5538    if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5539      return true;
5540    if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5541      return false;
5542    break;
5543  }
5544  case ICmpInst::ICMP_UGT:
5545    Pred = ICmpInst::ICMP_ULT;
5546    std::swap(LHS, RHS);
5547  case ICmpInst::ICMP_ULT: {
5548    ConstantRange LHSRange = getUnsignedRange(LHS);
5549    ConstantRange RHSRange = getUnsignedRange(RHS);
5550    if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5551      return true;
5552    if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5553      return false;
5554    break;
5555  }
5556  case ICmpInst::ICMP_UGE:
5557    Pred = ICmpInst::ICMP_ULE;
5558    std::swap(LHS, RHS);
5559  case ICmpInst::ICMP_ULE: {
5560    ConstantRange LHSRange = getUnsignedRange(LHS);
5561    ConstantRange RHSRange = getUnsignedRange(RHS);
5562    if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5563      return true;
5564    if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5565      return false;
5566    break;
5567  }
5568  case ICmpInst::ICMP_NE: {
5569    if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5570      return true;
5571    if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5572      return true;
5573
5574    const SCEV *Diff = getMinusSCEV(LHS, RHS);
5575    if (isKnownNonZero(Diff))
5576      return true;
5577    break;
5578  }
5579  case ICmpInst::ICMP_EQ:
5580    // The check at the top of the function catches the case where
5581    // the values are known to be equal.
5582    break;
5583  }
5584  return false;
5585}
5586
5587/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5588/// protected by a conditional between LHS and RHS.  This is used to
5589/// to eliminate casts.
5590bool
5591ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5592                                             ICmpInst::Predicate Pred,
5593                                             const SCEV *LHS, const SCEV *RHS) {
5594  // Interpret a null as meaning no loop, where there is obviously no guard
5595  // (interprocedural conditions notwithstanding).
5596  if (!L) return true;
5597
5598  BasicBlock *Latch = L->getLoopLatch();
5599  if (!Latch)
5600    return false;
5601
5602  BranchInst *LoopContinuePredicate =
5603    dyn_cast<BranchInst>(Latch->getTerminator());
5604  if (!LoopContinuePredicate ||
5605      LoopContinuePredicate->isUnconditional())
5606    return false;
5607
5608  return isImpliedCond(Pred, LHS, RHS,
5609                       LoopContinuePredicate->getCondition(),
5610                       LoopContinuePredicate->getSuccessor(0) != L->getHeader());
5611}
5612
5613/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
5614/// by a conditional between LHS and RHS.  This is used to help avoid max
5615/// expressions in loop trip counts, and to eliminate casts.
5616bool
5617ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5618                                          ICmpInst::Predicate Pred,
5619                                          const SCEV *LHS, const SCEV *RHS) {
5620  // Interpret a null as meaning no loop, where there is obviously no guard
5621  // (interprocedural conditions notwithstanding).
5622  if (!L) return false;
5623
5624  // Starting at the loop predecessor, climb up the predecessor chain, as long
5625  // as there are predecessors that can be found that have unique successors
5626  // leading to the original header.
5627  for (std::pair<BasicBlock *, BasicBlock *>
5628         Pair(L->getLoopPredecessor(), L->getHeader());
5629       Pair.first;
5630       Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
5631
5632    BranchInst *LoopEntryPredicate =
5633      dyn_cast<BranchInst>(Pair.first->getTerminator());
5634    if (!LoopEntryPredicate ||
5635        LoopEntryPredicate->isUnconditional())
5636      continue;
5637
5638    if (isImpliedCond(Pred, LHS, RHS,
5639                      LoopEntryPredicate->getCondition(),
5640                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
5641      return true;
5642  }
5643
5644  return false;
5645}
5646
5647/// isImpliedCond - Test whether the condition described by Pred, LHS,
5648/// and RHS is true whenever the given Cond value evaluates to true.
5649bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
5650                                    const SCEV *LHS, const SCEV *RHS,
5651                                    Value *FoundCondValue,
5652                                    bool Inverse) {
5653  // Recursively handle And and Or conditions.
5654  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
5655    if (BO->getOpcode() == Instruction::And) {
5656      if (!Inverse)
5657        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5658               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
5659    } else if (BO->getOpcode() == Instruction::Or) {
5660      if (Inverse)
5661        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5662               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
5663    }
5664  }
5665
5666  ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
5667  if (!ICI) return false;
5668
5669  // Bail if the ICmp's operands' types are wider than the needed type
5670  // before attempting to call getSCEV on them. This avoids infinite
5671  // recursion, since the analysis of widening casts can require loop
5672  // exit condition information for overflow checking, which would
5673  // lead back here.
5674  if (getTypeSizeInBits(LHS->getType()) <
5675      getTypeSizeInBits(ICI->getOperand(0)->getType()))
5676    return false;
5677
5678  // Now that we found a conditional branch that dominates the loop, check to
5679  // see if it is the comparison we are looking for.
5680  ICmpInst::Predicate FoundPred;
5681  if (Inverse)
5682    FoundPred = ICI->getInversePredicate();
5683  else
5684    FoundPred = ICI->getPredicate();
5685
5686  const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5687  const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
5688
5689  // Balance the types. The case where FoundLHS' type is wider than
5690  // LHS' type is checked for above.
5691  if (getTypeSizeInBits(LHS->getType()) >
5692      getTypeSizeInBits(FoundLHS->getType())) {
5693    if (CmpInst::isSigned(Pred)) {
5694      FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5695      FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5696    } else {
5697      FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5698      FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5699    }
5700  }
5701
5702  // Canonicalize the query to match the way instcombine will have
5703  // canonicalized the comparison.
5704  if (SimplifyICmpOperands(Pred, LHS, RHS))
5705    if (LHS == RHS)
5706      return CmpInst::isTrueWhenEqual(Pred);
5707  if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5708    if (FoundLHS == FoundRHS)
5709      return CmpInst::isFalseWhenEqual(Pred);
5710
5711  // Check to see if we can make the LHS or RHS match.
5712  if (LHS == FoundRHS || RHS == FoundLHS) {
5713    if (isa<SCEVConstant>(RHS)) {
5714      std::swap(FoundLHS, FoundRHS);
5715      FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5716    } else {
5717      std::swap(LHS, RHS);
5718      Pred = ICmpInst::getSwappedPredicate(Pred);
5719    }
5720  }
5721
5722  // Check whether the found predicate is the same as the desired predicate.
5723  if (FoundPred == Pred)
5724    return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5725
5726  // Check whether swapping the found predicate makes it the same as the
5727  // desired predicate.
5728  if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5729    if (isa<SCEVConstant>(RHS))
5730      return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5731    else
5732      return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5733                                   RHS, LHS, FoundLHS, FoundRHS);
5734  }
5735
5736  // Check whether the actual condition is beyond sufficient.
5737  if (FoundPred == ICmpInst::ICMP_EQ)
5738    if (ICmpInst::isTrueWhenEqual(Pred))
5739      if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5740        return true;
5741  if (Pred == ICmpInst::ICMP_NE)
5742    if (!ICmpInst::isTrueWhenEqual(FoundPred))
5743      if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5744        return true;
5745
5746  // Otherwise assume the worst.
5747  return false;
5748}
5749
5750/// isImpliedCondOperands - Test whether the condition described by Pred,
5751/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
5752/// and FoundRHS is true.
5753bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5754                                            const SCEV *LHS, const SCEV *RHS,
5755                                            const SCEV *FoundLHS,
5756                                            const SCEV *FoundRHS) {
5757  return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5758                                     FoundLHS, FoundRHS) ||
5759         // ~x < ~y --> x > y
5760         isImpliedCondOperandsHelper(Pred, LHS, RHS,
5761                                     getNotSCEV(FoundRHS),
5762                                     getNotSCEV(FoundLHS));
5763}
5764
5765/// isImpliedCondOperandsHelper - Test whether the condition described by
5766/// Pred, LHS, and RHS is true whenever the condition described by Pred,
5767/// FoundLHS, and FoundRHS is true.
5768bool
5769ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5770                                             const SCEV *LHS, const SCEV *RHS,
5771                                             const SCEV *FoundLHS,
5772                                             const SCEV *FoundRHS) {
5773  switch (Pred) {
5774  default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5775  case ICmpInst::ICMP_EQ:
5776  case ICmpInst::ICMP_NE:
5777    if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5778      return true;
5779    break;
5780  case ICmpInst::ICMP_SLT:
5781  case ICmpInst::ICMP_SLE:
5782    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5783        isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
5784      return true;
5785    break;
5786  case ICmpInst::ICMP_SGT:
5787  case ICmpInst::ICMP_SGE:
5788    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5789        isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
5790      return true;
5791    break;
5792  case ICmpInst::ICMP_ULT:
5793  case ICmpInst::ICMP_ULE:
5794    if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5795        isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
5796      return true;
5797    break;
5798  case ICmpInst::ICMP_UGT:
5799  case ICmpInst::ICMP_UGE:
5800    if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5801        isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
5802      return true;
5803    break;
5804  }
5805
5806  return false;
5807}
5808
5809/// getBECount - Subtract the end and start values and divide by the step,
5810/// rounding up, to get the number of times the backedge is executed. Return
5811/// CouldNotCompute if an intermediate computation overflows.
5812const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
5813                                        const SCEV *End,
5814                                        const SCEV *Step,
5815                                        bool NoWrap) {
5816  assert(!isKnownNegative(Step) &&
5817         "This code doesn't handle negative strides yet!");
5818
5819  Type *Ty = Start->getType();
5820
5821  // When Start == End, we have an exact BECount == 0. Short-circuit this case
5822  // here because SCEV may not be able to determine that the unsigned division
5823  // after rounding is zero.
5824  if (Start == End)
5825    return getConstant(Ty, 0);
5826
5827  const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
5828  const SCEV *Diff = getMinusSCEV(End, Start);
5829  const SCEV *RoundUp = getAddExpr(Step, NegOne);
5830
5831  // Add an adjustment to the difference between End and Start so that
5832  // the division will effectively round up.
5833  const SCEV *Add = getAddExpr(Diff, RoundUp);
5834
5835  if (!NoWrap) {
5836    // Check Add for unsigned overflow.
5837    // TODO: More sophisticated things could be done here.
5838    Type *WideTy = IntegerType::get(getContext(),
5839                                          getTypeSizeInBits(Ty) + 1);
5840    const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5841    const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5842    const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5843    if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5844      return getCouldNotCompute();
5845  }
5846
5847  return getUDivExpr(Add, Step);
5848}
5849
5850/// HowManyLessThans - Return the number of times a backedge containing the
5851/// specified less-than comparison will execute.  If not computable, return
5852/// CouldNotCompute.
5853ScalarEvolution::ExitLimit
5854ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5855                                  const Loop *L, bool isSigned) {
5856  // Only handle:  "ADDREC < LoopInvariant".
5857  if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
5858
5859  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
5860  if (!AddRec || AddRec->getLoop() != L)
5861    return getCouldNotCompute();
5862
5863  // Check to see if we have a flag which makes analysis easy.
5864  bool NoWrap = isSigned ? AddRec->getNoWrapFlags(SCEV::FlagNSW) :
5865                           AddRec->getNoWrapFlags(SCEV::FlagNUW);
5866
5867  if (AddRec->isAffine()) {
5868    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
5869    const SCEV *Step = AddRec->getStepRecurrence(*this);
5870
5871    if (Step->isZero())
5872      return getCouldNotCompute();
5873    if (Step->isOne()) {
5874      // With unit stride, the iteration never steps past the limit value.
5875    } else if (isKnownPositive(Step)) {
5876      // Test whether a positive iteration can step past the limit
5877      // value and past the maximum value for its type in a single step.
5878      // Note that it's not sufficient to check NoWrap here, because even
5879      // though the value after a wrap is undefined, it's not undefined
5880      // behavior, so if wrap does occur, the loop could either terminate or
5881      // loop infinitely, but in either case, the loop is guaranteed to
5882      // iterate at least until the iteration where the wrapping occurs.
5883      const SCEV *One = getConstant(Step->getType(), 1);
5884      if (isSigned) {
5885        APInt Max = APInt::getSignedMaxValue(BitWidth);
5886        if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5887              .slt(getSignedRange(RHS).getSignedMax()))
5888          return getCouldNotCompute();
5889      } else {
5890        APInt Max = APInt::getMaxValue(BitWidth);
5891        if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5892              .ult(getUnsignedRange(RHS).getUnsignedMax()))
5893          return getCouldNotCompute();
5894      }
5895    } else
5896      // TODO: Handle negative strides here and below.
5897      return getCouldNotCompute();
5898
5899    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5900    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
5901    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
5902    // treat m-n as signed nor unsigned due to overflow possibility.
5903
5904    // First, we get the value of the LHS in the first iteration: n
5905    const SCEV *Start = AddRec->getOperand(0);
5906
5907    // Determine the minimum constant start value.
5908    const SCEV *MinStart = getConstant(isSigned ?
5909      getSignedRange(Start).getSignedMin() :
5910      getUnsignedRange(Start).getUnsignedMin());
5911
5912    // If we know that the condition is true in order to enter the loop,
5913    // then we know that it will run exactly (m-n)/s times. Otherwise, we
5914    // only know that it will execute (max(m,n)-n)/s times. In both cases,
5915    // the division must round up.
5916    const SCEV *End = RHS;
5917    if (!isLoopEntryGuardedByCond(L,
5918                                  isSigned ? ICmpInst::ICMP_SLT :
5919                                             ICmpInst::ICMP_ULT,
5920                                  getMinusSCEV(Start, Step), RHS))
5921      End = isSigned ? getSMaxExpr(RHS, Start)
5922                     : getUMaxExpr(RHS, Start);
5923
5924    // Determine the maximum constant end value.
5925    const SCEV *MaxEnd = getConstant(isSigned ?
5926      getSignedRange(End).getSignedMax() :
5927      getUnsignedRange(End).getUnsignedMax());
5928
5929    // If MaxEnd is within a step of the maximum integer value in its type,
5930    // adjust it down to the minimum value which would produce the same effect.
5931    // This allows the subsequent ceiling division of (N+(step-1))/step to
5932    // compute the correct value.
5933    const SCEV *StepMinusOne = getMinusSCEV(Step,
5934                                            getConstant(Step->getType(), 1));
5935    MaxEnd = isSigned ?
5936      getSMinExpr(MaxEnd,
5937                  getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5938                               StepMinusOne)) :
5939      getUMinExpr(MaxEnd,
5940                  getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5941                               StepMinusOne));
5942
5943    // Finally, we subtract these two values and divide, rounding up, to get
5944    // the number of times the backedge is executed.
5945    const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
5946
5947    // The maximum backedge count is similar, except using the minimum start
5948    // value and the maximum end value.
5949    // If we already have an exact constant BECount, use it instead.
5950    const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount
5951      : getBECount(MinStart, MaxEnd, Step, NoWrap);
5952
5953    // If the stride is nonconstant, and NoWrap == true, then
5954    // getBECount(MinStart, MaxEnd) may not compute. This would result in an
5955    // exact BECount and invalid MaxBECount, which should be avoided to catch
5956    // more optimization opportunities.
5957    if (isa<SCEVCouldNotCompute>(MaxBECount))
5958      MaxBECount = BECount;
5959
5960    return ExitLimit(BECount, MaxBECount);
5961  }
5962
5963  return getCouldNotCompute();
5964}
5965
5966/// getNumIterationsInRange - Return the number of iterations of this loop that
5967/// produce values in the specified constant range.  Another way of looking at
5968/// this is that it returns the first iteration number where the value is not in
5969/// the condition, thus computing the exit count. If the iteration count can't
5970/// be computed, an instance of SCEVCouldNotCompute is returned.
5971const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
5972                                                    ScalarEvolution &SE) const {
5973  if (Range.isFullSet())  // Infinite loop.
5974    return SE.getCouldNotCompute();
5975
5976  // If the start is a non-zero constant, shift the range to simplify things.
5977  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
5978    if (!SC->getValue()->isZero()) {
5979      SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
5980      Operands[0] = SE.getConstant(SC->getType(), 0);
5981      const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
5982                                             getNoWrapFlags(FlagNW));
5983      if (const SCEVAddRecExpr *ShiftedAddRec =
5984            dyn_cast<SCEVAddRecExpr>(Shifted))
5985        return ShiftedAddRec->getNumIterationsInRange(
5986                           Range.subtract(SC->getValue()->getValue()), SE);
5987      // This is strange and shouldn't happen.
5988      return SE.getCouldNotCompute();
5989    }
5990
5991  // The only time we can solve this is when we have all constant indices.
5992  // Otherwise, we cannot determine the overflow conditions.
5993  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5994    if (!isa<SCEVConstant>(getOperand(i)))
5995      return SE.getCouldNotCompute();
5996
5997
5998  // Okay at this point we know that all elements of the chrec are constants and
5999  // that the start element is zero.
6000
6001  // First check to see if the range contains zero.  If not, the first
6002  // iteration exits.
6003  unsigned BitWidth = SE.getTypeSizeInBits(getType());
6004  if (!Range.contains(APInt(BitWidth, 0)))
6005    return SE.getConstant(getType(), 0);
6006
6007  if (isAffine()) {
6008    // If this is an affine expression then we have this situation:
6009    //   Solve {0,+,A} in Range  ===  Ax in Range
6010
6011    // We know that zero is in the range.  If A is positive then we know that
6012    // the upper value of the range must be the first possible exit value.
6013    // If A is negative then the lower of the range is the last possible loop
6014    // value.  Also note that we already checked for a full range.
6015    APInt One(BitWidth,1);
6016    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
6017    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
6018
6019    // The exit value should be (End+A)/A.
6020    APInt ExitVal = (End + A).udiv(A);
6021    ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
6022
6023    // Evaluate at the exit value.  If we really did fall out of the valid
6024    // range, then we computed our trip count, otherwise wrap around or other
6025    // things must have happened.
6026    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
6027    if (Range.contains(Val->getValue()))
6028      return SE.getCouldNotCompute();  // Something strange happened
6029
6030    // Ensure that the previous value is in the range.  This is a sanity check.
6031    assert(Range.contains(
6032           EvaluateConstantChrecAtConstant(this,
6033           ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
6034           "Linear scev computation is off in a bad way!");
6035    return SE.getConstant(ExitValue);
6036  } else if (isQuadratic()) {
6037    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
6038    // quadratic equation to solve it.  To do this, we must frame our problem in
6039    // terms of figuring out when zero is crossed, instead of when
6040    // Range.getUpper() is crossed.
6041    SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
6042    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
6043    const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
6044                                             // getNoWrapFlags(FlagNW)
6045                                             FlagAnyWrap);
6046
6047    // Next, solve the constructed addrec
6048    std::pair<const SCEV *,const SCEV *> Roots =
6049      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
6050    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6051    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
6052    if (R1) {
6053      // Pick the smallest positive root value.
6054      if (ConstantInt *CB =
6055          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
6056                         R1->getValue(), R2->getValue()))) {
6057        if (CB->getZExtValue() == false)
6058          std::swap(R1, R2);   // R1 is the minimum root now.
6059
6060        // Make sure the root is not off by one.  The returned iteration should
6061        // not be in the range, but the previous one should be.  When solving
6062        // for "X*X < 5", for example, we should not return a root of 2.
6063        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
6064                                                             R1->getValue(),
6065                                                             SE);
6066        if (Range.contains(R1Val->getValue())) {
6067          // The next iteration must be out of the range...
6068          ConstantInt *NextVal =
6069                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
6070
6071          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
6072          if (!Range.contains(R1Val->getValue()))
6073            return SE.getConstant(NextVal);
6074          return SE.getCouldNotCompute();  // Something strange happened
6075        }
6076
6077        // If R1 was not in the range, then it is a good return value.  Make
6078        // sure that R1-1 WAS in the range though, just in case.
6079        ConstantInt *NextVal =
6080               ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
6081        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
6082        if (Range.contains(R1Val->getValue()))
6083          return R1;
6084        return SE.getCouldNotCompute();  // Something strange happened
6085      }
6086    }
6087  }
6088
6089  return SE.getCouldNotCompute();
6090}
6091
6092
6093
6094//===----------------------------------------------------------------------===//
6095//                   SCEVCallbackVH Class Implementation
6096//===----------------------------------------------------------------------===//
6097
6098void ScalarEvolution::SCEVCallbackVH::deleted() {
6099  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
6100  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
6101    SE->ConstantEvolutionLoopExitValue.erase(PN);
6102  SE->ValueExprMap.erase(getValPtr());
6103  // this now dangles!
6104}
6105
6106void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
6107  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
6108
6109  // Forget all the expressions associated with users of the old value,
6110  // so that future queries will recompute the expressions using the new
6111  // value.
6112  Value *Old = getValPtr();
6113  SmallVector<User *, 16> Worklist;
6114  SmallPtrSet<User *, 8> Visited;
6115  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
6116       UI != UE; ++UI)
6117    Worklist.push_back(*UI);
6118  while (!Worklist.empty()) {
6119    User *U = Worklist.pop_back_val();
6120    // Deleting the Old value will cause this to dangle. Postpone
6121    // that until everything else is done.
6122    if (U == Old)
6123      continue;
6124    if (!Visited.insert(U))
6125      continue;
6126    if (PHINode *PN = dyn_cast<PHINode>(U))
6127      SE->ConstantEvolutionLoopExitValue.erase(PN);
6128    SE->ValueExprMap.erase(U);
6129    for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
6130         UI != UE; ++UI)
6131      Worklist.push_back(*UI);
6132  }
6133  // Delete the Old value.
6134  if (PHINode *PN = dyn_cast<PHINode>(Old))
6135    SE->ConstantEvolutionLoopExitValue.erase(PN);
6136  SE->ValueExprMap.erase(Old);
6137  // this now dangles!
6138}
6139
6140ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
6141  : CallbackVH(V), SE(se) {}
6142
6143//===----------------------------------------------------------------------===//
6144//                   ScalarEvolution Class Implementation
6145//===----------------------------------------------------------------------===//
6146
6147ScalarEvolution::ScalarEvolution()
6148  : FunctionPass(ID), FirstUnknown(0) {
6149  initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
6150}
6151
6152bool ScalarEvolution::runOnFunction(Function &F) {
6153  this->F = &F;
6154  LI = &getAnalysis<LoopInfo>();
6155  TD = getAnalysisIfAvailable<TargetData>();
6156  DT = &getAnalysis<DominatorTree>();
6157  return false;
6158}
6159
6160void ScalarEvolution::releaseMemory() {
6161  // Iterate through all the SCEVUnknown instances and call their
6162  // destructors, so that they release their references to their values.
6163  for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
6164    U->~SCEVUnknown();
6165  FirstUnknown = 0;
6166
6167  ValueExprMap.clear();
6168
6169  // Free any extra memory created for ExitNotTakenInfo in the unlikely event
6170  // that a loop had multiple computable exits.
6171  for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
6172         BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
6173       I != E; ++I) {
6174    I->second.clear();
6175  }
6176
6177  BackedgeTakenCounts.clear();
6178  ConstantEvolutionLoopExitValue.clear();
6179  ValuesAtScopes.clear();
6180  LoopDispositions.clear();
6181  BlockDispositions.clear();
6182  UnsignedRanges.clear();
6183  SignedRanges.clear();
6184  UniqueSCEVs.clear();
6185  SCEVAllocator.Reset();
6186}
6187
6188void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
6189  AU.setPreservesAll();
6190  AU.addRequiredTransitive<LoopInfo>();
6191  AU.addRequiredTransitive<DominatorTree>();
6192}
6193
6194bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
6195  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
6196}
6197
6198static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
6199                          const Loop *L) {
6200  // Print all inner loops first
6201  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
6202    PrintLoopInfo(OS, SE, *I);
6203
6204  OS << "Loop ";
6205  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6206  OS << ": ";
6207
6208  SmallVector<BasicBlock *, 8> ExitBlocks;
6209  L->getExitBlocks(ExitBlocks);
6210  if (ExitBlocks.size() != 1)
6211    OS << "<multiple exits> ";
6212
6213  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
6214    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
6215  } else {
6216    OS << "Unpredictable backedge-taken count. ";
6217  }
6218
6219  OS << "\n"
6220        "Loop ";
6221  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6222  OS << ": ";
6223
6224  if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
6225    OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
6226  } else {
6227    OS << "Unpredictable max backedge-taken count. ";
6228  }
6229
6230  OS << "\n";
6231}
6232
6233void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
6234  // ScalarEvolution's implementation of the print method is to print
6235  // out SCEV values of all instructions that are interesting. Doing
6236  // this potentially causes it to create new SCEV objects though,
6237  // which technically conflicts with the const qualifier. This isn't
6238  // observable from outside the class though, so casting away the
6239  // const isn't dangerous.
6240  ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
6241
6242  OS << "Classifying expressions for: ";
6243  WriteAsOperand(OS, F, /*PrintType=*/false);
6244  OS << "\n";
6245  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
6246    if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
6247      OS << *I << '\n';
6248      OS << "  -->  ";
6249      const SCEV *SV = SE.getSCEV(&*I);
6250      SV->print(OS);
6251
6252      const Loop *L = LI->getLoopFor((*I).getParent());
6253
6254      const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
6255      if (AtUse != SV) {
6256        OS << "  -->  ";
6257        AtUse->print(OS);
6258      }
6259
6260      if (L) {
6261        OS << "\t\t" "Exits: ";
6262        const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
6263        if (!SE.isLoopInvariant(ExitValue, L)) {
6264          OS << "<<Unknown>>";
6265        } else {
6266          OS << *ExitValue;
6267        }
6268      }
6269
6270      OS << "\n";
6271    }
6272
6273  OS << "Determining loop execution counts for: ";
6274  WriteAsOperand(OS, F, /*PrintType=*/false);
6275  OS << "\n";
6276  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
6277    PrintLoopInfo(OS, &SE, *I);
6278}
6279
6280ScalarEvolution::LoopDisposition
6281ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
6282  std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
6283  std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
6284    Values.insert(std::make_pair(L, LoopVariant));
6285  if (!Pair.second)
6286    return Pair.first->second;
6287
6288  LoopDisposition D = computeLoopDisposition(S, L);
6289  return LoopDispositions[S][L] = D;
6290}
6291
6292ScalarEvolution::LoopDisposition
6293ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
6294  switch (S->getSCEVType()) {
6295  case scConstant:
6296    return LoopInvariant;
6297  case scTruncate:
6298  case scZeroExtend:
6299  case scSignExtend:
6300    return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
6301  case scAddRecExpr: {
6302    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6303
6304    // If L is the addrec's loop, it's computable.
6305    if (AR->getLoop() == L)
6306      return LoopComputable;
6307
6308    // Add recurrences are never invariant in the function-body (null loop).
6309    if (!L)
6310      return LoopVariant;
6311
6312    // This recurrence is variant w.r.t. L if L contains AR's loop.
6313    if (L->contains(AR->getLoop()))
6314      return LoopVariant;
6315
6316    // This recurrence is invariant w.r.t. L if AR's loop contains L.
6317    if (AR->getLoop()->contains(L))
6318      return LoopInvariant;
6319
6320    // This recurrence is variant w.r.t. L if any of its operands
6321    // are variant.
6322    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
6323         I != E; ++I)
6324      if (!isLoopInvariant(*I, L))
6325        return LoopVariant;
6326
6327    // Otherwise it's loop-invariant.
6328    return LoopInvariant;
6329  }
6330  case scAddExpr:
6331  case scMulExpr:
6332  case scUMaxExpr:
6333  case scSMaxExpr: {
6334    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6335    bool HasVarying = false;
6336    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6337         I != E; ++I) {
6338      LoopDisposition D = getLoopDisposition(*I, L);
6339      if (D == LoopVariant)
6340        return LoopVariant;
6341      if (D == LoopComputable)
6342        HasVarying = true;
6343    }
6344    return HasVarying ? LoopComputable : LoopInvariant;
6345  }
6346  case scUDivExpr: {
6347    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6348    LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
6349    if (LD == LoopVariant)
6350      return LoopVariant;
6351    LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
6352    if (RD == LoopVariant)
6353      return LoopVariant;
6354    return (LD == LoopInvariant && RD == LoopInvariant) ?
6355           LoopInvariant : LoopComputable;
6356  }
6357  case scUnknown:
6358    // All non-instruction values are loop invariant.  All instructions are loop
6359    // invariant if they are not contained in the specified loop.
6360    // Instructions are never considered invariant in the function body
6361    // (null loop) because they are defined within the "loop".
6362    if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
6363      return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
6364    return LoopInvariant;
6365  case scCouldNotCompute:
6366    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6367    return LoopVariant;
6368  default: break;
6369  }
6370  llvm_unreachable("Unknown SCEV kind!");
6371  return LoopVariant;
6372}
6373
6374bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
6375  return getLoopDisposition(S, L) == LoopInvariant;
6376}
6377
6378bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6379  return getLoopDisposition(S, L) == LoopComputable;
6380}
6381
6382ScalarEvolution::BlockDisposition
6383ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6384  std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
6385  std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
6386    Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
6387  if (!Pair.second)
6388    return Pair.first->second;
6389
6390  BlockDisposition D = computeBlockDisposition(S, BB);
6391  return BlockDispositions[S][BB] = D;
6392}
6393
6394ScalarEvolution::BlockDisposition
6395ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6396  switch (S->getSCEVType()) {
6397  case scConstant:
6398    return ProperlyDominatesBlock;
6399  case scTruncate:
6400  case scZeroExtend:
6401  case scSignExtend:
6402    return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
6403  case scAddRecExpr: {
6404    // This uses a "dominates" query instead of "properly dominates" query
6405    // to test for proper dominance too, because the instruction which
6406    // produces the addrec's value is a PHI, and a PHI effectively properly
6407    // dominates its entire containing block.
6408    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6409    if (!DT->dominates(AR->getLoop()->getHeader(), BB))
6410      return DoesNotDominateBlock;
6411  }
6412  // FALL THROUGH into SCEVNAryExpr handling.
6413  case scAddExpr:
6414  case scMulExpr:
6415  case scUMaxExpr:
6416  case scSMaxExpr: {
6417    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6418    bool Proper = true;
6419    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6420         I != E; ++I) {
6421      BlockDisposition D = getBlockDisposition(*I, BB);
6422      if (D == DoesNotDominateBlock)
6423        return DoesNotDominateBlock;
6424      if (D == DominatesBlock)
6425        Proper = false;
6426    }
6427    return Proper ? ProperlyDominatesBlock : DominatesBlock;
6428  }
6429  case scUDivExpr: {
6430    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6431    const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6432    BlockDisposition LD = getBlockDisposition(LHS, BB);
6433    if (LD == DoesNotDominateBlock)
6434      return DoesNotDominateBlock;
6435    BlockDisposition RD = getBlockDisposition(RHS, BB);
6436    if (RD == DoesNotDominateBlock)
6437      return DoesNotDominateBlock;
6438    return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6439      ProperlyDominatesBlock : DominatesBlock;
6440  }
6441  case scUnknown:
6442    if (Instruction *I =
6443          dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6444      if (I->getParent() == BB)
6445        return DominatesBlock;
6446      if (DT->properlyDominates(I->getParent(), BB))
6447        return ProperlyDominatesBlock;
6448      return DoesNotDominateBlock;
6449    }
6450    return ProperlyDominatesBlock;
6451  case scCouldNotCompute:
6452    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6453    return DoesNotDominateBlock;
6454  default: break;
6455  }
6456  llvm_unreachable("Unknown SCEV kind!");
6457  return DoesNotDominateBlock;
6458}
6459
6460bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
6461  return getBlockDisposition(S, BB) >= DominatesBlock;
6462}
6463
6464bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
6465  return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
6466}
6467
6468bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
6469  switch (S->getSCEVType()) {
6470  case scConstant:
6471    return false;
6472  case scTruncate:
6473  case scZeroExtend:
6474  case scSignExtend: {
6475    const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S);
6476    const SCEV *CastOp = Cast->getOperand();
6477    return Op == CastOp || hasOperand(CastOp, Op);
6478  }
6479  case scAddRecExpr:
6480  case scAddExpr:
6481  case scMulExpr:
6482  case scUMaxExpr:
6483  case scSMaxExpr: {
6484    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6485    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6486         I != E; ++I) {
6487      const SCEV *NAryOp = *I;
6488      if (NAryOp == Op || hasOperand(NAryOp, Op))
6489        return true;
6490    }
6491    return false;
6492  }
6493  case scUDivExpr: {
6494    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6495    const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6496    return LHS == Op || hasOperand(LHS, Op) ||
6497           RHS == Op || hasOperand(RHS, Op);
6498  }
6499  case scUnknown:
6500    return false;
6501  case scCouldNotCompute:
6502    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6503    return false;
6504  default: break;
6505  }
6506  llvm_unreachable("Unknown SCEV kind!");
6507  return false;
6508}
6509
6510void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
6511  ValuesAtScopes.erase(S);
6512  LoopDispositions.erase(S);
6513  BlockDispositions.erase(S);
6514  UnsignedRanges.erase(S);
6515  SignedRanges.erase(S);
6516}
6517