ScalarEvolution.cpp revision ff2006aa7421eaf2ce0b6282783c30ed87a2115e
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle.  These classes are reference counted, managed by the SCEVHandle
18// class.  We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression.  These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
36// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43//  Chains of recurrences -- a method to expedite the evaluation
44//  of closed-form functions
45//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47//  On computational properties of chains of recurrences
48//  Eugene V. Zima
49//
50//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51//  Robert A. van Engelen
52//
53//  Efficient Symbolic Analysis for Optimizing Compilers
54//  Robert A. van Engelen
55//
56//  Using the chains of recurrences algebra for data dependence testing and
57//  induction variable substitution
58//  MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
62#include "llvm/Analysis/ScalarEvolutionExpressions.h"
63#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
65#include "llvm/GlobalVariable.h"
66#include "llvm/Instructions.h"
67#include "llvm/Analysis/LoopInfo.h"
68#include "llvm/Assembly/Writer.h"
69#include "llvm/Transforms/Scalar.h"
70#include "llvm/Transforms/Utils/Local.h"
71#include "llvm/Support/CFG.h"
72#include "llvm/Support/ConstantRange.h"
73#include "llvm/Support/InstIterator.h"
74#include "llvm/Support/CommandLine.h"
75#include "llvm/ADT/Statistic.h"
76#include <cmath>
77#include <algorithm>
78using namespace llvm;
79
80namespace {
81  RegisterAnalysis<ScalarEvolution>
82  R("scalar-evolution", "Scalar Evolution Analysis");
83
84  Statistic<>
85  NumBruteForceEvaluations("scalar-evolution",
86                           "Number of brute force evaluations needed to "
87                           "calculate high-order polynomial exit values");
88  Statistic<>
89  NumArrayLenItCounts("scalar-evolution",
90                      "Number of trip counts computed with array length");
91  Statistic<>
92  NumTripCountsComputed("scalar-evolution",
93                        "Number of loops with predictable loop counts");
94  Statistic<>
95  NumTripCountsNotComputed("scalar-evolution",
96                           "Number of loops without predictable loop counts");
97  Statistic<>
98  NumBruteForceTripCountsComputed("scalar-evolution",
99                        "Number of loops with trip counts computed by force");
100
101  cl::opt<unsigned>
102  MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
103                          cl::desc("Maximum number of iterations SCEV will symbolically execute a constant derived loop"),
104                          cl::init(100));
105}
106
107//===----------------------------------------------------------------------===//
108//                           SCEV class definitions
109//===----------------------------------------------------------------------===//
110
111//===----------------------------------------------------------------------===//
112// Implementation of the SCEV class.
113//
114SCEV::~SCEV() {}
115void SCEV::dump() const {
116  print(std::cerr);
117}
118
119/// getValueRange - Return the tightest constant bounds that this value is
120/// known to have.  This method is only valid on integer SCEV objects.
121ConstantRange SCEV::getValueRange() const {
122  const Type *Ty = getType();
123  assert(Ty->isInteger() && "Can't get range for a non-integer SCEV!");
124  Ty = Ty->getUnsignedVersion();
125  // Default to a full range if no better information is available.
126  return ConstantRange(getType());
127}
128
129
130SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
131
132bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
133  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
134  return false;
135}
136
137const Type *SCEVCouldNotCompute::getType() const {
138  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
139  return 0;
140}
141
142bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
143  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
144  return false;
145}
146
147SCEVHandle SCEVCouldNotCompute::
148replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
149                                  const SCEVHandle &Conc) const {
150  return this;
151}
152
153void SCEVCouldNotCompute::print(std::ostream &OS) const {
154  OS << "***COULDNOTCOMPUTE***";
155}
156
157bool SCEVCouldNotCompute::classof(const SCEV *S) {
158  return S->getSCEVType() == scCouldNotCompute;
159}
160
161
162// SCEVConstants - Only allow the creation of one SCEVConstant for any
163// particular value.  Don't use a SCEVHandle here, or else the object will
164// never be deleted!
165static std::map<ConstantInt*, SCEVConstant*> SCEVConstants;
166
167
168SCEVConstant::~SCEVConstant() {
169  SCEVConstants.erase(V);
170}
171
172SCEVHandle SCEVConstant::get(ConstantInt *V) {
173  // Make sure that SCEVConstant instances are all unsigned.
174  if (V->getType()->isSigned()) {
175    const Type *NewTy = V->getType()->getUnsignedVersion();
176    V = cast<ConstantUInt>(ConstantExpr::getCast(V, NewTy));
177  }
178
179  SCEVConstant *&R = SCEVConstants[V];
180  if (R == 0) R = new SCEVConstant(V);
181  return R;
182}
183
184ConstantRange SCEVConstant::getValueRange() const {
185  return ConstantRange(V);
186}
187
188const Type *SCEVConstant::getType() const { return V->getType(); }
189
190void SCEVConstant::print(std::ostream &OS) const {
191  WriteAsOperand(OS, V, false);
192}
193
194// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
195// particular input.  Don't use a SCEVHandle here, or else the object will
196// never be deleted!
197static std::map<std::pair<SCEV*, const Type*>, SCEVTruncateExpr*> SCEVTruncates;
198
199SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
200  : SCEV(scTruncate), Op(op), Ty(ty) {
201  assert(Op->getType()->isInteger() && Ty->isInteger() &&
202         Ty->isUnsigned() &&
203         "Cannot truncate non-integer value!");
204  assert(Op->getType()->getPrimitiveSize() > Ty->getPrimitiveSize() &&
205         "This is not a truncating conversion!");
206}
207
208SCEVTruncateExpr::~SCEVTruncateExpr() {
209  SCEVTruncates.erase(std::make_pair(Op, Ty));
210}
211
212ConstantRange SCEVTruncateExpr::getValueRange() const {
213  return getOperand()->getValueRange().truncate(getType());
214}
215
216void SCEVTruncateExpr::print(std::ostream &OS) const {
217  OS << "(truncate " << *Op << " to " << *Ty << ")";
218}
219
220// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
221// particular input.  Don't use a SCEVHandle here, or else the object will never
222// be deleted!
223static std::map<std::pair<SCEV*, const Type*>,
224                SCEVZeroExtendExpr*> SCEVZeroExtends;
225
226SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
227  : SCEV(scTruncate), Op(op), Ty(ty) {
228  assert(Op->getType()->isInteger() && Ty->isInteger() &&
229         Ty->isUnsigned() &&
230         "Cannot zero extend non-integer value!");
231  assert(Op->getType()->getPrimitiveSize() < Ty->getPrimitiveSize() &&
232         "This is not an extending conversion!");
233}
234
235SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
236  SCEVZeroExtends.erase(std::make_pair(Op, Ty));
237}
238
239ConstantRange SCEVZeroExtendExpr::getValueRange() const {
240  return getOperand()->getValueRange().zeroExtend(getType());
241}
242
243void SCEVZeroExtendExpr::print(std::ostream &OS) const {
244  OS << "(zeroextend " << *Op << " to " << *Ty << ")";
245}
246
247// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
248// particular input.  Don't use a SCEVHandle here, or else the object will never
249// be deleted!
250static std::map<std::pair<unsigned, std::vector<SCEV*> >,
251                SCEVCommutativeExpr*> SCEVCommExprs;
252
253SCEVCommutativeExpr::~SCEVCommutativeExpr() {
254  SCEVCommExprs.erase(std::make_pair(getSCEVType(),
255                                     std::vector<SCEV*>(Operands.begin(),
256                                                        Operands.end())));
257}
258
259void SCEVCommutativeExpr::print(std::ostream &OS) const {
260  assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
261  const char *OpStr = getOperationStr();
262  OS << "(" << *Operands[0];
263  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
264    OS << OpStr << *Operands[i];
265  OS << ")";
266}
267
268SCEVHandle SCEVCommutativeExpr::
269replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
270                                  const SCEVHandle &Conc) const {
271  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
272    SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc);
273    if (H != getOperand(i)) {
274      std::vector<SCEVHandle> NewOps;
275      NewOps.reserve(getNumOperands());
276      for (unsigned j = 0; j != i; ++j)
277        NewOps.push_back(getOperand(j));
278      NewOps.push_back(H);
279      for (++i; i != e; ++i)
280        NewOps.push_back(getOperand(i)->
281                         replaceSymbolicValuesWithConcrete(Sym, Conc));
282
283      if (isa<SCEVAddExpr>(this))
284        return SCEVAddExpr::get(NewOps);
285      else if (isa<SCEVMulExpr>(this))
286        return SCEVMulExpr::get(NewOps);
287      else
288        assert(0 && "Unknown commutative expr!");
289    }
290  }
291  return this;
292}
293
294
295// SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
296// input.  Don't use a SCEVHandle here, or else the object will never be
297// deleted!
298static std::map<std::pair<SCEV*, SCEV*>, SCEVUDivExpr*> SCEVUDivs;
299
300SCEVUDivExpr::~SCEVUDivExpr() {
301  SCEVUDivs.erase(std::make_pair(LHS, RHS));
302}
303
304void SCEVUDivExpr::print(std::ostream &OS) const {
305  OS << "(" << *LHS << " /u " << *RHS << ")";
306}
307
308const Type *SCEVUDivExpr::getType() const {
309  const Type *Ty = LHS->getType();
310  if (Ty->isSigned()) Ty = Ty->getUnsignedVersion();
311  return Ty;
312}
313
314// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
315// particular input.  Don't use a SCEVHandle here, or else the object will never
316// be deleted!
317static std::map<std::pair<const Loop *, std::vector<SCEV*> >,
318                SCEVAddRecExpr*> SCEVAddRecExprs;
319
320SCEVAddRecExpr::~SCEVAddRecExpr() {
321  SCEVAddRecExprs.erase(std::make_pair(L,
322                                       std::vector<SCEV*>(Operands.begin(),
323                                                          Operands.end())));
324}
325
326SCEVHandle SCEVAddRecExpr::
327replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
328                                  const SCEVHandle &Conc) const {
329  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
330    SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc);
331    if (H != getOperand(i)) {
332      std::vector<SCEVHandle> NewOps;
333      NewOps.reserve(getNumOperands());
334      for (unsigned j = 0; j != i; ++j)
335        NewOps.push_back(getOperand(j));
336      NewOps.push_back(H);
337      for (++i; i != e; ++i)
338        NewOps.push_back(getOperand(i)->
339                         replaceSymbolicValuesWithConcrete(Sym, Conc));
340
341      return get(NewOps, L);
342    }
343  }
344  return this;
345}
346
347
348bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
349  // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
350  // contain L and if the start is invariant.
351  return !QueryLoop->contains(L->getHeader()) &&
352         getOperand(0)->isLoopInvariant(QueryLoop);
353}
354
355
356void SCEVAddRecExpr::print(std::ostream &OS) const {
357  OS << "{" << *Operands[0];
358  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
359    OS << ",+," << *Operands[i];
360  OS << "}<" << L->getHeader()->getName() + ">";
361}
362
363// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
364// value.  Don't use a SCEVHandle here, or else the object will never be
365// deleted!
366static std::map<Value*, SCEVUnknown*> SCEVUnknowns;
367
368SCEVUnknown::~SCEVUnknown() { SCEVUnknowns.erase(V); }
369
370bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
371  // All non-instruction values are loop invariant.  All instructions are loop
372  // invariant if they are not contained in the specified loop.
373  if (Instruction *I = dyn_cast<Instruction>(V))
374    return !L->contains(I->getParent());
375  return true;
376}
377
378const Type *SCEVUnknown::getType() const {
379  return V->getType();
380}
381
382void SCEVUnknown::print(std::ostream &OS) const {
383  WriteAsOperand(OS, V, false);
384}
385
386//===----------------------------------------------------------------------===//
387//                               SCEV Utilities
388//===----------------------------------------------------------------------===//
389
390namespace {
391  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
392  /// than the complexity of the RHS.  This comparator is used to canonicalize
393  /// expressions.
394  struct SCEVComplexityCompare {
395    bool operator()(SCEV *LHS, SCEV *RHS) {
396      return LHS->getSCEVType() < RHS->getSCEVType();
397    }
398  };
399}
400
401/// GroupByComplexity - Given a list of SCEV objects, order them by their
402/// complexity, and group objects of the same complexity together by value.
403/// When this routine is finished, we know that any duplicates in the vector are
404/// consecutive and that complexity is monotonically increasing.
405///
406/// Note that we go take special precautions to ensure that we get determinstic
407/// results from this routine.  In other words, we don't want the results of
408/// this to depend on where the addresses of various SCEV objects happened to
409/// land in memory.
410///
411static void GroupByComplexity(std::vector<SCEVHandle> &Ops) {
412  if (Ops.size() < 2) return;  // Noop
413  if (Ops.size() == 2) {
414    // This is the common case, which also happens to be trivially simple.
415    // Special case it.
416    if (Ops[0]->getSCEVType() > Ops[1]->getSCEVType())
417      std::swap(Ops[0], Ops[1]);
418    return;
419  }
420
421  // Do the rough sort by complexity.
422  std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());
423
424  // Now that we are sorted by complexity, group elements of the same
425  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
426  // be extremely short in practice.  Note that we take this approach because we
427  // do not want to depend on the addresses of the objects we are grouping.
428  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
429    SCEV *S = Ops[i];
430    unsigned Complexity = S->getSCEVType();
431
432    // If there are any objects of the same complexity and same value as this
433    // one, group them.
434    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
435      if (Ops[j] == S) { // Found a duplicate.
436        // Move it to immediately after i'th element.
437        std::swap(Ops[i+1], Ops[j]);
438        ++i;   // no need to rescan it.
439        if (i == e-2) return;  // Done!
440      }
441    }
442  }
443}
444
445
446
447//===----------------------------------------------------------------------===//
448//                      Simple SCEV method implementations
449//===----------------------------------------------------------------------===//
450
451/// getIntegerSCEV - Given an integer or FP type, create a constant for the
452/// specified signed integer value and return a SCEV for the constant.
453SCEVHandle SCEVUnknown::getIntegerSCEV(int Val, const Type *Ty) {
454  Constant *C;
455  if (Val == 0)
456    C = Constant::getNullValue(Ty);
457  else if (Ty->isFloatingPoint())
458    C = ConstantFP::get(Ty, Val);
459  else if (Ty->isSigned())
460    C = ConstantSInt::get(Ty, Val);
461  else {
462    C = ConstantSInt::get(Ty->getSignedVersion(), Val);
463    C = ConstantExpr::getCast(C, Ty);
464  }
465  return SCEVUnknown::get(C);
466}
467
468/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
469/// input value to the specified type.  If the type must be extended, it is zero
470/// extended.
471static SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty) {
472  const Type *SrcTy = V->getType();
473  assert(SrcTy->isInteger() && Ty->isInteger() &&
474         "Cannot truncate or zero extend with non-integer arguments!");
475  if (SrcTy->getPrimitiveSize() == Ty->getPrimitiveSize())
476    return V;  // No conversion
477  if (SrcTy->getPrimitiveSize() > Ty->getPrimitiveSize())
478    return SCEVTruncateExpr::get(V, Ty);
479  return SCEVZeroExtendExpr::get(V, Ty);
480}
481
482/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
483///
484SCEVHandle SCEV::getNegativeSCEV(const SCEVHandle &V) {
485  if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
486    return SCEVUnknown::get(ConstantExpr::getNeg(VC->getValue()));
487
488  return SCEVMulExpr::get(V, SCEVUnknown::getIntegerSCEV(-1, V->getType()));
489}
490
491/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
492///
493SCEVHandle SCEV::getMinusSCEV(const SCEVHandle &LHS, const SCEVHandle &RHS) {
494  // X - Y --> X + -Y
495  return SCEVAddExpr::get(LHS, SCEV::getNegativeSCEV(RHS));
496}
497
498
499/// PartialFact - Compute V!/(V-NumSteps)!
500static SCEVHandle PartialFact(SCEVHandle V, unsigned NumSteps) {
501  // Handle this case efficiently, it is common to have constant iteration
502  // counts while computing loop exit values.
503  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
504    uint64_t Val = SC->getValue()->getRawValue();
505    uint64_t Result = 1;
506    for (; NumSteps; --NumSteps)
507      Result *= Val-(NumSteps-1);
508    Constant *Res = ConstantUInt::get(Type::ULongTy, Result);
509    return SCEVUnknown::get(ConstantExpr::getCast(Res, V->getType()));
510  }
511
512  const Type *Ty = V->getType();
513  if (NumSteps == 0)
514    return SCEVUnknown::getIntegerSCEV(1, Ty);
515
516  SCEVHandle Result = V;
517  for (unsigned i = 1; i != NumSteps; ++i)
518    Result = SCEVMulExpr::get(Result, SCEV::getMinusSCEV(V,
519                                          SCEVUnknown::getIntegerSCEV(i, Ty)));
520  return Result;
521}
522
523
524/// evaluateAtIteration - Return the value of this chain of recurrences at
525/// the specified iteration number.  We can evaluate this recurrence by
526/// multiplying each element in the chain by the binomial coefficient
527/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
528///
529///   A*choose(It, 0) + B*choose(It, 1) + C*choose(It, 2) + D*choose(It, 3)
530///
531/// FIXME/VERIFY: I don't trust that this is correct in the face of overflow.
532/// Is the binomial equation safe using modular arithmetic??
533///
534SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It) const {
535  SCEVHandle Result = getStart();
536  int Divisor = 1;
537  const Type *Ty = It->getType();
538  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
539    SCEVHandle BC = PartialFact(It, i);
540    Divisor *= i;
541    SCEVHandle Val = SCEVUDivExpr::get(SCEVMulExpr::get(BC, getOperand(i)),
542                                       SCEVUnknown::getIntegerSCEV(Divisor,Ty));
543    Result = SCEVAddExpr::get(Result, Val);
544  }
545  return Result;
546}
547
548
549//===----------------------------------------------------------------------===//
550//                    SCEV Expression folder implementations
551//===----------------------------------------------------------------------===//
552
553SCEVHandle SCEVTruncateExpr::get(const SCEVHandle &Op, const Type *Ty) {
554  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
555    return SCEVUnknown::get(ConstantExpr::getCast(SC->getValue(), Ty));
556
557  // If the input value is a chrec scev made out of constants, truncate
558  // all of the constants.
559  if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
560    std::vector<SCEVHandle> Operands;
561    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
562      // FIXME: This should allow truncation of other expression types!
563      if (isa<SCEVConstant>(AddRec->getOperand(i)))
564        Operands.push_back(get(AddRec->getOperand(i), Ty));
565      else
566        break;
567    if (Operands.size() == AddRec->getNumOperands())
568      return SCEVAddRecExpr::get(Operands, AddRec->getLoop());
569  }
570
571  SCEVTruncateExpr *&Result = SCEVTruncates[std::make_pair(Op, Ty)];
572  if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
573  return Result;
574}
575
576SCEVHandle SCEVZeroExtendExpr::get(const SCEVHandle &Op, const Type *Ty) {
577  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
578    return SCEVUnknown::get(ConstantExpr::getCast(SC->getValue(), Ty));
579
580  // FIXME: If the input value is a chrec scev, and we can prove that the value
581  // did not overflow the old, smaller, value, we can zero extend all of the
582  // operands (often constants).  This would allow analysis of something like
583  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
584
585  SCEVZeroExtendExpr *&Result = SCEVZeroExtends[std::make_pair(Op, Ty)];
586  if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
587  return Result;
588}
589
590// get - Get a canonical add expression, or something simpler if possible.
591SCEVHandle SCEVAddExpr::get(std::vector<SCEVHandle> &Ops) {
592  assert(!Ops.empty() && "Cannot get empty add!");
593  if (Ops.size() == 1) return Ops[0];
594
595  // Sort by complexity, this groups all similar expression types together.
596  GroupByComplexity(Ops);
597
598  // If there are any constants, fold them together.
599  unsigned Idx = 0;
600  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
601    ++Idx;
602    assert(Idx < Ops.size());
603    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
604      // We found two constants, fold them together!
605      Constant *Fold = ConstantExpr::getAdd(LHSC->getValue(), RHSC->getValue());
606      if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
607        Ops[0] = SCEVConstant::get(CI);
608        Ops.erase(Ops.begin()+1);  // Erase the folded element
609        if (Ops.size() == 1) return Ops[0];
610        LHSC = cast<SCEVConstant>(Ops[0]);
611      } else {
612        // If we couldn't fold the expression, move to the next constant.  Note
613        // that this is impossible to happen in practice because we always
614        // constant fold constant ints to constant ints.
615        ++Idx;
616      }
617    }
618
619    // If we are left with a constant zero being added, strip it off.
620    if (cast<SCEVConstant>(Ops[0])->getValue()->isNullValue()) {
621      Ops.erase(Ops.begin());
622      --Idx;
623    }
624  }
625
626  if (Ops.size() == 1) return Ops[0];
627
628  // Okay, check to see if the same value occurs in the operand list twice.  If
629  // so, merge them together into an multiply expression.  Since we sorted the
630  // list, these values are required to be adjacent.
631  const Type *Ty = Ops[0]->getType();
632  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
633    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
634      // Found a match, merge the two values into a multiply, and add any
635      // remaining values to the result.
636      SCEVHandle Two = SCEVUnknown::getIntegerSCEV(2, Ty);
637      SCEVHandle Mul = SCEVMulExpr::get(Ops[i], Two);
638      if (Ops.size() == 2)
639        return Mul;
640      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
641      Ops.push_back(Mul);
642      return SCEVAddExpr::get(Ops);
643    }
644
645  // Okay, now we know the first non-constant operand.  If there are add
646  // operands they would be next.
647  if (Idx < Ops.size()) {
648    bool DeletedAdd = false;
649    while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
650      // If we have an add, expand the add operands onto the end of the operands
651      // list.
652      Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
653      Ops.erase(Ops.begin()+Idx);
654      DeletedAdd = true;
655    }
656
657    // If we deleted at least one add, we added operands to the end of the list,
658    // and they are not necessarily sorted.  Recurse to resort and resimplify
659    // any operands we just aquired.
660    if (DeletedAdd)
661      return get(Ops);
662  }
663
664  // Skip over the add expression until we get to a multiply.
665  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
666    ++Idx;
667
668  // If we are adding something to a multiply expression, make sure the
669  // something is not already an operand of the multiply.  If so, merge it into
670  // the multiply.
671  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
672    SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
673    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
674      SCEV *MulOpSCEV = Mul->getOperand(MulOp);
675      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
676        if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
677          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
678          SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
679          if (Mul->getNumOperands() != 2) {
680            // If the multiply has more than two operands, we must get the
681            // Y*Z term.
682            std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
683            MulOps.erase(MulOps.begin()+MulOp);
684            InnerMul = SCEVMulExpr::get(MulOps);
685          }
686          SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, Ty);
687          SCEVHandle AddOne = SCEVAddExpr::get(InnerMul, One);
688          SCEVHandle OuterMul = SCEVMulExpr::get(AddOne, Ops[AddOp]);
689          if (Ops.size() == 2) return OuterMul;
690          if (AddOp < Idx) {
691            Ops.erase(Ops.begin()+AddOp);
692            Ops.erase(Ops.begin()+Idx-1);
693          } else {
694            Ops.erase(Ops.begin()+Idx);
695            Ops.erase(Ops.begin()+AddOp-1);
696          }
697          Ops.push_back(OuterMul);
698          return SCEVAddExpr::get(Ops);
699        }
700
701      // Check this multiply against other multiplies being added together.
702      for (unsigned OtherMulIdx = Idx+1;
703           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
704           ++OtherMulIdx) {
705        SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
706        // If MulOp occurs in OtherMul, we can fold the two multiplies
707        // together.
708        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
709             OMulOp != e; ++OMulOp)
710          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
711            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
712            SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
713            if (Mul->getNumOperands() != 2) {
714              std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
715              MulOps.erase(MulOps.begin()+MulOp);
716              InnerMul1 = SCEVMulExpr::get(MulOps);
717            }
718            SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
719            if (OtherMul->getNumOperands() != 2) {
720              std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
721                                             OtherMul->op_end());
722              MulOps.erase(MulOps.begin()+OMulOp);
723              InnerMul2 = SCEVMulExpr::get(MulOps);
724            }
725            SCEVHandle InnerMulSum = SCEVAddExpr::get(InnerMul1,InnerMul2);
726            SCEVHandle OuterMul = SCEVMulExpr::get(MulOpSCEV, InnerMulSum);
727            if (Ops.size() == 2) return OuterMul;
728            Ops.erase(Ops.begin()+Idx);
729            Ops.erase(Ops.begin()+OtherMulIdx-1);
730            Ops.push_back(OuterMul);
731            return SCEVAddExpr::get(Ops);
732          }
733      }
734    }
735  }
736
737  // If there are any add recurrences in the operands list, see if any other
738  // added values are loop invariant.  If so, we can fold them into the
739  // recurrence.
740  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
741    ++Idx;
742
743  // Scan over all recurrences, trying to fold loop invariants into them.
744  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
745    // Scan all of the other operands to this add and add them to the vector if
746    // they are loop invariant w.r.t. the recurrence.
747    std::vector<SCEVHandle> LIOps;
748    SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
749    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
750      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
751        LIOps.push_back(Ops[i]);
752        Ops.erase(Ops.begin()+i);
753        --i; --e;
754      }
755
756    // If we found some loop invariants, fold them into the recurrence.
757    if (!LIOps.empty()) {
758      //  NLI + LI + { Start,+,Step}  -->  NLI + { LI+Start,+,Step }
759      LIOps.push_back(AddRec->getStart());
760
761      std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
762      AddRecOps[0] = SCEVAddExpr::get(LIOps);
763
764      SCEVHandle NewRec = SCEVAddRecExpr::get(AddRecOps, AddRec->getLoop());
765      // If all of the other operands were loop invariant, we are done.
766      if (Ops.size() == 1) return NewRec;
767
768      // Otherwise, add the folded AddRec by the non-liv parts.
769      for (unsigned i = 0;; ++i)
770        if (Ops[i] == AddRec) {
771          Ops[i] = NewRec;
772          break;
773        }
774      return SCEVAddExpr::get(Ops);
775    }
776
777    // Okay, if there weren't any loop invariants to be folded, check to see if
778    // there are multiple AddRec's with the same loop induction variable being
779    // added together.  If so, we can fold them.
780    for (unsigned OtherIdx = Idx+1;
781         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
782      if (OtherIdx != Idx) {
783        SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
784        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
785          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
786          std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
787          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
788            if (i >= NewOps.size()) {
789              NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
790                            OtherAddRec->op_end());
791              break;
792            }
793            NewOps[i] = SCEVAddExpr::get(NewOps[i], OtherAddRec->getOperand(i));
794          }
795          SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
796
797          if (Ops.size() == 2) return NewAddRec;
798
799          Ops.erase(Ops.begin()+Idx);
800          Ops.erase(Ops.begin()+OtherIdx-1);
801          Ops.push_back(NewAddRec);
802          return SCEVAddExpr::get(Ops);
803        }
804      }
805
806    // Otherwise couldn't fold anything into this recurrence.  Move onto the
807    // next one.
808  }
809
810  // Okay, it looks like we really DO need an add expr.  Check to see if we
811  // already have one, otherwise create a new one.
812  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
813  SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scAddExpr,
814                                                              SCEVOps)];
815  if (Result == 0) Result = new SCEVAddExpr(Ops);
816  return Result;
817}
818
819
820SCEVHandle SCEVMulExpr::get(std::vector<SCEVHandle> &Ops) {
821  assert(!Ops.empty() && "Cannot get empty mul!");
822
823  // Sort by complexity, this groups all similar expression types together.
824  GroupByComplexity(Ops);
825
826  // If there are any constants, fold them together.
827  unsigned Idx = 0;
828  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
829
830    // C1*(C2+V) -> C1*C2 + C1*V
831    if (Ops.size() == 2)
832      if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
833        if (Add->getNumOperands() == 2 &&
834            isa<SCEVConstant>(Add->getOperand(0)))
835          return SCEVAddExpr::get(SCEVMulExpr::get(LHSC, Add->getOperand(0)),
836                                  SCEVMulExpr::get(LHSC, Add->getOperand(1)));
837
838
839    ++Idx;
840    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
841      // We found two constants, fold them together!
842      Constant *Fold = ConstantExpr::getMul(LHSC->getValue(), RHSC->getValue());
843      if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
844        Ops[0] = SCEVConstant::get(CI);
845        Ops.erase(Ops.begin()+1);  // Erase the folded element
846        if (Ops.size() == 1) return Ops[0];
847        LHSC = cast<SCEVConstant>(Ops[0]);
848      } else {
849        // If we couldn't fold the expression, move to the next constant.  Note
850        // that this is impossible to happen in practice because we always
851        // constant fold constant ints to constant ints.
852        ++Idx;
853      }
854    }
855
856    // If we are left with a constant one being multiplied, strip it off.
857    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
858      Ops.erase(Ops.begin());
859      --Idx;
860    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isNullValue()) {
861      // If we have a multiply of zero, it will always be zero.
862      return Ops[0];
863    }
864  }
865
866  // Skip over the add expression until we get to a multiply.
867  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
868    ++Idx;
869
870  if (Ops.size() == 1)
871    return Ops[0];
872
873  // If there are mul operands inline them all into this expression.
874  if (Idx < Ops.size()) {
875    bool DeletedMul = false;
876    while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
877      // If we have an mul, expand the mul operands onto the end of the operands
878      // list.
879      Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
880      Ops.erase(Ops.begin()+Idx);
881      DeletedMul = true;
882    }
883
884    // If we deleted at least one mul, we added operands to the end of the list,
885    // and they are not necessarily sorted.  Recurse to resort and resimplify
886    // any operands we just aquired.
887    if (DeletedMul)
888      return get(Ops);
889  }
890
891  // If there are any add recurrences in the operands list, see if any other
892  // added values are loop invariant.  If so, we can fold them into the
893  // recurrence.
894  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
895    ++Idx;
896
897  // Scan over all recurrences, trying to fold loop invariants into them.
898  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
899    // Scan all of the other operands to this mul and add them to the vector if
900    // they are loop invariant w.r.t. the recurrence.
901    std::vector<SCEVHandle> LIOps;
902    SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
903    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
904      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
905        LIOps.push_back(Ops[i]);
906        Ops.erase(Ops.begin()+i);
907        --i; --e;
908      }
909
910    // If we found some loop invariants, fold them into the recurrence.
911    if (!LIOps.empty()) {
912      //  NLI * LI * { Start,+,Step}  -->  NLI * { LI*Start,+,LI*Step }
913      std::vector<SCEVHandle> NewOps;
914      NewOps.reserve(AddRec->getNumOperands());
915      if (LIOps.size() == 1) {
916        SCEV *Scale = LIOps[0];
917        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
918          NewOps.push_back(SCEVMulExpr::get(Scale, AddRec->getOperand(i)));
919      } else {
920        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
921          std::vector<SCEVHandle> MulOps(LIOps);
922          MulOps.push_back(AddRec->getOperand(i));
923          NewOps.push_back(SCEVMulExpr::get(MulOps));
924        }
925      }
926
927      SCEVHandle NewRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
928
929      // If all of the other operands were loop invariant, we are done.
930      if (Ops.size() == 1) return NewRec;
931
932      // Otherwise, multiply the folded AddRec by the non-liv parts.
933      for (unsigned i = 0;; ++i)
934        if (Ops[i] == AddRec) {
935          Ops[i] = NewRec;
936          break;
937        }
938      return SCEVMulExpr::get(Ops);
939    }
940
941    // Okay, if there weren't any loop invariants to be folded, check to see if
942    // there are multiple AddRec's with the same loop induction variable being
943    // multiplied together.  If so, we can fold them.
944    for (unsigned OtherIdx = Idx+1;
945         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
946      if (OtherIdx != Idx) {
947        SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
948        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
949          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
950          SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
951          SCEVHandle NewStart = SCEVMulExpr::get(F->getStart(),
952                                                 G->getStart());
953          SCEVHandle B = F->getStepRecurrence();
954          SCEVHandle D = G->getStepRecurrence();
955          SCEVHandle NewStep = SCEVAddExpr::get(SCEVMulExpr::get(F, D),
956                                                SCEVMulExpr::get(G, B),
957                                                SCEVMulExpr::get(B, D));
958          SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewStart, NewStep,
959                                                     F->getLoop());
960          if (Ops.size() == 2) return NewAddRec;
961
962          Ops.erase(Ops.begin()+Idx);
963          Ops.erase(Ops.begin()+OtherIdx-1);
964          Ops.push_back(NewAddRec);
965          return SCEVMulExpr::get(Ops);
966        }
967      }
968
969    // Otherwise couldn't fold anything into this recurrence.  Move onto the
970    // next one.
971  }
972
973  // Okay, it looks like we really DO need an mul expr.  Check to see if we
974  // already have one, otherwise create a new one.
975  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
976  SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scMulExpr,
977                                                              SCEVOps)];
978  if (Result == 0)
979    Result = new SCEVMulExpr(Ops);
980  return Result;
981}
982
983SCEVHandle SCEVUDivExpr::get(const SCEVHandle &LHS, const SCEVHandle &RHS) {
984  if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
985    if (RHSC->getValue()->equalsInt(1))
986      return LHS;                            // X /u 1 --> x
987    if (RHSC->getValue()->isAllOnesValue())
988      return SCEV::getNegativeSCEV(LHS);           // X /u -1  -->  -x
989
990    if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
991      Constant *LHSCV = LHSC->getValue();
992      Constant *RHSCV = RHSC->getValue();
993      if (LHSCV->getType()->isSigned())
994        LHSCV = ConstantExpr::getCast(LHSCV,
995                                      LHSCV->getType()->getUnsignedVersion());
996      if (RHSCV->getType()->isSigned())
997        RHSCV = ConstantExpr::getCast(RHSCV, LHSCV->getType());
998      return SCEVUnknown::get(ConstantExpr::getDiv(LHSCV, RHSCV));
999    }
1000  }
1001
1002  // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
1003
1004  SCEVUDivExpr *&Result = SCEVUDivs[std::make_pair(LHS, RHS)];
1005  if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
1006  return Result;
1007}
1008
1009
1010/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1011/// specified loop.  Simplify the expression as much as possible.
1012SCEVHandle SCEVAddRecExpr::get(const SCEVHandle &Start,
1013                               const SCEVHandle &Step, const Loop *L) {
1014  std::vector<SCEVHandle> Operands;
1015  Operands.push_back(Start);
1016  if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1017    if (StepChrec->getLoop() == L) {
1018      Operands.insert(Operands.end(), StepChrec->op_begin(),
1019                      StepChrec->op_end());
1020      return get(Operands, L);
1021    }
1022
1023  Operands.push_back(Step);
1024  return get(Operands, L);
1025}
1026
1027/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1028/// specified loop.  Simplify the expression as much as possible.
1029SCEVHandle SCEVAddRecExpr::get(std::vector<SCEVHandle> &Operands,
1030                               const Loop *L) {
1031  if (Operands.size() == 1) return Operands[0];
1032
1033  if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Operands.back()))
1034    if (StepC->getValue()->isNullValue()) {
1035      Operands.pop_back();
1036      return get(Operands, L);             // { X,+,0 }  -->  X
1037    }
1038
1039  SCEVAddRecExpr *&Result =
1040    SCEVAddRecExprs[std::make_pair(L, std::vector<SCEV*>(Operands.begin(),
1041                                                         Operands.end()))];
1042  if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1043  return Result;
1044}
1045
1046SCEVHandle SCEVUnknown::get(Value *V) {
1047  if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
1048    return SCEVConstant::get(CI);
1049  SCEVUnknown *&Result = SCEVUnknowns[V];
1050  if (Result == 0) Result = new SCEVUnknown(V);
1051  return Result;
1052}
1053
1054
1055//===----------------------------------------------------------------------===//
1056//             ScalarEvolutionsImpl Definition and Implementation
1057//===----------------------------------------------------------------------===//
1058//
1059/// ScalarEvolutionsImpl - This class implements the main driver for the scalar
1060/// evolution code.
1061///
1062namespace {
1063  struct ScalarEvolutionsImpl {
1064    /// F - The function we are analyzing.
1065    ///
1066    Function &F;
1067
1068    /// LI - The loop information for the function we are currently analyzing.
1069    ///
1070    LoopInfo &LI;
1071
1072    /// UnknownValue - This SCEV is used to represent unknown trip counts and
1073    /// things.
1074    SCEVHandle UnknownValue;
1075
1076    /// Scalars - This is a cache of the scalars we have analyzed so far.
1077    ///
1078    std::map<Value*, SCEVHandle> Scalars;
1079
1080    /// IterationCounts - Cache the iteration count of the loops for this
1081    /// function as they are computed.
1082    std::map<const Loop*, SCEVHandle> IterationCounts;
1083
1084    /// ConstantEvolutionLoopExitValue - This map contains entries for all of
1085    /// the PHI instructions that we attempt to compute constant evolutions for.
1086    /// This allows us to avoid potentially expensive recomputation of these
1087    /// properties.  An instruction maps to null if we are unable to compute its
1088    /// exit value.
1089    std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
1090
1091  public:
1092    ScalarEvolutionsImpl(Function &f, LoopInfo &li)
1093      : F(f), LI(li), UnknownValue(new SCEVCouldNotCompute()) {}
1094
1095    /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1096    /// expression and create a new one.
1097    SCEVHandle getSCEV(Value *V);
1098
1099    /// hasSCEV - Return true if the SCEV for this value has already been
1100    /// computed.
1101    bool hasSCEV(Value *V) const {
1102      return Scalars.count(V);
1103    }
1104
1105    /// setSCEV - Insert the specified SCEV into the map of current SCEVs for
1106    /// the specified value.
1107    void setSCEV(Value *V, const SCEVHandle &H) {
1108      bool isNew = Scalars.insert(std::make_pair(V, H)).second;
1109      assert(isNew && "This entry already existed!");
1110    }
1111
1112
1113    /// getSCEVAtScope - Compute the value of the specified expression within
1114    /// the indicated loop (which may be null to indicate in no loop).  If the
1115    /// expression cannot be evaluated, return UnknownValue itself.
1116    SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L);
1117
1118
1119    /// hasLoopInvariantIterationCount - Return true if the specified loop has
1120    /// an analyzable loop-invariant iteration count.
1121    bool hasLoopInvariantIterationCount(const Loop *L);
1122
1123    /// getIterationCount - If the specified loop has a predictable iteration
1124    /// count, return it.  Note that it is not valid to call this method on a
1125    /// loop without a loop-invariant iteration count.
1126    SCEVHandle getIterationCount(const Loop *L);
1127
1128    /// deleteInstructionFromRecords - This method should be called by the
1129    /// client before it removes an instruction from the program, to make sure
1130    /// that no dangling references are left around.
1131    void deleteInstructionFromRecords(Instruction *I);
1132
1133  private:
1134    /// createSCEV - We know that there is no SCEV for the specified value.
1135    /// Analyze the expression.
1136    SCEVHandle createSCEV(Value *V);
1137    SCEVHandle createNodeForCast(CastInst *CI);
1138
1139    /// createNodeForPHI - Provide the special handling we need to analyze PHI
1140    /// SCEVs.
1141    SCEVHandle createNodeForPHI(PHINode *PN);
1142
1143    /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value
1144    /// for the specified instruction and replaces any references to the
1145    /// symbolic value SymName with the specified value.  This is used during
1146    /// PHI resolution.
1147    void ReplaceSymbolicValueWithConcrete(Instruction *I,
1148                                          const SCEVHandle &SymName,
1149                                          const SCEVHandle &NewVal);
1150
1151    /// ComputeIterationCount - Compute the number of times the specified loop
1152    /// will iterate.
1153    SCEVHandle ComputeIterationCount(const Loop *L);
1154
1155    /// ComputeLoadConstantCompareIterationCount - Given an exit condition of
1156    /// 'setcc load X, cst', try to se if we can compute the trip count.
1157    SCEVHandle ComputeLoadConstantCompareIterationCount(LoadInst *LI,
1158                                                        Constant *RHS,
1159                                                        const Loop *L,
1160                                                        unsigned SetCCOpcode);
1161
1162    /// ComputeIterationCountExhaustively - If the trip is known to execute a
1163    /// constant number of times (the condition evolves only from constants),
1164    /// try to evaluate a few iterations of the loop until we get the exit
1165    /// condition gets a value of ExitWhen (true or false).  If we cannot
1166    /// evaluate the trip count of the loop, return UnknownValue.
1167    SCEVHandle ComputeIterationCountExhaustively(const Loop *L, Value *Cond,
1168                                                 bool ExitWhen);
1169
1170    /// HowFarToZero - Return the number of times a backedge comparing the
1171    /// specified value to zero will execute.  If not computable, return
1172    /// UnknownValue.
1173    SCEVHandle HowFarToZero(SCEV *V, const Loop *L);
1174
1175    /// HowFarToNonZero - Return the number of times a backedge checking the
1176    /// specified value for nonzero will execute.  If not computable, return
1177    /// UnknownValue.
1178    SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L);
1179
1180    /// HowManyLessThans - Return the number of times a backedge containing the
1181    /// specified less-than comparison will execute.  If not computable, return
1182    /// UnknownValue.
1183    SCEVHandle HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L);
1184
1185    /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1186    /// in the header of its containing loop, we know the loop executes a
1187    /// constant number of times, and the PHI node is just a recurrence
1188    /// involving constants, fold it.
1189    Constant *getConstantEvolutionLoopExitValue(PHINode *PN, uint64_t Its,
1190                                                const Loop *L);
1191  };
1192}
1193
1194//===----------------------------------------------------------------------===//
1195//            Basic SCEV Analysis and PHI Idiom Recognition Code
1196//
1197
1198/// deleteInstructionFromRecords - This method should be called by the
1199/// client before it removes an instruction from the program, to make sure
1200/// that no dangling references are left around.
1201void ScalarEvolutionsImpl::deleteInstructionFromRecords(Instruction *I) {
1202  Scalars.erase(I);
1203  if (PHINode *PN = dyn_cast<PHINode>(I))
1204    ConstantEvolutionLoopExitValue.erase(PN);
1205}
1206
1207
1208/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1209/// expression and create a new one.
1210SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) {
1211  assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!");
1212
1213  std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V);
1214  if (I != Scalars.end()) return I->second;
1215  SCEVHandle S = createSCEV(V);
1216  Scalars.insert(std::make_pair(V, S));
1217  return S;
1218}
1219
1220/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1221/// the specified instruction and replaces any references to the symbolic value
1222/// SymName with the specified value.  This is used during PHI resolution.
1223void ScalarEvolutionsImpl::
1224ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1225                                 const SCEVHandle &NewVal) {
1226  std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I);
1227  if (SI == Scalars.end()) return;
1228
1229  SCEVHandle NV =
1230    SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal);
1231  if (NV == SI->second) return;  // No change.
1232
1233  SI->second = NV;       // Update the scalars map!
1234
1235  // Any instruction values that use this instruction might also need to be
1236  // updated!
1237  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1238       UI != E; ++UI)
1239    ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1240}
1241
1242/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
1243/// a loop header, making it a potential recurrence, or it doesn't.
1244///
1245SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) {
1246  if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
1247    if (const Loop *L = LI.getLoopFor(PN->getParent()))
1248      if (L->getHeader() == PN->getParent()) {
1249        // If it lives in the loop header, it has two incoming values, one
1250        // from outside the loop, and one from inside.
1251        unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1252        unsigned BackEdge     = IncomingEdge^1;
1253
1254        // While we are analyzing this PHI node, handle its value symbolically.
1255        SCEVHandle SymbolicName = SCEVUnknown::get(PN);
1256        assert(Scalars.find(PN) == Scalars.end() &&
1257               "PHI node already processed?");
1258        Scalars.insert(std::make_pair(PN, SymbolicName));
1259
1260        // Using this symbolic name for the PHI, analyze the value coming around
1261        // the back-edge.
1262        SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1263
1264        // NOTE: If BEValue is loop invariant, we know that the PHI node just
1265        // has a special value for the first iteration of the loop.
1266
1267        // If the value coming around the backedge is an add with the symbolic
1268        // value we just inserted, then we found a simple induction variable!
1269        if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
1270          // If there is a single occurrence of the symbolic value, replace it
1271          // with a recurrence.
1272          unsigned FoundIndex = Add->getNumOperands();
1273          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1274            if (Add->getOperand(i) == SymbolicName)
1275              if (FoundIndex == e) {
1276                FoundIndex = i;
1277                break;
1278              }
1279
1280          if (FoundIndex != Add->getNumOperands()) {
1281            // Create an add with everything but the specified operand.
1282            std::vector<SCEVHandle> Ops;
1283            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1284              if (i != FoundIndex)
1285                Ops.push_back(Add->getOperand(i));
1286            SCEVHandle Accum = SCEVAddExpr::get(Ops);
1287
1288            // This is not a valid addrec if the step amount is varying each
1289            // loop iteration, but is not itself an addrec in this loop.
1290            if (Accum->isLoopInvariant(L) ||
1291                (isa<SCEVAddRecExpr>(Accum) &&
1292                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1293              SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1294              SCEVHandle PHISCEV  = SCEVAddRecExpr::get(StartVal, Accum, L);
1295
1296              // Okay, for the entire analysis of this edge we assumed the PHI
1297              // to be symbolic.  We now need to go back and update all of the
1298              // entries for the scalars that use the PHI (except for the PHI
1299              // itself) to use the new analyzed value instead of the "symbolic"
1300              // value.
1301              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1302              return PHISCEV;
1303            }
1304          }
1305        }
1306
1307        return SymbolicName;
1308      }
1309
1310  // If it's not a loop phi, we can't handle it yet.
1311  return SCEVUnknown::get(PN);
1312}
1313
1314/// createNodeForCast - Handle the various forms of casts that we support.
1315///
1316SCEVHandle ScalarEvolutionsImpl::createNodeForCast(CastInst *CI) {
1317  const Type *SrcTy = CI->getOperand(0)->getType();
1318  const Type *DestTy = CI->getType();
1319
1320  // If this is a noop cast (ie, conversion from int to uint), ignore it.
1321  if (SrcTy->isLosslesslyConvertibleTo(DestTy))
1322    return getSCEV(CI->getOperand(0));
1323
1324  if (SrcTy->isInteger() && DestTy->isInteger()) {
1325    // Otherwise, if this is a truncating integer cast, we can represent this
1326    // cast.
1327    if (SrcTy->getPrimitiveSize() > DestTy->getPrimitiveSize())
1328      return SCEVTruncateExpr::get(getSCEV(CI->getOperand(0)),
1329                                   CI->getType()->getUnsignedVersion());
1330    if (SrcTy->isUnsigned() &&
1331        SrcTy->getPrimitiveSize() > DestTy->getPrimitiveSize())
1332      return SCEVZeroExtendExpr::get(getSCEV(CI->getOperand(0)),
1333                                     CI->getType()->getUnsignedVersion());
1334  }
1335
1336  // If this is an sign or zero extending cast and we can prove that the value
1337  // will never overflow, we could do similar transformations.
1338
1339  // Otherwise, we can't handle this cast!
1340  return SCEVUnknown::get(CI);
1341}
1342
1343
1344/// createSCEV - We know that there is no SCEV for the specified value.
1345/// Analyze the expression.
1346///
1347SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) {
1348  if (Instruction *I = dyn_cast<Instruction>(V)) {
1349    switch (I->getOpcode()) {
1350    case Instruction::Add:
1351      return SCEVAddExpr::get(getSCEV(I->getOperand(0)),
1352                              getSCEV(I->getOperand(1)));
1353    case Instruction::Mul:
1354      return SCEVMulExpr::get(getSCEV(I->getOperand(0)),
1355                              getSCEV(I->getOperand(1)));
1356    case Instruction::Div:
1357      if (V->getType()->isInteger() && V->getType()->isUnsigned())
1358        return SCEVUDivExpr::get(getSCEV(I->getOperand(0)),
1359                                 getSCEV(I->getOperand(1)));
1360      break;
1361
1362    case Instruction::Sub:
1363      return SCEV::getMinusSCEV(getSCEV(I->getOperand(0)),
1364                                getSCEV(I->getOperand(1)));
1365
1366    case Instruction::Shl:
1367      // Turn shift left of a constant amount into a multiply.
1368      if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1369        Constant *X = ConstantInt::get(V->getType(), 1);
1370        X = ConstantExpr::getShl(X, SA);
1371        return SCEVMulExpr::get(getSCEV(I->getOperand(0)), getSCEV(X));
1372      }
1373      break;
1374
1375    case Instruction::Shr:
1376      if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1)))
1377        if (V->getType()->isUnsigned()) {
1378          Constant *X = ConstantInt::get(V->getType(), 1);
1379          X = ConstantExpr::getShl(X, SA);
1380          return SCEVUDivExpr::get(getSCEV(I->getOperand(0)), getSCEV(X));
1381        }
1382      break;
1383
1384    case Instruction::Cast:
1385      return createNodeForCast(cast<CastInst>(I));
1386
1387    case Instruction::PHI:
1388      return createNodeForPHI(cast<PHINode>(I));
1389
1390    default: // We cannot analyze this expression.
1391      break;
1392    }
1393  }
1394
1395  return SCEVUnknown::get(V);
1396}
1397
1398
1399
1400//===----------------------------------------------------------------------===//
1401//                   Iteration Count Computation Code
1402//
1403
1404/// getIterationCount - If the specified loop has a predictable iteration
1405/// count, return it.  Note that it is not valid to call this method on a
1406/// loop without a loop-invariant iteration count.
1407SCEVHandle ScalarEvolutionsImpl::getIterationCount(const Loop *L) {
1408  std::map<const Loop*, SCEVHandle>::iterator I = IterationCounts.find(L);
1409  if (I == IterationCounts.end()) {
1410    SCEVHandle ItCount = ComputeIterationCount(L);
1411    I = IterationCounts.insert(std::make_pair(L, ItCount)).first;
1412    if (ItCount != UnknownValue) {
1413      assert(ItCount->isLoopInvariant(L) &&
1414             "Computed trip count isn't loop invariant for loop!");
1415      ++NumTripCountsComputed;
1416    } else if (isa<PHINode>(L->getHeader()->begin())) {
1417      // Only count loops that have phi nodes as not being computable.
1418      ++NumTripCountsNotComputed;
1419    }
1420  }
1421  return I->second;
1422}
1423
1424/// ComputeIterationCount - Compute the number of times the specified loop
1425/// will iterate.
1426SCEVHandle ScalarEvolutionsImpl::ComputeIterationCount(const Loop *L) {
1427  // If the loop has a non-one exit block count, we can't analyze it.
1428  std::vector<BasicBlock*> ExitBlocks;
1429  L->getExitBlocks(ExitBlocks);
1430  if (ExitBlocks.size() != 1) return UnknownValue;
1431
1432  // Okay, there is one exit block.  Try to find the condition that causes the
1433  // loop to be exited.
1434  BasicBlock *ExitBlock = ExitBlocks[0];
1435
1436  BasicBlock *ExitingBlock = 0;
1437  for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
1438       PI != E; ++PI)
1439    if (L->contains(*PI)) {
1440      if (ExitingBlock == 0)
1441        ExitingBlock = *PI;
1442      else
1443        return UnknownValue;   // More than one block exiting!
1444    }
1445  assert(ExitingBlock && "No exits from loop, something is broken!");
1446
1447  // Okay, we've computed the exiting block.  See what condition causes us to
1448  // exit.
1449  //
1450  // FIXME: we should be able to handle switch instructions (with a single exit)
1451  // FIXME: We should handle cast of int to bool as well
1452  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1453  if (ExitBr == 0) return UnknownValue;
1454  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
1455  SetCondInst *ExitCond = dyn_cast<SetCondInst>(ExitBr->getCondition());
1456  if (ExitCond == 0)  // Not a setcc
1457    return ComputeIterationCountExhaustively(L, ExitBr->getCondition(),
1458                                          ExitBr->getSuccessor(0) == ExitBlock);
1459
1460  // If the condition was exit on true, convert the condition to exit on false.
1461  Instruction::BinaryOps Cond;
1462  if (ExitBr->getSuccessor(1) == ExitBlock)
1463    Cond = ExitCond->getOpcode();
1464  else
1465    Cond = ExitCond->getInverseCondition();
1466
1467  // Handle common loops like: for (X = "string"; *X; ++X)
1468  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
1469    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
1470      SCEVHandle ItCnt =
1471        ComputeLoadConstantCompareIterationCount(LI, RHS, L, Cond);
1472      if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
1473    }
1474
1475  SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
1476  SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
1477
1478  // Try to evaluate any dependencies out of the loop.
1479  SCEVHandle Tmp = getSCEVAtScope(LHS, L);
1480  if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
1481  Tmp = getSCEVAtScope(RHS, L);
1482  if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
1483
1484  // At this point, we would like to compute how many iterations of the loop the
1485  // predicate will return true for these inputs.
1486  if (isa<SCEVConstant>(LHS) && !isa<SCEVConstant>(RHS)) {
1487    // If there is a constant, force it into the RHS.
1488    std::swap(LHS, RHS);
1489    Cond = SetCondInst::getSwappedCondition(Cond);
1490  }
1491
1492  // FIXME: think about handling pointer comparisons!  i.e.:
1493  // while (P != P+100) ++P;
1494
1495  // If we have a comparison of a chrec against a constant, try to use value
1496  // ranges to answer this query.
1497  if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
1498    if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
1499      if (AddRec->getLoop() == L) {
1500        // Form the comparison range using the constant of the correct type so
1501        // that the ConstantRange class knows to do a signed or unsigned
1502        // comparison.
1503        ConstantInt *CompVal = RHSC->getValue();
1504        const Type *RealTy = ExitCond->getOperand(0)->getType();
1505        CompVal = dyn_cast<ConstantInt>(ConstantExpr::getCast(CompVal, RealTy));
1506        if (CompVal) {
1507          // Form the constant range.
1508          ConstantRange CompRange(Cond, CompVal);
1509
1510          // Now that we have it, if it's signed, convert it to an unsigned
1511          // range.
1512          if (CompRange.getLower()->getType()->isSigned()) {
1513            const Type *NewTy = RHSC->getValue()->getType();
1514            Constant *NewL = ConstantExpr::getCast(CompRange.getLower(), NewTy);
1515            Constant *NewU = ConstantExpr::getCast(CompRange.getUpper(), NewTy);
1516            CompRange = ConstantRange(NewL, NewU);
1517          }
1518
1519          SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange);
1520          if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
1521        }
1522      }
1523
1524  switch (Cond) {
1525  case Instruction::SetNE:                     // while (X != Y)
1526    // Convert to: while (X-Y != 0)
1527    if (LHS->getType()->isInteger()) {
1528      SCEVHandle TC = HowFarToZero(SCEV::getMinusSCEV(LHS, RHS), L);
1529      if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1530    }
1531    break;
1532  case Instruction::SetEQ:
1533    // Convert to: while (X-Y == 0)           // while (X == Y)
1534    if (LHS->getType()->isInteger()) {
1535      SCEVHandle TC = HowFarToNonZero(SCEV::getMinusSCEV(LHS, RHS), L);
1536      if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1537    }
1538    break;
1539  case Instruction::SetLT:
1540    if (LHS->getType()->isInteger() &&
1541        ExitCond->getOperand(0)->getType()->isSigned()) {
1542      SCEVHandle TC = HowManyLessThans(LHS, RHS, L);
1543      if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1544    }
1545    break;
1546  case Instruction::SetGT:
1547    if (LHS->getType()->isInteger() &&
1548        ExitCond->getOperand(0)->getType()->isSigned()) {
1549      SCEVHandle TC = HowManyLessThans(RHS, LHS, L);
1550      if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1551    }
1552    break;
1553  default:
1554#if 0
1555    std::cerr << "ComputeIterationCount ";
1556    if (ExitCond->getOperand(0)->getType()->isUnsigned())
1557      std::cerr << "[unsigned] ";
1558    std::cerr << *LHS << "   "
1559              << Instruction::getOpcodeName(Cond) << "   " << *RHS << "\n";
1560#endif
1561    break;
1562  }
1563
1564  return ComputeIterationCountExhaustively(L, ExitCond,
1565                                         ExitBr->getSuccessor(0) == ExitBlock);
1566}
1567
1568static ConstantInt *
1569EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, Constant *C) {
1570  SCEVHandle InVal = SCEVConstant::get(cast<ConstantInt>(C));
1571  SCEVHandle Val = AddRec->evaluateAtIteration(InVal);
1572  assert(isa<SCEVConstant>(Val) &&
1573         "Evaluation of SCEV at constant didn't fold correctly?");
1574  return cast<SCEVConstant>(Val)->getValue();
1575}
1576
1577/// GetAddressedElementFromGlobal - Given a global variable with an initializer
1578/// and a GEP expression (missing the pointer index) indexing into it, return
1579/// the addressed element of the initializer or null if the index expression is
1580/// invalid.
1581static Constant *
1582GetAddressedElementFromGlobal(GlobalVariable *GV,
1583                              const std::vector<ConstantInt*> &Indices) {
1584  Constant *Init = GV->getInitializer();
1585  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1586    uint64_t Idx = Indices[i]->getRawValue();
1587    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
1588      assert(Idx < CS->getNumOperands() && "Bad struct index!");
1589      Init = cast<Constant>(CS->getOperand(Idx));
1590    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
1591      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
1592      Init = cast<Constant>(CA->getOperand(Idx));
1593    } else if (isa<ConstantAggregateZero>(Init)) {
1594      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
1595        assert(Idx < STy->getNumElements() && "Bad struct index!");
1596        Init = Constant::getNullValue(STy->getElementType(Idx));
1597      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
1598        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
1599        Init = Constant::getNullValue(ATy->getElementType());
1600      } else {
1601        assert(0 && "Unknown constant aggregate type!");
1602      }
1603      return 0;
1604    } else {
1605      return 0; // Unknown initializer type
1606    }
1607  }
1608  return Init;
1609}
1610
1611/// ComputeLoadConstantCompareIterationCount - Given an exit condition of
1612/// 'setcc load X, cst', try to se if we can compute the trip count.
1613SCEVHandle ScalarEvolutionsImpl::
1614ComputeLoadConstantCompareIterationCount(LoadInst *LI, Constant *RHS,
1615                                         const Loop *L, unsigned SetCCOpcode) {
1616  if (LI->isVolatile()) return UnknownValue;
1617
1618  // Check to see if the loaded pointer is a getelementptr of a global.
1619  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
1620  if (!GEP) return UnknownValue;
1621
1622  // Make sure that it is really a constant global we are gepping, with an
1623  // initializer, and make sure the first IDX is really 0.
1624  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
1625  if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
1626      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
1627      !cast<Constant>(GEP->getOperand(1))->isNullValue())
1628    return UnknownValue;
1629
1630  // Okay, we allow one non-constant index into the GEP instruction.
1631  Value *VarIdx = 0;
1632  std::vector<ConstantInt*> Indexes;
1633  unsigned VarIdxNum = 0;
1634  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
1635    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
1636      Indexes.push_back(CI);
1637    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
1638      if (VarIdx) return UnknownValue;  // Multiple non-constant idx's.
1639      VarIdx = GEP->getOperand(i);
1640      VarIdxNum = i-2;
1641      Indexes.push_back(0);
1642    }
1643
1644  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
1645  // Check to see if X is a loop variant variable value now.
1646  SCEVHandle Idx = getSCEV(VarIdx);
1647  SCEVHandle Tmp = getSCEVAtScope(Idx, L);
1648  if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
1649
1650  // We can only recognize very limited forms of loop index expressions, in
1651  // particular, only affine AddRec's like {C1,+,C2}.
1652  SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
1653  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
1654      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
1655      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
1656    return UnknownValue;
1657
1658  unsigned MaxSteps = MaxBruteForceIterations;
1659  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
1660    ConstantUInt *ItCst =
1661      ConstantUInt::get(IdxExpr->getType()->getUnsignedVersion(), IterationNum);
1662    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst);
1663
1664    // Form the GEP offset.
1665    Indexes[VarIdxNum] = Val;
1666
1667    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
1668    if (Result == 0) break;  // Cannot compute!
1669
1670    // Evaluate the condition for this iteration.
1671    Result = ConstantExpr::get(SetCCOpcode, Result, RHS);
1672    if (!isa<ConstantBool>(Result)) break;  // Couldn't decide for sure
1673    if (Result == ConstantBool::False) {
1674#if 0
1675      std::cerr << "\n***\n*** Computed loop count " << *ItCst
1676                << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
1677                << "***\n";
1678#endif
1679      ++NumArrayLenItCounts;
1680      return SCEVConstant::get(ItCst);   // Found terminating iteration!
1681    }
1682  }
1683  return UnknownValue;
1684}
1685
1686
1687/// CanConstantFold - Return true if we can constant fold an instruction of the
1688/// specified type, assuming that all operands were constants.
1689static bool CanConstantFold(const Instruction *I) {
1690  if (isa<BinaryOperator>(I) || isa<ShiftInst>(I) ||
1691      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
1692    return true;
1693
1694  if (const CallInst *CI = dyn_cast<CallInst>(I))
1695    if (const Function *F = CI->getCalledFunction())
1696      return canConstantFoldCallTo((Function*)F);  // FIXME: elim cast
1697  return false;
1698}
1699
1700/// ConstantFold - Constant fold an instruction of the specified type with the
1701/// specified constant operands.  This function may modify the operands vector.
1702static Constant *ConstantFold(const Instruction *I,
1703                              std::vector<Constant*> &Operands) {
1704  if (isa<BinaryOperator>(I) || isa<ShiftInst>(I))
1705    return ConstantExpr::get(I->getOpcode(), Operands[0], Operands[1]);
1706
1707  switch (I->getOpcode()) {
1708  case Instruction::Cast:
1709    return ConstantExpr::getCast(Operands[0], I->getType());
1710  case Instruction::Select:
1711    return ConstantExpr::getSelect(Operands[0], Operands[1], Operands[2]);
1712  case Instruction::Call:
1713    if (Function *GV = dyn_cast<Function>(Operands[0])) {
1714      Operands.erase(Operands.begin());
1715      return ConstantFoldCall(cast<Function>(GV), Operands);
1716    }
1717
1718    return 0;
1719  case Instruction::GetElementPtr:
1720    Constant *Base = Operands[0];
1721    Operands.erase(Operands.begin());
1722    return ConstantExpr::getGetElementPtr(Base, Operands);
1723  }
1724  return 0;
1725}
1726
1727
1728/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
1729/// in the loop that V is derived from.  We allow arbitrary operations along the
1730/// way, but the operands of an operation must either be constants or a value
1731/// derived from a constant PHI.  If this expression does not fit with these
1732/// constraints, return null.
1733static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
1734  // If this is not an instruction, or if this is an instruction outside of the
1735  // loop, it can't be derived from a loop PHI.
1736  Instruction *I = dyn_cast<Instruction>(V);
1737  if (I == 0 || !L->contains(I->getParent())) return 0;
1738
1739  if (PHINode *PN = dyn_cast<PHINode>(I))
1740    if (L->getHeader() == I->getParent())
1741      return PN;
1742    else
1743      // We don't currently keep track of the control flow needed to evaluate
1744      // PHIs, so we cannot handle PHIs inside of loops.
1745      return 0;
1746
1747  // If we won't be able to constant fold this expression even if the operands
1748  // are constants, return early.
1749  if (!CanConstantFold(I)) return 0;
1750
1751  // Otherwise, we can evaluate this instruction if all of its operands are
1752  // constant or derived from a PHI node themselves.
1753  PHINode *PHI = 0;
1754  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
1755    if (!(isa<Constant>(I->getOperand(Op)) ||
1756          isa<GlobalValue>(I->getOperand(Op)))) {
1757      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
1758      if (P == 0) return 0;  // Not evolving from PHI
1759      if (PHI == 0)
1760        PHI = P;
1761      else if (PHI != P)
1762        return 0;  // Evolving from multiple different PHIs.
1763    }
1764
1765  // This is a expression evolving from a constant PHI!
1766  return PHI;
1767}
1768
1769/// EvaluateExpression - Given an expression that passes the
1770/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
1771/// in the loop has the value PHIVal.  If we can't fold this expression for some
1772/// reason, return null.
1773static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
1774  if (isa<PHINode>(V)) return PHIVal;
1775  if (GlobalValue *GV = dyn_cast<GlobalValue>(V))
1776    return GV;
1777  if (Constant *C = dyn_cast<Constant>(V)) return C;
1778  Instruction *I = cast<Instruction>(V);
1779
1780  std::vector<Constant*> Operands;
1781  Operands.resize(I->getNumOperands());
1782
1783  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
1784    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
1785    if (Operands[i] == 0) return 0;
1786  }
1787
1788  return ConstantFold(I, Operands);
1789}
1790
1791/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1792/// in the header of its containing loop, we know the loop executes a
1793/// constant number of times, and the PHI node is just a recurrence
1794/// involving constants, fold it.
1795Constant *ScalarEvolutionsImpl::
1796getConstantEvolutionLoopExitValue(PHINode *PN, uint64_t Its, const Loop *L) {
1797  std::map<PHINode*, Constant*>::iterator I =
1798    ConstantEvolutionLoopExitValue.find(PN);
1799  if (I != ConstantEvolutionLoopExitValue.end())
1800    return I->second;
1801
1802  if (Its > MaxBruteForceIterations)
1803    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
1804
1805  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
1806
1807  // Since the loop is canonicalized, the PHI node must have two entries.  One
1808  // entry must be a constant (coming in from outside of the loop), and the
1809  // second must be derived from the same PHI.
1810  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
1811  Constant *StartCST =
1812    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
1813  if (StartCST == 0)
1814    return RetVal = 0;  // Must be a constant.
1815
1816  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
1817  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
1818  if (PN2 != PN)
1819    return RetVal = 0;  // Not derived from same PHI.
1820
1821  // Execute the loop symbolically to determine the exit value.
1822  unsigned IterationNum = 0;
1823  unsigned NumIterations = Its;
1824  if (NumIterations != Its)
1825    return RetVal = 0;  // More than 2^32 iterations??
1826
1827  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
1828    if (IterationNum == NumIterations)
1829      return RetVal = PHIVal;  // Got exit value!
1830
1831    // Compute the value of the PHI node for the next iteration.
1832    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
1833    if (NextPHI == PHIVal)
1834      return RetVal = NextPHI;  // Stopped evolving!
1835    if (NextPHI == 0)
1836      return 0;        // Couldn't evaluate!
1837    PHIVal = NextPHI;
1838  }
1839}
1840
1841/// ComputeIterationCountExhaustively - If the trip is known to execute a
1842/// constant number of times (the condition evolves only from constants),
1843/// try to evaluate a few iterations of the loop until we get the exit
1844/// condition gets a value of ExitWhen (true or false).  If we cannot
1845/// evaluate the trip count of the loop, return UnknownValue.
1846SCEVHandle ScalarEvolutionsImpl::
1847ComputeIterationCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
1848  PHINode *PN = getConstantEvolvingPHI(Cond, L);
1849  if (PN == 0) return UnknownValue;
1850
1851  // Since the loop is canonicalized, the PHI node must have two entries.  One
1852  // entry must be a constant (coming in from outside of the loop), and the
1853  // second must be derived from the same PHI.
1854  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
1855  Constant *StartCST =
1856    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
1857  if (StartCST == 0) return UnknownValue;  // Must be a constant.
1858
1859  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
1860  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
1861  if (PN2 != PN) return UnknownValue;  // Not derived from same PHI.
1862
1863  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
1864  // the loop symbolically to determine when the condition gets a value of
1865  // "ExitWhen".
1866  unsigned IterationNum = 0;
1867  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
1868  for (Constant *PHIVal = StartCST;
1869       IterationNum != MaxIterations; ++IterationNum) {
1870    ConstantBool *CondVal =
1871      dyn_cast_or_null<ConstantBool>(EvaluateExpression(Cond, PHIVal));
1872    if (!CondVal) return UnknownValue;     // Couldn't symbolically evaluate.
1873
1874    if (CondVal->getValue() == ExitWhen) {
1875      ConstantEvolutionLoopExitValue[PN] = PHIVal;
1876      ++NumBruteForceTripCountsComputed;
1877      return SCEVConstant::get(ConstantUInt::get(Type::UIntTy, IterationNum));
1878    }
1879
1880    // Compute the value of the PHI node for the next iteration.
1881    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
1882    if (NextPHI == 0 || NextPHI == PHIVal)
1883      return UnknownValue;  // Couldn't evaluate or not making progress...
1884    PHIVal = NextPHI;
1885  }
1886
1887  // Too many iterations were needed to evaluate.
1888  return UnknownValue;
1889}
1890
1891/// getSCEVAtScope - Compute the value of the specified expression within the
1892/// indicated loop (which may be null to indicate in no loop).  If the
1893/// expression cannot be evaluated, return UnknownValue.
1894SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) {
1895  // FIXME: this should be turned into a virtual method on SCEV!
1896
1897  if (isa<SCEVConstant>(V)) return V;
1898
1899  // If this instruction is evolves from a constant-evolving PHI, compute the
1900  // exit value from the loop without using SCEVs.
1901  if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
1902    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
1903      const Loop *LI = this->LI[I->getParent()];
1904      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
1905        if (PHINode *PN = dyn_cast<PHINode>(I))
1906          if (PN->getParent() == LI->getHeader()) {
1907            // Okay, there is no closed form solution for the PHI node.  Check
1908            // to see if the loop that contains it has a known iteration count.
1909            // If so, we may be able to force computation of the exit value.
1910            SCEVHandle IterationCount = getIterationCount(LI);
1911            if (SCEVConstant *ICC = dyn_cast<SCEVConstant>(IterationCount)) {
1912              // Okay, we know how many times the containing loop executes.  If
1913              // this is a constant evolving PHI node, get the final value at
1914              // the specified iteration number.
1915              Constant *RV = getConstantEvolutionLoopExitValue(PN,
1916                                               ICC->getValue()->getRawValue(),
1917                                                               LI);
1918              if (RV) return SCEVUnknown::get(RV);
1919            }
1920          }
1921
1922      // Okay, this is a some expression that we cannot symbolically evaluate
1923      // into a SCEV.  Check to see if it's possible to symbolically evaluate
1924      // the arguments into constants, and if see, try to constant propagate the
1925      // result.  This is particularly useful for computing loop exit values.
1926      if (CanConstantFold(I)) {
1927        std::vector<Constant*> Operands;
1928        Operands.reserve(I->getNumOperands());
1929        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
1930          Value *Op = I->getOperand(i);
1931          if (Constant *C = dyn_cast<Constant>(Op)) {
1932            Operands.push_back(C);
1933          } else {
1934            SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
1935            if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
1936              Operands.push_back(ConstantExpr::getCast(SC->getValue(),
1937                                                       Op->getType()));
1938            else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
1939              if (Constant *C = dyn_cast<Constant>(SU->getValue()))
1940                Operands.push_back(ConstantExpr::getCast(C, Op->getType()));
1941              else
1942                return V;
1943            } else {
1944              return V;
1945            }
1946          }
1947        }
1948        return SCEVUnknown::get(ConstantFold(I, Operands));
1949      }
1950    }
1951
1952    // This is some other type of SCEVUnknown, just return it.
1953    return V;
1954  }
1955
1956  if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
1957    // Avoid performing the look-up in the common case where the specified
1958    // expression has no loop-variant portions.
1959    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
1960      SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
1961      if (OpAtScope != Comm->getOperand(i)) {
1962        if (OpAtScope == UnknownValue) return UnknownValue;
1963        // Okay, at least one of these operands is loop variant but might be
1964        // foldable.  Build a new instance of the folded commutative expression.
1965        std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
1966        NewOps.push_back(OpAtScope);
1967
1968        for (++i; i != e; ++i) {
1969          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
1970          if (OpAtScope == UnknownValue) return UnknownValue;
1971          NewOps.push_back(OpAtScope);
1972        }
1973        if (isa<SCEVAddExpr>(Comm))
1974          return SCEVAddExpr::get(NewOps);
1975        assert(isa<SCEVMulExpr>(Comm) && "Only know about add and mul!");
1976        return SCEVMulExpr::get(NewOps);
1977      }
1978    }
1979    // If we got here, all operands are loop invariant.
1980    return Comm;
1981  }
1982
1983  if (SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(V)) {
1984    SCEVHandle LHS = getSCEVAtScope(UDiv->getLHS(), L);
1985    if (LHS == UnknownValue) return LHS;
1986    SCEVHandle RHS = getSCEVAtScope(UDiv->getRHS(), L);
1987    if (RHS == UnknownValue) return RHS;
1988    if (LHS == UDiv->getLHS() && RHS == UDiv->getRHS())
1989      return UDiv;   // must be loop invariant
1990    return SCEVUDivExpr::get(LHS, RHS);
1991  }
1992
1993  // If this is a loop recurrence for a loop that does not contain L, then we
1994  // are dealing with the final value computed by the loop.
1995  if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
1996    if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
1997      // To evaluate this recurrence, we need to know how many times the AddRec
1998      // loop iterates.  Compute this now.
1999      SCEVHandle IterationCount = getIterationCount(AddRec->getLoop());
2000      if (IterationCount == UnknownValue) return UnknownValue;
2001      IterationCount = getTruncateOrZeroExtend(IterationCount,
2002                                               AddRec->getType());
2003
2004      // If the value is affine, simplify the expression evaluation to just
2005      // Start + Step*IterationCount.
2006      if (AddRec->isAffine())
2007        return SCEVAddExpr::get(AddRec->getStart(),
2008                                SCEVMulExpr::get(IterationCount,
2009                                                 AddRec->getOperand(1)));
2010
2011      // Otherwise, evaluate it the hard way.
2012      return AddRec->evaluateAtIteration(IterationCount);
2013    }
2014    return UnknownValue;
2015  }
2016
2017  //assert(0 && "Unknown SCEV type!");
2018  return UnknownValue;
2019}
2020
2021
2022/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
2023/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
2024/// might be the same) or two SCEVCouldNotCompute objects.
2025///
2026static std::pair<SCEVHandle,SCEVHandle>
2027SolveQuadraticEquation(const SCEVAddRecExpr *AddRec) {
2028  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
2029  SCEVConstant *L = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
2030  SCEVConstant *M = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
2031  SCEVConstant *N = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
2032
2033  // We currently can only solve this if the coefficients are constants.
2034  if (!L || !M || !N) {
2035    SCEV *CNC = new SCEVCouldNotCompute();
2036    return std::make_pair(CNC, CNC);
2037  }
2038
2039  Constant *Two = ConstantInt::get(L->getValue()->getType(), 2);
2040
2041  // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
2042  Constant *C = L->getValue();
2043  // The B coefficient is M-N/2
2044  Constant *B = ConstantExpr::getSub(M->getValue(),
2045                                     ConstantExpr::getDiv(N->getValue(),
2046                                                          Two));
2047  // The A coefficient is N/2
2048  Constant *A = ConstantExpr::getDiv(N->getValue(), Two);
2049
2050  // Compute the B^2-4ac term.
2051  Constant *SqrtTerm =
2052    ConstantExpr::getMul(ConstantInt::get(C->getType(), 4),
2053                         ConstantExpr::getMul(A, C));
2054  SqrtTerm = ConstantExpr::getSub(ConstantExpr::getMul(B, B), SqrtTerm);
2055
2056  // Compute floor(sqrt(B^2-4ac))
2057  ConstantUInt *SqrtVal =
2058    cast<ConstantUInt>(ConstantExpr::getCast(SqrtTerm,
2059                                   SqrtTerm->getType()->getUnsignedVersion()));
2060  uint64_t SqrtValV = SqrtVal->getValue();
2061  uint64_t SqrtValV2 = (uint64_t)sqrt((double)SqrtValV);
2062  // The square root might not be precise for arbitrary 64-bit integer
2063  // values.  Do some sanity checks to ensure it's correct.
2064  if (SqrtValV2*SqrtValV2 > SqrtValV ||
2065      (SqrtValV2+1)*(SqrtValV2+1) <= SqrtValV) {
2066    SCEV *CNC = new SCEVCouldNotCompute();
2067    return std::make_pair(CNC, CNC);
2068  }
2069
2070  SqrtVal = ConstantUInt::get(Type::ULongTy, SqrtValV2);
2071  SqrtTerm = ConstantExpr::getCast(SqrtVal, SqrtTerm->getType());
2072
2073  Constant *NegB = ConstantExpr::getNeg(B);
2074  Constant *TwoA = ConstantExpr::getMul(A, Two);
2075
2076  // The divisions must be performed as signed divisions.
2077  const Type *SignedTy = NegB->getType()->getSignedVersion();
2078  NegB = ConstantExpr::getCast(NegB, SignedTy);
2079  TwoA = ConstantExpr::getCast(TwoA, SignedTy);
2080  SqrtTerm = ConstantExpr::getCast(SqrtTerm, SignedTy);
2081
2082  Constant *Solution1 =
2083    ConstantExpr::getDiv(ConstantExpr::getAdd(NegB, SqrtTerm), TwoA);
2084  Constant *Solution2 =
2085    ConstantExpr::getDiv(ConstantExpr::getSub(NegB, SqrtTerm), TwoA);
2086  return std::make_pair(SCEVUnknown::get(Solution1),
2087                        SCEVUnknown::get(Solution2));
2088}
2089
2090/// HowFarToZero - Return the number of times a backedge comparing the specified
2091/// value to zero will execute.  If not computable, return UnknownValue
2092SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) {
2093  // If the value is a constant
2094  if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2095    // If the value is already zero, the branch will execute zero times.
2096    if (C->getValue()->isNullValue()) return C;
2097    return UnknownValue;  // Otherwise it will loop infinitely.
2098  }
2099
2100  SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
2101  if (!AddRec || AddRec->getLoop() != L)
2102    return UnknownValue;
2103
2104  if (AddRec->isAffine()) {
2105    // If this is an affine expression the execution count of this branch is
2106    // equal to:
2107    //
2108    //     (0 - Start/Step)    iff   Start % Step == 0
2109    //
2110    // Get the initial value for the loop.
2111    SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
2112    if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
2113    SCEVHandle Step = AddRec->getOperand(1);
2114
2115    Step = getSCEVAtScope(Step, L->getParentLoop());
2116
2117    // Figure out if Start % Step == 0.
2118    // FIXME: We should add DivExpr and RemExpr operations to our AST.
2119    if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
2120      if (StepC->getValue()->equalsInt(1))      // N % 1 == 0
2121        return SCEV::getNegativeSCEV(Start);  // 0 - Start/1 == -Start
2122      if (StepC->getValue()->isAllOnesValue())  // N % -1 == 0
2123        return Start;                   // 0 - Start/-1 == Start
2124
2125      // Check to see if Start is divisible by SC with no remainder.
2126      if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
2127        ConstantInt *StartCC = StartC->getValue();
2128        Constant *StartNegC = ConstantExpr::getNeg(StartCC);
2129        Constant *Rem = ConstantExpr::getRem(StartNegC, StepC->getValue());
2130        if (Rem->isNullValue()) {
2131          Constant *Result =ConstantExpr::getDiv(StartNegC,StepC->getValue());
2132          return SCEVUnknown::get(Result);
2133        }
2134      }
2135    }
2136  } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
2137    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
2138    // the quadratic equation to solve it.
2139    std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec);
2140    SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2141    SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2142    if (R1) {
2143#if 0
2144      std::cerr << "HFTZ: " << *V << " - sol#1: " << *R1
2145                << "  sol#2: " << *R2 << "\n";
2146#endif
2147      // Pick the smallest positive root value.
2148      assert(R1->getType()->isUnsigned()&&"Didn't canonicalize to unsigned?");
2149      if (ConstantBool *CB =
2150          dyn_cast<ConstantBool>(ConstantExpr::getSetLT(R1->getValue(),
2151                                                        R2->getValue()))) {
2152        if (CB != ConstantBool::True)
2153          std::swap(R1, R2);   // R1 is the minimum root now.
2154
2155        // We can only use this value if the chrec ends up with an exact zero
2156        // value at this index.  When solving for "X*X != 5", for example, we
2157        // should not accept a root of 2.
2158        SCEVHandle Val = AddRec->evaluateAtIteration(R1);
2159        if (SCEVConstant *EvalVal = dyn_cast<SCEVConstant>(Val))
2160          if (EvalVal->getValue()->isNullValue())
2161            return R1;  // We found a quadratic root!
2162      }
2163    }
2164  }
2165
2166  return UnknownValue;
2167}
2168
2169/// HowFarToNonZero - Return the number of times a backedge checking the
2170/// specified value for nonzero will execute.  If not computable, return
2171/// UnknownValue
2172SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) {
2173  // Loops that look like: while (X == 0) are very strange indeed.  We don't
2174  // handle them yet except for the trivial case.  This could be expanded in the
2175  // future as needed.
2176
2177  // If the value is a constant, check to see if it is known to be non-zero
2178  // already.  If so, the backedge will execute zero times.
2179  if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2180    Constant *Zero = Constant::getNullValue(C->getValue()->getType());
2181    Constant *NonZero = ConstantExpr::getSetNE(C->getValue(), Zero);
2182    if (NonZero == ConstantBool::True)
2183      return getSCEV(Zero);
2184    return UnknownValue;  // Otherwise it will loop infinitely.
2185  }
2186
2187  // We could implement others, but I really doubt anyone writes loops like
2188  // this, and if they did, they would already be constant folded.
2189  return UnknownValue;
2190}
2191
2192/// HowManyLessThans - Return the number of times a backedge containing the
2193/// specified less-than comparison will execute.  If not computable, return
2194/// UnknownValue.
2195SCEVHandle ScalarEvolutionsImpl::
2196HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L) {
2197  // Only handle:  "ADDREC < LoopInvariant".
2198  if (!RHS->isLoopInvariant(L)) return UnknownValue;
2199
2200  SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
2201  if (!AddRec || AddRec->getLoop() != L)
2202    return UnknownValue;
2203
2204  if (AddRec->isAffine()) {
2205    // FORNOW: We only support unit strides.
2206    SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, RHS->getType());
2207    if (AddRec->getOperand(1) != One)
2208      return UnknownValue;
2209
2210    // The number of iterations for "[n,+,1] < m", is m-n.  However, we don't
2211    // know that m is >= n on input to the loop.  If it is, the condition return
2212    // true zero times.  What we really should return, for full generality, is
2213    // SMAX(0, m-n).  Since we cannot check this, we will instead check for a
2214    // canonical loop form: most do-loops will have a check that dominates the
2215    // loop, that only enters the loop if [n-1]<m.  If we can find this check,
2216    // we know that the SMAX will evaluate to m-n, because we know that m >= n.
2217
2218    // Search for the check.
2219    BasicBlock *Preheader = L->getLoopPreheader();
2220    BasicBlock *PreheaderDest = L->getHeader();
2221    if (Preheader == 0) return UnknownValue;
2222
2223    BranchInst *LoopEntryPredicate =
2224      dyn_cast<BranchInst>(Preheader->getTerminator());
2225    if (!LoopEntryPredicate) return UnknownValue;
2226
2227    // This might be a critical edge broken out.  If the loop preheader ends in
2228    // an unconditional branch to the loop, check to see if the preheader has a
2229    // single predecessor, and if so, look for its terminator.
2230    while (LoopEntryPredicate->isUnconditional()) {
2231      PreheaderDest = Preheader;
2232      Preheader = Preheader->getSinglePredecessor();
2233      if (!Preheader) return UnknownValue;  // Multiple preds.
2234
2235      LoopEntryPredicate =
2236        dyn_cast<BranchInst>(Preheader->getTerminator());
2237      if (!LoopEntryPredicate) return UnknownValue;
2238    }
2239
2240    // Now that we found a conditional branch that dominates the loop, check to
2241    // see if it is the comparison we are looking for.
2242    SetCondInst *SCI =dyn_cast<SetCondInst>(LoopEntryPredicate->getCondition());
2243    if (!SCI) return UnknownValue;
2244    Value *PreCondLHS = SCI->getOperand(0);
2245    Value *PreCondRHS = SCI->getOperand(1);
2246    Instruction::BinaryOps Cond;
2247    if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest)
2248      Cond = SCI->getOpcode();
2249    else
2250      Cond = SCI->getInverseCondition();
2251
2252    switch (Cond) {
2253    case Instruction::SetGT:
2254      std::swap(PreCondLHS, PreCondRHS);
2255      Cond = Instruction::SetLT;
2256      // Fall Through.
2257    case Instruction::SetLT:
2258      if (PreCondLHS->getType()->isInteger() &&
2259          PreCondLHS->getType()->isSigned()) {
2260        if (RHS != getSCEV(PreCondRHS))
2261          return UnknownValue;  // Not a comparison against 'm'.
2262
2263        if (SCEV::getMinusSCEV(AddRec->getOperand(0), One)
2264                    != getSCEV(PreCondLHS))
2265          return UnknownValue;  // Not a comparison against 'n-1'.
2266        break;
2267      } else {
2268        return UnknownValue;
2269      }
2270    default: break;
2271    }
2272
2273    //std::cerr << "Computed Loop Trip Count as: " <<
2274    //  *SCEV::getMinusSCEV(RHS, AddRec->getOperand(0)) << "\n";
2275    return SCEV::getMinusSCEV(RHS, AddRec->getOperand(0));
2276  }
2277
2278  return UnknownValue;
2279}
2280
2281/// getNumIterationsInRange - Return the number of iterations of this loop that
2282/// produce values in the specified constant range.  Another way of looking at
2283/// this is that it returns the first iteration number where the value is not in
2284/// the condition, thus computing the exit count. If the iteration count can't
2285/// be computed, an instance of SCEVCouldNotCompute is returned.
2286SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range) const {
2287  if (Range.isFullSet())  // Infinite loop.
2288    return new SCEVCouldNotCompute();
2289
2290  // If the start is a non-zero constant, shift the range to simplify things.
2291  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
2292    if (!SC->getValue()->isNullValue()) {
2293      std::vector<SCEVHandle> Operands(op_begin(), op_end());
2294      Operands[0] = SCEVUnknown::getIntegerSCEV(0, SC->getType());
2295      SCEVHandle Shifted = SCEVAddRecExpr::get(Operands, getLoop());
2296      if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
2297        return ShiftedAddRec->getNumIterationsInRange(
2298                                              Range.subtract(SC->getValue()));
2299      // This is strange and shouldn't happen.
2300      return new SCEVCouldNotCompute();
2301    }
2302
2303  // The only time we can solve this is when we have all constant indices.
2304  // Otherwise, we cannot determine the overflow conditions.
2305  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2306    if (!isa<SCEVConstant>(getOperand(i)))
2307      return new SCEVCouldNotCompute();
2308
2309
2310  // Okay at this point we know that all elements of the chrec are constants and
2311  // that the start element is zero.
2312
2313  // First check to see if the range contains zero.  If not, the first
2314  // iteration exits.
2315  ConstantInt *Zero = ConstantInt::get(getType(), 0);
2316  if (!Range.contains(Zero)) return SCEVConstant::get(Zero);
2317
2318  if (isAffine()) {
2319    // If this is an affine expression then we have this situation:
2320    //   Solve {0,+,A} in Range  ===  Ax in Range
2321
2322    // Since we know that zero is in the range, we know that the upper value of
2323    // the range must be the first possible exit value.  Also note that we
2324    // already checked for a full range.
2325    ConstantInt *Upper = cast<ConstantInt>(Range.getUpper());
2326    ConstantInt *A     = cast<SCEVConstant>(getOperand(1))->getValue();
2327    ConstantInt *One   = ConstantInt::get(getType(), 1);
2328
2329    // The exit value should be (Upper+A-1)/A.
2330    Constant *ExitValue = Upper;
2331    if (A != One) {
2332      ExitValue = ConstantExpr::getSub(ConstantExpr::getAdd(Upper, A), One);
2333      ExitValue = ConstantExpr::getDiv(ExitValue, A);
2334    }
2335    assert(isa<ConstantInt>(ExitValue) &&
2336           "Constant folding of integers not implemented?");
2337
2338    // Evaluate at the exit value.  If we really did fall out of the valid
2339    // range, then we computed our trip count, otherwise wrap around or other
2340    // things must have happened.
2341    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue);
2342    if (Range.contains(Val))
2343      return new SCEVCouldNotCompute();  // Something strange happened
2344
2345    // Ensure that the previous value is in the range.  This is a sanity check.
2346    assert(Range.contains(EvaluateConstantChrecAtConstant(this,
2347                              ConstantExpr::getSub(ExitValue, One))) &&
2348           "Linear scev computation is off in a bad way!");
2349    return SCEVConstant::get(cast<ConstantInt>(ExitValue));
2350  } else if (isQuadratic()) {
2351    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
2352    // quadratic equation to solve it.  To do this, we must frame our problem in
2353    // terms of figuring out when zero is crossed, instead of when
2354    // Range.getUpper() is crossed.
2355    std::vector<SCEVHandle> NewOps(op_begin(), op_end());
2356    NewOps[0] = SCEV::getNegativeSCEV(SCEVUnknown::get(Range.getUpper()));
2357    SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, getLoop());
2358
2359    // Next, solve the constructed addrec
2360    std::pair<SCEVHandle,SCEVHandle> Roots =
2361      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec));
2362    SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2363    SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2364    if (R1) {
2365      // Pick the smallest positive root value.
2366      assert(R1->getType()->isUnsigned() && "Didn't canonicalize to unsigned?");
2367      if (ConstantBool *CB =
2368          dyn_cast<ConstantBool>(ConstantExpr::getSetLT(R1->getValue(),
2369                                                        R2->getValue()))) {
2370        if (CB != ConstantBool::True)
2371          std::swap(R1, R2);   // R1 is the minimum root now.
2372
2373        // Make sure the root is not off by one.  The returned iteration should
2374        // not be in the range, but the previous one should be.  When solving
2375        // for "X*X < 5", for example, we should not return a root of 2.
2376        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
2377                                                             R1->getValue());
2378        if (Range.contains(R1Val)) {
2379          // The next iteration must be out of the range...
2380          Constant *NextVal =
2381            ConstantExpr::getAdd(R1->getValue(),
2382                                 ConstantInt::get(R1->getType(), 1));
2383
2384          R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
2385          if (!Range.contains(R1Val))
2386            return SCEVUnknown::get(NextVal);
2387          return new SCEVCouldNotCompute();  // Something strange happened
2388        }
2389
2390        // If R1 was not in the range, then it is a good return value.  Make
2391        // sure that R1-1 WAS in the range though, just in case.
2392        Constant *NextVal =
2393          ConstantExpr::getSub(R1->getValue(),
2394                               ConstantInt::get(R1->getType(), 1));
2395        R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
2396        if (Range.contains(R1Val))
2397          return R1;
2398        return new SCEVCouldNotCompute();  // Something strange happened
2399      }
2400    }
2401  }
2402
2403  // Fallback, if this is a general polynomial, figure out the progression
2404  // through brute force: evaluate until we find an iteration that fails the
2405  // test.  This is likely to be slow, but getting an accurate trip count is
2406  // incredibly important, we will be able to simplify the exit test a lot, and
2407  // we are almost guaranteed to get a trip count in this case.
2408  ConstantInt *TestVal = ConstantInt::get(getType(), 0);
2409  ConstantInt *One     = ConstantInt::get(getType(), 1);
2410  ConstantInt *EndVal  = TestVal;  // Stop when we wrap around.
2411  do {
2412    ++NumBruteForceEvaluations;
2413    SCEVHandle Val = evaluateAtIteration(SCEVConstant::get(TestVal));
2414    if (!isa<SCEVConstant>(Val))  // This shouldn't happen.
2415      return new SCEVCouldNotCompute();
2416
2417    // Check to see if we found the value!
2418    if (!Range.contains(cast<SCEVConstant>(Val)->getValue()))
2419      return SCEVConstant::get(TestVal);
2420
2421    // Increment to test the next index.
2422    TestVal = cast<ConstantInt>(ConstantExpr::getAdd(TestVal, One));
2423  } while (TestVal != EndVal);
2424
2425  return new SCEVCouldNotCompute();
2426}
2427
2428
2429
2430//===----------------------------------------------------------------------===//
2431//                   ScalarEvolution Class Implementation
2432//===----------------------------------------------------------------------===//
2433
2434bool ScalarEvolution::runOnFunction(Function &F) {
2435  Impl = new ScalarEvolutionsImpl(F, getAnalysis<LoopInfo>());
2436  return false;
2437}
2438
2439void ScalarEvolution::releaseMemory() {
2440  delete (ScalarEvolutionsImpl*)Impl;
2441  Impl = 0;
2442}
2443
2444void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
2445  AU.setPreservesAll();
2446  AU.addRequiredTransitive<LoopInfo>();
2447}
2448
2449SCEVHandle ScalarEvolution::getSCEV(Value *V) const {
2450  return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V);
2451}
2452
2453/// hasSCEV - Return true if the SCEV for this value has already been
2454/// computed.
2455bool ScalarEvolution::hasSCEV(Value *V) const {
2456  return ((ScalarEvolutionsImpl*)Impl)->hasSCEV(V);
2457}
2458
2459
2460/// setSCEV - Insert the specified SCEV into the map of current SCEVs for
2461/// the specified value.
2462void ScalarEvolution::setSCEV(Value *V, const SCEVHandle &H) {
2463  ((ScalarEvolutionsImpl*)Impl)->setSCEV(V, H);
2464}
2465
2466
2467SCEVHandle ScalarEvolution::getIterationCount(const Loop *L) const {
2468  return ((ScalarEvolutionsImpl*)Impl)->getIterationCount(L);
2469}
2470
2471bool ScalarEvolution::hasLoopInvariantIterationCount(const Loop *L) const {
2472  return !isa<SCEVCouldNotCompute>(getIterationCount(L));
2473}
2474
2475SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const {
2476  return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L);
2477}
2478
2479void ScalarEvolution::deleteInstructionFromRecords(Instruction *I) const {
2480  return ((ScalarEvolutionsImpl*)Impl)->deleteInstructionFromRecords(I);
2481}
2482
2483static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE,
2484                          const Loop *L) {
2485  // Print all inner loops first
2486  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
2487    PrintLoopInfo(OS, SE, *I);
2488
2489  std::cerr << "Loop " << L->getHeader()->getName() << ": ";
2490
2491  std::vector<BasicBlock*> ExitBlocks;
2492  L->getExitBlocks(ExitBlocks);
2493  if (ExitBlocks.size() != 1)
2494    std::cerr << "<multiple exits> ";
2495
2496  if (SE->hasLoopInvariantIterationCount(L)) {
2497    std::cerr << *SE->getIterationCount(L) << " iterations! ";
2498  } else {
2499    std::cerr << "Unpredictable iteration count. ";
2500  }
2501
2502  std::cerr << "\n";
2503}
2504
2505void ScalarEvolution::print(std::ostream &OS, const Module* ) const {
2506  Function &F = ((ScalarEvolutionsImpl*)Impl)->F;
2507  LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI;
2508
2509  OS << "Classifying expressions for: " << F.getName() << "\n";
2510  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
2511    if (I->getType()->isInteger()) {
2512      OS << *I;
2513      OS << "  --> ";
2514      SCEVHandle SV = getSCEV(&*I);
2515      SV->print(OS);
2516      OS << "\t\t";
2517
2518      if ((*I).getType()->isIntegral()) {
2519        ConstantRange Bounds = SV->getValueRange();
2520        if (!Bounds.isFullSet())
2521          OS << "Bounds: " << Bounds << " ";
2522      }
2523
2524      if (const Loop *L = LI.getLoopFor((*I).getParent())) {
2525        OS << "Exits: ";
2526        SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop());
2527        if (isa<SCEVCouldNotCompute>(ExitValue)) {
2528          OS << "<<Unknown>>";
2529        } else {
2530          OS << *ExitValue;
2531        }
2532      }
2533
2534
2535      OS << "\n";
2536    }
2537
2538  OS << "Determining loop execution counts for: " << F.getName() << "\n";
2539  for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
2540    PrintLoopInfo(OS, this, *I);
2541}
2542
2543