ScalarEvolutionExpander.cpp revision 17ead4ff4baceb2c5503f233d0288d363ae44165
1//===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains the implementation of the scalar evolution expander, 11// which is used to generate the code corresponding to a given scalar evolution 12// expression. 13// 14//===----------------------------------------------------------------------===// 15 16#include "llvm/Analysis/ScalarEvolutionExpander.h" 17#include "llvm/Analysis/LoopInfo.h" 18#include "llvm/IntrinsicInst.h" 19#include "llvm/LLVMContext.h" 20#include "llvm/Target/TargetData.h" 21#include "llvm/ADT/STLExtras.h" 22using namespace llvm; 23 24/// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP, 25/// reusing an existing cast if a suitable one exists, moving an existing 26/// cast if a suitable one exists but isn't in the right place, or 27/// creating a new one. 28Value *SCEVExpander::ReuseOrCreateCast(Value *V, const Type *Ty, 29 Instruction::CastOps Op, 30 BasicBlock::iterator IP) { 31 // Check to see if there is already a cast! 32 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); 33 UI != E; ++UI) { 34 User *U = *UI; 35 if (U->getType() == Ty) 36 if (CastInst *CI = dyn_cast<CastInst>(U)) 37 if (CI->getOpcode() == Op) { 38 // If the cast isn't where we want it, fix it. 39 if (BasicBlock::iterator(CI) != IP) { 40 // Create a new cast, and leave the old cast in place in case 41 // it is being used as an insert point. Clear its operand 42 // so that it doesn't hold anything live. 43 Instruction *NewCI = CastInst::Create(Op, V, Ty, "", IP); 44 NewCI->takeName(CI); 45 CI->replaceAllUsesWith(NewCI); 46 CI->setOperand(0, UndefValue::get(V->getType())); 47 rememberInstruction(NewCI); 48 return NewCI; 49 } 50 rememberInstruction(CI); 51 return CI; 52 } 53 } 54 55 // Create a new cast. 56 Instruction *I = CastInst::Create(Op, V, Ty, V->getName(), IP); 57 rememberInstruction(I); 58 return I; 59} 60 61/// InsertNoopCastOfTo - Insert a cast of V to the specified type, 62/// which must be possible with a noop cast, doing what we can to share 63/// the casts. 64Value *SCEVExpander::InsertNoopCastOfTo(Value *V, const Type *Ty) { 65 Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false); 66 assert((Op == Instruction::BitCast || 67 Op == Instruction::PtrToInt || 68 Op == Instruction::IntToPtr) && 69 "InsertNoopCastOfTo cannot perform non-noop casts!"); 70 assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) && 71 "InsertNoopCastOfTo cannot change sizes!"); 72 73 // Short-circuit unnecessary bitcasts. 74 if (Op == Instruction::BitCast && V->getType() == Ty) 75 return V; 76 77 // Short-circuit unnecessary inttoptr<->ptrtoint casts. 78 if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) && 79 SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) { 80 if (CastInst *CI = dyn_cast<CastInst>(V)) 81 if ((CI->getOpcode() == Instruction::PtrToInt || 82 CI->getOpcode() == Instruction::IntToPtr) && 83 SE.getTypeSizeInBits(CI->getType()) == 84 SE.getTypeSizeInBits(CI->getOperand(0)->getType())) 85 return CI->getOperand(0); 86 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 87 if ((CE->getOpcode() == Instruction::PtrToInt || 88 CE->getOpcode() == Instruction::IntToPtr) && 89 SE.getTypeSizeInBits(CE->getType()) == 90 SE.getTypeSizeInBits(CE->getOperand(0)->getType())) 91 return CE->getOperand(0); 92 } 93 94 // Fold a cast of a constant. 95 if (Constant *C = dyn_cast<Constant>(V)) 96 return ConstantExpr::getCast(Op, C, Ty); 97 98 // Cast the argument at the beginning of the entry block, after 99 // any bitcasts of other arguments. 100 if (Argument *A = dyn_cast<Argument>(V)) { 101 BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin(); 102 while ((isa<BitCastInst>(IP) && 103 isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) && 104 cast<BitCastInst>(IP)->getOperand(0) != A) || 105 isa<DbgInfoIntrinsic>(IP)) 106 ++IP; 107 return ReuseOrCreateCast(A, Ty, Op, IP); 108 } 109 110 // Cast the instruction immediately after the instruction. 111 Instruction *I = cast<Instruction>(V); 112 BasicBlock::iterator IP = I; ++IP; 113 if (InvokeInst *II = dyn_cast<InvokeInst>(I)) 114 IP = II->getNormalDest()->begin(); 115 while (isa<PHINode>(IP) || isa<DbgInfoIntrinsic>(IP)) ++IP; 116 return ReuseOrCreateCast(I, Ty, Op, IP); 117} 118 119/// InsertBinop - Insert the specified binary operator, doing a small amount 120/// of work to avoid inserting an obviously redundant operation. 121Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, 122 Value *LHS, Value *RHS) { 123 // Fold a binop with constant operands. 124 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 125 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 126 return ConstantExpr::get(Opcode, CLHS, CRHS); 127 128 // Do a quick scan to see if we have this binop nearby. If so, reuse it. 129 unsigned ScanLimit = 6; 130 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 131 // Scanning starts from the last instruction before the insertion point. 132 BasicBlock::iterator IP = Builder.GetInsertPoint(); 133 if (IP != BlockBegin) { 134 --IP; 135 for (; ScanLimit; --IP, --ScanLimit) { 136 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 137 // generated code. 138 if (isa<DbgInfoIntrinsic>(IP)) 139 ScanLimit++; 140 if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS && 141 IP->getOperand(1) == RHS) 142 return IP; 143 if (IP == BlockBegin) break; 144 } 145 } 146 147 // Save the original insertion point so we can restore it when we're done. 148 BasicBlock *SaveInsertBB = Builder.GetInsertBlock(); 149 BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint(); 150 151 // Move the insertion point out of as many loops as we can. 152 while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) { 153 if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break; 154 BasicBlock *Preheader = L->getLoopPreheader(); 155 if (!Preheader) break; 156 157 // Ok, move up a level. 158 Builder.SetInsertPoint(Preheader, Preheader->getTerminator()); 159 } 160 161 // If we haven't found this binop, insert it. 162 Value *BO = Builder.CreateBinOp(Opcode, LHS, RHS, "tmp"); 163 rememberInstruction(BO); 164 165 // Restore the original insert point. 166 if (SaveInsertBB) 167 restoreInsertPoint(SaveInsertBB, SaveInsertPt); 168 169 return BO; 170} 171 172/// FactorOutConstant - Test if S is divisible by Factor, using signed 173/// division. If so, update S with Factor divided out and return true. 174/// S need not be evenly divisible if a reasonable remainder can be 175/// computed. 176/// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made 177/// unnecessary; in its place, just signed-divide Ops[i] by the scale and 178/// check to see if the divide was folded. 179static bool FactorOutConstant(const SCEV *&S, 180 const SCEV *&Remainder, 181 const SCEV *Factor, 182 ScalarEvolution &SE, 183 const TargetData *TD) { 184 // Everything is divisible by one. 185 if (Factor->isOne()) 186 return true; 187 188 // x/x == 1. 189 if (S == Factor) { 190 S = SE.getConstant(S->getType(), 1); 191 return true; 192 } 193 194 // For a Constant, check for a multiple of the given factor. 195 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 196 // 0/x == 0. 197 if (C->isZero()) 198 return true; 199 // Check for divisibility. 200 if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) { 201 ConstantInt *CI = 202 ConstantInt::get(SE.getContext(), 203 C->getValue()->getValue().sdiv( 204 FC->getValue()->getValue())); 205 // If the quotient is zero and the remainder is non-zero, reject 206 // the value at this scale. It will be considered for subsequent 207 // smaller scales. 208 if (!CI->isZero()) { 209 const SCEV *Div = SE.getConstant(CI); 210 S = Div; 211 Remainder = 212 SE.getAddExpr(Remainder, 213 SE.getConstant(C->getValue()->getValue().srem( 214 FC->getValue()->getValue()))); 215 return true; 216 } 217 } 218 } 219 220 // In a Mul, check if there is a constant operand which is a multiple 221 // of the given factor. 222 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 223 if (TD) { 224 // With TargetData, the size is known. Check if there is a constant 225 // operand which is a multiple of the given factor. If so, we can 226 // factor it. 227 const SCEVConstant *FC = cast<SCEVConstant>(Factor); 228 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0))) 229 if (!C->getValue()->getValue().srem(FC->getValue()->getValue())) { 230 SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end()); 231 NewMulOps[0] = 232 SE.getConstant(C->getValue()->getValue().sdiv( 233 FC->getValue()->getValue())); 234 S = SE.getMulExpr(NewMulOps); 235 return true; 236 } 237 } else { 238 // Without TargetData, check if Factor can be factored out of any of the 239 // Mul's operands. If so, we can just remove it. 240 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 241 const SCEV *SOp = M->getOperand(i); 242 const SCEV *Remainder = SE.getConstant(SOp->getType(), 0); 243 if (FactorOutConstant(SOp, Remainder, Factor, SE, TD) && 244 Remainder->isZero()) { 245 SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end()); 246 NewMulOps[i] = SOp; 247 S = SE.getMulExpr(NewMulOps); 248 return true; 249 } 250 } 251 } 252 } 253 254 // In an AddRec, check if both start and step are divisible. 255 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 256 const SCEV *Step = A->getStepRecurrence(SE); 257 const SCEV *StepRem = SE.getConstant(Step->getType(), 0); 258 if (!FactorOutConstant(Step, StepRem, Factor, SE, TD)) 259 return false; 260 if (!StepRem->isZero()) 261 return false; 262 const SCEV *Start = A->getStart(); 263 if (!FactorOutConstant(Start, Remainder, Factor, SE, TD)) 264 return false; 265 S = SE.getAddRecExpr(Start, Step, A->getLoop()); 266 return true; 267 } 268 269 return false; 270} 271 272/// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs 273/// is the number of SCEVAddRecExprs present, which are kept at the end of 274/// the list. 275/// 276static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops, 277 const Type *Ty, 278 ScalarEvolution &SE) { 279 unsigned NumAddRecs = 0; 280 for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i) 281 ++NumAddRecs; 282 // Group Ops into non-addrecs and addrecs. 283 SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs); 284 SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end()); 285 // Let ScalarEvolution sort and simplify the non-addrecs list. 286 const SCEV *Sum = NoAddRecs.empty() ? 287 SE.getConstant(Ty, 0) : 288 SE.getAddExpr(NoAddRecs); 289 // If it returned an add, use the operands. Otherwise it simplified 290 // the sum into a single value, so just use that. 291 Ops.clear(); 292 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum)) 293 Ops.append(Add->op_begin(), Add->op_end()); 294 else if (!Sum->isZero()) 295 Ops.push_back(Sum); 296 // Then append the addrecs. 297 Ops.append(AddRecs.begin(), AddRecs.end()); 298} 299 300/// SplitAddRecs - Flatten a list of add operands, moving addrec start values 301/// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}. 302/// This helps expose more opportunities for folding parts of the expressions 303/// into GEP indices. 304/// 305static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops, 306 const Type *Ty, 307 ScalarEvolution &SE) { 308 // Find the addrecs. 309 SmallVector<const SCEV *, 8> AddRecs; 310 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 311 while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) { 312 const SCEV *Start = A->getStart(); 313 if (Start->isZero()) break; 314 const SCEV *Zero = SE.getConstant(Ty, 0); 315 AddRecs.push_back(SE.getAddRecExpr(Zero, 316 A->getStepRecurrence(SE), 317 A->getLoop())); 318 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) { 319 Ops[i] = Zero; 320 Ops.append(Add->op_begin(), Add->op_end()); 321 e += Add->getNumOperands(); 322 } else { 323 Ops[i] = Start; 324 } 325 } 326 if (!AddRecs.empty()) { 327 // Add the addrecs onto the end of the list. 328 Ops.append(AddRecs.begin(), AddRecs.end()); 329 // Resort the operand list, moving any constants to the front. 330 SimplifyAddOperands(Ops, Ty, SE); 331 } 332} 333 334/// expandAddToGEP - Expand an addition expression with a pointer type into 335/// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps 336/// BasicAliasAnalysis and other passes analyze the result. See the rules 337/// for getelementptr vs. inttoptr in 338/// http://llvm.org/docs/LangRef.html#pointeraliasing 339/// for details. 340/// 341/// Design note: The correctness of using getelementptr here depends on 342/// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as 343/// they may introduce pointer arithmetic which may not be safely converted 344/// into getelementptr. 345/// 346/// Design note: It might seem desirable for this function to be more 347/// loop-aware. If some of the indices are loop-invariant while others 348/// aren't, it might seem desirable to emit multiple GEPs, keeping the 349/// loop-invariant portions of the overall computation outside the loop. 350/// However, there are a few reasons this is not done here. Hoisting simple 351/// arithmetic is a low-level optimization that often isn't very 352/// important until late in the optimization process. In fact, passes 353/// like InstructionCombining will combine GEPs, even if it means 354/// pushing loop-invariant computation down into loops, so even if the 355/// GEPs were split here, the work would quickly be undone. The 356/// LoopStrengthReduction pass, which is usually run quite late (and 357/// after the last InstructionCombining pass), takes care of hoisting 358/// loop-invariant portions of expressions, after considering what 359/// can be folded using target addressing modes. 360/// 361Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin, 362 const SCEV *const *op_end, 363 const PointerType *PTy, 364 const Type *Ty, 365 Value *V) { 366 const Type *ElTy = PTy->getElementType(); 367 SmallVector<Value *, 4> GepIndices; 368 SmallVector<const SCEV *, 8> Ops(op_begin, op_end); 369 bool AnyNonZeroIndices = false; 370 371 // Split AddRecs up into parts as either of the parts may be usable 372 // without the other. 373 SplitAddRecs(Ops, Ty, SE); 374 375 // Descend down the pointer's type and attempt to convert the other 376 // operands into GEP indices, at each level. The first index in a GEP 377 // indexes into the array implied by the pointer operand; the rest of 378 // the indices index into the element or field type selected by the 379 // preceding index. 380 for (;;) { 381 // If the scale size is not 0, attempt to factor out a scale for 382 // array indexing. 383 SmallVector<const SCEV *, 8> ScaledOps; 384 if (ElTy->isSized()) { 385 const SCEV *ElSize = SE.getSizeOfExpr(ElTy); 386 if (!ElSize->isZero()) { 387 SmallVector<const SCEV *, 8> NewOps; 388 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 389 const SCEV *Op = Ops[i]; 390 const SCEV *Remainder = SE.getConstant(Ty, 0); 391 if (FactorOutConstant(Op, Remainder, ElSize, SE, SE.TD)) { 392 // Op now has ElSize factored out. 393 ScaledOps.push_back(Op); 394 if (!Remainder->isZero()) 395 NewOps.push_back(Remainder); 396 AnyNonZeroIndices = true; 397 } else { 398 // The operand was not divisible, so add it to the list of operands 399 // we'll scan next iteration. 400 NewOps.push_back(Ops[i]); 401 } 402 } 403 // If we made any changes, update Ops. 404 if (!ScaledOps.empty()) { 405 Ops = NewOps; 406 SimplifyAddOperands(Ops, Ty, SE); 407 } 408 } 409 } 410 411 // Record the scaled array index for this level of the type. If 412 // we didn't find any operands that could be factored, tentatively 413 // assume that element zero was selected (since the zero offset 414 // would obviously be folded away). 415 Value *Scaled = ScaledOps.empty() ? 416 Constant::getNullValue(Ty) : 417 expandCodeFor(SE.getAddExpr(ScaledOps), Ty); 418 GepIndices.push_back(Scaled); 419 420 // Collect struct field index operands. 421 while (const StructType *STy = dyn_cast<StructType>(ElTy)) { 422 bool FoundFieldNo = false; 423 // An empty struct has no fields. 424 if (STy->getNumElements() == 0) break; 425 if (SE.TD) { 426 // With TargetData, field offsets are known. See if a constant offset 427 // falls within any of the struct fields. 428 if (Ops.empty()) break; 429 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0])) 430 if (SE.getTypeSizeInBits(C->getType()) <= 64) { 431 const StructLayout &SL = *SE.TD->getStructLayout(STy); 432 uint64_t FullOffset = C->getValue()->getZExtValue(); 433 if (FullOffset < SL.getSizeInBytes()) { 434 unsigned ElIdx = SL.getElementContainingOffset(FullOffset); 435 GepIndices.push_back( 436 ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx)); 437 ElTy = STy->getTypeAtIndex(ElIdx); 438 Ops[0] = 439 SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx)); 440 AnyNonZeroIndices = true; 441 FoundFieldNo = true; 442 } 443 } 444 } else { 445 // Without TargetData, just check for an offsetof expression of the 446 // appropriate struct type. 447 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 448 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Ops[i])) { 449 const Type *CTy; 450 Constant *FieldNo; 451 if (U->isOffsetOf(CTy, FieldNo) && CTy == STy) { 452 GepIndices.push_back(FieldNo); 453 ElTy = 454 STy->getTypeAtIndex(cast<ConstantInt>(FieldNo)->getZExtValue()); 455 Ops[i] = SE.getConstant(Ty, 0); 456 AnyNonZeroIndices = true; 457 FoundFieldNo = true; 458 break; 459 } 460 } 461 } 462 // If no struct field offsets were found, tentatively assume that 463 // field zero was selected (since the zero offset would obviously 464 // be folded away). 465 if (!FoundFieldNo) { 466 ElTy = STy->getTypeAtIndex(0u); 467 GepIndices.push_back( 468 Constant::getNullValue(Type::getInt32Ty(Ty->getContext()))); 469 } 470 } 471 472 if (const ArrayType *ATy = dyn_cast<ArrayType>(ElTy)) 473 ElTy = ATy->getElementType(); 474 else 475 break; 476 } 477 478 // If none of the operands were convertible to proper GEP indices, cast 479 // the base to i8* and do an ugly getelementptr with that. It's still 480 // better than ptrtoint+arithmetic+inttoptr at least. 481 if (!AnyNonZeroIndices) { 482 // Cast the base to i8*. 483 V = InsertNoopCastOfTo(V, 484 Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace())); 485 486 // Expand the operands for a plain byte offset. 487 Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty); 488 489 // Fold a GEP with constant operands. 490 if (Constant *CLHS = dyn_cast<Constant>(V)) 491 if (Constant *CRHS = dyn_cast<Constant>(Idx)) 492 return ConstantExpr::getGetElementPtr(CLHS, &CRHS, 1); 493 494 // Do a quick scan to see if we have this GEP nearby. If so, reuse it. 495 unsigned ScanLimit = 6; 496 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 497 // Scanning starts from the last instruction before the insertion point. 498 BasicBlock::iterator IP = Builder.GetInsertPoint(); 499 if (IP != BlockBegin) { 500 --IP; 501 for (; ScanLimit; --IP, --ScanLimit) { 502 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 503 // generated code. 504 if (isa<DbgInfoIntrinsic>(IP)) 505 ScanLimit++; 506 if (IP->getOpcode() == Instruction::GetElementPtr && 507 IP->getOperand(0) == V && IP->getOperand(1) == Idx) 508 return IP; 509 if (IP == BlockBegin) break; 510 } 511 } 512 513 // Save the original insertion point so we can restore it when we're done. 514 BasicBlock *SaveInsertBB = Builder.GetInsertBlock(); 515 BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint(); 516 517 // Move the insertion point out of as many loops as we can. 518 while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) { 519 if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break; 520 BasicBlock *Preheader = L->getLoopPreheader(); 521 if (!Preheader) break; 522 523 // Ok, move up a level. 524 Builder.SetInsertPoint(Preheader, Preheader->getTerminator()); 525 } 526 527 // Emit a GEP. 528 Value *GEP = Builder.CreateGEP(V, Idx, "uglygep"); 529 rememberInstruction(GEP); 530 531 // Restore the original insert point. 532 if (SaveInsertBB) 533 restoreInsertPoint(SaveInsertBB, SaveInsertPt); 534 535 return GEP; 536 } 537 538 // Save the original insertion point so we can restore it when we're done. 539 BasicBlock *SaveInsertBB = Builder.GetInsertBlock(); 540 BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint(); 541 542 // Move the insertion point out of as many loops as we can. 543 while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) { 544 if (!L->isLoopInvariant(V)) break; 545 546 bool AnyIndexNotLoopInvariant = false; 547 for (SmallVectorImpl<Value *>::const_iterator I = GepIndices.begin(), 548 E = GepIndices.end(); I != E; ++I) 549 if (!L->isLoopInvariant(*I)) { 550 AnyIndexNotLoopInvariant = true; 551 break; 552 } 553 if (AnyIndexNotLoopInvariant) 554 break; 555 556 BasicBlock *Preheader = L->getLoopPreheader(); 557 if (!Preheader) break; 558 559 // Ok, move up a level. 560 Builder.SetInsertPoint(Preheader, Preheader->getTerminator()); 561 } 562 563 // Insert a pretty getelementptr. Note that this GEP is not marked inbounds, 564 // because ScalarEvolution may have changed the address arithmetic to 565 // compute a value which is beyond the end of the allocated object. 566 Value *Casted = V; 567 if (V->getType() != PTy) 568 Casted = InsertNoopCastOfTo(Casted, PTy); 569 Value *GEP = Builder.CreateGEP(Casted, 570 GepIndices.begin(), 571 GepIndices.end(), 572 "scevgep"); 573 Ops.push_back(SE.getUnknown(GEP)); 574 rememberInstruction(GEP); 575 576 // Restore the original insert point. 577 if (SaveInsertBB) 578 restoreInsertPoint(SaveInsertBB, SaveInsertPt); 579 580 return expand(SE.getAddExpr(Ops)); 581} 582 583/// isNonConstantNegative - Return true if the specified scev is negated, but 584/// not a constant. 585static bool isNonConstantNegative(const SCEV *F) { 586 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(F); 587 if (!Mul) return false; 588 589 // If there is a constant factor, it will be first. 590 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 591 if (!SC) return false; 592 593 // Return true if the value is negative, this matches things like (-42 * V). 594 return SC->getValue()->getValue().isNegative(); 595} 596 597/// PickMostRelevantLoop - Given two loops pick the one that's most relevant for 598/// SCEV expansion. If they are nested, this is the most nested. If they are 599/// neighboring, pick the later. 600static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B, 601 DominatorTree &DT) { 602 if (!A) return B; 603 if (!B) return A; 604 if (A->contains(B)) return B; 605 if (B->contains(A)) return A; 606 if (DT.dominates(A->getHeader(), B->getHeader())) return B; 607 if (DT.dominates(B->getHeader(), A->getHeader())) return A; 608 return A; // Arbitrarily break the tie. 609} 610 611/// GetRelevantLoop - Get the most relevant loop associated with the given 612/// expression, according to PickMostRelevantLoop. 613static const Loop *GetRelevantLoop(const SCEV *S, LoopInfo &LI, 614 DominatorTree &DT) { 615 if (isa<SCEVConstant>(S)) 616 return 0; 617 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 618 if (const Instruction *I = dyn_cast<Instruction>(U->getValue())) 619 return LI.getLoopFor(I->getParent()); 620 return 0; 621 } 622 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) { 623 const Loop *L = 0; 624 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 625 L = AR->getLoop(); 626 for (SCEVNAryExpr::op_iterator I = N->op_begin(), E = N->op_end(); 627 I != E; ++I) 628 L = PickMostRelevantLoop(L, GetRelevantLoop(*I, LI, DT), DT); 629 return L; 630 } 631 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 632 return GetRelevantLoop(C->getOperand(), LI, DT); 633 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) 634 return PickMostRelevantLoop(GetRelevantLoop(D->getLHS(), LI, DT), 635 GetRelevantLoop(D->getRHS(), LI, DT), 636 DT); 637 llvm_unreachable("Unexpected SCEV type!"); 638} 639 640namespace { 641 642/// LoopCompare - Compare loops by PickMostRelevantLoop. 643class LoopCompare { 644 DominatorTree &DT; 645public: 646 explicit LoopCompare(DominatorTree &dt) : DT(dt) {} 647 648 bool operator()(std::pair<const Loop *, const SCEV *> LHS, 649 std::pair<const Loop *, const SCEV *> RHS) const { 650 // Keep pointer operands sorted at the end. 651 if (LHS.second->getType()->isPointerTy() != 652 RHS.second->getType()->isPointerTy()) 653 return LHS.second->getType()->isPointerTy(); 654 655 // Compare loops with PickMostRelevantLoop. 656 if (LHS.first != RHS.first) 657 return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first; 658 659 // If one operand is a non-constant negative and the other is not, 660 // put the non-constant negative on the right so that a sub can 661 // be used instead of a negate and add. 662 if (isNonConstantNegative(LHS.second)) { 663 if (!isNonConstantNegative(RHS.second)) 664 return false; 665 } else if (isNonConstantNegative(RHS.second)) 666 return true; 667 668 // Otherwise they are equivalent according to this comparison. 669 return false; 670 } 671}; 672 673} 674 675Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) { 676 const Type *Ty = SE.getEffectiveSCEVType(S->getType()); 677 678 // Collect all the add operands in a loop, along with their associated loops. 679 // Iterate in reverse so that constants are emitted last, all else equal, and 680 // so that pointer operands are inserted first, which the code below relies on 681 // to form more involved GEPs. 682 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 683 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()), 684 E(S->op_begin()); I != E; ++I) 685 OpsAndLoops.push_back(std::make_pair(GetRelevantLoop(*I, *SE.LI, *SE.DT), 686 *I)); 687 688 // Sort by loop. Use a stable sort so that constants follow non-constants and 689 // pointer operands precede non-pointer operands. 690 std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT)); 691 692 // Emit instructions to add all the operands. Hoist as much as possible 693 // out of loops, and form meaningful getelementptrs where possible. 694 Value *Sum = 0; 695 for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator 696 I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) { 697 const Loop *CurLoop = I->first; 698 const SCEV *Op = I->second; 699 if (!Sum) { 700 // This is the first operand. Just expand it. 701 Sum = expand(Op); 702 ++I; 703 } else if (const PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) { 704 // The running sum expression is a pointer. Try to form a getelementptr 705 // at this level with that as the base. 706 SmallVector<const SCEV *, 4> NewOps; 707 for (; I != E && I->first == CurLoop; ++I) { 708 // If the operand is SCEVUnknown and not instructions, peek through 709 // it, to enable more of it to be folded into the GEP. 710 const SCEV *X = I->second; 711 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X)) 712 if (!isa<Instruction>(U->getValue())) 713 X = SE.getSCEV(U->getValue()); 714 NewOps.push_back(X); 715 } 716 Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum); 717 } else if (const PointerType *PTy = dyn_cast<PointerType>(Op->getType())) { 718 // The running sum is an integer, and there's a pointer at this level. 719 // Try to form a getelementptr. If the running sum is instructions, 720 // use a SCEVUnknown to avoid re-analyzing them. 721 SmallVector<const SCEV *, 4> NewOps; 722 NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) : 723 SE.getSCEV(Sum)); 724 for (++I; I != E && I->first == CurLoop; ++I) 725 NewOps.push_back(I->second); 726 Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op)); 727 } else if (isNonConstantNegative(Op)) { 728 // Instead of doing a negate and add, just do a subtract. 729 Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty); 730 Sum = InsertNoopCastOfTo(Sum, Ty); 731 Sum = InsertBinop(Instruction::Sub, Sum, W); 732 ++I; 733 } else { 734 // A simple add. 735 Value *W = expandCodeFor(Op, Ty); 736 Sum = InsertNoopCastOfTo(Sum, Ty); 737 // Canonicalize a constant to the RHS. 738 if (isa<Constant>(Sum)) std::swap(Sum, W); 739 Sum = InsertBinop(Instruction::Add, Sum, W); 740 ++I; 741 } 742 } 743 744 return Sum; 745} 746 747Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) { 748 const Type *Ty = SE.getEffectiveSCEVType(S->getType()); 749 750 // Collect all the mul operands in a loop, along with their associated loops. 751 // Iterate in reverse so that constants are emitted last, all else equal. 752 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 753 for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()), 754 E(S->op_begin()); I != E; ++I) 755 OpsAndLoops.push_back(std::make_pair(GetRelevantLoop(*I, *SE.LI, *SE.DT), 756 *I)); 757 758 // Sort by loop. Use a stable sort so that constants follow non-constants. 759 std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT)); 760 761 // Emit instructions to mul all the operands. Hoist as much as possible 762 // out of loops. 763 Value *Prod = 0; 764 for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator 765 I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) { 766 const SCEV *Op = I->second; 767 if (!Prod) { 768 // This is the first operand. Just expand it. 769 Prod = expand(Op); 770 ++I; 771 } else if (Op->isAllOnesValue()) { 772 // Instead of doing a multiply by negative one, just do a negate. 773 Prod = InsertNoopCastOfTo(Prod, Ty); 774 Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod); 775 ++I; 776 } else { 777 // A simple mul. 778 Value *W = expandCodeFor(Op, Ty); 779 Prod = InsertNoopCastOfTo(Prod, Ty); 780 // Canonicalize a constant to the RHS. 781 if (isa<Constant>(Prod)) std::swap(Prod, W); 782 Prod = InsertBinop(Instruction::Mul, Prod, W); 783 ++I; 784 } 785 } 786 787 return Prod; 788} 789 790Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) { 791 const Type *Ty = SE.getEffectiveSCEVType(S->getType()); 792 793 Value *LHS = expandCodeFor(S->getLHS(), Ty); 794 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) { 795 const APInt &RHS = SC->getValue()->getValue(); 796 if (RHS.isPowerOf2()) 797 return InsertBinop(Instruction::LShr, LHS, 798 ConstantInt::get(Ty, RHS.logBase2())); 799 } 800 801 Value *RHS = expandCodeFor(S->getRHS(), Ty); 802 return InsertBinop(Instruction::UDiv, LHS, RHS); 803} 804 805/// Move parts of Base into Rest to leave Base with the minimal 806/// expression that provides a pointer operand suitable for a 807/// GEP expansion. 808static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest, 809 ScalarEvolution &SE) { 810 while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) { 811 Base = A->getStart(); 812 Rest = SE.getAddExpr(Rest, 813 SE.getAddRecExpr(SE.getConstant(A->getType(), 0), 814 A->getStepRecurrence(SE), 815 A->getLoop())); 816 } 817 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) { 818 Base = A->getOperand(A->getNumOperands()-1); 819 SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end()); 820 NewAddOps.back() = Rest; 821 Rest = SE.getAddExpr(NewAddOps); 822 ExposePointerBase(Base, Rest, SE); 823 } 824} 825 826/// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand 827/// the base addrec, which is the addrec without any non-loop-dominating 828/// values, and return the PHI. 829PHINode * 830SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized, 831 const Loop *L, 832 const Type *ExpandTy, 833 const Type *IntTy) { 834 // Reuse a previously-inserted PHI, if present. 835 for (BasicBlock::iterator I = L->getHeader()->begin(); 836 PHINode *PN = dyn_cast<PHINode>(I); ++I) 837 if (SE.isSCEVable(PN->getType()) && 838 (SE.getEffectiveSCEVType(PN->getType()) == 839 SE.getEffectiveSCEVType(Normalized->getType())) && 840 SE.getSCEV(PN) == Normalized) 841 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 842 Instruction *IncV = 843 cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock)); 844 845 // Determine if this is a well-behaved chain of instructions leading 846 // back to the PHI. It probably will be, if we're scanning an inner 847 // loop already visited by LSR for example, but it wouldn't have 848 // to be. 849 do { 850 if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV)) { 851 IncV = 0; 852 break; 853 } 854 // If any of the operands don't dominate the insert position, bail. 855 // Addrec operands are always loop-invariant, so this can only happen 856 // if there are instructions which haven't been hoisted. 857 for (User::op_iterator OI = IncV->op_begin()+1, 858 OE = IncV->op_end(); OI != OE; ++OI) 859 if (Instruction *OInst = dyn_cast<Instruction>(OI)) 860 if (!SE.DT->dominates(OInst, IVIncInsertPos)) { 861 IncV = 0; 862 break; 863 } 864 if (!IncV) 865 break; 866 // Advance to the next instruction. 867 IncV = dyn_cast<Instruction>(IncV->getOperand(0)); 868 if (!IncV) 869 break; 870 if (IncV->mayHaveSideEffects()) { 871 IncV = 0; 872 break; 873 } 874 } while (IncV != PN); 875 876 if (IncV) { 877 // Ok, the add recurrence looks usable. 878 // Remember this PHI, even in post-inc mode. 879 InsertedValues.insert(PN); 880 // Remember the increment. 881 IncV = cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock)); 882 rememberInstruction(IncV); 883 if (L == IVIncInsertLoop) 884 do { 885 if (SE.DT->dominates(IncV, IVIncInsertPos)) 886 break; 887 // Make sure the increment is where we want it. But don't move it 888 // down past a potential existing post-inc user. 889 IncV->moveBefore(IVIncInsertPos); 890 IVIncInsertPos = IncV; 891 IncV = cast<Instruction>(IncV->getOperand(0)); 892 } while (IncV != PN); 893 return PN; 894 } 895 } 896 897 // Save the original insertion point so we can restore it when we're done. 898 BasicBlock *SaveInsertBB = Builder.GetInsertBlock(); 899 BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint(); 900 901 // Expand code for the start value. 902 Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy, 903 L->getHeader()->begin()); 904 905 // Expand code for the step value. Insert instructions right before the 906 // terminator corresponding to the back-edge. Do this before creating the PHI 907 // so that PHI reuse code doesn't see an incomplete PHI. If the stride is 908 // negative, insert a sub instead of an add for the increment (unless it's a 909 // constant, because subtracts of constants are canonicalized to adds). 910 const SCEV *Step = Normalized->getStepRecurrence(SE); 911 bool isPointer = ExpandTy->isPointerTy(); 912 bool isNegative = !isPointer && isNonConstantNegative(Step); 913 if (isNegative) 914 Step = SE.getNegativeSCEV(Step); 915 Value *StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin()); 916 917 // Create the PHI. 918 Builder.SetInsertPoint(L->getHeader(), L->getHeader()->begin()); 919 PHINode *PN = Builder.CreatePHI(ExpandTy, "lsr.iv"); 920 rememberInstruction(PN); 921 922 // Create the step instructions and populate the PHI. 923 BasicBlock *Header = L->getHeader(); 924 for (pred_iterator HPI = pred_begin(Header), HPE = pred_end(Header); 925 HPI != HPE; ++HPI) { 926 BasicBlock *Pred = *HPI; 927 928 // Add a start value. 929 if (!L->contains(Pred)) { 930 PN->addIncoming(StartV, Pred); 931 continue; 932 } 933 934 // Create a step value and add it to the PHI. If IVIncInsertLoop is 935 // non-null and equal to the addrec's loop, insert the instructions 936 // at IVIncInsertPos. 937 Instruction *InsertPos = L == IVIncInsertLoop ? 938 IVIncInsertPos : Pred->getTerminator(); 939 Builder.SetInsertPoint(InsertPos->getParent(), InsertPos); 940 Value *IncV; 941 // If the PHI is a pointer, use a GEP, otherwise use an add or sub. 942 if (isPointer) { 943 const PointerType *GEPPtrTy = cast<PointerType>(ExpandTy); 944 // If the step isn't constant, don't use an implicitly scaled GEP, because 945 // that would require a multiply inside the loop. 946 if (!isa<ConstantInt>(StepV)) 947 GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()), 948 GEPPtrTy->getAddressSpace()); 949 const SCEV *const StepArray[1] = { SE.getSCEV(StepV) }; 950 IncV = expandAddToGEP(StepArray, StepArray+1, GEPPtrTy, IntTy, PN); 951 if (IncV->getType() != PN->getType()) { 952 IncV = Builder.CreateBitCast(IncV, PN->getType(), "tmp"); 953 rememberInstruction(IncV); 954 } 955 } else { 956 IncV = isNegative ? 957 Builder.CreateSub(PN, StepV, "lsr.iv.next") : 958 Builder.CreateAdd(PN, StepV, "lsr.iv.next"); 959 rememberInstruction(IncV); 960 } 961 PN->addIncoming(IncV, Pred); 962 } 963 964 // Restore the original insert point. 965 if (SaveInsertBB) 966 restoreInsertPoint(SaveInsertBB, SaveInsertPt); 967 968 // Remember this PHI, even in post-inc mode. 969 InsertedValues.insert(PN); 970 971 return PN; 972} 973 974Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) { 975 const Type *STy = S->getType(); 976 const Type *IntTy = SE.getEffectiveSCEVType(STy); 977 const Loop *L = S->getLoop(); 978 979 // Determine a normalized form of this expression, which is the expression 980 // before any post-inc adjustment is made. 981 const SCEVAddRecExpr *Normalized = S; 982 if (PostIncLoops.count(L)) { 983 PostIncLoopSet Loops; 984 Loops.insert(L); 985 Normalized = 986 cast<SCEVAddRecExpr>(TransformForPostIncUse(Normalize, S, 0, 0, 987 Loops, SE, *SE.DT)); 988 } 989 990 // Strip off any non-loop-dominating component from the addrec start. 991 const SCEV *Start = Normalized->getStart(); 992 const SCEV *PostLoopOffset = 0; 993 if (!Start->properlyDominates(L->getHeader(), SE.DT)) { 994 PostLoopOffset = Start; 995 Start = SE.getConstant(Normalized->getType(), 0); 996 Normalized = 997 cast<SCEVAddRecExpr>(SE.getAddRecExpr(Start, 998 Normalized->getStepRecurrence(SE), 999 Normalized->getLoop())); 1000 } 1001 1002 // Strip off any non-loop-dominating component from the addrec step. 1003 const SCEV *Step = Normalized->getStepRecurrence(SE); 1004 const SCEV *PostLoopScale = 0; 1005 if (!Step->dominates(L->getHeader(), SE.DT)) { 1006 PostLoopScale = Step; 1007 Step = SE.getConstant(Normalized->getType(), 1); 1008 Normalized = 1009 cast<SCEVAddRecExpr>(SE.getAddRecExpr(Start, Step, 1010 Normalized->getLoop())); 1011 } 1012 1013 // Expand the core addrec. If we need post-loop scaling, force it to 1014 // expand to an integer type to avoid the need for additional casting. 1015 const Type *ExpandTy = PostLoopScale ? IntTy : STy; 1016 PHINode *PN = getAddRecExprPHILiterally(Normalized, L, ExpandTy, IntTy); 1017 1018 // Accommodate post-inc mode, if necessary. 1019 Value *Result; 1020 if (!PostIncLoops.count(L)) 1021 Result = PN; 1022 else { 1023 // In PostInc mode, use the post-incremented value. 1024 BasicBlock *LatchBlock = L->getLoopLatch(); 1025 assert(LatchBlock && "PostInc mode requires a unique loop latch!"); 1026 Result = PN->getIncomingValueForBlock(LatchBlock); 1027 } 1028 1029 // Re-apply any non-loop-dominating scale. 1030 if (PostLoopScale) { 1031 Result = InsertNoopCastOfTo(Result, IntTy); 1032 Result = Builder.CreateMul(Result, 1033 expandCodeFor(PostLoopScale, IntTy)); 1034 rememberInstruction(Result); 1035 } 1036 1037 // Re-apply any non-loop-dominating offset. 1038 if (PostLoopOffset) { 1039 if (const PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) { 1040 const SCEV *const OffsetArray[1] = { PostLoopOffset }; 1041 Result = expandAddToGEP(OffsetArray, OffsetArray+1, PTy, IntTy, Result); 1042 } else { 1043 Result = InsertNoopCastOfTo(Result, IntTy); 1044 Result = Builder.CreateAdd(Result, 1045 expandCodeFor(PostLoopOffset, IntTy)); 1046 rememberInstruction(Result); 1047 } 1048 } 1049 1050 return Result; 1051} 1052 1053Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) { 1054 if (!CanonicalMode) return expandAddRecExprLiterally(S); 1055 1056 const Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1057 const Loop *L = S->getLoop(); 1058 1059 // First check for an existing canonical IV in a suitable type. 1060 PHINode *CanonicalIV = 0; 1061 if (PHINode *PN = L->getCanonicalInductionVariable()) 1062 if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty)) 1063 CanonicalIV = PN; 1064 1065 // Rewrite an AddRec in terms of the canonical induction variable, if 1066 // its type is more narrow. 1067 if (CanonicalIV && 1068 SE.getTypeSizeInBits(CanonicalIV->getType()) > 1069 SE.getTypeSizeInBits(Ty)) { 1070 SmallVector<const SCEV *, 4> NewOps(S->getNumOperands()); 1071 for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i) 1072 NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType()); 1073 Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop())); 1074 BasicBlock *SaveInsertBB = Builder.GetInsertBlock(); 1075 BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint(); 1076 BasicBlock::iterator NewInsertPt = 1077 llvm::next(BasicBlock::iterator(cast<Instruction>(V))); 1078 while (isa<PHINode>(NewInsertPt) || isa<DbgInfoIntrinsic>(NewInsertPt)) 1079 ++NewInsertPt; 1080 V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), 0, 1081 NewInsertPt); 1082 restoreInsertPoint(SaveInsertBB, SaveInsertPt); 1083 return V; 1084 } 1085 1086 // {X,+,F} --> X + {0,+,F} 1087 if (!S->getStart()->isZero()) { 1088 SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end()); 1089 NewOps[0] = SE.getConstant(Ty, 0); 1090 const SCEV *Rest = SE.getAddRecExpr(NewOps, L); 1091 1092 // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the 1093 // comments on expandAddToGEP for details. 1094 const SCEV *Base = S->getStart(); 1095 const SCEV *RestArray[1] = { Rest }; 1096 // Dig into the expression to find the pointer base for a GEP. 1097 ExposePointerBase(Base, RestArray[0], SE); 1098 // If we found a pointer, expand the AddRec with a GEP. 1099 if (const PointerType *PTy = dyn_cast<PointerType>(Base->getType())) { 1100 // Make sure the Base isn't something exotic, such as a multiplied 1101 // or divided pointer value. In those cases, the result type isn't 1102 // actually a pointer type. 1103 if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) { 1104 Value *StartV = expand(Base); 1105 assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!"); 1106 return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV); 1107 } 1108 } 1109 1110 // Just do a normal add. Pre-expand the operands to suppress folding. 1111 return expand(SE.getAddExpr(SE.getUnknown(expand(S->getStart())), 1112 SE.getUnknown(expand(Rest)))); 1113 } 1114 1115 // If we don't yet have a canonical IV, create one. 1116 if (!CanonicalIV) { 1117 // Create and insert the PHI node for the induction variable in the 1118 // specified loop. 1119 BasicBlock *Header = L->getHeader(); 1120 CanonicalIV = PHINode::Create(Ty, "indvar", Header->begin()); 1121 rememberInstruction(CanonicalIV); 1122 1123 Constant *One = ConstantInt::get(Ty, 1); 1124 for (pred_iterator HPI = pred_begin(Header), HPE = pred_end(Header); 1125 HPI != HPE; ++HPI) { 1126 BasicBlock *HP = *HPI; 1127 if (L->contains(HP)) { 1128 // Insert a unit add instruction right before the terminator 1129 // corresponding to the back-edge. 1130 Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One, 1131 "indvar.next", 1132 HP->getTerminator()); 1133 rememberInstruction(Add); 1134 CanonicalIV->addIncoming(Add, HP); 1135 } else { 1136 CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP); 1137 } 1138 } 1139 } 1140 1141 // {0,+,1} --> Insert a canonical induction variable into the loop! 1142 if (S->isAffine() && S->getOperand(1)->isOne()) { 1143 assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) && 1144 "IVs with types different from the canonical IV should " 1145 "already have been handled!"); 1146 return CanonicalIV; 1147 } 1148 1149 // {0,+,F} --> {0,+,1} * F 1150 1151 // If this is a simple linear addrec, emit it now as a special case. 1152 if (S->isAffine()) // {0,+,F} --> i*F 1153 return 1154 expand(SE.getTruncateOrNoop( 1155 SE.getMulExpr(SE.getUnknown(CanonicalIV), 1156 SE.getNoopOrAnyExtend(S->getOperand(1), 1157 CanonicalIV->getType())), 1158 Ty)); 1159 1160 // If this is a chain of recurrences, turn it into a closed form, using the 1161 // folders, then expandCodeFor the closed form. This allows the folders to 1162 // simplify the expression without having to build a bunch of special code 1163 // into this folder. 1164 const SCEV *IH = SE.getUnknown(CanonicalIV); // Get I as a "symbolic" SCEV. 1165 1166 // Promote S up to the canonical IV type, if the cast is foldable. 1167 const SCEV *NewS = S; 1168 const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType()); 1169 if (isa<SCEVAddRecExpr>(Ext)) 1170 NewS = Ext; 1171 1172 const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE); 1173 //cerr << "Evaluated: " << *this << "\n to: " << *V << "\n"; 1174 1175 // Truncate the result down to the original type, if needed. 1176 const SCEV *T = SE.getTruncateOrNoop(V, Ty); 1177 return expand(T); 1178} 1179 1180Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) { 1181 const Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1182 Value *V = expandCodeFor(S->getOperand(), 1183 SE.getEffectiveSCEVType(S->getOperand()->getType())); 1184 Value *I = Builder.CreateTrunc(V, Ty, "tmp"); 1185 rememberInstruction(I); 1186 return I; 1187} 1188 1189Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) { 1190 const Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1191 Value *V = expandCodeFor(S->getOperand(), 1192 SE.getEffectiveSCEVType(S->getOperand()->getType())); 1193 Value *I = Builder.CreateZExt(V, Ty, "tmp"); 1194 rememberInstruction(I); 1195 return I; 1196} 1197 1198Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) { 1199 const Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1200 Value *V = expandCodeFor(S->getOperand(), 1201 SE.getEffectiveSCEVType(S->getOperand()->getType())); 1202 Value *I = Builder.CreateSExt(V, Ty, "tmp"); 1203 rememberInstruction(I); 1204 return I; 1205} 1206 1207Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) { 1208 Value *LHS = expand(S->getOperand(S->getNumOperands()-1)); 1209 const Type *Ty = LHS->getType(); 1210 for (int i = S->getNumOperands()-2; i >= 0; --i) { 1211 // In the case of mixed integer and pointer types, do the 1212 // rest of the comparisons as integer. 1213 if (S->getOperand(i)->getType() != Ty) { 1214 Ty = SE.getEffectiveSCEVType(Ty); 1215 LHS = InsertNoopCastOfTo(LHS, Ty); 1216 } 1217 Value *RHS = expandCodeFor(S->getOperand(i), Ty); 1218 Value *ICmp = Builder.CreateICmpSGT(LHS, RHS, "tmp"); 1219 rememberInstruction(ICmp); 1220 Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax"); 1221 rememberInstruction(Sel); 1222 LHS = Sel; 1223 } 1224 // In the case of mixed integer and pointer types, cast the 1225 // final result back to the pointer type. 1226 if (LHS->getType() != S->getType()) 1227 LHS = InsertNoopCastOfTo(LHS, S->getType()); 1228 return LHS; 1229} 1230 1231Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) { 1232 Value *LHS = expand(S->getOperand(S->getNumOperands()-1)); 1233 const Type *Ty = LHS->getType(); 1234 for (int i = S->getNumOperands()-2; i >= 0; --i) { 1235 // In the case of mixed integer and pointer types, do the 1236 // rest of the comparisons as integer. 1237 if (S->getOperand(i)->getType() != Ty) { 1238 Ty = SE.getEffectiveSCEVType(Ty); 1239 LHS = InsertNoopCastOfTo(LHS, Ty); 1240 } 1241 Value *RHS = expandCodeFor(S->getOperand(i), Ty); 1242 Value *ICmp = Builder.CreateICmpUGT(LHS, RHS, "tmp"); 1243 rememberInstruction(ICmp); 1244 Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax"); 1245 rememberInstruction(Sel); 1246 LHS = Sel; 1247 } 1248 // In the case of mixed integer and pointer types, cast the 1249 // final result back to the pointer type. 1250 if (LHS->getType() != S->getType()) 1251 LHS = InsertNoopCastOfTo(LHS, S->getType()); 1252 return LHS; 1253} 1254 1255Value *SCEVExpander::expandCodeFor(const SCEV *SH, const Type *Ty, 1256 Instruction *I) { 1257 BasicBlock::iterator IP = I; 1258 while (isInsertedInstruction(IP) || isa<DbgInfoIntrinsic>(IP)) 1259 ++IP; 1260 Builder.SetInsertPoint(IP->getParent(), IP); 1261 return expandCodeFor(SH, Ty); 1262} 1263 1264Value *SCEVExpander::expandCodeFor(const SCEV *SH, const Type *Ty) { 1265 // Expand the code for this SCEV. 1266 Value *V = expand(SH); 1267 if (Ty) { 1268 assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) && 1269 "non-trivial casts should be done with the SCEVs directly!"); 1270 V = InsertNoopCastOfTo(V, Ty); 1271 } 1272 return V; 1273} 1274 1275Value *SCEVExpander::expand(const SCEV *S) { 1276 // Compute an insertion point for this SCEV object. Hoist the instructions 1277 // as far out in the loop nest as possible. 1278 Instruction *InsertPt = Builder.GetInsertPoint(); 1279 for (Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock()); ; 1280 L = L->getParentLoop()) 1281 if (SE.isLoopInvariant(S, L)) { 1282 if (!L) break; 1283 if (BasicBlock *Preheader = L->getLoopPreheader()) 1284 InsertPt = Preheader->getTerminator(); 1285 } else { 1286 // If the SCEV is computable at this level, insert it into the header 1287 // after the PHIs (and after any other instructions that we've inserted 1288 // there) so that it is guaranteed to dominate any user inside the loop. 1289 if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L)) 1290 InsertPt = L->getHeader()->getFirstNonPHI(); 1291 while (isInsertedInstruction(InsertPt) || isa<DbgInfoIntrinsic>(InsertPt)) 1292 InsertPt = llvm::next(BasicBlock::iterator(InsertPt)); 1293 break; 1294 } 1295 1296 // Check to see if we already expanded this here. 1297 std::map<std::pair<const SCEV *, Instruction *>, 1298 AssertingVH<Value> >::iterator I = 1299 InsertedExpressions.find(std::make_pair(S, InsertPt)); 1300 if (I != InsertedExpressions.end()) 1301 return I->second; 1302 1303 BasicBlock *SaveInsertBB = Builder.GetInsertBlock(); 1304 BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint(); 1305 Builder.SetInsertPoint(InsertPt->getParent(), InsertPt); 1306 1307 // Expand the expression into instructions. 1308 Value *V = visit(S); 1309 1310 // Remember the expanded value for this SCEV at this location. 1311 if (PostIncLoops.empty()) 1312 InsertedExpressions[std::make_pair(S, InsertPt)] = V; 1313 1314 restoreInsertPoint(SaveInsertBB, SaveInsertPt); 1315 return V; 1316} 1317 1318void SCEVExpander::rememberInstruction(Value *I) { 1319 if (!PostIncLoops.empty()) 1320 InsertedPostIncValues.insert(I); 1321 else 1322 InsertedValues.insert(I); 1323 1324 // If we just claimed an existing instruction and that instruction had 1325 // been the insert point, adjust the insert point forward so that 1326 // subsequently inserted code will be dominated. 1327 if (Builder.GetInsertPoint() == I) { 1328 BasicBlock::iterator It = cast<Instruction>(I); 1329 do { ++It; } while (isInsertedInstruction(It) || 1330 isa<DbgInfoIntrinsic>(It)); 1331 Builder.SetInsertPoint(Builder.GetInsertBlock(), It); 1332 } 1333} 1334 1335void SCEVExpander::restoreInsertPoint(BasicBlock *BB, BasicBlock::iterator I) { 1336 // If we acquired more instructions since the old insert point was saved, 1337 // advance past them. 1338 while (isInsertedInstruction(I) || isa<DbgInfoIntrinsic>(I)) ++I; 1339 1340 Builder.SetInsertPoint(BB, I); 1341} 1342 1343/// getOrInsertCanonicalInductionVariable - This method returns the 1344/// canonical induction variable of the specified type for the specified 1345/// loop (inserting one if there is none). A canonical induction variable 1346/// starts at zero and steps by one on each iteration. 1347PHINode * 1348SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L, 1349 const Type *Ty) { 1350 assert(Ty->isIntegerTy() && "Can only insert integer induction variables!"); 1351 1352 // Build a SCEV for {0,+,1}<L>. 1353 const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0), 1354 SE.getConstant(Ty, 1), L); 1355 1356 // Emit code for it. 1357 BasicBlock *SaveInsertBB = Builder.GetInsertBlock(); 1358 BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint(); 1359 PHINode *V = cast<PHINode>(expandCodeFor(H, 0, L->getHeader()->begin())); 1360 if (SaveInsertBB) 1361 restoreInsertPoint(SaveInsertBB, SaveInsertPt); 1362 1363 return V; 1364} 1365