ScalarEvolutionExpander.cpp revision 17ead4ff4baceb2c5503f233d0288d363ae44165
1//===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution expander,
11// which is used to generate the code corresponding to a given scalar evolution
12// expression.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/ScalarEvolutionExpander.h"
17#include "llvm/Analysis/LoopInfo.h"
18#include "llvm/IntrinsicInst.h"
19#include "llvm/LLVMContext.h"
20#include "llvm/Target/TargetData.h"
21#include "llvm/ADT/STLExtras.h"
22using namespace llvm;
23
24/// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
25/// reusing an existing cast if a suitable one exists, moving an existing
26/// cast if a suitable one exists but isn't in the right place, or
27/// creating a new one.
28Value *SCEVExpander::ReuseOrCreateCast(Value *V, const Type *Ty,
29                                       Instruction::CastOps Op,
30                                       BasicBlock::iterator IP) {
31  // Check to see if there is already a cast!
32  for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
33       UI != E; ++UI) {
34    User *U = *UI;
35    if (U->getType() == Ty)
36      if (CastInst *CI = dyn_cast<CastInst>(U))
37        if (CI->getOpcode() == Op) {
38          // If the cast isn't where we want it, fix it.
39          if (BasicBlock::iterator(CI) != IP) {
40            // Create a new cast, and leave the old cast in place in case
41            // it is being used as an insert point. Clear its operand
42            // so that it doesn't hold anything live.
43            Instruction *NewCI = CastInst::Create(Op, V, Ty, "", IP);
44            NewCI->takeName(CI);
45            CI->replaceAllUsesWith(NewCI);
46            CI->setOperand(0, UndefValue::get(V->getType()));
47            rememberInstruction(NewCI);
48            return NewCI;
49          }
50          rememberInstruction(CI);
51          return CI;
52        }
53  }
54
55  // Create a new cast.
56  Instruction *I = CastInst::Create(Op, V, Ty, V->getName(), IP);
57  rememberInstruction(I);
58  return I;
59}
60
61/// InsertNoopCastOfTo - Insert a cast of V to the specified type,
62/// which must be possible with a noop cast, doing what we can to share
63/// the casts.
64Value *SCEVExpander::InsertNoopCastOfTo(Value *V, const Type *Ty) {
65  Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
66  assert((Op == Instruction::BitCast ||
67          Op == Instruction::PtrToInt ||
68          Op == Instruction::IntToPtr) &&
69         "InsertNoopCastOfTo cannot perform non-noop casts!");
70  assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
71         "InsertNoopCastOfTo cannot change sizes!");
72
73  // Short-circuit unnecessary bitcasts.
74  if (Op == Instruction::BitCast && V->getType() == Ty)
75    return V;
76
77  // Short-circuit unnecessary inttoptr<->ptrtoint casts.
78  if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
79      SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
80    if (CastInst *CI = dyn_cast<CastInst>(V))
81      if ((CI->getOpcode() == Instruction::PtrToInt ||
82           CI->getOpcode() == Instruction::IntToPtr) &&
83          SE.getTypeSizeInBits(CI->getType()) ==
84          SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
85        return CI->getOperand(0);
86    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
87      if ((CE->getOpcode() == Instruction::PtrToInt ||
88           CE->getOpcode() == Instruction::IntToPtr) &&
89          SE.getTypeSizeInBits(CE->getType()) ==
90          SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
91        return CE->getOperand(0);
92  }
93
94  // Fold a cast of a constant.
95  if (Constant *C = dyn_cast<Constant>(V))
96    return ConstantExpr::getCast(Op, C, Ty);
97
98  // Cast the argument at the beginning of the entry block, after
99  // any bitcasts of other arguments.
100  if (Argument *A = dyn_cast<Argument>(V)) {
101    BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
102    while ((isa<BitCastInst>(IP) &&
103            isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
104            cast<BitCastInst>(IP)->getOperand(0) != A) ||
105           isa<DbgInfoIntrinsic>(IP))
106      ++IP;
107    return ReuseOrCreateCast(A, Ty, Op, IP);
108  }
109
110  // Cast the instruction immediately after the instruction.
111  Instruction *I = cast<Instruction>(V);
112  BasicBlock::iterator IP = I; ++IP;
113  if (InvokeInst *II = dyn_cast<InvokeInst>(I))
114    IP = II->getNormalDest()->begin();
115  while (isa<PHINode>(IP) || isa<DbgInfoIntrinsic>(IP)) ++IP;
116  return ReuseOrCreateCast(I, Ty, Op, IP);
117}
118
119/// InsertBinop - Insert the specified binary operator, doing a small amount
120/// of work to avoid inserting an obviously redundant operation.
121Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
122                                 Value *LHS, Value *RHS) {
123  // Fold a binop with constant operands.
124  if (Constant *CLHS = dyn_cast<Constant>(LHS))
125    if (Constant *CRHS = dyn_cast<Constant>(RHS))
126      return ConstantExpr::get(Opcode, CLHS, CRHS);
127
128  // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
129  unsigned ScanLimit = 6;
130  BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
131  // Scanning starts from the last instruction before the insertion point.
132  BasicBlock::iterator IP = Builder.GetInsertPoint();
133  if (IP != BlockBegin) {
134    --IP;
135    for (; ScanLimit; --IP, --ScanLimit) {
136      // Don't count dbg.value against the ScanLimit, to avoid perturbing the
137      // generated code.
138      if (isa<DbgInfoIntrinsic>(IP))
139        ScanLimit++;
140      if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
141          IP->getOperand(1) == RHS)
142        return IP;
143      if (IP == BlockBegin) break;
144    }
145  }
146
147  // Save the original insertion point so we can restore it when we're done.
148  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
149  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
150
151  // Move the insertion point out of as many loops as we can.
152  while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
153    if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
154    BasicBlock *Preheader = L->getLoopPreheader();
155    if (!Preheader) break;
156
157    // Ok, move up a level.
158    Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
159  }
160
161  // If we haven't found this binop, insert it.
162  Value *BO = Builder.CreateBinOp(Opcode, LHS, RHS, "tmp");
163  rememberInstruction(BO);
164
165  // Restore the original insert point.
166  if (SaveInsertBB)
167    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
168
169  return BO;
170}
171
172/// FactorOutConstant - Test if S is divisible by Factor, using signed
173/// division. If so, update S with Factor divided out and return true.
174/// S need not be evenly divisible if a reasonable remainder can be
175/// computed.
176/// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
177/// unnecessary; in its place, just signed-divide Ops[i] by the scale and
178/// check to see if the divide was folded.
179static bool FactorOutConstant(const SCEV *&S,
180                              const SCEV *&Remainder,
181                              const SCEV *Factor,
182                              ScalarEvolution &SE,
183                              const TargetData *TD) {
184  // Everything is divisible by one.
185  if (Factor->isOne())
186    return true;
187
188  // x/x == 1.
189  if (S == Factor) {
190    S = SE.getConstant(S->getType(), 1);
191    return true;
192  }
193
194  // For a Constant, check for a multiple of the given factor.
195  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
196    // 0/x == 0.
197    if (C->isZero())
198      return true;
199    // Check for divisibility.
200    if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
201      ConstantInt *CI =
202        ConstantInt::get(SE.getContext(),
203                         C->getValue()->getValue().sdiv(
204                                                   FC->getValue()->getValue()));
205      // If the quotient is zero and the remainder is non-zero, reject
206      // the value at this scale. It will be considered for subsequent
207      // smaller scales.
208      if (!CI->isZero()) {
209        const SCEV *Div = SE.getConstant(CI);
210        S = Div;
211        Remainder =
212          SE.getAddExpr(Remainder,
213                        SE.getConstant(C->getValue()->getValue().srem(
214                                                  FC->getValue()->getValue())));
215        return true;
216      }
217    }
218  }
219
220  // In a Mul, check if there is a constant operand which is a multiple
221  // of the given factor.
222  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
223    if (TD) {
224      // With TargetData, the size is known. Check if there is a constant
225      // operand which is a multiple of the given factor. If so, we can
226      // factor it.
227      const SCEVConstant *FC = cast<SCEVConstant>(Factor);
228      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
229        if (!C->getValue()->getValue().srem(FC->getValue()->getValue())) {
230          SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
231          NewMulOps[0] =
232            SE.getConstant(C->getValue()->getValue().sdiv(
233                                                   FC->getValue()->getValue()));
234          S = SE.getMulExpr(NewMulOps);
235          return true;
236        }
237    } else {
238      // Without TargetData, check if Factor can be factored out of any of the
239      // Mul's operands. If so, we can just remove it.
240      for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
241        const SCEV *SOp = M->getOperand(i);
242        const SCEV *Remainder = SE.getConstant(SOp->getType(), 0);
243        if (FactorOutConstant(SOp, Remainder, Factor, SE, TD) &&
244            Remainder->isZero()) {
245          SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
246          NewMulOps[i] = SOp;
247          S = SE.getMulExpr(NewMulOps);
248          return true;
249        }
250      }
251    }
252  }
253
254  // In an AddRec, check if both start and step are divisible.
255  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
256    const SCEV *Step = A->getStepRecurrence(SE);
257    const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
258    if (!FactorOutConstant(Step, StepRem, Factor, SE, TD))
259      return false;
260    if (!StepRem->isZero())
261      return false;
262    const SCEV *Start = A->getStart();
263    if (!FactorOutConstant(Start, Remainder, Factor, SE, TD))
264      return false;
265    S = SE.getAddRecExpr(Start, Step, A->getLoop());
266    return true;
267  }
268
269  return false;
270}
271
272/// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
273/// is the number of SCEVAddRecExprs present, which are kept at the end of
274/// the list.
275///
276static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
277                                const Type *Ty,
278                                ScalarEvolution &SE) {
279  unsigned NumAddRecs = 0;
280  for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
281    ++NumAddRecs;
282  // Group Ops into non-addrecs and addrecs.
283  SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
284  SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
285  // Let ScalarEvolution sort and simplify the non-addrecs list.
286  const SCEV *Sum = NoAddRecs.empty() ?
287                    SE.getConstant(Ty, 0) :
288                    SE.getAddExpr(NoAddRecs);
289  // If it returned an add, use the operands. Otherwise it simplified
290  // the sum into a single value, so just use that.
291  Ops.clear();
292  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
293    Ops.append(Add->op_begin(), Add->op_end());
294  else if (!Sum->isZero())
295    Ops.push_back(Sum);
296  // Then append the addrecs.
297  Ops.append(AddRecs.begin(), AddRecs.end());
298}
299
300/// SplitAddRecs - Flatten a list of add operands, moving addrec start values
301/// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
302/// This helps expose more opportunities for folding parts of the expressions
303/// into GEP indices.
304///
305static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
306                         const Type *Ty,
307                         ScalarEvolution &SE) {
308  // Find the addrecs.
309  SmallVector<const SCEV *, 8> AddRecs;
310  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
311    while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
312      const SCEV *Start = A->getStart();
313      if (Start->isZero()) break;
314      const SCEV *Zero = SE.getConstant(Ty, 0);
315      AddRecs.push_back(SE.getAddRecExpr(Zero,
316                                         A->getStepRecurrence(SE),
317                                         A->getLoop()));
318      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
319        Ops[i] = Zero;
320        Ops.append(Add->op_begin(), Add->op_end());
321        e += Add->getNumOperands();
322      } else {
323        Ops[i] = Start;
324      }
325    }
326  if (!AddRecs.empty()) {
327    // Add the addrecs onto the end of the list.
328    Ops.append(AddRecs.begin(), AddRecs.end());
329    // Resort the operand list, moving any constants to the front.
330    SimplifyAddOperands(Ops, Ty, SE);
331  }
332}
333
334/// expandAddToGEP - Expand an addition expression with a pointer type into
335/// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
336/// BasicAliasAnalysis and other passes analyze the result. See the rules
337/// for getelementptr vs. inttoptr in
338/// http://llvm.org/docs/LangRef.html#pointeraliasing
339/// for details.
340///
341/// Design note: The correctness of using getelementptr here depends on
342/// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
343/// they may introduce pointer arithmetic which may not be safely converted
344/// into getelementptr.
345///
346/// Design note: It might seem desirable for this function to be more
347/// loop-aware. If some of the indices are loop-invariant while others
348/// aren't, it might seem desirable to emit multiple GEPs, keeping the
349/// loop-invariant portions of the overall computation outside the loop.
350/// However, there are a few reasons this is not done here. Hoisting simple
351/// arithmetic is a low-level optimization that often isn't very
352/// important until late in the optimization process. In fact, passes
353/// like InstructionCombining will combine GEPs, even if it means
354/// pushing loop-invariant computation down into loops, so even if the
355/// GEPs were split here, the work would quickly be undone. The
356/// LoopStrengthReduction pass, which is usually run quite late (and
357/// after the last InstructionCombining pass), takes care of hoisting
358/// loop-invariant portions of expressions, after considering what
359/// can be folded using target addressing modes.
360///
361Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
362                                    const SCEV *const *op_end,
363                                    const PointerType *PTy,
364                                    const Type *Ty,
365                                    Value *V) {
366  const Type *ElTy = PTy->getElementType();
367  SmallVector<Value *, 4> GepIndices;
368  SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
369  bool AnyNonZeroIndices = false;
370
371  // Split AddRecs up into parts as either of the parts may be usable
372  // without the other.
373  SplitAddRecs(Ops, Ty, SE);
374
375  // Descend down the pointer's type and attempt to convert the other
376  // operands into GEP indices, at each level. The first index in a GEP
377  // indexes into the array implied by the pointer operand; the rest of
378  // the indices index into the element or field type selected by the
379  // preceding index.
380  for (;;) {
381    // If the scale size is not 0, attempt to factor out a scale for
382    // array indexing.
383    SmallVector<const SCEV *, 8> ScaledOps;
384    if (ElTy->isSized()) {
385      const SCEV *ElSize = SE.getSizeOfExpr(ElTy);
386      if (!ElSize->isZero()) {
387        SmallVector<const SCEV *, 8> NewOps;
388        for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
389          const SCEV *Op = Ops[i];
390          const SCEV *Remainder = SE.getConstant(Ty, 0);
391          if (FactorOutConstant(Op, Remainder, ElSize, SE, SE.TD)) {
392            // Op now has ElSize factored out.
393            ScaledOps.push_back(Op);
394            if (!Remainder->isZero())
395              NewOps.push_back(Remainder);
396            AnyNonZeroIndices = true;
397          } else {
398            // The operand was not divisible, so add it to the list of operands
399            // we'll scan next iteration.
400            NewOps.push_back(Ops[i]);
401          }
402        }
403        // If we made any changes, update Ops.
404        if (!ScaledOps.empty()) {
405          Ops = NewOps;
406          SimplifyAddOperands(Ops, Ty, SE);
407        }
408      }
409    }
410
411    // Record the scaled array index for this level of the type. If
412    // we didn't find any operands that could be factored, tentatively
413    // assume that element zero was selected (since the zero offset
414    // would obviously be folded away).
415    Value *Scaled = ScaledOps.empty() ?
416                    Constant::getNullValue(Ty) :
417                    expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
418    GepIndices.push_back(Scaled);
419
420    // Collect struct field index operands.
421    while (const StructType *STy = dyn_cast<StructType>(ElTy)) {
422      bool FoundFieldNo = false;
423      // An empty struct has no fields.
424      if (STy->getNumElements() == 0) break;
425      if (SE.TD) {
426        // With TargetData, field offsets are known. See if a constant offset
427        // falls within any of the struct fields.
428        if (Ops.empty()) break;
429        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
430          if (SE.getTypeSizeInBits(C->getType()) <= 64) {
431            const StructLayout &SL = *SE.TD->getStructLayout(STy);
432            uint64_t FullOffset = C->getValue()->getZExtValue();
433            if (FullOffset < SL.getSizeInBytes()) {
434              unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
435              GepIndices.push_back(
436                  ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
437              ElTy = STy->getTypeAtIndex(ElIdx);
438              Ops[0] =
439                SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
440              AnyNonZeroIndices = true;
441              FoundFieldNo = true;
442            }
443          }
444      } else {
445        // Without TargetData, just check for an offsetof expression of the
446        // appropriate struct type.
447        for (unsigned i = 0, e = Ops.size(); i != e; ++i)
448          if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Ops[i])) {
449            const Type *CTy;
450            Constant *FieldNo;
451            if (U->isOffsetOf(CTy, FieldNo) && CTy == STy) {
452              GepIndices.push_back(FieldNo);
453              ElTy =
454                STy->getTypeAtIndex(cast<ConstantInt>(FieldNo)->getZExtValue());
455              Ops[i] = SE.getConstant(Ty, 0);
456              AnyNonZeroIndices = true;
457              FoundFieldNo = true;
458              break;
459            }
460          }
461      }
462      // If no struct field offsets were found, tentatively assume that
463      // field zero was selected (since the zero offset would obviously
464      // be folded away).
465      if (!FoundFieldNo) {
466        ElTy = STy->getTypeAtIndex(0u);
467        GepIndices.push_back(
468          Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
469      }
470    }
471
472    if (const ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
473      ElTy = ATy->getElementType();
474    else
475      break;
476  }
477
478  // If none of the operands were convertible to proper GEP indices, cast
479  // the base to i8* and do an ugly getelementptr with that. It's still
480  // better than ptrtoint+arithmetic+inttoptr at least.
481  if (!AnyNonZeroIndices) {
482    // Cast the base to i8*.
483    V = InsertNoopCastOfTo(V,
484       Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
485
486    // Expand the operands for a plain byte offset.
487    Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
488
489    // Fold a GEP with constant operands.
490    if (Constant *CLHS = dyn_cast<Constant>(V))
491      if (Constant *CRHS = dyn_cast<Constant>(Idx))
492        return ConstantExpr::getGetElementPtr(CLHS, &CRHS, 1);
493
494    // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
495    unsigned ScanLimit = 6;
496    BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
497    // Scanning starts from the last instruction before the insertion point.
498    BasicBlock::iterator IP = Builder.GetInsertPoint();
499    if (IP != BlockBegin) {
500      --IP;
501      for (; ScanLimit; --IP, --ScanLimit) {
502        // Don't count dbg.value against the ScanLimit, to avoid perturbing the
503        // generated code.
504        if (isa<DbgInfoIntrinsic>(IP))
505          ScanLimit++;
506        if (IP->getOpcode() == Instruction::GetElementPtr &&
507            IP->getOperand(0) == V && IP->getOperand(1) == Idx)
508          return IP;
509        if (IP == BlockBegin) break;
510      }
511    }
512
513    // Save the original insertion point so we can restore it when we're done.
514    BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
515    BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
516
517    // Move the insertion point out of as many loops as we can.
518    while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
519      if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
520      BasicBlock *Preheader = L->getLoopPreheader();
521      if (!Preheader) break;
522
523      // Ok, move up a level.
524      Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
525    }
526
527    // Emit a GEP.
528    Value *GEP = Builder.CreateGEP(V, Idx, "uglygep");
529    rememberInstruction(GEP);
530
531    // Restore the original insert point.
532    if (SaveInsertBB)
533      restoreInsertPoint(SaveInsertBB, SaveInsertPt);
534
535    return GEP;
536  }
537
538  // Save the original insertion point so we can restore it when we're done.
539  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
540  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
541
542  // Move the insertion point out of as many loops as we can.
543  while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
544    if (!L->isLoopInvariant(V)) break;
545
546    bool AnyIndexNotLoopInvariant = false;
547    for (SmallVectorImpl<Value *>::const_iterator I = GepIndices.begin(),
548         E = GepIndices.end(); I != E; ++I)
549      if (!L->isLoopInvariant(*I)) {
550        AnyIndexNotLoopInvariant = true;
551        break;
552      }
553    if (AnyIndexNotLoopInvariant)
554      break;
555
556    BasicBlock *Preheader = L->getLoopPreheader();
557    if (!Preheader) break;
558
559    // Ok, move up a level.
560    Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
561  }
562
563  // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
564  // because ScalarEvolution may have changed the address arithmetic to
565  // compute a value which is beyond the end of the allocated object.
566  Value *Casted = V;
567  if (V->getType() != PTy)
568    Casted = InsertNoopCastOfTo(Casted, PTy);
569  Value *GEP = Builder.CreateGEP(Casted,
570                                 GepIndices.begin(),
571                                 GepIndices.end(),
572                                 "scevgep");
573  Ops.push_back(SE.getUnknown(GEP));
574  rememberInstruction(GEP);
575
576  // Restore the original insert point.
577  if (SaveInsertBB)
578    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
579
580  return expand(SE.getAddExpr(Ops));
581}
582
583/// isNonConstantNegative - Return true if the specified scev is negated, but
584/// not a constant.
585static bool isNonConstantNegative(const SCEV *F) {
586  const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(F);
587  if (!Mul) return false;
588
589  // If there is a constant factor, it will be first.
590  const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
591  if (!SC) return false;
592
593  // Return true if the value is negative, this matches things like (-42 * V).
594  return SC->getValue()->getValue().isNegative();
595}
596
597/// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
598/// SCEV expansion. If they are nested, this is the most nested. If they are
599/// neighboring, pick the later.
600static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
601                                        DominatorTree &DT) {
602  if (!A) return B;
603  if (!B) return A;
604  if (A->contains(B)) return B;
605  if (B->contains(A)) return A;
606  if (DT.dominates(A->getHeader(), B->getHeader())) return B;
607  if (DT.dominates(B->getHeader(), A->getHeader())) return A;
608  return A; // Arbitrarily break the tie.
609}
610
611/// GetRelevantLoop - Get the most relevant loop associated with the given
612/// expression, according to PickMostRelevantLoop.
613static const Loop *GetRelevantLoop(const SCEV *S, LoopInfo &LI,
614                                   DominatorTree &DT) {
615  if (isa<SCEVConstant>(S))
616    return 0;
617  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
618    if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
619      return LI.getLoopFor(I->getParent());
620    return 0;
621  }
622  if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
623    const Loop *L = 0;
624    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
625      L = AR->getLoop();
626    for (SCEVNAryExpr::op_iterator I = N->op_begin(), E = N->op_end();
627         I != E; ++I)
628      L = PickMostRelevantLoop(L, GetRelevantLoop(*I, LI, DT), DT);
629    return L;
630  }
631  if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
632    return GetRelevantLoop(C->getOperand(), LI, DT);
633  if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S))
634    return PickMostRelevantLoop(GetRelevantLoop(D->getLHS(), LI, DT),
635                                GetRelevantLoop(D->getRHS(), LI, DT),
636                                DT);
637  llvm_unreachable("Unexpected SCEV type!");
638}
639
640namespace {
641
642/// LoopCompare - Compare loops by PickMostRelevantLoop.
643class LoopCompare {
644  DominatorTree &DT;
645public:
646  explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
647
648  bool operator()(std::pair<const Loop *, const SCEV *> LHS,
649                  std::pair<const Loop *, const SCEV *> RHS) const {
650    // Keep pointer operands sorted at the end.
651    if (LHS.second->getType()->isPointerTy() !=
652        RHS.second->getType()->isPointerTy())
653      return LHS.second->getType()->isPointerTy();
654
655    // Compare loops with PickMostRelevantLoop.
656    if (LHS.first != RHS.first)
657      return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
658
659    // If one operand is a non-constant negative and the other is not,
660    // put the non-constant negative on the right so that a sub can
661    // be used instead of a negate and add.
662    if (isNonConstantNegative(LHS.second)) {
663      if (!isNonConstantNegative(RHS.second))
664        return false;
665    } else if (isNonConstantNegative(RHS.second))
666      return true;
667
668    // Otherwise they are equivalent according to this comparison.
669    return false;
670  }
671};
672
673}
674
675Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
676  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
677
678  // Collect all the add operands in a loop, along with their associated loops.
679  // Iterate in reverse so that constants are emitted last, all else equal, and
680  // so that pointer operands are inserted first, which the code below relies on
681  // to form more involved GEPs.
682  SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
683  for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
684       E(S->op_begin()); I != E; ++I)
685    OpsAndLoops.push_back(std::make_pair(GetRelevantLoop(*I, *SE.LI, *SE.DT),
686                                         *I));
687
688  // Sort by loop. Use a stable sort so that constants follow non-constants and
689  // pointer operands precede non-pointer operands.
690  std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
691
692  // Emit instructions to add all the operands. Hoist as much as possible
693  // out of loops, and form meaningful getelementptrs where possible.
694  Value *Sum = 0;
695  for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
696       I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
697    const Loop *CurLoop = I->first;
698    const SCEV *Op = I->second;
699    if (!Sum) {
700      // This is the first operand. Just expand it.
701      Sum = expand(Op);
702      ++I;
703    } else if (const PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
704      // The running sum expression is a pointer. Try to form a getelementptr
705      // at this level with that as the base.
706      SmallVector<const SCEV *, 4> NewOps;
707      for (; I != E && I->first == CurLoop; ++I) {
708        // If the operand is SCEVUnknown and not instructions, peek through
709        // it, to enable more of it to be folded into the GEP.
710        const SCEV *X = I->second;
711        if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
712          if (!isa<Instruction>(U->getValue()))
713            X = SE.getSCEV(U->getValue());
714        NewOps.push_back(X);
715      }
716      Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
717    } else if (const PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
718      // The running sum is an integer, and there's a pointer at this level.
719      // Try to form a getelementptr. If the running sum is instructions,
720      // use a SCEVUnknown to avoid re-analyzing them.
721      SmallVector<const SCEV *, 4> NewOps;
722      NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
723                                               SE.getSCEV(Sum));
724      for (++I; I != E && I->first == CurLoop; ++I)
725        NewOps.push_back(I->second);
726      Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
727    } else if (isNonConstantNegative(Op)) {
728      // Instead of doing a negate and add, just do a subtract.
729      Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
730      Sum = InsertNoopCastOfTo(Sum, Ty);
731      Sum = InsertBinop(Instruction::Sub, Sum, W);
732      ++I;
733    } else {
734      // A simple add.
735      Value *W = expandCodeFor(Op, Ty);
736      Sum = InsertNoopCastOfTo(Sum, Ty);
737      // Canonicalize a constant to the RHS.
738      if (isa<Constant>(Sum)) std::swap(Sum, W);
739      Sum = InsertBinop(Instruction::Add, Sum, W);
740      ++I;
741    }
742  }
743
744  return Sum;
745}
746
747Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
748  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
749
750  // Collect all the mul operands in a loop, along with their associated loops.
751  // Iterate in reverse so that constants are emitted last, all else equal.
752  SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
753  for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
754       E(S->op_begin()); I != E; ++I)
755    OpsAndLoops.push_back(std::make_pair(GetRelevantLoop(*I, *SE.LI, *SE.DT),
756                                         *I));
757
758  // Sort by loop. Use a stable sort so that constants follow non-constants.
759  std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
760
761  // Emit instructions to mul all the operands. Hoist as much as possible
762  // out of loops.
763  Value *Prod = 0;
764  for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
765       I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
766    const SCEV *Op = I->second;
767    if (!Prod) {
768      // This is the first operand. Just expand it.
769      Prod = expand(Op);
770      ++I;
771    } else if (Op->isAllOnesValue()) {
772      // Instead of doing a multiply by negative one, just do a negate.
773      Prod = InsertNoopCastOfTo(Prod, Ty);
774      Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod);
775      ++I;
776    } else {
777      // A simple mul.
778      Value *W = expandCodeFor(Op, Ty);
779      Prod = InsertNoopCastOfTo(Prod, Ty);
780      // Canonicalize a constant to the RHS.
781      if (isa<Constant>(Prod)) std::swap(Prod, W);
782      Prod = InsertBinop(Instruction::Mul, Prod, W);
783      ++I;
784    }
785  }
786
787  return Prod;
788}
789
790Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
791  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
792
793  Value *LHS = expandCodeFor(S->getLHS(), Ty);
794  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
795    const APInt &RHS = SC->getValue()->getValue();
796    if (RHS.isPowerOf2())
797      return InsertBinop(Instruction::LShr, LHS,
798                         ConstantInt::get(Ty, RHS.logBase2()));
799  }
800
801  Value *RHS = expandCodeFor(S->getRHS(), Ty);
802  return InsertBinop(Instruction::UDiv, LHS, RHS);
803}
804
805/// Move parts of Base into Rest to leave Base with the minimal
806/// expression that provides a pointer operand suitable for a
807/// GEP expansion.
808static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
809                              ScalarEvolution &SE) {
810  while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
811    Base = A->getStart();
812    Rest = SE.getAddExpr(Rest,
813                         SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
814                                          A->getStepRecurrence(SE),
815                                          A->getLoop()));
816  }
817  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
818    Base = A->getOperand(A->getNumOperands()-1);
819    SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
820    NewAddOps.back() = Rest;
821    Rest = SE.getAddExpr(NewAddOps);
822    ExposePointerBase(Base, Rest, SE);
823  }
824}
825
826/// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
827/// the base addrec, which is the addrec without any non-loop-dominating
828/// values, and return the PHI.
829PHINode *
830SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
831                                        const Loop *L,
832                                        const Type *ExpandTy,
833                                        const Type *IntTy) {
834  // Reuse a previously-inserted PHI, if present.
835  for (BasicBlock::iterator I = L->getHeader()->begin();
836       PHINode *PN = dyn_cast<PHINode>(I); ++I)
837    if (SE.isSCEVable(PN->getType()) &&
838        (SE.getEffectiveSCEVType(PN->getType()) ==
839         SE.getEffectiveSCEVType(Normalized->getType())) &&
840        SE.getSCEV(PN) == Normalized)
841      if (BasicBlock *LatchBlock = L->getLoopLatch()) {
842        Instruction *IncV =
843          cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock));
844
845        // Determine if this is a well-behaved chain of instructions leading
846        // back to the PHI. It probably will be, if we're scanning an inner
847        // loop already visited by LSR for example, but it wouldn't have
848        // to be.
849        do {
850          if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV)) {
851            IncV = 0;
852            break;
853          }
854          // If any of the operands don't dominate the insert position, bail.
855          // Addrec operands are always loop-invariant, so this can only happen
856          // if there are instructions which haven't been hoisted.
857          for (User::op_iterator OI = IncV->op_begin()+1,
858               OE = IncV->op_end(); OI != OE; ++OI)
859            if (Instruction *OInst = dyn_cast<Instruction>(OI))
860              if (!SE.DT->dominates(OInst, IVIncInsertPos)) {
861                IncV = 0;
862                break;
863              }
864          if (!IncV)
865            break;
866          // Advance to the next instruction.
867          IncV = dyn_cast<Instruction>(IncV->getOperand(0));
868          if (!IncV)
869            break;
870          if (IncV->mayHaveSideEffects()) {
871            IncV = 0;
872            break;
873          }
874        } while (IncV != PN);
875
876        if (IncV) {
877          // Ok, the add recurrence looks usable.
878          // Remember this PHI, even in post-inc mode.
879          InsertedValues.insert(PN);
880          // Remember the increment.
881          IncV = cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock));
882          rememberInstruction(IncV);
883          if (L == IVIncInsertLoop)
884            do {
885              if (SE.DT->dominates(IncV, IVIncInsertPos))
886                break;
887              // Make sure the increment is where we want it. But don't move it
888              // down past a potential existing post-inc user.
889              IncV->moveBefore(IVIncInsertPos);
890              IVIncInsertPos = IncV;
891              IncV = cast<Instruction>(IncV->getOperand(0));
892            } while (IncV != PN);
893          return PN;
894        }
895      }
896
897  // Save the original insertion point so we can restore it when we're done.
898  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
899  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
900
901  // Expand code for the start value.
902  Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy,
903                                L->getHeader()->begin());
904
905  // Expand code for the step value. Insert instructions right before the
906  // terminator corresponding to the back-edge. Do this before creating the PHI
907  // so that PHI reuse code doesn't see an incomplete PHI. If the stride is
908  // negative, insert a sub instead of an add for the increment (unless it's a
909  // constant, because subtracts of constants are canonicalized to adds).
910  const SCEV *Step = Normalized->getStepRecurrence(SE);
911  bool isPointer = ExpandTy->isPointerTy();
912  bool isNegative = !isPointer && isNonConstantNegative(Step);
913  if (isNegative)
914    Step = SE.getNegativeSCEV(Step);
915  Value *StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin());
916
917  // Create the PHI.
918  Builder.SetInsertPoint(L->getHeader(), L->getHeader()->begin());
919  PHINode *PN = Builder.CreatePHI(ExpandTy, "lsr.iv");
920  rememberInstruction(PN);
921
922  // Create the step instructions and populate the PHI.
923  BasicBlock *Header = L->getHeader();
924  for (pred_iterator HPI = pred_begin(Header), HPE = pred_end(Header);
925       HPI != HPE; ++HPI) {
926    BasicBlock *Pred = *HPI;
927
928    // Add a start value.
929    if (!L->contains(Pred)) {
930      PN->addIncoming(StartV, Pred);
931      continue;
932    }
933
934    // Create a step value and add it to the PHI. If IVIncInsertLoop is
935    // non-null and equal to the addrec's loop, insert the instructions
936    // at IVIncInsertPos.
937    Instruction *InsertPos = L == IVIncInsertLoop ?
938      IVIncInsertPos : Pred->getTerminator();
939    Builder.SetInsertPoint(InsertPos->getParent(), InsertPos);
940    Value *IncV;
941    // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
942    if (isPointer) {
943      const PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
944      // If the step isn't constant, don't use an implicitly scaled GEP, because
945      // that would require a multiply inside the loop.
946      if (!isa<ConstantInt>(StepV))
947        GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
948                                    GEPPtrTy->getAddressSpace());
949      const SCEV *const StepArray[1] = { SE.getSCEV(StepV) };
950      IncV = expandAddToGEP(StepArray, StepArray+1, GEPPtrTy, IntTy, PN);
951      if (IncV->getType() != PN->getType()) {
952        IncV = Builder.CreateBitCast(IncV, PN->getType(), "tmp");
953        rememberInstruction(IncV);
954      }
955    } else {
956      IncV = isNegative ?
957        Builder.CreateSub(PN, StepV, "lsr.iv.next") :
958        Builder.CreateAdd(PN, StepV, "lsr.iv.next");
959      rememberInstruction(IncV);
960    }
961    PN->addIncoming(IncV, Pred);
962  }
963
964  // Restore the original insert point.
965  if (SaveInsertBB)
966    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
967
968  // Remember this PHI, even in post-inc mode.
969  InsertedValues.insert(PN);
970
971  return PN;
972}
973
974Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
975  const Type *STy = S->getType();
976  const Type *IntTy = SE.getEffectiveSCEVType(STy);
977  const Loop *L = S->getLoop();
978
979  // Determine a normalized form of this expression, which is the expression
980  // before any post-inc adjustment is made.
981  const SCEVAddRecExpr *Normalized = S;
982  if (PostIncLoops.count(L)) {
983    PostIncLoopSet Loops;
984    Loops.insert(L);
985    Normalized =
986      cast<SCEVAddRecExpr>(TransformForPostIncUse(Normalize, S, 0, 0,
987                                                  Loops, SE, *SE.DT));
988  }
989
990  // Strip off any non-loop-dominating component from the addrec start.
991  const SCEV *Start = Normalized->getStart();
992  const SCEV *PostLoopOffset = 0;
993  if (!Start->properlyDominates(L->getHeader(), SE.DT)) {
994    PostLoopOffset = Start;
995    Start = SE.getConstant(Normalized->getType(), 0);
996    Normalized =
997      cast<SCEVAddRecExpr>(SE.getAddRecExpr(Start,
998                                            Normalized->getStepRecurrence(SE),
999                                            Normalized->getLoop()));
1000  }
1001
1002  // Strip off any non-loop-dominating component from the addrec step.
1003  const SCEV *Step = Normalized->getStepRecurrence(SE);
1004  const SCEV *PostLoopScale = 0;
1005  if (!Step->dominates(L->getHeader(), SE.DT)) {
1006    PostLoopScale = Step;
1007    Step = SE.getConstant(Normalized->getType(), 1);
1008    Normalized =
1009      cast<SCEVAddRecExpr>(SE.getAddRecExpr(Start, Step,
1010                                            Normalized->getLoop()));
1011  }
1012
1013  // Expand the core addrec. If we need post-loop scaling, force it to
1014  // expand to an integer type to avoid the need for additional casting.
1015  const Type *ExpandTy = PostLoopScale ? IntTy : STy;
1016  PHINode *PN = getAddRecExprPHILiterally(Normalized, L, ExpandTy, IntTy);
1017
1018  // Accommodate post-inc mode, if necessary.
1019  Value *Result;
1020  if (!PostIncLoops.count(L))
1021    Result = PN;
1022  else {
1023    // In PostInc mode, use the post-incremented value.
1024    BasicBlock *LatchBlock = L->getLoopLatch();
1025    assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1026    Result = PN->getIncomingValueForBlock(LatchBlock);
1027  }
1028
1029  // Re-apply any non-loop-dominating scale.
1030  if (PostLoopScale) {
1031    Result = InsertNoopCastOfTo(Result, IntTy);
1032    Result = Builder.CreateMul(Result,
1033                               expandCodeFor(PostLoopScale, IntTy));
1034    rememberInstruction(Result);
1035  }
1036
1037  // Re-apply any non-loop-dominating offset.
1038  if (PostLoopOffset) {
1039    if (const PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
1040      const SCEV *const OffsetArray[1] = { PostLoopOffset };
1041      Result = expandAddToGEP(OffsetArray, OffsetArray+1, PTy, IntTy, Result);
1042    } else {
1043      Result = InsertNoopCastOfTo(Result, IntTy);
1044      Result = Builder.CreateAdd(Result,
1045                                 expandCodeFor(PostLoopOffset, IntTy));
1046      rememberInstruction(Result);
1047    }
1048  }
1049
1050  return Result;
1051}
1052
1053Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1054  if (!CanonicalMode) return expandAddRecExprLiterally(S);
1055
1056  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
1057  const Loop *L = S->getLoop();
1058
1059  // First check for an existing canonical IV in a suitable type.
1060  PHINode *CanonicalIV = 0;
1061  if (PHINode *PN = L->getCanonicalInductionVariable())
1062    if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1063      CanonicalIV = PN;
1064
1065  // Rewrite an AddRec in terms of the canonical induction variable, if
1066  // its type is more narrow.
1067  if (CanonicalIV &&
1068      SE.getTypeSizeInBits(CanonicalIV->getType()) >
1069      SE.getTypeSizeInBits(Ty)) {
1070    SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
1071    for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1072      NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
1073    Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop()));
1074    BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1075    BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1076    BasicBlock::iterator NewInsertPt =
1077      llvm::next(BasicBlock::iterator(cast<Instruction>(V)));
1078    while (isa<PHINode>(NewInsertPt) || isa<DbgInfoIntrinsic>(NewInsertPt))
1079      ++NewInsertPt;
1080    V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), 0,
1081                      NewInsertPt);
1082    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1083    return V;
1084  }
1085
1086  // {X,+,F} --> X + {0,+,F}
1087  if (!S->getStart()->isZero()) {
1088    SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end());
1089    NewOps[0] = SE.getConstant(Ty, 0);
1090    const SCEV *Rest = SE.getAddRecExpr(NewOps, L);
1091
1092    // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
1093    // comments on expandAddToGEP for details.
1094    const SCEV *Base = S->getStart();
1095    const SCEV *RestArray[1] = { Rest };
1096    // Dig into the expression to find the pointer base for a GEP.
1097    ExposePointerBase(Base, RestArray[0], SE);
1098    // If we found a pointer, expand the AddRec with a GEP.
1099    if (const PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
1100      // Make sure the Base isn't something exotic, such as a multiplied
1101      // or divided pointer value. In those cases, the result type isn't
1102      // actually a pointer type.
1103      if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
1104        Value *StartV = expand(Base);
1105        assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
1106        return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
1107      }
1108    }
1109
1110    // Just do a normal add. Pre-expand the operands to suppress folding.
1111    return expand(SE.getAddExpr(SE.getUnknown(expand(S->getStart())),
1112                                SE.getUnknown(expand(Rest))));
1113  }
1114
1115  // If we don't yet have a canonical IV, create one.
1116  if (!CanonicalIV) {
1117    // Create and insert the PHI node for the induction variable in the
1118    // specified loop.
1119    BasicBlock *Header = L->getHeader();
1120    CanonicalIV = PHINode::Create(Ty, "indvar", Header->begin());
1121    rememberInstruction(CanonicalIV);
1122
1123    Constant *One = ConstantInt::get(Ty, 1);
1124    for (pred_iterator HPI = pred_begin(Header), HPE = pred_end(Header);
1125         HPI != HPE; ++HPI) {
1126      BasicBlock *HP = *HPI;
1127      if (L->contains(HP)) {
1128        // Insert a unit add instruction right before the terminator
1129        // corresponding to the back-edge.
1130        Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
1131                                                     "indvar.next",
1132                                                     HP->getTerminator());
1133        rememberInstruction(Add);
1134        CanonicalIV->addIncoming(Add, HP);
1135      } else {
1136        CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
1137      }
1138    }
1139  }
1140
1141  // {0,+,1} --> Insert a canonical induction variable into the loop!
1142  if (S->isAffine() && S->getOperand(1)->isOne()) {
1143    assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1144           "IVs with types different from the canonical IV should "
1145           "already have been handled!");
1146    return CanonicalIV;
1147  }
1148
1149  // {0,+,F} --> {0,+,1} * F
1150
1151  // If this is a simple linear addrec, emit it now as a special case.
1152  if (S->isAffine())    // {0,+,F} --> i*F
1153    return
1154      expand(SE.getTruncateOrNoop(
1155        SE.getMulExpr(SE.getUnknown(CanonicalIV),
1156                      SE.getNoopOrAnyExtend(S->getOperand(1),
1157                                            CanonicalIV->getType())),
1158        Ty));
1159
1160  // If this is a chain of recurrences, turn it into a closed form, using the
1161  // folders, then expandCodeFor the closed form.  This allows the folders to
1162  // simplify the expression without having to build a bunch of special code
1163  // into this folder.
1164  const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
1165
1166  // Promote S up to the canonical IV type, if the cast is foldable.
1167  const SCEV *NewS = S;
1168  const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
1169  if (isa<SCEVAddRecExpr>(Ext))
1170    NewS = Ext;
1171
1172  const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1173  //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
1174
1175  // Truncate the result down to the original type, if needed.
1176  const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1177  return expand(T);
1178}
1179
1180Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1181  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
1182  Value *V = expandCodeFor(S->getOperand(),
1183                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1184  Value *I = Builder.CreateTrunc(V, Ty, "tmp");
1185  rememberInstruction(I);
1186  return I;
1187}
1188
1189Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1190  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
1191  Value *V = expandCodeFor(S->getOperand(),
1192                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1193  Value *I = Builder.CreateZExt(V, Ty, "tmp");
1194  rememberInstruction(I);
1195  return I;
1196}
1197
1198Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1199  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
1200  Value *V = expandCodeFor(S->getOperand(),
1201                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1202  Value *I = Builder.CreateSExt(V, Ty, "tmp");
1203  rememberInstruction(I);
1204  return I;
1205}
1206
1207Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1208  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1209  const Type *Ty = LHS->getType();
1210  for (int i = S->getNumOperands()-2; i >= 0; --i) {
1211    // In the case of mixed integer and pointer types, do the
1212    // rest of the comparisons as integer.
1213    if (S->getOperand(i)->getType() != Ty) {
1214      Ty = SE.getEffectiveSCEVType(Ty);
1215      LHS = InsertNoopCastOfTo(LHS, Ty);
1216    }
1217    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1218    Value *ICmp = Builder.CreateICmpSGT(LHS, RHS, "tmp");
1219    rememberInstruction(ICmp);
1220    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
1221    rememberInstruction(Sel);
1222    LHS = Sel;
1223  }
1224  // In the case of mixed integer and pointer types, cast the
1225  // final result back to the pointer type.
1226  if (LHS->getType() != S->getType())
1227    LHS = InsertNoopCastOfTo(LHS, S->getType());
1228  return LHS;
1229}
1230
1231Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1232  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1233  const Type *Ty = LHS->getType();
1234  for (int i = S->getNumOperands()-2; i >= 0; --i) {
1235    // In the case of mixed integer and pointer types, do the
1236    // rest of the comparisons as integer.
1237    if (S->getOperand(i)->getType() != Ty) {
1238      Ty = SE.getEffectiveSCEVType(Ty);
1239      LHS = InsertNoopCastOfTo(LHS, Ty);
1240    }
1241    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1242    Value *ICmp = Builder.CreateICmpUGT(LHS, RHS, "tmp");
1243    rememberInstruction(ICmp);
1244    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
1245    rememberInstruction(Sel);
1246    LHS = Sel;
1247  }
1248  // In the case of mixed integer and pointer types, cast the
1249  // final result back to the pointer type.
1250  if (LHS->getType() != S->getType())
1251    LHS = InsertNoopCastOfTo(LHS, S->getType());
1252  return LHS;
1253}
1254
1255Value *SCEVExpander::expandCodeFor(const SCEV *SH, const Type *Ty,
1256                                   Instruction *I) {
1257  BasicBlock::iterator IP = I;
1258  while (isInsertedInstruction(IP) || isa<DbgInfoIntrinsic>(IP))
1259    ++IP;
1260  Builder.SetInsertPoint(IP->getParent(), IP);
1261  return expandCodeFor(SH, Ty);
1262}
1263
1264Value *SCEVExpander::expandCodeFor(const SCEV *SH, const Type *Ty) {
1265  // Expand the code for this SCEV.
1266  Value *V = expand(SH);
1267  if (Ty) {
1268    assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1269           "non-trivial casts should be done with the SCEVs directly!");
1270    V = InsertNoopCastOfTo(V, Ty);
1271  }
1272  return V;
1273}
1274
1275Value *SCEVExpander::expand(const SCEV *S) {
1276  // Compute an insertion point for this SCEV object. Hoist the instructions
1277  // as far out in the loop nest as possible.
1278  Instruction *InsertPt = Builder.GetInsertPoint();
1279  for (Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock()); ;
1280       L = L->getParentLoop())
1281    if (SE.isLoopInvariant(S, L)) {
1282      if (!L) break;
1283      if (BasicBlock *Preheader = L->getLoopPreheader())
1284        InsertPt = Preheader->getTerminator();
1285    } else {
1286      // If the SCEV is computable at this level, insert it into the header
1287      // after the PHIs (and after any other instructions that we've inserted
1288      // there) so that it is guaranteed to dominate any user inside the loop.
1289      if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
1290        InsertPt = L->getHeader()->getFirstNonPHI();
1291      while (isInsertedInstruction(InsertPt) || isa<DbgInfoIntrinsic>(InsertPt))
1292        InsertPt = llvm::next(BasicBlock::iterator(InsertPt));
1293      break;
1294    }
1295
1296  // Check to see if we already expanded this here.
1297  std::map<std::pair<const SCEV *, Instruction *>,
1298           AssertingVH<Value> >::iterator I =
1299    InsertedExpressions.find(std::make_pair(S, InsertPt));
1300  if (I != InsertedExpressions.end())
1301    return I->second;
1302
1303  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1304  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1305  Builder.SetInsertPoint(InsertPt->getParent(), InsertPt);
1306
1307  // Expand the expression into instructions.
1308  Value *V = visit(S);
1309
1310  // Remember the expanded value for this SCEV at this location.
1311  if (PostIncLoops.empty())
1312    InsertedExpressions[std::make_pair(S, InsertPt)] = V;
1313
1314  restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1315  return V;
1316}
1317
1318void SCEVExpander::rememberInstruction(Value *I) {
1319  if (!PostIncLoops.empty())
1320    InsertedPostIncValues.insert(I);
1321  else
1322    InsertedValues.insert(I);
1323
1324  // If we just claimed an existing instruction and that instruction had
1325  // been the insert point, adjust the insert point forward so that
1326  // subsequently inserted code will be dominated.
1327  if (Builder.GetInsertPoint() == I) {
1328    BasicBlock::iterator It = cast<Instruction>(I);
1329    do { ++It; } while (isInsertedInstruction(It) ||
1330                        isa<DbgInfoIntrinsic>(It));
1331    Builder.SetInsertPoint(Builder.GetInsertBlock(), It);
1332  }
1333}
1334
1335void SCEVExpander::restoreInsertPoint(BasicBlock *BB, BasicBlock::iterator I) {
1336  // If we acquired more instructions since the old insert point was saved,
1337  // advance past them.
1338  while (isInsertedInstruction(I) || isa<DbgInfoIntrinsic>(I)) ++I;
1339
1340  Builder.SetInsertPoint(BB, I);
1341}
1342
1343/// getOrInsertCanonicalInductionVariable - This method returns the
1344/// canonical induction variable of the specified type for the specified
1345/// loop (inserting one if there is none).  A canonical induction variable
1346/// starts at zero and steps by one on each iteration.
1347PHINode *
1348SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
1349                                                    const Type *Ty) {
1350  assert(Ty->isIntegerTy() && "Can only insert integer induction variables!");
1351
1352  // Build a SCEV for {0,+,1}<L>.
1353  const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0),
1354                                   SE.getConstant(Ty, 1), L);
1355
1356  // Emit code for it.
1357  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1358  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1359  PHINode *V = cast<PHINode>(expandCodeFor(H, 0, L->getHeader()->begin()));
1360  if (SaveInsertBB)
1361    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1362
1363  return V;
1364}
1365