LLParser.cpp revision 1e063d14df0f182626ebdd7ac7f32405aa754e03
1//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/AutoUpgrade.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instructions.h"
21#include "llvm/Module.h"
22#include "llvm/Operator.h"
23#include "llvm/ValueSymbolTable.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/raw_ostream.h"
28using namespace llvm;
29
30/// Run: module ::= toplevelentity*
31bool LLParser::Run() {
32  // Prime the lexer.
33  Lex.Lex();
34
35  return ParseTopLevelEntities() ||
36         ValidateEndOfModule();
37}
38
39/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
40/// module.
41bool LLParser::ValidateEndOfModule() {
42  // Update auto-upgraded malloc calls to "malloc".
43  // FIXME: Remove in LLVM 3.0.
44  if (MallocF) {
45    MallocF->setName("malloc");
46    // If setName() does not set the name to "malloc", then there is already a
47    // declaration of "malloc".  In that case, iterate over all calls to MallocF
48    // and get them to call the declared "malloc" instead.
49    if (MallocF->getName() != "malloc") {
50      Constant *RealMallocF = M->getFunction("malloc");
51      if (RealMallocF->getType() != MallocF->getType())
52        RealMallocF = ConstantExpr::getBitCast(RealMallocF, MallocF->getType());
53      MallocF->replaceAllUsesWith(RealMallocF);
54      MallocF->eraseFromParent();
55      MallocF = NULL;
56    }
57  }
58
59
60  // If there are entries in ForwardRefBlockAddresses at this point, they are
61  // references after the function was defined.  Resolve those now.
62  while (!ForwardRefBlockAddresses.empty()) {
63    // Okay, we are referencing an already-parsed function, resolve them now.
64    Function *TheFn = 0;
65    const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
66    if (Fn.Kind == ValID::t_GlobalName)
67      TheFn = M->getFunction(Fn.StrVal);
68    else if (Fn.UIntVal < NumberedVals.size())
69      TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
70
71    if (TheFn == 0)
72      return Error(Fn.Loc, "unknown function referenced by blockaddress");
73
74    // Resolve all these references.
75    if (ResolveForwardRefBlockAddresses(TheFn,
76                                      ForwardRefBlockAddresses.begin()->second,
77                                        0))
78      return true;
79
80    ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
81  }
82
83
84  if (!ForwardRefTypes.empty())
85    return Error(ForwardRefTypes.begin()->second.second,
86                 "use of undefined type named '" +
87                 ForwardRefTypes.begin()->first + "'");
88  if (!ForwardRefTypeIDs.empty())
89    return Error(ForwardRefTypeIDs.begin()->second.second,
90                 "use of undefined type '%" +
91                 utostr(ForwardRefTypeIDs.begin()->first) + "'");
92
93  if (!ForwardRefVals.empty())
94    return Error(ForwardRefVals.begin()->second.second,
95                 "use of undefined value '@" + ForwardRefVals.begin()->first +
96                 "'");
97
98  if (!ForwardRefValIDs.empty())
99    return Error(ForwardRefValIDs.begin()->second.second,
100                 "use of undefined value '@" +
101                 utostr(ForwardRefValIDs.begin()->first) + "'");
102
103  if (!ForwardRefMDNodes.empty())
104    return Error(ForwardRefMDNodes.begin()->second.second,
105                 "use of undefined metadata '!" +
106                 utostr(ForwardRefMDNodes.begin()->first) + "'");
107
108
109  // Look for intrinsic functions and CallInst that need to be upgraded
110  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
111    UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
112
113  // Check debug info intrinsics.
114  CheckDebugInfoIntrinsics(M);
115  return false;
116}
117
118bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn,
119                             std::vector<std::pair<ValID, GlobalValue*> > &Refs,
120                                               PerFunctionState *PFS) {
121  // Loop over all the references, resolving them.
122  for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
123    BasicBlock *Res;
124    if (PFS) {
125      if (Refs[i].first.Kind == ValID::t_LocalName)
126        Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
127      else
128        Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
129    } else if (Refs[i].first.Kind == ValID::t_LocalID) {
130      return Error(Refs[i].first.Loc,
131       "cannot take address of numeric label after the function is defined");
132    } else {
133      Res = dyn_cast_or_null<BasicBlock>(
134                     TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
135    }
136
137    if (Res == 0)
138      return Error(Refs[i].first.Loc,
139                   "referenced value is not a basic block");
140
141    // Get the BlockAddress for this and update references to use it.
142    BlockAddress *BA = BlockAddress::get(TheFn, Res);
143    Refs[i].second->replaceAllUsesWith(BA);
144    Refs[i].second->eraseFromParent();
145  }
146  return false;
147}
148
149
150//===----------------------------------------------------------------------===//
151// Top-Level Entities
152//===----------------------------------------------------------------------===//
153
154bool LLParser::ParseTopLevelEntities() {
155  while (1) {
156    switch (Lex.getKind()) {
157    default:         return TokError("expected top-level entity");
158    case lltok::Eof: return false;
159    //case lltok::kw_define:
160    case lltok::kw_declare: if (ParseDeclare()) return true; break;
161    case lltok::kw_define:  if (ParseDefine()) return true; break;
162    case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
163    case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
164    case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
165    case lltok::kw_type:    if (ParseUnnamedType()) return true; break;
166    case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
167    case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
168    case lltok::LocalVar:   if (ParseNamedType()) return true; break;
169    case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
170    case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
171    case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
172    case lltok::MetadataVar: if (ParseNamedMetadata()) return true; break;
173
174    // The Global variable production with no name can have many different
175    // optional leading prefixes, the production is:
176    // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
177    //               OptionalAddrSpace ('constant'|'global') ...
178    case lltok::kw_private :       // OptionalLinkage
179    case lltok::kw_linker_private: // OptionalLinkage
180    case lltok::kw_internal:       // OptionalLinkage
181    case lltok::kw_weak:           // OptionalLinkage
182    case lltok::kw_weak_odr:       // OptionalLinkage
183    case lltok::kw_linkonce:       // OptionalLinkage
184    case lltok::kw_linkonce_odr:   // OptionalLinkage
185    case lltok::kw_appending:      // OptionalLinkage
186    case lltok::kw_dllexport:      // OptionalLinkage
187    case lltok::kw_common:         // OptionalLinkage
188    case lltok::kw_dllimport:      // OptionalLinkage
189    case lltok::kw_extern_weak:    // OptionalLinkage
190    case lltok::kw_external: {     // OptionalLinkage
191      unsigned Linkage, Visibility;
192      if (ParseOptionalLinkage(Linkage) ||
193          ParseOptionalVisibility(Visibility) ||
194          ParseGlobal("", SMLoc(), Linkage, true, Visibility))
195        return true;
196      break;
197    }
198    case lltok::kw_default:       // OptionalVisibility
199    case lltok::kw_hidden:        // OptionalVisibility
200    case lltok::kw_protected: {   // OptionalVisibility
201      unsigned Visibility;
202      if (ParseOptionalVisibility(Visibility) ||
203          ParseGlobal("", SMLoc(), 0, false, Visibility))
204        return true;
205      break;
206    }
207
208    case lltok::kw_thread_local:  // OptionalThreadLocal
209    case lltok::kw_addrspace:     // OptionalAddrSpace
210    case lltok::kw_constant:      // GlobalType
211    case lltok::kw_global:        // GlobalType
212      if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
213      break;
214    }
215  }
216}
217
218
219/// toplevelentity
220///   ::= 'module' 'asm' STRINGCONSTANT
221bool LLParser::ParseModuleAsm() {
222  assert(Lex.getKind() == lltok::kw_module);
223  Lex.Lex();
224
225  std::string AsmStr;
226  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
227      ParseStringConstant(AsmStr)) return true;
228
229  const std::string &AsmSoFar = M->getModuleInlineAsm();
230  if (AsmSoFar.empty())
231    M->setModuleInlineAsm(AsmStr);
232  else
233    M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr);
234  return false;
235}
236
237/// toplevelentity
238///   ::= 'target' 'triple' '=' STRINGCONSTANT
239///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
240bool LLParser::ParseTargetDefinition() {
241  assert(Lex.getKind() == lltok::kw_target);
242  std::string Str;
243  switch (Lex.Lex()) {
244  default: return TokError("unknown target property");
245  case lltok::kw_triple:
246    Lex.Lex();
247    if (ParseToken(lltok::equal, "expected '=' after target triple") ||
248        ParseStringConstant(Str))
249      return true;
250    M->setTargetTriple(Str);
251    return false;
252  case lltok::kw_datalayout:
253    Lex.Lex();
254    if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
255        ParseStringConstant(Str))
256      return true;
257    M->setDataLayout(Str);
258    return false;
259  }
260}
261
262/// toplevelentity
263///   ::= 'deplibs' '=' '[' ']'
264///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
265bool LLParser::ParseDepLibs() {
266  assert(Lex.getKind() == lltok::kw_deplibs);
267  Lex.Lex();
268  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
269      ParseToken(lltok::lsquare, "expected '=' after deplibs"))
270    return true;
271
272  if (EatIfPresent(lltok::rsquare))
273    return false;
274
275  std::string Str;
276  if (ParseStringConstant(Str)) return true;
277  M->addLibrary(Str);
278
279  while (EatIfPresent(lltok::comma)) {
280    if (ParseStringConstant(Str)) return true;
281    M->addLibrary(Str);
282  }
283
284  return ParseToken(lltok::rsquare, "expected ']' at end of list");
285}
286
287/// ParseUnnamedType:
288///   ::= 'type' type
289///   ::= LocalVarID '=' 'type' type
290bool LLParser::ParseUnnamedType() {
291  unsigned TypeID = NumberedTypes.size();
292
293  // Handle the LocalVarID form.
294  if (Lex.getKind() == lltok::LocalVarID) {
295    if (Lex.getUIntVal() != TypeID)
296      return Error(Lex.getLoc(), "type expected to be numbered '%" +
297                   utostr(TypeID) + "'");
298    Lex.Lex(); // eat LocalVarID;
299
300    if (ParseToken(lltok::equal, "expected '=' after name"))
301      return true;
302  }
303
304  assert(Lex.getKind() == lltok::kw_type);
305  LocTy TypeLoc = Lex.getLoc();
306  Lex.Lex(); // eat kw_type
307
308  PATypeHolder Ty(Type::getVoidTy(Context));
309  if (ParseType(Ty)) return true;
310
311  // See if this type was previously referenced.
312  std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
313    FI = ForwardRefTypeIDs.find(TypeID);
314  if (FI != ForwardRefTypeIDs.end()) {
315    if (FI->second.first.get() == Ty)
316      return Error(TypeLoc, "self referential type is invalid");
317
318    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
319    Ty = FI->second.first.get();
320    ForwardRefTypeIDs.erase(FI);
321  }
322
323  NumberedTypes.push_back(Ty);
324
325  return false;
326}
327
328/// toplevelentity
329///   ::= LocalVar '=' 'type' type
330bool LLParser::ParseNamedType() {
331  std::string Name = Lex.getStrVal();
332  LocTy NameLoc = Lex.getLoc();
333  Lex.Lex();  // eat LocalVar.
334
335  PATypeHolder Ty(Type::getVoidTy(Context));
336
337  if (ParseToken(lltok::equal, "expected '=' after name") ||
338      ParseToken(lltok::kw_type, "expected 'type' after name") ||
339      ParseType(Ty))
340    return true;
341
342  // Set the type name, checking for conflicts as we do so.
343  bool AlreadyExists = M->addTypeName(Name, Ty);
344  if (!AlreadyExists) return false;
345
346  // See if this type is a forward reference.  We need to eagerly resolve
347  // types to allow recursive type redefinitions below.
348  std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator
349  FI = ForwardRefTypes.find(Name);
350  if (FI != ForwardRefTypes.end()) {
351    if (FI->second.first.get() == Ty)
352      return Error(NameLoc, "self referential type is invalid");
353
354    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
355    Ty = FI->second.first.get();
356    ForwardRefTypes.erase(FI);
357  }
358
359  // Inserting a name that is already defined, get the existing name.
360  const Type *Existing = M->getTypeByName(Name);
361  assert(Existing && "Conflict but no matching type?!");
362
363  // Otherwise, this is an attempt to redefine a type. That's okay if
364  // the redefinition is identical to the original.
365  // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
366  if (Existing == Ty) return false;
367
368  // Any other kind of (non-equivalent) redefinition is an error.
369  return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
370               Ty->getDescription() + "'");
371}
372
373
374/// toplevelentity
375///   ::= 'declare' FunctionHeader
376bool LLParser::ParseDeclare() {
377  assert(Lex.getKind() == lltok::kw_declare);
378  Lex.Lex();
379
380  Function *F;
381  return ParseFunctionHeader(F, false);
382}
383
384/// toplevelentity
385///   ::= 'define' FunctionHeader '{' ...
386bool LLParser::ParseDefine() {
387  assert(Lex.getKind() == lltok::kw_define);
388  Lex.Lex();
389
390  Function *F;
391  return ParseFunctionHeader(F, true) ||
392         ParseFunctionBody(*F);
393}
394
395/// ParseGlobalType
396///   ::= 'constant'
397///   ::= 'global'
398bool LLParser::ParseGlobalType(bool &IsConstant) {
399  if (Lex.getKind() == lltok::kw_constant)
400    IsConstant = true;
401  else if (Lex.getKind() == lltok::kw_global)
402    IsConstant = false;
403  else {
404    IsConstant = false;
405    return TokError("expected 'global' or 'constant'");
406  }
407  Lex.Lex();
408  return false;
409}
410
411/// ParseUnnamedGlobal:
412///   OptionalVisibility ALIAS ...
413///   OptionalLinkage OptionalVisibility ...   -> global variable
414///   GlobalID '=' OptionalVisibility ALIAS ...
415///   GlobalID '=' OptionalLinkage OptionalVisibility ...   -> global variable
416bool LLParser::ParseUnnamedGlobal() {
417  unsigned VarID = NumberedVals.size();
418  std::string Name;
419  LocTy NameLoc = Lex.getLoc();
420
421  // Handle the GlobalID form.
422  if (Lex.getKind() == lltok::GlobalID) {
423    if (Lex.getUIntVal() != VarID)
424      return Error(Lex.getLoc(), "variable expected to be numbered '%" +
425                   utostr(VarID) + "'");
426    Lex.Lex(); // eat GlobalID;
427
428    if (ParseToken(lltok::equal, "expected '=' after name"))
429      return true;
430  }
431
432  bool HasLinkage;
433  unsigned Linkage, Visibility;
434  if (ParseOptionalLinkage(Linkage, HasLinkage) ||
435      ParseOptionalVisibility(Visibility))
436    return true;
437
438  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
439    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
440  return ParseAlias(Name, NameLoc, Visibility);
441}
442
443/// ParseNamedGlobal:
444///   GlobalVar '=' OptionalVisibility ALIAS ...
445///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
446bool LLParser::ParseNamedGlobal() {
447  assert(Lex.getKind() == lltok::GlobalVar);
448  LocTy NameLoc = Lex.getLoc();
449  std::string Name = Lex.getStrVal();
450  Lex.Lex();
451
452  bool HasLinkage;
453  unsigned Linkage, Visibility;
454  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
455      ParseOptionalLinkage(Linkage, HasLinkage) ||
456      ParseOptionalVisibility(Visibility))
457    return true;
458
459  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
460    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
461  return ParseAlias(Name, NameLoc, Visibility);
462}
463
464// MDString:
465//   ::= '!' STRINGCONSTANT
466bool LLParser::ParseMDString(MDString *&Result) {
467  std::string Str;
468  if (ParseStringConstant(Str)) return true;
469  Result = MDString::get(Context, Str);
470  return false;
471}
472
473// MDNode:
474//   ::= '!' MDNodeNumber
475bool LLParser::ParseMDNodeID(MDNode *&Result) {
476  // !{ ..., !42, ... }
477  unsigned MID = 0;
478  if (ParseUInt32(MID)) return true;
479
480  // Check existing MDNode.
481  if (MID < NumberedMetadata.size() && NumberedMetadata[MID] != 0) {
482    Result = NumberedMetadata[MID];
483    return false;
484  }
485
486  // Create MDNode forward reference.
487
488  // FIXME: This is not unique enough!
489  std::string FwdRefName = "llvm.mdnode.fwdref." + utostr(MID);
490  Value *V = MDString::get(Context, FwdRefName);
491  MDNode *FwdNode = MDNode::get(Context, &V, 1);
492  ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
493
494  if (NumberedMetadata.size() <= MID)
495    NumberedMetadata.resize(MID+1);
496  NumberedMetadata[MID] = FwdNode;
497  Result = FwdNode;
498  return false;
499}
500
501/// ParseNamedMetadata:
502///   !foo = !{ !1, !2 }
503bool LLParser::ParseNamedMetadata() {
504  assert(Lex.getKind() == lltok::MetadataVar);
505  std::string Name = Lex.getStrVal();
506  Lex.Lex();
507
508  if (ParseToken(lltok::equal, "expected '=' here") ||
509      ParseToken(lltok::exclaim, "Expected '!' here") ||
510      ParseToken(lltok::lbrace, "Expected '{' here"))
511    return true;
512
513  SmallVector<MDNode *, 8> Elts;
514  do {
515    // Null is a special case since it is typeless.
516    if (EatIfPresent(lltok::kw_null)) {
517      Elts.push_back(0);
518      continue;
519    }
520
521    if (ParseToken(lltok::exclaim, "Expected '!' here"))
522      return true;
523
524    MDNode *N = 0;
525    if (ParseMDNodeID(N)) return true;
526    Elts.push_back(N);
527  } while (EatIfPresent(lltok::comma));
528
529  if (ParseToken(lltok::rbrace, "expected end of metadata node"))
530    return true;
531
532  NamedMDNode::Create(Context, Name, Elts.data(), Elts.size(), M);
533  return false;
534}
535
536/// ParseStandaloneMetadata:
537///   !42 = !{...}
538bool LLParser::ParseStandaloneMetadata() {
539  assert(Lex.getKind() == lltok::exclaim);
540  Lex.Lex();
541  unsigned MetadataID = 0;
542
543  LocTy TyLoc;
544  PATypeHolder Ty(Type::getVoidTy(Context));
545  SmallVector<Value *, 16> Elts;
546  if (ParseUInt32(MetadataID) ||
547      ParseToken(lltok::equal, "expected '=' here") ||
548      ParseType(Ty, TyLoc) ||
549      ParseToken(lltok::exclaim, "Expected '!' here") ||
550      ParseToken(lltok::lbrace, "Expected '{' here") ||
551      ParseMDNodeVector(Elts, NULL) ||
552      ParseToken(lltok::rbrace, "expected end of metadata node"))
553    return true;
554
555  MDNode *Init = MDNode::get(Context, Elts.data(), Elts.size());
556
557  // See if this was forward referenced, if so, handle it.
558  std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
559    FI = ForwardRefMDNodes.find(MetadataID);
560  if (FI != ForwardRefMDNodes.end()) {
561    FI->second.first->replaceAllUsesWith(Init);
562    ForwardRefMDNodes.erase(FI);
563
564    assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
565  } else {
566    if (MetadataID >= NumberedMetadata.size())
567      NumberedMetadata.resize(MetadataID+1);
568
569    if (NumberedMetadata[MetadataID] != 0)
570      return TokError("Metadata id is already used");
571    NumberedMetadata[MetadataID] = Init;
572  }
573
574  return false;
575}
576
577/// ParseAlias:
578///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
579/// Aliasee
580///   ::= TypeAndValue
581///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
582///   ::= 'getelementptr' 'inbounds'? '(' ... ')'
583///
584/// Everything through visibility has already been parsed.
585///
586bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
587                          unsigned Visibility) {
588  assert(Lex.getKind() == lltok::kw_alias);
589  Lex.Lex();
590  unsigned Linkage;
591  LocTy LinkageLoc = Lex.getLoc();
592  if (ParseOptionalLinkage(Linkage))
593    return true;
594
595  if (Linkage != GlobalValue::ExternalLinkage &&
596      Linkage != GlobalValue::WeakAnyLinkage &&
597      Linkage != GlobalValue::WeakODRLinkage &&
598      Linkage != GlobalValue::InternalLinkage &&
599      Linkage != GlobalValue::PrivateLinkage &&
600      Linkage != GlobalValue::LinkerPrivateLinkage)
601    return Error(LinkageLoc, "invalid linkage type for alias");
602
603  Constant *Aliasee;
604  LocTy AliaseeLoc = Lex.getLoc();
605  if (Lex.getKind() != lltok::kw_bitcast &&
606      Lex.getKind() != lltok::kw_getelementptr) {
607    if (ParseGlobalTypeAndValue(Aliasee)) return true;
608  } else {
609    // The bitcast dest type is not present, it is implied by the dest type.
610    ValID ID;
611    if (ParseValID(ID)) return true;
612    if (ID.Kind != ValID::t_Constant)
613      return Error(AliaseeLoc, "invalid aliasee");
614    Aliasee = ID.ConstantVal;
615  }
616
617  if (!isa<PointerType>(Aliasee->getType()))
618    return Error(AliaseeLoc, "alias must have pointer type");
619
620  // Okay, create the alias but do not insert it into the module yet.
621  GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
622                                    (GlobalValue::LinkageTypes)Linkage, Name,
623                                    Aliasee);
624  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
625
626  // See if this value already exists in the symbol table.  If so, it is either
627  // a redefinition or a definition of a forward reference.
628  if (GlobalValue *Val = M->getNamedValue(Name)) {
629    // See if this was a redefinition.  If so, there is no entry in
630    // ForwardRefVals.
631    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
632      I = ForwardRefVals.find(Name);
633    if (I == ForwardRefVals.end())
634      return Error(NameLoc, "redefinition of global named '@" + Name + "'");
635
636    // Otherwise, this was a definition of forward ref.  Verify that types
637    // agree.
638    if (Val->getType() != GA->getType())
639      return Error(NameLoc,
640              "forward reference and definition of alias have different types");
641
642    // If they agree, just RAUW the old value with the alias and remove the
643    // forward ref info.
644    Val->replaceAllUsesWith(GA);
645    Val->eraseFromParent();
646    ForwardRefVals.erase(I);
647  }
648
649  // Insert into the module, we know its name won't collide now.
650  M->getAliasList().push_back(GA);
651  assert(GA->getNameStr() == Name && "Should not be a name conflict!");
652
653  return false;
654}
655
656/// ParseGlobal
657///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
658///       OptionalAddrSpace GlobalType Type Const
659///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
660///       OptionalAddrSpace GlobalType Type Const
661///
662/// Everything through visibility has been parsed already.
663///
664bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
665                           unsigned Linkage, bool HasLinkage,
666                           unsigned Visibility) {
667  unsigned AddrSpace;
668  bool ThreadLocal, IsConstant;
669  LocTy TyLoc;
670
671  PATypeHolder Ty(Type::getVoidTy(Context));
672  if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
673      ParseOptionalAddrSpace(AddrSpace) ||
674      ParseGlobalType(IsConstant) ||
675      ParseType(Ty, TyLoc))
676    return true;
677
678  // If the linkage is specified and is external, then no initializer is
679  // present.
680  Constant *Init = 0;
681  if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
682                      Linkage != GlobalValue::ExternalWeakLinkage &&
683                      Linkage != GlobalValue::ExternalLinkage)) {
684    if (ParseGlobalValue(Ty, Init))
685      return true;
686  }
687
688  if (isa<FunctionType>(Ty) || Ty->isLabelTy())
689    return Error(TyLoc, "invalid type for global variable");
690
691  GlobalVariable *GV = 0;
692
693  // See if the global was forward referenced, if so, use the global.
694  if (!Name.empty()) {
695    if (GlobalValue *GVal = M->getNamedValue(Name)) {
696      if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
697        return Error(NameLoc, "redefinition of global '@" + Name + "'");
698      GV = cast<GlobalVariable>(GVal);
699    }
700  } else {
701    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
702      I = ForwardRefValIDs.find(NumberedVals.size());
703    if (I != ForwardRefValIDs.end()) {
704      GV = cast<GlobalVariable>(I->second.first);
705      ForwardRefValIDs.erase(I);
706    }
707  }
708
709  if (GV == 0) {
710    GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
711                            Name, 0, false, AddrSpace);
712  } else {
713    if (GV->getType()->getElementType() != Ty)
714      return Error(TyLoc,
715            "forward reference and definition of global have different types");
716
717    // Move the forward-reference to the correct spot in the module.
718    M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
719  }
720
721  if (Name.empty())
722    NumberedVals.push_back(GV);
723
724  // Set the parsed properties on the global.
725  if (Init)
726    GV->setInitializer(Init);
727  GV->setConstant(IsConstant);
728  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
729  GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
730  GV->setThreadLocal(ThreadLocal);
731
732  // Parse attributes on the global.
733  while (Lex.getKind() == lltok::comma) {
734    Lex.Lex();
735
736    if (Lex.getKind() == lltok::kw_section) {
737      Lex.Lex();
738      GV->setSection(Lex.getStrVal());
739      if (ParseToken(lltok::StringConstant, "expected global section string"))
740        return true;
741    } else if (Lex.getKind() == lltok::kw_align) {
742      unsigned Alignment;
743      if (ParseOptionalAlignment(Alignment)) return true;
744      GV->setAlignment(Alignment);
745    } else {
746      TokError("unknown global variable property!");
747    }
748  }
749
750  return false;
751}
752
753
754//===----------------------------------------------------------------------===//
755// GlobalValue Reference/Resolution Routines.
756//===----------------------------------------------------------------------===//
757
758/// GetGlobalVal - Get a value with the specified name or ID, creating a
759/// forward reference record if needed.  This can return null if the value
760/// exists but does not have the right type.
761GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
762                                    LocTy Loc) {
763  const PointerType *PTy = dyn_cast<PointerType>(Ty);
764  if (PTy == 0) {
765    Error(Loc, "global variable reference must have pointer type");
766    return 0;
767  }
768
769  // Look this name up in the normal function symbol table.
770  GlobalValue *Val =
771    cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
772
773  // If this is a forward reference for the value, see if we already created a
774  // forward ref record.
775  if (Val == 0) {
776    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
777      I = ForwardRefVals.find(Name);
778    if (I != ForwardRefVals.end())
779      Val = I->second.first;
780  }
781
782  // If we have the value in the symbol table or fwd-ref table, return it.
783  if (Val) {
784    if (Val->getType() == Ty) return Val;
785    Error(Loc, "'@" + Name + "' defined with type '" +
786          Val->getType()->getDescription() + "'");
787    return 0;
788  }
789
790  // Otherwise, create a new forward reference for this value and remember it.
791  GlobalValue *FwdVal;
792  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
793    // Function types can return opaque but functions can't.
794    if (isa<OpaqueType>(FT->getReturnType())) {
795      Error(Loc, "function may not return opaque type");
796      return 0;
797    }
798
799    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
800  } else {
801    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
802                                GlobalValue::ExternalWeakLinkage, 0, Name);
803  }
804
805  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
806  return FwdVal;
807}
808
809GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
810  const PointerType *PTy = dyn_cast<PointerType>(Ty);
811  if (PTy == 0) {
812    Error(Loc, "global variable reference must have pointer type");
813    return 0;
814  }
815
816  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
817
818  // If this is a forward reference for the value, see if we already created a
819  // forward ref record.
820  if (Val == 0) {
821    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
822      I = ForwardRefValIDs.find(ID);
823    if (I != ForwardRefValIDs.end())
824      Val = I->second.first;
825  }
826
827  // If we have the value in the symbol table or fwd-ref table, return it.
828  if (Val) {
829    if (Val->getType() == Ty) return Val;
830    Error(Loc, "'@" + utostr(ID) + "' defined with type '" +
831          Val->getType()->getDescription() + "'");
832    return 0;
833  }
834
835  // Otherwise, create a new forward reference for this value and remember it.
836  GlobalValue *FwdVal;
837  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
838    // Function types can return opaque but functions can't.
839    if (isa<OpaqueType>(FT->getReturnType())) {
840      Error(Loc, "function may not return opaque type");
841      return 0;
842    }
843    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
844  } else {
845    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
846                                GlobalValue::ExternalWeakLinkage, 0, "");
847  }
848
849  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
850  return FwdVal;
851}
852
853
854//===----------------------------------------------------------------------===//
855// Helper Routines.
856//===----------------------------------------------------------------------===//
857
858/// ParseToken - If the current token has the specified kind, eat it and return
859/// success.  Otherwise, emit the specified error and return failure.
860bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
861  if (Lex.getKind() != T)
862    return TokError(ErrMsg);
863  Lex.Lex();
864  return false;
865}
866
867/// ParseStringConstant
868///   ::= StringConstant
869bool LLParser::ParseStringConstant(std::string &Result) {
870  if (Lex.getKind() != lltok::StringConstant)
871    return TokError("expected string constant");
872  Result = Lex.getStrVal();
873  Lex.Lex();
874  return false;
875}
876
877/// ParseUInt32
878///   ::= uint32
879bool LLParser::ParseUInt32(unsigned &Val) {
880  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
881    return TokError("expected integer");
882  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
883  if (Val64 != unsigned(Val64))
884    return TokError("expected 32-bit integer (too large)");
885  Val = Val64;
886  Lex.Lex();
887  return false;
888}
889
890
891/// ParseOptionalAddrSpace
892///   := /*empty*/
893///   := 'addrspace' '(' uint32 ')'
894bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
895  AddrSpace = 0;
896  if (!EatIfPresent(lltok::kw_addrspace))
897    return false;
898  return ParseToken(lltok::lparen, "expected '(' in address space") ||
899         ParseUInt32(AddrSpace) ||
900         ParseToken(lltok::rparen, "expected ')' in address space");
901}
902
903/// ParseOptionalAttrs - Parse a potentially empty attribute list.  AttrKind
904/// indicates what kind of attribute list this is: 0: function arg, 1: result,
905/// 2: function attr.
906/// 3: function arg after value: FIXME: REMOVE IN LLVM 3.0
907bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
908  Attrs = Attribute::None;
909  LocTy AttrLoc = Lex.getLoc();
910
911  while (1) {
912    switch (Lex.getKind()) {
913    case lltok::kw_sext:
914    case lltok::kw_zext:
915      // Treat these as signext/zeroext if they occur in the argument list after
916      // the value, as in "call i8 @foo(i8 10 sext)".  If they occur before the
917      // value, as in "call i8 @foo(i8 sext (" then it is part of a constant
918      // expr.
919      // FIXME: REMOVE THIS IN LLVM 3.0
920      if (AttrKind == 3) {
921        if (Lex.getKind() == lltok::kw_sext)
922          Attrs |= Attribute::SExt;
923        else
924          Attrs |= Attribute::ZExt;
925        break;
926      }
927      // FALL THROUGH.
928    default:  // End of attributes.
929      if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
930        return Error(AttrLoc, "invalid use of function-only attribute");
931
932      if (AttrKind != 0 && AttrKind != 3 && (Attrs & Attribute::ParameterOnly))
933        return Error(AttrLoc, "invalid use of parameter-only attribute");
934
935      return false;
936    case lltok::kw_zeroext:         Attrs |= Attribute::ZExt; break;
937    case lltok::kw_signext:         Attrs |= Attribute::SExt; break;
938    case lltok::kw_inreg:           Attrs |= Attribute::InReg; break;
939    case lltok::kw_sret:            Attrs |= Attribute::StructRet; break;
940    case lltok::kw_noalias:         Attrs |= Attribute::NoAlias; break;
941    case lltok::kw_nocapture:       Attrs |= Attribute::NoCapture; break;
942    case lltok::kw_byval:           Attrs |= Attribute::ByVal; break;
943    case lltok::kw_nest:            Attrs |= Attribute::Nest; break;
944
945    case lltok::kw_noreturn:        Attrs |= Attribute::NoReturn; break;
946    case lltok::kw_nounwind:        Attrs |= Attribute::NoUnwind; break;
947    case lltok::kw_noinline:        Attrs |= Attribute::NoInline; break;
948    case lltok::kw_readnone:        Attrs |= Attribute::ReadNone; break;
949    case lltok::kw_readonly:        Attrs |= Attribute::ReadOnly; break;
950    case lltok::kw_inlinehint:      Attrs |= Attribute::InlineHint; break;
951    case lltok::kw_alwaysinline:    Attrs |= Attribute::AlwaysInline; break;
952    case lltok::kw_optsize:         Attrs |= Attribute::OptimizeForSize; break;
953    case lltok::kw_ssp:             Attrs |= Attribute::StackProtect; break;
954    case lltok::kw_sspreq:          Attrs |= Attribute::StackProtectReq; break;
955    case lltok::kw_noredzone:       Attrs |= Attribute::NoRedZone; break;
956    case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
957    case lltok::kw_naked:           Attrs |= Attribute::Naked; break;
958
959    case lltok::kw_alignstack: {
960      unsigned Alignment;
961      if (ParseOptionalStackAlignment(Alignment))
962        return true;
963      Attrs |= Attribute::constructStackAlignmentFromInt(Alignment);
964      continue;
965    }
966
967    case lltok::kw_align: {
968      unsigned Alignment;
969      if (ParseOptionalAlignment(Alignment))
970        return true;
971      Attrs |= Attribute::constructAlignmentFromInt(Alignment);
972      continue;
973    }
974
975    }
976    Lex.Lex();
977  }
978}
979
980/// ParseOptionalLinkage
981///   ::= /*empty*/
982///   ::= 'private'
983///   ::= 'linker_private'
984///   ::= 'internal'
985///   ::= 'weak'
986///   ::= 'weak_odr'
987///   ::= 'linkonce'
988///   ::= 'linkonce_odr'
989///   ::= 'appending'
990///   ::= 'dllexport'
991///   ::= 'common'
992///   ::= 'dllimport'
993///   ::= 'extern_weak'
994///   ::= 'external'
995bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
996  HasLinkage = false;
997  switch (Lex.getKind()) {
998  default:                       Res=GlobalValue::ExternalLinkage; return false;
999  case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
1000  case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
1001  case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
1002  case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
1003  case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
1004  case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
1005  case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
1006  case lltok::kw_available_externally:
1007    Res = GlobalValue::AvailableExternallyLinkage;
1008    break;
1009  case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
1010  case lltok::kw_dllexport:      Res = GlobalValue::DLLExportLinkage;     break;
1011  case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
1012  case lltok::kw_dllimport:      Res = GlobalValue::DLLImportLinkage;     break;
1013  case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
1014  case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
1015  }
1016  Lex.Lex();
1017  HasLinkage = true;
1018  return false;
1019}
1020
1021/// ParseOptionalVisibility
1022///   ::= /*empty*/
1023///   ::= 'default'
1024///   ::= 'hidden'
1025///   ::= 'protected'
1026///
1027bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1028  switch (Lex.getKind()) {
1029  default:                  Res = GlobalValue::DefaultVisibility; return false;
1030  case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
1031  case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
1032  case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1033  }
1034  Lex.Lex();
1035  return false;
1036}
1037
1038/// ParseOptionalCallingConv
1039///   ::= /*empty*/
1040///   ::= 'ccc'
1041///   ::= 'fastcc'
1042///   ::= 'coldcc'
1043///   ::= 'x86_stdcallcc'
1044///   ::= 'x86_fastcallcc'
1045///   ::= 'arm_apcscc'
1046///   ::= 'arm_aapcscc'
1047///   ::= 'arm_aapcs_vfpcc'
1048///   ::= 'msp430_intrcc'
1049///   ::= 'cc' UINT
1050///
1051bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
1052  switch (Lex.getKind()) {
1053  default:                       CC = CallingConv::C; return false;
1054  case lltok::kw_ccc:            CC = CallingConv::C; break;
1055  case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1056  case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1057  case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1058  case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1059  case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1060  case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1061  case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1062  case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1063  case lltok::kw_cc: {
1064      unsigned ArbitraryCC;
1065      Lex.Lex();
1066      if (ParseUInt32(ArbitraryCC)) {
1067        return true;
1068      } else
1069        CC = static_cast<CallingConv::ID>(ArbitraryCC);
1070        return false;
1071    }
1072    break;
1073  }
1074
1075  Lex.Lex();
1076  return false;
1077}
1078
1079/// ParseInstructionMetadata
1080///   ::= !dbg !42 (',' !dbg !57)*
1081bool LLParser::
1082ParseInstructionMetadata(SmallVectorImpl<std::pair<unsigned,
1083                                                 MDNode *> > &Result){
1084  do {
1085    if (Lex.getKind() != lltok::MetadataVar)
1086      return TokError("expected metadata after comma");
1087
1088    std::string Name = Lex.getStrVal();
1089    Lex.Lex();
1090
1091    MDNode *Node;
1092    if (ParseToken(lltok::exclaim, "expected '!' here") ||
1093        ParseMDNodeID(Node))
1094      return true;
1095
1096    unsigned MDK = M->getMDKindID(Name.c_str());
1097    Result.push_back(std::make_pair(MDK, Node));
1098
1099    // If this is the end of the list, we're done.
1100  } while (EatIfPresent(lltok::comma));
1101  return false;
1102}
1103
1104/// ParseOptionalAlignment
1105///   ::= /* empty */
1106///   ::= 'align' 4
1107bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1108  Alignment = 0;
1109  if (!EatIfPresent(lltok::kw_align))
1110    return false;
1111  LocTy AlignLoc = Lex.getLoc();
1112  if (ParseUInt32(Alignment)) return true;
1113  if (!isPowerOf2_32(Alignment))
1114    return Error(AlignLoc, "alignment is not a power of two");
1115  return false;
1116}
1117
1118/// ParseOptionalCommaAlign
1119///   ::=
1120///   ::= ',' align 4
1121///
1122/// This returns with AteExtraComma set to true if it ate an excess comma at the
1123/// end.
1124bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1125                                       bool &AteExtraComma) {
1126  AteExtraComma = false;
1127  while (EatIfPresent(lltok::comma)) {
1128    // Metadata at the end is an early exit.
1129    if (Lex.getKind() == lltok::MetadataVar) {
1130      AteExtraComma = true;
1131      return false;
1132    }
1133
1134    if (Lex.getKind() == lltok::kw_align) {
1135      if (ParseOptionalAlignment(Alignment)) return true;
1136    } else
1137      return true;
1138  }
1139
1140  return false;
1141}
1142
1143/// ParseOptionalStackAlignment
1144///   ::= /* empty */
1145///   ::= 'alignstack' '(' 4 ')'
1146bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1147  Alignment = 0;
1148  if (!EatIfPresent(lltok::kw_alignstack))
1149    return false;
1150  LocTy ParenLoc = Lex.getLoc();
1151  if (!EatIfPresent(lltok::lparen))
1152    return Error(ParenLoc, "expected '('");
1153  LocTy AlignLoc = Lex.getLoc();
1154  if (ParseUInt32(Alignment)) return true;
1155  ParenLoc = Lex.getLoc();
1156  if (!EatIfPresent(lltok::rparen))
1157    return Error(ParenLoc, "expected ')'");
1158  if (!isPowerOf2_32(Alignment))
1159    return Error(AlignLoc, "stack alignment is not a power of two");
1160  return false;
1161}
1162
1163/// ParseIndexList - This parses the index list for an insert/extractvalue
1164/// instruction.  This sets AteExtraComma in the case where we eat an extra
1165/// comma at the end of the line and find that it is followed by metadata.
1166/// Clients that don't allow metadata can call the version of this function that
1167/// only takes one argument.
1168///
1169/// ParseIndexList
1170///    ::=  (',' uint32)+
1171///
1172bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1173                              bool &AteExtraComma) {
1174  AteExtraComma = false;
1175
1176  if (Lex.getKind() != lltok::comma)
1177    return TokError("expected ',' as start of index list");
1178
1179  while (EatIfPresent(lltok::comma)) {
1180    if (Lex.getKind() == lltok::MetadataVar) {
1181      AteExtraComma = true;
1182      return false;
1183    }
1184    unsigned Idx;
1185    if (ParseUInt32(Idx)) return true;
1186    Indices.push_back(Idx);
1187  }
1188
1189  return false;
1190}
1191
1192//===----------------------------------------------------------------------===//
1193// Type Parsing.
1194//===----------------------------------------------------------------------===//
1195
1196/// ParseType - Parse and resolve a full type.
1197bool LLParser::ParseType(PATypeHolder &Result, bool AllowVoid) {
1198  LocTy TypeLoc = Lex.getLoc();
1199  if (ParseTypeRec(Result)) return true;
1200
1201  // Verify no unresolved uprefs.
1202  if (!UpRefs.empty())
1203    return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
1204
1205  if (!AllowVoid && Result.get()->isVoidTy())
1206    return Error(TypeLoc, "void type only allowed for function results");
1207
1208  return false;
1209}
1210
1211/// HandleUpRefs - Every time we finish a new layer of types, this function is
1212/// called.  It loops through the UpRefs vector, which is a list of the
1213/// currently active types.  For each type, if the up-reference is contained in
1214/// the newly completed type, we decrement the level count.  When the level
1215/// count reaches zero, the up-referenced type is the type that is passed in:
1216/// thus we can complete the cycle.
1217///
1218PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
1219  // If Ty isn't abstract, or if there are no up-references in it, then there is
1220  // nothing to resolve here.
1221  if (!ty->isAbstract() || UpRefs.empty()) return ty;
1222
1223  PATypeHolder Ty(ty);
1224#if 0
1225  dbgs() << "Type '" << Ty->getDescription()
1226         << "' newly formed.  Resolving upreferences.\n"
1227         << UpRefs.size() << " upreferences active!\n";
1228#endif
1229
1230  // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
1231  // to zero), we resolve them all together before we resolve them to Ty.  At
1232  // the end of the loop, if there is anything to resolve to Ty, it will be in
1233  // this variable.
1234  OpaqueType *TypeToResolve = 0;
1235
1236  for (unsigned i = 0; i != UpRefs.size(); ++i) {
1237    // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
1238    bool ContainsType =
1239      std::find(Ty->subtype_begin(), Ty->subtype_end(),
1240                UpRefs[i].LastContainedTy) != Ty->subtype_end();
1241
1242#if 0
1243    dbgs() << "  UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
1244           << UpRefs[i].LastContainedTy->getDescription() << ") = "
1245           << (ContainsType ? "true" : "false")
1246           << " level=" << UpRefs[i].NestingLevel << "\n";
1247#endif
1248    if (!ContainsType)
1249      continue;
1250
1251    // Decrement level of upreference
1252    unsigned Level = --UpRefs[i].NestingLevel;
1253    UpRefs[i].LastContainedTy = Ty;
1254
1255    // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
1256    if (Level != 0)
1257      continue;
1258
1259#if 0
1260    dbgs() << "  * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
1261#endif
1262    if (!TypeToResolve)
1263      TypeToResolve = UpRefs[i].UpRefTy;
1264    else
1265      UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
1266    UpRefs.erase(UpRefs.begin()+i);     // Remove from upreference list.
1267    --i;                                // Do not skip the next element.
1268  }
1269
1270  if (TypeToResolve)
1271    TypeToResolve->refineAbstractTypeTo(Ty);
1272
1273  return Ty;
1274}
1275
1276
1277/// ParseTypeRec - The recursive function used to process the internal
1278/// implementation details of types.
1279bool LLParser::ParseTypeRec(PATypeHolder &Result) {
1280  switch (Lex.getKind()) {
1281  default:
1282    return TokError("expected type");
1283  case lltok::Type:
1284    // TypeRec ::= 'float' | 'void' (etc)
1285    Result = Lex.getTyVal();
1286    Lex.Lex();
1287    break;
1288  case lltok::kw_opaque:
1289    // TypeRec ::= 'opaque'
1290    Result = OpaqueType::get(Context);
1291    Lex.Lex();
1292    break;
1293  case lltok::lbrace:
1294    // TypeRec ::= '{' ... '}'
1295    if (ParseStructType(Result, false))
1296      return true;
1297    break;
1298  case lltok::lsquare:
1299    // TypeRec ::= '[' ... ']'
1300    Lex.Lex(); // eat the lsquare.
1301    if (ParseArrayVectorType(Result, false))
1302      return true;
1303    break;
1304  case lltok::less: // Either vector or packed struct.
1305    // TypeRec ::= '<' ... '>'
1306    Lex.Lex();
1307    if (Lex.getKind() == lltok::lbrace) {
1308      if (ParseStructType(Result, true) ||
1309          ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1310        return true;
1311    } else if (ParseArrayVectorType(Result, true))
1312      return true;
1313    break;
1314  case lltok::LocalVar:
1315  case lltok::StringConstant:  // FIXME: REMOVE IN LLVM 3.0
1316    // TypeRec ::= %foo
1317    if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
1318      Result = T;
1319    } else {
1320      Result = OpaqueType::get(Context);
1321      ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
1322                                            std::make_pair(Result,
1323                                                           Lex.getLoc())));
1324      M->addTypeName(Lex.getStrVal(), Result.get());
1325    }
1326    Lex.Lex();
1327    break;
1328
1329  case lltok::LocalVarID:
1330    // TypeRec ::= %4
1331    if (Lex.getUIntVal() < NumberedTypes.size())
1332      Result = NumberedTypes[Lex.getUIntVal()];
1333    else {
1334      std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
1335        I = ForwardRefTypeIDs.find(Lex.getUIntVal());
1336      if (I != ForwardRefTypeIDs.end())
1337        Result = I->second.first;
1338      else {
1339        Result = OpaqueType::get(Context);
1340        ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
1341                                                std::make_pair(Result,
1342                                                               Lex.getLoc())));
1343      }
1344    }
1345    Lex.Lex();
1346    break;
1347  case lltok::backslash: {
1348    // TypeRec ::= '\' 4
1349    Lex.Lex();
1350    unsigned Val;
1351    if (ParseUInt32(Val)) return true;
1352    OpaqueType *OT = OpaqueType::get(Context); //Use temporary placeholder.
1353    UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
1354    Result = OT;
1355    break;
1356  }
1357  }
1358
1359  // Parse the type suffixes.
1360  while (1) {
1361    switch (Lex.getKind()) {
1362    // End of type.
1363    default: return false;
1364
1365    // TypeRec ::= TypeRec '*'
1366    case lltok::star:
1367      if (Result.get()->isLabelTy())
1368        return TokError("basic block pointers are invalid");
1369      if (Result.get()->isVoidTy())
1370        return TokError("pointers to void are invalid; use i8* instead");
1371      if (!PointerType::isValidElementType(Result.get()))
1372        return TokError("pointer to this type is invalid");
1373      Result = HandleUpRefs(PointerType::getUnqual(Result.get()));
1374      Lex.Lex();
1375      break;
1376
1377    // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1378    case lltok::kw_addrspace: {
1379      if (Result.get()->isLabelTy())
1380        return TokError("basic block pointers are invalid");
1381      if (Result.get()->isVoidTy())
1382        return TokError("pointers to void are invalid; use i8* instead");
1383      if (!PointerType::isValidElementType(Result.get()))
1384        return TokError("pointer to this type is invalid");
1385      unsigned AddrSpace;
1386      if (ParseOptionalAddrSpace(AddrSpace) ||
1387          ParseToken(lltok::star, "expected '*' in address space"))
1388        return true;
1389
1390      Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace));
1391      break;
1392    }
1393
1394    /// Types '(' ArgTypeListI ')' OptFuncAttrs
1395    case lltok::lparen:
1396      if (ParseFunctionType(Result))
1397        return true;
1398      break;
1399    }
1400  }
1401}
1402
1403/// ParseParameterList
1404///    ::= '(' ')'
1405///    ::= '(' Arg (',' Arg)* ')'
1406///  Arg
1407///    ::= Type OptionalAttributes Value OptionalAttributes
1408bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1409                                  PerFunctionState &PFS) {
1410  if (ParseToken(lltok::lparen, "expected '(' in call"))
1411    return true;
1412
1413  while (Lex.getKind() != lltok::rparen) {
1414    // If this isn't the first argument, we need a comma.
1415    if (!ArgList.empty() &&
1416        ParseToken(lltok::comma, "expected ',' in argument list"))
1417      return true;
1418
1419    // Parse the argument.
1420    LocTy ArgLoc;
1421    PATypeHolder ArgTy(Type::getVoidTy(Context));
1422    unsigned ArgAttrs1 = Attribute::None;
1423    unsigned ArgAttrs2 = Attribute::None;
1424    Value *V;
1425    if (ParseType(ArgTy, ArgLoc))
1426      return true;
1427
1428    // Otherwise, handle normal operands.
1429    if (ParseOptionalAttrs(ArgAttrs1, 0) ||
1430        ParseValue(ArgTy, V, PFS) ||
1431        // FIXME: Should not allow attributes after the argument, remove this
1432        // in LLVM 3.0.
1433        ParseOptionalAttrs(ArgAttrs2, 3))
1434      return true;
1435    ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1436  }
1437
1438  Lex.Lex();  // Lex the ')'.
1439  return false;
1440}
1441
1442
1443
1444/// ParseArgumentList - Parse the argument list for a function type or function
1445/// prototype.  If 'inType' is true then we are parsing a FunctionType.
1446///   ::= '(' ArgTypeListI ')'
1447/// ArgTypeListI
1448///   ::= /*empty*/
1449///   ::= '...'
1450///   ::= ArgTypeList ',' '...'
1451///   ::= ArgType (',' ArgType)*
1452///
1453bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
1454                                 bool &isVarArg, bool inType) {
1455  isVarArg = false;
1456  assert(Lex.getKind() == lltok::lparen);
1457  Lex.Lex(); // eat the (.
1458
1459  if (Lex.getKind() == lltok::rparen) {
1460    // empty
1461  } else if (Lex.getKind() == lltok::dotdotdot) {
1462    isVarArg = true;
1463    Lex.Lex();
1464  } else {
1465    LocTy TypeLoc = Lex.getLoc();
1466    PATypeHolder ArgTy(Type::getVoidTy(Context));
1467    unsigned Attrs;
1468    std::string Name;
1469
1470    // If we're parsing a type, use ParseTypeRec, because we allow recursive
1471    // types (such as a function returning a pointer to itself).  If parsing a
1472    // function prototype, we require fully resolved types.
1473    if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1474        ParseOptionalAttrs(Attrs, 0)) return true;
1475
1476    if (ArgTy->isVoidTy())
1477      return Error(TypeLoc, "argument can not have void type");
1478
1479    if (Lex.getKind() == lltok::LocalVar ||
1480        Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1481      Name = Lex.getStrVal();
1482      Lex.Lex();
1483    }
1484
1485    if (!FunctionType::isValidArgumentType(ArgTy))
1486      return Error(TypeLoc, "invalid type for function argument");
1487
1488    ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1489
1490    while (EatIfPresent(lltok::comma)) {
1491      // Handle ... at end of arg list.
1492      if (EatIfPresent(lltok::dotdotdot)) {
1493        isVarArg = true;
1494        break;
1495      }
1496
1497      // Otherwise must be an argument type.
1498      TypeLoc = Lex.getLoc();
1499      if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1500          ParseOptionalAttrs(Attrs, 0)) return true;
1501
1502      if (ArgTy->isVoidTy())
1503        return Error(TypeLoc, "argument can not have void type");
1504
1505      if (Lex.getKind() == lltok::LocalVar ||
1506          Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1507        Name = Lex.getStrVal();
1508        Lex.Lex();
1509      } else {
1510        Name = "";
1511      }
1512
1513      if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1514        return Error(TypeLoc, "invalid type for function argument");
1515
1516      ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1517    }
1518  }
1519
1520  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1521}
1522
1523/// ParseFunctionType
1524///  ::= Type ArgumentList OptionalAttrs
1525bool LLParser::ParseFunctionType(PATypeHolder &Result) {
1526  assert(Lex.getKind() == lltok::lparen);
1527
1528  if (!FunctionType::isValidReturnType(Result))
1529    return TokError("invalid function return type");
1530
1531  std::vector<ArgInfo> ArgList;
1532  bool isVarArg;
1533  unsigned Attrs;
1534  if (ParseArgumentList(ArgList, isVarArg, true) ||
1535      // FIXME: Allow, but ignore attributes on function types!
1536      // FIXME: Remove in LLVM 3.0
1537      ParseOptionalAttrs(Attrs, 2))
1538    return true;
1539
1540  // Reject names on the arguments lists.
1541  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1542    if (!ArgList[i].Name.empty())
1543      return Error(ArgList[i].Loc, "argument name invalid in function type");
1544    if (!ArgList[i].Attrs != 0) {
1545      // Allow but ignore attributes on function types; this permits
1546      // auto-upgrade.
1547      // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1548    }
1549  }
1550
1551  std::vector<const Type*> ArgListTy;
1552  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1553    ArgListTy.push_back(ArgList[i].Type);
1554
1555  Result = HandleUpRefs(FunctionType::get(Result.get(),
1556                                                ArgListTy, isVarArg));
1557  return false;
1558}
1559
1560/// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1561///   TypeRec
1562///     ::= '{' '}'
1563///     ::= '{' TypeRec (',' TypeRec)* '}'
1564///     ::= '<' '{' '}' '>'
1565///     ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1566bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
1567  assert(Lex.getKind() == lltok::lbrace);
1568  Lex.Lex(); // Consume the '{'
1569
1570  if (EatIfPresent(lltok::rbrace)) {
1571    Result = StructType::get(Context, Packed);
1572    return false;
1573  }
1574
1575  std::vector<PATypeHolder> ParamsList;
1576  LocTy EltTyLoc = Lex.getLoc();
1577  if (ParseTypeRec(Result)) return true;
1578  ParamsList.push_back(Result);
1579
1580  if (Result->isVoidTy())
1581    return Error(EltTyLoc, "struct element can not have void type");
1582  if (!StructType::isValidElementType(Result))
1583    return Error(EltTyLoc, "invalid element type for struct");
1584
1585  while (EatIfPresent(lltok::comma)) {
1586    EltTyLoc = Lex.getLoc();
1587    if (ParseTypeRec(Result)) return true;
1588
1589    if (Result->isVoidTy())
1590      return Error(EltTyLoc, "struct element can not have void type");
1591    if (!StructType::isValidElementType(Result))
1592      return Error(EltTyLoc, "invalid element type for struct");
1593
1594    ParamsList.push_back(Result);
1595  }
1596
1597  if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
1598    return true;
1599
1600  std::vector<const Type*> ParamsListTy;
1601  for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1602    ParamsListTy.push_back(ParamsList[i].get());
1603  Result = HandleUpRefs(StructType::get(Context, ParamsListTy, Packed));
1604  return false;
1605}
1606
1607/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1608/// token has already been consumed.
1609///   TypeRec
1610///     ::= '[' APSINTVAL 'x' Types ']'
1611///     ::= '<' APSINTVAL 'x' Types '>'
1612bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
1613  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1614      Lex.getAPSIntVal().getBitWidth() > 64)
1615    return TokError("expected number in address space");
1616
1617  LocTy SizeLoc = Lex.getLoc();
1618  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1619  Lex.Lex();
1620
1621  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1622      return true;
1623
1624  LocTy TypeLoc = Lex.getLoc();
1625  PATypeHolder EltTy(Type::getVoidTy(Context));
1626  if (ParseTypeRec(EltTy)) return true;
1627
1628  if (EltTy->isVoidTy())
1629    return Error(TypeLoc, "array and vector element type cannot be void");
1630
1631  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1632                 "expected end of sequential type"))
1633    return true;
1634
1635  if (isVector) {
1636    if (Size == 0)
1637      return Error(SizeLoc, "zero element vector is illegal");
1638    if ((unsigned)Size != Size)
1639      return Error(SizeLoc, "size too large for vector");
1640    if (!VectorType::isValidElementType(EltTy))
1641      return Error(TypeLoc, "vector element type must be fp or integer");
1642    Result = VectorType::get(EltTy, unsigned(Size));
1643  } else {
1644    if (!ArrayType::isValidElementType(EltTy))
1645      return Error(TypeLoc, "invalid array element type");
1646    Result = HandleUpRefs(ArrayType::get(EltTy, Size));
1647  }
1648  return false;
1649}
1650
1651//===----------------------------------------------------------------------===//
1652// Function Semantic Analysis.
1653//===----------------------------------------------------------------------===//
1654
1655LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
1656                                             int functionNumber)
1657  : P(p), F(f), FunctionNumber(functionNumber) {
1658
1659  // Insert unnamed arguments into the NumberedVals list.
1660  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1661       AI != E; ++AI)
1662    if (!AI->hasName())
1663      NumberedVals.push_back(AI);
1664}
1665
1666LLParser::PerFunctionState::~PerFunctionState() {
1667  // If there were any forward referenced non-basicblock values, delete them.
1668  for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1669       I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1670    if (!isa<BasicBlock>(I->second.first)) {
1671      I->second.first->replaceAllUsesWith(
1672                           UndefValue::get(I->second.first->getType()));
1673      delete I->second.first;
1674      I->second.first = 0;
1675    }
1676
1677  for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1678       I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1679    if (!isa<BasicBlock>(I->second.first)) {
1680      I->second.first->replaceAllUsesWith(
1681                           UndefValue::get(I->second.first->getType()));
1682      delete I->second.first;
1683      I->second.first = 0;
1684    }
1685}
1686
1687bool LLParser::PerFunctionState::FinishFunction() {
1688  // Check to see if someone took the address of labels in this block.
1689  if (!P.ForwardRefBlockAddresses.empty()) {
1690    ValID FunctionID;
1691    if (!F.getName().empty()) {
1692      FunctionID.Kind = ValID::t_GlobalName;
1693      FunctionID.StrVal = F.getName();
1694    } else {
1695      FunctionID.Kind = ValID::t_GlobalID;
1696      FunctionID.UIntVal = FunctionNumber;
1697    }
1698
1699    std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
1700      FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
1701    if (FRBAI != P.ForwardRefBlockAddresses.end()) {
1702      // Resolve all these references.
1703      if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
1704        return true;
1705
1706      P.ForwardRefBlockAddresses.erase(FRBAI);
1707    }
1708  }
1709
1710  if (!ForwardRefVals.empty())
1711    return P.Error(ForwardRefVals.begin()->second.second,
1712                   "use of undefined value '%" + ForwardRefVals.begin()->first +
1713                   "'");
1714  if (!ForwardRefValIDs.empty())
1715    return P.Error(ForwardRefValIDs.begin()->second.second,
1716                   "use of undefined value '%" +
1717                   utostr(ForwardRefValIDs.begin()->first) + "'");
1718  return false;
1719}
1720
1721
1722/// GetVal - Get a value with the specified name or ID, creating a
1723/// forward reference record if needed.  This can return null if the value
1724/// exists but does not have the right type.
1725Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1726                                          const Type *Ty, LocTy Loc) {
1727  // Look this name up in the normal function symbol table.
1728  Value *Val = F.getValueSymbolTable().lookup(Name);
1729
1730  // If this is a forward reference for the value, see if we already created a
1731  // forward ref record.
1732  if (Val == 0) {
1733    std::map<std::string, std::pair<Value*, LocTy> >::iterator
1734      I = ForwardRefVals.find(Name);
1735    if (I != ForwardRefVals.end())
1736      Val = I->second.first;
1737  }
1738
1739  // If we have the value in the symbol table or fwd-ref table, return it.
1740  if (Val) {
1741    if (Val->getType() == Ty) return Val;
1742    if (Ty->isLabelTy())
1743      P.Error(Loc, "'%" + Name + "' is not a basic block");
1744    else
1745      P.Error(Loc, "'%" + Name + "' defined with type '" +
1746              Val->getType()->getDescription() + "'");
1747    return 0;
1748  }
1749
1750  // Don't make placeholders with invalid type.
1751  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && !Ty->isLabelTy()) {
1752    P.Error(Loc, "invalid use of a non-first-class type");
1753    return 0;
1754  }
1755
1756  // Otherwise, create a new forward reference for this value and remember it.
1757  Value *FwdVal;
1758  if (Ty->isLabelTy())
1759    FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
1760  else
1761    FwdVal = new Argument(Ty, Name);
1762
1763  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1764  return FwdVal;
1765}
1766
1767Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
1768                                          LocTy Loc) {
1769  // Look this name up in the normal function symbol table.
1770  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1771
1772  // If this is a forward reference for the value, see if we already created a
1773  // forward ref record.
1774  if (Val == 0) {
1775    std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1776      I = ForwardRefValIDs.find(ID);
1777    if (I != ForwardRefValIDs.end())
1778      Val = I->second.first;
1779  }
1780
1781  // If we have the value in the symbol table or fwd-ref table, return it.
1782  if (Val) {
1783    if (Val->getType() == Ty) return Val;
1784    if (Ty->isLabelTy())
1785      P.Error(Loc, "'%" + utostr(ID) + "' is not a basic block");
1786    else
1787      P.Error(Loc, "'%" + utostr(ID) + "' defined with type '" +
1788              Val->getType()->getDescription() + "'");
1789    return 0;
1790  }
1791
1792  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && !Ty->isLabelTy()) {
1793    P.Error(Loc, "invalid use of a non-first-class type");
1794    return 0;
1795  }
1796
1797  // Otherwise, create a new forward reference for this value and remember it.
1798  Value *FwdVal;
1799  if (Ty->isLabelTy())
1800    FwdVal = BasicBlock::Create(F.getContext(), "", &F);
1801  else
1802    FwdVal = new Argument(Ty);
1803
1804  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1805  return FwdVal;
1806}
1807
1808/// SetInstName - After an instruction is parsed and inserted into its
1809/// basic block, this installs its name.
1810bool LLParser::PerFunctionState::SetInstName(int NameID,
1811                                             const std::string &NameStr,
1812                                             LocTy NameLoc, Instruction *Inst) {
1813  // If this instruction has void type, it cannot have a name or ID specified.
1814  if (Inst->getType()->isVoidTy()) {
1815    if (NameID != -1 || !NameStr.empty())
1816      return P.Error(NameLoc, "instructions returning void cannot have a name");
1817    return false;
1818  }
1819
1820  // If this was a numbered instruction, verify that the instruction is the
1821  // expected value and resolve any forward references.
1822  if (NameStr.empty()) {
1823    // If neither a name nor an ID was specified, just use the next ID.
1824    if (NameID == -1)
1825      NameID = NumberedVals.size();
1826
1827    if (unsigned(NameID) != NumberedVals.size())
1828      return P.Error(NameLoc, "instruction expected to be numbered '%" +
1829                     utostr(NumberedVals.size()) + "'");
1830
1831    std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1832      ForwardRefValIDs.find(NameID);
1833    if (FI != ForwardRefValIDs.end()) {
1834      if (FI->second.first->getType() != Inst->getType())
1835        return P.Error(NameLoc, "instruction forward referenced with type '" +
1836                       FI->second.first->getType()->getDescription() + "'");
1837      FI->second.first->replaceAllUsesWith(Inst);
1838      delete FI->second.first;
1839      ForwardRefValIDs.erase(FI);
1840    }
1841
1842    NumberedVals.push_back(Inst);
1843    return false;
1844  }
1845
1846  // Otherwise, the instruction had a name.  Resolve forward refs and set it.
1847  std::map<std::string, std::pair<Value*, LocTy> >::iterator
1848    FI = ForwardRefVals.find(NameStr);
1849  if (FI != ForwardRefVals.end()) {
1850    if (FI->second.first->getType() != Inst->getType())
1851      return P.Error(NameLoc, "instruction forward referenced with type '" +
1852                     FI->second.first->getType()->getDescription() + "'");
1853    FI->second.first->replaceAllUsesWith(Inst);
1854    delete FI->second.first;
1855    ForwardRefVals.erase(FI);
1856  }
1857
1858  // Set the name on the instruction.
1859  Inst->setName(NameStr);
1860
1861  if (Inst->getNameStr() != NameStr)
1862    return P.Error(NameLoc, "multiple definition of local value named '" +
1863                   NameStr + "'");
1864  return false;
1865}
1866
1867/// GetBB - Get a basic block with the specified name or ID, creating a
1868/// forward reference record if needed.
1869BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1870                                              LocTy Loc) {
1871  return cast_or_null<BasicBlock>(GetVal(Name,
1872                                        Type::getLabelTy(F.getContext()), Loc));
1873}
1874
1875BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1876  return cast_or_null<BasicBlock>(GetVal(ID,
1877                                        Type::getLabelTy(F.getContext()), Loc));
1878}
1879
1880/// DefineBB - Define the specified basic block, which is either named or
1881/// unnamed.  If there is an error, this returns null otherwise it returns
1882/// the block being defined.
1883BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1884                                                 LocTy Loc) {
1885  BasicBlock *BB;
1886  if (Name.empty())
1887    BB = GetBB(NumberedVals.size(), Loc);
1888  else
1889    BB = GetBB(Name, Loc);
1890  if (BB == 0) return 0; // Already diagnosed error.
1891
1892  // Move the block to the end of the function.  Forward ref'd blocks are
1893  // inserted wherever they happen to be referenced.
1894  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1895
1896  // Remove the block from forward ref sets.
1897  if (Name.empty()) {
1898    ForwardRefValIDs.erase(NumberedVals.size());
1899    NumberedVals.push_back(BB);
1900  } else {
1901    // BB forward references are already in the function symbol table.
1902    ForwardRefVals.erase(Name);
1903  }
1904
1905  return BB;
1906}
1907
1908//===----------------------------------------------------------------------===//
1909// Constants.
1910//===----------------------------------------------------------------------===//
1911
1912/// ParseValID - Parse an abstract value that doesn't necessarily have a
1913/// type implied.  For example, if we parse "4" we don't know what integer type
1914/// it has.  The value will later be combined with its type and checked for
1915/// sanity.  PFS is used to convert function-local operands of metadata (since
1916/// metadata operands are not just parsed here but also converted to values).
1917/// PFS can be null when we are not parsing metadata values inside a function.
1918bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
1919  ID.Loc = Lex.getLoc();
1920  switch (Lex.getKind()) {
1921  default: return TokError("expected value token");
1922  case lltok::GlobalID:  // @42
1923    ID.UIntVal = Lex.getUIntVal();
1924    ID.Kind = ValID::t_GlobalID;
1925    break;
1926  case lltok::GlobalVar:  // @foo
1927    ID.StrVal = Lex.getStrVal();
1928    ID.Kind = ValID::t_GlobalName;
1929    break;
1930  case lltok::LocalVarID:  // %42
1931    ID.UIntVal = Lex.getUIntVal();
1932    ID.Kind = ValID::t_LocalID;
1933    break;
1934  case lltok::LocalVar:  // %foo
1935  case lltok::StringConstant:  // "foo" - FIXME: REMOVE IN LLVM 3.0
1936    ID.StrVal = Lex.getStrVal();
1937    ID.Kind = ValID::t_LocalName;
1938    break;
1939  case lltok::exclaim:   // !{...} MDNode, !"foo" MDString
1940    Lex.Lex();
1941
1942    if (EatIfPresent(lltok::lbrace)) {
1943      SmallVector<Value*, 16> Elts;
1944      if (ParseMDNodeVector(Elts, PFS) ||
1945          ParseToken(lltok::rbrace, "expected end of metadata node"))
1946        return true;
1947
1948      ID.MDNodeVal = MDNode::get(Context, Elts.data(), Elts.size());
1949      ID.Kind = ValID::t_MDNode;
1950      return false;
1951    }
1952
1953    // Standalone metadata reference
1954    // !{ ..., !42, ... }
1955    if (Lex.getKind() == lltok::APSInt) {
1956      if (ParseMDNodeID(ID.MDNodeVal)) return true;
1957      ID.Kind = ValID::t_MDNode;
1958      return false;
1959    }
1960
1961    // MDString:
1962    //   ::= '!' STRINGCONSTANT
1963    if (ParseMDString(ID.MDStringVal)) return true;
1964    ID.Kind = ValID::t_MDString;
1965    return false;
1966  case lltok::APSInt:
1967    ID.APSIntVal = Lex.getAPSIntVal();
1968    ID.Kind = ValID::t_APSInt;
1969    break;
1970  case lltok::APFloat:
1971    ID.APFloatVal = Lex.getAPFloatVal();
1972    ID.Kind = ValID::t_APFloat;
1973    break;
1974  case lltok::kw_true:
1975    ID.ConstantVal = ConstantInt::getTrue(Context);
1976    ID.Kind = ValID::t_Constant;
1977    break;
1978  case lltok::kw_false:
1979    ID.ConstantVal = ConstantInt::getFalse(Context);
1980    ID.Kind = ValID::t_Constant;
1981    break;
1982  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
1983  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
1984  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
1985
1986  case lltok::lbrace: {
1987    // ValID ::= '{' ConstVector '}'
1988    Lex.Lex();
1989    SmallVector<Constant*, 16> Elts;
1990    if (ParseGlobalValueVector(Elts) ||
1991        ParseToken(lltok::rbrace, "expected end of struct constant"))
1992      return true;
1993
1994    ID.ConstantVal = ConstantStruct::get(Context, Elts.data(),
1995                                         Elts.size(), false);
1996    ID.Kind = ValID::t_Constant;
1997    return false;
1998  }
1999  case lltok::less: {
2000    // ValID ::= '<' ConstVector '>'         --> Vector.
2001    // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2002    Lex.Lex();
2003    bool isPackedStruct = EatIfPresent(lltok::lbrace);
2004
2005    SmallVector<Constant*, 16> Elts;
2006    LocTy FirstEltLoc = Lex.getLoc();
2007    if (ParseGlobalValueVector(Elts) ||
2008        (isPackedStruct &&
2009         ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2010        ParseToken(lltok::greater, "expected end of constant"))
2011      return true;
2012
2013    if (isPackedStruct) {
2014      ID.ConstantVal =
2015        ConstantStruct::get(Context, Elts.data(), Elts.size(), true);
2016      ID.Kind = ValID::t_Constant;
2017      return false;
2018    }
2019
2020    if (Elts.empty())
2021      return Error(ID.Loc, "constant vector must not be empty");
2022
2023    if (!Elts[0]->getType()->isInteger() &&
2024        !Elts[0]->getType()->isFloatingPoint())
2025      return Error(FirstEltLoc,
2026                   "vector elements must have integer or floating point type");
2027
2028    // Verify that all the vector elements have the same type.
2029    for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2030      if (Elts[i]->getType() != Elts[0]->getType())
2031        return Error(FirstEltLoc,
2032                     "vector element #" + utostr(i) +
2033                    " is not of type '" + Elts[0]->getType()->getDescription());
2034
2035    ID.ConstantVal = ConstantVector::get(Elts.data(), Elts.size());
2036    ID.Kind = ValID::t_Constant;
2037    return false;
2038  }
2039  case lltok::lsquare: {   // Array Constant
2040    Lex.Lex();
2041    SmallVector<Constant*, 16> Elts;
2042    LocTy FirstEltLoc = Lex.getLoc();
2043    if (ParseGlobalValueVector(Elts) ||
2044        ParseToken(lltok::rsquare, "expected end of array constant"))
2045      return true;
2046
2047    // Handle empty element.
2048    if (Elts.empty()) {
2049      // Use undef instead of an array because it's inconvenient to determine
2050      // the element type at this point, there being no elements to examine.
2051      ID.Kind = ValID::t_EmptyArray;
2052      return false;
2053    }
2054
2055    if (!Elts[0]->getType()->isFirstClassType())
2056      return Error(FirstEltLoc, "invalid array element type: " +
2057                   Elts[0]->getType()->getDescription());
2058
2059    ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2060
2061    // Verify all elements are correct type!
2062    for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2063      if (Elts[i]->getType() != Elts[0]->getType())
2064        return Error(FirstEltLoc,
2065                     "array element #" + utostr(i) +
2066                     " is not of type '" +Elts[0]->getType()->getDescription());
2067    }
2068
2069    ID.ConstantVal = ConstantArray::get(ATy, Elts.data(), Elts.size());
2070    ID.Kind = ValID::t_Constant;
2071    return false;
2072  }
2073  case lltok::kw_c:  // c "foo"
2074    Lex.Lex();
2075    ID.ConstantVal = ConstantArray::get(Context, Lex.getStrVal(), false);
2076    if (ParseToken(lltok::StringConstant, "expected string")) return true;
2077    ID.Kind = ValID::t_Constant;
2078    return false;
2079
2080  case lltok::kw_asm: {
2081    // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT
2082    bool HasSideEffect, AlignStack;
2083    Lex.Lex();
2084    if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2085        ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2086        ParseStringConstant(ID.StrVal) ||
2087        ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2088        ParseToken(lltok::StringConstant, "expected constraint string"))
2089      return true;
2090    ID.StrVal2 = Lex.getStrVal();
2091    ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1);
2092    ID.Kind = ValID::t_InlineAsm;
2093    return false;
2094  }
2095
2096  case lltok::kw_blockaddress: {
2097    // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2098    Lex.Lex();
2099
2100    ValID Fn, Label;
2101    LocTy FnLoc, LabelLoc;
2102
2103    if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2104        ParseValID(Fn) ||
2105        ParseToken(lltok::comma, "expected comma in block address expression")||
2106        ParseValID(Label) ||
2107        ParseToken(lltok::rparen, "expected ')' in block address expression"))
2108      return true;
2109
2110    if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2111      return Error(Fn.Loc, "expected function name in blockaddress");
2112    if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2113      return Error(Label.Loc, "expected basic block name in blockaddress");
2114
2115    // Make a global variable as a placeholder for this reference.
2116    GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
2117                                           false, GlobalValue::InternalLinkage,
2118                                                0, "");
2119    ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
2120    ID.ConstantVal = FwdRef;
2121    ID.Kind = ValID::t_Constant;
2122    return false;
2123  }
2124
2125  case lltok::kw_trunc:
2126  case lltok::kw_zext:
2127  case lltok::kw_sext:
2128  case lltok::kw_fptrunc:
2129  case lltok::kw_fpext:
2130  case lltok::kw_bitcast:
2131  case lltok::kw_uitofp:
2132  case lltok::kw_sitofp:
2133  case lltok::kw_fptoui:
2134  case lltok::kw_fptosi:
2135  case lltok::kw_inttoptr:
2136  case lltok::kw_ptrtoint: {
2137    unsigned Opc = Lex.getUIntVal();
2138    PATypeHolder DestTy(Type::getVoidTy(Context));
2139    Constant *SrcVal;
2140    Lex.Lex();
2141    if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2142        ParseGlobalTypeAndValue(SrcVal) ||
2143        ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2144        ParseType(DestTy) ||
2145        ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2146      return true;
2147    if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2148      return Error(ID.Loc, "invalid cast opcode for cast from '" +
2149                   SrcVal->getType()->getDescription() + "' to '" +
2150                   DestTy->getDescription() + "'");
2151    ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2152                                                 SrcVal, DestTy);
2153    ID.Kind = ValID::t_Constant;
2154    return false;
2155  }
2156  case lltok::kw_extractvalue: {
2157    Lex.Lex();
2158    Constant *Val;
2159    SmallVector<unsigned, 4> Indices;
2160    if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2161        ParseGlobalTypeAndValue(Val) ||
2162        ParseIndexList(Indices) ||
2163        ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2164      return true;
2165
2166    if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
2167      return Error(ID.Loc, "extractvalue operand must be array or struct");
2168    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
2169                                          Indices.end()))
2170      return Error(ID.Loc, "invalid indices for extractvalue");
2171    ID.ConstantVal =
2172      ConstantExpr::getExtractValue(Val, Indices.data(), Indices.size());
2173    ID.Kind = ValID::t_Constant;
2174    return false;
2175  }
2176  case lltok::kw_insertvalue: {
2177    Lex.Lex();
2178    Constant *Val0, *Val1;
2179    SmallVector<unsigned, 4> Indices;
2180    if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2181        ParseGlobalTypeAndValue(Val0) ||
2182        ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2183        ParseGlobalTypeAndValue(Val1) ||
2184        ParseIndexList(Indices) ||
2185        ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2186      return true;
2187    if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
2188      return Error(ID.Loc, "extractvalue operand must be array or struct");
2189    if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
2190                                          Indices.end()))
2191      return Error(ID.Loc, "invalid indices for insertvalue");
2192    ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1,
2193                       Indices.data(), Indices.size());
2194    ID.Kind = ValID::t_Constant;
2195    return false;
2196  }
2197  case lltok::kw_icmp:
2198  case lltok::kw_fcmp: {
2199    unsigned PredVal, Opc = Lex.getUIntVal();
2200    Constant *Val0, *Val1;
2201    Lex.Lex();
2202    if (ParseCmpPredicate(PredVal, Opc) ||
2203        ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2204        ParseGlobalTypeAndValue(Val0) ||
2205        ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2206        ParseGlobalTypeAndValue(Val1) ||
2207        ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2208      return true;
2209
2210    if (Val0->getType() != Val1->getType())
2211      return Error(ID.Loc, "compare operands must have the same type");
2212
2213    CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2214
2215    if (Opc == Instruction::FCmp) {
2216      if (!Val0->getType()->isFPOrFPVector())
2217        return Error(ID.Loc, "fcmp requires floating point operands");
2218      ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2219    } else {
2220      assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2221      if (!Val0->getType()->isIntOrIntVector() &&
2222          !isa<PointerType>(Val0->getType()))
2223        return Error(ID.Loc, "icmp requires pointer or integer operands");
2224      ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2225    }
2226    ID.Kind = ValID::t_Constant;
2227    return false;
2228  }
2229
2230  // Binary Operators.
2231  case lltok::kw_add:
2232  case lltok::kw_fadd:
2233  case lltok::kw_sub:
2234  case lltok::kw_fsub:
2235  case lltok::kw_mul:
2236  case lltok::kw_fmul:
2237  case lltok::kw_udiv:
2238  case lltok::kw_sdiv:
2239  case lltok::kw_fdiv:
2240  case lltok::kw_urem:
2241  case lltok::kw_srem:
2242  case lltok::kw_frem: {
2243    bool NUW = false;
2244    bool NSW = false;
2245    bool Exact = false;
2246    unsigned Opc = Lex.getUIntVal();
2247    Constant *Val0, *Val1;
2248    Lex.Lex();
2249    LocTy ModifierLoc = Lex.getLoc();
2250    if (Opc == Instruction::Add ||
2251        Opc == Instruction::Sub ||
2252        Opc == Instruction::Mul) {
2253      if (EatIfPresent(lltok::kw_nuw))
2254        NUW = true;
2255      if (EatIfPresent(lltok::kw_nsw)) {
2256        NSW = true;
2257        if (EatIfPresent(lltok::kw_nuw))
2258          NUW = true;
2259      }
2260    } else if (Opc == Instruction::SDiv) {
2261      if (EatIfPresent(lltok::kw_exact))
2262        Exact = true;
2263    }
2264    if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2265        ParseGlobalTypeAndValue(Val0) ||
2266        ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2267        ParseGlobalTypeAndValue(Val1) ||
2268        ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2269      return true;
2270    if (Val0->getType() != Val1->getType())
2271      return Error(ID.Loc, "operands of constexpr must have same type");
2272    if (!Val0->getType()->isIntOrIntVector()) {
2273      if (NUW)
2274        return Error(ModifierLoc, "nuw only applies to integer operations");
2275      if (NSW)
2276        return Error(ModifierLoc, "nsw only applies to integer operations");
2277    }
2278    // API compatibility: Accept either integer or floating-point types with
2279    // add, sub, and mul.
2280    if (!Val0->getType()->isIntOrIntVector() &&
2281        !Val0->getType()->isFPOrFPVector())
2282      return Error(ID.Loc,"constexpr requires integer, fp, or vector operands");
2283    unsigned Flags = 0;
2284    if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2285    if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
2286    if (Exact) Flags |= SDivOperator::IsExact;
2287    Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2288    ID.ConstantVal = C;
2289    ID.Kind = ValID::t_Constant;
2290    return false;
2291  }
2292
2293  // Logical Operations
2294  case lltok::kw_shl:
2295  case lltok::kw_lshr:
2296  case lltok::kw_ashr:
2297  case lltok::kw_and:
2298  case lltok::kw_or:
2299  case lltok::kw_xor: {
2300    unsigned Opc = Lex.getUIntVal();
2301    Constant *Val0, *Val1;
2302    Lex.Lex();
2303    if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2304        ParseGlobalTypeAndValue(Val0) ||
2305        ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2306        ParseGlobalTypeAndValue(Val1) ||
2307        ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2308      return true;
2309    if (Val0->getType() != Val1->getType())
2310      return Error(ID.Loc, "operands of constexpr must have same type");
2311    if (!Val0->getType()->isIntOrIntVector())
2312      return Error(ID.Loc,
2313                   "constexpr requires integer or integer vector operands");
2314    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2315    ID.Kind = ValID::t_Constant;
2316    return false;
2317  }
2318
2319  case lltok::kw_getelementptr:
2320  case lltok::kw_shufflevector:
2321  case lltok::kw_insertelement:
2322  case lltok::kw_extractelement:
2323  case lltok::kw_select: {
2324    unsigned Opc = Lex.getUIntVal();
2325    SmallVector<Constant*, 16> Elts;
2326    bool InBounds = false;
2327    Lex.Lex();
2328    if (Opc == Instruction::GetElementPtr)
2329      InBounds = EatIfPresent(lltok::kw_inbounds);
2330    if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2331        ParseGlobalValueVector(Elts) ||
2332        ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2333      return true;
2334
2335    if (Opc == Instruction::GetElementPtr) {
2336      if (Elts.size() == 0 || !isa<PointerType>(Elts[0]->getType()))
2337        return Error(ID.Loc, "getelementptr requires pointer operand");
2338
2339      if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
2340                                             (Value**)(Elts.data() + 1),
2341                                             Elts.size() - 1))
2342        return Error(ID.Loc, "invalid indices for getelementptr");
2343      ID.ConstantVal = InBounds ?
2344        ConstantExpr::getInBoundsGetElementPtr(Elts[0],
2345                                               Elts.data() + 1,
2346                                               Elts.size() - 1) :
2347        ConstantExpr::getGetElementPtr(Elts[0],
2348                                       Elts.data() + 1, Elts.size() - 1);
2349    } else if (Opc == Instruction::Select) {
2350      if (Elts.size() != 3)
2351        return Error(ID.Loc, "expected three operands to select");
2352      if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2353                                                              Elts[2]))
2354        return Error(ID.Loc, Reason);
2355      ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2356    } else if (Opc == Instruction::ShuffleVector) {
2357      if (Elts.size() != 3)
2358        return Error(ID.Loc, "expected three operands to shufflevector");
2359      if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2360        return Error(ID.Loc, "invalid operands to shufflevector");
2361      ID.ConstantVal =
2362                 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2363    } else if (Opc == Instruction::ExtractElement) {
2364      if (Elts.size() != 2)
2365        return Error(ID.Loc, "expected two operands to extractelement");
2366      if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2367        return Error(ID.Loc, "invalid extractelement operands");
2368      ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2369    } else {
2370      assert(Opc == Instruction::InsertElement && "Unknown opcode");
2371      if (Elts.size() != 3)
2372      return Error(ID.Loc, "expected three operands to insertelement");
2373      if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2374        return Error(ID.Loc, "invalid insertelement operands");
2375      ID.ConstantVal =
2376                 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2377    }
2378
2379    ID.Kind = ValID::t_Constant;
2380    return false;
2381  }
2382  }
2383
2384  Lex.Lex();
2385  return false;
2386}
2387
2388/// ParseGlobalValue - Parse a global value with the specified type.
2389bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&C) {
2390  C = 0;
2391  ValID ID;
2392  Value *V = NULL;
2393  bool Parsed = ParseValID(ID) ||
2394                ConvertValIDToValue(Ty, ID, V, NULL);
2395  if (V && !(C = dyn_cast<Constant>(V)))
2396    return Error(ID.Loc, "global values must be constants");
2397  return Parsed;
2398}
2399
2400bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2401  PATypeHolder Type(Type::getVoidTy(Context));
2402  return ParseType(Type) ||
2403         ParseGlobalValue(Type, V);
2404}
2405
2406/// ParseGlobalValueVector
2407///   ::= /*empty*/
2408///   ::= TypeAndValue (',' TypeAndValue)*
2409bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2410  // Empty list.
2411  if (Lex.getKind() == lltok::rbrace ||
2412      Lex.getKind() == lltok::rsquare ||
2413      Lex.getKind() == lltok::greater ||
2414      Lex.getKind() == lltok::rparen)
2415    return false;
2416
2417  Constant *C;
2418  if (ParseGlobalTypeAndValue(C)) return true;
2419  Elts.push_back(C);
2420
2421  while (EatIfPresent(lltok::comma)) {
2422    if (ParseGlobalTypeAndValue(C)) return true;
2423    Elts.push_back(C);
2424  }
2425
2426  return false;
2427}
2428
2429
2430//===----------------------------------------------------------------------===//
2431// Function Parsing.
2432//===----------------------------------------------------------------------===//
2433
2434bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
2435                                   PerFunctionState *PFS) {
2436  if (isa<FunctionType>(Ty))
2437    return Error(ID.Loc, "functions are not values, refer to them as pointers");
2438
2439  switch (ID.Kind) {
2440  default: llvm_unreachable("Unknown ValID!");
2441  case ValID::t_LocalID:
2442    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2443    V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
2444    return (V == 0);
2445  case ValID::t_LocalName:
2446    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2447    V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
2448    return (V == 0);
2449  case ValID::t_InlineAsm: {
2450    const PointerType *PTy = dyn_cast<PointerType>(Ty);
2451    const FunctionType *FTy =
2452      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2453    if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2454      return Error(ID.Loc, "invalid type for inline asm constraint string");
2455    V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, ID.UIntVal>>1);
2456    return false;
2457  }
2458  case ValID::t_MDNode:
2459    if (!Ty->isMetadataTy())
2460      return Error(ID.Loc, "metadata value must have metadata type");
2461    V = ID.MDNodeVal;
2462    return false;
2463  case ValID::t_MDString:
2464    if (!Ty->isMetadataTy())
2465      return Error(ID.Loc, "metadata value must have metadata type");
2466    V = ID.MDStringVal;
2467    return false;
2468  case ValID::t_GlobalName:
2469    V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2470    return V == 0;
2471  case ValID::t_GlobalID:
2472    V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2473    return V == 0;
2474  case ValID::t_APSInt:
2475    if (!isa<IntegerType>(Ty))
2476      return Error(ID.Loc, "integer constant must have integer type");
2477    ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2478    V = ConstantInt::get(Context, ID.APSIntVal);
2479    return false;
2480  case ValID::t_APFloat:
2481    if (!Ty->isFloatingPoint() ||
2482        !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2483      return Error(ID.Loc, "floating point constant invalid for type");
2484
2485    // The lexer has no type info, so builds all float and double FP constants
2486    // as double.  Fix this here.  Long double does not need this.
2487    if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
2488        Ty->isFloatTy()) {
2489      bool Ignored;
2490      ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2491                            &Ignored);
2492    }
2493    V = ConstantFP::get(Context, ID.APFloatVal);
2494
2495    if (V->getType() != Ty)
2496      return Error(ID.Loc, "floating point constant does not have type '" +
2497                   Ty->getDescription() + "'");
2498
2499    return false;
2500  case ValID::t_Null:
2501    if (!isa<PointerType>(Ty))
2502      return Error(ID.Loc, "null must be a pointer type");
2503    V = ConstantPointerNull::get(cast<PointerType>(Ty));
2504    return false;
2505  case ValID::t_Undef:
2506    // FIXME: LabelTy should not be a first-class type.
2507    if ((!Ty->isFirstClassType() || Ty->isLabelTy()) &&
2508        !isa<OpaqueType>(Ty))
2509      return Error(ID.Loc, "invalid type for undef constant");
2510    V = UndefValue::get(Ty);
2511    return false;
2512  case ValID::t_EmptyArray:
2513    if (!isa<ArrayType>(Ty) || cast<ArrayType>(Ty)->getNumElements() != 0)
2514      return Error(ID.Loc, "invalid empty array initializer");
2515    V = UndefValue::get(Ty);
2516    return false;
2517  case ValID::t_Zero:
2518    // FIXME: LabelTy should not be a first-class type.
2519    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2520      return Error(ID.Loc, "invalid type for null constant");
2521    V = Constant::getNullValue(Ty);
2522    return false;
2523  case ValID::t_Constant:
2524    if (ID.ConstantVal->getType() != Ty)
2525      return Error(ID.Loc, "constant expression type mismatch");
2526    V = ID.ConstantVal;
2527    return false;
2528  }
2529}
2530
2531bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
2532  V = 0;
2533  ValID ID;
2534  return ParseValID(ID, &PFS) ||
2535         ConvertValIDToValue(Ty, ID, V, &PFS);
2536}
2537
2538bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
2539  PATypeHolder T(Type::getVoidTy(Context));
2540  return ParseType(T) ||
2541         ParseValue(T, V, PFS);
2542}
2543
2544bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
2545                                      PerFunctionState &PFS) {
2546  Value *V;
2547  Loc = Lex.getLoc();
2548  if (ParseTypeAndValue(V, PFS)) return true;
2549  if (!isa<BasicBlock>(V))
2550    return Error(Loc, "expected a basic block");
2551  BB = cast<BasicBlock>(V);
2552  return false;
2553}
2554
2555
2556/// FunctionHeader
2557///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2558///       Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2559///       OptionalAlign OptGC
2560bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2561  // Parse the linkage.
2562  LocTy LinkageLoc = Lex.getLoc();
2563  unsigned Linkage;
2564
2565  unsigned Visibility, RetAttrs;
2566  CallingConv::ID CC;
2567  PATypeHolder RetType(Type::getVoidTy(Context));
2568  LocTy RetTypeLoc = Lex.getLoc();
2569  if (ParseOptionalLinkage(Linkage) ||
2570      ParseOptionalVisibility(Visibility) ||
2571      ParseOptionalCallingConv(CC) ||
2572      ParseOptionalAttrs(RetAttrs, 1) ||
2573      ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2574    return true;
2575
2576  // Verify that the linkage is ok.
2577  switch ((GlobalValue::LinkageTypes)Linkage) {
2578  case GlobalValue::ExternalLinkage:
2579    break; // always ok.
2580  case GlobalValue::DLLImportLinkage:
2581  case GlobalValue::ExternalWeakLinkage:
2582    if (isDefine)
2583      return Error(LinkageLoc, "invalid linkage for function definition");
2584    break;
2585  case GlobalValue::PrivateLinkage:
2586  case GlobalValue::LinkerPrivateLinkage:
2587  case GlobalValue::InternalLinkage:
2588  case GlobalValue::AvailableExternallyLinkage:
2589  case GlobalValue::LinkOnceAnyLinkage:
2590  case GlobalValue::LinkOnceODRLinkage:
2591  case GlobalValue::WeakAnyLinkage:
2592  case GlobalValue::WeakODRLinkage:
2593  case GlobalValue::DLLExportLinkage:
2594    if (!isDefine)
2595      return Error(LinkageLoc, "invalid linkage for function declaration");
2596    break;
2597  case GlobalValue::AppendingLinkage:
2598  case GlobalValue::CommonLinkage:
2599    return Error(LinkageLoc, "invalid function linkage type");
2600  }
2601
2602  if (!FunctionType::isValidReturnType(RetType) ||
2603      isa<OpaqueType>(RetType))
2604    return Error(RetTypeLoc, "invalid function return type");
2605
2606  LocTy NameLoc = Lex.getLoc();
2607
2608  std::string FunctionName;
2609  if (Lex.getKind() == lltok::GlobalVar) {
2610    FunctionName = Lex.getStrVal();
2611  } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
2612    unsigned NameID = Lex.getUIntVal();
2613
2614    if (NameID != NumberedVals.size())
2615      return TokError("function expected to be numbered '%" +
2616                      utostr(NumberedVals.size()) + "'");
2617  } else {
2618    return TokError("expected function name");
2619  }
2620
2621  Lex.Lex();
2622
2623  if (Lex.getKind() != lltok::lparen)
2624    return TokError("expected '(' in function argument list");
2625
2626  std::vector<ArgInfo> ArgList;
2627  bool isVarArg;
2628  unsigned FuncAttrs;
2629  std::string Section;
2630  unsigned Alignment;
2631  std::string GC;
2632
2633  if (ParseArgumentList(ArgList, isVarArg, false) ||
2634      ParseOptionalAttrs(FuncAttrs, 2) ||
2635      (EatIfPresent(lltok::kw_section) &&
2636       ParseStringConstant(Section)) ||
2637      ParseOptionalAlignment(Alignment) ||
2638      (EatIfPresent(lltok::kw_gc) &&
2639       ParseStringConstant(GC)))
2640    return true;
2641
2642  // If the alignment was parsed as an attribute, move to the alignment field.
2643  if (FuncAttrs & Attribute::Alignment) {
2644    Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2645    FuncAttrs &= ~Attribute::Alignment;
2646  }
2647
2648  // Okay, if we got here, the function is syntactically valid.  Convert types
2649  // and do semantic checks.
2650  std::vector<const Type*> ParamTypeList;
2651  SmallVector<AttributeWithIndex, 8> Attrs;
2652  // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2653  // attributes.
2654  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2655  if (FuncAttrs & ObsoleteFuncAttrs) {
2656    RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
2657    FuncAttrs &= ~ObsoleteFuncAttrs;
2658  }
2659
2660  if (RetAttrs != Attribute::None)
2661    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2662
2663  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2664    ParamTypeList.push_back(ArgList[i].Type);
2665    if (ArgList[i].Attrs != Attribute::None)
2666      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2667  }
2668
2669  if (FuncAttrs != Attribute::None)
2670    Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2671
2672  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2673
2674  if (PAL.paramHasAttr(1, Attribute::StructRet) && !RetType->isVoidTy())
2675    return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2676
2677  const FunctionType *FT =
2678    FunctionType::get(RetType, ParamTypeList, isVarArg);
2679  const PointerType *PFT = PointerType::getUnqual(FT);
2680
2681  Fn = 0;
2682  if (!FunctionName.empty()) {
2683    // If this was a definition of a forward reference, remove the definition
2684    // from the forward reference table and fill in the forward ref.
2685    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2686      ForwardRefVals.find(FunctionName);
2687    if (FRVI != ForwardRefVals.end()) {
2688      Fn = M->getFunction(FunctionName);
2689      ForwardRefVals.erase(FRVI);
2690    } else if ((Fn = M->getFunction(FunctionName))) {
2691      // If this function already exists in the symbol table, then it is
2692      // multiply defined.  We accept a few cases for old backwards compat.
2693      // FIXME: Remove this stuff for LLVM 3.0.
2694      if (Fn->getType() != PFT || Fn->getAttributes() != PAL ||
2695          (!Fn->isDeclaration() && isDefine)) {
2696        // If the redefinition has different type or different attributes,
2697        // reject it.  If both have bodies, reject it.
2698        return Error(NameLoc, "invalid redefinition of function '" +
2699                     FunctionName + "'");
2700      } else if (Fn->isDeclaration()) {
2701        // Make sure to strip off any argument names so we can't get conflicts.
2702        for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2703             AI != AE; ++AI)
2704          AI->setName("");
2705      }
2706    } else if (M->getNamedValue(FunctionName)) {
2707      return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
2708    }
2709
2710  } else {
2711    // If this is a definition of a forward referenced function, make sure the
2712    // types agree.
2713    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2714      = ForwardRefValIDs.find(NumberedVals.size());
2715    if (I != ForwardRefValIDs.end()) {
2716      Fn = cast<Function>(I->second.first);
2717      if (Fn->getType() != PFT)
2718        return Error(NameLoc, "type of definition and forward reference of '@" +
2719                     utostr(NumberedVals.size()) +"' disagree");
2720      ForwardRefValIDs.erase(I);
2721    }
2722  }
2723
2724  if (Fn == 0)
2725    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2726  else // Move the forward-reference to the correct spot in the module.
2727    M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2728
2729  if (FunctionName.empty())
2730    NumberedVals.push_back(Fn);
2731
2732  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2733  Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2734  Fn->setCallingConv(CC);
2735  Fn->setAttributes(PAL);
2736  Fn->setAlignment(Alignment);
2737  Fn->setSection(Section);
2738  if (!GC.empty()) Fn->setGC(GC.c_str());
2739
2740  // Add all of the arguments we parsed to the function.
2741  Function::arg_iterator ArgIt = Fn->arg_begin();
2742  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2743    // If we run out of arguments in the Function prototype, exit early.
2744    // FIXME: REMOVE THIS IN LLVM 3.0, this is just for the mismatch case above.
2745    if (ArgIt == Fn->arg_end()) break;
2746
2747    // If the argument has a name, insert it into the argument symbol table.
2748    if (ArgList[i].Name.empty()) continue;
2749
2750    // Set the name, if it conflicted, it will be auto-renamed.
2751    ArgIt->setName(ArgList[i].Name);
2752
2753    if (ArgIt->getNameStr() != ArgList[i].Name)
2754      return Error(ArgList[i].Loc, "redefinition of argument '%" +
2755                   ArgList[i].Name + "'");
2756  }
2757
2758  return false;
2759}
2760
2761
2762/// ParseFunctionBody
2763///   ::= '{' BasicBlock+ '}'
2764///   ::= 'begin' BasicBlock+ 'end'  // FIXME: remove in LLVM 3.0
2765///
2766bool LLParser::ParseFunctionBody(Function &Fn) {
2767  if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
2768    return TokError("expected '{' in function body");
2769  Lex.Lex();  // eat the {.
2770
2771  int FunctionNumber = -1;
2772  if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
2773
2774  PerFunctionState PFS(*this, Fn, FunctionNumber);
2775
2776  // We need at least one basic block.
2777  if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_end)
2778    return TokError("function body requires at least one basic block");
2779
2780  while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
2781    if (ParseBasicBlock(PFS)) return true;
2782
2783  // Eat the }.
2784  Lex.Lex();
2785
2786  // Verify function is ok.
2787  return PFS.FinishFunction();
2788}
2789
2790/// ParseBasicBlock
2791///   ::= LabelStr? Instruction*
2792bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2793  // If this basic block starts out with a name, remember it.
2794  std::string Name;
2795  LocTy NameLoc = Lex.getLoc();
2796  if (Lex.getKind() == lltok::LabelStr) {
2797    Name = Lex.getStrVal();
2798    Lex.Lex();
2799  }
2800
2801  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2802  if (BB == 0) return true;
2803
2804  std::string NameStr;
2805
2806  // Parse the instructions in this block until we get a terminator.
2807  Instruction *Inst;
2808  SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst;
2809  do {
2810    // This instruction may have three possibilities for a name: a) none
2811    // specified, b) name specified "%foo =", c) number specified: "%4 =".
2812    LocTy NameLoc = Lex.getLoc();
2813    int NameID = -1;
2814    NameStr = "";
2815
2816    if (Lex.getKind() == lltok::LocalVarID) {
2817      NameID = Lex.getUIntVal();
2818      Lex.Lex();
2819      if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2820        return true;
2821    } else if (Lex.getKind() == lltok::LocalVar ||
2822               // FIXME: REMOVE IN LLVM 3.0
2823               Lex.getKind() == lltok::StringConstant) {
2824      NameStr = Lex.getStrVal();
2825      Lex.Lex();
2826      if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2827        return true;
2828    }
2829
2830    switch (ParseInstruction(Inst, BB, PFS)) {
2831    default: assert(0 && "Unknown ParseInstruction result!");
2832    case InstError: return true;
2833    case InstNormal:
2834      // With a normal result, we check to see if the instruction is followed by
2835      // a comma and metadata.
2836      if (EatIfPresent(lltok::comma))
2837        if (ParseInstructionMetadata(MetadataOnInst))
2838          return true;
2839      break;
2840    case InstExtraComma:
2841      // If the instruction parser ate an extra comma at the end of it, it
2842      // *must* be followed by metadata.
2843      if (ParseInstructionMetadata(MetadataOnInst))
2844        return true;
2845      break;
2846    }
2847
2848    // Set metadata attached with this instruction.
2849    for (unsigned i = 0, e = MetadataOnInst.size(); i != e; ++i)
2850      Inst->setMetadata(MetadataOnInst[i].first, MetadataOnInst[i].second);
2851    MetadataOnInst.clear();
2852
2853    BB->getInstList().push_back(Inst);
2854
2855    // Set the name on the instruction.
2856    if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2857  } while (!isa<TerminatorInst>(Inst));
2858
2859  return false;
2860}
2861
2862//===----------------------------------------------------------------------===//
2863// Instruction Parsing.
2864//===----------------------------------------------------------------------===//
2865
2866/// ParseInstruction - Parse one of the many different instructions.
2867///
2868int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2869                               PerFunctionState &PFS) {
2870  lltok::Kind Token = Lex.getKind();
2871  if (Token == lltok::Eof)
2872    return TokError("found end of file when expecting more instructions");
2873  LocTy Loc = Lex.getLoc();
2874  unsigned KeywordVal = Lex.getUIntVal();
2875  Lex.Lex();  // Eat the keyword.
2876
2877  switch (Token) {
2878  default:                    return Error(Loc, "expected instruction opcode");
2879  // Terminator Instructions.
2880  case lltok::kw_unwind:      Inst = new UnwindInst(Context); return false;
2881  case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
2882  case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
2883  case lltok::kw_br:          return ParseBr(Inst, PFS);
2884  case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
2885  case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
2886  case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
2887  // Binary Operators.
2888  case lltok::kw_add:
2889  case lltok::kw_sub:
2890  case lltok::kw_mul: {
2891    bool NUW = false;
2892    bool NSW = false;
2893    LocTy ModifierLoc = Lex.getLoc();
2894    if (EatIfPresent(lltok::kw_nuw))
2895      NUW = true;
2896    if (EatIfPresent(lltok::kw_nsw)) {
2897      NSW = true;
2898      if (EatIfPresent(lltok::kw_nuw))
2899        NUW = true;
2900    }
2901    // API compatibility: Accept either integer or floating-point types.
2902    bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 0);
2903    if (!Result) {
2904      if (!Inst->getType()->isIntOrIntVector()) {
2905        if (NUW)
2906          return Error(ModifierLoc, "nuw only applies to integer operations");
2907        if (NSW)
2908          return Error(ModifierLoc, "nsw only applies to integer operations");
2909      }
2910      if (NUW)
2911        cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
2912      if (NSW)
2913        cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
2914    }
2915    return Result;
2916  }
2917  case lltok::kw_fadd:
2918  case lltok::kw_fsub:
2919  case lltok::kw_fmul:    return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2920
2921  case lltok::kw_sdiv: {
2922    bool Exact = false;
2923    if (EatIfPresent(lltok::kw_exact))
2924      Exact = true;
2925    bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 1);
2926    if (!Result)
2927      if (Exact)
2928        cast<BinaryOperator>(Inst)->setIsExact(true);
2929    return Result;
2930  }
2931
2932  case lltok::kw_udiv:
2933  case lltok::kw_urem:
2934  case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
2935  case lltok::kw_fdiv:
2936  case lltok::kw_frem:   return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2937  case lltok::kw_shl:
2938  case lltok::kw_lshr:
2939  case lltok::kw_ashr:
2940  case lltok::kw_and:
2941  case lltok::kw_or:
2942  case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
2943  case lltok::kw_icmp:
2944  case lltok::kw_fcmp:   return ParseCompare(Inst, PFS, KeywordVal);
2945  // Casts.
2946  case lltok::kw_trunc:
2947  case lltok::kw_zext:
2948  case lltok::kw_sext:
2949  case lltok::kw_fptrunc:
2950  case lltok::kw_fpext:
2951  case lltok::kw_bitcast:
2952  case lltok::kw_uitofp:
2953  case lltok::kw_sitofp:
2954  case lltok::kw_fptoui:
2955  case lltok::kw_fptosi:
2956  case lltok::kw_inttoptr:
2957  case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
2958  // Other.
2959  case lltok::kw_select:         return ParseSelect(Inst, PFS);
2960  case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
2961  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
2962  case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
2963  case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
2964  case lltok::kw_phi:            return ParsePHI(Inst, PFS);
2965  case lltok::kw_call:           return ParseCall(Inst, PFS, false);
2966  case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
2967  // Memory.
2968  case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
2969  case lltok::kw_malloc:         return ParseAlloc(Inst, PFS, BB, false);
2970  case lltok::kw_free:           return ParseFree(Inst, PFS, BB);
2971  case lltok::kw_load:           return ParseLoad(Inst, PFS, false);
2972  case lltok::kw_store:          return ParseStore(Inst, PFS, false);
2973  case lltok::kw_volatile:
2974    if (EatIfPresent(lltok::kw_load))
2975      return ParseLoad(Inst, PFS, true);
2976    else if (EatIfPresent(lltok::kw_store))
2977      return ParseStore(Inst, PFS, true);
2978    else
2979      return TokError("expected 'load' or 'store'");
2980  case lltok::kw_getresult:     return ParseGetResult(Inst, PFS);
2981  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
2982  case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
2983  case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
2984  }
2985}
2986
2987/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
2988bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
2989  if (Opc == Instruction::FCmp) {
2990    switch (Lex.getKind()) {
2991    default: TokError("expected fcmp predicate (e.g. 'oeq')");
2992    case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
2993    case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
2994    case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
2995    case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
2996    case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
2997    case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
2998    case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
2999    case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
3000    case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
3001    case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
3002    case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
3003    case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
3004    case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
3005    case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
3006    case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
3007    case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
3008    }
3009  } else {
3010    switch (Lex.getKind()) {
3011    default: TokError("expected icmp predicate (e.g. 'eq')");
3012    case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
3013    case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
3014    case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
3015    case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
3016    case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
3017    case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
3018    case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
3019    case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
3020    case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
3021    case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
3022    }
3023  }
3024  Lex.Lex();
3025  return false;
3026}
3027
3028//===----------------------------------------------------------------------===//
3029// Terminator Instructions.
3030//===----------------------------------------------------------------------===//
3031
3032/// ParseRet - Parse a return instruction.
3033///   ::= 'ret' void (',' !dbg, !1)*
3034///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
3035///   ::= 'ret' TypeAndValue (',' TypeAndValue)+  (',' !dbg, !1)*
3036///         [[obsolete: LLVM 3.0]]
3037int LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
3038                       PerFunctionState &PFS) {
3039  PATypeHolder Ty(Type::getVoidTy(Context));
3040  if (ParseType(Ty, true /*void allowed*/)) return true;
3041
3042  if (Ty->isVoidTy()) {
3043    Inst = ReturnInst::Create(Context);
3044    return false;
3045  }
3046
3047  Value *RV;
3048  if (ParseValue(Ty, RV, PFS)) return true;
3049
3050  bool ExtraComma = false;
3051  if (EatIfPresent(lltok::comma)) {
3052    // Parse optional custom metadata, e.g. !dbg
3053    if (Lex.getKind() == lltok::MetadataVar) {
3054      ExtraComma = true;
3055    } else {
3056      // The normal case is one return value.
3057      // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring
3058      // use of 'ret {i32,i32} {i32 1, i32 2}'
3059      SmallVector<Value*, 8> RVs;
3060      RVs.push_back(RV);
3061
3062      do {
3063        // If optional custom metadata, e.g. !dbg is seen then this is the
3064        // end of MRV.
3065        if (Lex.getKind() == lltok::MetadataVar)
3066          break;
3067        if (ParseTypeAndValue(RV, PFS)) return true;
3068        RVs.push_back(RV);
3069      } while (EatIfPresent(lltok::comma));
3070
3071      RV = UndefValue::get(PFS.getFunction().getReturnType());
3072      for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
3073        Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
3074        BB->getInstList().push_back(I);
3075        RV = I;
3076      }
3077    }
3078  }
3079
3080  Inst = ReturnInst::Create(Context, RV);
3081  return ExtraComma ? InstExtraComma : InstNormal;
3082}
3083
3084
3085/// ParseBr
3086///   ::= 'br' TypeAndValue
3087///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3088bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
3089  LocTy Loc, Loc2;
3090  Value *Op0;
3091  BasicBlock *Op1, *Op2;
3092  if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
3093
3094  if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
3095    Inst = BranchInst::Create(BB);
3096    return false;
3097  }
3098
3099  if (Op0->getType() != Type::getInt1Ty(Context))
3100    return Error(Loc, "branch condition must have 'i1' type");
3101
3102  if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
3103      ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
3104      ParseToken(lltok::comma, "expected ',' after true destination") ||
3105      ParseTypeAndBasicBlock(Op2, Loc2, PFS))
3106    return true;
3107
3108  Inst = BranchInst::Create(Op1, Op2, Op0);
3109  return false;
3110}
3111
3112/// ParseSwitch
3113///  Instruction
3114///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
3115///  JumpTable
3116///    ::= (TypeAndValue ',' TypeAndValue)*
3117bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
3118  LocTy CondLoc, BBLoc;
3119  Value *Cond;
3120  BasicBlock *DefaultBB;
3121  if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
3122      ParseToken(lltok::comma, "expected ',' after switch condition") ||
3123      ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
3124      ParseToken(lltok::lsquare, "expected '[' with switch table"))
3125    return true;
3126
3127  if (!isa<IntegerType>(Cond->getType()))
3128    return Error(CondLoc, "switch condition must have integer type");
3129
3130  // Parse the jump table pairs.
3131  SmallPtrSet<Value*, 32> SeenCases;
3132  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
3133  while (Lex.getKind() != lltok::rsquare) {
3134    Value *Constant;
3135    BasicBlock *DestBB;
3136
3137    if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
3138        ParseToken(lltok::comma, "expected ',' after case value") ||
3139        ParseTypeAndBasicBlock(DestBB, PFS))
3140      return true;
3141
3142    if (!SeenCases.insert(Constant))
3143      return Error(CondLoc, "duplicate case value in switch");
3144    if (!isa<ConstantInt>(Constant))
3145      return Error(CondLoc, "case value is not a constant integer");
3146
3147    Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
3148  }
3149
3150  Lex.Lex();  // Eat the ']'.
3151
3152  SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
3153  for (unsigned i = 0, e = Table.size(); i != e; ++i)
3154    SI->addCase(Table[i].first, Table[i].second);
3155  Inst = SI;
3156  return false;
3157}
3158
3159/// ParseIndirectBr
3160///  Instruction
3161///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
3162bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
3163  LocTy AddrLoc;
3164  Value *Address;
3165  if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
3166      ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
3167      ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
3168    return true;
3169
3170  if (!isa<PointerType>(Address->getType()))
3171    return Error(AddrLoc, "indirectbr address must have pointer type");
3172
3173  // Parse the destination list.
3174  SmallVector<BasicBlock*, 16> DestList;
3175
3176  if (Lex.getKind() != lltok::rsquare) {
3177    BasicBlock *DestBB;
3178    if (ParseTypeAndBasicBlock(DestBB, PFS))
3179      return true;
3180    DestList.push_back(DestBB);
3181
3182    while (EatIfPresent(lltok::comma)) {
3183      if (ParseTypeAndBasicBlock(DestBB, PFS))
3184        return true;
3185      DestList.push_back(DestBB);
3186    }
3187  }
3188
3189  if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
3190    return true;
3191
3192  IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
3193  for (unsigned i = 0, e = DestList.size(); i != e; ++i)
3194    IBI->addDestination(DestList[i]);
3195  Inst = IBI;
3196  return false;
3197}
3198
3199
3200/// ParseInvoke
3201///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
3202///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
3203bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
3204  LocTy CallLoc = Lex.getLoc();
3205  unsigned RetAttrs, FnAttrs;
3206  CallingConv::ID CC;
3207  PATypeHolder RetType(Type::getVoidTy(Context));
3208  LocTy RetTypeLoc;
3209  ValID CalleeID;
3210  SmallVector<ParamInfo, 16> ArgList;
3211
3212  BasicBlock *NormalBB, *UnwindBB;
3213  if (ParseOptionalCallingConv(CC) ||
3214      ParseOptionalAttrs(RetAttrs, 1) ||
3215      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3216      ParseValID(CalleeID) ||
3217      ParseParameterList(ArgList, PFS) ||
3218      ParseOptionalAttrs(FnAttrs, 2) ||
3219      ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
3220      ParseTypeAndBasicBlock(NormalBB, PFS) ||
3221      ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
3222      ParseTypeAndBasicBlock(UnwindBB, PFS))
3223    return true;
3224
3225  // If RetType is a non-function pointer type, then this is the short syntax
3226  // for the call, which means that RetType is just the return type.  Infer the
3227  // rest of the function argument types from the arguments that are present.
3228  const PointerType *PFTy = 0;
3229  const FunctionType *Ty = 0;
3230  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3231      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3232    // Pull out the types of all of the arguments...
3233    std::vector<const Type*> ParamTypes;
3234    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3235      ParamTypes.push_back(ArgList[i].V->getType());
3236
3237    if (!FunctionType::isValidReturnType(RetType))
3238      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3239
3240    Ty = FunctionType::get(RetType, ParamTypes, false);
3241    PFTy = PointerType::getUnqual(Ty);
3242  }
3243
3244  // Look up the callee.
3245  Value *Callee;
3246  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3247
3248  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3249  // function attributes.
3250  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3251  if (FnAttrs & ObsoleteFuncAttrs) {
3252    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3253    FnAttrs &= ~ObsoleteFuncAttrs;
3254  }
3255
3256  // Set up the Attributes for the function.
3257  SmallVector<AttributeWithIndex, 8> Attrs;
3258  if (RetAttrs != Attribute::None)
3259    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3260
3261  SmallVector<Value*, 8> Args;
3262
3263  // Loop through FunctionType's arguments and ensure they are specified
3264  // correctly.  Also, gather any parameter attributes.
3265  FunctionType::param_iterator I = Ty->param_begin();
3266  FunctionType::param_iterator E = Ty->param_end();
3267  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3268    const Type *ExpectedTy = 0;
3269    if (I != E) {
3270      ExpectedTy = *I++;
3271    } else if (!Ty->isVarArg()) {
3272      return Error(ArgList[i].Loc, "too many arguments specified");
3273    }
3274
3275    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3276      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3277                   ExpectedTy->getDescription() + "'");
3278    Args.push_back(ArgList[i].V);
3279    if (ArgList[i].Attrs != Attribute::None)
3280      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3281  }
3282
3283  if (I != E)
3284    return Error(CallLoc, "not enough parameters specified for call");
3285
3286  if (FnAttrs != Attribute::None)
3287    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3288
3289  // Finish off the Attributes and check them
3290  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3291
3292  InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB,
3293                                      Args.begin(), Args.end());
3294  II->setCallingConv(CC);
3295  II->setAttributes(PAL);
3296  Inst = II;
3297  return false;
3298}
3299
3300
3301
3302//===----------------------------------------------------------------------===//
3303// Binary Operators.
3304//===----------------------------------------------------------------------===//
3305
3306/// ParseArithmetic
3307///  ::= ArithmeticOps TypeAndValue ',' Value
3308///
3309/// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
3310/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
3311bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
3312                               unsigned Opc, unsigned OperandType) {
3313  LocTy Loc; Value *LHS, *RHS;
3314  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3315      ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
3316      ParseValue(LHS->getType(), RHS, PFS))
3317    return true;
3318
3319  bool Valid;
3320  switch (OperandType) {
3321  default: llvm_unreachable("Unknown operand type!");
3322  case 0: // int or FP.
3323    Valid = LHS->getType()->isIntOrIntVector() ||
3324            LHS->getType()->isFPOrFPVector();
3325    break;
3326  case 1: Valid = LHS->getType()->isIntOrIntVector(); break;
3327  case 2: Valid = LHS->getType()->isFPOrFPVector(); break;
3328  }
3329
3330  if (!Valid)
3331    return Error(Loc, "invalid operand type for instruction");
3332
3333  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3334  return false;
3335}
3336
3337/// ParseLogical
3338///  ::= ArithmeticOps TypeAndValue ',' Value {
3339bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3340                            unsigned Opc) {
3341  LocTy Loc; Value *LHS, *RHS;
3342  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3343      ParseToken(lltok::comma, "expected ',' in logical operation") ||
3344      ParseValue(LHS->getType(), RHS, PFS))
3345    return true;
3346
3347  if (!LHS->getType()->isIntOrIntVector())
3348    return Error(Loc,"instruction requires integer or integer vector operands");
3349
3350  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3351  return false;
3352}
3353
3354
3355/// ParseCompare
3356///  ::= 'icmp' IPredicates TypeAndValue ',' Value
3357///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
3358bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3359                            unsigned Opc) {
3360  // Parse the integer/fp comparison predicate.
3361  LocTy Loc;
3362  unsigned Pred;
3363  Value *LHS, *RHS;
3364  if (ParseCmpPredicate(Pred, Opc) ||
3365      ParseTypeAndValue(LHS, Loc, PFS) ||
3366      ParseToken(lltok::comma, "expected ',' after compare value") ||
3367      ParseValue(LHS->getType(), RHS, PFS))
3368    return true;
3369
3370  if (Opc == Instruction::FCmp) {
3371    if (!LHS->getType()->isFPOrFPVector())
3372      return Error(Loc, "fcmp requires floating point operands");
3373    Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3374  } else {
3375    assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3376    if (!LHS->getType()->isIntOrIntVector() &&
3377        !isa<PointerType>(LHS->getType()))
3378      return Error(Loc, "icmp requires integer operands");
3379    Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3380  }
3381  return false;
3382}
3383
3384//===----------------------------------------------------------------------===//
3385// Other Instructions.
3386//===----------------------------------------------------------------------===//
3387
3388
3389/// ParseCast
3390///   ::= CastOpc TypeAndValue 'to' Type
3391bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3392                         unsigned Opc) {
3393  LocTy Loc;  Value *Op;
3394  PATypeHolder DestTy(Type::getVoidTy(Context));
3395  if (ParseTypeAndValue(Op, Loc, PFS) ||
3396      ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3397      ParseType(DestTy))
3398    return true;
3399
3400  if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3401    CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3402    return Error(Loc, "invalid cast opcode for cast from '" +
3403                 Op->getType()->getDescription() + "' to '" +
3404                 DestTy->getDescription() + "'");
3405  }
3406  Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3407  return false;
3408}
3409
3410/// ParseSelect
3411///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3412bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3413  LocTy Loc;
3414  Value *Op0, *Op1, *Op2;
3415  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3416      ParseToken(lltok::comma, "expected ',' after select condition") ||
3417      ParseTypeAndValue(Op1, PFS) ||
3418      ParseToken(lltok::comma, "expected ',' after select value") ||
3419      ParseTypeAndValue(Op2, PFS))
3420    return true;
3421
3422  if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3423    return Error(Loc, Reason);
3424
3425  Inst = SelectInst::Create(Op0, Op1, Op2);
3426  return false;
3427}
3428
3429/// ParseVA_Arg
3430///   ::= 'va_arg' TypeAndValue ',' Type
3431bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3432  Value *Op;
3433  PATypeHolder EltTy(Type::getVoidTy(Context));
3434  LocTy TypeLoc;
3435  if (ParseTypeAndValue(Op, PFS) ||
3436      ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3437      ParseType(EltTy, TypeLoc))
3438    return true;
3439
3440  if (!EltTy->isFirstClassType())
3441    return Error(TypeLoc, "va_arg requires operand with first class type");
3442
3443  Inst = new VAArgInst(Op, EltTy);
3444  return false;
3445}
3446
3447/// ParseExtractElement
3448///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
3449bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3450  LocTy Loc;
3451  Value *Op0, *Op1;
3452  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3453      ParseToken(lltok::comma, "expected ',' after extract value") ||
3454      ParseTypeAndValue(Op1, PFS))
3455    return true;
3456
3457  if (!ExtractElementInst::isValidOperands(Op0, Op1))
3458    return Error(Loc, "invalid extractelement operands");
3459
3460  Inst = ExtractElementInst::Create(Op0, Op1);
3461  return false;
3462}
3463
3464/// ParseInsertElement
3465///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3466bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3467  LocTy Loc;
3468  Value *Op0, *Op1, *Op2;
3469  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3470      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3471      ParseTypeAndValue(Op1, PFS) ||
3472      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3473      ParseTypeAndValue(Op2, PFS))
3474    return true;
3475
3476  if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3477    return Error(Loc, "invalid insertelement operands");
3478
3479  Inst = InsertElementInst::Create(Op0, Op1, Op2);
3480  return false;
3481}
3482
3483/// ParseShuffleVector
3484///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3485bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3486  LocTy Loc;
3487  Value *Op0, *Op1, *Op2;
3488  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3489      ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3490      ParseTypeAndValue(Op1, PFS) ||
3491      ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3492      ParseTypeAndValue(Op2, PFS))
3493    return true;
3494
3495  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3496    return Error(Loc, "invalid extractelement operands");
3497
3498  Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3499  return false;
3500}
3501
3502/// ParsePHI
3503///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
3504int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3505  PATypeHolder Ty(Type::getVoidTy(Context));
3506  Value *Op0, *Op1;
3507  LocTy TypeLoc = Lex.getLoc();
3508
3509  if (ParseType(Ty) ||
3510      ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3511      ParseValue(Ty, Op0, PFS) ||
3512      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3513      ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3514      ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3515    return true;
3516
3517  bool AteExtraComma = false;
3518  SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3519  while (1) {
3520    PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3521
3522    if (!EatIfPresent(lltok::comma))
3523      break;
3524
3525    if (Lex.getKind() == lltok::MetadataVar) {
3526      AteExtraComma = true;
3527      break;
3528    }
3529
3530    if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3531        ParseValue(Ty, Op0, PFS) ||
3532        ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3533        ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3534        ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3535      return true;
3536  }
3537
3538  if (!Ty->isFirstClassType())
3539    return Error(TypeLoc, "phi node must have first class type");
3540
3541  PHINode *PN = PHINode::Create(Ty);
3542  PN->reserveOperandSpace(PHIVals.size());
3543  for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3544    PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3545  Inst = PN;
3546  return AteExtraComma ? InstExtraComma : InstNormal;
3547}
3548
3549/// ParseCall
3550///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3551///       ParameterList OptionalAttrs
3552bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3553                         bool isTail) {
3554  unsigned RetAttrs, FnAttrs;
3555  CallingConv::ID CC;
3556  PATypeHolder RetType(Type::getVoidTy(Context));
3557  LocTy RetTypeLoc;
3558  ValID CalleeID;
3559  SmallVector<ParamInfo, 16> ArgList;
3560  LocTy CallLoc = Lex.getLoc();
3561
3562  if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3563      ParseOptionalCallingConv(CC) ||
3564      ParseOptionalAttrs(RetAttrs, 1) ||
3565      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3566      ParseValID(CalleeID) ||
3567      ParseParameterList(ArgList, PFS) ||
3568      ParseOptionalAttrs(FnAttrs, 2))
3569    return true;
3570
3571  // If RetType is a non-function pointer type, then this is the short syntax
3572  // for the call, which means that RetType is just the return type.  Infer the
3573  // rest of the function argument types from the arguments that are present.
3574  const PointerType *PFTy = 0;
3575  const FunctionType *Ty = 0;
3576  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3577      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3578    // Pull out the types of all of the arguments...
3579    std::vector<const Type*> ParamTypes;
3580    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3581      ParamTypes.push_back(ArgList[i].V->getType());
3582
3583    if (!FunctionType::isValidReturnType(RetType))
3584      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3585
3586    Ty = FunctionType::get(RetType, ParamTypes, false);
3587    PFTy = PointerType::getUnqual(Ty);
3588  }
3589
3590  // Look up the callee.
3591  Value *Callee;
3592  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3593
3594  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3595  // function attributes.
3596  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3597  if (FnAttrs & ObsoleteFuncAttrs) {
3598    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3599    FnAttrs &= ~ObsoleteFuncAttrs;
3600  }
3601
3602  // Set up the Attributes for the function.
3603  SmallVector<AttributeWithIndex, 8> Attrs;
3604  if (RetAttrs != Attribute::None)
3605    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3606
3607  SmallVector<Value*, 8> Args;
3608
3609  // Loop through FunctionType's arguments and ensure they are specified
3610  // correctly.  Also, gather any parameter attributes.
3611  FunctionType::param_iterator I = Ty->param_begin();
3612  FunctionType::param_iterator E = Ty->param_end();
3613  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3614    const Type *ExpectedTy = 0;
3615    if (I != E) {
3616      ExpectedTy = *I++;
3617    } else if (!Ty->isVarArg()) {
3618      return Error(ArgList[i].Loc, "too many arguments specified");
3619    }
3620
3621    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3622      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3623                   ExpectedTy->getDescription() + "'");
3624    Args.push_back(ArgList[i].V);
3625    if (ArgList[i].Attrs != Attribute::None)
3626      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3627  }
3628
3629  if (I != E)
3630    return Error(CallLoc, "not enough parameters specified for call");
3631
3632  if (FnAttrs != Attribute::None)
3633    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3634
3635  // Finish off the Attributes and check them
3636  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3637
3638  CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
3639  CI->setTailCall(isTail);
3640  CI->setCallingConv(CC);
3641  CI->setAttributes(PAL);
3642  Inst = CI;
3643  return false;
3644}
3645
3646//===----------------------------------------------------------------------===//
3647// Memory Instructions.
3648//===----------------------------------------------------------------------===//
3649
3650/// ParseAlloc
3651///   ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalInfo)?
3652///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
3653int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
3654                         BasicBlock* BB, bool isAlloca) {
3655  PATypeHolder Ty(Type::getVoidTy(Context));
3656  Value *Size = 0;
3657  LocTy SizeLoc;
3658  unsigned Alignment = 0;
3659  if (ParseType(Ty)) return true;
3660
3661  bool AteExtraComma = false;
3662  if (EatIfPresent(lltok::comma)) {
3663    if (Lex.getKind() == lltok::kw_align) {
3664      if (ParseOptionalAlignment(Alignment)) return true;
3665    } else if (Lex.getKind() == lltok::MetadataVar) {
3666      AteExtraComma = true;
3667    } else {
3668      if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
3669          ParseOptionalCommaAlign(Alignment, AteExtraComma))
3670        return true;
3671    }
3672  }
3673
3674  if (Size && !Size->getType()->isInteger(32))
3675    return Error(SizeLoc, "element count must be i32");
3676
3677  if (isAlloca) {
3678    Inst = new AllocaInst(Ty, Size, Alignment);
3679    return AteExtraComma ? InstExtraComma : InstNormal;
3680  }
3681
3682  // Autoupgrade old malloc instruction to malloc call.
3683  // FIXME: Remove in LLVM 3.0.
3684  const Type *IntPtrTy = Type::getInt32Ty(Context);
3685  Constant *AllocSize = ConstantExpr::getSizeOf(Ty);
3686  AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, IntPtrTy);
3687  if (!MallocF)
3688    // Prototype malloc as "void *(int32)".
3689    // This function is renamed as "malloc" in ValidateEndOfModule().
3690    MallocF = cast<Function>(
3691       M->getOrInsertFunction("", Type::getInt8PtrTy(Context), IntPtrTy, NULL));
3692  Inst = CallInst::CreateMalloc(BB, IntPtrTy, Ty, AllocSize, Size, MallocF);
3693return AteExtraComma ? InstExtraComma : InstNormal;
3694}
3695
3696/// ParseFree
3697///   ::= 'free' TypeAndValue
3698bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS,
3699                         BasicBlock* BB) {
3700  Value *Val; LocTy Loc;
3701  if (ParseTypeAndValue(Val, Loc, PFS)) return true;
3702  if (!isa<PointerType>(Val->getType()))
3703    return Error(Loc, "operand to free must be a pointer");
3704  Inst = CallInst::CreateFree(Val, BB);
3705  return false;
3706}
3707
3708/// ParseLoad
3709///   ::= 'volatile'? 'load' TypeAndValue (',' OptionalInfo)?
3710int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
3711                        bool isVolatile) {
3712  Value *Val; LocTy Loc;
3713  unsigned Alignment = 0;
3714  bool AteExtraComma = false;
3715  if (ParseTypeAndValue(Val, Loc, PFS) ||
3716      ParseOptionalCommaAlign(Alignment, AteExtraComma))
3717    return true;
3718
3719  if (!isa<PointerType>(Val->getType()) ||
3720      !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3721    return Error(Loc, "load operand must be a pointer to a first class type");
3722
3723  Inst = new LoadInst(Val, "", isVolatile, Alignment);
3724  return AteExtraComma ? InstExtraComma : InstNormal;
3725}
3726
3727/// ParseStore
3728///   ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3729int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
3730                         bool isVolatile) {
3731  Value *Val, *Ptr; LocTy Loc, PtrLoc;
3732  unsigned Alignment = 0;
3733  bool AteExtraComma = false;
3734  if (ParseTypeAndValue(Val, Loc, PFS) ||
3735      ParseToken(lltok::comma, "expected ',' after store operand") ||
3736      ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3737      ParseOptionalCommaAlign(Alignment, AteExtraComma))
3738    return true;
3739
3740  if (!isa<PointerType>(Ptr->getType()))
3741    return Error(PtrLoc, "store operand must be a pointer");
3742  if (!Val->getType()->isFirstClassType())
3743    return Error(Loc, "store operand must be a first class value");
3744  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3745    return Error(Loc, "stored value and pointer type do not match");
3746
3747  Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
3748  return AteExtraComma ? InstExtraComma : InstNormal;
3749}
3750
3751/// ParseGetResult
3752///   ::= 'getresult' TypeAndValue ',' i32
3753/// FIXME: Remove support for getresult in LLVM 3.0
3754bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
3755  Value *Val; LocTy ValLoc, EltLoc;
3756  unsigned Element;
3757  if (ParseTypeAndValue(Val, ValLoc, PFS) ||
3758      ParseToken(lltok::comma, "expected ',' after getresult operand") ||
3759      ParseUInt32(Element, EltLoc))
3760    return true;
3761
3762  if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3763    return Error(ValLoc, "getresult inst requires an aggregate operand");
3764  if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
3765    return Error(EltLoc, "invalid getresult index for value");
3766  Inst = ExtractValueInst::Create(Val, Element);
3767  return false;
3768}
3769
3770/// ParseGetElementPtr
3771///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
3772int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3773  Value *Ptr, *Val; LocTy Loc, EltLoc;
3774
3775  bool InBounds = EatIfPresent(lltok::kw_inbounds);
3776
3777  if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3778
3779  if (!isa<PointerType>(Ptr->getType()))
3780    return Error(Loc, "base of getelementptr must be a pointer");
3781
3782  SmallVector<Value*, 16> Indices;
3783  bool AteExtraComma = false;
3784  while (EatIfPresent(lltok::comma)) {
3785    if (Lex.getKind() == lltok::MetadataVar) {
3786      AteExtraComma = true;
3787      break;
3788    }
3789    if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3790    if (!isa<IntegerType>(Val->getType()))
3791      return Error(EltLoc, "getelementptr index must be an integer");
3792    Indices.push_back(Val);
3793  }
3794
3795  if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
3796                                         Indices.begin(), Indices.end()))
3797    return Error(Loc, "invalid getelementptr indices");
3798  Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
3799  if (InBounds)
3800    cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
3801  return AteExtraComma ? InstExtraComma : InstNormal;
3802}
3803
3804/// ParseExtractValue
3805///   ::= 'extractvalue' TypeAndValue (',' uint32)+
3806int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3807  Value *Val; LocTy Loc;
3808  SmallVector<unsigned, 4> Indices;
3809  bool AteExtraComma;
3810  if (ParseTypeAndValue(Val, Loc, PFS) ||
3811      ParseIndexList(Indices, AteExtraComma))
3812    return true;
3813
3814  if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3815    return Error(Loc, "extractvalue operand must be array or struct");
3816
3817  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
3818                                        Indices.end()))
3819    return Error(Loc, "invalid indices for extractvalue");
3820  Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end());
3821  return AteExtraComma ? InstExtraComma : InstNormal;
3822}
3823
3824/// ParseInsertValue
3825///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3826int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3827  Value *Val0, *Val1; LocTy Loc0, Loc1;
3828  SmallVector<unsigned, 4> Indices;
3829  bool AteExtraComma;
3830  if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3831      ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3832      ParseTypeAndValue(Val1, Loc1, PFS) ||
3833      ParseIndexList(Indices, AteExtraComma))
3834    return true;
3835
3836  if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
3837    return Error(Loc0, "extractvalue operand must be array or struct");
3838
3839  if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
3840                                        Indices.end()))
3841    return Error(Loc0, "invalid indices for insertvalue");
3842  Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end());
3843  return AteExtraComma ? InstExtraComma : InstNormal;
3844}
3845
3846//===----------------------------------------------------------------------===//
3847// Embedded metadata.
3848//===----------------------------------------------------------------------===//
3849
3850/// ParseMDNodeVector
3851///   ::= Element (',' Element)*
3852/// Element
3853///   ::= 'null' | TypeAndValue
3854bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts,
3855                                 PerFunctionState *PFS) {
3856  do {
3857    // Null is a special case since it is typeless.
3858    if (EatIfPresent(lltok::kw_null)) {
3859      Elts.push_back(0);
3860      continue;
3861    }
3862
3863    Value *V = 0;
3864    PATypeHolder Ty(Type::getVoidTy(Context));
3865    ValID ID;
3866    if (ParseType(Ty) || ParseValID(ID, PFS) ||
3867        ConvertValIDToValue(Ty, ID, V, PFS))
3868      return true;
3869
3870    Elts.push_back(V);
3871  } while (EatIfPresent(lltok::comma));
3872
3873  return false;
3874}
3875