LLParser.cpp revision 442ffa1c5688f32b275f7657b5ee3646bfe8ffa3
1//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/AutoUpgrade.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instructions.h"
21#include "llvm/Module.h"
22#include "llvm/Operator.h"
23#include "llvm/ValueSymbolTable.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/raw_ostream.h"
28using namespace llvm;
29
30/// Run: module ::= toplevelentity*
31bool LLParser::Run() {
32  // Prime the lexer.
33  Lex.Lex();
34
35  return ParseTopLevelEntities() ||
36         ValidateEndOfModule();
37}
38
39/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
40/// module.
41bool LLParser::ValidateEndOfModule() {
42  // Update auto-upgraded malloc calls to "malloc".
43  // FIXME: Remove in LLVM 3.0.
44  if (MallocF) {
45    MallocF->setName("malloc");
46    // If setName() does not set the name to "malloc", then there is already a
47    // declaration of "malloc".  In that case, iterate over all calls to MallocF
48    // and get them to call the declared "malloc" instead.
49    if (MallocF->getName() != "malloc") {
50      Constant *RealMallocF = M->getFunction("malloc");
51      if (RealMallocF->getType() != MallocF->getType())
52        RealMallocF = ConstantExpr::getBitCast(RealMallocF, MallocF->getType());
53      MallocF->replaceAllUsesWith(RealMallocF);
54      MallocF->eraseFromParent();
55      MallocF = NULL;
56    }
57  }
58
59
60  // If there are entries in ForwardRefBlockAddresses at this point, they are
61  // references after the function was defined.  Resolve those now.
62  while (!ForwardRefBlockAddresses.empty()) {
63    // Okay, we are referencing an already-parsed function, resolve them now.
64    Function *TheFn = 0;
65    const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
66    if (Fn.Kind == ValID::t_GlobalName)
67      TheFn = M->getFunction(Fn.StrVal);
68    else if (Fn.UIntVal < NumberedVals.size())
69      TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
70
71    if (TheFn == 0)
72      return Error(Fn.Loc, "unknown function referenced by blockaddress");
73
74    // Resolve all these references.
75    if (ResolveForwardRefBlockAddresses(TheFn,
76                                      ForwardRefBlockAddresses.begin()->second,
77                                        0))
78      return true;
79
80    ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
81  }
82
83
84  if (!ForwardRefTypes.empty())
85    return Error(ForwardRefTypes.begin()->second.second,
86                 "use of undefined type named '" +
87                 ForwardRefTypes.begin()->first + "'");
88  if (!ForwardRefTypeIDs.empty())
89    return Error(ForwardRefTypeIDs.begin()->second.second,
90                 "use of undefined type '%" +
91                 utostr(ForwardRefTypeIDs.begin()->first) + "'");
92
93  if (!ForwardRefVals.empty())
94    return Error(ForwardRefVals.begin()->second.second,
95                 "use of undefined value '@" + ForwardRefVals.begin()->first +
96                 "'");
97
98  if (!ForwardRefValIDs.empty())
99    return Error(ForwardRefValIDs.begin()->second.second,
100                 "use of undefined value '@" +
101                 utostr(ForwardRefValIDs.begin()->first) + "'");
102
103  if (!ForwardRefMDNodes.empty())
104    return Error(ForwardRefMDNodes.begin()->second.second,
105                 "use of undefined metadata '!" +
106                 utostr(ForwardRefMDNodes.begin()->first) + "'");
107
108
109  // Look for intrinsic functions and CallInst that need to be upgraded
110  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
111    UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
112
113  // Check debug info intrinsics.
114  CheckDebugInfoIntrinsics(M);
115  return false;
116}
117
118bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn,
119                             std::vector<std::pair<ValID, GlobalValue*> > &Refs,
120                                               PerFunctionState *PFS) {
121  // Loop over all the references, resolving them.
122  for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
123    BasicBlock *Res;
124    if (PFS) {
125      if (Refs[i].first.Kind == ValID::t_LocalName)
126        Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
127      else
128        Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
129    } else if (Refs[i].first.Kind == ValID::t_LocalID) {
130      return Error(Refs[i].first.Loc,
131       "cannot take address of numeric label after the function is defined");
132    } else {
133      Res = dyn_cast_or_null<BasicBlock>(
134                     TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
135    }
136
137    if (Res == 0)
138      return Error(Refs[i].first.Loc,
139                   "referenced value is not a basic block");
140
141    // Get the BlockAddress for this and update references to use it.
142    BlockAddress *BA = BlockAddress::get(TheFn, Res);
143    Refs[i].second->replaceAllUsesWith(BA);
144    Refs[i].second->eraseFromParent();
145  }
146  return false;
147}
148
149
150//===----------------------------------------------------------------------===//
151// Top-Level Entities
152//===----------------------------------------------------------------------===//
153
154bool LLParser::ParseTopLevelEntities() {
155  while (1) {
156    switch (Lex.getKind()) {
157    default:         return TokError("expected top-level entity");
158    case lltok::Eof: return false;
159    //case lltok::kw_define:
160    case lltok::kw_declare: if (ParseDeclare()) return true; break;
161    case lltok::kw_define:  if (ParseDefine()) return true; break;
162    case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
163    case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
164    case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
165    case lltok::kw_type:    if (ParseUnnamedType()) return true; break;
166    case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
167    case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
168    case lltok::LocalVar:   if (ParseNamedType()) return true; break;
169    case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
170    case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
171    case lltok::Metadata:   if (ParseStandaloneMetadata()) return true; break;
172    case lltok::NamedOrCustomMD: if (ParseNamedMetadata()) return true; break;
173
174    // The Global variable production with no name can have many different
175    // optional leading prefixes, the production is:
176    // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
177    //               OptionalAddrSpace ('constant'|'global') ...
178    case lltok::kw_private :       // OptionalLinkage
179    case lltok::kw_linker_private: // OptionalLinkage
180    case lltok::kw_internal:       // OptionalLinkage
181    case lltok::kw_weak:           // OptionalLinkage
182    case lltok::kw_weak_odr:       // OptionalLinkage
183    case lltok::kw_linkonce:       // OptionalLinkage
184    case lltok::kw_linkonce_odr:   // OptionalLinkage
185    case lltok::kw_appending:      // OptionalLinkage
186    case lltok::kw_dllexport:      // OptionalLinkage
187    case lltok::kw_common:         // OptionalLinkage
188    case lltok::kw_dllimport:      // OptionalLinkage
189    case lltok::kw_extern_weak:    // OptionalLinkage
190    case lltok::kw_external: {     // OptionalLinkage
191      unsigned Linkage, Visibility;
192      if (ParseOptionalLinkage(Linkage) ||
193          ParseOptionalVisibility(Visibility) ||
194          ParseGlobal("", SMLoc(), Linkage, true, Visibility))
195        return true;
196      break;
197    }
198    case lltok::kw_default:       // OptionalVisibility
199    case lltok::kw_hidden:        // OptionalVisibility
200    case lltok::kw_protected: {   // OptionalVisibility
201      unsigned Visibility;
202      if (ParseOptionalVisibility(Visibility) ||
203          ParseGlobal("", SMLoc(), 0, false, Visibility))
204        return true;
205      break;
206    }
207
208    case lltok::kw_thread_local:  // OptionalThreadLocal
209    case lltok::kw_addrspace:     // OptionalAddrSpace
210    case lltok::kw_constant:      // GlobalType
211    case lltok::kw_global:        // GlobalType
212      if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
213      break;
214    }
215  }
216}
217
218
219/// toplevelentity
220///   ::= 'module' 'asm' STRINGCONSTANT
221bool LLParser::ParseModuleAsm() {
222  assert(Lex.getKind() == lltok::kw_module);
223  Lex.Lex();
224
225  std::string AsmStr;
226  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
227      ParseStringConstant(AsmStr)) return true;
228
229  const std::string &AsmSoFar = M->getModuleInlineAsm();
230  if (AsmSoFar.empty())
231    M->setModuleInlineAsm(AsmStr);
232  else
233    M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr);
234  return false;
235}
236
237/// toplevelentity
238///   ::= 'target' 'triple' '=' STRINGCONSTANT
239///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
240bool LLParser::ParseTargetDefinition() {
241  assert(Lex.getKind() == lltok::kw_target);
242  std::string Str;
243  switch (Lex.Lex()) {
244  default: return TokError("unknown target property");
245  case lltok::kw_triple:
246    Lex.Lex();
247    if (ParseToken(lltok::equal, "expected '=' after target triple") ||
248        ParseStringConstant(Str))
249      return true;
250    M->setTargetTriple(Str);
251    return false;
252  case lltok::kw_datalayout:
253    Lex.Lex();
254    if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
255        ParseStringConstant(Str))
256      return true;
257    M->setDataLayout(Str);
258    return false;
259  }
260}
261
262/// toplevelentity
263///   ::= 'deplibs' '=' '[' ']'
264///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
265bool LLParser::ParseDepLibs() {
266  assert(Lex.getKind() == lltok::kw_deplibs);
267  Lex.Lex();
268  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
269      ParseToken(lltok::lsquare, "expected '=' after deplibs"))
270    return true;
271
272  if (EatIfPresent(lltok::rsquare))
273    return false;
274
275  std::string Str;
276  if (ParseStringConstant(Str)) return true;
277  M->addLibrary(Str);
278
279  while (EatIfPresent(lltok::comma)) {
280    if (ParseStringConstant(Str)) return true;
281    M->addLibrary(Str);
282  }
283
284  return ParseToken(lltok::rsquare, "expected ']' at end of list");
285}
286
287/// ParseUnnamedType:
288///   ::= 'type' type
289///   ::= LocalVarID '=' 'type' type
290bool LLParser::ParseUnnamedType() {
291  unsigned TypeID = NumberedTypes.size();
292
293  // Handle the LocalVarID form.
294  if (Lex.getKind() == lltok::LocalVarID) {
295    if (Lex.getUIntVal() != TypeID)
296      return Error(Lex.getLoc(), "type expected to be numbered '%" +
297                   utostr(TypeID) + "'");
298    Lex.Lex(); // eat LocalVarID;
299
300    if (ParseToken(lltok::equal, "expected '=' after name"))
301      return true;
302  }
303
304  assert(Lex.getKind() == lltok::kw_type);
305  LocTy TypeLoc = Lex.getLoc();
306  Lex.Lex(); // eat kw_type
307
308  PATypeHolder Ty(Type::getVoidTy(Context));
309  if (ParseType(Ty)) return true;
310
311  // See if this type was previously referenced.
312  std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
313    FI = ForwardRefTypeIDs.find(TypeID);
314  if (FI != ForwardRefTypeIDs.end()) {
315    if (FI->second.first.get() == Ty)
316      return Error(TypeLoc, "self referential type is invalid");
317
318    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
319    Ty = FI->second.first.get();
320    ForwardRefTypeIDs.erase(FI);
321  }
322
323  NumberedTypes.push_back(Ty);
324
325  return false;
326}
327
328/// toplevelentity
329///   ::= LocalVar '=' 'type' type
330bool LLParser::ParseNamedType() {
331  std::string Name = Lex.getStrVal();
332  LocTy NameLoc = Lex.getLoc();
333  Lex.Lex();  // eat LocalVar.
334
335  PATypeHolder Ty(Type::getVoidTy(Context));
336
337  if (ParseToken(lltok::equal, "expected '=' after name") ||
338      ParseToken(lltok::kw_type, "expected 'type' after name") ||
339      ParseType(Ty))
340    return true;
341
342  // Set the type name, checking for conflicts as we do so.
343  bool AlreadyExists = M->addTypeName(Name, Ty);
344  if (!AlreadyExists) return false;
345
346  // See if this type is a forward reference.  We need to eagerly resolve
347  // types to allow recursive type redefinitions below.
348  std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator
349  FI = ForwardRefTypes.find(Name);
350  if (FI != ForwardRefTypes.end()) {
351    if (FI->second.first.get() == Ty)
352      return Error(NameLoc, "self referential type is invalid");
353
354    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
355    Ty = FI->second.first.get();
356    ForwardRefTypes.erase(FI);
357  }
358
359  // Inserting a name that is already defined, get the existing name.
360  const Type *Existing = M->getTypeByName(Name);
361  assert(Existing && "Conflict but no matching type?!");
362
363  // Otherwise, this is an attempt to redefine a type. That's okay if
364  // the redefinition is identical to the original.
365  // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
366  if (Existing == Ty) return false;
367
368  // Any other kind of (non-equivalent) redefinition is an error.
369  return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
370               Ty->getDescription() + "'");
371}
372
373
374/// toplevelentity
375///   ::= 'declare' FunctionHeader
376bool LLParser::ParseDeclare() {
377  assert(Lex.getKind() == lltok::kw_declare);
378  Lex.Lex();
379
380  Function *F;
381  return ParseFunctionHeader(F, false);
382}
383
384/// toplevelentity
385///   ::= 'define' FunctionHeader '{' ...
386bool LLParser::ParseDefine() {
387  assert(Lex.getKind() == lltok::kw_define);
388  Lex.Lex();
389
390  Function *F;
391  return ParseFunctionHeader(F, true) ||
392         ParseFunctionBody(*F);
393}
394
395/// ParseGlobalType
396///   ::= 'constant'
397///   ::= 'global'
398bool LLParser::ParseGlobalType(bool &IsConstant) {
399  if (Lex.getKind() == lltok::kw_constant)
400    IsConstant = true;
401  else if (Lex.getKind() == lltok::kw_global)
402    IsConstant = false;
403  else {
404    IsConstant = false;
405    return TokError("expected 'global' or 'constant'");
406  }
407  Lex.Lex();
408  return false;
409}
410
411/// ParseUnnamedGlobal:
412///   OptionalVisibility ALIAS ...
413///   OptionalLinkage OptionalVisibility ...   -> global variable
414///   GlobalID '=' OptionalVisibility ALIAS ...
415///   GlobalID '=' OptionalLinkage OptionalVisibility ...   -> global variable
416bool LLParser::ParseUnnamedGlobal() {
417  unsigned VarID = NumberedVals.size();
418  std::string Name;
419  LocTy NameLoc = Lex.getLoc();
420
421  // Handle the GlobalID form.
422  if (Lex.getKind() == lltok::GlobalID) {
423    if (Lex.getUIntVal() != VarID)
424      return Error(Lex.getLoc(), "variable expected to be numbered '%" +
425                   utostr(VarID) + "'");
426    Lex.Lex(); // eat GlobalID;
427
428    if (ParseToken(lltok::equal, "expected '=' after name"))
429      return true;
430  }
431
432  bool HasLinkage;
433  unsigned Linkage, Visibility;
434  if (ParseOptionalLinkage(Linkage, HasLinkage) ||
435      ParseOptionalVisibility(Visibility))
436    return true;
437
438  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
439    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
440  return ParseAlias(Name, NameLoc, Visibility);
441}
442
443/// ParseNamedGlobal:
444///   GlobalVar '=' OptionalVisibility ALIAS ...
445///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
446bool LLParser::ParseNamedGlobal() {
447  assert(Lex.getKind() == lltok::GlobalVar);
448  LocTy NameLoc = Lex.getLoc();
449  std::string Name = Lex.getStrVal();
450  Lex.Lex();
451
452  bool HasLinkage;
453  unsigned Linkage, Visibility;
454  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
455      ParseOptionalLinkage(Linkage, HasLinkage) ||
456      ParseOptionalVisibility(Visibility))
457    return true;
458
459  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
460    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
461  return ParseAlias(Name, NameLoc, Visibility);
462}
463
464// MDString:
465//   ::= '!' STRINGCONSTANT
466bool LLParser::ParseMDString(MDString *&Result) {
467  std::string Str;
468  if (ParseStringConstant(Str)) return true;
469  Result = MDString::get(Context, Str);
470  return false;
471}
472
473// MDNode:
474//   ::= '!' MDNodeNumber
475bool LLParser::ParseMDNode(MDNode *&Result) {
476  // !{ ..., !42, ... }
477  unsigned MID = 0;
478  if (ParseUInt32(MID)) return true;
479
480  // Check existing MDNode.
481  std::map<unsigned, TrackingVH<MDNode> >::iterator I = MetadataCache.find(MID);
482  if (I != MetadataCache.end()) {
483    Result = I->second;
484    return false;
485  }
486
487  // Check known forward references.
488  std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
489    FI = ForwardRefMDNodes.find(MID);
490  if (FI != ForwardRefMDNodes.end()) {
491    Result = FI->second.first;
492    return false;
493  }
494
495  // Create MDNode forward reference
496  std::string FwdRefName = "llvm.mdnode.fwdref." + utostr(MID);
497  SmallVector<Value *, 1> Elts;
498  Elts.push_back(MDString::get(Context, FwdRefName));
499  MDNode *FwdNode = MDNode::get(Context, Elts.data(), Elts.size());
500  ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
501  Result = FwdNode;
502  return false;
503}
504
505///ParseNamedMetadata:
506///   !foo = !{ !1, !2 }
507bool LLParser::ParseNamedMetadata() {
508  assert(Lex.getKind() == lltok::NamedOrCustomMD);
509  Lex.Lex();
510  std::string Name = Lex.getStrVal();
511
512  if (ParseToken(lltok::equal, "expected '=' here"))
513    return true;
514
515  if (Lex.getKind() != lltok::Metadata)
516    return TokError("Expected '!' here");
517  Lex.Lex();
518
519  if (Lex.getKind() != lltok::lbrace)
520    return TokError("Expected '{' here");
521  Lex.Lex();
522  SmallVector<MetadataBase *, 8> Elts;
523  do {
524    // FIXME: Eat if present.
525    if (Lex.getKind() != lltok::Metadata)
526      return TokError("Expected '!' here");
527    Lex.Lex();
528
529    // FIXME: Will crash on mdstrings etc.
530    MDNode *N = 0;
531    if (ParseMDNode(N)) return true;
532    Elts.push_back(N);
533  } while (EatIfPresent(lltok::comma));
534
535  if (ParseToken(lltok::rbrace, "expected end of metadata node"))
536    return true;
537
538  NamedMDNode::Create(Context, Name, Elts.data(), Elts.size(), M);
539  return false;
540}
541
542/// ParseStandaloneMetadata:
543///   !42 = !{...}
544bool LLParser::ParseStandaloneMetadata() {
545  assert(Lex.getKind() == lltok::Metadata);
546  Lex.Lex();
547  unsigned MetadataID = 0;
548  if (ParseUInt32(MetadataID))
549    return true;
550  if (MetadataCache.count(MetadataID))
551    return TokError("Metadata id is already used");
552  if (ParseToken(lltok::equal, "expected '=' here"))
553    return true;
554
555  LocTy TyLoc;
556  PATypeHolder Ty(Type::getVoidTy(Context));
557  if (ParseType(Ty, TyLoc))
558    return true;
559
560  if (Lex.getKind() != lltok::Metadata)
561    return TokError("Expected metadata here");
562
563  Lex.Lex();
564  if (Lex.getKind() != lltok::lbrace)
565    return TokError("Expected '{' here");
566
567  // FIXME: This doesn't make sense here.
568  SmallVector<Value *, 16> Elts;
569  if (ParseMDNodeVector(Elts)
570      || ParseToken(lltok::rbrace, "expected end of metadata node"))
571    return true;
572
573  MDNode *Init = MDNode::get(Context, Elts.data(), Elts.size());
574  MetadataCache[MetadataID] = Init;
575  std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
576    FI = ForwardRefMDNodes.find(MetadataID);
577  if (FI != ForwardRefMDNodes.end()) {
578    FI->second.first->replaceAllUsesWith(Init);
579    ForwardRefMDNodes.erase(FI);
580  }
581
582  return false;
583}
584
585/// ParseInlineMetadata:
586///   !{type %instr}
587///   !{...} MDNode
588///   !"foo" MDString
589bool LLParser::ParseInlineMetadata(Value *&V, PerFunctionState &PFS) {
590  assert(Lex.getKind() == lltok::Metadata && "Only for Metadata");
591  V = 0;
592
593  Lex.Lex();
594  if (Lex.getKind() == lltok::lbrace) {
595    Lex.Lex();
596    if (ParseTypeAndValue(V, PFS) ||
597        ParseToken(lltok::rbrace, "expected end of metadata node"))
598      return true;
599
600    Value *Vals[] = { V };
601    V = MDNode::get(Context, Vals, 1);
602    return false;
603  }
604
605  // FIXME: This can't possibly work at all.  r90497
606
607  // Standalone metadata reference
608  // !{ ..., !42, ... }
609  if (!ParseMDNode((MDNode *&)V))
610    return false;
611
612  // MDString:
613  // '!' STRINGCONSTANT
614  if (ParseMDString((MDString *&)V)) return true;
615  return false;
616}
617
618/// ParseAlias:
619///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
620/// Aliasee
621///   ::= TypeAndValue
622///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
623///   ::= 'getelementptr' 'inbounds'? '(' ... ')'
624///
625/// Everything through visibility has already been parsed.
626///
627bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
628                          unsigned Visibility) {
629  assert(Lex.getKind() == lltok::kw_alias);
630  Lex.Lex();
631  unsigned Linkage;
632  LocTy LinkageLoc = Lex.getLoc();
633  if (ParseOptionalLinkage(Linkage))
634    return true;
635
636  if (Linkage != GlobalValue::ExternalLinkage &&
637      Linkage != GlobalValue::WeakAnyLinkage &&
638      Linkage != GlobalValue::WeakODRLinkage &&
639      Linkage != GlobalValue::InternalLinkage &&
640      Linkage != GlobalValue::PrivateLinkage &&
641      Linkage != GlobalValue::LinkerPrivateLinkage)
642    return Error(LinkageLoc, "invalid linkage type for alias");
643
644  Constant *Aliasee;
645  LocTy AliaseeLoc = Lex.getLoc();
646  if (Lex.getKind() != lltok::kw_bitcast &&
647      Lex.getKind() != lltok::kw_getelementptr) {
648    if (ParseGlobalTypeAndValue(Aliasee)) return true;
649  } else {
650    // The bitcast dest type is not present, it is implied by the dest type.
651    ValID ID;
652    if (ParseValID(ID)) return true;
653    if (ID.Kind != ValID::t_Constant)
654      return Error(AliaseeLoc, "invalid aliasee");
655    Aliasee = ID.ConstantVal;
656  }
657
658  if (!isa<PointerType>(Aliasee->getType()))
659    return Error(AliaseeLoc, "alias must have pointer type");
660
661  // Okay, create the alias but do not insert it into the module yet.
662  GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
663                                    (GlobalValue::LinkageTypes)Linkage, Name,
664                                    Aliasee);
665  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
666
667  // See if this value already exists in the symbol table.  If so, it is either
668  // a redefinition or a definition of a forward reference.
669  if (GlobalValue *Val = M->getNamedValue(Name)) {
670    // See if this was a redefinition.  If so, there is no entry in
671    // ForwardRefVals.
672    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
673      I = ForwardRefVals.find(Name);
674    if (I == ForwardRefVals.end())
675      return Error(NameLoc, "redefinition of global named '@" + Name + "'");
676
677    // Otherwise, this was a definition of forward ref.  Verify that types
678    // agree.
679    if (Val->getType() != GA->getType())
680      return Error(NameLoc,
681              "forward reference and definition of alias have different types");
682
683    // If they agree, just RAUW the old value with the alias and remove the
684    // forward ref info.
685    Val->replaceAllUsesWith(GA);
686    Val->eraseFromParent();
687    ForwardRefVals.erase(I);
688  }
689
690  // Insert into the module, we know its name won't collide now.
691  M->getAliasList().push_back(GA);
692  assert(GA->getNameStr() == Name && "Should not be a name conflict!");
693
694  return false;
695}
696
697/// ParseGlobal
698///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
699///       OptionalAddrSpace GlobalType Type Const
700///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
701///       OptionalAddrSpace GlobalType Type Const
702///
703/// Everything through visibility has been parsed already.
704///
705bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
706                           unsigned Linkage, bool HasLinkage,
707                           unsigned Visibility) {
708  unsigned AddrSpace;
709  bool ThreadLocal, IsConstant;
710  LocTy TyLoc;
711
712  PATypeHolder Ty(Type::getVoidTy(Context));
713  if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
714      ParseOptionalAddrSpace(AddrSpace) ||
715      ParseGlobalType(IsConstant) ||
716      ParseType(Ty, TyLoc))
717    return true;
718
719  // If the linkage is specified and is external, then no initializer is
720  // present.
721  Constant *Init = 0;
722  if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
723                      Linkage != GlobalValue::ExternalWeakLinkage &&
724                      Linkage != GlobalValue::ExternalLinkage)) {
725    if (ParseGlobalValue(Ty, Init))
726      return true;
727  }
728
729  if (isa<FunctionType>(Ty) || Ty->isLabelTy())
730    return Error(TyLoc, "invalid type for global variable");
731
732  GlobalVariable *GV = 0;
733
734  // See if the global was forward referenced, if so, use the global.
735  if (!Name.empty()) {
736    if (GlobalValue *GVal = M->getNamedValue(Name)) {
737      if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
738        return Error(NameLoc, "redefinition of global '@" + Name + "'");
739      GV = cast<GlobalVariable>(GVal);
740    }
741  } else {
742    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
743      I = ForwardRefValIDs.find(NumberedVals.size());
744    if (I != ForwardRefValIDs.end()) {
745      GV = cast<GlobalVariable>(I->second.first);
746      ForwardRefValIDs.erase(I);
747    }
748  }
749
750  if (GV == 0) {
751    GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
752                            Name, 0, false, AddrSpace);
753  } else {
754    if (GV->getType()->getElementType() != Ty)
755      return Error(TyLoc,
756            "forward reference and definition of global have different types");
757
758    // Move the forward-reference to the correct spot in the module.
759    M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
760  }
761
762  if (Name.empty())
763    NumberedVals.push_back(GV);
764
765  // Set the parsed properties on the global.
766  if (Init)
767    GV->setInitializer(Init);
768  GV->setConstant(IsConstant);
769  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
770  GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
771  GV->setThreadLocal(ThreadLocal);
772
773  // Parse attributes on the global.
774  while (Lex.getKind() == lltok::comma) {
775    Lex.Lex();
776
777    if (Lex.getKind() == lltok::kw_section) {
778      Lex.Lex();
779      GV->setSection(Lex.getStrVal());
780      if (ParseToken(lltok::StringConstant, "expected global section string"))
781        return true;
782    } else if (Lex.getKind() == lltok::kw_align) {
783      unsigned Alignment;
784      if (ParseOptionalAlignment(Alignment)) return true;
785      GV->setAlignment(Alignment);
786    } else {
787      TokError("unknown global variable property!");
788    }
789  }
790
791  return false;
792}
793
794
795//===----------------------------------------------------------------------===//
796// GlobalValue Reference/Resolution Routines.
797//===----------------------------------------------------------------------===//
798
799/// GetGlobalVal - Get a value with the specified name or ID, creating a
800/// forward reference record if needed.  This can return null if the value
801/// exists but does not have the right type.
802GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
803                                    LocTy Loc) {
804  const PointerType *PTy = dyn_cast<PointerType>(Ty);
805  if (PTy == 0) {
806    Error(Loc, "global variable reference must have pointer type");
807    return 0;
808  }
809
810  // Look this name up in the normal function symbol table.
811  GlobalValue *Val =
812    cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
813
814  // If this is a forward reference for the value, see if we already created a
815  // forward ref record.
816  if (Val == 0) {
817    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
818      I = ForwardRefVals.find(Name);
819    if (I != ForwardRefVals.end())
820      Val = I->second.first;
821  }
822
823  // If we have the value in the symbol table or fwd-ref table, return it.
824  if (Val) {
825    if (Val->getType() == Ty) return Val;
826    Error(Loc, "'@" + Name + "' defined with type '" +
827          Val->getType()->getDescription() + "'");
828    return 0;
829  }
830
831  // Otherwise, create a new forward reference for this value and remember it.
832  GlobalValue *FwdVal;
833  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
834    // Function types can return opaque but functions can't.
835    if (isa<OpaqueType>(FT->getReturnType())) {
836      Error(Loc, "function may not return opaque type");
837      return 0;
838    }
839
840    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
841  } else {
842    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
843                                GlobalValue::ExternalWeakLinkage, 0, Name);
844  }
845
846  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
847  return FwdVal;
848}
849
850GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
851  const PointerType *PTy = dyn_cast<PointerType>(Ty);
852  if (PTy == 0) {
853    Error(Loc, "global variable reference must have pointer type");
854    return 0;
855  }
856
857  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
858
859  // If this is a forward reference for the value, see if we already created a
860  // forward ref record.
861  if (Val == 0) {
862    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
863      I = ForwardRefValIDs.find(ID);
864    if (I != ForwardRefValIDs.end())
865      Val = I->second.first;
866  }
867
868  // If we have the value in the symbol table or fwd-ref table, return it.
869  if (Val) {
870    if (Val->getType() == Ty) return Val;
871    Error(Loc, "'@" + utostr(ID) + "' defined with type '" +
872          Val->getType()->getDescription() + "'");
873    return 0;
874  }
875
876  // Otherwise, create a new forward reference for this value and remember it.
877  GlobalValue *FwdVal;
878  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
879    // Function types can return opaque but functions can't.
880    if (isa<OpaqueType>(FT->getReturnType())) {
881      Error(Loc, "function may not return opaque type");
882      return 0;
883    }
884    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
885  } else {
886    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
887                                GlobalValue::ExternalWeakLinkage, 0, "");
888  }
889
890  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
891  return FwdVal;
892}
893
894
895//===----------------------------------------------------------------------===//
896// Helper Routines.
897//===----------------------------------------------------------------------===//
898
899/// ParseToken - If the current token has the specified kind, eat it and return
900/// success.  Otherwise, emit the specified error and return failure.
901bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
902  if (Lex.getKind() != T)
903    return TokError(ErrMsg);
904  Lex.Lex();
905  return false;
906}
907
908/// ParseStringConstant
909///   ::= StringConstant
910bool LLParser::ParseStringConstant(std::string &Result) {
911  if (Lex.getKind() != lltok::StringConstant)
912    return TokError("expected string constant");
913  Result = Lex.getStrVal();
914  Lex.Lex();
915  return false;
916}
917
918/// ParseUInt32
919///   ::= uint32
920bool LLParser::ParseUInt32(unsigned &Val) {
921  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
922    return TokError("expected integer");
923  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
924  if (Val64 != unsigned(Val64))
925    return TokError("expected 32-bit integer (too large)");
926  Val = Val64;
927  Lex.Lex();
928  return false;
929}
930
931
932/// ParseOptionalAddrSpace
933///   := /*empty*/
934///   := 'addrspace' '(' uint32 ')'
935bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
936  AddrSpace = 0;
937  if (!EatIfPresent(lltok::kw_addrspace))
938    return false;
939  return ParseToken(lltok::lparen, "expected '(' in address space") ||
940         ParseUInt32(AddrSpace) ||
941         ParseToken(lltok::rparen, "expected ')' in address space");
942}
943
944/// ParseOptionalAttrs - Parse a potentially empty attribute list.  AttrKind
945/// indicates what kind of attribute list this is: 0: function arg, 1: result,
946/// 2: function attr.
947/// 3: function arg after value: FIXME: REMOVE IN LLVM 3.0
948bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
949  Attrs = Attribute::None;
950  LocTy AttrLoc = Lex.getLoc();
951
952  while (1) {
953    switch (Lex.getKind()) {
954    case lltok::kw_sext:
955    case lltok::kw_zext:
956      // Treat these as signext/zeroext if they occur in the argument list after
957      // the value, as in "call i8 @foo(i8 10 sext)".  If they occur before the
958      // value, as in "call i8 @foo(i8 sext (" then it is part of a constant
959      // expr.
960      // FIXME: REMOVE THIS IN LLVM 3.0
961      if (AttrKind == 3) {
962        if (Lex.getKind() == lltok::kw_sext)
963          Attrs |= Attribute::SExt;
964        else
965          Attrs |= Attribute::ZExt;
966        break;
967      }
968      // FALL THROUGH.
969    default:  // End of attributes.
970      if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
971        return Error(AttrLoc, "invalid use of function-only attribute");
972
973      if (AttrKind != 0 && AttrKind != 3 && (Attrs & Attribute::ParameterOnly))
974        return Error(AttrLoc, "invalid use of parameter-only attribute");
975
976      return false;
977    case lltok::kw_zeroext:         Attrs |= Attribute::ZExt; break;
978    case lltok::kw_signext:         Attrs |= Attribute::SExt; break;
979    case lltok::kw_inreg:           Attrs |= Attribute::InReg; break;
980    case lltok::kw_sret:            Attrs |= Attribute::StructRet; break;
981    case lltok::kw_noalias:         Attrs |= Attribute::NoAlias; break;
982    case lltok::kw_nocapture:       Attrs |= Attribute::NoCapture; break;
983    case lltok::kw_byval:           Attrs |= Attribute::ByVal; break;
984    case lltok::kw_nest:            Attrs |= Attribute::Nest; break;
985
986    case lltok::kw_noreturn:        Attrs |= Attribute::NoReturn; break;
987    case lltok::kw_nounwind:        Attrs |= Attribute::NoUnwind; break;
988    case lltok::kw_noinline:        Attrs |= Attribute::NoInline; break;
989    case lltok::kw_readnone:        Attrs |= Attribute::ReadNone; break;
990    case lltok::kw_readonly:        Attrs |= Attribute::ReadOnly; break;
991    case lltok::kw_inlinehint:      Attrs |= Attribute::InlineHint; break;
992    case lltok::kw_alwaysinline:    Attrs |= Attribute::AlwaysInline; break;
993    case lltok::kw_optsize:         Attrs |= Attribute::OptimizeForSize; break;
994    case lltok::kw_ssp:             Attrs |= Attribute::StackProtect; break;
995    case lltok::kw_sspreq:          Attrs |= Attribute::StackProtectReq; break;
996    case lltok::kw_noredzone:       Attrs |= Attribute::NoRedZone; break;
997    case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
998    case lltok::kw_naked:           Attrs |= Attribute::Naked; break;
999
1000    case lltok::kw_align: {
1001      unsigned Alignment;
1002      if (ParseOptionalAlignment(Alignment))
1003        return true;
1004      Attrs |= Attribute::constructAlignmentFromInt(Alignment);
1005      continue;
1006    }
1007    }
1008    Lex.Lex();
1009  }
1010}
1011
1012/// ParseOptionalLinkage
1013///   ::= /*empty*/
1014///   ::= 'private'
1015///   ::= 'linker_private'
1016///   ::= 'internal'
1017///   ::= 'weak'
1018///   ::= 'weak_odr'
1019///   ::= 'linkonce'
1020///   ::= 'linkonce_odr'
1021///   ::= 'appending'
1022///   ::= 'dllexport'
1023///   ::= 'common'
1024///   ::= 'dllimport'
1025///   ::= 'extern_weak'
1026///   ::= 'external'
1027bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
1028  HasLinkage = false;
1029  switch (Lex.getKind()) {
1030  default:                       Res=GlobalValue::ExternalLinkage; return false;
1031  case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
1032  case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
1033  case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
1034  case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
1035  case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
1036  case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
1037  case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
1038  case lltok::kw_available_externally:
1039    Res = GlobalValue::AvailableExternallyLinkage;
1040    break;
1041  case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
1042  case lltok::kw_dllexport:      Res = GlobalValue::DLLExportLinkage;     break;
1043  case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
1044  case lltok::kw_dllimport:      Res = GlobalValue::DLLImportLinkage;     break;
1045  case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
1046  case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
1047  }
1048  Lex.Lex();
1049  HasLinkage = true;
1050  return false;
1051}
1052
1053/// ParseOptionalVisibility
1054///   ::= /*empty*/
1055///   ::= 'default'
1056///   ::= 'hidden'
1057///   ::= 'protected'
1058///
1059bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1060  switch (Lex.getKind()) {
1061  default:                  Res = GlobalValue::DefaultVisibility; return false;
1062  case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
1063  case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
1064  case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1065  }
1066  Lex.Lex();
1067  return false;
1068}
1069
1070/// ParseOptionalCallingConv
1071///   ::= /*empty*/
1072///   ::= 'ccc'
1073///   ::= 'fastcc'
1074///   ::= 'coldcc'
1075///   ::= 'x86_stdcallcc'
1076///   ::= 'x86_fastcallcc'
1077///   ::= 'arm_apcscc'
1078///   ::= 'arm_aapcscc'
1079///   ::= 'arm_aapcs_vfpcc'
1080///   ::= 'msp430_intrcc'
1081///   ::= 'cc' UINT
1082///
1083bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
1084  switch (Lex.getKind()) {
1085  default:                       CC = CallingConv::C; return false;
1086  case lltok::kw_ccc:            CC = CallingConv::C; break;
1087  case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1088  case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1089  case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1090  case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1091  case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1092  case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1093  case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1094  case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1095  case lltok::kw_cc: {
1096      unsigned ArbitraryCC;
1097      Lex.Lex();
1098      if (ParseUInt32(ArbitraryCC)) {
1099        return true;
1100      } else
1101        CC = static_cast<CallingConv::ID>(ArbitraryCC);
1102        return false;
1103    }
1104    break;
1105  }
1106
1107  Lex.Lex();
1108  return false;
1109}
1110
1111/// ParseOptionalCustomMetadata
1112///   ::= /* empty */
1113///   ::= !dbg !42 (',' !dbg !57)*
1114bool LLParser::ParseOptionalCustomMetadata() {
1115  if (Lex.getKind() != lltok::NamedOrCustomMD)
1116    return false;
1117
1118  while (1) {
1119    std::string Name = Lex.getStrVal();
1120    Lex.Lex();
1121
1122    if (Lex.getKind() != lltok::Metadata)
1123      return TokError("expected '!' here");
1124    Lex.Lex();
1125
1126    MDNode *Node;
1127    if (ParseMDNode(Node)) return true;
1128
1129    unsigned MDK = M->getMDKindID(Name.c_str());
1130    MDsOnInst.push_back(std::make_pair(MDK, Node));
1131
1132    // If this is the end of the list, we're done.
1133    if (!EatIfPresent(lltok::comma))
1134      return false;
1135
1136    // The next value must be a custom metadata id.
1137    if (Lex.getKind() != lltok::NamedOrCustomMD)
1138      return TokError("expected more custom metadata ids");
1139  }
1140}
1141
1142/// ParseOptionalAlignment
1143///   ::= /* empty */
1144///   ::= 'align' 4
1145bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1146  Alignment = 0;
1147  if (!EatIfPresent(lltok::kw_align))
1148    return false;
1149  LocTy AlignLoc = Lex.getLoc();
1150  if (ParseUInt32(Alignment)) return true;
1151  if (!isPowerOf2_32(Alignment))
1152    return Error(AlignLoc, "alignment is not a power of two");
1153  return false;
1154}
1155
1156/// ParseOptionalInfo
1157///   ::= OptionalInfo (',' OptionalInfo)+
1158bool LLParser::ParseOptionalInfo(unsigned &Alignment) {
1159
1160  // FIXME: Handle customized metadata info attached with an instruction.
1161  do {
1162      if (Lex.getKind() == lltok::NamedOrCustomMD) {
1163      if (ParseOptionalCustomMetadata()) return true;
1164    } else if (Lex.getKind() == lltok::kw_align) {
1165      if (ParseOptionalAlignment(Alignment)) return true;
1166    } else
1167      return true;
1168  } while (EatIfPresent(lltok::comma));
1169
1170  return false;
1171}
1172
1173
1174/// ParseIndexList
1175///    ::=  (',' uint32)+
1176bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices) {
1177  if (Lex.getKind() != lltok::comma)
1178    return TokError("expected ',' as start of index list");
1179
1180  while (EatIfPresent(lltok::comma)) {
1181    if (Lex.getKind() == lltok::NamedOrCustomMD)
1182      break;
1183    unsigned Idx;
1184    if (ParseUInt32(Idx)) return true;
1185    Indices.push_back(Idx);
1186  }
1187
1188  return false;
1189}
1190
1191//===----------------------------------------------------------------------===//
1192// Type Parsing.
1193//===----------------------------------------------------------------------===//
1194
1195/// ParseType - Parse and resolve a full type.
1196bool LLParser::ParseType(PATypeHolder &Result, bool AllowVoid) {
1197  LocTy TypeLoc = Lex.getLoc();
1198  if (ParseTypeRec(Result)) return true;
1199
1200  // Verify no unresolved uprefs.
1201  if (!UpRefs.empty())
1202    return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
1203
1204  if (!AllowVoid && Result.get()->isVoidTy())
1205    return Error(TypeLoc, "void type only allowed for function results");
1206
1207  return false;
1208}
1209
1210/// HandleUpRefs - Every time we finish a new layer of types, this function is
1211/// called.  It loops through the UpRefs vector, which is a list of the
1212/// currently active types.  For each type, if the up-reference is contained in
1213/// the newly completed type, we decrement the level count.  When the level
1214/// count reaches zero, the up-referenced type is the type that is passed in:
1215/// thus we can complete the cycle.
1216///
1217PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
1218  // If Ty isn't abstract, or if there are no up-references in it, then there is
1219  // nothing to resolve here.
1220  if (!ty->isAbstract() || UpRefs.empty()) return ty;
1221
1222  PATypeHolder Ty(ty);
1223#if 0
1224  dbgs() << "Type '" << Ty->getDescription()
1225         << "' newly formed.  Resolving upreferences.\n"
1226         << UpRefs.size() << " upreferences active!\n";
1227#endif
1228
1229  // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
1230  // to zero), we resolve them all together before we resolve them to Ty.  At
1231  // the end of the loop, if there is anything to resolve to Ty, it will be in
1232  // this variable.
1233  OpaqueType *TypeToResolve = 0;
1234
1235  for (unsigned i = 0; i != UpRefs.size(); ++i) {
1236    // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
1237    bool ContainsType =
1238      std::find(Ty->subtype_begin(), Ty->subtype_end(),
1239                UpRefs[i].LastContainedTy) != Ty->subtype_end();
1240
1241#if 0
1242    dbgs() << "  UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
1243           << UpRefs[i].LastContainedTy->getDescription() << ") = "
1244           << (ContainsType ? "true" : "false")
1245           << " level=" << UpRefs[i].NestingLevel << "\n";
1246#endif
1247    if (!ContainsType)
1248      continue;
1249
1250    // Decrement level of upreference
1251    unsigned Level = --UpRefs[i].NestingLevel;
1252    UpRefs[i].LastContainedTy = Ty;
1253
1254    // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
1255    if (Level != 0)
1256      continue;
1257
1258#if 0
1259    dbgs() << "  * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
1260#endif
1261    if (!TypeToResolve)
1262      TypeToResolve = UpRefs[i].UpRefTy;
1263    else
1264      UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
1265    UpRefs.erase(UpRefs.begin()+i);     // Remove from upreference list.
1266    --i;                                // Do not skip the next element.
1267  }
1268
1269  if (TypeToResolve)
1270    TypeToResolve->refineAbstractTypeTo(Ty);
1271
1272  return Ty;
1273}
1274
1275
1276/// ParseTypeRec - The recursive function used to process the internal
1277/// implementation details of types.
1278bool LLParser::ParseTypeRec(PATypeHolder &Result) {
1279  switch (Lex.getKind()) {
1280  default:
1281    return TokError("expected type");
1282  case lltok::Type:
1283    // TypeRec ::= 'float' | 'void' (etc)
1284    Result = Lex.getTyVal();
1285    Lex.Lex();
1286    break;
1287  case lltok::kw_opaque:
1288    // TypeRec ::= 'opaque'
1289    Result = OpaqueType::get(Context);
1290    Lex.Lex();
1291    break;
1292  case lltok::lbrace:
1293    // TypeRec ::= '{' ... '}'
1294    if (ParseStructType(Result, false))
1295      return true;
1296    break;
1297  case lltok::lsquare:
1298    // TypeRec ::= '[' ... ']'
1299    Lex.Lex(); // eat the lsquare.
1300    if (ParseArrayVectorType(Result, false))
1301      return true;
1302    break;
1303  case lltok::less: // Either vector or packed struct.
1304    // TypeRec ::= '<' ... '>'
1305    Lex.Lex();
1306    if (Lex.getKind() == lltok::lbrace) {
1307      if (ParseStructType(Result, true) ||
1308          ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1309        return true;
1310    } else if (ParseArrayVectorType(Result, true))
1311      return true;
1312    break;
1313  case lltok::LocalVar:
1314  case lltok::StringConstant:  // FIXME: REMOVE IN LLVM 3.0
1315    // TypeRec ::= %foo
1316    if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
1317      Result = T;
1318    } else {
1319      Result = OpaqueType::get(Context);
1320      ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
1321                                            std::make_pair(Result,
1322                                                           Lex.getLoc())));
1323      M->addTypeName(Lex.getStrVal(), Result.get());
1324    }
1325    Lex.Lex();
1326    break;
1327
1328  case lltok::LocalVarID:
1329    // TypeRec ::= %4
1330    if (Lex.getUIntVal() < NumberedTypes.size())
1331      Result = NumberedTypes[Lex.getUIntVal()];
1332    else {
1333      std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
1334        I = ForwardRefTypeIDs.find(Lex.getUIntVal());
1335      if (I != ForwardRefTypeIDs.end())
1336        Result = I->second.first;
1337      else {
1338        Result = OpaqueType::get(Context);
1339        ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
1340                                                std::make_pair(Result,
1341                                                               Lex.getLoc())));
1342      }
1343    }
1344    Lex.Lex();
1345    break;
1346  case lltok::backslash: {
1347    // TypeRec ::= '\' 4
1348    Lex.Lex();
1349    unsigned Val;
1350    if (ParseUInt32(Val)) return true;
1351    OpaqueType *OT = OpaqueType::get(Context); //Use temporary placeholder.
1352    UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
1353    Result = OT;
1354    break;
1355  }
1356  }
1357
1358  // Parse the type suffixes.
1359  while (1) {
1360    switch (Lex.getKind()) {
1361    // End of type.
1362    default: return false;
1363
1364    // TypeRec ::= TypeRec '*'
1365    case lltok::star:
1366      if (Result.get()->isLabelTy())
1367        return TokError("basic block pointers are invalid");
1368      if (Result.get()->isVoidTy())
1369        return TokError("pointers to void are invalid; use i8* instead");
1370      if (!PointerType::isValidElementType(Result.get()))
1371        return TokError("pointer to this type is invalid");
1372      Result = HandleUpRefs(PointerType::getUnqual(Result.get()));
1373      Lex.Lex();
1374      break;
1375
1376    // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1377    case lltok::kw_addrspace: {
1378      if (Result.get()->isLabelTy())
1379        return TokError("basic block pointers are invalid");
1380      if (Result.get()->isVoidTy())
1381        return TokError("pointers to void are invalid; use i8* instead");
1382      if (!PointerType::isValidElementType(Result.get()))
1383        return TokError("pointer to this type is invalid");
1384      unsigned AddrSpace;
1385      if (ParseOptionalAddrSpace(AddrSpace) ||
1386          ParseToken(lltok::star, "expected '*' in address space"))
1387        return true;
1388
1389      Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace));
1390      break;
1391    }
1392
1393    /// Types '(' ArgTypeListI ')' OptFuncAttrs
1394    case lltok::lparen:
1395      if (ParseFunctionType(Result))
1396        return true;
1397      break;
1398    }
1399  }
1400}
1401
1402/// ParseParameterList
1403///    ::= '(' ')'
1404///    ::= '(' Arg (',' Arg)* ')'
1405///  Arg
1406///    ::= Type OptionalAttributes Value OptionalAttributes
1407bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1408                                  PerFunctionState &PFS) {
1409  if (ParseToken(lltok::lparen, "expected '(' in call"))
1410    return true;
1411
1412  while (Lex.getKind() != lltok::rparen) {
1413    // If this isn't the first argument, we need a comma.
1414    if (!ArgList.empty() &&
1415        ParseToken(lltok::comma, "expected ',' in argument list"))
1416      return true;
1417
1418    // Parse the argument.
1419    LocTy ArgLoc;
1420    PATypeHolder ArgTy(Type::getVoidTy(Context));
1421    unsigned ArgAttrs1 = Attribute::None;
1422    unsigned ArgAttrs2 = Attribute::None;
1423    Value *V;
1424    if (ParseType(ArgTy, ArgLoc))
1425      return true;
1426
1427    if (Lex.getKind() == lltok::Metadata) {
1428      if (ParseInlineMetadata(V, PFS))
1429        return true;
1430    } else {
1431      if (ParseOptionalAttrs(ArgAttrs1, 0) ||
1432          ParseValue(ArgTy, V, PFS) ||
1433          // FIXME: Should not allow attributes after the argument, remove this
1434          // in LLVM 3.0.
1435          ParseOptionalAttrs(ArgAttrs2, 3))
1436        return true;
1437    }
1438    ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1439  }
1440
1441  Lex.Lex();  // Lex the ')'.
1442  return false;
1443}
1444
1445
1446
1447/// ParseArgumentList - Parse the argument list for a function type or function
1448/// prototype.  If 'inType' is true then we are parsing a FunctionType.
1449///   ::= '(' ArgTypeListI ')'
1450/// ArgTypeListI
1451///   ::= /*empty*/
1452///   ::= '...'
1453///   ::= ArgTypeList ',' '...'
1454///   ::= ArgType (',' ArgType)*
1455///
1456bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
1457                                 bool &isVarArg, bool inType) {
1458  isVarArg = false;
1459  assert(Lex.getKind() == lltok::lparen);
1460  Lex.Lex(); // eat the (.
1461
1462  if (Lex.getKind() == lltok::rparen) {
1463    // empty
1464  } else if (Lex.getKind() == lltok::dotdotdot) {
1465    isVarArg = true;
1466    Lex.Lex();
1467  } else {
1468    LocTy TypeLoc = Lex.getLoc();
1469    PATypeHolder ArgTy(Type::getVoidTy(Context));
1470    unsigned Attrs;
1471    std::string Name;
1472
1473    // If we're parsing a type, use ParseTypeRec, because we allow recursive
1474    // types (such as a function returning a pointer to itself).  If parsing a
1475    // function prototype, we require fully resolved types.
1476    if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1477        ParseOptionalAttrs(Attrs, 0)) return true;
1478
1479    if (ArgTy->isVoidTy())
1480      return Error(TypeLoc, "argument can not have void type");
1481
1482    if (Lex.getKind() == lltok::LocalVar ||
1483        Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1484      Name = Lex.getStrVal();
1485      Lex.Lex();
1486    }
1487
1488    if (!FunctionType::isValidArgumentType(ArgTy))
1489      return Error(TypeLoc, "invalid type for function argument");
1490
1491    ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1492
1493    while (EatIfPresent(lltok::comma)) {
1494      // Handle ... at end of arg list.
1495      if (EatIfPresent(lltok::dotdotdot)) {
1496        isVarArg = true;
1497        break;
1498      }
1499
1500      // Otherwise must be an argument type.
1501      TypeLoc = Lex.getLoc();
1502      if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1503          ParseOptionalAttrs(Attrs, 0)) return true;
1504
1505      if (ArgTy->isVoidTy())
1506        return Error(TypeLoc, "argument can not have void type");
1507
1508      if (Lex.getKind() == lltok::LocalVar ||
1509          Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1510        Name = Lex.getStrVal();
1511        Lex.Lex();
1512      } else {
1513        Name = "";
1514      }
1515
1516      if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1517        return Error(TypeLoc, "invalid type for function argument");
1518
1519      ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1520    }
1521  }
1522
1523  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1524}
1525
1526/// ParseFunctionType
1527///  ::= Type ArgumentList OptionalAttrs
1528bool LLParser::ParseFunctionType(PATypeHolder &Result) {
1529  assert(Lex.getKind() == lltok::lparen);
1530
1531  if (!FunctionType::isValidReturnType(Result))
1532    return TokError("invalid function return type");
1533
1534  std::vector<ArgInfo> ArgList;
1535  bool isVarArg;
1536  unsigned Attrs;
1537  if (ParseArgumentList(ArgList, isVarArg, true) ||
1538      // FIXME: Allow, but ignore attributes on function types!
1539      // FIXME: Remove in LLVM 3.0
1540      ParseOptionalAttrs(Attrs, 2))
1541    return true;
1542
1543  // Reject names on the arguments lists.
1544  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1545    if (!ArgList[i].Name.empty())
1546      return Error(ArgList[i].Loc, "argument name invalid in function type");
1547    if (!ArgList[i].Attrs != 0) {
1548      // Allow but ignore attributes on function types; this permits
1549      // auto-upgrade.
1550      // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1551    }
1552  }
1553
1554  std::vector<const Type*> ArgListTy;
1555  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1556    ArgListTy.push_back(ArgList[i].Type);
1557
1558  Result = HandleUpRefs(FunctionType::get(Result.get(),
1559                                                ArgListTy, isVarArg));
1560  return false;
1561}
1562
1563/// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1564///   TypeRec
1565///     ::= '{' '}'
1566///     ::= '{' TypeRec (',' TypeRec)* '}'
1567///     ::= '<' '{' '}' '>'
1568///     ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1569bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
1570  assert(Lex.getKind() == lltok::lbrace);
1571  Lex.Lex(); // Consume the '{'
1572
1573  if (EatIfPresent(lltok::rbrace)) {
1574    Result = StructType::get(Context, Packed);
1575    return false;
1576  }
1577
1578  std::vector<PATypeHolder> ParamsList;
1579  LocTy EltTyLoc = Lex.getLoc();
1580  if (ParseTypeRec(Result)) return true;
1581  ParamsList.push_back(Result);
1582
1583  if (Result->isVoidTy())
1584    return Error(EltTyLoc, "struct element can not have void type");
1585  if (!StructType::isValidElementType(Result))
1586    return Error(EltTyLoc, "invalid element type for struct");
1587
1588  while (EatIfPresent(lltok::comma)) {
1589    EltTyLoc = Lex.getLoc();
1590    if (ParseTypeRec(Result)) return true;
1591
1592    if (Result->isVoidTy())
1593      return Error(EltTyLoc, "struct element can not have void type");
1594    if (!StructType::isValidElementType(Result))
1595      return Error(EltTyLoc, "invalid element type for struct");
1596
1597    ParamsList.push_back(Result);
1598  }
1599
1600  if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
1601    return true;
1602
1603  std::vector<const Type*> ParamsListTy;
1604  for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1605    ParamsListTy.push_back(ParamsList[i].get());
1606  Result = HandleUpRefs(StructType::get(Context, ParamsListTy, Packed));
1607  return false;
1608}
1609
1610/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1611/// token has already been consumed.
1612///   TypeRec
1613///     ::= '[' APSINTVAL 'x' Types ']'
1614///     ::= '<' APSINTVAL 'x' Types '>'
1615bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
1616  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1617      Lex.getAPSIntVal().getBitWidth() > 64)
1618    return TokError("expected number in address space");
1619
1620  LocTy SizeLoc = Lex.getLoc();
1621  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1622  Lex.Lex();
1623
1624  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1625      return true;
1626
1627  LocTy TypeLoc = Lex.getLoc();
1628  PATypeHolder EltTy(Type::getVoidTy(Context));
1629  if (ParseTypeRec(EltTy)) return true;
1630
1631  if (EltTy->isVoidTy())
1632    return Error(TypeLoc, "array and vector element type cannot be void");
1633
1634  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1635                 "expected end of sequential type"))
1636    return true;
1637
1638  if (isVector) {
1639    if (Size == 0)
1640      return Error(SizeLoc, "zero element vector is illegal");
1641    if ((unsigned)Size != Size)
1642      return Error(SizeLoc, "size too large for vector");
1643    if (!VectorType::isValidElementType(EltTy))
1644      return Error(TypeLoc, "vector element type must be fp or integer");
1645    Result = VectorType::get(EltTy, unsigned(Size));
1646  } else {
1647    if (!ArrayType::isValidElementType(EltTy))
1648      return Error(TypeLoc, "invalid array element type");
1649    Result = HandleUpRefs(ArrayType::get(EltTy, Size));
1650  }
1651  return false;
1652}
1653
1654//===----------------------------------------------------------------------===//
1655// Function Semantic Analysis.
1656//===----------------------------------------------------------------------===//
1657
1658LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
1659                                             int functionNumber)
1660  : P(p), F(f), FunctionNumber(functionNumber) {
1661
1662  // Insert unnamed arguments into the NumberedVals list.
1663  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1664       AI != E; ++AI)
1665    if (!AI->hasName())
1666      NumberedVals.push_back(AI);
1667}
1668
1669LLParser::PerFunctionState::~PerFunctionState() {
1670  // If there were any forward referenced non-basicblock values, delete them.
1671  for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1672       I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1673    if (!isa<BasicBlock>(I->second.first)) {
1674      I->second.first->replaceAllUsesWith(
1675                           UndefValue::get(I->second.first->getType()));
1676      delete I->second.first;
1677      I->second.first = 0;
1678    }
1679
1680  for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1681       I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1682    if (!isa<BasicBlock>(I->second.first)) {
1683      I->second.first->replaceAllUsesWith(
1684                           UndefValue::get(I->second.first->getType()));
1685      delete I->second.first;
1686      I->second.first = 0;
1687    }
1688}
1689
1690bool LLParser::PerFunctionState::FinishFunction() {
1691  // Check to see if someone took the address of labels in this block.
1692  if (!P.ForwardRefBlockAddresses.empty()) {
1693    ValID FunctionID;
1694    if (!F.getName().empty()) {
1695      FunctionID.Kind = ValID::t_GlobalName;
1696      FunctionID.StrVal = F.getName();
1697    } else {
1698      FunctionID.Kind = ValID::t_GlobalID;
1699      FunctionID.UIntVal = FunctionNumber;
1700    }
1701
1702    std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
1703      FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
1704    if (FRBAI != P.ForwardRefBlockAddresses.end()) {
1705      // Resolve all these references.
1706      if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
1707        return true;
1708
1709      P.ForwardRefBlockAddresses.erase(FRBAI);
1710    }
1711  }
1712
1713  if (!ForwardRefVals.empty())
1714    return P.Error(ForwardRefVals.begin()->second.second,
1715                   "use of undefined value '%" + ForwardRefVals.begin()->first +
1716                   "'");
1717  if (!ForwardRefValIDs.empty())
1718    return P.Error(ForwardRefValIDs.begin()->second.second,
1719                   "use of undefined value '%" +
1720                   utostr(ForwardRefValIDs.begin()->first) + "'");
1721  return false;
1722}
1723
1724
1725/// GetVal - Get a value with the specified name or ID, creating a
1726/// forward reference record if needed.  This can return null if the value
1727/// exists but does not have the right type.
1728Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1729                                          const Type *Ty, LocTy Loc) {
1730  // Look this name up in the normal function symbol table.
1731  Value *Val = F.getValueSymbolTable().lookup(Name);
1732
1733  // If this is a forward reference for the value, see if we already created a
1734  // forward ref record.
1735  if (Val == 0) {
1736    std::map<std::string, std::pair<Value*, LocTy> >::iterator
1737      I = ForwardRefVals.find(Name);
1738    if (I != ForwardRefVals.end())
1739      Val = I->second.first;
1740  }
1741
1742  // If we have the value in the symbol table or fwd-ref table, return it.
1743  if (Val) {
1744    if (Val->getType() == Ty) return Val;
1745    if (Ty->isLabelTy())
1746      P.Error(Loc, "'%" + Name + "' is not a basic block");
1747    else
1748      P.Error(Loc, "'%" + Name + "' defined with type '" +
1749              Val->getType()->getDescription() + "'");
1750    return 0;
1751  }
1752
1753  // Don't make placeholders with invalid type.
1754  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) &&
1755      Ty != Type::getLabelTy(F.getContext())) {
1756    P.Error(Loc, "invalid use of a non-first-class type");
1757    return 0;
1758  }
1759
1760  // Otherwise, create a new forward reference for this value and remember it.
1761  Value *FwdVal;
1762  if (Ty->isLabelTy())
1763    FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
1764  else
1765    FwdVal = new Argument(Ty, Name);
1766
1767  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1768  return FwdVal;
1769}
1770
1771Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
1772                                          LocTy Loc) {
1773  // Look this name up in the normal function symbol table.
1774  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1775
1776  // If this is a forward reference for the value, see if we already created a
1777  // forward ref record.
1778  if (Val == 0) {
1779    std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1780      I = ForwardRefValIDs.find(ID);
1781    if (I != ForwardRefValIDs.end())
1782      Val = I->second.first;
1783  }
1784
1785  // If we have the value in the symbol table or fwd-ref table, return it.
1786  if (Val) {
1787    if (Val->getType() == Ty) return Val;
1788    if (Ty->isLabelTy())
1789      P.Error(Loc, "'%" + utostr(ID) + "' is not a basic block");
1790    else
1791      P.Error(Loc, "'%" + utostr(ID) + "' defined with type '" +
1792              Val->getType()->getDescription() + "'");
1793    return 0;
1794  }
1795
1796  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) &&
1797      Ty != Type::getLabelTy(F.getContext())) {
1798    P.Error(Loc, "invalid use of a non-first-class type");
1799    return 0;
1800  }
1801
1802  // Otherwise, create a new forward reference for this value and remember it.
1803  Value *FwdVal;
1804  if (Ty->isLabelTy())
1805    FwdVal = BasicBlock::Create(F.getContext(), "", &F);
1806  else
1807    FwdVal = new Argument(Ty);
1808
1809  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1810  return FwdVal;
1811}
1812
1813/// SetInstName - After an instruction is parsed and inserted into its
1814/// basic block, this installs its name.
1815bool LLParser::PerFunctionState::SetInstName(int NameID,
1816                                             const std::string &NameStr,
1817                                             LocTy NameLoc, Instruction *Inst) {
1818  // If this instruction has void type, it cannot have a name or ID specified.
1819  if (Inst->getType()->isVoidTy()) {
1820    if (NameID != -1 || !NameStr.empty())
1821      return P.Error(NameLoc, "instructions returning void cannot have a name");
1822    return false;
1823  }
1824
1825  // If this was a numbered instruction, verify that the instruction is the
1826  // expected value and resolve any forward references.
1827  if (NameStr.empty()) {
1828    // If neither a name nor an ID was specified, just use the next ID.
1829    if (NameID == -1)
1830      NameID = NumberedVals.size();
1831
1832    if (unsigned(NameID) != NumberedVals.size())
1833      return P.Error(NameLoc, "instruction expected to be numbered '%" +
1834                     utostr(NumberedVals.size()) + "'");
1835
1836    std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1837      ForwardRefValIDs.find(NameID);
1838    if (FI != ForwardRefValIDs.end()) {
1839      if (FI->second.first->getType() != Inst->getType())
1840        return P.Error(NameLoc, "instruction forward referenced with type '" +
1841                       FI->second.first->getType()->getDescription() + "'");
1842      FI->second.first->replaceAllUsesWith(Inst);
1843      delete FI->second.first;
1844      ForwardRefValIDs.erase(FI);
1845    }
1846
1847    NumberedVals.push_back(Inst);
1848    return false;
1849  }
1850
1851  // Otherwise, the instruction had a name.  Resolve forward refs and set it.
1852  std::map<std::string, std::pair<Value*, LocTy> >::iterator
1853    FI = ForwardRefVals.find(NameStr);
1854  if (FI != ForwardRefVals.end()) {
1855    if (FI->second.first->getType() != Inst->getType())
1856      return P.Error(NameLoc, "instruction forward referenced with type '" +
1857                     FI->second.first->getType()->getDescription() + "'");
1858    FI->second.first->replaceAllUsesWith(Inst);
1859    delete FI->second.first;
1860    ForwardRefVals.erase(FI);
1861  }
1862
1863  // Set the name on the instruction.
1864  Inst->setName(NameStr);
1865
1866  if (Inst->getNameStr() != NameStr)
1867    return P.Error(NameLoc, "multiple definition of local value named '" +
1868                   NameStr + "'");
1869  return false;
1870}
1871
1872/// GetBB - Get a basic block with the specified name or ID, creating a
1873/// forward reference record if needed.
1874BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1875                                              LocTy Loc) {
1876  return cast_or_null<BasicBlock>(GetVal(Name,
1877                                        Type::getLabelTy(F.getContext()), Loc));
1878}
1879
1880BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1881  return cast_or_null<BasicBlock>(GetVal(ID,
1882                                        Type::getLabelTy(F.getContext()), Loc));
1883}
1884
1885/// DefineBB - Define the specified basic block, which is either named or
1886/// unnamed.  If there is an error, this returns null otherwise it returns
1887/// the block being defined.
1888BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1889                                                 LocTy Loc) {
1890  BasicBlock *BB;
1891  if (Name.empty())
1892    BB = GetBB(NumberedVals.size(), Loc);
1893  else
1894    BB = GetBB(Name, Loc);
1895  if (BB == 0) return 0; // Already diagnosed error.
1896
1897  // Move the block to the end of the function.  Forward ref'd blocks are
1898  // inserted wherever they happen to be referenced.
1899  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1900
1901  // Remove the block from forward ref sets.
1902  if (Name.empty()) {
1903    ForwardRefValIDs.erase(NumberedVals.size());
1904    NumberedVals.push_back(BB);
1905  } else {
1906    // BB forward references are already in the function symbol table.
1907    ForwardRefVals.erase(Name);
1908  }
1909
1910  return BB;
1911}
1912
1913//===----------------------------------------------------------------------===//
1914// Constants.
1915//===----------------------------------------------------------------------===//
1916
1917/// ParseValID - Parse an abstract value that doesn't necessarily have a
1918/// type implied.  For example, if we parse "4" we don't know what integer type
1919/// it has.  The value will later be combined with its type and checked for
1920/// sanity.
1921bool LLParser::ParseValID(ValID &ID) {
1922  ID.Loc = Lex.getLoc();
1923  switch (Lex.getKind()) {
1924  default: return TokError("expected value token");
1925  case lltok::GlobalID:  // @42
1926    ID.UIntVal = Lex.getUIntVal();
1927    ID.Kind = ValID::t_GlobalID;
1928    break;
1929  case lltok::GlobalVar:  // @foo
1930    ID.StrVal = Lex.getStrVal();
1931    ID.Kind = ValID::t_GlobalName;
1932    break;
1933  case lltok::LocalVarID:  // %42
1934    ID.UIntVal = Lex.getUIntVal();
1935    ID.Kind = ValID::t_LocalID;
1936    break;
1937  case lltok::LocalVar:  // %foo
1938  case lltok::StringConstant:  // "foo" - FIXME: REMOVE IN LLVM 3.0
1939    ID.StrVal = Lex.getStrVal();
1940    ID.Kind = ValID::t_LocalName;
1941    break;
1942  case lltok::Metadata: {  // !{...} MDNode, !"foo" MDString
1943    ID.Kind = ValID::t_Metadata;
1944    Lex.Lex();
1945
1946    // FIXME: This doesn't belong here.
1947    if (Lex.getKind() == lltok::lbrace) {
1948      SmallVector<Value*, 16> Elts;
1949      if (ParseMDNodeVector(Elts) ||
1950          ParseToken(lltok::rbrace, "expected end of metadata node"))
1951        return true;
1952
1953      ID.MetadataVal = MDNode::get(Context, Elts.data(), Elts.size());
1954      return false;
1955    }
1956
1957    // Standalone metadata reference
1958    // !{ ..., !42, ... }
1959    // FIXME: Split MetadataVal into one for MDNode and one for MDString.
1960    if (!ParseMDNode((MDNode*&)ID.MetadataVal))
1961      return false;
1962
1963    // MDString:
1964    //   ::= '!' STRINGCONSTANT
1965    if (ParseMDString((MDString*&)ID.MetadataVal)) return true;
1966    ID.Kind = ValID::t_Metadata;
1967    return false;
1968  }
1969  case lltok::APSInt:
1970    ID.APSIntVal = Lex.getAPSIntVal();
1971    ID.Kind = ValID::t_APSInt;
1972    break;
1973  case lltok::APFloat:
1974    ID.APFloatVal = Lex.getAPFloatVal();
1975    ID.Kind = ValID::t_APFloat;
1976    break;
1977  case lltok::kw_true:
1978    ID.ConstantVal = ConstantInt::getTrue(Context);
1979    ID.Kind = ValID::t_Constant;
1980    break;
1981  case lltok::kw_false:
1982    ID.ConstantVal = ConstantInt::getFalse(Context);
1983    ID.Kind = ValID::t_Constant;
1984    break;
1985  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
1986  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
1987  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
1988
1989  case lltok::lbrace: {
1990    // ValID ::= '{' ConstVector '}'
1991    Lex.Lex();
1992    SmallVector<Constant*, 16> Elts;
1993    if (ParseGlobalValueVector(Elts) ||
1994        ParseToken(lltok::rbrace, "expected end of struct constant"))
1995      return true;
1996
1997    ID.ConstantVal = ConstantStruct::get(Context, Elts.data(),
1998                                         Elts.size(), false);
1999    ID.Kind = ValID::t_Constant;
2000    return false;
2001  }
2002  case lltok::less: {
2003    // ValID ::= '<' ConstVector '>'         --> Vector.
2004    // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2005    Lex.Lex();
2006    bool isPackedStruct = EatIfPresent(lltok::lbrace);
2007
2008    SmallVector<Constant*, 16> Elts;
2009    LocTy FirstEltLoc = Lex.getLoc();
2010    if (ParseGlobalValueVector(Elts) ||
2011        (isPackedStruct &&
2012         ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2013        ParseToken(lltok::greater, "expected end of constant"))
2014      return true;
2015
2016    if (isPackedStruct) {
2017      ID.ConstantVal =
2018        ConstantStruct::get(Context, Elts.data(), Elts.size(), true);
2019      ID.Kind = ValID::t_Constant;
2020      return false;
2021    }
2022
2023    if (Elts.empty())
2024      return Error(ID.Loc, "constant vector must not be empty");
2025
2026    if (!Elts[0]->getType()->isInteger() &&
2027        !Elts[0]->getType()->isFloatingPoint())
2028      return Error(FirstEltLoc,
2029                   "vector elements must have integer or floating point type");
2030
2031    // Verify that all the vector elements have the same type.
2032    for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2033      if (Elts[i]->getType() != Elts[0]->getType())
2034        return Error(FirstEltLoc,
2035                     "vector element #" + utostr(i) +
2036                    " is not of type '" + Elts[0]->getType()->getDescription());
2037
2038    ID.ConstantVal = ConstantVector::get(Elts.data(), Elts.size());
2039    ID.Kind = ValID::t_Constant;
2040    return false;
2041  }
2042  case lltok::lsquare: {   // Array Constant
2043    Lex.Lex();
2044    SmallVector<Constant*, 16> Elts;
2045    LocTy FirstEltLoc = Lex.getLoc();
2046    if (ParseGlobalValueVector(Elts) ||
2047        ParseToken(lltok::rsquare, "expected end of array constant"))
2048      return true;
2049
2050    // Handle empty element.
2051    if (Elts.empty()) {
2052      // Use undef instead of an array because it's inconvenient to determine
2053      // the element type at this point, there being no elements to examine.
2054      ID.Kind = ValID::t_EmptyArray;
2055      return false;
2056    }
2057
2058    if (!Elts[0]->getType()->isFirstClassType())
2059      return Error(FirstEltLoc, "invalid array element type: " +
2060                   Elts[0]->getType()->getDescription());
2061
2062    ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2063
2064    // Verify all elements are correct type!
2065    for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2066      if (Elts[i]->getType() != Elts[0]->getType())
2067        return Error(FirstEltLoc,
2068                     "array element #" + utostr(i) +
2069                     " is not of type '" +Elts[0]->getType()->getDescription());
2070    }
2071
2072    ID.ConstantVal = ConstantArray::get(ATy, Elts.data(), Elts.size());
2073    ID.Kind = ValID::t_Constant;
2074    return false;
2075  }
2076  case lltok::kw_c:  // c "foo"
2077    Lex.Lex();
2078    ID.ConstantVal = ConstantArray::get(Context, Lex.getStrVal(), false);
2079    if (ParseToken(lltok::StringConstant, "expected string")) return true;
2080    ID.Kind = ValID::t_Constant;
2081    return false;
2082
2083  case lltok::kw_asm: {
2084    // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT
2085    bool HasSideEffect, AlignStack;
2086    Lex.Lex();
2087    if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2088        ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2089        ParseStringConstant(ID.StrVal) ||
2090        ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2091        ParseToken(lltok::StringConstant, "expected constraint string"))
2092      return true;
2093    ID.StrVal2 = Lex.getStrVal();
2094    ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1);
2095    ID.Kind = ValID::t_InlineAsm;
2096    return false;
2097  }
2098
2099  case lltok::kw_blockaddress: {
2100    // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2101    Lex.Lex();
2102
2103    ValID Fn, Label;
2104    LocTy FnLoc, LabelLoc;
2105
2106    if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2107        ParseValID(Fn) ||
2108        ParseToken(lltok::comma, "expected comma in block address expression")||
2109        ParseValID(Label) ||
2110        ParseToken(lltok::rparen, "expected ')' in block address expression"))
2111      return true;
2112
2113    if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2114      return Error(Fn.Loc, "expected function name in blockaddress");
2115    if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2116      return Error(Label.Loc, "expected basic block name in blockaddress");
2117
2118    // Make a global variable as a placeholder for this reference.
2119    GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
2120                                           false, GlobalValue::InternalLinkage,
2121                                                0, "");
2122    ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
2123    ID.ConstantVal = FwdRef;
2124    ID.Kind = ValID::t_Constant;
2125    return false;
2126  }
2127
2128  case lltok::kw_trunc:
2129  case lltok::kw_zext:
2130  case lltok::kw_sext:
2131  case lltok::kw_fptrunc:
2132  case lltok::kw_fpext:
2133  case lltok::kw_bitcast:
2134  case lltok::kw_uitofp:
2135  case lltok::kw_sitofp:
2136  case lltok::kw_fptoui:
2137  case lltok::kw_fptosi:
2138  case lltok::kw_inttoptr:
2139  case lltok::kw_ptrtoint: {
2140    unsigned Opc = Lex.getUIntVal();
2141    PATypeHolder DestTy(Type::getVoidTy(Context));
2142    Constant *SrcVal;
2143    Lex.Lex();
2144    if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2145        ParseGlobalTypeAndValue(SrcVal) ||
2146        ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2147        ParseType(DestTy) ||
2148        ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2149      return true;
2150    if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2151      return Error(ID.Loc, "invalid cast opcode for cast from '" +
2152                   SrcVal->getType()->getDescription() + "' to '" +
2153                   DestTy->getDescription() + "'");
2154    ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2155                                                 SrcVal, DestTy);
2156    ID.Kind = ValID::t_Constant;
2157    return false;
2158  }
2159  case lltok::kw_extractvalue: {
2160    Lex.Lex();
2161    Constant *Val;
2162    SmallVector<unsigned, 4> Indices;
2163    if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2164        ParseGlobalTypeAndValue(Val) ||
2165        ParseIndexList(Indices) ||
2166        ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2167      return true;
2168    if (Lex.getKind() == lltok::NamedOrCustomMD)
2169      if (ParseOptionalCustomMetadata()) return true;
2170
2171    if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
2172      return Error(ID.Loc, "extractvalue operand must be array or struct");
2173    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
2174                                          Indices.end()))
2175      return Error(ID.Loc, "invalid indices for extractvalue");
2176    ID.ConstantVal =
2177      ConstantExpr::getExtractValue(Val, Indices.data(), Indices.size());
2178    ID.Kind = ValID::t_Constant;
2179    return false;
2180  }
2181  case lltok::kw_insertvalue: {
2182    Lex.Lex();
2183    Constant *Val0, *Val1;
2184    SmallVector<unsigned, 4> Indices;
2185    if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2186        ParseGlobalTypeAndValue(Val0) ||
2187        ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2188        ParseGlobalTypeAndValue(Val1) ||
2189        ParseIndexList(Indices) ||
2190        ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2191      return true;
2192    if (Lex.getKind() == lltok::NamedOrCustomMD)
2193      if (ParseOptionalCustomMetadata()) return true;
2194    if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
2195      return Error(ID.Loc, "extractvalue operand must be array or struct");
2196    if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
2197                                          Indices.end()))
2198      return Error(ID.Loc, "invalid indices for insertvalue");
2199    ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1,
2200                       Indices.data(), Indices.size());
2201    ID.Kind = ValID::t_Constant;
2202    return false;
2203  }
2204  case lltok::kw_icmp:
2205  case lltok::kw_fcmp: {
2206    unsigned PredVal, Opc = Lex.getUIntVal();
2207    Constant *Val0, *Val1;
2208    Lex.Lex();
2209    if (ParseCmpPredicate(PredVal, Opc) ||
2210        ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2211        ParseGlobalTypeAndValue(Val0) ||
2212        ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2213        ParseGlobalTypeAndValue(Val1) ||
2214        ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2215      return true;
2216
2217    if (Val0->getType() != Val1->getType())
2218      return Error(ID.Loc, "compare operands must have the same type");
2219
2220    CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2221
2222    if (Opc == Instruction::FCmp) {
2223      if (!Val0->getType()->isFPOrFPVector())
2224        return Error(ID.Loc, "fcmp requires floating point operands");
2225      ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2226    } else {
2227      assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2228      if (!Val0->getType()->isIntOrIntVector() &&
2229          !isa<PointerType>(Val0->getType()))
2230        return Error(ID.Loc, "icmp requires pointer or integer operands");
2231      ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2232    }
2233    ID.Kind = ValID::t_Constant;
2234    return false;
2235  }
2236
2237  // Binary Operators.
2238  case lltok::kw_add:
2239  case lltok::kw_fadd:
2240  case lltok::kw_sub:
2241  case lltok::kw_fsub:
2242  case lltok::kw_mul:
2243  case lltok::kw_fmul:
2244  case lltok::kw_udiv:
2245  case lltok::kw_sdiv:
2246  case lltok::kw_fdiv:
2247  case lltok::kw_urem:
2248  case lltok::kw_srem:
2249  case lltok::kw_frem: {
2250    bool NUW = false;
2251    bool NSW = false;
2252    bool Exact = false;
2253    unsigned Opc = Lex.getUIntVal();
2254    Constant *Val0, *Val1;
2255    Lex.Lex();
2256    LocTy ModifierLoc = Lex.getLoc();
2257    if (Opc == Instruction::Add ||
2258        Opc == Instruction::Sub ||
2259        Opc == Instruction::Mul) {
2260      if (EatIfPresent(lltok::kw_nuw))
2261        NUW = true;
2262      if (EatIfPresent(lltok::kw_nsw)) {
2263        NSW = true;
2264        if (EatIfPresent(lltok::kw_nuw))
2265          NUW = true;
2266      }
2267    } else if (Opc == Instruction::SDiv) {
2268      if (EatIfPresent(lltok::kw_exact))
2269        Exact = true;
2270    }
2271    if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2272        ParseGlobalTypeAndValue(Val0) ||
2273        ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2274        ParseGlobalTypeAndValue(Val1) ||
2275        ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2276      return true;
2277    if (Val0->getType() != Val1->getType())
2278      return Error(ID.Loc, "operands of constexpr must have same type");
2279    if (!Val0->getType()->isIntOrIntVector()) {
2280      if (NUW)
2281        return Error(ModifierLoc, "nuw only applies to integer operations");
2282      if (NSW)
2283        return Error(ModifierLoc, "nsw only applies to integer operations");
2284    }
2285    // API compatibility: Accept either integer or floating-point types with
2286    // add, sub, and mul.
2287    if (!Val0->getType()->isIntOrIntVector() &&
2288        !Val0->getType()->isFPOrFPVector())
2289      return Error(ID.Loc,"constexpr requires integer, fp, or vector operands");
2290    unsigned Flags = 0;
2291    if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2292    if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
2293    if (Exact) Flags |= SDivOperator::IsExact;
2294    Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2295    ID.ConstantVal = C;
2296    ID.Kind = ValID::t_Constant;
2297    return false;
2298  }
2299
2300  // Logical Operations
2301  case lltok::kw_shl:
2302  case lltok::kw_lshr:
2303  case lltok::kw_ashr:
2304  case lltok::kw_and:
2305  case lltok::kw_or:
2306  case lltok::kw_xor: {
2307    unsigned Opc = Lex.getUIntVal();
2308    Constant *Val0, *Val1;
2309    Lex.Lex();
2310    if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2311        ParseGlobalTypeAndValue(Val0) ||
2312        ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2313        ParseGlobalTypeAndValue(Val1) ||
2314        ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2315      return true;
2316    if (Val0->getType() != Val1->getType())
2317      return Error(ID.Loc, "operands of constexpr must have same type");
2318    if (!Val0->getType()->isIntOrIntVector())
2319      return Error(ID.Loc,
2320                   "constexpr requires integer or integer vector operands");
2321    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2322    ID.Kind = ValID::t_Constant;
2323    return false;
2324  }
2325
2326  case lltok::kw_getelementptr:
2327  case lltok::kw_shufflevector:
2328  case lltok::kw_insertelement:
2329  case lltok::kw_extractelement:
2330  case lltok::kw_select: {
2331    unsigned Opc = Lex.getUIntVal();
2332    SmallVector<Constant*, 16> Elts;
2333    bool InBounds = false;
2334    Lex.Lex();
2335    if (Opc == Instruction::GetElementPtr)
2336      InBounds = EatIfPresent(lltok::kw_inbounds);
2337    if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2338        ParseGlobalValueVector(Elts) ||
2339        ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2340      return true;
2341
2342    if (Opc == Instruction::GetElementPtr) {
2343      if (Elts.size() == 0 || !isa<PointerType>(Elts[0]->getType()))
2344        return Error(ID.Loc, "getelementptr requires pointer operand");
2345
2346      if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
2347                                             (Value**)(Elts.data() + 1),
2348                                             Elts.size() - 1))
2349        return Error(ID.Loc, "invalid indices for getelementptr");
2350      ID.ConstantVal = InBounds ?
2351        ConstantExpr::getInBoundsGetElementPtr(Elts[0],
2352                                               Elts.data() + 1,
2353                                               Elts.size() - 1) :
2354        ConstantExpr::getGetElementPtr(Elts[0],
2355                                       Elts.data() + 1, Elts.size() - 1);
2356    } else if (Opc == Instruction::Select) {
2357      if (Elts.size() != 3)
2358        return Error(ID.Loc, "expected three operands to select");
2359      if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2360                                                              Elts[2]))
2361        return Error(ID.Loc, Reason);
2362      ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2363    } else if (Opc == Instruction::ShuffleVector) {
2364      if (Elts.size() != 3)
2365        return Error(ID.Loc, "expected three operands to shufflevector");
2366      if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2367        return Error(ID.Loc, "invalid operands to shufflevector");
2368      ID.ConstantVal =
2369                 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2370    } else if (Opc == Instruction::ExtractElement) {
2371      if (Elts.size() != 2)
2372        return Error(ID.Loc, "expected two operands to extractelement");
2373      if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2374        return Error(ID.Loc, "invalid extractelement operands");
2375      ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2376    } else {
2377      assert(Opc == Instruction::InsertElement && "Unknown opcode");
2378      if (Elts.size() != 3)
2379      return Error(ID.Loc, "expected three operands to insertelement");
2380      if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2381        return Error(ID.Loc, "invalid insertelement operands");
2382      ID.ConstantVal =
2383                 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2384    }
2385
2386    ID.Kind = ValID::t_Constant;
2387    return false;
2388  }
2389  }
2390
2391  Lex.Lex();
2392  return false;
2393}
2394
2395/// ParseGlobalValue - Parse a global value with the specified type.
2396bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&V) {
2397  V = 0;
2398  ValID ID;
2399  return ParseValID(ID) ||
2400         ConvertGlobalValIDToValue(Ty, ID, V);
2401}
2402
2403/// ConvertGlobalValIDToValue - Apply a type to a ValID to get a fully resolved
2404/// constant.
2405bool LLParser::ConvertGlobalValIDToValue(const Type *Ty, ValID &ID,
2406                                         Constant *&V) {
2407  if (isa<FunctionType>(Ty))
2408    return Error(ID.Loc, "functions are not values, refer to them as pointers");
2409
2410  switch (ID.Kind) {
2411  default: llvm_unreachable("Unknown ValID!");
2412  case ValID::t_Metadata:
2413    return Error(ID.Loc, "invalid use of metadata");
2414  case ValID::t_LocalID:
2415  case ValID::t_LocalName:
2416    return Error(ID.Loc, "invalid use of function-local name");
2417  case ValID::t_InlineAsm:
2418    return Error(ID.Loc, "inline asm can only be an operand of call/invoke");
2419  case ValID::t_GlobalName:
2420    V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2421    return V == 0;
2422  case ValID::t_GlobalID:
2423    V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2424    return V == 0;
2425  case ValID::t_APSInt:
2426    if (!isa<IntegerType>(Ty))
2427      return Error(ID.Loc, "integer constant must have integer type");
2428    ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2429    V = ConstantInt::get(Context, ID.APSIntVal);
2430    return false;
2431  case ValID::t_APFloat:
2432    if (!Ty->isFloatingPoint() ||
2433        !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2434      return Error(ID.Loc, "floating point constant invalid for type");
2435
2436    // The lexer has no type info, so builds all float and double FP constants
2437    // as double.  Fix this here.  Long double does not need this.
2438    if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
2439        Ty->isFloatTy()) {
2440      bool Ignored;
2441      ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2442                            &Ignored);
2443    }
2444    V = ConstantFP::get(Context, ID.APFloatVal);
2445
2446    if (V->getType() != Ty)
2447      return Error(ID.Loc, "floating point constant does not have type '" +
2448                   Ty->getDescription() + "'");
2449
2450    return false;
2451  case ValID::t_Null:
2452    if (!isa<PointerType>(Ty))
2453      return Error(ID.Loc, "null must be a pointer type");
2454    V = ConstantPointerNull::get(cast<PointerType>(Ty));
2455    return false;
2456  case ValID::t_Undef:
2457    // FIXME: LabelTy should not be a first-class type.
2458    if ((!Ty->isFirstClassType() || Ty->isLabelTy()) &&
2459        !isa<OpaqueType>(Ty))
2460      return Error(ID.Loc, "invalid type for undef constant");
2461    V = UndefValue::get(Ty);
2462    return false;
2463  case ValID::t_EmptyArray:
2464    if (!isa<ArrayType>(Ty) || cast<ArrayType>(Ty)->getNumElements() != 0)
2465      return Error(ID.Loc, "invalid empty array initializer");
2466    V = UndefValue::get(Ty);
2467    return false;
2468  case ValID::t_Zero:
2469    // FIXME: LabelTy should not be a first-class type.
2470    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2471      return Error(ID.Loc, "invalid type for null constant");
2472    V = Constant::getNullValue(Ty);
2473    return false;
2474  case ValID::t_Constant:
2475    if (ID.ConstantVal->getType() != Ty)
2476      return Error(ID.Loc, "constant expression type mismatch");
2477    V = ID.ConstantVal;
2478    return false;
2479  }
2480}
2481
2482bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2483  PATypeHolder Type(Type::getVoidTy(Context));
2484  return ParseType(Type) ||
2485         ParseGlobalValue(Type, V);
2486}
2487
2488/// ParseGlobalValueVector
2489///   ::= /*empty*/
2490///   ::= TypeAndValue (',' TypeAndValue)*
2491bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2492  // Empty list.
2493  if (Lex.getKind() == lltok::rbrace ||
2494      Lex.getKind() == lltok::rsquare ||
2495      Lex.getKind() == lltok::greater ||
2496      Lex.getKind() == lltok::rparen)
2497    return false;
2498
2499  Constant *C;
2500  if (ParseGlobalTypeAndValue(C)) return true;
2501  Elts.push_back(C);
2502
2503  while (EatIfPresent(lltok::comma)) {
2504    if (ParseGlobalTypeAndValue(C)) return true;
2505    Elts.push_back(C);
2506  }
2507
2508  return false;
2509}
2510
2511
2512//===----------------------------------------------------------------------===//
2513// Function Parsing.
2514//===----------------------------------------------------------------------===//
2515
2516bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
2517                                   PerFunctionState &PFS) {
2518  if (ID.Kind == ValID::t_LocalID)
2519    V = PFS.GetVal(ID.UIntVal, Ty, ID.Loc);
2520  else if (ID.Kind == ValID::t_LocalName)
2521    V = PFS.GetVal(ID.StrVal, Ty, ID.Loc);
2522  else if (ID.Kind == ValID::t_InlineAsm) {
2523    const PointerType *PTy = dyn_cast<PointerType>(Ty);
2524    const FunctionType *FTy =
2525      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2526    if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2527      return Error(ID.Loc, "invalid type for inline asm constraint string");
2528    V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, ID.UIntVal>>1);
2529    return false;
2530  } else if (ID.Kind == ValID::t_Metadata) {
2531    V = ID.MetadataVal;
2532  } else {
2533    Constant *C;
2534    if (ConvertGlobalValIDToValue(Ty, ID, C)) return true;
2535    V = C;
2536    return false;
2537  }
2538
2539  return V == 0;
2540}
2541
2542bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
2543  V = 0;
2544  ValID ID;
2545  return ParseValID(ID) ||
2546         ConvertValIDToValue(Ty, ID, V, PFS);
2547}
2548
2549bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
2550  PATypeHolder T(Type::getVoidTy(Context));
2551  return ParseType(T) ||
2552         ParseValue(T, V, PFS);
2553}
2554
2555bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
2556                                      PerFunctionState &PFS) {
2557  Value *V;
2558  Loc = Lex.getLoc();
2559  if (ParseTypeAndValue(V, PFS)) return true;
2560  if (!isa<BasicBlock>(V))
2561    return Error(Loc, "expected a basic block");
2562  BB = cast<BasicBlock>(V);
2563  return false;
2564}
2565
2566
2567/// FunctionHeader
2568///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2569///       Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2570///       OptionalAlign OptGC
2571bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2572  // Parse the linkage.
2573  LocTy LinkageLoc = Lex.getLoc();
2574  unsigned Linkage;
2575
2576  unsigned Visibility, RetAttrs;
2577  CallingConv::ID CC;
2578  PATypeHolder RetType(Type::getVoidTy(Context));
2579  LocTy RetTypeLoc = Lex.getLoc();
2580  if (ParseOptionalLinkage(Linkage) ||
2581      ParseOptionalVisibility(Visibility) ||
2582      ParseOptionalCallingConv(CC) ||
2583      ParseOptionalAttrs(RetAttrs, 1) ||
2584      ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2585    return true;
2586
2587  // Verify that the linkage is ok.
2588  switch ((GlobalValue::LinkageTypes)Linkage) {
2589  case GlobalValue::ExternalLinkage:
2590    break; // always ok.
2591  case GlobalValue::DLLImportLinkage:
2592  case GlobalValue::ExternalWeakLinkage:
2593    if (isDefine)
2594      return Error(LinkageLoc, "invalid linkage for function definition");
2595    break;
2596  case GlobalValue::PrivateLinkage:
2597  case GlobalValue::LinkerPrivateLinkage:
2598  case GlobalValue::InternalLinkage:
2599  case GlobalValue::AvailableExternallyLinkage:
2600  case GlobalValue::LinkOnceAnyLinkage:
2601  case GlobalValue::LinkOnceODRLinkage:
2602  case GlobalValue::WeakAnyLinkage:
2603  case GlobalValue::WeakODRLinkage:
2604  case GlobalValue::DLLExportLinkage:
2605    if (!isDefine)
2606      return Error(LinkageLoc, "invalid linkage for function declaration");
2607    break;
2608  case GlobalValue::AppendingLinkage:
2609  case GlobalValue::GhostLinkage:
2610  case GlobalValue::CommonLinkage:
2611    return Error(LinkageLoc, "invalid function linkage type");
2612  }
2613
2614  if (!FunctionType::isValidReturnType(RetType) ||
2615      isa<OpaqueType>(RetType))
2616    return Error(RetTypeLoc, "invalid function return type");
2617
2618  LocTy NameLoc = Lex.getLoc();
2619
2620  std::string FunctionName;
2621  if (Lex.getKind() == lltok::GlobalVar) {
2622    FunctionName = Lex.getStrVal();
2623  } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
2624    unsigned NameID = Lex.getUIntVal();
2625
2626    if (NameID != NumberedVals.size())
2627      return TokError("function expected to be numbered '%" +
2628                      utostr(NumberedVals.size()) + "'");
2629  } else {
2630    return TokError("expected function name");
2631  }
2632
2633  Lex.Lex();
2634
2635  if (Lex.getKind() != lltok::lparen)
2636    return TokError("expected '(' in function argument list");
2637
2638  std::vector<ArgInfo> ArgList;
2639  bool isVarArg;
2640  unsigned FuncAttrs;
2641  std::string Section;
2642  unsigned Alignment;
2643  std::string GC;
2644
2645  if (ParseArgumentList(ArgList, isVarArg, false) ||
2646      ParseOptionalAttrs(FuncAttrs, 2) ||
2647      (EatIfPresent(lltok::kw_section) &&
2648       ParseStringConstant(Section)) ||
2649      ParseOptionalAlignment(Alignment) ||
2650      (EatIfPresent(lltok::kw_gc) &&
2651       ParseStringConstant(GC)))
2652    return true;
2653
2654  // If the alignment was parsed as an attribute, move to the alignment field.
2655  if (FuncAttrs & Attribute::Alignment) {
2656    Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2657    FuncAttrs &= ~Attribute::Alignment;
2658  }
2659
2660  // Okay, if we got here, the function is syntactically valid.  Convert types
2661  // and do semantic checks.
2662  std::vector<const Type*> ParamTypeList;
2663  SmallVector<AttributeWithIndex, 8> Attrs;
2664  // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2665  // attributes.
2666  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2667  if (FuncAttrs & ObsoleteFuncAttrs) {
2668    RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
2669    FuncAttrs &= ~ObsoleteFuncAttrs;
2670  }
2671
2672  if (RetAttrs != Attribute::None)
2673    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2674
2675  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2676    ParamTypeList.push_back(ArgList[i].Type);
2677    if (ArgList[i].Attrs != Attribute::None)
2678      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2679  }
2680
2681  if (FuncAttrs != Attribute::None)
2682    Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2683
2684  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2685
2686  if (PAL.paramHasAttr(1, Attribute::StructRet) &&
2687      RetType != Type::getVoidTy(Context))
2688    return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2689
2690  const FunctionType *FT =
2691    FunctionType::get(RetType, ParamTypeList, isVarArg);
2692  const PointerType *PFT = PointerType::getUnqual(FT);
2693
2694  Fn = 0;
2695  if (!FunctionName.empty()) {
2696    // If this was a definition of a forward reference, remove the definition
2697    // from the forward reference table and fill in the forward ref.
2698    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2699      ForwardRefVals.find(FunctionName);
2700    if (FRVI != ForwardRefVals.end()) {
2701      Fn = M->getFunction(FunctionName);
2702      ForwardRefVals.erase(FRVI);
2703    } else if ((Fn = M->getFunction(FunctionName))) {
2704      // If this function already exists in the symbol table, then it is
2705      // multiply defined.  We accept a few cases for old backwards compat.
2706      // FIXME: Remove this stuff for LLVM 3.0.
2707      if (Fn->getType() != PFT || Fn->getAttributes() != PAL ||
2708          (!Fn->isDeclaration() && isDefine)) {
2709        // If the redefinition has different type or different attributes,
2710        // reject it.  If both have bodies, reject it.
2711        return Error(NameLoc, "invalid redefinition of function '" +
2712                     FunctionName + "'");
2713      } else if (Fn->isDeclaration()) {
2714        // Make sure to strip off any argument names so we can't get conflicts.
2715        for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2716             AI != AE; ++AI)
2717          AI->setName("");
2718      }
2719    } else if (M->getNamedValue(FunctionName)) {
2720      return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
2721    }
2722
2723  } else {
2724    // If this is a definition of a forward referenced function, make sure the
2725    // types agree.
2726    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2727      = ForwardRefValIDs.find(NumberedVals.size());
2728    if (I != ForwardRefValIDs.end()) {
2729      Fn = cast<Function>(I->second.first);
2730      if (Fn->getType() != PFT)
2731        return Error(NameLoc, "type of definition and forward reference of '@" +
2732                     utostr(NumberedVals.size()) +"' disagree");
2733      ForwardRefValIDs.erase(I);
2734    }
2735  }
2736
2737  if (Fn == 0)
2738    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2739  else // Move the forward-reference to the correct spot in the module.
2740    M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2741
2742  if (FunctionName.empty())
2743    NumberedVals.push_back(Fn);
2744
2745  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2746  Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2747  Fn->setCallingConv(CC);
2748  Fn->setAttributes(PAL);
2749  Fn->setAlignment(Alignment);
2750  Fn->setSection(Section);
2751  if (!GC.empty()) Fn->setGC(GC.c_str());
2752
2753  // Add all of the arguments we parsed to the function.
2754  Function::arg_iterator ArgIt = Fn->arg_begin();
2755  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2756    // If we run out of arguments in the Function prototype, exit early.
2757    // FIXME: REMOVE THIS IN LLVM 3.0, this is just for the mismatch case above.
2758    if (ArgIt == Fn->arg_end()) break;
2759
2760    // If the argument has a name, insert it into the argument symbol table.
2761    if (ArgList[i].Name.empty()) continue;
2762
2763    // Set the name, if it conflicted, it will be auto-renamed.
2764    ArgIt->setName(ArgList[i].Name);
2765
2766    if (ArgIt->getNameStr() != ArgList[i].Name)
2767      return Error(ArgList[i].Loc, "redefinition of argument '%" +
2768                   ArgList[i].Name + "'");
2769  }
2770
2771  return false;
2772}
2773
2774
2775/// ParseFunctionBody
2776///   ::= '{' BasicBlock+ '}'
2777///   ::= 'begin' BasicBlock+ 'end'  // FIXME: remove in LLVM 3.0
2778///
2779bool LLParser::ParseFunctionBody(Function &Fn) {
2780  if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
2781    return TokError("expected '{' in function body");
2782  Lex.Lex();  // eat the {.
2783
2784  int FunctionNumber = -1;
2785  if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
2786
2787  PerFunctionState PFS(*this, Fn, FunctionNumber);
2788
2789  while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
2790    if (ParseBasicBlock(PFS)) return true;
2791
2792  // Eat the }.
2793  Lex.Lex();
2794
2795  // Verify function is ok.
2796  return PFS.FinishFunction();
2797}
2798
2799/// ParseBasicBlock
2800///   ::= LabelStr? Instruction*
2801bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2802  // If this basic block starts out with a name, remember it.
2803  std::string Name;
2804  LocTy NameLoc = Lex.getLoc();
2805  if (Lex.getKind() == lltok::LabelStr) {
2806    Name = Lex.getStrVal();
2807    Lex.Lex();
2808  }
2809
2810  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2811  if (BB == 0) return true;
2812
2813  std::string NameStr;
2814
2815  // Parse the instructions in this block until we get a terminator.
2816  Instruction *Inst;
2817  do {
2818    // This instruction may have three possibilities for a name: a) none
2819    // specified, b) name specified "%foo =", c) number specified: "%4 =".
2820    LocTy NameLoc = Lex.getLoc();
2821    int NameID = -1;
2822    NameStr = "";
2823
2824    if (Lex.getKind() == lltok::LocalVarID) {
2825      NameID = Lex.getUIntVal();
2826      Lex.Lex();
2827      if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2828        return true;
2829    } else if (Lex.getKind() == lltok::LocalVar ||
2830               // FIXME: REMOVE IN LLVM 3.0
2831               Lex.getKind() == lltok::StringConstant) {
2832      NameStr = Lex.getStrVal();
2833      Lex.Lex();
2834      if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2835        return true;
2836    }
2837
2838    if (ParseInstruction(Inst, BB, PFS)) return true;
2839    if (EatIfPresent(lltok::comma))
2840      ParseOptionalCustomMetadata();
2841
2842    // Set metadata attached with this instruction.
2843    for (SmallVector<std::pair<unsigned, MDNode *>, 2>::iterator
2844           MDI = MDsOnInst.begin(), MDE = MDsOnInst.end(); MDI != MDE; ++MDI)
2845      Inst->setMetadata(MDI->first, MDI->second);
2846    MDsOnInst.clear();
2847
2848    BB->getInstList().push_back(Inst);
2849
2850    // Set the name on the instruction.
2851    if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2852  } while (!isa<TerminatorInst>(Inst));
2853
2854  return false;
2855}
2856
2857//===----------------------------------------------------------------------===//
2858// Instruction Parsing.
2859//===----------------------------------------------------------------------===//
2860
2861/// ParseInstruction - Parse one of the many different instructions.
2862///
2863bool LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2864                                PerFunctionState &PFS) {
2865  lltok::Kind Token = Lex.getKind();
2866  if (Token == lltok::Eof)
2867    return TokError("found end of file when expecting more instructions");
2868  LocTy Loc = Lex.getLoc();
2869  unsigned KeywordVal = Lex.getUIntVal();
2870  Lex.Lex();  // Eat the keyword.
2871
2872  switch (Token) {
2873  default:                    return Error(Loc, "expected instruction opcode");
2874  // Terminator Instructions.
2875  case lltok::kw_unwind:      Inst = new UnwindInst(Context); return false;
2876  case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
2877  case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
2878  case lltok::kw_br:          return ParseBr(Inst, PFS);
2879  case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
2880  case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
2881  case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
2882  // Binary Operators.
2883  case lltok::kw_add:
2884  case lltok::kw_sub:
2885  case lltok::kw_mul: {
2886    bool NUW = false;
2887    bool NSW = false;
2888    LocTy ModifierLoc = Lex.getLoc();
2889    if (EatIfPresent(lltok::kw_nuw))
2890      NUW = true;
2891    if (EatIfPresent(lltok::kw_nsw)) {
2892      NSW = true;
2893      if (EatIfPresent(lltok::kw_nuw))
2894        NUW = true;
2895    }
2896    // API compatibility: Accept either integer or floating-point types.
2897    bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 0);
2898    if (!Result) {
2899      if (!Inst->getType()->isIntOrIntVector()) {
2900        if (NUW)
2901          return Error(ModifierLoc, "nuw only applies to integer operations");
2902        if (NSW)
2903          return Error(ModifierLoc, "nsw only applies to integer operations");
2904      }
2905      if (NUW)
2906        cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
2907      if (NSW)
2908        cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
2909    }
2910    return Result;
2911  }
2912  case lltok::kw_fadd:
2913  case lltok::kw_fsub:
2914  case lltok::kw_fmul:    return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2915
2916  case lltok::kw_sdiv: {
2917    bool Exact = false;
2918    if (EatIfPresent(lltok::kw_exact))
2919      Exact = true;
2920    bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 1);
2921    if (!Result)
2922      if (Exact)
2923        cast<BinaryOperator>(Inst)->setIsExact(true);
2924    return Result;
2925  }
2926
2927  case lltok::kw_udiv:
2928  case lltok::kw_urem:
2929  case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
2930  case lltok::kw_fdiv:
2931  case lltok::kw_frem:   return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2932  case lltok::kw_shl:
2933  case lltok::kw_lshr:
2934  case lltok::kw_ashr:
2935  case lltok::kw_and:
2936  case lltok::kw_or:
2937  case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
2938  case lltok::kw_icmp:
2939  case lltok::kw_fcmp:   return ParseCompare(Inst, PFS, KeywordVal);
2940  // Casts.
2941  case lltok::kw_trunc:
2942  case lltok::kw_zext:
2943  case lltok::kw_sext:
2944  case lltok::kw_fptrunc:
2945  case lltok::kw_fpext:
2946  case lltok::kw_bitcast:
2947  case lltok::kw_uitofp:
2948  case lltok::kw_sitofp:
2949  case lltok::kw_fptoui:
2950  case lltok::kw_fptosi:
2951  case lltok::kw_inttoptr:
2952  case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
2953  // Other.
2954  case lltok::kw_select:         return ParseSelect(Inst, PFS);
2955  case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
2956  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
2957  case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
2958  case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
2959  case lltok::kw_phi:            return ParsePHI(Inst, PFS);
2960  case lltok::kw_call:           return ParseCall(Inst, PFS, false);
2961  case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
2962  // Memory.
2963  case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
2964  case lltok::kw_malloc:         return ParseAlloc(Inst, PFS, BB, false);
2965  case lltok::kw_free:           return ParseFree(Inst, PFS, BB);
2966  case lltok::kw_load:           return ParseLoad(Inst, PFS, false);
2967  case lltok::kw_store:          return ParseStore(Inst, PFS, false);
2968  case lltok::kw_volatile:
2969    if (EatIfPresent(lltok::kw_load))
2970      return ParseLoad(Inst, PFS, true);
2971    else if (EatIfPresent(lltok::kw_store))
2972      return ParseStore(Inst, PFS, true);
2973    else
2974      return TokError("expected 'load' or 'store'");
2975  case lltok::kw_getresult:     return ParseGetResult(Inst, PFS);
2976  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
2977  case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
2978  case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
2979  }
2980}
2981
2982/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
2983bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
2984  if (Opc == Instruction::FCmp) {
2985    switch (Lex.getKind()) {
2986    default: TokError("expected fcmp predicate (e.g. 'oeq')");
2987    case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
2988    case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
2989    case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
2990    case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
2991    case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
2992    case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
2993    case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
2994    case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
2995    case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
2996    case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
2997    case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
2998    case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
2999    case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
3000    case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
3001    case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
3002    case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
3003    }
3004  } else {
3005    switch (Lex.getKind()) {
3006    default: TokError("expected icmp predicate (e.g. 'eq')");
3007    case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
3008    case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
3009    case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
3010    case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
3011    case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
3012    case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
3013    case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
3014    case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
3015    case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
3016    case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
3017    }
3018  }
3019  Lex.Lex();
3020  return false;
3021}
3022
3023//===----------------------------------------------------------------------===//
3024// Terminator Instructions.
3025//===----------------------------------------------------------------------===//
3026
3027/// ParseRet - Parse a return instruction.
3028///   ::= 'ret' void (',' !dbg, !1)*
3029///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
3030///   ::= 'ret' TypeAndValue (',' TypeAndValue)+  (',' !dbg, !1)*
3031///         [[obsolete: LLVM 3.0]]
3032bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
3033                        PerFunctionState &PFS) {
3034  PATypeHolder Ty(Type::getVoidTy(Context));
3035  if (ParseType(Ty, true /*void allowed*/)) return true;
3036
3037  if (Ty->isVoidTy()) {
3038    Inst = ReturnInst::Create(Context);
3039    return false;
3040  }
3041
3042  Value *RV;
3043  if (ParseValue(Ty, RV, PFS)) return true;
3044
3045  if (EatIfPresent(lltok::comma)) {
3046    // Parse optional custom metadata, e.g. !dbg
3047    if (Lex.getKind() == lltok::NamedOrCustomMD) {
3048      if (ParseOptionalCustomMetadata()) return true;
3049    } else {
3050      // The normal case is one return value.
3051      // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring
3052      // use of 'ret {i32,i32} {i32 1, i32 2}'
3053      SmallVector<Value*, 8> RVs;
3054      RVs.push_back(RV);
3055
3056      do {
3057        // If optional custom metadata, e.g. !dbg is seen then this is the
3058        // end of MRV.
3059        if (Lex.getKind() == lltok::NamedOrCustomMD)
3060          break;
3061        if (ParseTypeAndValue(RV, PFS)) return true;
3062        RVs.push_back(RV);
3063      } while (EatIfPresent(lltok::comma));
3064
3065      RV = UndefValue::get(PFS.getFunction().getReturnType());
3066      for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
3067        Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
3068        BB->getInstList().push_back(I);
3069        RV = I;
3070      }
3071    }
3072  }
3073
3074  Inst = ReturnInst::Create(Context, RV);
3075  return false;
3076}
3077
3078
3079/// ParseBr
3080///   ::= 'br' TypeAndValue
3081///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3082bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
3083  LocTy Loc, Loc2;
3084  Value *Op0;
3085  BasicBlock *Op1, *Op2;
3086  if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
3087
3088  if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
3089    Inst = BranchInst::Create(BB);
3090    return false;
3091  }
3092
3093  if (Op0->getType() != Type::getInt1Ty(Context))
3094    return Error(Loc, "branch condition must have 'i1' type");
3095
3096  if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
3097      ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
3098      ParseToken(lltok::comma, "expected ',' after true destination") ||
3099      ParseTypeAndBasicBlock(Op2, Loc2, PFS))
3100    return true;
3101
3102  Inst = BranchInst::Create(Op1, Op2, Op0);
3103  return false;
3104}
3105
3106/// ParseSwitch
3107///  Instruction
3108///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
3109///  JumpTable
3110///    ::= (TypeAndValue ',' TypeAndValue)*
3111bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
3112  LocTy CondLoc, BBLoc;
3113  Value *Cond;
3114  BasicBlock *DefaultBB;
3115  if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
3116      ParseToken(lltok::comma, "expected ',' after switch condition") ||
3117      ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
3118      ParseToken(lltok::lsquare, "expected '[' with switch table"))
3119    return true;
3120
3121  if (!isa<IntegerType>(Cond->getType()))
3122    return Error(CondLoc, "switch condition must have integer type");
3123
3124  // Parse the jump table pairs.
3125  SmallPtrSet<Value*, 32> SeenCases;
3126  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
3127  while (Lex.getKind() != lltok::rsquare) {
3128    Value *Constant;
3129    BasicBlock *DestBB;
3130
3131    if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
3132        ParseToken(lltok::comma, "expected ',' after case value") ||
3133        ParseTypeAndBasicBlock(DestBB, PFS))
3134      return true;
3135
3136    if (!SeenCases.insert(Constant))
3137      return Error(CondLoc, "duplicate case value in switch");
3138    if (!isa<ConstantInt>(Constant))
3139      return Error(CondLoc, "case value is not a constant integer");
3140
3141    Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
3142  }
3143
3144  Lex.Lex();  // Eat the ']'.
3145
3146  SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
3147  for (unsigned i = 0, e = Table.size(); i != e; ++i)
3148    SI->addCase(Table[i].first, Table[i].second);
3149  Inst = SI;
3150  return false;
3151}
3152
3153/// ParseIndirectBr
3154///  Instruction
3155///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
3156bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
3157  LocTy AddrLoc;
3158  Value *Address;
3159  if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
3160      ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
3161      ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
3162    return true;
3163
3164  if (!isa<PointerType>(Address->getType()))
3165    return Error(AddrLoc, "indirectbr address must have pointer type");
3166
3167  // Parse the destination list.
3168  SmallVector<BasicBlock*, 16> DestList;
3169
3170  if (Lex.getKind() != lltok::rsquare) {
3171    BasicBlock *DestBB;
3172    if (ParseTypeAndBasicBlock(DestBB, PFS))
3173      return true;
3174    DestList.push_back(DestBB);
3175
3176    while (EatIfPresent(lltok::comma)) {
3177      if (ParseTypeAndBasicBlock(DestBB, PFS))
3178        return true;
3179      DestList.push_back(DestBB);
3180    }
3181  }
3182
3183  if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
3184    return true;
3185
3186  IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
3187  for (unsigned i = 0, e = DestList.size(); i != e; ++i)
3188    IBI->addDestination(DestList[i]);
3189  Inst = IBI;
3190  return false;
3191}
3192
3193
3194/// ParseInvoke
3195///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
3196///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
3197bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
3198  LocTy CallLoc = Lex.getLoc();
3199  unsigned RetAttrs, FnAttrs;
3200  CallingConv::ID CC;
3201  PATypeHolder RetType(Type::getVoidTy(Context));
3202  LocTy RetTypeLoc;
3203  ValID CalleeID;
3204  SmallVector<ParamInfo, 16> ArgList;
3205
3206  BasicBlock *NormalBB, *UnwindBB;
3207  if (ParseOptionalCallingConv(CC) ||
3208      ParseOptionalAttrs(RetAttrs, 1) ||
3209      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3210      ParseValID(CalleeID) ||
3211      ParseParameterList(ArgList, PFS) ||
3212      ParseOptionalAttrs(FnAttrs, 2) ||
3213      ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
3214      ParseTypeAndBasicBlock(NormalBB, PFS) ||
3215      ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
3216      ParseTypeAndBasicBlock(UnwindBB, PFS))
3217    return true;
3218
3219  // If RetType is a non-function pointer type, then this is the short syntax
3220  // for the call, which means that RetType is just the return type.  Infer the
3221  // rest of the function argument types from the arguments that are present.
3222  const PointerType *PFTy = 0;
3223  const FunctionType *Ty = 0;
3224  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3225      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3226    // Pull out the types of all of the arguments...
3227    std::vector<const Type*> ParamTypes;
3228    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3229      ParamTypes.push_back(ArgList[i].V->getType());
3230
3231    if (!FunctionType::isValidReturnType(RetType))
3232      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3233
3234    Ty = FunctionType::get(RetType, ParamTypes, false);
3235    PFTy = PointerType::getUnqual(Ty);
3236  }
3237
3238  // Look up the callee.
3239  Value *Callee;
3240  if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
3241
3242  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3243  // function attributes.
3244  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3245  if (FnAttrs & ObsoleteFuncAttrs) {
3246    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3247    FnAttrs &= ~ObsoleteFuncAttrs;
3248  }
3249
3250  // Set up the Attributes for the function.
3251  SmallVector<AttributeWithIndex, 8> Attrs;
3252  if (RetAttrs != Attribute::None)
3253    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3254
3255  SmallVector<Value*, 8> Args;
3256
3257  // Loop through FunctionType's arguments and ensure they are specified
3258  // correctly.  Also, gather any parameter attributes.
3259  FunctionType::param_iterator I = Ty->param_begin();
3260  FunctionType::param_iterator E = Ty->param_end();
3261  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3262    const Type *ExpectedTy = 0;
3263    if (I != E) {
3264      ExpectedTy = *I++;
3265    } else if (!Ty->isVarArg()) {
3266      return Error(ArgList[i].Loc, "too many arguments specified");
3267    }
3268
3269    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3270      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3271                   ExpectedTy->getDescription() + "'");
3272    Args.push_back(ArgList[i].V);
3273    if (ArgList[i].Attrs != Attribute::None)
3274      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3275  }
3276
3277  if (I != E)
3278    return Error(CallLoc, "not enough parameters specified for call");
3279
3280  if (FnAttrs != Attribute::None)
3281    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3282
3283  // Finish off the Attributes and check them
3284  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3285
3286  InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB,
3287                                      Args.begin(), Args.end());
3288  II->setCallingConv(CC);
3289  II->setAttributes(PAL);
3290  Inst = II;
3291  return false;
3292}
3293
3294
3295
3296//===----------------------------------------------------------------------===//
3297// Binary Operators.
3298//===----------------------------------------------------------------------===//
3299
3300/// ParseArithmetic
3301///  ::= ArithmeticOps TypeAndValue ',' Value
3302///
3303/// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
3304/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
3305bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
3306                               unsigned Opc, unsigned OperandType) {
3307  LocTy Loc; Value *LHS, *RHS;
3308  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3309      ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
3310      ParseValue(LHS->getType(), RHS, PFS))
3311    return true;
3312
3313  bool Valid;
3314  switch (OperandType) {
3315  default: llvm_unreachable("Unknown operand type!");
3316  case 0: // int or FP.
3317    Valid = LHS->getType()->isIntOrIntVector() ||
3318            LHS->getType()->isFPOrFPVector();
3319    break;
3320  case 1: Valid = LHS->getType()->isIntOrIntVector(); break;
3321  case 2: Valid = LHS->getType()->isFPOrFPVector(); break;
3322  }
3323
3324  if (!Valid)
3325    return Error(Loc, "invalid operand type for instruction");
3326
3327  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3328  return false;
3329}
3330
3331/// ParseLogical
3332///  ::= ArithmeticOps TypeAndValue ',' Value {
3333bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3334                            unsigned Opc) {
3335  LocTy Loc; Value *LHS, *RHS;
3336  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3337      ParseToken(lltok::comma, "expected ',' in logical operation") ||
3338      ParseValue(LHS->getType(), RHS, PFS))
3339    return true;
3340
3341  if (!LHS->getType()->isIntOrIntVector())
3342    return Error(Loc,"instruction requires integer or integer vector operands");
3343
3344  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3345  return false;
3346}
3347
3348
3349/// ParseCompare
3350///  ::= 'icmp' IPredicates TypeAndValue ',' Value
3351///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
3352bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3353                            unsigned Opc) {
3354  // Parse the integer/fp comparison predicate.
3355  LocTy Loc;
3356  unsigned Pred;
3357  Value *LHS, *RHS;
3358  if (ParseCmpPredicate(Pred, Opc) ||
3359      ParseTypeAndValue(LHS, Loc, PFS) ||
3360      ParseToken(lltok::comma, "expected ',' after compare value") ||
3361      ParseValue(LHS->getType(), RHS, PFS))
3362    return true;
3363
3364  if (Opc == Instruction::FCmp) {
3365    if (!LHS->getType()->isFPOrFPVector())
3366      return Error(Loc, "fcmp requires floating point operands");
3367    Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3368  } else {
3369    assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3370    if (!LHS->getType()->isIntOrIntVector() &&
3371        !isa<PointerType>(LHS->getType()))
3372      return Error(Loc, "icmp requires integer operands");
3373    Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3374  }
3375  return false;
3376}
3377
3378//===----------------------------------------------------------------------===//
3379// Other Instructions.
3380//===----------------------------------------------------------------------===//
3381
3382
3383/// ParseCast
3384///   ::= CastOpc TypeAndValue 'to' Type
3385bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3386                         unsigned Opc) {
3387  LocTy Loc;  Value *Op;
3388  PATypeHolder DestTy(Type::getVoidTy(Context));
3389  if (ParseTypeAndValue(Op, Loc, PFS) ||
3390      ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3391      ParseType(DestTy))
3392    return true;
3393
3394  if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3395    CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3396    return Error(Loc, "invalid cast opcode for cast from '" +
3397                 Op->getType()->getDescription() + "' to '" +
3398                 DestTy->getDescription() + "'");
3399  }
3400  Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3401  return false;
3402}
3403
3404/// ParseSelect
3405///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3406bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3407  LocTy Loc;
3408  Value *Op0, *Op1, *Op2;
3409  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3410      ParseToken(lltok::comma, "expected ',' after select condition") ||
3411      ParseTypeAndValue(Op1, PFS) ||
3412      ParseToken(lltok::comma, "expected ',' after select value") ||
3413      ParseTypeAndValue(Op2, PFS))
3414    return true;
3415
3416  if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3417    return Error(Loc, Reason);
3418
3419  Inst = SelectInst::Create(Op0, Op1, Op2);
3420  return false;
3421}
3422
3423/// ParseVA_Arg
3424///   ::= 'va_arg' TypeAndValue ',' Type
3425bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3426  Value *Op;
3427  PATypeHolder EltTy(Type::getVoidTy(Context));
3428  LocTy TypeLoc;
3429  if (ParseTypeAndValue(Op, PFS) ||
3430      ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3431      ParseType(EltTy, TypeLoc))
3432    return true;
3433
3434  if (!EltTy->isFirstClassType())
3435    return Error(TypeLoc, "va_arg requires operand with first class type");
3436
3437  Inst = new VAArgInst(Op, EltTy);
3438  return false;
3439}
3440
3441/// ParseExtractElement
3442///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
3443bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3444  LocTy Loc;
3445  Value *Op0, *Op1;
3446  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3447      ParseToken(lltok::comma, "expected ',' after extract value") ||
3448      ParseTypeAndValue(Op1, PFS))
3449    return true;
3450
3451  if (!ExtractElementInst::isValidOperands(Op0, Op1))
3452    return Error(Loc, "invalid extractelement operands");
3453
3454  Inst = ExtractElementInst::Create(Op0, Op1);
3455  return false;
3456}
3457
3458/// ParseInsertElement
3459///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3460bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3461  LocTy Loc;
3462  Value *Op0, *Op1, *Op2;
3463  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3464      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3465      ParseTypeAndValue(Op1, PFS) ||
3466      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3467      ParseTypeAndValue(Op2, PFS))
3468    return true;
3469
3470  if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3471    return Error(Loc, "invalid insertelement operands");
3472
3473  Inst = InsertElementInst::Create(Op0, Op1, Op2);
3474  return false;
3475}
3476
3477/// ParseShuffleVector
3478///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3479bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3480  LocTy Loc;
3481  Value *Op0, *Op1, *Op2;
3482  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3483      ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3484      ParseTypeAndValue(Op1, PFS) ||
3485      ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3486      ParseTypeAndValue(Op2, PFS))
3487    return true;
3488
3489  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3490    return Error(Loc, "invalid extractelement operands");
3491
3492  Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3493  return false;
3494}
3495
3496/// ParsePHI
3497///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
3498bool LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3499  PATypeHolder Ty(Type::getVoidTy(Context));
3500  Value *Op0, *Op1;
3501  LocTy TypeLoc = Lex.getLoc();
3502
3503  if (ParseType(Ty) ||
3504      ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3505      ParseValue(Ty, Op0, PFS) ||
3506      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3507      ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3508      ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3509    return true;
3510
3511  SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3512  while (1) {
3513    PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3514
3515    if (!EatIfPresent(lltok::comma))
3516      break;
3517
3518    if (Lex.getKind() == lltok::NamedOrCustomMD)
3519      break;
3520
3521    if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3522        ParseValue(Ty, Op0, PFS) ||
3523        ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3524        ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3525        ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3526      return true;
3527  }
3528
3529  if (Lex.getKind() == lltok::NamedOrCustomMD)
3530    if (ParseOptionalCustomMetadata()) return true;
3531
3532  if (!Ty->isFirstClassType())
3533    return Error(TypeLoc, "phi node must have first class type");
3534
3535  PHINode *PN = PHINode::Create(Ty);
3536  PN->reserveOperandSpace(PHIVals.size());
3537  for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3538    PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3539  Inst = PN;
3540  return false;
3541}
3542
3543/// ParseCall
3544///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3545///       ParameterList OptionalAttrs
3546bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3547                         bool isTail) {
3548  unsigned RetAttrs, FnAttrs;
3549  CallingConv::ID CC;
3550  PATypeHolder RetType(Type::getVoidTy(Context));
3551  LocTy RetTypeLoc;
3552  ValID CalleeID;
3553  SmallVector<ParamInfo, 16> ArgList;
3554  LocTy CallLoc = Lex.getLoc();
3555
3556  if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3557      ParseOptionalCallingConv(CC) ||
3558      ParseOptionalAttrs(RetAttrs, 1) ||
3559      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3560      ParseValID(CalleeID) ||
3561      ParseParameterList(ArgList, PFS) ||
3562      ParseOptionalAttrs(FnAttrs, 2))
3563    return true;
3564
3565  // If RetType is a non-function pointer type, then this is the short syntax
3566  // for the call, which means that RetType is just the return type.  Infer the
3567  // rest of the function argument types from the arguments that are present.
3568  const PointerType *PFTy = 0;
3569  const FunctionType *Ty = 0;
3570  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3571      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3572    // Pull out the types of all of the arguments...
3573    std::vector<const Type*> ParamTypes;
3574    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3575      ParamTypes.push_back(ArgList[i].V->getType());
3576
3577    if (!FunctionType::isValidReturnType(RetType))
3578      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3579
3580    Ty = FunctionType::get(RetType, ParamTypes, false);
3581    PFTy = PointerType::getUnqual(Ty);
3582  }
3583
3584  // Look up the callee.
3585  Value *Callee;
3586  if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
3587
3588  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3589  // function attributes.
3590  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3591  if (FnAttrs & ObsoleteFuncAttrs) {
3592    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3593    FnAttrs &= ~ObsoleteFuncAttrs;
3594  }
3595
3596  // Set up the Attributes for the function.
3597  SmallVector<AttributeWithIndex, 8> Attrs;
3598  if (RetAttrs != Attribute::None)
3599    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3600
3601  SmallVector<Value*, 8> Args;
3602
3603  // Loop through FunctionType's arguments and ensure they are specified
3604  // correctly.  Also, gather any parameter attributes.
3605  FunctionType::param_iterator I = Ty->param_begin();
3606  FunctionType::param_iterator E = Ty->param_end();
3607  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3608    const Type *ExpectedTy = 0;
3609    if (I != E) {
3610      ExpectedTy = *I++;
3611    } else if (!Ty->isVarArg()) {
3612      return Error(ArgList[i].Loc, "too many arguments specified");
3613    }
3614
3615    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3616      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3617                   ExpectedTy->getDescription() + "'");
3618    Args.push_back(ArgList[i].V);
3619    if (ArgList[i].Attrs != Attribute::None)
3620      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3621  }
3622
3623  if (I != E)
3624    return Error(CallLoc, "not enough parameters specified for call");
3625
3626  if (FnAttrs != Attribute::None)
3627    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3628
3629  // Finish off the Attributes and check them
3630  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3631
3632  CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
3633  CI->setTailCall(isTail);
3634  CI->setCallingConv(CC);
3635  CI->setAttributes(PAL);
3636  Inst = CI;
3637  return false;
3638}
3639
3640//===----------------------------------------------------------------------===//
3641// Memory Instructions.
3642//===----------------------------------------------------------------------===//
3643
3644/// ParseAlloc
3645///   ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalInfo)?
3646///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
3647bool LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
3648                          BasicBlock* BB, bool isAlloca) {
3649  PATypeHolder Ty(Type::getVoidTy(Context));
3650  Value *Size = 0;
3651  LocTy SizeLoc;
3652  unsigned Alignment = 0;
3653  if (ParseType(Ty)) return true;
3654
3655  if (EatIfPresent(lltok::comma)) {
3656    if (Lex.getKind() == lltok::kw_align
3657        || Lex.getKind() == lltok::NamedOrCustomMD) {
3658      if (ParseOptionalInfo(Alignment)) return true;
3659    } else {
3660      if (ParseTypeAndValue(Size, SizeLoc, PFS)) return true;
3661      if (EatIfPresent(lltok::comma))
3662        if (ParseOptionalInfo(Alignment)) return true;
3663    }
3664  }
3665
3666  if (Size && Size->getType() != Type::getInt32Ty(Context))
3667    return Error(SizeLoc, "element count must be i32");
3668
3669  if (isAlloca) {
3670    Inst = new AllocaInst(Ty, Size, Alignment);
3671    return false;
3672  }
3673
3674  // Autoupgrade old malloc instruction to malloc call.
3675  // FIXME: Remove in LLVM 3.0.
3676  const Type *IntPtrTy = Type::getInt32Ty(Context);
3677  Constant *AllocSize = ConstantExpr::getSizeOf(Ty);
3678  AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, IntPtrTy);
3679  if (!MallocF)
3680    // Prototype malloc as "void *(int32)".
3681    // This function is renamed as "malloc" in ValidateEndOfModule().
3682    MallocF = cast<Function>(
3683       M->getOrInsertFunction("", Type::getInt8PtrTy(Context), IntPtrTy, NULL));
3684  Inst = CallInst::CreateMalloc(BB, IntPtrTy, Ty, AllocSize, Size, MallocF);
3685  return false;
3686}
3687
3688/// ParseFree
3689///   ::= 'free' TypeAndValue
3690bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS,
3691                         BasicBlock* BB) {
3692  Value *Val; LocTy Loc;
3693  if (ParseTypeAndValue(Val, Loc, PFS)) return true;
3694  if (!isa<PointerType>(Val->getType()))
3695    return Error(Loc, "operand to free must be a pointer");
3696  Inst = CallInst::CreateFree(Val, BB);
3697  return false;
3698}
3699
3700/// ParseLoad
3701///   ::= 'volatile'? 'load' TypeAndValue (',' OptionalInfo)?
3702bool LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
3703                         bool isVolatile) {
3704  Value *Val; LocTy Loc;
3705  unsigned Alignment = 0;
3706  if (ParseTypeAndValue(Val, Loc, PFS)) return true;
3707
3708  if (EatIfPresent(lltok::comma))
3709    if (ParseOptionalInfo(Alignment)) return true;
3710
3711  if (!isa<PointerType>(Val->getType()) ||
3712      !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3713    return Error(Loc, "load operand must be a pointer to a first class type");
3714
3715  Inst = new LoadInst(Val, "", isVolatile, Alignment);
3716  return false;
3717}
3718
3719/// ParseStore
3720///   ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3721bool LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
3722                          bool isVolatile) {
3723  Value *Val, *Ptr; LocTy Loc, PtrLoc;
3724  unsigned Alignment = 0;
3725  if (ParseTypeAndValue(Val, Loc, PFS) ||
3726      ParseToken(lltok::comma, "expected ',' after store operand") ||
3727      ParseTypeAndValue(Ptr, PtrLoc, PFS))
3728    return true;
3729
3730  if (EatIfPresent(lltok::comma))
3731    if (ParseOptionalInfo(Alignment)) return true;
3732
3733  if (!isa<PointerType>(Ptr->getType()))
3734    return Error(PtrLoc, "store operand must be a pointer");
3735  if (!Val->getType()->isFirstClassType())
3736    return Error(Loc, "store operand must be a first class value");
3737  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3738    return Error(Loc, "stored value and pointer type do not match");
3739
3740  Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
3741  return false;
3742}
3743
3744/// ParseGetResult
3745///   ::= 'getresult' TypeAndValue ',' i32
3746/// FIXME: Remove support for getresult in LLVM 3.0
3747bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
3748  Value *Val; LocTy ValLoc, EltLoc;
3749  unsigned Element;
3750  if (ParseTypeAndValue(Val, ValLoc, PFS) ||
3751      ParseToken(lltok::comma, "expected ',' after getresult operand") ||
3752      ParseUInt32(Element, EltLoc))
3753    return true;
3754
3755  if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3756    return Error(ValLoc, "getresult inst requires an aggregate operand");
3757  if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
3758    return Error(EltLoc, "invalid getresult index for value");
3759  Inst = ExtractValueInst::Create(Val, Element);
3760  return false;
3761}
3762
3763/// ParseGetElementPtr
3764///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
3765bool LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3766  Value *Ptr, *Val; LocTy Loc, EltLoc;
3767
3768  bool InBounds = EatIfPresent(lltok::kw_inbounds);
3769
3770  if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3771
3772  if (!isa<PointerType>(Ptr->getType()))
3773    return Error(Loc, "base of getelementptr must be a pointer");
3774
3775  SmallVector<Value*, 16> Indices;
3776  while (EatIfPresent(lltok::comma)) {
3777    if (Lex.getKind() == lltok::NamedOrCustomMD)
3778      break;
3779    if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3780    if (!isa<IntegerType>(Val->getType()))
3781      return Error(EltLoc, "getelementptr index must be an integer");
3782    Indices.push_back(Val);
3783  }
3784  if (Lex.getKind() == lltok::NamedOrCustomMD)
3785    if (ParseOptionalCustomMetadata()) return true;
3786
3787  if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
3788                                         Indices.begin(), Indices.end()))
3789    return Error(Loc, "invalid getelementptr indices");
3790  Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
3791  if (InBounds)
3792    cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
3793  return false;
3794}
3795
3796/// ParseExtractValue
3797///   ::= 'extractvalue' TypeAndValue (',' uint32)+
3798bool LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3799  Value *Val; LocTy Loc;
3800  SmallVector<unsigned, 4> Indices;
3801  if (ParseTypeAndValue(Val, Loc, PFS) ||
3802      ParseIndexList(Indices))
3803    return true;
3804  if (Lex.getKind() == lltok::NamedOrCustomMD)
3805    if (ParseOptionalCustomMetadata()) return true;
3806
3807  if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3808    return Error(Loc, "extractvalue operand must be array or struct");
3809
3810  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
3811                                        Indices.end()))
3812    return Error(Loc, "invalid indices for extractvalue");
3813  Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end());
3814  return false;
3815}
3816
3817/// ParseInsertValue
3818///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3819bool LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3820  Value *Val0, *Val1; LocTy Loc0, Loc1;
3821  SmallVector<unsigned, 4> Indices;
3822  if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3823      ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3824      ParseTypeAndValue(Val1, Loc1, PFS) ||
3825      ParseIndexList(Indices))
3826    return true;
3827  if (Lex.getKind() == lltok::NamedOrCustomMD)
3828    if (ParseOptionalCustomMetadata()) return true;
3829
3830  if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
3831    return Error(Loc0, "extractvalue operand must be array or struct");
3832
3833  if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
3834                                        Indices.end()))
3835    return Error(Loc0, "invalid indices for insertvalue");
3836  Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end());
3837  return false;
3838}
3839
3840//===----------------------------------------------------------------------===//
3841// Embedded metadata.
3842//===----------------------------------------------------------------------===//
3843
3844/// ParseMDNodeVector
3845///   ::= Element (',' Element)*
3846/// Element
3847///   ::= 'null' | TypeAndValue
3848bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts) {
3849  assert(Lex.getKind() == lltok::lbrace);
3850  Lex.Lex();
3851  do {
3852    Value *V = 0;
3853    // FIXME: REWRITE.
3854    if (Lex.getKind() == lltok::kw_null) {
3855      Lex.Lex();
3856      V = 0;
3857    } else {
3858      PATypeHolder Ty(Type::getVoidTy(Context));
3859      if (ParseType(Ty)) return true;
3860      if (Lex.getKind() == lltok::Metadata) {
3861        Lex.Lex();
3862        MDNode *Node = 0;
3863        if (!ParseMDNode(Node))
3864          V = Node;
3865        else {
3866          MDString *MDS = 0;
3867          if (ParseMDString(MDS)) return true;
3868          V = MDS;
3869        }
3870      } else {
3871        Constant *C;
3872        if (ParseGlobalValue(Ty, C)) return true;
3873        V = C;
3874      }
3875    }
3876    Elts.push_back(V);
3877  } while (EatIfPresent(lltok::comma));
3878
3879  return false;
3880}
3881