LLParser.cpp revision 5f4ee1fc5d00ae55c30fa2ce450c69be4c6d6e63
1//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/AutoUpgrade.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instructions.h"
21#include "llvm/Module.h"
22#include "llvm/ValueSymbolTable.h"
23#include "llvm/ADT/SmallPtrSet.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/Support/raw_ostream.h"
26using namespace llvm;
27
28namespace llvm {
29  /// ValID - Represents a reference of a definition of some sort with no type.
30  /// There are several cases where we have to parse the value but where the
31  /// type can depend on later context.  This may either be a numeric reference
32  /// or a symbolic (%var) reference.  This is just a discriminated union.
33  struct ValID {
34    enum {
35      t_LocalID, t_GlobalID,      // ID in UIntVal.
36      t_LocalName, t_GlobalName,  // Name in StrVal.
37      t_APSInt, t_APFloat,        // Value in APSIntVal/APFloatVal.
38      t_Null, t_Undef, t_Zero,    // No value.
39      t_EmptyArray,               // No value:  []
40      t_Constant,                 // Value in ConstantVal.
41      t_InlineAsm                 // Value in StrVal/StrVal2/UIntVal.
42    } Kind;
43
44    LLParser::LocTy Loc;
45    unsigned UIntVal;
46    std::string StrVal, StrVal2;
47    APSInt APSIntVal;
48    APFloat APFloatVal;
49    Constant *ConstantVal;
50    ValID() : APFloatVal(0.0) {}
51  };
52}
53
54/// Run: module ::= toplevelentity*
55bool LLParser::Run() {
56  // Prime the lexer.
57  Lex.Lex();
58
59  return ParseTopLevelEntities() ||
60         ValidateEndOfModule();
61}
62
63/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
64/// module.
65bool LLParser::ValidateEndOfModule() {
66  if (!ForwardRefTypes.empty())
67    return Error(ForwardRefTypes.begin()->second.second,
68                 "use of undefined type named '" +
69                 ForwardRefTypes.begin()->first + "'");
70  if (!ForwardRefTypeIDs.empty())
71    return Error(ForwardRefTypeIDs.begin()->second.second,
72                 "use of undefined type '%" +
73                 utostr(ForwardRefTypeIDs.begin()->first) + "'");
74
75  if (!ForwardRefVals.empty())
76    return Error(ForwardRefVals.begin()->second.second,
77                 "use of undefined value '@" + ForwardRefVals.begin()->first +
78                 "'");
79
80  if (!ForwardRefValIDs.empty())
81    return Error(ForwardRefValIDs.begin()->second.second,
82                 "use of undefined value '@" +
83                 utostr(ForwardRefValIDs.begin()->first) + "'");
84
85  // Look for intrinsic functions and CallInst that need to be upgraded
86  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
87    UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
88
89  return false;
90}
91
92//===----------------------------------------------------------------------===//
93// Top-Level Entities
94//===----------------------------------------------------------------------===//
95
96bool LLParser::ParseTopLevelEntities() {
97  while (1) {
98    switch (Lex.getKind()) {
99    default:         return TokError("expected top-level entity");
100    case lltok::Eof: return false;
101    //case lltok::kw_define:
102    case lltok::kw_declare: if (ParseDeclare()) return true; break;
103    case lltok::kw_define:  if (ParseDefine()) return true; break;
104    case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
105    case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
106    case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
107    case lltok::kw_type:    if (ParseUnnamedType()) return true; break;
108    case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
109    case lltok::LocalVar:   if (ParseNamedType()) return true; break;
110    case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
111
112    // The Global variable production with no name can have many different
113    // optional leading prefixes, the production is:
114    // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
115    //               OptionalAddrSpace ('constant'|'global') ...
116    case lltok::kw_private:       // OptionalLinkage
117    case lltok::kw_internal:      // OptionalLinkage
118    case lltok::kw_weak:          // OptionalLinkage
119    case lltok::kw_weak_odr:      // OptionalLinkage
120    case lltok::kw_linkonce:      // OptionalLinkage
121    case lltok::kw_linkonce_odr:  // OptionalLinkage
122    case lltok::kw_appending:     // OptionalLinkage
123    case lltok::kw_dllexport:     // OptionalLinkage
124    case lltok::kw_common:        // OptionalLinkage
125    case lltok::kw_common_odr:    // OptionalLinkage
126    case lltok::kw_dllimport:     // OptionalLinkage
127    case lltok::kw_extern_weak:   // OptionalLinkage
128    case lltok::kw_external: {    // OptionalLinkage
129      unsigned Linkage, Visibility;
130      if (ParseOptionalLinkage(Linkage) ||
131          ParseOptionalVisibility(Visibility) ||
132          ParseGlobal("", 0, Linkage, true, Visibility))
133        return true;
134      break;
135    }
136    case lltok::kw_default:       // OptionalVisibility
137    case lltok::kw_hidden:        // OptionalVisibility
138    case lltok::kw_protected: {   // OptionalVisibility
139      unsigned Visibility;
140      if (ParseOptionalVisibility(Visibility) ||
141          ParseGlobal("", 0, 0, false, Visibility))
142        return true;
143      break;
144    }
145
146    case lltok::kw_thread_local:  // OptionalThreadLocal
147    case lltok::kw_addrspace:     // OptionalAddrSpace
148    case lltok::kw_constant:      // GlobalType
149    case lltok::kw_global:        // GlobalType
150      if (ParseGlobal("", 0, 0, false, 0)) return true;
151      break;
152    }
153  }
154}
155
156
157/// toplevelentity
158///   ::= 'module' 'asm' STRINGCONSTANT
159bool LLParser::ParseModuleAsm() {
160  assert(Lex.getKind() == lltok::kw_module);
161  Lex.Lex();
162
163  std::string AsmStr;
164  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
165      ParseStringConstant(AsmStr)) return true;
166
167  const std::string &AsmSoFar = M->getModuleInlineAsm();
168  if (AsmSoFar.empty())
169    M->setModuleInlineAsm(AsmStr);
170  else
171    M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr);
172  return false;
173}
174
175/// toplevelentity
176///   ::= 'target' 'triple' '=' STRINGCONSTANT
177///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
178bool LLParser::ParseTargetDefinition() {
179  assert(Lex.getKind() == lltok::kw_target);
180  std::string Str;
181  switch (Lex.Lex()) {
182  default: return TokError("unknown target property");
183  case lltok::kw_triple:
184    Lex.Lex();
185    if (ParseToken(lltok::equal, "expected '=' after target triple") ||
186        ParseStringConstant(Str))
187      return true;
188    M->setTargetTriple(Str);
189    return false;
190  case lltok::kw_datalayout:
191    Lex.Lex();
192    if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
193        ParseStringConstant(Str))
194      return true;
195    M->setDataLayout(Str);
196    return false;
197  }
198}
199
200/// toplevelentity
201///   ::= 'deplibs' '=' '[' ']'
202///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
203bool LLParser::ParseDepLibs() {
204  assert(Lex.getKind() == lltok::kw_deplibs);
205  Lex.Lex();
206  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
207      ParseToken(lltok::lsquare, "expected '=' after deplibs"))
208    return true;
209
210  if (EatIfPresent(lltok::rsquare))
211    return false;
212
213  std::string Str;
214  if (ParseStringConstant(Str)) return true;
215  M->addLibrary(Str);
216
217  while (EatIfPresent(lltok::comma)) {
218    if (ParseStringConstant(Str)) return true;
219    M->addLibrary(Str);
220  }
221
222  return ParseToken(lltok::rsquare, "expected ']' at end of list");
223}
224
225/// toplevelentity
226///   ::= 'type' type
227bool LLParser::ParseUnnamedType() {
228  assert(Lex.getKind() == lltok::kw_type);
229  LocTy TypeLoc = Lex.getLoc();
230  Lex.Lex(); // eat kw_type
231
232  PATypeHolder Ty(Type::VoidTy);
233  if (ParseType(Ty)) return true;
234
235  unsigned TypeID = NumberedTypes.size();
236
237  // See if this type was previously referenced.
238  std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
239    FI = ForwardRefTypeIDs.find(TypeID);
240  if (FI != ForwardRefTypeIDs.end()) {
241    if (FI->second.first.get() == Ty)
242      return Error(TypeLoc, "self referential type is invalid");
243
244    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
245    Ty = FI->second.first.get();
246    ForwardRefTypeIDs.erase(FI);
247  }
248
249  NumberedTypes.push_back(Ty);
250
251  return false;
252}
253
254/// toplevelentity
255///   ::= LocalVar '=' 'type' type
256bool LLParser::ParseNamedType() {
257  std::string Name = Lex.getStrVal();
258  LocTy NameLoc = Lex.getLoc();
259  Lex.Lex();  // eat LocalVar.
260
261  PATypeHolder Ty(Type::VoidTy);
262
263  if (ParseToken(lltok::equal, "expected '=' after name") ||
264      ParseToken(lltok::kw_type, "expected 'type' after name") ||
265      ParseType(Ty))
266    return true;
267
268  // Set the type name, checking for conflicts as we do so.
269  bool AlreadyExists = M->addTypeName(Name, Ty);
270  if (!AlreadyExists) return false;
271
272  // See if this type is a forward reference.  We need to eagerly resolve
273  // types to allow recursive type redefinitions below.
274  std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator
275  FI = ForwardRefTypes.find(Name);
276  if (FI != ForwardRefTypes.end()) {
277    if (FI->second.first.get() == Ty)
278      return Error(NameLoc, "self referential type is invalid");
279
280    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
281    Ty = FI->second.first.get();
282    ForwardRefTypes.erase(FI);
283  }
284
285  // Inserting a name that is already defined, get the existing name.
286  const Type *Existing = M->getTypeByName(Name);
287  assert(Existing && "Conflict but no matching type?!");
288
289  // Otherwise, this is an attempt to redefine a type. That's okay if
290  // the redefinition is identical to the original.
291  // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
292  if (Existing == Ty) return false;
293
294  // Any other kind of (non-equivalent) redefinition is an error.
295  return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
296               Ty->getDescription() + "'");
297}
298
299
300/// toplevelentity
301///   ::= 'declare' FunctionHeader
302bool LLParser::ParseDeclare() {
303  assert(Lex.getKind() == lltok::kw_declare);
304  Lex.Lex();
305
306  Function *F;
307  return ParseFunctionHeader(F, false);
308}
309
310/// toplevelentity
311///   ::= 'define' FunctionHeader '{' ...
312bool LLParser::ParseDefine() {
313  assert(Lex.getKind() == lltok::kw_define);
314  Lex.Lex();
315
316  Function *F;
317  return ParseFunctionHeader(F, true) ||
318         ParseFunctionBody(*F);
319}
320
321/// ParseGlobalType
322///   ::= 'constant'
323///   ::= 'global'
324bool LLParser::ParseGlobalType(bool &IsConstant) {
325  if (Lex.getKind() == lltok::kw_constant)
326    IsConstant = true;
327  else if (Lex.getKind() == lltok::kw_global)
328    IsConstant = false;
329  else {
330    IsConstant = false;
331    return TokError("expected 'global' or 'constant'");
332  }
333  Lex.Lex();
334  return false;
335}
336
337/// ParseNamedGlobal:
338///   GlobalVar '=' OptionalVisibility ALIAS ...
339///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
340bool LLParser::ParseNamedGlobal() {
341  assert(Lex.getKind() == lltok::GlobalVar);
342  LocTy NameLoc = Lex.getLoc();
343  std::string Name = Lex.getStrVal();
344  Lex.Lex();
345
346  bool HasLinkage;
347  unsigned Linkage, Visibility;
348  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
349      ParseOptionalLinkage(Linkage, HasLinkage) ||
350      ParseOptionalVisibility(Visibility))
351    return true;
352
353  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
354    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
355  return ParseAlias(Name, NameLoc, Visibility);
356}
357
358/// ParseAlias:
359///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
360/// Aliasee
361///   ::= TypeAndValue | 'bitcast' '(' TypeAndValue 'to' Type ')'
362///
363/// Everything through visibility has already been parsed.
364///
365bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
366                          unsigned Visibility) {
367  assert(Lex.getKind() == lltok::kw_alias);
368  Lex.Lex();
369  unsigned Linkage;
370  LocTy LinkageLoc = Lex.getLoc();
371  if (ParseOptionalLinkage(Linkage))
372    return true;
373
374  if (Linkage != GlobalValue::ExternalLinkage &&
375      Linkage != GlobalValue::WeakAnyLinkage &&
376      Linkage != GlobalValue::WeakODRLinkage &&
377      Linkage != GlobalValue::InternalLinkage &&
378      Linkage != GlobalValue::PrivateLinkage)
379    return Error(LinkageLoc, "invalid linkage type for alias");
380
381  Constant *Aliasee;
382  LocTy AliaseeLoc = Lex.getLoc();
383  if (Lex.getKind() != lltok::kw_bitcast) {
384    if (ParseGlobalTypeAndValue(Aliasee)) return true;
385  } else {
386    // The bitcast dest type is not present, it is implied by the dest type.
387    ValID ID;
388    if (ParseValID(ID)) return true;
389    if (ID.Kind != ValID::t_Constant)
390      return Error(AliaseeLoc, "invalid aliasee");
391    Aliasee = ID.ConstantVal;
392  }
393
394  if (!isa<PointerType>(Aliasee->getType()))
395    return Error(AliaseeLoc, "alias must have pointer type");
396
397  // Okay, create the alias but do not insert it into the module yet.
398  GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
399                                    (GlobalValue::LinkageTypes)Linkage, Name,
400                                    Aliasee);
401  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
402
403  // See if this value already exists in the symbol table.  If so, it is either
404  // a redefinition or a definition of a forward reference.
405  if (GlobalValue *Val =
406        cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name))) {
407    // See if this was a redefinition.  If so, there is no entry in
408    // ForwardRefVals.
409    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
410      I = ForwardRefVals.find(Name);
411    if (I == ForwardRefVals.end())
412      return Error(NameLoc, "redefinition of global named '@" + Name + "'");
413
414    // Otherwise, this was a definition of forward ref.  Verify that types
415    // agree.
416    if (Val->getType() != GA->getType())
417      return Error(NameLoc,
418              "forward reference and definition of alias have different types");
419
420    // If they agree, just RAUW the old value with the alias and remove the
421    // forward ref info.
422    Val->replaceAllUsesWith(GA);
423    Val->eraseFromParent();
424    ForwardRefVals.erase(I);
425  }
426
427  // Insert into the module, we know its name won't collide now.
428  M->getAliasList().push_back(GA);
429  assert(GA->getNameStr() == Name && "Should not be a name conflict!");
430
431  return false;
432}
433
434/// ParseGlobal
435///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
436///       OptionalAddrSpace GlobalType Type Const
437///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
438///       OptionalAddrSpace GlobalType Type Const
439///
440/// Everything through visibility has been parsed already.
441///
442bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
443                           unsigned Linkage, bool HasLinkage,
444                           unsigned Visibility) {
445  unsigned AddrSpace;
446  bool ThreadLocal, IsConstant;
447  LocTy TyLoc;
448
449  PATypeHolder Ty(Type::VoidTy);
450  if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
451      ParseOptionalAddrSpace(AddrSpace) ||
452      ParseGlobalType(IsConstant) ||
453      ParseType(Ty, TyLoc))
454    return true;
455
456  // If the linkage is specified and is external, then no initializer is
457  // present.
458  Constant *Init = 0;
459  if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
460                      Linkage != GlobalValue::ExternalWeakLinkage &&
461                      Linkage != GlobalValue::ExternalLinkage)) {
462    if (ParseGlobalValue(Ty, Init))
463      return true;
464  }
465
466  if (isa<FunctionType>(Ty) || Ty == Type::LabelTy)
467    return Error(TyLoc, "invalid type for global variable");
468
469  GlobalVariable *GV = 0;
470
471  // See if the global was forward referenced, if so, use the global.
472  if (!Name.empty()) {
473    if ((GV = M->getGlobalVariable(Name, true)) &&
474        !ForwardRefVals.erase(Name))
475      return Error(NameLoc, "redefinition of global '@" + Name + "'");
476  } else {
477    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
478      I = ForwardRefValIDs.find(NumberedVals.size());
479    if (I != ForwardRefValIDs.end()) {
480      GV = cast<GlobalVariable>(I->second.first);
481      ForwardRefValIDs.erase(I);
482    }
483  }
484
485  if (GV == 0) {
486    GV = new GlobalVariable(Ty, false, GlobalValue::ExternalLinkage, 0, Name,
487                            M, false, AddrSpace);
488  } else {
489    if (GV->getType()->getElementType() != Ty)
490      return Error(TyLoc,
491            "forward reference and definition of global have different types");
492
493    // Move the forward-reference to the correct spot in the module.
494    M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
495  }
496
497  if (Name.empty())
498    NumberedVals.push_back(GV);
499
500  // Set the parsed properties on the global.
501  if (Init)
502    GV->setInitializer(Init);
503  GV->setConstant(IsConstant);
504  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
505  GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
506  GV->setThreadLocal(ThreadLocal);
507
508  // Parse attributes on the global.
509  while (Lex.getKind() == lltok::comma) {
510    Lex.Lex();
511
512    if (Lex.getKind() == lltok::kw_section) {
513      Lex.Lex();
514      GV->setSection(Lex.getStrVal());
515      if (ParseToken(lltok::StringConstant, "expected global section string"))
516        return true;
517    } else if (Lex.getKind() == lltok::kw_align) {
518      unsigned Alignment;
519      if (ParseOptionalAlignment(Alignment)) return true;
520      GV->setAlignment(Alignment);
521    } else {
522      TokError("unknown global variable property!");
523    }
524  }
525
526  return false;
527}
528
529
530//===----------------------------------------------------------------------===//
531// GlobalValue Reference/Resolution Routines.
532//===----------------------------------------------------------------------===//
533
534/// GetGlobalVal - Get a value with the specified name or ID, creating a
535/// forward reference record if needed.  This can return null if the value
536/// exists but does not have the right type.
537GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
538                                    LocTy Loc) {
539  const PointerType *PTy = dyn_cast<PointerType>(Ty);
540  if (PTy == 0) {
541    Error(Loc, "global variable reference must have pointer type");
542    return 0;
543  }
544
545  // Look this name up in the normal function symbol table.
546  GlobalValue *Val =
547    cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
548
549  // If this is a forward reference for the value, see if we already created a
550  // forward ref record.
551  if (Val == 0) {
552    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
553      I = ForwardRefVals.find(Name);
554    if (I != ForwardRefVals.end())
555      Val = I->second.first;
556  }
557
558  // If we have the value in the symbol table or fwd-ref table, return it.
559  if (Val) {
560    if (Val->getType() == Ty) return Val;
561    Error(Loc, "'@" + Name + "' defined with type '" +
562          Val->getType()->getDescription() + "'");
563    return 0;
564  }
565
566  // Otherwise, create a new forward reference for this value and remember it.
567  GlobalValue *FwdVal;
568  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
569    // Function types can return opaque but functions can't.
570    if (isa<OpaqueType>(FT->getReturnType())) {
571      Error(Loc, "function may not return opaque type");
572      return 0;
573    }
574
575    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
576  } else {
577    FwdVal = new GlobalVariable(PTy->getElementType(), false,
578                                GlobalValue::ExternalWeakLinkage, 0, Name, M);
579  }
580
581  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
582  return FwdVal;
583}
584
585GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
586  const PointerType *PTy = dyn_cast<PointerType>(Ty);
587  if (PTy == 0) {
588    Error(Loc, "global variable reference must have pointer type");
589    return 0;
590  }
591
592  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
593
594  // If this is a forward reference for the value, see if we already created a
595  // forward ref record.
596  if (Val == 0) {
597    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
598      I = ForwardRefValIDs.find(ID);
599    if (I != ForwardRefValIDs.end())
600      Val = I->second.first;
601  }
602
603  // If we have the value in the symbol table or fwd-ref table, return it.
604  if (Val) {
605    if (Val->getType() == Ty) return Val;
606    Error(Loc, "'@" + utostr(ID) + "' defined with type '" +
607          Val->getType()->getDescription() + "'");
608    return 0;
609  }
610
611  // Otherwise, create a new forward reference for this value and remember it.
612  GlobalValue *FwdVal;
613  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
614    // Function types can return opaque but functions can't.
615    if (isa<OpaqueType>(FT->getReturnType())) {
616      Error(Loc, "function may not return opaque type");
617      return 0;
618    }
619    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
620  } else {
621    FwdVal = new GlobalVariable(PTy->getElementType(), false,
622                                GlobalValue::ExternalWeakLinkage, 0, "", M);
623  }
624
625  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
626  return FwdVal;
627}
628
629
630//===----------------------------------------------------------------------===//
631// Helper Routines.
632//===----------------------------------------------------------------------===//
633
634/// ParseToken - If the current token has the specified kind, eat it and return
635/// success.  Otherwise, emit the specified error and return failure.
636bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
637  if (Lex.getKind() != T)
638    return TokError(ErrMsg);
639  Lex.Lex();
640  return false;
641}
642
643/// ParseStringConstant
644///   ::= StringConstant
645bool LLParser::ParseStringConstant(std::string &Result) {
646  if (Lex.getKind() != lltok::StringConstant)
647    return TokError("expected string constant");
648  Result = Lex.getStrVal();
649  Lex.Lex();
650  return false;
651}
652
653/// ParseUInt32
654///   ::= uint32
655bool LLParser::ParseUInt32(unsigned &Val) {
656  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
657    return TokError("expected integer");
658  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
659  if (Val64 != unsigned(Val64))
660    return TokError("expected 32-bit integer (too large)");
661  Val = Val64;
662  Lex.Lex();
663  return false;
664}
665
666
667/// ParseOptionalAddrSpace
668///   := /*empty*/
669///   := 'addrspace' '(' uint32 ')'
670bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
671  AddrSpace = 0;
672  if (!EatIfPresent(lltok::kw_addrspace))
673    return false;
674  return ParseToken(lltok::lparen, "expected '(' in address space") ||
675         ParseUInt32(AddrSpace) ||
676         ParseToken(lltok::rparen, "expected ')' in address space");
677}
678
679/// ParseOptionalAttrs - Parse a potentially empty attribute list.  AttrKind
680/// indicates what kind of attribute list this is: 0: function arg, 1: result,
681/// 2: function attr.
682bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
683  Attrs = Attribute::None;
684  LocTy AttrLoc = Lex.getLoc();
685
686  while (1) {
687    switch (Lex.getKind()) {
688    case lltok::kw_sext:
689    case lltok::kw_zext:
690      // Treat these as signext/zeroext unless they are function attrs.
691      // FIXME: REMOVE THIS IN LLVM 3.0
692      if (AttrKind != 2) {
693        if (Lex.getKind() == lltok::kw_sext)
694          Attrs |= Attribute::SExt;
695        else
696          Attrs |= Attribute::ZExt;
697        break;
698      }
699      // FALL THROUGH.
700    default:  // End of attributes.
701      if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
702        return Error(AttrLoc, "invalid use of function-only attribute");
703
704      if (AttrKind != 0 && (Attrs & Attribute::ParameterOnly))
705        return Error(AttrLoc, "invalid use of parameter-only attribute");
706
707      return false;
708    case lltok::kw_zeroext:      Attrs |= Attribute::ZExt; break;
709    case lltok::kw_signext:      Attrs |= Attribute::SExt; break;
710    case lltok::kw_inreg:        Attrs |= Attribute::InReg; break;
711    case lltok::kw_sret:         Attrs |= Attribute::StructRet; break;
712    case lltok::kw_noalias:      Attrs |= Attribute::NoAlias; break;
713    case lltok::kw_nocapture:    Attrs |= Attribute::NoCapture; break;
714    case lltok::kw_byval:        Attrs |= Attribute::ByVal; break;
715    case lltok::kw_nest:         Attrs |= Attribute::Nest; break;
716
717    case lltok::kw_noreturn:     Attrs |= Attribute::NoReturn; break;
718    case lltok::kw_nounwind:     Attrs |= Attribute::NoUnwind; break;
719    case lltok::kw_noinline:     Attrs |= Attribute::NoInline; break;
720    case lltok::kw_readnone:     Attrs |= Attribute::ReadNone; break;
721    case lltok::kw_readonly:     Attrs |= Attribute::ReadOnly; break;
722    case lltok::kw_alwaysinline: Attrs |= Attribute::AlwaysInline; break;
723    case lltok::kw_optsize:      Attrs |= Attribute::OptimizeForSize; break;
724    case lltok::kw_ssp:          Attrs |= Attribute::StackProtect; break;
725    case lltok::kw_sspreq:       Attrs |= Attribute::StackProtectReq; break;
726
727
728    case lltok::kw_align: {
729      unsigned Alignment;
730      if (ParseOptionalAlignment(Alignment))
731        return true;
732      Attrs |= Attribute::constructAlignmentFromInt(Alignment);
733      continue;
734    }
735    }
736    Lex.Lex();
737  }
738}
739
740/// ParseOptionalLinkage
741///   ::= /*empty*/
742///   ::= 'private'
743///   ::= 'internal'
744///   ::= 'weak'
745///   ::= 'weak_odr'
746///   ::= 'linkonce'
747///   ::= 'linkonce_odr'
748///   ::= 'appending'
749///   ::= 'dllexport'
750///   ::= 'common'
751///   ::= 'common_odr'
752///   ::= 'dllimport'
753///   ::= 'extern_weak'
754///   ::= 'external'
755bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
756  HasLinkage = false;
757  switch (Lex.getKind()) {
758  default:                     Res = GlobalValue::ExternalLinkage; return false;
759  case lltok::kw_private:      Res = GlobalValue::PrivateLinkage; break;
760  case lltok::kw_internal:     Res = GlobalValue::InternalLinkage; break;
761  case lltok::kw_weak:         Res = GlobalValue::WeakAnyLinkage; break;
762  case lltok::kw_weak_odr:     Res = GlobalValue::WeakODRLinkage; break;
763  case lltok::kw_linkonce:     Res = GlobalValue::LinkOnceAnyLinkage; break;
764  case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break;
765  case lltok::kw_appending:    Res = GlobalValue::AppendingLinkage; break;
766  case lltok::kw_dllexport:    Res = GlobalValue::DLLExportLinkage; break;
767  case lltok::kw_common:       Res = GlobalValue::CommonAnyLinkage; break;
768  case lltok::kw_common_odr:   Res = GlobalValue::CommonODRLinkage; break;
769  case lltok::kw_dllimport:    Res = GlobalValue::DLLImportLinkage; break;
770  case lltok::kw_extern_weak:  Res = GlobalValue::ExternalWeakLinkage; break;
771  case lltok::kw_external:     Res = GlobalValue::ExternalLinkage; break;
772  }
773  Lex.Lex();
774  HasLinkage = true;
775  return false;
776}
777
778/// ParseOptionalVisibility
779///   ::= /*empty*/
780///   ::= 'default'
781///   ::= 'hidden'
782///   ::= 'protected'
783///
784bool LLParser::ParseOptionalVisibility(unsigned &Res) {
785  switch (Lex.getKind()) {
786  default:                  Res = GlobalValue::DefaultVisibility; return false;
787  case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
788  case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
789  case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
790  }
791  Lex.Lex();
792  return false;
793}
794
795/// ParseOptionalCallingConv
796///   ::= /*empty*/
797///   ::= 'ccc'
798///   ::= 'fastcc'
799///   ::= 'coldcc'
800///   ::= 'x86_stdcallcc'
801///   ::= 'x86_fastcallcc'
802///   ::= 'cc' UINT
803///
804bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
805  switch (Lex.getKind()) {
806  default:                       CC = CallingConv::C; return false;
807  case lltok::kw_ccc:            CC = CallingConv::C; break;
808  case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
809  case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
810  case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
811  case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
812  case lltok::kw_cc:             Lex.Lex(); return ParseUInt32(CC);
813  }
814  Lex.Lex();
815  return false;
816}
817
818/// ParseOptionalAlignment
819///   ::= /* empty */
820///   ::= 'align' 4
821bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
822  Alignment = 0;
823  if (!EatIfPresent(lltok::kw_align))
824    return false;
825  LocTy AlignLoc = Lex.getLoc();
826  if (ParseUInt32(Alignment)) return true;
827  if (!isPowerOf2_32(Alignment))
828    return Error(AlignLoc, "alignment is not a power of two");
829  return false;
830}
831
832/// ParseOptionalCommaAlignment
833///   ::= /* empty */
834///   ::= ',' 'align' 4
835bool LLParser::ParseOptionalCommaAlignment(unsigned &Alignment) {
836  Alignment = 0;
837  if (!EatIfPresent(lltok::comma))
838    return false;
839  return ParseToken(lltok::kw_align, "expected 'align'") ||
840         ParseUInt32(Alignment);
841}
842
843/// ParseIndexList
844///    ::=  (',' uint32)+
845bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices) {
846  if (Lex.getKind() != lltok::comma)
847    return TokError("expected ',' as start of index list");
848
849  while (EatIfPresent(lltok::comma)) {
850    unsigned Idx;
851    if (ParseUInt32(Idx)) return true;
852    Indices.push_back(Idx);
853  }
854
855  return false;
856}
857
858//===----------------------------------------------------------------------===//
859// Type Parsing.
860//===----------------------------------------------------------------------===//
861
862/// ParseType - Parse and resolve a full type.
863bool LLParser::ParseType(PATypeHolder &Result, bool AllowVoid) {
864  LocTy TypeLoc = Lex.getLoc();
865  if (ParseTypeRec(Result)) return true;
866
867  // Verify no unresolved uprefs.
868  if (!UpRefs.empty())
869    return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
870
871  if (!AllowVoid && Result.get() == Type::VoidTy)
872    return Error(TypeLoc, "void type only allowed for function results");
873
874  return false;
875}
876
877/// HandleUpRefs - Every time we finish a new layer of types, this function is
878/// called.  It loops through the UpRefs vector, which is a list of the
879/// currently active types.  For each type, if the up-reference is contained in
880/// the newly completed type, we decrement the level count.  When the level
881/// count reaches zero, the up-referenced type is the type that is passed in:
882/// thus we can complete the cycle.
883///
884PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
885  // If Ty isn't abstract, or if there are no up-references in it, then there is
886  // nothing to resolve here.
887  if (!ty->isAbstract() || UpRefs.empty()) return ty;
888
889  PATypeHolder Ty(ty);
890#if 0
891  errs() << "Type '" << Ty->getDescription()
892         << "' newly formed.  Resolving upreferences.\n"
893         << UpRefs.size() << " upreferences active!\n";
894#endif
895
896  // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
897  // to zero), we resolve them all together before we resolve them to Ty.  At
898  // the end of the loop, if there is anything to resolve to Ty, it will be in
899  // this variable.
900  OpaqueType *TypeToResolve = 0;
901
902  for (unsigned i = 0; i != UpRefs.size(); ++i) {
903    // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
904    bool ContainsType =
905      std::find(Ty->subtype_begin(), Ty->subtype_end(),
906                UpRefs[i].LastContainedTy) != Ty->subtype_end();
907
908#if 0
909    errs() << "  UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
910           << UpRefs[i].LastContainedTy->getDescription() << ") = "
911           << (ContainsType ? "true" : "false")
912           << " level=" << UpRefs[i].NestingLevel << "\n";
913#endif
914    if (!ContainsType)
915      continue;
916
917    // Decrement level of upreference
918    unsigned Level = --UpRefs[i].NestingLevel;
919    UpRefs[i].LastContainedTy = Ty;
920
921    // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
922    if (Level != 0)
923      continue;
924
925#if 0
926    errs() << "  * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
927#endif
928    if (!TypeToResolve)
929      TypeToResolve = UpRefs[i].UpRefTy;
930    else
931      UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
932    UpRefs.erase(UpRefs.begin()+i);     // Remove from upreference list.
933    --i;                                // Do not skip the next element.
934  }
935
936  if (TypeToResolve)
937    TypeToResolve->refineAbstractTypeTo(Ty);
938
939  return Ty;
940}
941
942
943/// ParseTypeRec - The recursive function used to process the internal
944/// implementation details of types.
945bool LLParser::ParseTypeRec(PATypeHolder &Result) {
946  switch (Lex.getKind()) {
947  default:
948    return TokError("expected type");
949  case lltok::Type:
950    // TypeRec ::= 'float' | 'void' (etc)
951    Result = Lex.getTyVal();
952    Lex.Lex();
953    break;
954  case lltok::kw_opaque:
955    // TypeRec ::= 'opaque'
956    Result = OpaqueType::get();
957    Lex.Lex();
958    break;
959  case lltok::lbrace:
960    // TypeRec ::= '{' ... '}'
961    if (ParseStructType(Result, false))
962      return true;
963    break;
964  case lltok::lsquare:
965    // TypeRec ::= '[' ... ']'
966    Lex.Lex(); // eat the lsquare.
967    if (ParseArrayVectorType(Result, false))
968      return true;
969    break;
970  case lltok::less: // Either vector or packed struct.
971    // TypeRec ::= '<' ... '>'
972    Lex.Lex();
973    if (Lex.getKind() == lltok::lbrace) {
974      if (ParseStructType(Result, true) ||
975          ParseToken(lltok::greater, "expected '>' at end of packed struct"))
976        return true;
977    } else if (ParseArrayVectorType(Result, true))
978      return true;
979    break;
980  case lltok::LocalVar:
981  case lltok::StringConstant:  // FIXME: REMOVE IN LLVM 3.0
982    // TypeRec ::= %foo
983    if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
984      Result = T;
985    } else {
986      Result = OpaqueType::get();
987      ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
988                                            std::make_pair(Result,
989                                                           Lex.getLoc())));
990      M->addTypeName(Lex.getStrVal(), Result.get());
991    }
992    Lex.Lex();
993    break;
994
995  case lltok::LocalVarID:
996    // TypeRec ::= %4
997    if (Lex.getUIntVal() < NumberedTypes.size())
998      Result = NumberedTypes[Lex.getUIntVal()];
999    else {
1000      std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
1001        I = ForwardRefTypeIDs.find(Lex.getUIntVal());
1002      if (I != ForwardRefTypeIDs.end())
1003        Result = I->second.first;
1004      else {
1005        Result = OpaqueType::get();
1006        ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
1007                                                std::make_pair(Result,
1008                                                               Lex.getLoc())));
1009      }
1010    }
1011    Lex.Lex();
1012    break;
1013  case lltok::backslash: {
1014    // TypeRec ::= '\' 4
1015    Lex.Lex();
1016    unsigned Val;
1017    if (ParseUInt32(Val)) return true;
1018    OpaqueType *OT = OpaqueType::get();        // Use temporary placeholder.
1019    UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
1020    Result = OT;
1021    break;
1022  }
1023  }
1024
1025  // Parse the type suffixes.
1026  while (1) {
1027    switch (Lex.getKind()) {
1028    // End of type.
1029    default: return false;
1030
1031    // TypeRec ::= TypeRec '*'
1032    case lltok::star:
1033      if (Result.get() == Type::LabelTy)
1034        return TokError("basic block pointers are invalid");
1035      if (Result.get() == Type::VoidTy)
1036        return TokError("pointers to void are invalid; use i8* instead");
1037      Result = HandleUpRefs(PointerType::getUnqual(Result.get()));
1038      Lex.Lex();
1039      break;
1040
1041    // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1042    case lltok::kw_addrspace: {
1043      if (Result.get() == Type::LabelTy)
1044        return TokError("basic block pointers are invalid");
1045      if (Result.get() == Type::VoidTy)
1046        return TokError("pointers to void are invalid; use i8* instead");
1047      unsigned AddrSpace;
1048      if (ParseOptionalAddrSpace(AddrSpace) ||
1049          ParseToken(lltok::star, "expected '*' in address space"))
1050        return true;
1051
1052      Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace));
1053      break;
1054    }
1055
1056    /// Types '(' ArgTypeListI ')' OptFuncAttrs
1057    case lltok::lparen:
1058      if (ParseFunctionType(Result))
1059        return true;
1060      break;
1061    }
1062  }
1063}
1064
1065/// ParseParameterList
1066///    ::= '(' ')'
1067///    ::= '(' Arg (',' Arg)* ')'
1068///  Arg
1069///    ::= Type OptionalAttributes Value OptionalAttributes
1070bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1071                                  PerFunctionState &PFS) {
1072  if (ParseToken(lltok::lparen, "expected '(' in call"))
1073    return true;
1074
1075  while (Lex.getKind() != lltok::rparen) {
1076    // If this isn't the first argument, we need a comma.
1077    if (!ArgList.empty() &&
1078        ParseToken(lltok::comma, "expected ',' in argument list"))
1079      return true;
1080
1081    // Parse the argument.
1082    LocTy ArgLoc;
1083    PATypeHolder ArgTy(Type::VoidTy);
1084    unsigned ArgAttrs1, ArgAttrs2;
1085    Value *V;
1086    if (ParseType(ArgTy, ArgLoc) ||
1087        ParseOptionalAttrs(ArgAttrs1, 0) ||
1088        ParseValue(ArgTy, V, PFS) ||
1089        // FIXME: Should not allow attributes after the argument, remove this in
1090        // LLVM 3.0.
1091        ParseOptionalAttrs(ArgAttrs2, 0))
1092      return true;
1093    ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1094  }
1095
1096  Lex.Lex();  // Lex the ')'.
1097  return false;
1098}
1099
1100
1101
1102/// ParseArgumentList - Parse the argument list for a function type or function
1103/// prototype.  If 'inType' is true then we are parsing a FunctionType.
1104///   ::= '(' ArgTypeListI ')'
1105/// ArgTypeListI
1106///   ::= /*empty*/
1107///   ::= '...'
1108///   ::= ArgTypeList ',' '...'
1109///   ::= ArgType (',' ArgType)*
1110///
1111bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
1112                                 bool &isVarArg, bool inType) {
1113  isVarArg = false;
1114  assert(Lex.getKind() == lltok::lparen);
1115  Lex.Lex(); // eat the (.
1116
1117  if (Lex.getKind() == lltok::rparen) {
1118    // empty
1119  } else if (Lex.getKind() == lltok::dotdotdot) {
1120    isVarArg = true;
1121    Lex.Lex();
1122  } else {
1123    LocTy TypeLoc = Lex.getLoc();
1124    PATypeHolder ArgTy(Type::VoidTy);
1125    unsigned Attrs;
1126    std::string Name;
1127
1128    // If we're parsing a type, use ParseTypeRec, because we allow recursive
1129    // types (such as a function returning a pointer to itself).  If parsing a
1130    // function prototype, we require fully resolved types.
1131    if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1132        ParseOptionalAttrs(Attrs, 0)) return true;
1133
1134    if (ArgTy == Type::VoidTy)
1135      return Error(TypeLoc, "argument can not have void type");
1136
1137    if (Lex.getKind() == lltok::LocalVar ||
1138        Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1139      Name = Lex.getStrVal();
1140      Lex.Lex();
1141    }
1142
1143    if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1144      return Error(TypeLoc, "invalid type for function argument");
1145
1146    ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1147
1148    while (EatIfPresent(lltok::comma)) {
1149      // Handle ... at end of arg list.
1150      if (EatIfPresent(lltok::dotdotdot)) {
1151        isVarArg = true;
1152        break;
1153      }
1154
1155      // Otherwise must be an argument type.
1156      TypeLoc = Lex.getLoc();
1157      if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1158          ParseOptionalAttrs(Attrs, 0)) return true;
1159
1160      if (ArgTy == Type::VoidTy)
1161        return Error(TypeLoc, "argument can not have void type");
1162
1163      if (Lex.getKind() == lltok::LocalVar ||
1164          Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1165        Name = Lex.getStrVal();
1166        Lex.Lex();
1167      } else {
1168        Name = "";
1169      }
1170
1171      if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1172        return Error(TypeLoc, "invalid type for function argument");
1173
1174      ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1175    }
1176  }
1177
1178  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1179}
1180
1181/// ParseFunctionType
1182///  ::= Type ArgumentList OptionalAttrs
1183bool LLParser::ParseFunctionType(PATypeHolder &Result) {
1184  assert(Lex.getKind() == lltok::lparen);
1185
1186  if (!FunctionType::isValidReturnType(Result))
1187    return TokError("invalid function return type");
1188
1189  std::vector<ArgInfo> ArgList;
1190  bool isVarArg;
1191  unsigned Attrs;
1192  if (ParseArgumentList(ArgList, isVarArg, true) ||
1193      // FIXME: Allow, but ignore attributes on function types!
1194      // FIXME: Remove in LLVM 3.0
1195      ParseOptionalAttrs(Attrs, 2))
1196    return true;
1197
1198  // Reject names on the arguments lists.
1199  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1200    if (!ArgList[i].Name.empty())
1201      return Error(ArgList[i].Loc, "argument name invalid in function type");
1202    if (!ArgList[i].Attrs != 0) {
1203      // Allow but ignore attributes on function types; this permits
1204      // auto-upgrade.
1205      // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1206    }
1207  }
1208
1209  std::vector<const Type*> ArgListTy;
1210  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1211    ArgListTy.push_back(ArgList[i].Type);
1212
1213  Result = HandleUpRefs(FunctionType::get(Result.get(), ArgListTy, isVarArg));
1214  return false;
1215}
1216
1217/// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1218///   TypeRec
1219///     ::= '{' '}'
1220///     ::= '{' TypeRec (',' TypeRec)* '}'
1221///     ::= '<' '{' '}' '>'
1222///     ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1223bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
1224  assert(Lex.getKind() == lltok::lbrace);
1225  Lex.Lex(); // Consume the '{'
1226
1227  if (EatIfPresent(lltok::rbrace)) {
1228    Result = StructType::get(std::vector<const Type*>(), Packed);
1229    return false;
1230  }
1231
1232  std::vector<PATypeHolder> ParamsList;
1233  LocTy EltTyLoc = Lex.getLoc();
1234  if (ParseTypeRec(Result)) return true;
1235  ParamsList.push_back(Result);
1236
1237  if (Result == Type::VoidTy)
1238    return Error(EltTyLoc, "struct element can not have void type");
1239
1240  while (EatIfPresent(lltok::comma)) {
1241    EltTyLoc = Lex.getLoc();
1242    if (ParseTypeRec(Result)) return true;
1243
1244    if (Result == Type::VoidTy)
1245      return Error(EltTyLoc, "struct element can not have void type");
1246
1247    ParamsList.push_back(Result);
1248  }
1249
1250  if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
1251    return true;
1252
1253  std::vector<const Type*> ParamsListTy;
1254  for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1255    ParamsListTy.push_back(ParamsList[i].get());
1256  Result = HandleUpRefs(StructType::get(ParamsListTy, Packed));
1257  return false;
1258}
1259
1260/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1261/// token has already been consumed.
1262///   TypeRec
1263///     ::= '[' APSINTVAL 'x' Types ']'
1264///     ::= '<' APSINTVAL 'x' Types '>'
1265bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
1266  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1267      Lex.getAPSIntVal().getBitWidth() > 64)
1268    return TokError("expected number in address space");
1269
1270  LocTy SizeLoc = Lex.getLoc();
1271  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1272  Lex.Lex();
1273
1274  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1275      return true;
1276
1277  LocTy TypeLoc = Lex.getLoc();
1278  PATypeHolder EltTy(Type::VoidTy);
1279  if (ParseTypeRec(EltTy)) return true;
1280
1281  if (EltTy == Type::VoidTy)
1282    return Error(TypeLoc, "array and vector element type cannot be void");
1283
1284  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1285                 "expected end of sequential type"))
1286    return true;
1287
1288  if (isVector) {
1289    if (Size == 0)
1290      return Error(SizeLoc, "zero element vector is illegal");
1291    if ((unsigned)Size != Size)
1292      return Error(SizeLoc, "size too large for vector");
1293    if (!EltTy->isFloatingPoint() && !EltTy->isInteger())
1294      return Error(TypeLoc, "vector element type must be fp or integer");
1295    Result = VectorType::get(EltTy, unsigned(Size));
1296  } else {
1297    if (!EltTy->isFirstClassType() && !isa<OpaqueType>(EltTy))
1298      return Error(TypeLoc, "invalid array element type");
1299    Result = HandleUpRefs(ArrayType::get(EltTy, Size));
1300  }
1301  return false;
1302}
1303
1304//===----------------------------------------------------------------------===//
1305// Function Semantic Analysis.
1306//===----------------------------------------------------------------------===//
1307
1308LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f)
1309  : P(p), F(f) {
1310
1311  // Insert unnamed arguments into the NumberedVals list.
1312  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1313       AI != E; ++AI)
1314    if (!AI->hasName())
1315      NumberedVals.push_back(AI);
1316}
1317
1318LLParser::PerFunctionState::~PerFunctionState() {
1319  // If there were any forward referenced non-basicblock values, delete them.
1320  for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1321       I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1322    if (!isa<BasicBlock>(I->second.first)) {
1323      I->second.first->replaceAllUsesWith(UndefValue::get(I->second.first
1324                                                          ->getType()));
1325      delete I->second.first;
1326      I->second.first = 0;
1327    }
1328
1329  for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1330       I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1331    if (!isa<BasicBlock>(I->second.first)) {
1332      I->second.first->replaceAllUsesWith(UndefValue::get(I->second.first
1333                                                          ->getType()));
1334      delete I->second.first;
1335      I->second.first = 0;
1336    }
1337}
1338
1339bool LLParser::PerFunctionState::VerifyFunctionComplete() {
1340  if (!ForwardRefVals.empty())
1341    return P.Error(ForwardRefVals.begin()->second.second,
1342                   "use of undefined value '%" + ForwardRefVals.begin()->first +
1343                   "'");
1344  if (!ForwardRefValIDs.empty())
1345    return P.Error(ForwardRefValIDs.begin()->second.second,
1346                   "use of undefined value '%" +
1347                   utostr(ForwardRefValIDs.begin()->first) + "'");
1348  return false;
1349}
1350
1351
1352/// GetVal - Get a value with the specified name or ID, creating a
1353/// forward reference record if needed.  This can return null if the value
1354/// exists but does not have the right type.
1355Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1356                                          const Type *Ty, LocTy Loc) {
1357  // Look this name up in the normal function symbol table.
1358  Value *Val = F.getValueSymbolTable().lookup(Name);
1359
1360  // If this is a forward reference for the value, see if we already created a
1361  // forward ref record.
1362  if (Val == 0) {
1363    std::map<std::string, std::pair<Value*, LocTy> >::iterator
1364      I = ForwardRefVals.find(Name);
1365    if (I != ForwardRefVals.end())
1366      Val = I->second.first;
1367  }
1368
1369  // If we have the value in the symbol table or fwd-ref table, return it.
1370  if (Val) {
1371    if (Val->getType() == Ty) return Val;
1372    if (Ty == Type::LabelTy)
1373      P.Error(Loc, "'%" + Name + "' is not a basic block");
1374    else
1375      P.Error(Loc, "'%" + Name + "' defined with type '" +
1376              Val->getType()->getDescription() + "'");
1377    return 0;
1378  }
1379
1380  // Don't make placeholders with invalid type.
1381  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) {
1382    P.Error(Loc, "invalid use of a non-first-class type");
1383    return 0;
1384  }
1385
1386  // Otherwise, create a new forward reference for this value and remember it.
1387  Value *FwdVal;
1388  if (Ty == Type::LabelTy)
1389    FwdVal = BasicBlock::Create(Name, &F);
1390  else
1391    FwdVal = new Argument(Ty, Name);
1392
1393  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1394  return FwdVal;
1395}
1396
1397Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
1398                                          LocTy Loc) {
1399  // Look this name up in the normal function symbol table.
1400  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1401
1402  // If this is a forward reference for the value, see if we already created a
1403  // forward ref record.
1404  if (Val == 0) {
1405    std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1406      I = ForwardRefValIDs.find(ID);
1407    if (I != ForwardRefValIDs.end())
1408      Val = I->second.first;
1409  }
1410
1411  // If we have the value in the symbol table or fwd-ref table, return it.
1412  if (Val) {
1413    if (Val->getType() == Ty) return Val;
1414    if (Ty == Type::LabelTy)
1415      P.Error(Loc, "'%" + utostr(ID) + "' is not a basic block");
1416    else
1417      P.Error(Loc, "'%" + utostr(ID) + "' defined with type '" +
1418              Val->getType()->getDescription() + "'");
1419    return 0;
1420  }
1421
1422  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) {
1423    P.Error(Loc, "invalid use of a non-first-class type");
1424    return 0;
1425  }
1426
1427  // Otherwise, create a new forward reference for this value and remember it.
1428  Value *FwdVal;
1429  if (Ty == Type::LabelTy)
1430    FwdVal = BasicBlock::Create("", &F);
1431  else
1432    FwdVal = new Argument(Ty);
1433
1434  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1435  return FwdVal;
1436}
1437
1438/// SetInstName - After an instruction is parsed and inserted into its
1439/// basic block, this installs its name.
1440bool LLParser::PerFunctionState::SetInstName(int NameID,
1441                                             const std::string &NameStr,
1442                                             LocTy NameLoc, Instruction *Inst) {
1443  // If this instruction has void type, it cannot have a name or ID specified.
1444  if (Inst->getType() == Type::VoidTy) {
1445    if (NameID != -1 || !NameStr.empty())
1446      return P.Error(NameLoc, "instructions returning void cannot have a name");
1447    return false;
1448  }
1449
1450  // If this was a numbered instruction, verify that the instruction is the
1451  // expected value and resolve any forward references.
1452  if (NameStr.empty()) {
1453    // If neither a name nor an ID was specified, just use the next ID.
1454    if (NameID == -1)
1455      NameID = NumberedVals.size();
1456
1457    if (unsigned(NameID) != NumberedVals.size())
1458      return P.Error(NameLoc, "instruction expected to be numbered '%" +
1459                     utostr(NumberedVals.size()) + "'");
1460
1461    std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1462      ForwardRefValIDs.find(NameID);
1463    if (FI != ForwardRefValIDs.end()) {
1464      if (FI->second.first->getType() != Inst->getType())
1465        return P.Error(NameLoc, "instruction forward referenced with type '" +
1466                       FI->second.first->getType()->getDescription() + "'");
1467      FI->second.first->replaceAllUsesWith(Inst);
1468      ForwardRefValIDs.erase(FI);
1469    }
1470
1471    NumberedVals.push_back(Inst);
1472    return false;
1473  }
1474
1475  // Otherwise, the instruction had a name.  Resolve forward refs and set it.
1476  std::map<std::string, std::pair<Value*, LocTy> >::iterator
1477    FI = ForwardRefVals.find(NameStr);
1478  if (FI != ForwardRefVals.end()) {
1479    if (FI->second.first->getType() != Inst->getType())
1480      return P.Error(NameLoc, "instruction forward referenced with type '" +
1481                     FI->second.first->getType()->getDescription() + "'");
1482    FI->second.first->replaceAllUsesWith(Inst);
1483    ForwardRefVals.erase(FI);
1484  }
1485
1486  // Set the name on the instruction.
1487  Inst->setName(NameStr);
1488
1489  if (Inst->getNameStr() != NameStr)
1490    return P.Error(NameLoc, "multiple definition of local value named '" +
1491                   NameStr + "'");
1492  return false;
1493}
1494
1495/// GetBB - Get a basic block with the specified name or ID, creating a
1496/// forward reference record if needed.
1497BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1498                                              LocTy Loc) {
1499  return cast_or_null<BasicBlock>(GetVal(Name, Type::LabelTy, Loc));
1500}
1501
1502BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1503  return cast_or_null<BasicBlock>(GetVal(ID, Type::LabelTy, Loc));
1504}
1505
1506/// DefineBB - Define the specified basic block, which is either named or
1507/// unnamed.  If there is an error, this returns null otherwise it returns
1508/// the block being defined.
1509BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1510                                                 LocTy Loc) {
1511  BasicBlock *BB;
1512  if (Name.empty())
1513    BB = GetBB(NumberedVals.size(), Loc);
1514  else
1515    BB = GetBB(Name, Loc);
1516  if (BB == 0) return 0; // Already diagnosed error.
1517
1518  // Move the block to the end of the function.  Forward ref'd blocks are
1519  // inserted wherever they happen to be referenced.
1520  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1521
1522  // Remove the block from forward ref sets.
1523  if (Name.empty()) {
1524    ForwardRefValIDs.erase(NumberedVals.size());
1525    NumberedVals.push_back(BB);
1526  } else {
1527    // BB forward references are already in the function symbol table.
1528    ForwardRefVals.erase(Name);
1529  }
1530
1531  return BB;
1532}
1533
1534//===----------------------------------------------------------------------===//
1535// Constants.
1536//===----------------------------------------------------------------------===//
1537
1538/// ParseValID - Parse an abstract value that doesn't necessarily have a
1539/// type implied.  For example, if we parse "4" we don't know what integer type
1540/// it has.  The value will later be combined with its type and checked for
1541/// sanity.
1542bool LLParser::ParseValID(ValID &ID) {
1543  ID.Loc = Lex.getLoc();
1544  switch (Lex.getKind()) {
1545  default: return TokError("expected value token");
1546  case lltok::GlobalID:  // @42
1547    ID.UIntVal = Lex.getUIntVal();
1548    ID.Kind = ValID::t_GlobalID;
1549    break;
1550  case lltok::GlobalVar:  // @foo
1551    ID.StrVal = Lex.getStrVal();
1552    ID.Kind = ValID::t_GlobalName;
1553    break;
1554  case lltok::LocalVarID:  // %42
1555    ID.UIntVal = Lex.getUIntVal();
1556    ID.Kind = ValID::t_LocalID;
1557    break;
1558  case lltok::LocalVar:  // %foo
1559  case lltok::StringConstant:  // "foo" - FIXME: REMOVE IN LLVM 3.0
1560    ID.StrVal = Lex.getStrVal();
1561    ID.Kind = ValID::t_LocalName;
1562    break;
1563  case lltok::APSInt:
1564    ID.APSIntVal = Lex.getAPSIntVal();
1565    ID.Kind = ValID::t_APSInt;
1566    break;
1567  case lltok::APFloat:
1568    ID.APFloatVal = Lex.getAPFloatVal();
1569    ID.Kind = ValID::t_APFloat;
1570    break;
1571  case lltok::kw_true:
1572    ID.ConstantVal = ConstantInt::getTrue();
1573    ID.Kind = ValID::t_Constant;
1574    break;
1575  case lltok::kw_false:
1576    ID.ConstantVal = ConstantInt::getFalse();
1577    ID.Kind = ValID::t_Constant;
1578    break;
1579  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
1580  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
1581  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
1582
1583  case lltok::lbrace: {
1584    // ValID ::= '{' ConstVector '}'
1585    Lex.Lex();
1586    SmallVector<Constant*, 16> Elts;
1587    if (ParseGlobalValueVector(Elts) ||
1588        ParseToken(lltok::rbrace, "expected end of struct constant"))
1589      return true;
1590
1591    ID.ConstantVal = ConstantStruct::get(&Elts[0], Elts.size(), false);
1592    ID.Kind = ValID::t_Constant;
1593    return false;
1594  }
1595  case lltok::less: {
1596    // ValID ::= '<' ConstVector '>'         --> Vector.
1597    // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1598    Lex.Lex();
1599    bool isPackedStruct = EatIfPresent(lltok::lbrace);
1600
1601    SmallVector<Constant*, 16> Elts;
1602    LocTy FirstEltLoc = Lex.getLoc();
1603    if (ParseGlobalValueVector(Elts) ||
1604        (isPackedStruct &&
1605         ParseToken(lltok::rbrace, "expected end of packed struct")) ||
1606        ParseToken(lltok::greater, "expected end of constant"))
1607      return true;
1608
1609    if (isPackedStruct) {
1610      ID.ConstantVal = ConstantStruct::get(&Elts[0], Elts.size(), true);
1611      ID.Kind = ValID::t_Constant;
1612      return false;
1613    }
1614
1615    if (Elts.empty())
1616      return Error(ID.Loc, "constant vector must not be empty");
1617
1618    if (!Elts[0]->getType()->isInteger() &&
1619        !Elts[0]->getType()->isFloatingPoint())
1620      return Error(FirstEltLoc,
1621                   "vector elements must have integer or floating point type");
1622
1623    // Verify that all the vector elements have the same type.
1624    for (unsigned i = 1, e = Elts.size(); i != e; ++i)
1625      if (Elts[i]->getType() != Elts[0]->getType())
1626        return Error(FirstEltLoc,
1627                     "vector element #" + utostr(i) +
1628                    " is not of type '" + Elts[0]->getType()->getDescription());
1629
1630    ID.ConstantVal = ConstantVector::get(&Elts[0], Elts.size());
1631    ID.Kind = ValID::t_Constant;
1632    return false;
1633  }
1634  case lltok::lsquare: {   // Array Constant
1635    Lex.Lex();
1636    SmallVector<Constant*, 16> Elts;
1637    LocTy FirstEltLoc = Lex.getLoc();
1638    if (ParseGlobalValueVector(Elts) ||
1639        ParseToken(lltok::rsquare, "expected end of array constant"))
1640      return true;
1641
1642    // Handle empty element.
1643    if (Elts.empty()) {
1644      // Use undef instead of an array because it's inconvenient to determine
1645      // the element type at this point, there being no elements to examine.
1646      ID.Kind = ValID::t_EmptyArray;
1647      return false;
1648    }
1649
1650    if (!Elts[0]->getType()->isFirstClassType())
1651      return Error(FirstEltLoc, "invalid array element type: " +
1652                   Elts[0]->getType()->getDescription());
1653
1654    ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
1655
1656    // Verify all elements are correct type!
1657    for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
1658      if (Elts[i]->getType() != Elts[0]->getType())
1659        return Error(FirstEltLoc,
1660                     "array element #" + utostr(i) +
1661                     " is not of type '" +Elts[0]->getType()->getDescription());
1662    }
1663
1664    ID.ConstantVal = ConstantArray::get(ATy, &Elts[0], Elts.size());
1665    ID.Kind = ValID::t_Constant;
1666    return false;
1667  }
1668  case lltok::kw_c:  // c "foo"
1669    Lex.Lex();
1670    ID.ConstantVal = ConstantArray::get(Lex.getStrVal(), false);
1671    if (ParseToken(lltok::StringConstant, "expected string")) return true;
1672    ID.Kind = ValID::t_Constant;
1673    return false;
1674
1675  case lltok::kw_asm: {
1676    // ValID ::= 'asm' SideEffect? STRINGCONSTANT ',' STRINGCONSTANT
1677    bool HasSideEffect;
1678    Lex.Lex();
1679    if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
1680        ParseStringConstant(ID.StrVal) ||
1681        ParseToken(lltok::comma, "expected comma in inline asm expression") ||
1682        ParseToken(lltok::StringConstant, "expected constraint string"))
1683      return true;
1684    ID.StrVal2 = Lex.getStrVal();
1685    ID.UIntVal = HasSideEffect;
1686    ID.Kind = ValID::t_InlineAsm;
1687    return false;
1688  }
1689
1690  case lltok::kw_trunc:
1691  case lltok::kw_zext:
1692  case lltok::kw_sext:
1693  case lltok::kw_fptrunc:
1694  case lltok::kw_fpext:
1695  case lltok::kw_bitcast:
1696  case lltok::kw_uitofp:
1697  case lltok::kw_sitofp:
1698  case lltok::kw_fptoui:
1699  case lltok::kw_fptosi:
1700  case lltok::kw_inttoptr:
1701  case lltok::kw_ptrtoint: {
1702    unsigned Opc = Lex.getUIntVal();
1703    PATypeHolder DestTy(Type::VoidTy);
1704    Constant *SrcVal;
1705    Lex.Lex();
1706    if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
1707        ParseGlobalTypeAndValue(SrcVal) ||
1708        ParseToken(lltok::kw_to, "expected 'to' int constantexpr cast") ||
1709        ParseType(DestTy) ||
1710        ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
1711      return true;
1712    if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
1713      return Error(ID.Loc, "invalid cast opcode for cast from '" +
1714                   SrcVal->getType()->getDescription() + "' to '" +
1715                   DestTy->getDescription() + "'");
1716    ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, SrcVal,
1717                                           DestTy);
1718    ID.Kind = ValID::t_Constant;
1719    return false;
1720  }
1721  case lltok::kw_extractvalue: {
1722    Lex.Lex();
1723    Constant *Val;
1724    SmallVector<unsigned, 4> Indices;
1725    if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
1726        ParseGlobalTypeAndValue(Val) ||
1727        ParseIndexList(Indices) ||
1728        ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
1729      return true;
1730    if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
1731      return Error(ID.Loc, "extractvalue operand must be array or struct");
1732    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
1733                                          Indices.end()))
1734      return Error(ID.Loc, "invalid indices for extractvalue");
1735    ID.ConstantVal = ConstantExpr::getExtractValue(Val,
1736                                                   &Indices[0], Indices.size());
1737    ID.Kind = ValID::t_Constant;
1738    return false;
1739  }
1740  case lltok::kw_insertvalue: {
1741    Lex.Lex();
1742    Constant *Val0, *Val1;
1743    SmallVector<unsigned, 4> Indices;
1744    if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
1745        ParseGlobalTypeAndValue(Val0) ||
1746        ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
1747        ParseGlobalTypeAndValue(Val1) ||
1748        ParseIndexList(Indices) ||
1749        ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
1750      return true;
1751    if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
1752      return Error(ID.Loc, "extractvalue operand must be array or struct");
1753    if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
1754                                          Indices.end()))
1755      return Error(ID.Loc, "invalid indices for insertvalue");
1756    ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1,
1757                                                  &Indices[0], Indices.size());
1758    ID.Kind = ValID::t_Constant;
1759    return false;
1760  }
1761  case lltok::kw_icmp:
1762  case lltok::kw_fcmp:
1763  case lltok::kw_vicmp:
1764  case lltok::kw_vfcmp: {
1765    unsigned PredVal, Opc = Lex.getUIntVal();
1766    Constant *Val0, *Val1;
1767    Lex.Lex();
1768    if (ParseCmpPredicate(PredVal, Opc) ||
1769        ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
1770        ParseGlobalTypeAndValue(Val0) ||
1771        ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
1772        ParseGlobalTypeAndValue(Val1) ||
1773        ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
1774      return true;
1775
1776    if (Val0->getType() != Val1->getType())
1777      return Error(ID.Loc, "compare operands must have the same type");
1778
1779    CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
1780
1781    if (Opc == Instruction::FCmp) {
1782      if (!Val0->getType()->isFPOrFPVector())
1783        return Error(ID.Loc, "fcmp requires floating point operands");
1784      ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
1785    } else if (Opc == Instruction::ICmp) {
1786      if (!Val0->getType()->isIntOrIntVector() &&
1787          !isa<PointerType>(Val0->getType()))
1788        return Error(ID.Loc, "icmp requires pointer or integer operands");
1789      ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
1790    } else if (Opc == Instruction::VFCmp) {
1791      // FIXME: REMOVE VFCMP Support
1792      if (!Val0->getType()->isFPOrFPVector() ||
1793          !isa<VectorType>(Val0->getType()))
1794        return Error(ID.Loc, "vfcmp requires vector floating point operands");
1795      ID.ConstantVal = ConstantExpr::getVFCmp(Pred, Val0, Val1);
1796    } else if (Opc == Instruction::VICmp) {
1797      // FIXME: REMOVE VICMP Support
1798      if (!Val0->getType()->isIntOrIntVector() ||
1799          !isa<VectorType>(Val0->getType()))
1800        return Error(ID.Loc, "vicmp requires vector floating point operands");
1801      ID.ConstantVal = ConstantExpr::getVICmp(Pred, Val0, Val1);
1802    }
1803    ID.Kind = ValID::t_Constant;
1804    return false;
1805  }
1806
1807  // Binary Operators.
1808  case lltok::kw_add:
1809  case lltok::kw_sub:
1810  case lltok::kw_mul:
1811  case lltok::kw_udiv:
1812  case lltok::kw_sdiv:
1813  case lltok::kw_fdiv:
1814  case lltok::kw_urem:
1815  case lltok::kw_srem:
1816  case lltok::kw_frem: {
1817    unsigned Opc = Lex.getUIntVal();
1818    Constant *Val0, *Val1;
1819    Lex.Lex();
1820    if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
1821        ParseGlobalTypeAndValue(Val0) ||
1822        ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
1823        ParseGlobalTypeAndValue(Val1) ||
1824        ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
1825      return true;
1826    if (Val0->getType() != Val1->getType())
1827      return Error(ID.Loc, "operands of constexpr must have same type");
1828    if (!Val0->getType()->isIntOrIntVector() &&
1829        !Val0->getType()->isFPOrFPVector())
1830      return Error(ID.Loc,"constexpr requires integer, fp, or vector operands");
1831    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
1832    ID.Kind = ValID::t_Constant;
1833    return false;
1834  }
1835
1836  // Logical Operations
1837  case lltok::kw_shl:
1838  case lltok::kw_lshr:
1839  case lltok::kw_ashr:
1840  case lltok::kw_and:
1841  case lltok::kw_or:
1842  case lltok::kw_xor: {
1843    unsigned Opc = Lex.getUIntVal();
1844    Constant *Val0, *Val1;
1845    Lex.Lex();
1846    if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
1847        ParseGlobalTypeAndValue(Val0) ||
1848        ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
1849        ParseGlobalTypeAndValue(Val1) ||
1850        ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
1851      return true;
1852    if (Val0->getType() != Val1->getType())
1853      return Error(ID.Loc, "operands of constexpr must have same type");
1854    if (!Val0->getType()->isIntOrIntVector())
1855      return Error(ID.Loc,
1856                   "constexpr requires integer or integer vector operands");
1857    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
1858    ID.Kind = ValID::t_Constant;
1859    return false;
1860  }
1861
1862  case lltok::kw_getelementptr:
1863  case lltok::kw_shufflevector:
1864  case lltok::kw_insertelement:
1865  case lltok::kw_extractelement:
1866  case lltok::kw_select: {
1867    unsigned Opc = Lex.getUIntVal();
1868    SmallVector<Constant*, 16> Elts;
1869    Lex.Lex();
1870    if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
1871        ParseGlobalValueVector(Elts) ||
1872        ParseToken(lltok::rparen, "expected ')' in constantexpr"))
1873      return true;
1874
1875    if (Opc == Instruction::GetElementPtr) {
1876      if (Elts.size() == 0 || !isa<PointerType>(Elts[0]->getType()))
1877        return Error(ID.Loc, "getelementptr requires pointer operand");
1878
1879      if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
1880                                             (Value**)&Elts[1], Elts.size()-1))
1881        return Error(ID.Loc, "invalid indices for getelementptr");
1882      ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0],
1883                                                      &Elts[1], Elts.size()-1);
1884    } else if (Opc == Instruction::Select) {
1885      if (Elts.size() != 3)
1886        return Error(ID.Loc, "expected three operands to select");
1887      if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
1888                                                              Elts[2]))
1889        return Error(ID.Loc, Reason);
1890      ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
1891    } else if (Opc == Instruction::ShuffleVector) {
1892      if (Elts.size() != 3)
1893        return Error(ID.Loc, "expected three operands to shufflevector");
1894      if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
1895        return Error(ID.Loc, "invalid operands to shufflevector");
1896      ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
1897    } else if (Opc == Instruction::ExtractElement) {
1898      if (Elts.size() != 2)
1899        return Error(ID.Loc, "expected two operands to extractelement");
1900      if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
1901        return Error(ID.Loc, "invalid extractelement operands");
1902      ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
1903    } else {
1904      assert(Opc == Instruction::InsertElement && "Unknown opcode");
1905      if (Elts.size() != 3)
1906      return Error(ID.Loc, "expected three operands to insertelement");
1907      if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
1908        return Error(ID.Loc, "invalid insertelement operands");
1909      ID.ConstantVal = ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
1910    }
1911
1912    ID.Kind = ValID::t_Constant;
1913    return false;
1914  }
1915  }
1916
1917  Lex.Lex();
1918  return false;
1919}
1920
1921/// ParseGlobalValue - Parse a global value with the specified type.
1922bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&V) {
1923  V = 0;
1924  ValID ID;
1925  return ParseValID(ID) ||
1926         ConvertGlobalValIDToValue(Ty, ID, V);
1927}
1928
1929/// ConvertGlobalValIDToValue - Apply a type to a ValID to get a fully resolved
1930/// constant.
1931bool LLParser::ConvertGlobalValIDToValue(const Type *Ty, ValID &ID,
1932                                         Constant *&V) {
1933  if (isa<FunctionType>(Ty))
1934    return Error(ID.Loc, "functions are not values, refer to them as pointers");
1935
1936  switch (ID.Kind) {
1937  default: assert(0 && "Unknown ValID!");
1938  case ValID::t_LocalID:
1939  case ValID::t_LocalName:
1940    return Error(ID.Loc, "invalid use of function-local name");
1941  case ValID::t_InlineAsm:
1942    return Error(ID.Loc, "inline asm can only be an operand of call/invoke");
1943  case ValID::t_GlobalName:
1944    V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
1945    return V == 0;
1946  case ValID::t_GlobalID:
1947    V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
1948    return V == 0;
1949  case ValID::t_APSInt:
1950    if (!isa<IntegerType>(Ty))
1951      return Error(ID.Loc, "integer constant must have integer type");
1952    ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
1953    V = ConstantInt::get(ID.APSIntVal);
1954    return false;
1955  case ValID::t_APFloat:
1956    if (!Ty->isFloatingPoint() ||
1957        !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
1958      return Error(ID.Loc, "floating point constant invalid for type");
1959
1960    // The lexer has no type info, so builds all float and double FP constants
1961    // as double.  Fix this here.  Long double does not need this.
1962    if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
1963        Ty == Type::FloatTy) {
1964      bool Ignored;
1965      ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
1966                            &Ignored);
1967    }
1968    V = ConstantFP::get(ID.APFloatVal);
1969
1970    if (V->getType() != Ty)
1971      return Error(ID.Loc, "floating point constant does not have type '" +
1972                   Ty->getDescription() + "'");
1973
1974    return false;
1975  case ValID::t_Null:
1976    if (!isa<PointerType>(Ty))
1977      return Error(ID.Loc, "null must be a pointer type");
1978    V = ConstantPointerNull::get(cast<PointerType>(Ty));
1979    return false;
1980  case ValID::t_Undef:
1981    // FIXME: LabelTy should not be a first-class type.
1982    if ((!Ty->isFirstClassType() || Ty == Type::LabelTy) &&
1983        !isa<OpaqueType>(Ty))
1984      return Error(ID.Loc, "invalid type for undef constant");
1985    V = UndefValue::get(Ty);
1986    return false;
1987  case ValID::t_EmptyArray:
1988    if (!isa<ArrayType>(Ty) || cast<ArrayType>(Ty)->getNumElements() != 0)
1989      return Error(ID.Loc, "invalid empty array initializer");
1990    V = UndefValue::get(Ty);
1991    return false;
1992  case ValID::t_Zero:
1993    // FIXME: LabelTy should not be a first-class type.
1994    if (!Ty->isFirstClassType() || Ty == Type::LabelTy)
1995      return Error(ID.Loc, "invalid type for null constant");
1996    V = Constant::getNullValue(Ty);
1997    return false;
1998  case ValID::t_Constant:
1999    if (ID.ConstantVal->getType() != Ty)
2000      return Error(ID.Loc, "constant expression type mismatch");
2001    V = ID.ConstantVal;
2002    return false;
2003  }
2004}
2005
2006bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2007  PATypeHolder Type(Type::VoidTy);
2008  return ParseType(Type) ||
2009         ParseGlobalValue(Type, V);
2010}
2011
2012/// ParseGlobalValueVector
2013///   ::= /*empty*/
2014///   ::= TypeAndValue (',' TypeAndValue)*
2015bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2016  // Empty list.
2017  if (Lex.getKind() == lltok::rbrace ||
2018      Lex.getKind() == lltok::rsquare ||
2019      Lex.getKind() == lltok::greater ||
2020      Lex.getKind() == lltok::rparen)
2021    return false;
2022
2023  Constant *C;
2024  if (ParseGlobalTypeAndValue(C)) return true;
2025  Elts.push_back(C);
2026
2027  while (EatIfPresent(lltok::comma)) {
2028    if (ParseGlobalTypeAndValue(C)) return true;
2029    Elts.push_back(C);
2030  }
2031
2032  return false;
2033}
2034
2035
2036//===----------------------------------------------------------------------===//
2037// Function Parsing.
2038//===----------------------------------------------------------------------===//
2039
2040bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
2041                                   PerFunctionState &PFS) {
2042  if (ID.Kind == ValID::t_LocalID)
2043    V = PFS.GetVal(ID.UIntVal, Ty, ID.Loc);
2044  else if (ID.Kind == ValID::t_LocalName)
2045    V = PFS.GetVal(ID.StrVal, Ty, ID.Loc);
2046  else if (ID.Kind == ValID::t_InlineAsm) {
2047    const PointerType *PTy = dyn_cast<PointerType>(Ty);
2048    const FunctionType *FTy =
2049      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2050    if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2051      return Error(ID.Loc, "invalid type for inline asm constraint string");
2052    V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal);
2053    return false;
2054  } else {
2055    Constant *C;
2056    if (ConvertGlobalValIDToValue(Ty, ID, C)) return true;
2057    V = C;
2058    return false;
2059  }
2060
2061  return V == 0;
2062}
2063
2064bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
2065  V = 0;
2066  ValID ID;
2067  return ParseValID(ID) ||
2068         ConvertValIDToValue(Ty, ID, V, PFS);
2069}
2070
2071bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
2072  PATypeHolder T(Type::VoidTy);
2073  return ParseType(T) ||
2074         ParseValue(T, V, PFS);
2075}
2076
2077/// FunctionHeader
2078///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2079///       Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2080///       OptionalAlign OptGC
2081bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2082  // Parse the linkage.
2083  LocTy LinkageLoc = Lex.getLoc();
2084  unsigned Linkage;
2085
2086  unsigned Visibility, CC, RetAttrs;
2087  PATypeHolder RetType(Type::VoidTy);
2088  LocTy RetTypeLoc = Lex.getLoc();
2089  if (ParseOptionalLinkage(Linkage) ||
2090      ParseOptionalVisibility(Visibility) ||
2091      ParseOptionalCallingConv(CC) ||
2092      ParseOptionalAttrs(RetAttrs, 1) ||
2093      ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2094    return true;
2095
2096  // Verify that the linkage is ok.
2097  switch ((GlobalValue::LinkageTypes)Linkage) {
2098  case GlobalValue::ExternalLinkage:
2099    break; // always ok.
2100  case GlobalValue::DLLImportLinkage:
2101  case GlobalValue::ExternalWeakLinkage:
2102    if (isDefine)
2103      return Error(LinkageLoc, "invalid linkage for function definition");
2104    break;
2105  case GlobalValue::PrivateLinkage:
2106  case GlobalValue::InternalLinkage:
2107  case GlobalValue::LinkOnceAnyLinkage:
2108  case GlobalValue::LinkOnceODRLinkage:
2109  case GlobalValue::WeakAnyLinkage:
2110  case GlobalValue::WeakODRLinkage:
2111  case GlobalValue::DLLExportLinkage:
2112    if (!isDefine)
2113      return Error(LinkageLoc, "invalid linkage for function declaration");
2114    break;
2115  case GlobalValue::AppendingLinkage:
2116  case GlobalValue::GhostLinkage:
2117  case GlobalValue::CommonAnyLinkage:
2118  case GlobalValue::CommonODRLinkage:
2119    return Error(LinkageLoc, "invalid function linkage type");
2120  }
2121
2122  if (!FunctionType::isValidReturnType(RetType) ||
2123      isa<OpaqueType>(RetType))
2124    return Error(RetTypeLoc, "invalid function return type");
2125
2126  LocTy NameLoc = Lex.getLoc();
2127
2128  std::string FunctionName;
2129  if (Lex.getKind() == lltok::GlobalVar) {
2130    FunctionName = Lex.getStrVal();
2131  } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
2132    unsigned NameID = Lex.getUIntVal();
2133
2134    if (NameID != NumberedVals.size())
2135      return TokError("function expected to be numbered '%" +
2136                      utostr(NumberedVals.size()) + "'");
2137  } else {
2138    return TokError("expected function name");
2139  }
2140
2141  Lex.Lex();
2142
2143  if (Lex.getKind() != lltok::lparen)
2144    return TokError("expected '(' in function argument list");
2145
2146  std::vector<ArgInfo> ArgList;
2147  bool isVarArg;
2148  unsigned FuncAttrs;
2149  std::string Section;
2150  unsigned Alignment;
2151  std::string GC;
2152
2153  if (ParseArgumentList(ArgList, isVarArg, false) ||
2154      ParseOptionalAttrs(FuncAttrs, 2) ||
2155      (EatIfPresent(lltok::kw_section) &&
2156       ParseStringConstant(Section)) ||
2157      ParseOptionalAlignment(Alignment) ||
2158      (EatIfPresent(lltok::kw_gc) &&
2159       ParseStringConstant(GC)))
2160    return true;
2161
2162  // If the alignment was parsed as an attribute, move to the alignment field.
2163  if (FuncAttrs & Attribute::Alignment) {
2164    Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2165    FuncAttrs &= ~Attribute::Alignment;
2166  }
2167
2168  // Okay, if we got here, the function is syntactically valid.  Convert types
2169  // and do semantic checks.
2170  std::vector<const Type*> ParamTypeList;
2171  SmallVector<AttributeWithIndex, 8> Attrs;
2172  // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2173  // attributes.
2174  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2175  if (FuncAttrs & ObsoleteFuncAttrs) {
2176    RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
2177    FuncAttrs &= ~ObsoleteFuncAttrs;
2178  }
2179
2180  if (RetAttrs != Attribute::None)
2181    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2182
2183  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2184    ParamTypeList.push_back(ArgList[i].Type);
2185    if (ArgList[i].Attrs != Attribute::None)
2186      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2187  }
2188
2189  if (FuncAttrs != Attribute::None)
2190    Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2191
2192  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2193
2194  if (PAL.paramHasAttr(1, Attribute::StructRet) &&
2195      RetType != Type::VoidTy)
2196    return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2197
2198  const FunctionType *FT = FunctionType::get(RetType, ParamTypeList, isVarArg);
2199  const PointerType *PFT = PointerType::getUnqual(FT);
2200
2201  Fn = 0;
2202  if (!FunctionName.empty()) {
2203    // If this was a definition of a forward reference, remove the definition
2204    // from the forward reference table and fill in the forward ref.
2205    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2206      ForwardRefVals.find(FunctionName);
2207    if (FRVI != ForwardRefVals.end()) {
2208      Fn = M->getFunction(FunctionName);
2209      ForwardRefVals.erase(FRVI);
2210    } else if ((Fn = M->getFunction(FunctionName))) {
2211      // If this function already exists in the symbol table, then it is
2212      // multiply defined.  We accept a few cases for old backwards compat.
2213      // FIXME: Remove this stuff for LLVM 3.0.
2214      if (Fn->getType() != PFT || Fn->getAttributes() != PAL ||
2215          (!Fn->isDeclaration() && isDefine)) {
2216        // If the redefinition has different type or different attributes,
2217        // reject it.  If both have bodies, reject it.
2218        return Error(NameLoc, "invalid redefinition of function '" +
2219                     FunctionName + "'");
2220      } else if (Fn->isDeclaration()) {
2221        // Make sure to strip off any argument names so we can't get conflicts.
2222        for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2223             AI != AE; ++AI)
2224          AI->setName("");
2225      }
2226    }
2227
2228  } else if (FunctionName.empty()) {
2229    // If this is a definition of a forward referenced function, make sure the
2230    // types agree.
2231    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2232      = ForwardRefValIDs.find(NumberedVals.size());
2233    if (I != ForwardRefValIDs.end()) {
2234      Fn = cast<Function>(I->second.first);
2235      if (Fn->getType() != PFT)
2236        return Error(NameLoc, "type of definition and forward reference of '@" +
2237                     utostr(NumberedVals.size()) +"' disagree");
2238      ForwardRefValIDs.erase(I);
2239    }
2240  }
2241
2242  if (Fn == 0)
2243    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2244  else // Move the forward-reference to the correct spot in the module.
2245    M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2246
2247  if (FunctionName.empty())
2248    NumberedVals.push_back(Fn);
2249
2250  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2251  Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2252  Fn->setCallingConv(CC);
2253  Fn->setAttributes(PAL);
2254  Fn->setAlignment(Alignment);
2255  Fn->setSection(Section);
2256  if (!GC.empty()) Fn->setGC(GC.c_str());
2257
2258  // Add all of the arguments we parsed to the function.
2259  Function::arg_iterator ArgIt = Fn->arg_begin();
2260  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2261    // If the argument has a name, insert it into the argument symbol table.
2262    if (ArgList[i].Name.empty()) continue;
2263
2264    // Set the name, if it conflicted, it will be auto-renamed.
2265    ArgIt->setName(ArgList[i].Name);
2266
2267    if (ArgIt->getNameStr() != ArgList[i].Name)
2268      return Error(ArgList[i].Loc, "redefinition of argument '%" +
2269                   ArgList[i].Name + "'");
2270  }
2271
2272  return false;
2273}
2274
2275
2276/// ParseFunctionBody
2277///   ::= '{' BasicBlock+ '}'
2278///   ::= 'begin' BasicBlock+ 'end'  // FIXME: remove in LLVM 3.0
2279///
2280bool LLParser::ParseFunctionBody(Function &Fn) {
2281  if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
2282    return TokError("expected '{' in function body");
2283  Lex.Lex();  // eat the {.
2284
2285  PerFunctionState PFS(*this, Fn);
2286
2287  while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
2288    if (ParseBasicBlock(PFS)) return true;
2289
2290  // Eat the }.
2291  Lex.Lex();
2292
2293  // Verify function is ok.
2294  return PFS.VerifyFunctionComplete();
2295}
2296
2297/// ParseBasicBlock
2298///   ::= LabelStr? Instruction*
2299bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2300  // If this basic block starts out with a name, remember it.
2301  std::string Name;
2302  LocTy NameLoc = Lex.getLoc();
2303  if (Lex.getKind() == lltok::LabelStr) {
2304    Name = Lex.getStrVal();
2305    Lex.Lex();
2306  }
2307
2308  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2309  if (BB == 0) return true;
2310
2311  std::string NameStr;
2312
2313  // Parse the instructions in this block until we get a terminator.
2314  Instruction *Inst;
2315  do {
2316    // This instruction may have three possibilities for a name: a) none
2317    // specified, b) name specified "%foo =", c) number specified: "%4 =".
2318    LocTy NameLoc = Lex.getLoc();
2319    int NameID = -1;
2320    NameStr = "";
2321
2322    if (Lex.getKind() == lltok::LocalVarID) {
2323      NameID = Lex.getUIntVal();
2324      Lex.Lex();
2325      if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2326        return true;
2327    } else if (Lex.getKind() == lltok::LocalVar ||
2328               // FIXME: REMOVE IN LLVM 3.0
2329               Lex.getKind() == lltok::StringConstant) {
2330      NameStr = Lex.getStrVal();
2331      Lex.Lex();
2332      if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2333        return true;
2334    }
2335
2336    if (ParseInstruction(Inst, BB, PFS)) return true;
2337
2338    BB->getInstList().push_back(Inst);
2339
2340    // Set the name on the instruction.
2341    if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2342  } while (!isa<TerminatorInst>(Inst));
2343
2344  return false;
2345}
2346
2347//===----------------------------------------------------------------------===//
2348// Instruction Parsing.
2349//===----------------------------------------------------------------------===//
2350
2351/// ParseInstruction - Parse one of the many different instructions.
2352///
2353bool LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2354                                PerFunctionState &PFS) {
2355  lltok::Kind Token = Lex.getKind();
2356  if (Token == lltok::Eof)
2357    return TokError("found end of file when expecting more instructions");
2358  LocTy Loc = Lex.getLoc();
2359  unsigned KeywordVal = Lex.getUIntVal();
2360  Lex.Lex();  // Eat the keyword.
2361
2362  switch (Token) {
2363  default:                    return Error(Loc, "expected instruction opcode");
2364  // Terminator Instructions.
2365  case lltok::kw_unwind:      Inst = new UnwindInst(); return false;
2366  case lltok::kw_unreachable: Inst = new UnreachableInst(); return false;
2367  case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
2368  case lltok::kw_br:          return ParseBr(Inst, PFS);
2369  case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
2370  case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
2371  // Binary Operators.
2372  case lltok::kw_add:
2373  case lltok::kw_sub:
2374  case lltok::kw_mul:    return ParseArithmetic(Inst, PFS, KeywordVal, 0);
2375
2376  case lltok::kw_udiv:
2377  case lltok::kw_sdiv:
2378  case lltok::kw_urem:
2379  case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
2380  case lltok::kw_fdiv:
2381  case lltok::kw_frem:   return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2382  case lltok::kw_shl:
2383  case lltok::kw_lshr:
2384  case lltok::kw_ashr:
2385  case lltok::kw_and:
2386  case lltok::kw_or:
2387  case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
2388  case lltok::kw_icmp:
2389  case lltok::kw_fcmp:
2390  case lltok::kw_vicmp:
2391  case lltok::kw_vfcmp:  return ParseCompare(Inst, PFS, KeywordVal);
2392  // Casts.
2393  case lltok::kw_trunc:
2394  case lltok::kw_zext:
2395  case lltok::kw_sext:
2396  case lltok::kw_fptrunc:
2397  case lltok::kw_fpext:
2398  case lltok::kw_bitcast:
2399  case lltok::kw_uitofp:
2400  case lltok::kw_sitofp:
2401  case lltok::kw_fptoui:
2402  case lltok::kw_fptosi:
2403  case lltok::kw_inttoptr:
2404  case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
2405  // Other.
2406  case lltok::kw_select:         return ParseSelect(Inst, PFS);
2407  case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
2408  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
2409  case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
2410  case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
2411  case lltok::kw_phi:            return ParsePHI(Inst, PFS);
2412  case lltok::kw_call:           return ParseCall(Inst, PFS, false);
2413  case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
2414  // Memory.
2415  case lltok::kw_alloca:
2416  case lltok::kw_malloc:         return ParseAlloc(Inst, PFS, KeywordVal);
2417  case lltok::kw_free:           return ParseFree(Inst, PFS);
2418  case lltok::kw_load:           return ParseLoad(Inst, PFS, false);
2419  case lltok::kw_store:          return ParseStore(Inst, PFS, false);
2420  case lltok::kw_volatile:
2421    if (EatIfPresent(lltok::kw_load))
2422      return ParseLoad(Inst, PFS, true);
2423    else if (EatIfPresent(lltok::kw_store))
2424      return ParseStore(Inst, PFS, true);
2425    else
2426      return TokError("expected 'load' or 'store'");
2427  case lltok::kw_getresult:     return ParseGetResult(Inst, PFS);
2428  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
2429  case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
2430  case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
2431  }
2432}
2433
2434/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
2435bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
2436  // FIXME: REMOVE vicmp/vfcmp!
2437  if (Opc == Instruction::FCmp || Opc == Instruction::VFCmp) {
2438    switch (Lex.getKind()) {
2439    default: TokError("expected fcmp predicate (e.g. 'oeq')");
2440    case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
2441    case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
2442    case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
2443    case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
2444    case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
2445    case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
2446    case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
2447    case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
2448    case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
2449    case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
2450    case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
2451    case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
2452    case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
2453    case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
2454    case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
2455    case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
2456    }
2457  } else {
2458    switch (Lex.getKind()) {
2459    default: TokError("expected icmp predicate (e.g. 'eq')");
2460    case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
2461    case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
2462    case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
2463    case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
2464    case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
2465    case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
2466    case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
2467    case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
2468    case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
2469    case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
2470    }
2471  }
2472  Lex.Lex();
2473  return false;
2474}
2475
2476//===----------------------------------------------------------------------===//
2477// Terminator Instructions.
2478//===----------------------------------------------------------------------===//
2479
2480/// ParseRet - Parse a return instruction.
2481///   ::= 'ret' void
2482///   ::= 'ret' TypeAndValue
2483///   ::= 'ret' TypeAndValue (',' TypeAndValue)+  [[obsolete: LLVM 3.0]]
2484bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
2485                        PerFunctionState &PFS) {
2486  PATypeHolder Ty(Type::VoidTy);
2487  if (ParseType(Ty, true /*void allowed*/)) return true;
2488
2489  if (Ty == Type::VoidTy) {
2490    Inst = ReturnInst::Create();
2491    return false;
2492  }
2493
2494  Value *RV;
2495  if (ParseValue(Ty, RV, PFS)) return true;
2496
2497  // The normal case is one return value.
2498  if (Lex.getKind() == lltok::comma) {
2499    // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring use
2500    // of 'ret {i32,i32} {i32 1, i32 2}'
2501    SmallVector<Value*, 8> RVs;
2502    RVs.push_back(RV);
2503
2504    while (EatIfPresent(lltok::comma)) {
2505      if (ParseTypeAndValue(RV, PFS)) return true;
2506      RVs.push_back(RV);
2507    }
2508
2509    RV = UndefValue::get(PFS.getFunction().getReturnType());
2510    for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
2511      Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
2512      BB->getInstList().push_back(I);
2513      RV = I;
2514    }
2515  }
2516  Inst = ReturnInst::Create(RV);
2517  return false;
2518}
2519
2520
2521/// ParseBr
2522///   ::= 'br' TypeAndValue
2523///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2524bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
2525  LocTy Loc, Loc2;
2526  Value *Op0, *Op1, *Op2;
2527  if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
2528
2529  if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
2530    Inst = BranchInst::Create(BB);
2531    return false;
2532  }
2533
2534  if (Op0->getType() != Type::Int1Ty)
2535    return Error(Loc, "branch condition must have 'i1' type");
2536
2537  if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
2538      ParseTypeAndValue(Op1, Loc, PFS) ||
2539      ParseToken(lltok::comma, "expected ',' after true destination") ||
2540      ParseTypeAndValue(Op2, Loc2, PFS))
2541    return true;
2542
2543  if (!isa<BasicBlock>(Op1))
2544    return Error(Loc, "true destination of branch must be a basic block");
2545  if (!isa<BasicBlock>(Op2))
2546    return Error(Loc2, "true destination of branch must be a basic block");
2547
2548  Inst = BranchInst::Create(cast<BasicBlock>(Op1), cast<BasicBlock>(Op2), Op0);
2549  return false;
2550}
2551
2552/// ParseSwitch
2553///  Instruction
2554///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
2555///  JumpTable
2556///    ::= (TypeAndValue ',' TypeAndValue)*
2557bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
2558  LocTy CondLoc, BBLoc;
2559  Value *Cond, *DefaultBB;
2560  if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
2561      ParseToken(lltok::comma, "expected ',' after switch condition") ||
2562      ParseTypeAndValue(DefaultBB, BBLoc, PFS) ||
2563      ParseToken(lltok::lsquare, "expected '[' with switch table"))
2564    return true;
2565
2566  if (!isa<IntegerType>(Cond->getType()))
2567    return Error(CondLoc, "switch condition must have integer type");
2568  if (!isa<BasicBlock>(DefaultBB))
2569    return Error(BBLoc, "default destination must be a basic block");
2570
2571  // Parse the jump table pairs.
2572  SmallPtrSet<Value*, 32> SeenCases;
2573  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
2574  while (Lex.getKind() != lltok::rsquare) {
2575    Value *Constant, *DestBB;
2576
2577    if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
2578        ParseToken(lltok::comma, "expected ',' after case value") ||
2579        ParseTypeAndValue(DestBB, BBLoc, PFS))
2580      return true;
2581
2582    if (!SeenCases.insert(Constant))
2583      return Error(CondLoc, "duplicate case value in switch");
2584    if (!isa<ConstantInt>(Constant))
2585      return Error(CondLoc, "case value is not a constant integer");
2586    if (!isa<BasicBlock>(DestBB))
2587      return Error(BBLoc, "case destination is not a basic block");
2588
2589    Table.push_back(std::make_pair(cast<ConstantInt>(Constant),
2590                                   cast<BasicBlock>(DestBB)));
2591  }
2592
2593  Lex.Lex();  // Eat the ']'.
2594
2595  SwitchInst *SI = SwitchInst::Create(Cond, cast<BasicBlock>(DefaultBB),
2596                                      Table.size());
2597  for (unsigned i = 0, e = Table.size(); i != e; ++i)
2598    SI->addCase(Table[i].first, Table[i].second);
2599  Inst = SI;
2600  return false;
2601}
2602
2603/// ParseInvoke
2604///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
2605///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
2606bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
2607  LocTy CallLoc = Lex.getLoc();
2608  unsigned CC, RetAttrs, FnAttrs;
2609  PATypeHolder RetType(Type::VoidTy);
2610  LocTy RetTypeLoc;
2611  ValID CalleeID;
2612  SmallVector<ParamInfo, 16> ArgList;
2613
2614  Value *NormalBB, *UnwindBB;
2615  if (ParseOptionalCallingConv(CC) ||
2616      ParseOptionalAttrs(RetAttrs, 1) ||
2617      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
2618      ParseValID(CalleeID) ||
2619      ParseParameterList(ArgList, PFS) ||
2620      ParseOptionalAttrs(FnAttrs, 2) ||
2621      ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
2622      ParseTypeAndValue(NormalBB, PFS) ||
2623      ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
2624      ParseTypeAndValue(UnwindBB, PFS))
2625    return true;
2626
2627  if (!isa<BasicBlock>(NormalBB))
2628    return Error(CallLoc, "normal destination is not a basic block");
2629  if (!isa<BasicBlock>(UnwindBB))
2630    return Error(CallLoc, "unwind destination is not a basic block");
2631
2632  // If RetType is a non-function pointer type, then this is the short syntax
2633  // for the call, which means that RetType is just the return type.  Infer the
2634  // rest of the function argument types from the arguments that are present.
2635  const PointerType *PFTy = 0;
2636  const FunctionType *Ty = 0;
2637  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
2638      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2639    // Pull out the types of all of the arguments...
2640    std::vector<const Type*> ParamTypes;
2641    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2642      ParamTypes.push_back(ArgList[i].V->getType());
2643
2644    if (!FunctionType::isValidReturnType(RetType))
2645      return Error(RetTypeLoc, "Invalid result type for LLVM function");
2646
2647    Ty = FunctionType::get(RetType, ParamTypes, false);
2648    PFTy = PointerType::getUnqual(Ty);
2649  }
2650
2651  // Look up the callee.
2652  Value *Callee;
2653  if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
2654
2655  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
2656  // function attributes.
2657  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2658  if (FnAttrs & ObsoleteFuncAttrs) {
2659    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
2660    FnAttrs &= ~ObsoleteFuncAttrs;
2661  }
2662
2663  // Set up the Attributes for the function.
2664  SmallVector<AttributeWithIndex, 8> Attrs;
2665  if (RetAttrs != Attribute::None)
2666    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2667
2668  SmallVector<Value*, 8> Args;
2669
2670  // Loop through FunctionType's arguments and ensure they are specified
2671  // correctly.  Also, gather any parameter attributes.
2672  FunctionType::param_iterator I = Ty->param_begin();
2673  FunctionType::param_iterator E = Ty->param_end();
2674  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2675    const Type *ExpectedTy = 0;
2676    if (I != E) {
2677      ExpectedTy = *I++;
2678    } else if (!Ty->isVarArg()) {
2679      return Error(ArgList[i].Loc, "too many arguments specified");
2680    }
2681
2682    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
2683      return Error(ArgList[i].Loc, "argument is not of expected type '" +
2684                   ExpectedTy->getDescription() + "'");
2685    Args.push_back(ArgList[i].V);
2686    if (ArgList[i].Attrs != Attribute::None)
2687      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2688  }
2689
2690  if (I != E)
2691    return Error(CallLoc, "not enough parameters specified for call");
2692
2693  if (FnAttrs != Attribute::None)
2694    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
2695
2696  // Finish off the Attributes and check them
2697  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2698
2699  InvokeInst *II = InvokeInst::Create(Callee, cast<BasicBlock>(NormalBB),
2700                                      cast<BasicBlock>(UnwindBB),
2701                                      Args.begin(), Args.end());
2702  II->setCallingConv(CC);
2703  II->setAttributes(PAL);
2704  Inst = II;
2705  return false;
2706}
2707
2708
2709
2710//===----------------------------------------------------------------------===//
2711// Binary Operators.
2712//===----------------------------------------------------------------------===//
2713
2714/// ParseArithmetic
2715///  ::= ArithmeticOps TypeAndValue ',' Value
2716///
2717/// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
2718/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
2719bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
2720                               unsigned Opc, unsigned OperandType) {
2721  LocTy Loc; Value *LHS, *RHS;
2722  if (ParseTypeAndValue(LHS, Loc, PFS) ||
2723      ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
2724      ParseValue(LHS->getType(), RHS, PFS))
2725    return true;
2726
2727  bool Valid;
2728  switch (OperandType) {
2729  default: assert(0 && "Unknown operand type!");
2730  case 0: // int or FP.
2731    Valid = LHS->getType()->isIntOrIntVector() ||
2732            LHS->getType()->isFPOrFPVector();
2733    break;
2734  case 1: Valid = LHS->getType()->isIntOrIntVector(); break;
2735  case 2: Valid = LHS->getType()->isFPOrFPVector(); break;
2736  }
2737
2738  if (!Valid)
2739    return Error(Loc, "invalid operand type for instruction");
2740
2741  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2742  return false;
2743}
2744
2745/// ParseLogical
2746///  ::= ArithmeticOps TypeAndValue ',' Value {
2747bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
2748                            unsigned Opc) {
2749  LocTy Loc; Value *LHS, *RHS;
2750  if (ParseTypeAndValue(LHS, Loc, PFS) ||
2751      ParseToken(lltok::comma, "expected ',' in logical operation") ||
2752      ParseValue(LHS->getType(), RHS, PFS))
2753    return true;
2754
2755  if (!LHS->getType()->isIntOrIntVector())
2756    return Error(Loc,"instruction requires integer or integer vector operands");
2757
2758  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2759  return false;
2760}
2761
2762
2763/// ParseCompare
2764///  ::= 'icmp' IPredicates TypeAndValue ',' Value
2765///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
2766///  ::= 'vicmp' IPredicates TypeAndValue ',' Value
2767///  ::= 'vfcmp' FPredicates TypeAndValue ',' Value
2768bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
2769                            unsigned Opc) {
2770  // Parse the integer/fp comparison predicate.
2771  LocTy Loc;
2772  unsigned Pred;
2773  Value *LHS, *RHS;
2774  if (ParseCmpPredicate(Pred, Opc) ||
2775      ParseTypeAndValue(LHS, Loc, PFS) ||
2776      ParseToken(lltok::comma, "expected ',' after compare value") ||
2777      ParseValue(LHS->getType(), RHS, PFS))
2778    return true;
2779
2780  if (Opc == Instruction::FCmp) {
2781    if (!LHS->getType()->isFPOrFPVector())
2782      return Error(Loc, "fcmp requires floating point operands");
2783    Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2784  } else if (Opc == Instruction::ICmp) {
2785    if (!LHS->getType()->isIntOrIntVector() &&
2786        !isa<PointerType>(LHS->getType()))
2787      return Error(Loc, "icmp requires integer operands");
2788    Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2789  } else if (Opc == Instruction::VFCmp) {
2790    if (!LHS->getType()->isFPOrFPVector() || !isa<VectorType>(LHS->getType()))
2791      return Error(Loc, "vfcmp requires vector floating point operands");
2792    Inst = new VFCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2793  } else if (Opc == Instruction::VICmp) {
2794    if (!LHS->getType()->isIntOrIntVector() || !isa<VectorType>(LHS->getType()))
2795      return Error(Loc, "vicmp requires vector floating point operands");
2796    Inst = new VICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2797  }
2798  return false;
2799}
2800
2801//===----------------------------------------------------------------------===//
2802// Other Instructions.
2803//===----------------------------------------------------------------------===//
2804
2805
2806/// ParseCast
2807///   ::= CastOpc TypeAndValue 'to' Type
2808bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
2809                         unsigned Opc) {
2810  LocTy Loc;  Value *Op;
2811  PATypeHolder DestTy(Type::VoidTy);
2812  if (ParseTypeAndValue(Op, Loc, PFS) ||
2813      ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
2814      ParseType(DestTy))
2815    return true;
2816
2817  if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
2818    CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
2819    return Error(Loc, "invalid cast opcode for cast from '" +
2820                 Op->getType()->getDescription() + "' to '" +
2821                 DestTy->getDescription() + "'");
2822  }
2823  Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
2824  return false;
2825}
2826
2827/// ParseSelect
2828///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2829bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
2830  LocTy Loc;
2831  Value *Op0, *Op1, *Op2;
2832  if (ParseTypeAndValue(Op0, Loc, PFS) ||
2833      ParseToken(lltok::comma, "expected ',' after select condition") ||
2834      ParseTypeAndValue(Op1, PFS) ||
2835      ParseToken(lltok::comma, "expected ',' after select value") ||
2836      ParseTypeAndValue(Op2, PFS))
2837    return true;
2838
2839  if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
2840    return Error(Loc, Reason);
2841
2842  Inst = SelectInst::Create(Op0, Op1, Op2);
2843  return false;
2844}
2845
2846/// ParseVA_Arg
2847///   ::= 'va_arg' TypeAndValue ',' Type
2848bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
2849  Value *Op;
2850  PATypeHolder EltTy(Type::VoidTy);
2851  LocTy TypeLoc;
2852  if (ParseTypeAndValue(Op, PFS) ||
2853      ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
2854      ParseType(EltTy, TypeLoc))
2855    return true;
2856
2857  if (!EltTy->isFirstClassType())
2858    return Error(TypeLoc, "va_arg requires operand with first class type");
2859
2860  Inst = new VAArgInst(Op, EltTy);
2861  return false;
2862}
2863
2864/// ParseExtractElement
2865///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
2866bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
2867  LocTy Loc;
2868  Value *Op0, *Op1;
2869  if (ParseTypeAndValue(Op0, Loc, PFS) ||
2870      ParseToken(lltok::comma, "expected ',' after extract value") ||
2871      ParseTypeAndValue(Op1, PFS))
2872    return true;
2873
2874  if (!ExtractElementInst::isValidOperands(Op0, Op1))
2875    return Error(Loc, "invalid extractelement operands");
2876
2877  Inst = new ExtractElementInst(Op0, Op1);
2878  return false;
2879}
2880
2881/// ParseInsertElement
2882///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2883bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
2884  LocTy Loc;
2885  Value *Op0, *Op1, *Op2;
2886  if (ParseTypeAndValue(Op0, Loc, PFS) ||
2887      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2888      ParseTypeAndValue(Op1, PFS) ||
2889      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2890      ParseTypeAndValue(Op2, PFS))
2891    return true;
2892
2893  if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
2894    return Error(Loc, "invalid extractelement operands");
2895
2896  Inst = InsertElementInst::Create(Op0, Op1, Op2);
2897  return false;
2898}
2899
2900/// ParseShuffleVector
2901///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2902bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
2903  LocTy Loc;
2904  Value *Op0, *Op1, *Op2;
2905  if (ParseTypeAndValue(Op0, Loc, PFS) ||
2906      ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
2907      ParseTypeAndValue(Op1, PFS) ||
2908      ParseToken(lltok::comma, "expected ',' after shuffle value") ||
2909      ParseTypeAndValue(Op2, PFS))
2910    return true;
2911
2912  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2913    return Error(Loc, "invalid extractelement operands");
2914
2915  Inst = new ShuffleVectorInst(Op0, Op1, Op2);
2916  return false;
2917}
2918
2919/// ParsePHI
2920///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Valueß ']')*
2921bool LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
2922  PATypeHolder Ty(Type::VoidTy);
2923  Value *Op0, *Op1;
2924  LocTy TypeLoc = Lex.getLoc();
2925
2926  if (ParseType(Ty) ||
2927      ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
2928      ParseValue(Ty, Op0, PFS) ||
2929      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2930      ParseValue(Type::LabelTy, Op1, PFS) ||
2931      ParseToken(lltok::rsquare, "expected ']' in phi value list"))
2932    return true;
2933
2934  SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
2935  while (1) {
2936    PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
2937
2938    if (!EatIfPresent(lltok::comma))
2939      break;
2940
2941    if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
2942        ParseValue(Ty, Op0, PFS) ||
2943        ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2944        ParseValue(Type::LabelTy, Op1, PFS) ||
2945        ParseToken(lltok::rsquare, "expected ']' in phi value list"))
2946      return true;
2947  }
2948
2949  if (!Ty->isFirstClassType())
2950    return Error(TypeLoc, "phi node must have first class type");
2951
2952  PHINode *PN = PHINode::Create(Ty);
2953  PN->reserveOperandSpace(PHIVals.size());
2954  for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
2955    PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
2956  Inst = PN;
2957  return false;
2958}
2959
2960/// ParseCall
2961///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
2962///       ParameterList OptionalAttrs
2963bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
2964                         bool isTail) {
2965  unsigned CC, RetAttrs, FnAttrs;
2966  PATypeHolder RetType(Type::VoidTy);
2967  LocTy RetTypeLoc;
2968  ValID CalleeID;
2969  SmallVector<ParamInfo, 16> ArgList;
2970  LocTy CallLoc = Lex.getLoc();
2971
2972  if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
2973      ParseOptionalCallingConv(CC) ||
2974      ParseOptionalAttrs(RetAttrs, 1) ||
2975      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
2976      ParseValID(CalleeID) ||
2977      ParseParameterList(ArgList, PFS) ||
2978      ParseOptionalAttrs(FnAttrs, 2))
2979    return true;
2980
2981  // If RetType is a non-function pointer type, then this is the short syntax
2982  // for the call, which means that RetType is just the return type.  Infer the
2983  // rest of the function argument types from the arguments that are present.
2984  const PointerType *PFTy = 0;
2985  const FunctionType *Ty = 0;
2986  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
2987      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2988    // Pull out the types of all of the arguments...
2989    std::vector<const Type*> ParamTypes;
2990    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2991      ParamTypes.push_back(ArgList[i].V->getType());
2992
2993    if (!FunctionType::isValidReturnType(RetType))
2994      return Error(RetTypeLoc, "Invalid result type for LLVM function");
2995
2996    Ty = FunctionType::get(RetType, ParamTypes, false);
2997    PFTy = PointerType::getUnqual(Ty);
2998  }
2999
3000  // Look up the callee.
3001  Value *Callee;
3002  if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
3003
3004  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3005  // function attributes.
3006  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3007  if (FnAttrs & ObsoleteFuncAttrs) {
3008    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3009    FnAttrs &= ~ObsoleteFuncAttrs;
3010  }
3011
3012  // Set up the Attributes for the function.
3013  SmallVector<AttributeWithIndex, 8> Attrs;
3014  if (RetAttrs != Attribute::None)
3015    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3016
3017  SmallVector<Value*, 8> Args;
3018
3019  // Loop through FunctionType's arguments and ensure they are specified
3020  // correctly.  Also, gather any parameter attributes.
3021  FunctionType::param_iterator I = Ty->param_begin();
3022  FunctionType::param_iterator E = Ty->param_end();
3023  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3024    const Type *ExpectedTy = 0;
3025    if (I != E) {
3026      ExpectedTy = *I++;
3027    } else if (!Ty->isVarArg()) {
3028      return Error(ArgList[i].Loc, "too many arguments specified");
3029    }
3030
3031    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3032      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3033                   ExpectedTy->getDescription() + "'");
3034    Args.push_back(ArgList[i].V);
3035    if (ArgList[i].Attrs != Attribute::None)
3036      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3037  }
3038
3039  if (I != E)
3040    return Error(CallLoc, "not enough parameters specified for call");
3041
3042  if (FnAttrs != Attribute::None)
3043    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3044
3045  // Finish off the Attributes and check them
3046  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3047
3048  CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
3049  CI->setTailCall(isTail);
3050  CI->setCallingConv(CC);
3051  CI->setAttributes(PAL);
3052  Inst = CI;
3053  return false;
3054}
3055
3056//===----------------------------------------------------------------------===//
3057// Memory Instructions.
3058//===----------------------------------------------------------------------===//
3059
3060/// ParseAlloc
3061///   ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalAlignment)?
3062///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalAlignment)?
3063bool LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
3064                          unsigned Opc) {
3065  PATypeHolder Ty(Type::VoidTy);
3066  Value *Size = 0;
3067  LocTy SizeLoc = 0;
3068  unsigned Alignment = 0;
3069  if (ParseType(Ty)) return true;
3070
3071  if (EatIfPresent(lltok::comma)) {
3072    if (Lex.getKind() == lltok::kw_align) {
3073      if (ParseOptionalAlignment(Alignment)) return true;
3074    } else if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
3075               ParseOptionalCommaAlignment(Alignment)) {
3076      return true;
3077    }
3078  }
3079
3080  if (Size && Size->getType() != Type::Int32Ty)
3081    return Error(SizeLoc, "element count must be i32");
3082
3083  if (Opc == Instruction::Malloc)
3084    Inst = new MallocInst(Ty, Size, Alignment);
3085  else
3086    Inst = new AllocaInst(Ty, Size, Alignment);
3087  return false;
3088}
3089
3090/// ParseFree
3091///   ::= 'free' TypeAndValue
3092bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS) {
3093  Value *Val; LocTy Loc;
3094  if (ParseTypeAndValue(Val, Loc, PFS)) return true;
3095  if (!isa<PointerType>(Val->getType()))
3096    return Error(Loc, "operand to free must be a pointer");
3097  Inst = new FreeInst(Val);
3098  return false;
3099}
3100
3101/// ParseLoad
3102///   ::= 'volatile'? 'load' TypeAndValue (',' 'align' uint)?
3103bool LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
3104                         bool isVolatile) {
3105  Value *Val; LocTy Loc;
3106  unsigned Alignment;
3107  if (ParseTypeAndValue(Val, Loc, PFS) ||
3108      ParseOptionalCommaAlignment(Alignment))
3109    return true;
3110
3111  if (!isa<PointerType>(Val->getType()) ||
3112      !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3113    return Error(Loc, "load operand must be a pointer to a first class type");
3114
3115  Inst = new LoadInst(Val, "", isVolatile, Alignment);
3116  return false;
3117}
3118
3119/// ParseStore
3120///   ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' uint)?
3121bool LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
3122                          bool isVolatile) {
3123  Value *Val, *Ptr; LocTy Loc, PtrLoc;
3124  unsigned Alignment;
3125  if (ParseTypeAndValue(Val, Loc, PFS) ||
3126      ParseToken(lltok::comma, "expected ',' after store operand") ||
3127      ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3128      ParseOptionalCommaAlignment(Alignment))
3129    return true;
3130
3131  if (!isa<PointerType>(Ptr->getType()))
3132    return Error(PtrLoc, "store operand must be a pointer");
3133  if (!Val->getType()->isFirstClassType())
3134    return Error(Loc, "store operand must be a first class value");
3135  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3136    return Error(Loc, "stored value and pointer type do not match");
3137
3138  Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
3139  return false;
3140}
3141
3142/// ParseGetResult
3143///   ::= 'getresult' TypeAndValue ',' uint
3144/// FIXME: Remove support for getresult in LLVM 3.0
3145bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
3146  Value *Val; LocTy ValLoc, EltLoc;
3147  unsigned Element;
3148  if (ParseTypeAndValue(Val, ValLoc, PFS) ||
3149      ParseToken(lltok::comma, "expected ',' after getresult operand") ||
3150      ParseUInt32(Element, EltLoc))
3151    return true;
3152
3153  if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3154    return Error(ValLoc, "getresult inst requires an aggregate operand");
3155  if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
3156    return Error(EltLoc, "invalid getresult index for value");
3157  Inst = ExtractValueInst::Create(Val, Element);
3158  return false;
3159}
3160
3161/// ParseGetElementPtr
3162///   ::= 'getelementptr' TypeAndValue (',' TypeAndValue)*
3163bool LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3164  Value *Ptr, *Val; LocTy Loc, EltLoc;
3165  if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3166
3167  if (!isa<PointerType>(Ptr->getType()))
3168    return Error(Loc, "base of getelementptr must be a pointer");
3169
3170  SmallVector<Value*, 16> Indices;
3171  while (EatIfPresent(lltok::comma)) {
3172    if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3173    if (!isa<IntegerType>(Val->getType()))
3174      return Error(EltLoc, "getelementptr index must be an integer");
3175    Indices.push_back(Val);
3176  }
3177
3178  if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
3179                                         Indices.begin(), Indices.end()))
3180    return Error(Loc, "invalid getelementptr indices");
3181  Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
3182  return false;
3183}
3184
3185/// ParseExtractValue
3186///   ::= 'extractvalue' TypeAndValue (',' uint32)+
3187bool LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3188  Value *Val; LocTy Loc;
3189  SmallVector<unsigned, 4> Indices;
3190  if (ParseTypeAndValue(Val, Loc, PFS) ||
3191      ParseIndexList(Indices))
3192    return true;
3193
3194  if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3195    return Error(Loc, "extractvalue operand must be array or struct");
3196
3197  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
3198                                        Indices.end()))
3199    return Error(Loc, "invalid indices for extractvalue");
3200  Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end());
3201  return false;
3202}
3203
3204/// ParseInsertValue
3205///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3206bool LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3207  Value *Val0, *Val1; LocTy Loc0, Loc1;
3208  SmallVector<unsigned, 4> Indices;
3209  if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3210      ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3211      ParseTypeAndValue(Val1, Loc1, PFS) ||
3212      ParseIndexList(Indices))
3213    return true;
3214
3215  if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
3216    return Error(Loc0, "extractvalue operand must be array or struct");
3217
3218  if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
3219                                        Indices.end()))
3220    return Error(Loc0, "invalid indices for insertvalue");
3221  Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end());
3222  return false;
3223}
3224