LLParser.cpp revision 858143816d43e58b17bfd11cb1b57afbd7f0f893
1//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/AutoUpgrade.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instructions.h"
21#include "llvm/Module.h"
22#include "llvm/Operator.h"
23#include "llvm/ValueSymbolTable.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/raw_ostream.h"
27using namespace llvm;
28
29static std::string getTypeString(Type *T) {
30  std::string Result;
31  raw_string_ostream Tmp(Result);
32  Tmp << *T;
33  return Tmp.str();
34}
35
36/// Run: module ::= toplevelentity*
37bool LLParser::Run() {
38  // Prime the lexer.
39  Lex.Lex();
40
41  return ParseTopLevelEntities() ||
42         ValidateEndOfModule();
43}
44
45/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
46/// module.
47bool LLParser::ValidateEndOfModule() {
48  // Handle any instruction metadata forward references.
49  if (!ForwardRefInstMetadata.empty()) {
50    for (DenseMap<Instruction*, std::vector<MDRef> >::iterator
51         I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end();
52         I != E; ++I) {
53      Instruction *Inst = I->first;
54      const std::vector<MDRef> &MDList = I->second;
55
56      for (unsigned i = 0, e = MDList.size(); i != e; ++i) {
57        unsigned SlotNo = MDList[i].MDSlot;
58
59        if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0)
60          return Error(MDList[i].Loc, "use of undefined metadata '!" +
61                       Twine(SlotNo) + "'");
62        Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]);
63      }
64    }
65    ForwardRefInstMetadata.clear();
66  }
67
68
69  // If there are entries in ForwardRefBlockAddresses at this point, they are
70  // references after the function was defined.  Resolve those now.
71  while (!ForwardRefBlockAddresses.empty()) {
72    // Okay, we are referencing an already-parsed function, resolve them now.
73    Function *TheFn = 0;
74    const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
75    if (Fn.Kind == ValID::t_GlobalName)
76      TheFn = M->getFunction(Fn.StrVal);
77    else if (Fn.UIntVal < NumberedVals.size())
78      TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
79
80    if (TheFn == 0)
81      return Error(Fn.Loc, "unknown function referenced by blockaddress");
82
83    // Resolve all these references.
84    if (ResolveForwardRefBlockAddresses(TheFn,
85                                      ForwardRefBlockAddresses.begin()->second,
86                                        0))
87      return true;
88
89    ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
90  }
91
92  for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i)
93    if (NumberedTypes[i].second.isValid())
94      return Error(NumberedTypes[i].second,
95                   "use of undefined type '%" + Twine(i) + "'");
96
97  for (StringMap<std::pair<Type*, LocTy> >::iterator I =
98       NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
99    if (I->second.second.isValid())
100      return Error(I->second.second,
101                   "use of undefined type named '" + I->getKey() + "'");
102
103  if (!ForwardRefVals.empty())
104    return Error(ForwardRefVals.begin()->second.second,
105                 "use of undefined value '@" + ForwardRefVals.begin()->first +
106                 "'");
107
108  if (!ForwardRefValIDs.empty())
109    return Error(ForwardRefValIDs.begin()->second.second,
110                 "use of undefined value '@" +
111                 Twine(ForwardRefValIDs.begin()->first) + "'");
112
113  if (!ForwardRefMDNodes.empty())
114    return Error(ForwardRefMDNodes.begin()->second.second,
115                 "use of undefined metadata '!" +
116                 Twine(ForwardRefMDNodes.begin()->first) + "'");
117
118
119  // Look for intrinsic functions and CallInst that need to be upgraded
120  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
121    UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
122
123  return false;
124}
125
126bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn,
127                             std::vector<std::pair<ValID, GlobalValue*> > &Refs,
128                                               PerFunctionState *PFS) {
129  // Loop over all the references, resolving them.
130  for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
131    BasicBlock *Res;
132    if (PFS) {
133      if (Refs[i].first.Kind == ValID::t_LocalName)
134        Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
135      else
136        Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
137    } else if (Refs[i].first.Kind == ValID::t_LocalID) {
138      return Error(Refs[i].first.Loc,
139       "cannot take address of numeric label after the function is defined");
140    } else {
141      Res = dyn_cast_or_null<BasicBlock>(
142                     TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
143    }
144
145    if (Res == 0)
146      return Error(Refs[i].first.Loc,
147                   "referenced value is not a basic block");
148
149    // Get the BlockAddress for this and update references to use it.
150    BlockAddress *BA = BlockAddress::get(TheFn, Res);
151    Refs[i].second->replaceAllUsesWith(BA);
152    Refs[i].second->eraseFromParent();
153  }
154  return false;
155}
156
157
158//===----------------------------------------------------------------------===//
159// Top-Level Entities
160//===----------------------------------------------------------------------===//
161
162bool LLParser::ParseTopLevelEntities() {
163  while (1) {
164    switch (Lex.getKind()) {
165    default:         return TokError("expected top-level entity");
166    case lltok::Eof: return false;
167    case lltok::kw_declare: if (ParseDeclare()) return true; break;
168    case lltok::kw_define:  if (ParseDefine()) return true; break;
169    case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
170    case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
171    case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
172    case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
173    case lltok::LocalVar:   if (ParseNamedType()) return true; break;
174    case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
175    case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
176    case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
177    case lltok::MetadataVar: if (ParseNamedMetadata()) return true; break;
178
179    // The Global variable production with no name can have many different
180    // optional leading prefixes, the production is:
181    // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
182    //               OptionalAddrSpace OptionalUnNammedAddr
183    //               ('constant'|'global') ...
184    case lltok::kw_private:             // OptionalLinkage
185    case lltok::kw_linker_private:      // OptionalLinkage
186    case lltok::kw_linker_private_weak: // OptionalLinkage
187    case lltok::kw_linker_private_weak_def_auto: // OptionalLinkage
188    case lltok::kw_internal:            // OptionalLinkage
189    case lltok::kw_weak:                // OptionalLinkage
190    case lltok::kw_weak_odr:            // OptionalLinkage
191    case lltok::kw_linkonce:            // OptionalLinkage
192    case lltok::kw_linkonce_odr:        // OptionalLinkage
193    case lltok::kw_appending:           // OptionalLinkage
194    case lltok::kw_dllexport:           // OptionalLinkage
195    case lltok::kw_common:              // OptionalLinkage
196    case lltok::kw_dllimport:           // OptionalLinkage
197    case lltok::kw_extern_weak:         // OptionalLinkage
198    case lltok::kw_external: {          // OptionalLinkage
199      unsigned Linkage, Visibility;
200      if (ParseOptionalLinkage(Linkage) ||
201          ParseOptionalVisibility(Visibility) ||
202          ParseGlobal("", SMLoc(), Linkage, true, Visibility))
203        return true;
204      break;
205    }
206    case lltok::kw_default:       // OptionalVisibility
207    case lltok::kw_hidden:        // OptionalVisibility
208    case lltok::kw_protected: {   // OptionalVisibility
209      unsigned Visibility;
210      if (ParseOptionalVisibility(Visibility) ||
211          ParseGlobal("", SMLoc(), 0, false, Visibility))
212        return true;
213      break;
214    }
215
216    case lltok::kw_thread_local:  // OptionalThreadLocal
217    case lltok::kw_addrspace:     // OptionalAddrSpace
218    case lltok::kw_constant:      // GlobalType
219    case lltok::kw_global:        // GlobalType
220      if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
221      break;
222    }
223  }
224}
225
226
227/// toplevelentity
228///   ::= 'module' 'asm' STRINGCONSTANT
229bool LLParser::ParseModuleAsm() {
230  assert(Lex.getKind() == lltok::kw_module);
231  Lex.Lex();
232
233  std::string AsmStr;
234  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
235      ParseStringConstant(AsmStr)) return true;
236
237  M->appendModuleInlineAsm(AsmStr);
238  return false;
239}
240
241/// toplevelentity
242///   ::= 'target' 'triple' '=' STRINGCONSTANT
243///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
244bool LLParser::ParseTargetDefinition() {
245  assert(Lex.getKind() == lltok::kw_target);
246  std::string Str;
247  switch (Lex.Lex()) {
248  default: return TokError("unknown target property");
249  case lltok::kw_triple:
250    Lex.Lex();
251    if (ParseToken(lltok::equal, "expected '=' after target triple") ||
252        ParseStringConstant(Str))
253      return true;
254    M->setTargetTriple(Str);
255    return false;
256  case lltok::kw_datalayout:
257    Lex.Lex();
258    if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
259        ParseStringConstant(Str))
260      return true;
261    M->setDataLayout(Str);
262    return false;
263  }
264}
265
266/// toplevelentity
267///   ::= 'deplibs' '=' '[' ']'
268///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
269bool LLParser::ParseDepLibs() {
270  assert(Lex.getKind() == lltok::kw_deplibs);
271  Lex.Lex();
272  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
273      ParseToken(lltok::lsquare, "expected '=' after deplibs"))
274    return true;
275
276  if (EatIfPresent(lltok::rsquare))
277    return false;
278
279  std::string Str;
280  if (ParseStringConstant(Str)) return true;
281  M->addLibrary(Str);
282
283  while (EatIfPresent(lltok::comma)) {
284    if (ParseStringConstant(Str)) return true;
285    M->addLibrary(Str);
286  }
287
288  return ParseToken(lltok::rsquare, "expected ']' at end of list");
289}
290
291/// ParseUnnamedType:
292///   ::= LocalVarID '=' 'type' type
293bool LLParser::ParseUnnamedType() {
294  LocTy TypeLoc = Lex.getLoc();
295  unsigned TypeID = Lex.getUIntVal();
296  Lex.Lex(); // eat LocalVarID;
297
298  if (ParseToken(lltok::equal, "expected '=' after name") ||
299      ParseToken(lltok::kw_type, "expected 'type' after '='"))
300    return true;
301
302  if (TypeID >= NumberedTypes.size())
303    NumberedTypes.resize(TypeID+1);
304
305  Type *Result = 0;
306  if (ParseStructDefinition(TypeLoc, "",
307                            NumberedTypes[TypeID], Result)) return true;
308
309  if (!isa<StructType>(Result)) {
310    std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
311    if (Entry.first)
312      return Error(TypeLoc, "non-struct types may not be recursive");
313    Entry.first = Result;
314    Entry.second = SMLoc();
315  }
316
317  return false;
318}
319
320
321/// toplevelentity
322///   ::= LocalVar '=' 'type' type
323bool LLParser::ParseNamedType() {
324  std::string Name = Lex.getStrVal();
325  LocTy NameLoc = Lex.getLoc();
326  Lex.Lex();  // eat LocalVar.
327
328  if (ParseToken(lltok::equal, "expected '=' after name") ||
329      ParseToken(lltok::kw_type, "expected 'type' after name"))
330    return true;
331
332  Type *Result = 0;
333  if (ParseStructDefinition(NameLoc, Name,
334                            NamedTypes[Name], Result)) return true;
335
336  if (!isa<StructType>(Result)) {
337    std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
338    if (Entry.first)
339      return Error(NameLoc, "non-struct types may not be recursive");
340    Entry.first = Result;
341    Entry.second = SMLoc();
342  }
343
344  return false;
345}
346
347
348/// toplevelentity
349///   ::= 'declare' FunctionHeader
350bool LLParser::ParseDeclare() {
351  assert(Lex.getKind() == lltok::kw_declare);
352  Lex.Lex();
353
354  Function *F;
355  return ParseFunctionHeader(F, false);
356}
357
358/// toplevelentity
359///   ::= 'define' FunctionHeader '{' ...
360bool LLParser::ParseDefine() {
361  assert(Lex.getKind() == lltok::kw_define);
362  Lex.Lex();
363
364  Function *F;
365  return ParseFunctionHeader(F, true) ||
366         ParseFunctionBody(*F);
367}
368
369/// ParseGlobalType
370///   ::= 'constant'
371///   ::= 'global'
372bool LLParser::ParseGlobalType(bool &IsConstant) {
373  if (Lex.getKind() == lltok::kw_constant)
374    IsConstant = true;
375  else if (Lex.getKind() == lltok::kw_global)
376    IsConstant = false;
377  else {
378    IsConstant = false;
379    return TokError("expected 'global' or 'constant'");
380  }
381  Lex.Lex();
382  return false;
383}
384
385/// ParseUnnamedGlobal:
386///   OptionalVisibility ALIAS ...
387///   OptionalLinkage OptionalVisibility ...   -> global variable
388///   GlobalID '=' OptionalVisibility ALIAS ...
389///   GlobalID '=' OptionalLinkage OptionalVisibility ...   -> global variable
390bool LLParser::ParseUnnamedGlobal() {
391  unsigned VarID = NumberedVals.size();
392  std::string Name;
393  LocTy NameLoc = Lex.getLoc();
394
395  // Handle the GlobalID form.
396  if (Lex.getKind() == lltok::GlobalID) {
397    if (Lex.getUIntVal() != VarID)
398      return Error(Lex.getLoc(), "variable expected to be numbered '%" +
399                   Twine(VarID) + "'");
400    Lex.Lex(); // eat GlobalID;
401
402    if (ParseToken(lltok::equal, "expected '=' after name"))
403      return true;
404  }
405
406  bool HasLinkage;
407  unsigned Linkage, Visibility;
408  if (ParseOptionalLinkage(Linkage, HasLinkage) ||
409      ParseOptionalVisibility(Visibility))
410    return true;
411
412  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
413    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
414  return ParseAlias(Name, NameLoc, Visibility);
415}
416
417/// ParseNamedGlobal:
418///   GlobalVar '=' OptionalVisibility ALIAS ...
419///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
420bool LLParser::ParseNamedGlobal() {
421  assert(Lex.getKind() == lltok::GlobalVar);
422  LocTy NameLoc = Lex.getLoc();
423  std::string Name = Lex.getStrVal();
424  Lex.Lex();
425
426  bool HasLinkage;
427  unsigned Linkage, Visibility;
428  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
429      ParseOptionalLinkage(Linkage, HasLinkage) ||
430      ParseOptionalVisibility(Visibility))
431    return true;
432
433  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
434    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
435  return ParseAlias(Name, NameLoc, Visibility);
436}
437
438// MDString:
439//   ::= '!' STRINGCONSTANT
440bool LLParser::ParseMDString(MDString *&Result) {
441  std::string Str;
442  if (ParseStringConstant(Str)) return true;
443  Result = MDString::get(Context, Str);
444  return false;
445}
446
447// MDNode:
448//   ::= '!' MDNodeNumber
449//
450/// This version of ParseMDNodeID returns the slot number and null in the case
451/// of a forward reference.
452bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) {
453  // !{ ..., !42, ... }
454  if (ParseUInt32(SlotNo)) return true;
455
456  // Check existing MDNode.
457  if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0)
458    Result = NumberedMetadata[SlotNo];
459  else
460    Result = 0;
461  return false;
462}
463
464bool LLParser::ParseMDNodeID(MDNode *&Result) {
465  // !{ ..., !42, ... }
466  unsigned MID = 0;
467  if (ParseMDNodeID(Result, MID)) return true;
468
469  // If not a forward reference, just return it now.
470  if (Result) return false;
471
472  // Otherwise, create MDNode forward reference.
473  MDNode *FwdNode = MDNode::getTemporary(Context, ArrayRef<Value*>());
474  ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
475
476  if (NumberedMetadata.size() <= MID)
477    NumberedMetadata.resize(MID+1);
478  NumberedMetadata[MID] = FwdNode;
479  Result = FwdNode;
480  return false;
481}
482
483/// ParseNamedMetadata:
484///   !foo = !{ !1, !2 }
485bool LLParser::ParseNamedMetadata() {
486  assert(Lex.getKind() == lltok::MetadataVar);
487  std::string Name = Lex.getStrVal();
488  Lex.Lex();
489
490  if (ParseToken(lltok::equal, "expected '=' here") ||
491      ParseToken(lltok::exclaim, "Expected '!' here") ||
492      ParseToken(lltok::lbrace, "Expected '{' here"))
493    return true;
494
495  NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
496  if (Lex.getKind() != lltok::rbrace)
497    do {
498      if (ParseToken(lltok::exclaim, "Expected '!' here"))
499        return true;
500
501      MDNode *N = 0;
502      if (ParseMDNodeID(N)) return true;
503      NMD->addOperand(N);
504    } while (EatIfPresent(lltok::comma));
505
506  if (ParseToken(lltok::rbrace, "expected end of metadata node"))
507    return true;
508
509  return false;
510}
511
512/// ParseStandaloneMetadata:
513///   !42 = !{...}
514bool LLParser::ParseStandaloneMetadata() {
515  assert(Lex.getKind() == lltok::exclaim);
516  Lex.Lex();
517  unsigned MetadataID = 0;
518
519  LocTy TyLoc;
520  Type *Ty = 0;
521  SmallVector<Value *, 16> Elts;
522  if (ParseUInt32(MetadataID) ||
523      ParseToken(lltok::equal, "expected '=' here") ||
524      ParseType(Ty, TyLoc) ||
525      ParseToken(lltok::exclaim, "Expected '!' here") ||
526      ParseToken(lltok::lbrace, "Expected '{' here") ||
527      ParseMDNodeVector(Elts, NULL) ||
528      ParseToken(lltok::rbrace, "expected end of metadata node"))
529    return true;
530
531  MDNode *Init = MDNode::get(Context, Elts);
532
533  // See if this was forward referenced, if so, handle it.
534  std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
535    FI = ForwardRefMDNodes.find(MetadataID);
536  if (FI != ForwardRefMDNodes.end()) {
537    MDNode *Temp = FI->second.first;
538    Temp->replaceAllUsesWith(Init);
539    MDNode::deleteTemporary(Temp);
540    ForwardRefMDNodes.erase(FI);
541
542    assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
543  } else {
544    if (MetadataID >= NumberedMetadata.size())
545      NumberedMetadata.resize(MetadataID+1);
546
547    if (NumberedMetadata[MetadataID] != 0)
548      return TokError("Metadata id is already used");
549    NumberedMetadata[MetadataID] = Init;
550  }
551
552  return false;
553}
554
555/// ParseAlias:
556///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
557/// Aliasee
558///   ::= TypeAndValue
559///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
560///   ::= 'getelementptr' 'inbounds'? '(' ... ')'
561///
562/// Everything through visibility has already been parsed.
563///
564bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
565                          unsigned Visibility) {
566  assert(Lex.getKind() == lltok::kw_alias);
567  Lex.Lex();
568  unsigned Linkage;
569  LocTy LinkageLoc = Lex.getLoc();
570  if (ParseOptionalLinkage(Linkage))
571    return true;
572
573  if (Linkage != GlobalValue::ExternalLinkage &&
574      Linkage != GlobalValue::WeakAnyLinkage &&
575      Linkage != GlobalValue::WeakODRLinkage &&
576      Linkage != GlobalValue::InternalLinkage &&
577      Linkage != GlobalValue::PrivateLinkage &&
578      Linkage != GlobalValue::LinkerPrivateLinkage &&
579      Linkage != GlobalValue::LinkerPrivateWeakLinkage &&
580      Linkage != GlobalValue::LinkerPrivateWeakDefAutoLinkage)
581    return Error(LinkageLoc, "invalid linkage type for alias");
582
583  Constant *Aliasee;
584  LocTy AliaseeLoc = Lex.getLoc();
585  if (Lex.getKind() != lltok::kw_bitcast &&
586      Lex.getKind() != lltok::kw_getelementptr) {
587    if (ParseGlobalTypeAndValue(Aliasee)) return true;
588  } else {
589    // The bitcast dest type is not present, it is implied by the dest type.
590    ValID ID;
591    if (ParseValID(ID)) return true;
592    if (ID.Kind != ValID::t_Constant)
593      return Error(AliaseeLoc, "invalid aliasee");
594    Aliasee = ID.ConstantVal;
595  }
596
597  if (!Aliasee->getType()->isPointerTy())
598    return Error(AliaseeLoc, "alias must have pointer type");
599
600  // Okay, create the alias but do not insert it into the module yet.
601  GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
602                                    (GlobalValue::LinkageTypes)Linkage, Name,
603                                    Aliasee);
604  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
605
606  // See if this value already exists in the symbol table.  If so, it is either
607  // a redefinition or a definition of a forward reference.
608  if (GlobalValue *Val = M->getNamedValue(Name)) {
609    // See if this was a redefinition.  If so, there is no entry in
610    // ForwardRefVals.
611    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
612      I = ForwardRefVals.find(Name);
613    if (I == ForwardRefVals.end())
614      return Error(NameLoc, "redefinition of global named '@" + Name + "'");
615
616    // Otherwise, this was a definition of forward ref.  Verify that types
617    // agree.
618    if (Val->getType() != GA->getType())
619      return Error(NameLoc,
620              "forward reference and definition of alias have different types");
621
622    // If they agree, just RAUW the old value with the alias and remove the
623    // forward ref info.
624    Val->replaceAllUsesWith(GA);
625    Val->eraseFromParent();
626    ForwardRefVals.erase(I);
627  }
628
629  // Insert into the module, we know its name won't collide now.
630  M->getAliasList().push_back(GA);
631  assert(GA->getName() == Name && "Should not be a name conflict!");
632
633  return false;
634}
635
636/// ParseGlobal
637///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
638///       OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const
639///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
640///       OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const
641///
642/// Everything through visibility has been parsed already.
643///
644bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
645                           unsigned Linkage, bool HasLinkage,
646                           unsigned Visibility) {
647  unsigned AddrSpace;
648  bool ThreadLocal, IsConstant, UnnamedAddr;
649  LocTy UnnamedAddrLoc;
650  LocTy TyLoc;
651
652  Type *Ty = 0;
653  if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
654      ParseOptionalAddrSpace(AddrSpace) ||
655      ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
656                         &UnnamedAddrLoc) ||
657      ParseGlobalType(IsConstant) ||
658      ParseType(Ty, TyLoc))
659    return true;
660
661  // If the linkage is specified and is external, then no initializer is
662  // present.
663  Constant *Init = 0;
664  if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
665                      Linkage != GlobalValue::ExternalWeakLinkage &&
666                      Linkage != GlobalValue::ExternalLinkage)) {
667    if (ParseGlobalValue(Ty, Init))
668      return true;
669  }
670
671  if (Ty->isFunctionTy() || Ty->isLabelTy())
672    return Error(TyLoc, "invalid type for global variable");
673
674  GlobalVariable *GV = 0;
675
676  // See if the global was forward referenced, if so, use the global.
677  if (!Name.empty()) {
678    if (GlobalValue *GVal = M->getNamedValue(Name)) {
679      if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
680        return Error(NameLoc, "redefinition of global '@" + Name + "'");
681      GV = cast<GlobalVariable>(GVal);
682    }
683  } else {
684    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
685      I = ForwardRefValIDs.find(NumberedVals.size());
686    if (I != ForwardRefValIDs.end()) {
687      GV = cast<GlobalVariable>(I->second.first);
688      ForwardRefValIDs.erase(I);
689    }
690  }
691
692  if (GV == 0) {
693    GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
694                            Name, 0, false, AddrSpace);
695  } else {
696    if (GV->getType()->getElementType() != Ty)
697      return Error(TyLoc,
698            "forward reference and definition of global have different types");
699
700    // Move the forward-reference to the correct spot in the module.
701    M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
702  }
703
704  if (Name.empty())
705    NumberedVals.push_back(GV);
706
707  // Set the parsed properties on the global.
708  if (Init)
709    GV->setInitializer(Init);
710  GV->setConstant(IsConstant);
711  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
712  GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
713  GV->setThreadLocal(ThreadLocal);
714  GV->setUnnamedAddr(UnnamedAddr);
715
716  // Parse attributes on the global.
717  while (Lex.getKind() == lltok::comma) {
718    Lex.Lex();
719
720    if (Lex.getKind() == lltok::kw_section) {
721      Lex.Lex();
722      GV->setSection(Lex.getStrVal());
723      if (ParseToken(lltok::StringConstant, "expected global section string"))
724        return true;
725    } else if (Lex.getKind() == lltok::kw_align) {
726      unsigned Alignment;
727      if (ParseOptionalAlignment(Alignment)) return true;
728      GV->setAlignment(Alignment);
729    } else {
730      TokError("unknown global variable property!");
731    }
732  }
733
734  return false;
735}
736
737
738//===----------------------------------------------------------------------===//
739// GlobalValue Reference/Resolution Routines.
740//===----------------------------------------------------------------------===//
741
742/// GetGlobalVal - Get a value with the specified name or ID, creating a
743/// forward reference record if needed.  This can return null if the value
744/// exists but does not have the right type.
745GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
746                                    LocTy Loc) {
747  PointerType *PTy = dyn_cast<PointerType>(Ty);
748  if (PTy == 0) {
749    Error(Loc, "global variable reference must have pointer type");
750    return 0;
751  }
752
753  // Look this name up in the normal function symbol table.
754  GlobalValue *Val =
755    cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
756
757  // If this is a forward reference for the value, see if we already created a
758  // forward ref record.
759  if (Val == 0) {
760    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
761      I = ForwardRefVals.find(Name);
762    if (I != ForwardRefVals.end())
763      Val = I->second.first;
764  }
765
766  // If we have the value in the symbol table or fwd-ref table, return it.
767  if (Val) {
768    if (Val->getType() == Ty) return Val;
769    Error(Loc, "'@" + Name + "' defined with type '" +
770          getTypeString(Val->getType()) + "'");
771    return 0;
772  }
773
774  // Otherwise, create a new forward reference for this value and remember it.
775  GlobalValue *FwdVal;
776  if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
777    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
778  else
779    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
780                                GlobalValue::ExternalWeakLinkage, 0, Name);
781
782  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
783  return FwdVal;
784}
785
786GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
787  PointerType *PTy = dyn_cast<PointerType>(Ty);
788  if (PTy == 0) {
789    Error(Loc, "global variable reference must have pointer type");
790    return 0;
791  }
792
793  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
794
795  // If this is a forward reference for the value, see if we already created a
796  // forward ref record.
797  if (Val == 0) {
798    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
799      I = ForwardRefValIDs.find(ID);
800    if (I != ForwardRefValIDs.end())
801      Val = I->second.first;
802  }
803
804  // If we have the value in the symbol table or fwd-ref table, return it.
805  if (Val) {
806    if (Val->getType() == Ty) return Val;
807    Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
808          getTypeString(Val->getType()) + "'");
809    return 0;
810  }
811
812  // Otherwise, create a new forward reference for this value and remember it.
813  GlobalValue *FwdVal;
814  if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
815    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
816  else
817    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
818                                GlobalValue::ExternalWeakLinkage, 0, "");
819
820  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
821  return FwdVal;
822}
823
824
825//===----------------------------------------------------------------------===//
826// Helper Routines.
827//===----------------------------------------------------------------------===//
828
829/// ParseToken - If the current token has the specified kind, eat it and return
830/// success.  Otherwise, emit the specified error and return failure.
831bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
832  if (Lex.getKind() != T)
833    return TokError(ErrMsg);
834  Lex.Lex();
835  return false;
836}
837
838/// ParseStringConstant
839///   ::= StringConstant
840bool LLParser::ParseStringConstant(std::string &Result) {
841  if (Lex.getKind() != lltok::StringConstant)
842    return TokError("expected string constant");
843  Result = Lex.getStrVal();
844  Lex.Lex();
845  return false;
846}
847
848/// ParseUInt32
849///   ::= uint32
850bool LLParser::ParseUInt32(unsigned &Val) {
851  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
852    return TokError("expected integer");
853  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
854  if (Val64 != unsigned(Val64))
855    return TokError("expected 32-bit integer (too large)");
856  Val = Val64;
857  Lex.Lex();
858  return false;
859}
860
861
862/// ParseOptionalAddrSpace
863///   := /*empty*/
864///   := 'addrspace' '(' uint32 ')'
865bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
866  AddrSpace = 0;
867  if (!EatIfPresent(lltok::kw_addrspace))
868    return false;
869  return ParseToken(lltok::lparen, "expected '(' in address space") ||
870         ParseUInt32(AddrSpace) ||
871         ParseToken(lltok::rparen, "expected ')' in address space");
872}
873
874/// ParseOptionalAttrs - Parse a potentially empty attribute list.  AttrKind
875/// indicates what kind of attribute list this is: 0: function arg, 1: result,
876/// 2: function attr.
877bool LLParser::ParseOptionalAttrs(Attributes &Attrs, unsigned AttrKind) {
878  Attrs = Attribute::None;
879  LocTy AttrLoc = Lex.getLoc();
880
881  while (1) {
882    switch (Lex.getKind()) {
883    default:  // End of attributes.
884      if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
885        return Error(AttrLoc, "invalid use of function-only attribute");
886
887      // As a hack, we allow "align 2" on functions as a synonym for
888      // "alignstack 2".
889      if (AttrKind == 2 &&
890          (Attrs & ~(Attribute::FunctionOnly | Attribute::Alignment)))
891        return Error(AttrLoc, "invalid use of attribute on a function");
892
893      if (AttrKind != 0 && (Attrs & Attribute::ParameterOnly))
894        return Error(AttrLoc, "invalid use of parameter-only attribute");
895
896      return false;
897    case lltok::kw_zeroext:         Attrs |= Attribute::ZExt; break;
898    case lltok::kw_signext:         Attrs |= Attribute::SExt; break;
899    case lltok::kw_inreg:           Attrs |= Attribute::InReg; break;
900    case lltok::kw_sret:            Attrs |= Attribute::StructRet; break;
901    case lltok::kw_noalias:         Attrs |= Attribute::NoAlias; break;
902    case lltok::kw_nocapture:       Attrs |= Attribute::NoCapture; break;
903    case lltok::kw_byval:           Attrs |= Attribute::ByVal; break;
904    case lltok::kw_nest:            Attrs |= Attribute::Nest; break;
905
906    case lltok::kw_noreturn:        Attrs |= Attribute::NoReturn; break;
907    case lltok::kw_nounwind:        Attrs |= Attribute::NoUnwind; break;
908    case lltok::kw_uwtable:         Attrs |= Attribute::UWTable; break;
909    case lltok::kw_returns_twice:   Attrs |= Attribute::ReturnsTwice; break;
910    case lltok::kw_noinline:        Attrs |= Attribute::NoInline; break;
911    case lltok::kw_readnone:        Attrs |= Attribute::ReadNone; break;
912    case lltok::kw_readonly:        Attrs |= Attribute::ReadOnly; break;
913    case lltok::kw_inlinehint:      Attrs |= Attribute::InlineHint; break;
914    case lltok::kw_alwaysinline:    Attrs |= Attribute::AlwaysInline; break;
915    case lltok::kw_optsize:         Attrs |= Attribute::OptimizeForSize; break;
916    case lltok::kw_ssp:             Attrs |= Attribute::StackProtect; break;
917    case lltok::kw_sspreq:          Attrs |= Attribute::StackProtectReq; break;
918    case lltok::kw_noredzone:       Attrs |= Attribute::NoRedZone; break;
919    case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
920    case lltok::kw_naked:           Attrs |= Attribute::Naked; break;
921    case lltok::kw_nonlazybind:     Attrs |= Attribute::NonLazyBind; break;
922    case lltok::kw_address_safety:  Attrs |= Attribute::AddressSafety; break;
923
924    case lltok::kw_alignstack: {
925      unsigned Alignment;
926      if (ParseOptionalStackAlignment(Alignment))
927        return true;
928      Attrs |= Attribute::constructStackAlignmentFromInt(Alignment);
929      continue;
930    }
931
932    case lltok::kw_align: {
933      unsigned Alignment;
934      if (ParseOptionalAlignment(Alignment))
935        return true;
936      Attrs |= Attribute::constructAlignmentFromInt(Alignment);
937      continue;
938    }
939
940    }
941    Lex.Lex();
942  }
943}
944
945/// ParseOptionalLinkage
946///   ::= /*empty*/
947///   ::= 'private'
948///   ::= 'linker_private'
949///   ::= 'linker_private_weak'
950///   ::= 'linker_private_weak_def_auto'
951///   ::= 'internal'
952///   ::= 'weak'
953///   ::= 'weak_odr'
954///   ::= 'linkonce'
955///   ::= 'linkonce_odr'
956///   ::= 'available_externally'
957///   ::= 'appending'
958///   ::= 'dllexport'
959///   ::= 'common'
960///   ::= 'dllimport'
961///   ::= 'extern_weak'
962///   ::= 'external'
963bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
964  HasLinkage = false;
965  switch (Lex.getKind()) {
966  default:                       Res=GlobalValue::ExternalLinkage; return false;
967  case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
968  case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
969  case lltok::kw_linker_private_weak:
970    Res = GlobalValue::LinkerPrivateWeakLinkage;
971    break;
972  case lltok::kw_linker_private_weak_def_auto:
973    Res = GlobalValue::LinkerPrivateWeakDefAutoLinkage;
974    break;
975  case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
976  case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
977  case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
978  case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
979  case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
980  case lltok::kw_available_externally:
981    Res = GlobalValue::AvailableExternallyLinkage;
982    break;
983  case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
984  case lltok::kw_dllexport:      Res = GlobalValue::DLLExportLinkage;     break;
985  case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
986  case lltok::kw_dllimport:      Res = GlobalValue::DLLImportLinkage;     break;
987  case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
988  case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
989  }
990  Lex.Lex();
991  HasLinkage = true;
992  return false;
993}
994
995/// ParseOptionalVisibility
996///   ::= /*empty*/
997///   ::= 'default'
998///   ::= 'hidden'
999///   ::= 'protected'
1000///
1001bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1002  switch (Lex.getKind()) {
1003  default:                  Res = GlobalValue::DefaultVisibility; return false;
1004  case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
1005  case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
1006  case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1007  }
1008  Lex.Lex();
1009  return false;
1010}
1011
1012/// ParseOptionalCallingConv
1013///   ::= /*empty*/
1014///   ::= 'ccc'
1015///   ::= 'fastcc'
1016///   ::= 'coldcc'
1017///   ::= 'x86_stdcallcc'
1018///   ::= 'x86_fastcallcc'
1019///   ::= 'x86_thiscallcc'
1020///   ::= 'arm_apcscc'
1021///   ::= 'arm_aapcscc'
1022///   ::= 'arm_aapcs_vfpcc'
1023///   ::= 'msp430_intrcc'
1024///   ::= 'ptx_kernel'
1025///   ::= 'ptx_device'
1026///   ::= 'cc' UINT
1027///
1028bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
1029  switch (Lex.getKind()) {
1030  default:                       CC = CallingConv::C; return false;
1031  case lltok::kw_ccc:            CC = CallingConv::C; break;
1032  case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1033  case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1034  case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1035  case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1036  case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1037  case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1038  case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1039  case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1040  case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1041  case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1042  case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1043  case lltok::kw_cc: {
1044      unsigned ArbitraryCC;
1045      Lex.Lex();
1046      if (ParseUInt32(ArbitraryCC))
1047        return true;
1048      CC = static_cast<CallingConv::ID>(ArbitraryCC);
1049      return false;
1050    }
1051  }
1052
1053  Lex.Lex();
1054  return false;
1055}
1056
1057/// ParseInstructionMetadata
1058///   ::= !dbg !42 (',' !dbg !57)*
1059bool LLParser::ParseInstructionMetadata(Instruction *Inst,
1060                                        PerFunctionState *PFS) {
1061  do {
1062    if (Lex.getKind() != lltok::MetadataVar)
1063      return TokError("expected metadata after comma");
1064
1065    std::string Name = Lex.getStrVal();
1066    unsigned MDK = M->getMDKindID(Name);
1067    Lex.Lex();
1068
1069    MDNode *Node;
1070    SMLoc Loc = Lex.getLoc();
1071
1072    if (ParseToken(lltok::exclaim, "expected '!' here"))
1073      return true;
1074
1075    // This code is similar to that of ParseMetadataValue, however it needs to
1076    // have special-case code for a forward reference; see the comments on
1077    // ForwardRefInstMetadata for details. Also, MDStrings are not supported
1078    // at the top level here.
1079    if (Lex.getKind() == lltok::lbrace) {
1080      ValID ID;
1081      if (ParseMetadataListValue(ID, PFS))
1082        return true;
1083      assert(ID.Kind == ValID::t_MDNode);
1084      Inst->setMetadata(MDK, ID.MDNodeVal);
1085    } else {
1086      unsigned NodeID = 0;
1087      if (ParseMDNodeID(Node, NodeID))
1088        return true;
1089      if (Node) {
1090        // If we got the node, add it to the instruction.
1091        Inst->setMetadata(MDK, Node);
1092      } else {
1093        MDRef R = { Loc, MDK, NodeID };
1094        // Otherwise, remember that this should be resolved later.
1095        ForwardRefInstMetadata[Inst].push_back(R);
1096      }
1097    }
1098
1099    // If this is the end of the list, we're done.
1100  } while (EatIfPresent(lltok::comma));
1101  return false;
1102}
1103
1104/// ParseOptionalAlignment
1105///   ::= /* empty */
1106///   ::= 'align' 4
1107bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1108  Alignment = 0;
1109  if (!EatIfPresent(lltok::kw_align))
1110    return false;
1111  LocTy AlignLoc = Lex.getLoc();
1112  if (ParseUInt32(Alignment)) return true;
1113  if (!isPowerOf2_32(Alignment))
1114    return Error(AlignLoc, "alignment is not a power of two");
1115  if (Alignment > Value::MaximumAlignment)
1116    return Error(AlignLoc, "huge alignments are not supported yet");
1117  return false;
1118}
1119
1120/// ParseOptionalCommaAlign
1121///   ::=
1122///   ::= ',' align 4
1123///
1124/// This returns with AteExtraComma set to true if it ate an excess comma at the
1125/// end.
1126bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1127                                       bool &AteExtraComma) {
1128  AteExtraComma = false;
1129  while (EatIfPresent(lltok::comma)) {
1130    // Metadata at the end is an early exit.
1131    if (Lex.getKind() == lltok::MetadataVar) {
1132      AteExtraComma = true;
1133      return false;
1134    }
1135
1136    if (Lex.getKind() != lltok::kw_align)
1137      return Error(Lex.getLoc(), "expected metadata or 'align'");
1138
1139    if (ParseOptionalAlignment(Alignment)) return true;
1140  }
1141
1142  return false;
1143}
1144
1145/// ParseScopeAndOrdering
1146///   if isAtomic: ::= 'singlethread'? AtomicOrdering
1147///   else: ::=
1148///
1149/// This sets Scope and Ordering to the parsed values.
1150bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
1151                                     AtomicOrdering &Ordering) {
1152  if (!isAtomic)
1153    return false;
1154
1155  Scope = CrossThread;
1156  if (EatIfPresent(lltok::kw_singlethread))
1157    Scope = SingleThread;
1158  switch (Lex.getKind()) {
1159  default: return TokError("Expected ordering on atomic instruction");
1160  case lltok::kw_unordered: Ordering = Unordered; break;
1161  case lltok::kw_monotonic: Ordering = Monotonic; break;
1162  case lltok::kw_acquire: Ordering = Acquire; break;
1163  case lltok::kw_release: Ordering = Release; break;
1164  case lltok::kw_acq_rel: Ordering = AcquireRelease; break;
1165  case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break;
1166  }
1167  Lex.Lex();
1168  return false;
1169}
1170
1171/// ParseOptionalStackAlignment
1172///   ::= /* empty */
1173///   ::= 'alignstack' '(' 4 ')'
1174bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1175  Alignment = 0;
1176  if (!EatIfPresent(lltok::kw_alignstack))
1177    return false;
1178  LocTy ParenLoc = Lex.getLoc();
1179  if (!EatIfPresent(lltok::lparen))
1180    return Error(ParenLoc, "expected '('");
1181  LocTy AlignLoc = Lex.getLoc();
1182  if (ParseUInt32(Alignment)) return true;
1183  ParenLoc = Lex.getLoc();
1184  if (!EatIfPresent(lltok::rparen))
1185    return Error(ParenLoc, "expected ')'");
1186  if (!isPowerOf2_32(Alignment))
1187    return Error(AlignLoc, "stack alignment is not a power of two");
1188  return false;
1189}
1190
1191/// ParseIndexList - This parses the index list for an insert/extractvalue
1192/// instruction.  This sets AteExtraComma in the case where we eat an extra
1193/// comma at the end of the line and find that it is followed by metadata.
1194/// Clients that don't allow metadata can call the version of this function that
1195/// only takes one argument.
1196///
1197/// ParseIndexList
1198///    ::=  (',' uint32)+
1199///
1200bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1201                              bool &AteExtraComma) {
1202  AteExtraComma = false;
1203
1204  if (Lex.getKind() != lltok::comma)
1205    return TokError("expected ',' as start of index list");
1206
1207  while (EatIfPresent(lltok::comma)) {
1208    if (Lex.getKind() == lltok::MetadataVar) {
1209      AteExtraComma = true;
1210      return false;
1211    }
1212    unsigned Idx = 0;
1213    if (ParseUInt32(Idx)) return true;
1214    Indices.push_back(Idx);
1215  }
1216
1217  return false;
1218}
1219
1220//===----------------------------------------------------------------------===//
1221// Type Parsing.
1222//===----------------------------------------------------------------------===//
1223
1224/// ParseType - Parse a type.
1225bool LLParser::ParseType(Type *&Result, bool AllowVoid) {
1226  SMLoc TypeLoc = Lex.getLoc();
1227  switch (Lex.getKind()) {
1228  default:
1229    return TokError("expected type");
1230  case lltok::Type:
1231    // Type ::= 'float' | 'void' (etc)
1232    Result = Lex.getTyVal();
1233    Lex.Lex();
1234    break;
1235  case lltok::lbrace:
1236    // Type ::= StructType
1237    if (ParseAnonStructType(Result, false))
1238      return true;
1239    break;
1240  case lltok::lsquare:
1241    // Type ::= '[' ... ']'
1242    Lex.Lex(); // eat the lsquare.
1243    if (ParseArrayVectorType(Result, false))
1244      return true;
1245    break;
1246  case lltok::less: // Either vector or packed struct.
1247    // Type ::= '<' ... '>'
1248    Lex.Lex();
1249    if (Lex.getKind() == lltok::lbrace) {
1250      if (ParseAnonStructType(Result, true) ||
1251          ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1252        return true;
1253    } else if (ParseArrayVectorType(Result, true))
1254      return true;
1255    break;
1256  case lltok::LocalVar: {
1257    // Type ::= %foo
1258    std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
1259
1260    // If the type hasn't been defined yet, create a forward definition and
1261    // remember where that forward def'n was seen (in case it never is defined).
1262    if (Entry.first == 0) {
1263      Entry.first = StructType::create(Context, Lex.getStrVal());
1264      Entry.second = Lex.getLoc();
1265    }
1266    Result = Entry.first;
1267    Lex.Lex();
1268    break;
1269  }
1270
1271  case lltok::LocalVarID: {
1272    // Type ::= %4
1273    if (Lex.getUIntVal() >= NumberedTypes.size())
1274      NumberedTypes.resize(Lex.getUIntVal()+1);
1275    std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
1276
1277    // If the type hasn't been defined yet, create a forward definition and
1278    // remember where that forward def'n was seen (in case it never is defined).
1279    if (Entry.first == 0) {
1280      Entry.first = StructType::create(Context);
1281      Entry.second = Lex.getLoc();
1282    }
1283    Result = Entry.first;
1284    Lex.Lex();
1285    break;
1286  }
1287  }
1288
1289  // Parse the type suffixes.
1290  while (1) {
1291    switch (Lex.getKind()) {
1292    // End of type.
1293    default:
1294      if (!AllowVoid && Result->isVoidTy())
1295        return Error(TypeLoc, "void type only allowed for function results");
1296      return false;
1297
1298    // Type ::= Type '*'
1299    case lltok::star:
1300      if (Result->isLabelTy())
1301        return TokError("basic block pointers are invalid");
1302      if (Result->isVoidTy())
1303        return TokError("pointers to void are invalid - use i8* instead");
1304      if (!PointerType::isValidElementType(Result))
1305        return TokError("pointer to this type is invalid");
1306      Result = PointerType::getUnqual(Result);
1307      Lex.Lex();
1308      break;
1309
1310    // Type ::= Type 'addrspace' '(' uint32 ')' '*'
1311    case lltok::kw_addrspace: {
1312      if (Result->isLabelTy())
1313        return TokError("basic block pointers are invalid");
1314      if (Result->isVoidTy())
1315        return TokError("pointers to void are invalid; use i8* instead");
1316      if (!PointerType::isValidElementType(Result))
1317        return TokError("pointer to this type is invalid");
1318      unsigned AddrSpace;
1319      if (ParseOptionalAddrSpace(AddrSpace) ||
1320          ParseToken(lltok::star, "expected '*' in address space"))
1321        return true;
1322
1323      Result = PointerType::get(Result, AddrSpace);
1324      break;
1325    }
1326
1327    /// Types '(' ArgTypeListI ')' OptFuncAttrs
1328    case lltok::lparen:
1329      if (ParseFunctionType(Result))
1330        return true;
1331      break;
1332    }
1333  }
1334}
1335
1336/// ParseParameterList
1337///    ::= '(' ')'
1338///    ::= '(' Arg (',' Arg)* ')'
1339///  Arg
1340///    ::= Type OptionalAttributes Value OptionalAttributes
1341bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1342                                  PerFunctionState &PFS) {
1343  if (ParseToken(lltok::lparen, "expected '(' in call"))
1344    return true;
1345
1346  while (Lex.getKind() != lltok::rparen) {
1347    // If this isn't the first argument, we need a comma.
1348    if (!ArgList.empty() &&
1349        ParseToken(lltok::comma, "expected ',' in argument list"))
1350      return true;
1351
1352    // Parse the argument.
1353    LocTy ArgLoc;
1354    Type *ArgTy = 0;
1355    Attributes ArgAttrs1;
1356    Attributes ArgAttrs2;
1357    Value *V;
1358    if (ParseType(ArgTy, ArgLoc))
1359      return true;
1360
1361    // Otherwise, handle normal operands.
1362    if (ParseOptionalAttrs(ArgAttrs1, 0) || ParseValue(ArgTy, V, PFS))
1363      return true;
1364    ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1365  }
1366
1367  Lex.Lex();  // Lex the ')'.
1368  return false;
1369}
1370
1371
1372
1373/// ParseArgumentList - Parse the argument list for a function type or function
1374/// prototype.
1375///   ::= '(' ArgTypeListI ')'
1376/// ArgTypeListI
1377///   ::= /*empty*/
1378///   ::= '...'
1379///   ::= ArgTypeList ',' '...'
1380///   ::= ArgType (',' ArgType)*
1381///
1382bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
1383                                 bool &isVarArg){
1384  isVarArg = false;
1385  assert(Lex.getKind() == lltok::lparen);
1386  Lex.Lex(); // eat the (.
1387
1388  if (Lex.getKind() == lltok::rparen) {
1389    // empty
1390  } else if (Lex.getKind() == lltok::dotdotdot) {
1391    isVarArg = true;
1392    Lex.Lex();
1393  } else {
1394    LocTy TypeLoc = Lex.getLoc();
1395    Type *ArgTy = 0;
1396    Attributes Attrs;
1397    std::string Name;
1398
1399    if (ParseType(ArgTy) ||
1400        ParseOptionalAttrs(Attrs, 0)) return true;
1401
1402    if (ArgTy->isVoidTy())
1403      return Error(TypeLoc, "argument can not have void type");
1404
1405    if (Lex.getKind() == lltok::LocalVar) {
1406      Name = Lex.getStrVal();
1407      Lex.Lex();
1408    }
1409
1410    if (!FunctionType::isValidArgumentType(ArgTy))
1411      return Error(TypeLoc, "invalid type for function argument");
1412
1413    ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1414
1415    while (EatIfPresent(lltok::comma)) {
1416      // Handle ... at end of arg list.
1417      if (EatIfPresent(lltok::dotdotdot)) {
1418        isVarArg = true;
1419        break;
1420      }
1421
1422      // Otherwise must be an argument type.
1423      TypeLoc = Lex.getLoc();
1424      if (ParseType(ArgTy) || ParseOptionalAttrs(Attrs, 0)) return true;
1425
1426      if (ArgTy->isVoidTy())
1427        return Error(TypeLoc, "argument can not have void type");
1428
1429      if (Lex.getKind() == lltok::LocalVar) {
1430        Name = Lex.getStrVal();
1431        Lex.Lex();
1432      } else {
1433        Name = "";
1434      }
1435
1436      if (!ArgTy->isFirstClassType())
1437        return Error(TypeLoc, "invalid type for function argument");
1438
1439      ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1440    }
1441  }
1442
1443  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1444}
1445
1446/// ParseFunctionType
1447///  ::= Type ArgumentList OptionalAttrs
1448bool LLParser::ParseFunctionType(Type *&Result) {
1449  assert(Lex.getKind() == lltok::lparen);
1450
1451  if (!FunctionType::isValidReturnType(Result))
1452    return TokError("invalid function return type");
1453
1454  SmallVector<ArgInfo, 8> ArgList;
1455  bool isVarArg;
1456  if (ParseArgumentList(ArgList, isVarArg))
1457    return true;
1458
1459  // Reject names on the arguments lists.
1460  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1461    if (!ArgList[i].Name.empty())
1462      return Error(ArgList[i].Loc, "argument name invalid in function type");
1463    if (ArgList[i].Attrs)
1464      return Error(ArgList[i].Loc,
1465                   "argument attributes invalid in function type");
1466  }
1467
1468  SmallVector<Type*, 16> ArgListTy;
1469  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1470    ArgListTy.push_back(ArgList[i].Ty);
1471
1472  Result = FunctionType::get(Result, ArgListTy, isVarArg);
1473  return false;
1474}
1475
1476/// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
1477/// other structs.
1478bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
1479  SmallVector<Type*, 8> Elts;
1480  if (ParseStructBody(Elts)) return true;
1481
1482  Result = StructType::get(Context, Elts, Packed);
1483  return false;
1484}
1485
1486/// ParseStructDefinition - Parse a struct in a 'type' definition.
1487bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
1488                                     std::pair<Type*, LocTy> &Entry,
1489                                     Type *&ResultTy) {
1490  // If the type was already defined, diagnose the redefinition.
1491  if (Entry.first && !Entry.second.isValid())
1492    return Error(TypeLoc, "redefinition of type");
1493
1494  // If we have opaque, just return without filling in the definition for the
1495  // struct.  This counts as a definition as far as the .ll file goes.
1496  if (EatIfPresent(lltok::kw_opaque)) {
1497    // This type is being defined, so clear the location to indicate this.
1498    Entry.second = SMLoc();
1499
1500    // If this type number has never been uttered, create it.
1501    if (Entry.first == 0)
1502      Entry.first = StructType::create(Context, Name);
1503    ResultTy = Entry.first;
1504    return false;
1505  }
1506
1507  // If the type starts with '<', then it is either a packed struct or a vector.
1508  bool isPacked = EatIfPresent(lltok::less);
1509
1510  // If we don't have a struct, then we have a random type alias, which we
1511  // accept for compatibility with old files.  These types are not allowed to be
1512  // forward referenced and not allowed to be recursive.
1513  if (Lex.getKind() != lltok::lbrace) {
1514    if (Entry.first)
1515      return Error(TypeLoc, "forward references to non-struct type");
1516
1517    ResultTy = 0;
1518    if (isPacked)
1519      return ParseArrayVectorType(ResultTy, true);
1520    return ParseType(ResultTy);
1521  }
1522
1523  // This type is being defined, so clear the location to indicate this.
1524  Entry.second = SMLoc();
1525
1526  // If this type number has never been uttered, create it.
1527  if (Entry.first == 0)
1528    Entry.first = StructType::create(Context, Name);
1529
1530  StructType *STy = cast<StructType>(Entry.first);
1531
1532  SmallVector<Type*, 8> Body;
1533  if (ParseStructBody(Body) ||
1534      (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
1535    return true;
1536
1537  STy->setBody(Body, isPacked);
1538  ResultTy = STy;
1539  return false;
1540}
1541
1542
1543/// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1544///   StructType
1545///     ::= '{' '}'
1546///     ::= '{' Type (',' Type)* '}'
1547///     ::= '<' '{' '}' '>'
1548///     ::= '<' '{' Type (',' Type)* '}' '>'
1549bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
1550  assert(Lex.getKind() == lltok::lbrace);
1551  Lex.Lex(); // Consume the '{'
1552
1553  // Handle the empty struct.
1554  if (EatIfPresent(lltok::rbrace))
1555    return false;
1556
1557  LocTy EltTyLoc = Lex.getLoc();
1558  Type *Ty = 0;
1559  if (ParseType(Ty)) return true;
1560  Body.push_back(Ty);
1561
1562  if (!StructType::isValidElementType(Ty))
1563    return Error(EltTyLoc, "invalid element type for struct");
1564
1565  while (EatIfPresent(lltok::comma)) {
1566    EltTyLoc = Lex.getLoc();
1567    if (ParseType(Ty)) return true;
1568
1569    if (!StructType::isValidElementType(Ty))
1570      return Error(EltTyLoc, "invalid element type for struct");
1571
1572    Body.push_back(Ty);
1573  }
1574
1575  return ParseToken(lltok::rbrace, "expected '}' at end of struct");
1576}
1577
1578/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1579/// token has already been consumed.
1580///   Type
1581///     ::= '[' APSINTVAL 'x' Types ']'
1582///     ::= '<' APSINTVAL 'x' Types '>'
1583bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
1584  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1585      Lex.getAPSIntVal().getBitWidth() > 64)
1586    return TokError("expected number in address space");
1587
1588  LocTy SizeLoc = Lex.getLoc();
1589  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1590  Lex.Lex();
1591
1592  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1593      return true;
1594
1595  LocTy TypeLoc = Lex.getLoc();
1596  Type *EltTy = 0;
1597  if (ParseType(EltTy)) return true;
1598
1599  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1600                 "expected end of sequential type"))
1601    return true;
1602
1603  if (isVector) {
1604    if (Size == 0)
1605      return Error(SizeLoc, "zero element vector is illegal");
1606    if ((unsigned)Size != Size)
1607      return Error(SizeLoc, "size too large for vector");
1608    if (!VectorType::isValidElementType(EltTy))
1609      return Error(TypeLoc,
1610       "vector element type must be fp, integer or a pointer to these types");
1611    Result = VectorType::get(EltTy, unsigned(Size));
1612  } else {
1613    if (!ArrayType::isValidElementType(EltTy))
1614      return Error(TypeLoc, "invalid array element type");
1615    Result = ArrayType::get(EltTy, Size);
1616  }
1617  return false;
1618}
1619
1620//===----------------------------------------------------------------------===//
1621// Function Semantic Analysis.
1622//===----------------------------------------------------------------------===//
1623
1624LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
1625                                             int functionNumber)
1626  : P(p), F(f), FunctionNumber(functionNumber) {
1627
1628  // Insert unnamed arguments into the NumberedVals list.
1629  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1630       AI != E; ++AI)
1631    if (!AI->hasName())
1632      NumberedVals.push_back(AI);
1633}
1634
1635LLParser::PerFunctionState::~PerFunctionState() {
1636  // If there were any forward referenced non-basicblock values, delete them.
1637  for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1638       I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1639    if (!isa<BasicBlock>(I->second.first)) {
1640      I->second.first->replaceAllUsesWith(
1641                           UndefValue::get(I->second.first->getType()));
1642      delete I->second.first;
1643      I->second.first = 0;
1644    }
1645
1646  for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1647       I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1648    if (!isa<BasicBlock>(I->second.first)) {
1649      I->second.first->replaceAllUsesWith(
1650                           UndefValue::get(I->second.first->getType()));
1651      delete I->second.first;
1652      I->second.first = 0;
1653    }
1654}
1655
1656bool LLParser::PerFunctionState::FinishFunction() {
1657  // Check to see if someone took the address of labels in this block.
1658  if (!P.ForwardRefBlockAddresses.empty()) {
1659    ValID FunctionID;
1660    if (!F.getName().empty()) {
1661      FunctionID.Kind = ValID::t_GlobalName;
1662      FunctionID.StrVal = F.getName();
1663    } else {
1664      FunctionID.Kind = ValID::t_GlobalID;
1665      FunctionID.UIntVal = FunctionNumber;
1666    }
1667
1668    std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
1669      FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
1670    if (FRBAI != P.ForwardRefBlockAddresses.end()) {
1671      // Resolve all these references.
1672      if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
1673        return true;
1674
1675      P.ForwardRefBlockAddresses.erase(FRBAI);
1676    }
1677  }
1678
1679  if (!ForwardRefVals.empty())
1680    return P.Error(ForwardRefVals.begin()->second.second,
1681                   "use of undefined value '%" + ForwardRefVals.begin()->first +
1682                   "'");
1683  if (!ForwardRefValIDs.empty())
1684    return P.Error(ForwardRefValIDs.begin()->second.second,
1685                   "use of undefined value '%" +
1686                   Twine(ForwardRefValIDs.begin()->first) + "'");
1687  return false;
1688}
1689
1690
1691/// GetVal - Get a value with the specified name or ID, creating a
1692/// forward reference record if needed.  This can return null if the value
1693/// exists but does not have the right type.
1694Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1695                                          Type *Ty, LocTy Loc) {
1696  // Look this name up in the normal function symbol table.
1697  Value *Val = F.getValueSymbolTable().lookup(Name);
1698
1699  // If this is a forward reference for the value, see if we already created a
1700  // forward ref record.
1701  if (Val == 0) {
1702    std::map<std::string, std::pair<Value*, LocTy> >::iterator
1703      I = ForwardRefVals.find(Name);
1704    if (I != ForwardRefVals.end())
1705      Val = I->second.first;
1706  }
1707
1708  // If we have the value in the symbol table or fwd-ref table, return it.
1709  if (Val) {
1710    if (Val->getType() == Ty) return Val;
1711    if (Ty->isLabelTy())
1712      P.Error(Loc, "'%" + Name + "' is not a basic block");
1713    else
1714      P.Error(Loc, "'%" + Name + "' defined with type '" +
1715              getTypeString(Val->getType()) + "'");
1716    return 0;
1717  }
1718
1719  // Don't make placeholders with invalid type.
1720  if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
1721    P.Error(Loc, "invalid use of a non-first-class type");
1722    return 0;
1723  }
1724
1725  // Otherwise, create a new forward reference for this value and remember it.
1726  Value *FwdVal;
1727  if (Ty->isLabelTy())
1728    FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
1729  else
1730    FwdVal = new Argument(Ty, Name);
1731
1732  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1733  return FwdVal;
1734}
1735
1736Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty,
1737                                          LocTy Loc) {
1738  // Look this name up in the normal function symbol table.
1739  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1740
1741  // If this is a forward reference for the value, see if we already created a
1742  // forward ref record.
1743  if (Val == 0) {
1744    std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1745      I = ForwardRefValIDs.find(ID);
1746    if (I != ForwardRefValIDs.end())
1747      Val = I->second.first;
1748  }
1749
1750  // If we have the value in the symbol table or fwd-ref table, return it.
1751  if (Val) {
1752    if (Val->getType() == Ty) return Val;
1753    if (Ty->isLabelTy())
1754      P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
1755    else
1756      P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
1757              getTypeString(Val->getType()) + "'");
1758    return 0;
1759  }
1760
1761  if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
1762    P.Error(Loc, "invalid use of a non-first-class type");
1763    return 0;
1764  }
1765
1766  // Otherwise, create a new forward reference for this value and remember it.
1767  Value *FwdVal;
1768  if (Ty->isLabelTy())
1769    FwdVal = BasicBlock::Create(F.getContext(), "", &F);
1770  else
1771    FwdVal = new Argument(Ty);
1772
1773  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1774  return FwdVal;
1775}
1776
1777/// SetInstName - After an instruction is parsed and inserted into its
1778/// basic block, this installs its name.
1779bool LLParser::PerFunctionState::SetInstName(int NameID,
1780                                             const std::string &NameStr,
1781                                             LocTy NameLoc, Instruction *Inst) {
1782  // If this instruction has void type, it cannot have a name or ID specified.
1783  if (Inst->getType()->isVoidTy()) {
1784    if (NameID != -1 || !NameStr.empty())
1785      return P.Error(NameLoc, "instructions returning void cannot have a name");
1786    return false;
1787  }
1788
1789  // If this was a numbered instruction, verify that the instruction is the
1790  // expected value and resolve any forward references.
1791  if (NameStr.empty()) {
1792    // If neither a name nor an ID was specified, just use the next ID.
1793    if (NameID == -1)
1794      NameID = NumberedVals.size();
1795
1796    if (unsigned(NameID) != NumberedVals.size())
1797      return P.Error(NameLoc, "instruction expected to be numbered '%" +
1798                     Twine(NumberedVals.size()) + "'");
1799
1800    std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1801      ForwardRefValIDs.find(NameID);
1802    if (FI != ForwardRefValIDs.end()) {
1803      if (FI->second.first->getType() != Inst->getType())
1804        return P.Error(NameLoc, "instruction forward referenced with type '" +
1805                       getTypeString(FI->second.first->getType()) + "'");
1806      FI->second.first->replaceAllUsesWith(Inst);
1807      delete FI->second.first;
1808      ForwardRefValIDs.erase(FI);
1809    }
1810
1811    NumberedVals.push_back(Inst);
1812    return false;
1813  }
1814
1815  // Otherwise, the instruction had a name.  Resolve forward refs and set it.
1816  std::map<std::string, std::pair<Value*, LocTy> >::iterator
1817    FI = ForwardRefVals.find(NameStr);
1818  if (FI != ForwardRefVals.end()) {
1819    if (FI->second.first->getType() != Inst->getType())
1820      return P.Error(NameLoc, "instruction forward referenced with type '" +
1821                     getTypeString(FI->second.first->getType()) + "'");
1822    FI->second.first->replaceAllUsesWith(Inst);
1823    delete FI->second.first;
1824    ForwardRefVals.erase(FI);
1825  }
1826
1827  // Set the name on the instruction.
1828  Inst->setName(NameStr);
1829
1830  if (Inst->getName() != NameStr)
1831    return P.Error(NameLoc, "multiple definition of local value named '" +
1832                   NameStr + "'");
1833  return false;
1834}
1835
1836/// GetBB - Get a basic block with the specified name or ID, creating a
1837/// forward reference record if needed.
1838BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1839                                              LocTy Loc) {
1840  return cast_or_null<BasicBlock>(GetVal(Name,
1841                                        Type::getLabelTy(F.getContext()), Loc));
1842}
1843
1844BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1845  return cast_or_null<BasicBlock>(GetVal(ID,
1846                                        Type::getLabelTy(F.getContext()), Loc));
1847}
1848
1849/// DefineBB - Define the specified basic block, which is either named or
1850/// unnamed.  If there is an error, this returns null otherwise it returns
1851/// the block being defined.
1852BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1853                                                 LocTy Loc) {
1854  BasicBlock *BB;
1855  if (Name.empty())
1856    BB = GetBB(NumberedVals.size(), Loc);
1857  else
1858    BB = GetBB(Name, Loc);
1859  if (BB == 0) return 0; // Already diagnosed error.
1860
1861  // Move the block to the end of the function.  Forward ref'd blocks are
1862  // inserted wherever they happen to be referenced.
1863  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1864
1865  // Remove the block from forward ref sets.
1866  if (Name.empty()) {
1867    ForwardRefValIDs.erase(NumberedVals.size());
1868    NumberedVals.push_back(BB);
1869  } else {
1870    // BB forward references are already in the function symbol table.
1871    ForwardRefVals.erase(Name);
1872  }
1873
1874  return BB;
1875}
1876
1877//===----------------------------------------------------------------------===//
1878// Constants.
1879//===----------------------------------------------------------------------===//
1880
1881/// ParseValID - Parse an abstract value that doesn't necessarily have a
1882/// type implied.  For example, if we parse "4" we don't know what integer type
1883/// it has.  The value will later be combined with its type and checked for
1884/// sanity.  PFS is used to convert function-local operands of metadata (since
1885/// metadata operands are not just parsed here but also converted to values).
1886/// PFS can be null when we are not parsing metadata values inside a function.
1887bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
1888  ID.Loc = Lex.getLoc();
1889  switch (Lex.getKind()) {
1890  default: return TokError("expected value token");
1891  case lltok::GlobalID:  // @42
1892    ID.UIntVal = Lex.getUIntVal();
1893    ID.Kind = ValID::t_GlobalID;
1894    break;
1895  case lltok::GlobalVar:  // @foo
1896    ID.StrVal = Lex.getStrVal();
1897    ID.Kind = ValID::t_GlobalName;
1898    break;
1899  case lltok::LocalVarID:  // %42
1900    ID.UIntVal = Lex.getUIntVal();
1901    ID.Kind = ValID::t_LocalID;
1902    break;
1903  case lltok::LocalVar:  // %foo
1904    ID.StrVal = Lex.getStrVal();
1905    ID.Kind = ValID::t_LocalName;
1906    break;
1907  case lltok::exclaim:   // !42, !{...}, or !"foo"
1908    return ParseMetadataValue(ID, PFS);
1909  case lltok::APSInt:
1910    ID.APSIntVal = Lex.getAPSIntVal();
1911    ID.Kind = ValID::t_APSInt;
1912    break;
1913  case lltok::APFloat:
1914    ID.APFloatVal = Lex.getAPFloatVal();
1915    ID.Kind = ValID::t_APFloat;
1916    break;
1917  case lltok::kw_true:
1918    ID.ConstantVal = ConstantInt::getTrue(Context);
1919    ID.Kind = ValID::t_Constant;
1920    break;
1921  case lltok::kw_false:
1922    ID.ConstantVal = ConstantInt::getFalse(Context);
1923    ID.Kind = ValID::t_Constant;
1924    break;
1925  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
1926  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
1927  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
1928
1929  case lltok::lbrace: {
1930    // ValID ::= '{' ConstVector '}'
1931    Lex.Lex();
1932    SmallVector<Constant*, 16> Elts;
1933    if (ParseGlobalValueVector(Elts) ||
1934        ParseToken(lltok::rbrace, "expected end of struct constant"))
1935      return true;
1936
1937    ID.ConstantStructElts = new Constant*[Elts.size()];
1938    ID.UIntVal = Elts.size();
1939    memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
1940    ID.Kind = ValID::t_ConstantStruct;
1941    return false;
1942  }
1943  case lltok::less: {
1944    // ValID ::= '<' ConstVector '>'         --> Vector.
1945    // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1946    Lex.Lex();
1947    bool isPackedStruct = EatIfPresent(lltok::lbrace);
1948
1949    SmallVector<Constant*, 16> Elts;
1950    LocTy FirstEltLoc = Lex.getLoc();
1951    if (ParseGlobalValueVector(Elts) ||
1952        (isPackedStruct &&
1953         ParseToken(lltok::rbrace, "expected end of packed struct")) ||
1954        ParseToken(lltok::greater, "expected end of constant"))
1955      return true;
1956
1957    if (isPackedStruct) {
1958      ID.ConstantStructElts = new Constant*[Elts.size()];
1959      memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
1960      ID.UIntVal = Elts.size();
1961      ID.Kind = ValID::t_PackedConstantStruct;
1962      return false;
1963    }
1964
1965    if (Elts.empty())
1966      return Error(ID.Loc, "constant vector must not be empty");
1967
1968    if (!Elts[0]->getType()->isIntegerTy() &&
1969        !Elts[0]->getType()->isFloatingPointTy() &&
1970        !Elts[0]->getType()->isPointerTy())
1971      return Error(FirstEltLoc,
1972            "vector elements must have integer, pointer or floating point type");
1973
1974    // Verify that all the vector elements have the same type.
1975    for (unsigned i = 1, e = Elts.size(); i != e; ++i)
1976      if (Elts[i]->getType() != Elts[0]->getType())
1977        return Error(FirstEltLoc,
1978                     "vector element #" + Twine(i) +
1979                    " is not of type '" + getTypeString(Elts[0]->getType()));
1980
1981    ID.ConstantVal = ConstantVector::get(Elts);
1982    ID.Kind = ValID::t_Constant;
1983    return false;
1984  }
1985  case lltok::lsquare: {   // Array Constant
1986    Lex.Lex();
1987    SmallVector<Constant*, 16> Elts;
1988    LocTy FirstEltLoc = Lex.getLoc();
1989    if (ParseGlobalValueVector(Elts) ||
1990        ParseToken(lltok::rsquare, "expected end of array constant"))
1991      return true;
1992
1993    // Handle empty element.
1994    if (Elts.empty()) {
1995      // Use undef instead of an array because it's inconvenient to determine
1996      // the element type at this point, there being no elements to examine.
1997      ID.Kind = ValID::t_EmptyArray;
1998      return false;
1999    }
2000
2001    if (!Elts[0]->getType()->isFirstClassType())
2002      return Error(FirstEltLoc, "invalid array element type: " +
2003                   getTypeString(Elts[0]->getType()));
2004
2005    ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2006
2007    // Verify all elements are correct type!
2008    for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2009      if (Elts[i]->getType() != Elts[0]->getType())
2010        return Error(FirstEltLoc,
2011                     "array element #" + Twine(i) +
2012                     " is not of type '" + getTypeString(Elts[0]->getType()));
2013    }
2014
2015    ID.ConstantVal = ConstantArray::get(ATy, Elts);
2016    ID.Kind = ValID::t_Constant;
2017    return false;
2018  }
2019  case lltok::kw_c:  // c "foo"
2020    Lex.Lex();
2021    ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
2022                                                  false);
2023    if (ParseToken(lltok::StringConstant, "expected string")) return true;
2024    ID.Kind = ValID::t_Constant;
2025    return false;
2026
2027  case lltok::kw_asm: {
2028    // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT
2029    bool HasSideEffect, AlignStack;
2030    Lex.Lex();
2031    if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2032        ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2033        ParseStringConstant(ID.StrVal) ||
2034        ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2035        ParseToken(lltok::StringConstant, "expected constraint string"))
2036      return true;
2037    ID.StrVal2 = Lex.getStrVal();
2038    ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1);
2039    ID.Kind = ValID::t_InlineAsm;
2040    return false;
2041  }
2042
2043  case lltok::kw_blockaddress: {
2044    // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2045    Lex.Lex();
2046
2047    ValID Fn, Label;
2048    LocTy FnLoc, LabelLoc;
2049
2050    if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2051        ParseValID(Fn) ||
2052        ParseToken(lltok::comma, "expected comma in block address expression")||
2053        ParseValID(Label) ||
2054        ParseToken(lltok::rparen, "expected ')' in block address expression"))
2055      return true;
2056
2057    if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2058      return Error(Fn.Loc, "expected function name in blockaddress");
2059    if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2060      return Error(Label.Loc, "expected basic block name in blockaddress");
2061
2062    // Make a global variable as a placeholder for this reference.
2063    GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
2064                                           false, GlobalValue::InternalLinkage,
2065                                                0, "");
2066    ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
2067    ID.ConstantVal = FwdRef;
2068    ID.Kind = ValID::t_Constant;
2069    return false;
2070  }
2071
2072  case lltok::kw_trunc:
2073  case lltok::kw_zext:
2074  case lltok::kw_sext:
2075  case lltok::kw_fptrunc:
2076  case lltok::kw_fpext:
2077  case lltok::kw_bitcast:
2078  case lltok::kw_uitofp:
2079  case lltok::kw_sitofp:
2080  case lltok::kw_fptoui:
2081  case lltok::kw_fptosi:
2082  case lltok::kw_inttoptr:
2083  case lltok::kw_ptrtoint: {
2084    unsigned Opc = Lex.getUIntVal();
2085    Type *DestTy = 0;
2086    Constant *SrcVal;
2087    Lex.Lex();
2088    if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2089        ParseGlobalTypeAndValue(SrcVal) ||
2090        ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2091        ParseType(DestTy) ||
2092        ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2093      return true;
2094    if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2095      return Error(ID.Loc, "invalid cast opcode for cast from '" +
2096                   getTypeString(SrcVal->getType()) + "' to '" +
2097                   getTypeString(DestTy) + "'");
2098    ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2099                                                 SrcVal, DestTy);
2100    ID.Kind = ValID::t_Constant;
2101    return false;
2102  }
2103  case lltok::kw_extractvalue: {
2104    Lex.Lex();
2105    Constant *Val;
2106    SmallVector<unsigned, 4> Indices;
2107    if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2108        ParseGlobalTypeAndValue(Val) ||
2109        ParseIndexList(Indices) ||
2110        ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2111      return true;
2112
2113    if (!Val->getType()->isAggregateType())
2114      return Error(ID.Loc, "extractvalue operand must be aggregate type");
2115    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
2116      return Error(ID.Loc, "invalid indices for extractvalue");
2117    ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
2118    ID.Kind = ValID::t_Constant;
2119    return false;
2120  }
2121  case lltok::kw_insertvalue: {
2122    Lex.Lex();
2123    Constant *Val0, *Val1;
2124    SmallVector<unsigned, 4> Indices;
2125    if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2126        ParseGlobalTypeAndValue(Val0) ||
2127        ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2128        ParseGlobalTypeAndValue(Val1) ||
2129        ParseIndexList(Indices) ||
2130        ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2131      return true;
2132    if (!Val0->getType()->isAggregateType())
2133      return Error(ID.Loc, "insertvalue operand must be aggregate type");
2134    if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
2135      return Error(ID.Loc, "invalid indices for insertvalue");
2136    ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
2137    ID.Kind = ValID::t_Constant;
2138    return false;
2139  }
2140  case lltok::kw_icmp:
2141  case lltok::kw_fcmp: {
2142    unsigned PredVal, Opc = Lex.getUIntVal();
2143    Constant *Val0, *Val1;
2144    Lex.Lex();
2145    if (ParseCmpPredicate(PredVal, Opc) ||
2146        ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2147        ParseGlobalTypeAndValue(Val0) ||
2148        ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2149        ParseGlobalTypeAndValue(Val1) ||
2150        ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2151      return true;
2152
2153    if (Val0->getType() != Val1->getType())
2154      return Error(ID.Loc, "compare operands must have the same type");
2155
2156    CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2157
2158    if (Opc == Instruction::FCmp) {
2159      if (!Val0->getType()->isFPOrFPVectorTy())
2160        return Error(ID.Loc, "fcmp requires floating point operands");
2161      ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2162    } else {
2163      assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2164      if (!Val0->getType()->isIntOrIntVectorTy() &&
2165          !Val0->getType()->getScalarType()->isPointerTy())
2166        return Error(ID.Loc, "icmp requires pointer or integer operands");
2167      ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2168    }
2169    ID.Kind = ValID::t_Constant;
2170    return false;
2171  }
2172
2173  // Binary Operators.
2174  case lltok::kw_add:
2175  case lltok::kw_fadd:
2176  case lltok::kw_sub:
2177  case lltok::kw_fsub:
2178  case lltok::kw_mul:
2179  case lltok::kw_fmul:
2180  case lltok::kw_udiv:
2181  case lltok::kw_sdiv:
2182  case lltok::kw_fdiv:
2183  case lltok::kw_urem:
2184  case lltok::kw_srem:
2185  case lltok::kw_frem:
2186  case lltok::kw_shl:
2187  case lltok::kw_lshr:
2188  case lltok::kw_ashr: {
2189    bool NUW = false;
2190    bool NSW = false;
2191    bool Exact = false;
2192    unsigned Opc = Lex.getUIntVal();
2193    Constant *Val0, *Val1;
2194    Lex.Lex();
2195    LocTy ModifierLoc = Lex.getLoc();
2196    if (Opc == Instruction::Add || Opc == Instruction::Sub ||
2197        Opc == Instruction::Mul || Opc == Instruction::Shl) {
2198      if (EatIfPresent(lltok::kw_nuw))
2199        NUW = true;
2200      if (EatIfPresent(lltok::kw_nsw)) {
2201        NSW = true;
2202        if (EatIfPresent(lltok::kw_nuw))
2203          NUW = true;
2204      }
2205    } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
2206               Opc == Instruction::LShr || Opc == Instruction::AShr) {
2207      if (EatIfPresent(lltok::kw_exact))
2208        Exact = true;
2209    }
2210    if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2211        ParseGlobalTypeAndValue(Val0) ||
2212        ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2213        ParseGlobalTypeAndValue(Val1) ||
2214        ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2215      return true;
2216    if (Val0->getType() != Val1->getType())
2217      return Error(ID.Loc, "operands of constexpr must have same type");
2218    if (!Val0->getType()->isIntOrIntVectorTy()) {
2219      if (NUW)
2220        return Error(ModifierLoc, "nuw only applies to integer operations");
2221      if (NSW)
2222        return Error(ModifierLoc, "nsw only applies to integer operations");
2223    }
2224    // Check that the type is valid for the operator.
2225    switch (Opc) {
2226    case Instruction::Add:
2227    case Instruction::Sub:
2228    case Instruction::Mul:
2229    case Instruction::UDiv:
2230    case Instruction::SDiv:
2231    case Instruction::URem:
2232    case Instruction::SRem:
2233    case Instruction::Shl:
2234    case Instruction::AShr:
2235    case Instruction::LShr:
2236      if (!Val0->getType()->isIntOrIntVectorTy())
2237        return Error(ID.Loc, "constexpr requires integer operands");
2238      break;
2239    case Instruction::FAdd:
2240    case Instruction::FSub:
2241    case Instruction::FMul:
2242    case Instruction::FDiv:
2243    case Instruction::FRem:
2244      if (!Val0->getType()->isFPOrFPVectorTy())
2245        return Error(ID.Loc, "constexpr requires fp operands");
2246      break;
2247    default: llvm_unreachable("Unknown binary operator!");
2248    }
2249    unsigned Flags = 0;
2250    if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2251    if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
2252    if (Exact) Flags |= PossiblyExactOperator::IsExact;
2253    Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2254    ID.ConstantVal = C;
2255    ID.Kind = ValID::t_Constant;
2256    return false;
2257  }
2258
2259  // Logical Operations
2260  case lltok::kw_and:
2261  case lltok::kw_or:
2262  case lltok::kw_xor: {
2263    unsigned Opc = Lex.getUIntVal();
2264    Constant *Val0, *Val1;
2265    Lex.Lex();
2266    if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2267        ParseGlobalTypeAndValue(Val0) ||
2268        ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2269        ParseGlobalTypeAndValue(Val1) ||
2270        ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2271      return true;
2272    if (Val0->getType() != Val1->getType())
2273      return Error(ID.Loc, "operands of constexpr must have same type");
2274    if (!Val0->getType()->isIntOrIntVectorTy())
2275      return Error(ID.Loc,
2276                   "constexpr requires integer or integer vector operands");
2277    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2278    ID.Kind = ValID::t_Constant;
2279    return false;
2280  }
2281
2282  case lltok::kw_getelementptr:
2283  case lltok::kw_shufflevector:
2284  case lltok::kw_insertelement:
2285  case lltok::kw_extractelement:
2286  case lltok::kw_select: {
2287    unsigned Opc = Lex.getUIntVal();
2288    SmallVector<Constant*, 16> Elts;
2289    bool InBounds = false;
2290    Lex.Lex();
2291    if (Opc == Instruction::GetElementPtr)
2292      InBounds = EatIfPresent(lltok::kw_inbounds);
2293    if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2294        ParseGlobalValueVector(Elts) ||
2295        ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2296      return true;
2297
2298    if (Opc == Instruction::GetElementPtr) {
2299      if (Elts.size() == 0 ||
2300          !Elts[0]->getType()->getScalarType()->isPointerTy())
2301        return Error(ID.Loc, "getelementptr requires pointer operand");
2302
2303      ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2304      if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), Indices))
2305        return Error(ID.Loc, "invalid indices for getelementptr");
2306      ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0], Indices,
2307                                                      InBounds);
2308    } else if (Opc == Instruction::Select) {
2309      if (Elts.size() != 3)
2310        return Error(ID.Loc, "expected three operands to select");
2311      if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2312                                                              Elts[2]))
2313        return Error(ID.Loc, Reason);
2314      ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2315    } else if (Opc == Instruction::ShuffleVector) {
2316      if (Elts.size() != 3)
2317        return Error(ID.Loc, "expected three operands to shufflevector");
2318      if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2319        return Error(ID.Loc, "invalid operands to shufflevector");
2320      ID.ConstantVal =
2321                 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2322    } else if (Opc == Instruction::ExtractElement) {
2323      if (Elts.size() != 2)
2324        return Error(ID.Loc, "expected two operands to extractelement");
2325      if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2326        return Error(ID.Loc, "invalid extractelement operands");
2327      ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2328    } else {
2329      assert(Opc == Instruction::InsertElement && "Unknown opcode");
2330      if (Elts.size() != 3)
2331      return Error(ID.Loc, "expected three operands to insertelement");
2332      if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2333        return Error(ID.Loc, "invalid insertelement operands");
2334      ID.ConstantVal =
2335                 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2336    }
2337
2338    ID.Kind = ValID::t_Constant;
2339    return false;
2340  }
2341  }
2342
2343  Lex.Lex();
2344  return false;
2345}
2346
2347/// ParseGlobalValue - Parse a global value with the specified type.
2348bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
2349  C = 0;
2350  ValID ID;
2351  Value *V = NULL;
2352  bool Parsed = ParseValID(ID) ||
2353                ConvertValIDToValue(Ty, ID, V, NULL);
2354  if (V && !(C = dyn_cast<Constant>(V)))
2355    return Error(ID.Loc, "global values must be constants");
2356  return Parsed;
2357}
2358
2359bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2360  Type *Ty = 0;
2361  return ParseType(Ty) ||
2362         ParseGlobalValue(Ty, V);
2363}
2364
2365/// ParseGlobalValueVector
2366///   ::= /*empty*/
2367///   ::= TypeAndValue (',' TypeAndValue)*
2368bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2369  // Empty list.
2370  if (Lex.getKind() == lltok::rbrace ||
2371      Lex.getKind() == lltok::rsquare ||
2372      Lex.getKind() == lltok::greater ||
2373      Lex.getKind() == lltok::rparen)
2374    return false;
2375
2376  Constant *C;
2377  if (ParseGlobalTypeAndValue(C)) return true;
2378  Elts.push_back(C);
2379
2380  while (EatIfPresent(lltok::comma)) {
2381    if (ParseGlobalTypeAndValue(C)) return true;
2382    Elts.push_back(C);
2383  }
2384
2385  return false;
2386}
2387
2388bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) {
2389  assert(Lex.getKind() == lltok::lbrace);
2390  Lex.Lex();
2391
2392  SmallVector<Value*, 16> Elts;
2393  if (ParseMDNodeVector(Elts, PFS) ||
2394      ParseToken(lltok::rbrace, "expected end of metadata node"))
2395    return true;
2396
2397  ID.MDNodeVal = MDNode::get(Context, Elts);
2398  ID.Kind = ValID::t_MDNode;
2399  return false;
2400}
2401
2402/// ParseMetadataValue
2403///  ::= !42
2404///  ::= !{...}
2405///  ::= !"string"
2406bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) {
2407  assert(Lex.getKind() == lltok::exclaim);
2408  Lex.Lex();
2409
2410  // MDNode:
2411  // !{ ... }
2412  if (Lex.getKind() == lltok::lbrace)
2413    return ParseMetadataListValue(ID, PFS);
2414
2415  // Standalone metadata reference
2416  // !42
2417  if (Lex.getKind() == lltok::APSInt) {
2418    if (ParseMDNodeID(ID.MDNodeVal)) return true;
2419    ID.Kind = ValID::t_MDNode;
2420    return false;
2421  }
2422
2423  // MDString:
2424  //   ::= '!' STRINGCONSTANT
2425  if (ParseMDString(ID.MDStringVal)) return true;
2426  ID.Kind = ValID::t_MDString;
2427  return false;
2428}
2429
2430
2431//===----------------------------------------------------------------------===//
2432// Function Parsing.
2433//===----------------------------------------------------------------------===//
2434
2435bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
2436                                   PerFunctionState *PFS) {
2437  if (Ty->isFunctionTy())
2438    return Error(ID.Loc, "functions are not values, refer to them as pointers");
2439
2440  switch (ID.Kind) {
2441  case ValID::t_LocalID:
2442    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2443    V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
2444    return (V == 0);
2445  case ValID::t_LocalName:
2446    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2447    V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
2448    return (V == 0);
2449  case ValID::t_InlineAsm: {
2450    PointerType *PTy = dyn_cast<PointerType>(Ty);
2451    FunctionType *FTy =
2452      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2453    if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2454      return Error(ID.Loc, "invalid type for inline asm constraint string");
2455    V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, ID.UIntVal>>1);
2456    return false;
2457  }
2458  case ValID::t_MDNode:
2459    if (!Ty->isMetadataTy())
2460      return Error(ID.Loc, "metadata value must have metadata type");
2461    V = ID.MDNodeVal;
2462    return false;
2463  case ValID::t_MDString:
2464    if (!Ty->isMetadataTy())
2465      return Error(ID.Loc, "metadata value must have metadata type");
2466    V = ID.MDStringVal;
2467    return false;
2468  case ValID::t_GlobalName:
2469    V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2470    return V == 0;
2471  case ValID::t_GlobalID:
2472    V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2473    return V == 0;
2474  case ValID::t_APSInt:
2475    if (!Ty->isIntegerTy())
2476      return Error(ID.Loc, "integer constant must have integer type");
2477    ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2478    V = ConstantInt::get(Context, ID.APSIntVal);
2479    return false;
2480  case ValID::t_APFloat:
2481    if (!Ty->isFloatingPointTy() ||
2482        !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2483      return Error(ID.Loc, "floating point constant invalid for type");
2484
2485    // The lexer has no type info, so builds all half, float, and double FP
2486    // constants as double.  Fix this here.  Long double does not need this.
2487    if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) {
2488      bool Ignored;
2489      if (Ty->isHalfTy())
2490        ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven,
2491                              &Ignored);
2492      else if (Ty->isFloatTy())
2493        ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2494                              &Ignored);
2495    }
2496    V = ConstantFP::get(Context, ID.APFloatVal);
2497
2498    if (V->getType() != Ty)
2499      return Error(ID.Loc, "floating point constant does not have type '" +
2500                   getTypeString(Ty) + "'");
2501
2502    return false;
2503  case ValID::t_Null:
2504    if (!Ty->isPointerTy())
2505      return Error(ID.Loc, "null must be a pointer type");
2506    V = ConstantPointerNull::get(cast<PointerType>(Ty));
2507    return false;
2508  case ValID::t_Undef:
2509    // FIXME: LabelTy should not be a first-class type.
2510    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2511      return Error(ID.Loc, "invalid type for undef constant");
2512    V = UndefValue::get(Ty);
2513    return false;
2514  case ValID::t_EmptyArray:
2515    if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
2516      return Error(ID.Loc, "invalid empty array initializer");
2517    V = UndefValue::get(Ty);
2518    return false;
2519  case ValID::t_Zero:
2520    // FIXME: LabelTy should not be a first-class type.
2521    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2522      return Error(ID.Loc, "invalid type for null constant");
2523    V = Constant::getNullValue(Ty);
2524    return false;
2525  case ValID::t_Constant:
2526    if (ID.ConstantVal->getType() != Ty)
2527      return Error(ID.Loc, "constant expression type mismatch");
2528
2529    V = ID.ConstantVal;
2530    return false;
2531  case ValID::t_ConstantStruct:
2532  case ValID::t_PackedConstantStruct:
2533    if (StructType *ST = dyn_cast<StructType>(Ty)) {
2534      if (ST->getNumElements() != ID.UIntVal)
2535        return Error(ID.Loc,
2536                     "initializer with struct type has wrong # elements");
2537      if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
2538        return Error(ID.Loc, "packed'ness of initializer and type don't match");
2539
2540      // Verify that the elements are compatible with the structtype.
2541      for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
2542        if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
2543          return Error(ID.Loc, "element " + Twine(i) +
2544                    " of struct initializer doesn't match struct element type");
2545
2546      V = ConstantStruct::get(ST, makeArrayRef(ID.ConstantStructElts,
2547                                               ID.UIntVal));
2548    } else
2549      return Error(ID.Loc, "constant expression type mismatch");
2550    return false;
2551  }
2552  llvm_unreachable("Invalid ValID");
2553}
2554
2555bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
2556  V = 0;
2557  ValID ID;
2558  return ParseValID(ID, PFS) ||
2559         ConvertValIDToValue(Ty, ID, V, PFS);
2560}
2561
2562bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
2563  Type *Ty = 0;
2564  return ParseType(Ty) ||
2565         ParseValue(Ty, V, PFS);
2566}
2567
2568bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
2569                                      PerFunctionState &PFS) {
2570  Value *V;
2571  Loc = Lex.getLoc();
2572  if (ParseTypeAndValue(V, PFS)) return true;
2573  if (!isa<BasicBlock>(V))
2574    return Error(Loc, "expected a basic block");
2575  BB = cast<BasicBlock>(V);
2576  return false;
2577}
2578
2579
2580/// FunctionHeader
2581///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2582///       OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2583///       OptionalAlign OptGC
2584bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2585  // Parse the linkage.
2586  LocTy LinkageLoc = Lex.getLoc();
2587  unsigned Linkage;
2588
2589  unsigned Visibility;
2590  Attributes RetAttrs;
2591  CallingConv::ID CC;
2592  Type *RetType = 0;
2593  LocTy RetTypeLoc = Lex.getLoc();
2594  if (ParseOptionalLinkage(Linkage) ||
2595      ParseOptionalVisibility(Visibility) ||
2596      ParseOptionalCallingConv(CC) ||
2597      ParseOptionalAttrs(RetAttrs, 1) ||
2598      ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2599    return true;
2600
2601  // Verify that the linkage is ok.
2602  switch ((GlobalValue::LinkageTypes)Linkage) {
2603  case GlobalValue::ExternalLinkage:
2604    break; // always ok.
2605  case GlobalValue::DLLImportLinkage:
2606  case GlobalValue::ExternalWeakLinkage:
2607    if (isDefine)
2608      return Error(LinkageLoc, "invalid linkage for function definition");
2609    break;
2610  case GlobalValue::PrivateLinkage:
2611  case GlobalValue::LinkerPrivateLinkage:
2612  case GlobalValue::LinkerPrivateWeakLinkage:
2613  case GlobalValue::LinkerPrivateWeakDefAutoLinkage:
2614  case GlobalValue::InternalLinkage:
2615  case GlobalValue::AvailableExternallyLinkage:
2616  case GlobalValue::LinkOnceAnyLinkage:
2617  case GlobalValue::LinkOnceODRLinkage:
2618  case GlobalValue::WeakAnyLinkage:
2619  case GlobalValue::WeakODRLinkage:
2620  case GlobalValue::DLLExportLinkage:
2621    if (!isDefine)
2622      return Error(LinkageLoc, "invalid linkage for function declaration");
2623    break;
2624  case GlobalValue::AppendingLinkage:
2625  case GlobalValue::CommonLinkage:
2626    return Error(LinkageLoc, "invalid function linkage type");
2627  }
2628
2629  if (!FunctionType::isValidReturnType(RetType))
2630    return Error(RetTypeLoc, "invalid function return type");
2631
2632  LocTy NameLoc = Lex.getLoc();
2633
2634  std::string FunctionName;
2635  if (Lex.getKind() == lltok::GlobalVar) {
2636    FunctionName = Lex.getStrVal();
2637  } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
2638    unsigned NameID = Lex.getUIntVal();
2639
2640    if (NameID != NumberedVals.size())
2641      return TokError("function expected to be numbered '%" +
2642                      Twine(NumberedVals.size()) + "'");
2643  } else {
2644    return TokError("expected function name");
2645  }
2646
2647  Lex.Lex();
2648
2649  if (Lex.getKind() != lltok::lparen)
2650    return TokError("expected '(' in function argument list");
2651
2652  SmallVector<ArgInfo, 8> ArgList;
2653  bool isVarArg;
2654  Attributes FuncAttrs;
2655  std::string Section;
2656  unsigned Alignment;
2657  std::string GC;
2658  bool UnnamedAddr;
2659  LocTy UnnamedAddrLoc;
2660
2661  if (ParseArgumentList(ArgList, isVarArg) ||
2662      ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
2663                         &UnnamedAddrLoc) ||
2664      ParseOptionalAttrs(FuncAttrs, 2) ||
2665      (EatIfPresent(lltok::kw_section) &&
2666       ParseStringConstant(Section)) ||
2667      ParseOptionalAlignment(Alignment) ||
2668      (EatIfPresent(lltok::kw_gc) &&
2669       ParseStringConstant(GC)))
2670    return true;
2671
2672  // If the alignment was parsed as an attribute, move to the alignment field.
2673  if (FuncAttrs & Attribute::Alignment) {
2674    Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2675    FuncAttrs &= ~Attribute::Alignment;
2676  }
2677
2678  // Okay, if we got here, the function is syntactically valid.  Convert types
2679  // and do semantic checks.
2680  std::vector<Type*> ParamTypeList;
2681  SmallVector<AttributeWithIndex, 8> Attrs;
2682
2683  if (RetAttrs != Attribute::None)
2684    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2685
2686  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2687    ParamTypeList.push_back(ArgList[i].Ty);
2688    if (ArgList[i].Attrs != Attribute::None)
2689      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2690  }
2691
2692  if (FuncAttrs != Attribute::None)
2693    Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2694
2695  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2696
2697  if (PAL.paramHasAttr(1, Attribute::StructRet) && !RetType->isVoidTy())
2698    return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2699
2700  FunctionType *FT =
2701    FunctionType::get(RetType, ParamTypeList, isVarArg);
2702  PointerType *PFT = PointerType::getUnqual(FT);
2703
2704  Fn = 0;
2705  if (!FunctionName.empty()) {
2706    // If this was a definition of a forward reference, remove the definition
2707    // from the forward reference table and fill in the forward ref.
2708    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2709      ForwardRefVals.find(FunctionName);
2710    if (FRVI != ForwardRefVals.end()) {
2711      Fn = M->getFunction(FunctionName);
2712      if (Fn->getType() != PFT)
2713        return Error(FRVI->second.second, "invalid forward reference to "
2714                     "function '" + FunctionName + "' with wrong type!");
2715
2716      ForwardRefVals.erase(FRVI);
2717    } else if ((Fn = M->getFunction(FunctionName))) {
2718      // Reject redefinitions.
2719      return Error(NameLoc, "invalid redefinition of function '" +
2720                   FunctionName + "'");
2721    } else if (M->getNamedValue(FunctionName)) {
2722      return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
2723    }
2724
2725  } else {
2726    // If this is a definition of a forward referenced function, make sure the
2727    // types agree.
2728    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2729      = ForwardRefValIDs.find(NumberedVals.size());
2730    if (I != ForwardRefValIDs.end()) {
2731      Fn = cast<Function>(I->second.first);
2732      if (Fn->getType() != PFT)
2733        return Error(NameLoc, "type of definition and forward reference of '@" +
2734                     Twine(NumberedVals.size()) + "' disagree");
2735      ForwardRefValIDs.erase(I);
2736    }
2737  }
2738
2739  if (Fn == 0)
2740    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2741  else // Move the forward-reference to the correct spot in the module.
2742    M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2743
2744  if (FunctionName.empty())
2745    NumberedVals.push_back(Fn);
2746
2747  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2748  Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2749  Fn->setCallingConv(CC);
2750  Fn->setAttributes(PAL);
2751  Fn->setUnnamedAddr(UnnamedAddr);
2752  Fn->setAlignment(Alignment);
2753  Fn->setSection(Section);
2754  if (!GC.empty()) Fn->setGC(GC.c_str());
2755
2756  // Add all of the arguments we parsed to the function.
2757  Function::arg_iterator ArgIt = Fn->arg_begin();
2758  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2759    // If the argument has a name, insert it into the argument symbol table.
2760    if (ArgList[i].Name.empty()) continue;
2761
2762    // Set the name, if it conflicted, it will be auto-renamed.
2763    ArgIt->setName(ArgList[i].Name);
2764
2765    if (ArgIt->getName() != ArgList[i].Name)
2766      return Error(ArgList[i].Loc, "redefinition of argument '%" +
2767                   ArgList[i].Name + "'");
2768  }
2769
2770  return false;
2771}
2772
2773
2774/// ParseFunctionBody
2775///   ::= '{' BasicBlock+ '}'
2776///
2777bool LLParser::ParseFunctionBody(Function &Fn) {
2778  if (Lex.getKind() != lltok::lbrace)
2779    return TokError("expected '{' in function body");
2780  Lex.Lex();  // eat the {.
2781
2782  int FunctionNumber = -1;
2783  if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
2784
2785  PerFunctionState PFS(*this, Fn, FunctionNumber);
2786
2787  // We need at least one basic block.
2788  if (Lex.getKind() == lltok::rbrace)
2789    return TokError("function body requires at least one basic block");
2790
2791  while (Lex.getKind() != lltok::rbrace)
2792    if (ParseBasicBlock(PFS)) return true;
2793
2794  // Eat the }.
2795  Lex.Lex();
2796
2797  // Verify function is ok.
2798  return PFS.FinishFunction();
2799}
2800
2801/// ParseBasicBlock
2802///   ::= LabelStr? Instruction*
2803bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2804  // If this basic block starts out with a name, remember it.
2805  std::string Name;
2806  LocTy NameLoc = Lex.getLoc();
2807  if (Lex.getKind() == lltok::LabelStr) {
2808    Name = Lex.getStrVal();
2809    Lex.Lex();
2810  }
2811
2812  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2813  if (BB == 0) return true;
2814
2815  std::string NameStr;
2816
2817  // Parse the instructions in this block until we get a terminator.
2818  Instruction *Inst;
2819  SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst;
2820  do {
2821    // This instruction may have three possibilities for a name: a) none
2822    // specified, b) name specified "%foo =", c) number specified: "%4 =".
2823    LocTy NameLoc = Lex.getLoc();
2824    int NameID = -1;
2825    NameStr = "";
2826
2827    if (Lex.getKind() == lltok::LocalVarID) {
2828      NameID = Lex.getUIntVal();
2829      Lex.Lex();
2830      if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2831        return true;
2832    } else if (Lex.getKind() == lltok::LocalVar) {
2833      NameStr = Lex.getStrVal();
2834      Lex.Lex();
2835      if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2836        return true;
2837    }
2838
2839    switch (ParseInstruction(Inst, BB, PFS)) {
2840    default: llvm_unreachable("Unknown ParseInstruction result!");
2841    case InstError: return true;
2842    case InstNormal:
2843      BB->getInstList().push_back(Inst);
2844
2845      // With a normal result, we check to see if the instruction is followed by
2846      // a comma and metadata.
2847      if (EatIfPresent(lltok::comma))
2848        if (ParseInstructionMetadata(Inst, &PFS))
2849          return true;
2850      break;
2851    case InstExtraComma:
2852      BB->getInstList().push_back(Inst);
2853
2854      // If the instruction parser ate an extra comma at the end of it, it
2855      // *must* be followed by metadata.
2856      if (ParseInstructionMetadata(Inst, &PFS))
2857        return true;
2858      break;
2859    }
2860
2861    // Set the name on the instruction.
2862    if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2863  } while (!isa<TerminatorInst>(Inst));
2864
2865  return false;
2866}
2867
2868//===----------------------------------------------------------------------===//
2869// Instruction Parsing.
2870//===----------------------------------------------------------------------===//
2871
2872/// ParseInstruction - Parse one of the many different instructions.
2873///
2874int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2875                               PerFunctionState &PFS) {
2876  lltok::Kind Token = Lex.getKind();
2877  if (Token == lltok::Eof)
2878    return TokError("found end of file when expecting more instructions");
2879  LocTy Loc = Lex.getLoc();
2880  unsigned KeywordVal = Lex.getUIntVal();
2881  Lex.Lex();  // Eat the keyword.
2882
2883  switch (Token) {
2884  default:                    return Error(Loc, "expected instruction opcode");
2885  // Terminator Instructions.
2886  case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
2887  case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
2888  case lltok::kw_br:          return ParseBr(Inst, PFS);
2889  case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
2890  case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
2891  case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
2892  case lltok::kw_resume:      return ParseResume(Inst, PFS);
2893  // Binary Operators.
2894  case lltok::kw_add:
2895  case lltok::kw_sub:
2896  case lltok::kw_mul:
2897  case lltok::kw_shl: {
2898    bool NUW = EatIfPresent(lltok::kw_nuw);
2899    bool NSW = EatIfPresent(lltok::kw_nsw);
2900    if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
2901
2902    if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
2903
2904    if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
2905    if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
2906    return false;
2907  }
2908  case lltok::kw_fadd:
2909  case lltok::kw_fsub:
2910  case lltok::kw_fmul:    return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2911
2912  case lltok::kw_sdiv:
2913  case lltok::kw_udiv:
2914  case lltok::kw_lshr:
2915  case lltok::kw_ashr: {
2916    bool Exact = EatIfPresent(lltok::kw_exact);
2917
2918    if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
2919    if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
2920    return false;
2921  }
2922
2923  case lltok::kw_urem:
2924  case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
2925  case lltok::kw_fdiv:
2926  case lltok::kw_frem:   return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2927  case lltok::kw_and:
2928  case lltok::kw_or:
2929  case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
2930  case lltok::kw_icmp:
2931  case lltok::kw_fcmp:   return ParseCompare(Inst, PFS, KeywordVal);
2932  // Casts.
2933  case lltok::kw_trunc:
2934  case lltok::kw_zext:
2935  case lltok::kw_sext:
2936  case lltok::kw_fptrunc:
2937  case lltok::kw_fpext:
2938  case lltok::kw_bitcast:
2939  case lltok::kw_uitofp:
2940  case lltok::kw_sitofp:
2941  case lltok::kw_fptoui:
2942  case lltok::kw_fptosi:
2943  case lltok::kw_inttoptr:
2944  case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
2945  // Other.
2946  case lltok::kw_select:         return ParseSelect(Inst, PFS);
2947  case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
2948  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
2949  case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
2950  case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
2951  case lltok::kw_phi:            return ParsePHI(Inst, PFS);
2952  case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
2953  case lltok::kw_call:           return ParseCall(Inst, PFS, false);
2954  case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
2955  // Memory.
2956  case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
2957  case lltok::kw_load:           return ParseLoad(Inst, PFS);
2958  case lltok::kw_store:          return ParseStore(Inst, PFS);
2959  case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
2960  case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
2961  case lltok::kw_fence:          return ParseFence(Inst, PFS);
2962  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
2963  case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
2964  case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
2965  }
2966}
2967
2968/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
2969bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
2970  if (Opc == Instruction::FCmp) {
2971    switch (Lex.getKind()) {
2972    default: TokError("expected fcmp predicate (e.g. 'oeq')");
2973    case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
2974    case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
2975    case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
2976    case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
2977    case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
2978    case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
2979    case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
2980    case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
2981    case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
2982    case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
2983    case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
2984    case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
2985    case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
2986    case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
2987    case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
2988    case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
2989    }
2990  } else {
2991    switch (Lex.getKind()) {
2992    default: TokError("expected icmp predicate (e.g. 'eq')");
2993    case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
2994    case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
2995    case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
2996    case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
2997    case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
2998    case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
2999    case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
3000    case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
3001    case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
3002    case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
3003    }
3004  }
3005  Lex.Lex();
3006  return false;
3007}
3008
3009//===----------------------------------------------------------------------===//
3010// Terminator Instructions.
3011//===----------------------------------------------------------------------===//
3012
3013/// ParseRet - Parse a return instruction.
3014///   ::= 'ret' void (',' !dbg, !1)*
3015///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
3016bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
3017                        PerFunctionState &PFS) {
3018  SMLoc TypeLoc = Lex.getLoc();
3019  Type *Ty = 0;
3020  if (ParseType(Ty, true /*void allowed*/)) return true;
3021
3022  Type *ResType = PFS.getFunction().getReturnType();
3023
3024  if (Ty->isVoidTy()) {
3025    if (!ResType->isVoidTy())
3026      return Error(TypeLoc, "value doesn't match function result type '" +
3027                   getTypeString(ResType) + "'");
3028
3029    Inst = ReturnInst::Create(Context);
3030    return false;
3031  }
3032
3033  Value *RV;
3034  if (ParseValue(Ty, RV, PFS)) return true;
3035
3036  if (ResType != RV->getType())
3037    return Error(TypeLoc, "value doesn't match function result type '" +
3038                 getTypeString(ResType) + "'");
3039
3040  Inst = ReturnInst::Create(Context, RV);
3041  return false;
3042}
3043
3044
3045/// ParseBr
3046///   ::= 'br' TypeAndValue
3047///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3048bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
3049  LocTy Loc, Loc2;
3050  Value *Op0;
3051  BasicBlock *Op1, *Op2;
3052  if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
3053
3054  if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
3055    Inst = BranchInst::Create(BB);
3056    return false;
3057  }
3058
3059  if (Op0->getType() != Type::getInt1Ty(Context))
3060    return Error(Loc, "branch condition must have 'i1' type");
3061
3062  if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
3063      ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
3064      ParseToken(lltok::comma, "expected ',' after true destination") ||
3065      ParseTypeAndBasicBlock(Op2, Loc2, PFS))
3066    return true;
3067
3068  Inst = BranchInst::Create(Op1, Op2, Op0);
3069  return false;
3070}
3071
3072/// ParseSwitch
3073///  Instruction
3074///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
3075///  JumpTable
3076///    ::= (TypeAndValue ',' TypeAndValue)*
3077bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
3078  LocTy CondLoc, BBLoc;
3079  Value *Cond;
3080  BasicBlock *DefaultBB;
3081  if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
3082      ParseToken(lltok::comma, "expected ',' after switch condition") ||
3083      ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
3084      ParseToken(lltok::lsquare, "expected '[' with switch table"))
3085    return true;
3086
3087  if (!Cond->getType()->isIntegerTy())
3088    return Error(CondLoc, "switch condition must have integer type");
3089
3090  // Parse the jump table pairs.
3091  SmallPtrSet<Value*, 32> SeenCases;
3092  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
3093  while (Lex.getKind() != lltok::rsquare) {
3094    Value *Constant;
3095    BasicBlock *DestBB;
3096
3097    if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
3098        ParseToken(lltok::comma, "expected ',' after case value") ||
3099        ParseTypeAndBasicBlock(DestBB, PFS))
3100      return true;
3101
3102    if (!SeenCases.insert(Constant))
3103      return Error(CondLoc, "duplicate case value in switch");
3104    if (!isa<ConstantInt>(Constant))
3105      return Error(CondLoc, "case value is not a constant integer");
3106
3107    Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
3108  }
3109
3110  Lex.Lex();  // Eat the ']'.
3111
3112  SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
3113  for (unsigned i = 0, e = Table.size(); i != e; ++i)
3114    SI->addCase(Table[i].first, Table[i].second);
3115  Inst = SI;
3116  return false;
3117}
3118
3119/// ParseIndirectBr
3120///  Instruction
3121///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
3122bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
3123  LocTy AddrLoc;
3124  Value *Address;
3125  if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
3126      ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
3127      ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
3128    return true;
3129
3130  if (!Address->getType()->isPointerTy())
3131    return Error(AddrLoc, "indirectbr address must have pointer type");
3132
3133  // Parse the destination list.
3134  SmallVector<BasicBlock*, 16> DestList;
3135
3136  if (Lex.getKind() != lltok::rsquare) {
3137    BasicBlock *DestBB;
3138    if (ParseTypeAndBasicBlock(DestBB, PFS))
3139      return true;
3140    DestList.push_back(DestBB);
3141
3142    while (EatIfPresent(lltok::comma)) {
3143      if (ParseTypeAndBasicBlock(DestBB, PFS))
3144        return true;
3145      DestList.push_back(DestBB);
3146    }
3147  }
3148
3149  if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
3150    return true;
3151
3152  IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
3153  for (unsigned i = 0, e = DestList.size(); i != e; ++i)
3154    IBI->addDestination(DestList[i]);
3155  Inst = IBI;
3156  return false;
3157}
3158
3159
3160/// ParseInvoke
3161///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
3162///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
3163bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
3164  LocTy CallLoc = Lex.getLoc();
3165  Attributes RetAttrs, FnAttrs;
3166  CallingConv::ID CC;
3167  Type *RetType = 0;
3168  LocTy RetTypeLoc;
3169  ValID CalleeID;
3170  SmallVector<ParamInfo, 16> ArgList;
3171
3172  BasicBlock *NormalBB, *UnwindBB;
3173  if (ParseOptionalCallingConv(CC) ||
3174      ParseOptionalAttrs(RetAttrs, 1) ||
3175      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3176      ParseValID(CalleeID) ||
3177      ParseParameterList(ArgList, PFS) ||
3178      ParseOptionalAttrs(FnAttrs, 2) ||
3179      ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
3180      ParseTypeAndBasicBlock(NormalBB, PFS) ||
3181      ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
3182      ParseTypeAndBasicBlock(UnwindBB, PFS))
3183    return true;
3184
3185  // If RetType is a non-function pointer type, then this is the short syntax
3186  // for the call, which means that RetType is just the return type.  Infer the
3187  // rest of the function argument types from the arguments that are present.
3188  PointerType *PFTy = 0;
3189  FunctionType *Ty = 0;
3190  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3191      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3192    // Pull out the types of all of the arguments...
3193    std::vector<Type*> ParamTypes;
3194    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3195      ParamTypes.push_back(ArgList[i].V->getType());
3196
3197    if (!FunctionType::isValidReturnType(RetType))
3198      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3199
3200    Ty = FunctionType::get(RetType, ParamTypes, false);
3201    PFTy = PointerType::getUnqual(Ty);
3202  }
3203
3204  // Look up the callee.
3205  Value *Callee;
3206  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3207
3208  // Set up the Attributes for the function.
3209  SmallVector<AttributeWithIndex, 8> Attrs;
3210  if (RetAttrs != Attribute::None)
3211    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3212
3213  SmallVector<Value*, 8> Args;
3214
3215  // Loop through FunctionType's arguments and ensure they are specified
3216  // correctly.  Also, gather any parameter attributes.
3217  FunctionType::param_iterator I = Ty->param_begin();
3218  FunctionType::param_iterator E = Ty->param_end();
3219  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3220    Type *ExpectedTy = 0;
3221    if (I != E) {
3222      ExpectedTy = *I++;
3223    } else if (!Ty->isVarArg()) {
3224      return Error(ArgList[i].Loc, "too many arguments specified");
3225    }
3226
3227    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3228      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3229                   getTypeString(ExpectedTy) + "'");
3230    Args.push_back(ArgList[i].V);
3231    if (ArgList[i].Attrs != Attribute::None)
3232      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3233  }
3234
3235  if (I != E)
3236    return Error(CallLoc, "not enough parameters specified for call");
3237
3238  if (FnAttrs != Attribute::None)
3239    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3240
3241  // Finish off the Attributes and check them
3242  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3243
3244  InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, Args);
3245  II->setCallingConv(CC);
3246  II->setAttributes(PAL);
3247  Inst = II;
3248  return false;
3249}
3250
3251/// ParseResume
3252///   ::= 'resume' TypeAndValue
3253bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
3254  Value *Exn; LocTy ExnLoc;
3255  if (ParseTypeAndValue(Exn, ExnLoc, PFS))
3256    return true;
3257
3258  ResumeInst *RI = ResumeInst::Create(Exn);
3259  Inst = RI;
3260  return false;
3261}
3262
3263//===----------------------------------------------------------------------===//
3264// Binary Operators.
3265//===----------------------------------------------------------------------===//
3266
3267/// ParseArithmetic
3268///  ::= ArithmeticOps TypeAndValue ',' Value
3269///
3270/// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
3271/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
3272bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
3273                               unsigned Opc, unsigned OperandType) {
3274  LocTy Loc; Value *LHS, *RHS;
3275  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3276      ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
3277      ParseValue(LHS->getType(), RHS, PFS))
3278    return true;
3279
3280  bool Valid;
3281  switch (OperandType) {
3282  default: llvm_unreachable("Unknown operand type!");
3283  case 0: // int or FP.
3284    Valid = LHS->getType()->isIntOrIntVectorTy() ||
3285            LHS->getType()->isFPOrFPVectorTy();
3286    break;
3287  case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
3288  case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
3289  }
3290
3291  if (!Valid)
3292    return Error(Loc, "invalid operand type for instruction");
3293
3294  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3295  return false;
3296}
3297
3298/// ParseLogical
3299///  ::= ArithmeticOps TypeAndValue ',' Value {
3300bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3301                            unsigned Opc) {
3302  LocTy Loc; Value *LHS, *RHS;
3303  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3304      ParseToken(lltok::comma, "expected ',' in logical operation") ||
3305      ParseValue(LHS->getType(), RHS, PFS))
3306    return true;
3307
3308  if (!LHS->getType()->isIntOrIntVectorTy())
3309    return Error(Loc,"instruction requires integer or integer vector operands");
3310
3311  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3312  return false;
3313}
3314
3315
3316/// ParseCompare
3317///  ::= 'icmp' IPredicates TypeAndValue ',' Value
3318///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
3319bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3320                            unsigned Opc) {
3321  // Parse the integer/fp comparison predicate.
3322  LocTy Loc;
3323  unsigned Pred;
3324  Value *LHS, *RHS;
3325  if (ParseCmpPredicate(Pred, Opc) ||
3326      ParseTypeAndValue(LHS, Loc, PFS) ||
3327      ParseToken(lltok::comma, "expected ',' after compare value") ||
3328      ParseValue(LHS->getType(), RHS, PFS))
3329    return true;
3330
3331  if (Opc == Instruction::FCmp) {
3332    if (!LHS->getType()->isFPOrFPVectorTy())
3333      return Error(Loc, "fcmp requires floating point operands");
3334    Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3335  } else {
3336    assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3337    if (!LHS->getType()->isIntOrIntVectorTy() &&
3338        !LHS->getType()->getScalarType()->isPointerTy())
3339      return Error(Loc, "icmp requires integer operands");
3340    Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3341  }
3342  return false;
3343}
3344
3345//===----------------------------------------------------------------------===//
3346// Other Instructions.
3347//===----------------------------------------------------------------------===//
3348
3349
3350/// ParseCast
3351///   ::= CastOpc TypeAndValue 'to' Type
3352bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3353                         unsigned Opc) {
3354  LocTy Loc;
3355  Value *Op;
3356  Type *DestTy = 0;
3357  if (ParseTypeAndValue(Op, Loc, PFS) ||
3358      ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3359      ParseType(DestTy))
3360    return true;
3361
3362  if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3363    CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3364    return Error(Loc, "invalid cast opcode for cast from '" +
3365                 getTypeString(Op->getType()) + "' to '" +
3366                 getTypeString(DestTy) + "'");
3367  }
3368  Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3369  return false;
3370}
3371
3372/// ParseSelect
3373///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3374bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3375  LocTy Loc;
3376  Value *Op0, *Op1, *Op2;
3377  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3378      ParseToken(lltok::comma, "expected ',' after select condition") ||
3379      ParseTypeAndValue(Op1, PFS) ||
3380      ParseToken(lltok::comma, "expected ',' after select value") ||
3381      ParseTypeAndValue(Op2, PFS))
3382    return true;
3383
3384  if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3385    return Error(Loc, Reason);
3386
3387  Inst = SelectInst::Create(Op0, Op1, Op2);
3388  return false;
3389}
3390
3391/// ParseVA_Arg
3392///   ::= 'va_arg' TypeAndValue ',' Type
3393bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3394  Value *Op;
3395  Type *EltTy = 0;
3396  LocTy TypeLoc;
3397  if (ParseTypeAndValue(Op, PFS) ||
3398      ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3399      ParseType(EltTy, TypeLoc))
3400    return true;
3401
3402  if (!EltTy->isFirstClassType())
3403    return Error(TypeLoc, "va_arg requires operand with first class type");
3404
3405  Inst = new VAArgInst(Op, EltTy);
3406  return false;
3407}
3408
3409/// ParseExtractElement
3410///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
3411bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3412  LocTy Loc;
3413  Value *Op0, *Op1;
3414  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3415      ParseToken(lltok::comma, "expected ',' after extract value") ||
3416      ParseTypeAndValue(Op1, PFS))
3417    return true;
3418
3419  if (!ExtractElementInst::isValidOperands(Op0, Op1))
3420    return Error(Loc, "invalid extractelement operands");
3421
3422  Inst = ExtractElementInst::Create(Op0, Op1);
3423  return false;
3424}
3425
3426/// ParseInsertElement
3427///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3428bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3429  LocTy Loc;
3430  Value *Op0, *Op1, *Op2;
3431  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3432      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3433      ParseTypeAndValue(Op1, PFS) ||
3434      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3435      ParseTypeAndValue(Op2, PFS))
3436    return true;
3437
3438  if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3439    return Error(Loc, "invalid insertelement operands");
3440
3441  Inst = InsertElementInst::Create(Op0, Op1, Op2);
3442  return false;
3443}
3444
3445/// ParseShuffleVector
3446///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3447bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3448  LocTy Loc;
3449  Value *Op0, *Op1, *Op2;
3450  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3451      ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3452      ParseTypeAndValue(Op1, PFS) ||
3453      ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3454      ParseTypeAndValue(Op2, PFS))
3455    return true;
3456
3457  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3458    return Error(Loc, "invalid shufflevector operands");
3459
3460  Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3461  return false;
3462}
3463
3464/// ParsePHI
3465///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
3466int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3467  Type *Ty = 0;  LocTy TypeLoc;
3468  Value *Op0, *Op1;
3469
3470  if (ParseType(Ty, TypeLoc) ||
3471      ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3472      ParseValue(Ty, Op0, PFS) ||
3473      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3474      ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3475      ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3476    return true;
3477
3478  bool AteExtraComma = false;
3479  SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3480  while (1) {
3481    PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3482
3483    if (!EatIfPresent(lltok::comma))
3484      break;
3485
3486    if (Lex.getKind() == lltok::MetadataVar) {
3487      AteExtraComma = true;
3488      break;
3489    }
3490
3491    if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3492        ParseValue(Ty, Op0, PFS) ||
3493        ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3494        ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3495        ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3496      return true;
3497  }
3498
3499  if (!Ty->isFirstClassType())
3500    return Error(TypeLoc, "phi node must have first class type");
3501
3502  PHINode *PN = PHINode::Create(Ty, PHIVals.size());
3503  for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3504    PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3505  Inst = PN;
3506  return AteExtraComma ? InstExtraComma : InstNormal;
3507}
3508
3509/// ParseLandingPad
3510///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
3511/// Clause
3512///   ::= 'catch' TypeAndValue
3513///   ::= 'filter'
3514///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
3515bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
3516  Type *Ty = 0; LocTy TyLoc;
3517  Value *PersFn; LocTy PersFnLoc;
3518
3519  if (ParseType(Ty, TyLoc) ||
3520      ParseToken(lltok::kw_personality, "expected 'personality'") ||
3521      ParseTypeAndValue(PersFn, PersFnLoc, PFS))
3522    return true;
3523
3524  LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, 0);
3525  LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
3526
3527  while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
3528    LandingPadInst::ClauseType CT;
3529    if (EatIfPresent(lltok::kw_catch))
3530      CT = LandingPadInst::Catch;
3531    else if (EatIfPresent(lltok::kw_filter))
3532      CT = LandingPadInst::Filter;
3533    else
3534      return TokError("expected 'catch' or 'filter' clause type");
3535
3536    Value *V; LocTy VLoc;
3537    if (ParseTypeAndValue(V, VLoc, PFS)) {
3538      delete LP;
3539      return true;
3540    }
3541
3542    // A 'catch' type expects a non-array constant. A filter clause expects an
3543    // array constant.
3544    if (CT == LandingPadInst::Catch) {
3545      if (isa<ArrayType>(V->getType()))
3546        Error(VLoc, "'catch' clause has an invalid type");
3547    } else {
3548      if (!isa<ArrayType>(V->getType()))
3549        Error(VLoc, "'filter' clause has an invalid type");
3550    }
3551
3552    LP->addClause(V);
3553  }
3554
3555  Inst = LP;
3556  return false;
3557}
3558
3559/// ParseCall
3560///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3561///       ParameterList OptionalAttrs
3562bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3563                         bool isTail) {
3564  Attributes RetAttrs, FnAttrs;
3565  CallingConv::ID CC;
3566  Type *RetType = 0;
3567  LocTy RetTypeLoc;
3568  ValID CalleeID;
3569  SmallVector<ParamInfo, 16> ArgList;
3570  LocTy CallLoc = Lex.getLoc();
3571
3572  if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3573      ParseOptionalCallingConv(CC) ||
3574      ParseOptionalAttrs(RetAttrs, 1) ||
3575      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3576      ParseValID(CalleeID) ||
3577      ParseParameterList(ArgList, PFS) ||
3578      ParseOptionalAttrs(FnAttrs, 2))
3579    return true;
3580
3581  // If RetType is a non-function pointer type, then this is the short syntax
3582  // for the call, which means that RetType is just the return type.  Infer the
3583  // rest of the function argument types from the arguments that are present.
3584  PointerType *PFTy = 0;
3585  FunctionType *Ty = 0;
3586  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3587      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3588    // Pull out the types of all of the arguments...
3589    std::vector<Type*> ParamTypes;
3590    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3591      ParamTypes.push_back(ArgList[i].V->getType());
3592
3593    if (!FunctionType::isValidReturnType(RetType))
3594      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3595
3596    Ty = FunctionType::get(RetType, ParamTypes, false);
3597    PFTy = PointerType::getUnqual(Ty);
3598  }
3599
3600  // Look up the callee.
3601  Value *Callee;
3602  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3603
3604  // Set up the Attributes for the function.
3605  SmallVector<AttributeWithIndex, 8> Attrs;
3606  if (RetAttrs != Attribute::None)
3607    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3608
3609  SmallVector<Value*, 8> Args;
3610
3611  // Loop through FunctionType's arguments and ensure they are specified
3612  // correctly.  Also, gather any parameter attributes.
3613  FunctionType::param_iterator I = Ty->param_begin();
3614  FunctionType::param_iterator E = Ty->param_end();
3615  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3616    Type *ExpectedTy = 0;
3617    if (I != E) {
3618      ExpectedTy = *I++;
3619    } else if (!Ty->isVarArg()) {
3620      return Error(ArgList[i].Loc, "too many arguments specified");
3621    }
3622
3623    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3624      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3625                   getTypeString(ExpectedTy) + "'");
3626    Args.push_back(ArgList[i].V);
3627    if (ArgList[i].Attrs != Attribute::None)
3628      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3629  }
3630
3631  if (I != E)
3632    return Error(CallLoc, "not enough parameters specified for call");
3633
3634  if (FnAttrs != Attribute::None)
3635    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3636
3637  // Finish off the Attributes and check them
3638  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3639
3640  CallInst *CI = CallInst::Create(Callee, Args);
3641  CI->setTailCall(isTail);
3642  CI->setCallingConv(CC);
3643  CI->setAttributes(PAL);
3644  Inst = CI;
3645  return false;
3646}
3647
3648//===----------------------------------------------------------------------===//
3649// Memory Instructions.
3650//===----------------------------------------------------------------------===//
3651
3652/// ParseAlloc
3653///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
3654int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
3655  Value *Size = 0;
3656  LocTy SizeLoc;
3657  unsigned Alignment = 0;
3658  Type *Ty = 0;
3659  if (ParseType(Ty)) return true;
3660
3661  bool AteExtraComma = false;
3662  if (EatIfPresent(lltok::comma)) {
3663    if (Lex.getKind() == lltok::kw_align) {
3664      if (ParseOptionalAlignment(Alignment)) return true;
3665    } else if (Lex.getKind() == lltok::MetadataVar) {
3666      AteExtraComma = true;
3667    } else {
3668      if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
3669          ParseOptionalCommaAlign(Alignment, AteExtraComma))
3670        return true;
3671    }
3672  }
3673
3674  if (Size && !Size->getType()->isIntegerTy())
3675    return Error(SizeLoc, "element count must have integer type");
3676
3677  Inst = new AllocaInst(Ty, Size, Alignment);
3678  return AteExtraComma ? InstExtraComma : InstNormal;
3679}
3680
3681/// ParseLoad
3682///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
3683///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
3684///       'singlethread'? AtomicOrdering (',' 'align' i32)?
3685int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
3686  Value *Val; LocTy Loc;
3687  unsigned Alignment = 0;
3688  bool AteExtraComma = false;
3689  bool isAtomic = false;
3690  AtomicOrdering Ordering = NotAtomic;
3691  SynchronizationScope Scope = CrossThread;
3692
3693  if (Lex.getKind() == lltok::kw_atomic) {
3694    isAtomic = true;
3695    Lex.Lex();
3696  }
3697
3698  bool isVolatile = false;
3699  if (Lex.getKind() == lltok::kw_volatile) {
3700    isVolatile = true;
3701    Lex.Lex();
3702  }
3703
3704  if (ParseTypeAndValue(Val, Loc, PFS) ||
3705      ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
3706      ParseOptionalCommaAlign(Alignment, AteExtraComma))
3707    return true;
3708
3709  if (!Val->getType()->isPointerTy() ||
3710      !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3711    return Error(Loc, "load operand must be a pointer to a first class type");
3712  if (isAtomic && !Alignment)
3713    return Error(Loc, "atomic load must have explicit non-zero alignment");
3714  if (Ordering == Release || Ordering == AcquireRelease)
3715    return Error(Loc, "atomic load cannot use Release ordering");
3716
3717  Inst = new LoadInst(Val, "", isVolatile, Alignment, Ordering, Scope);
3718  return AteExtraComma ? InstExtraComma : InstNormal;
3719}
3720
3721/// ParseStore
3722
3723///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3724///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
3725///       'singlethread'? AtomicOrdering (',' 'align' i32)?
3726int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
3727  Value *Val, *Ptr; LocTy Loc, PtrLoc;
3728  unsigned Alignment = 0;
3729  bool AteExtraComma = false;
3730  bool isAtomic = false;
3731  AtomicOrdering Ordering = NotAtomic;
3732  SynchronizationScope Scope = CrossThread;
3733
3734  if (Lex.getKind() == lltok::kw_atomic) {
3735    isAtomic = true;
3736    Lex.Lex();
3737  }
3738
3739  bool isVolatile = false;
3740  if (Lex.getKind() == lltok::kw_volatile) {
3741    isVolatile = true;
3742    Lex.Lex();
3743  }
3744
3745  if (ParseTypeAndValue(Val, Loc, PFS) ||
3746      ParseToken(lltok::comma, "expected ',' after store operand") ||
3747      ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3748      ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
3749      ParseOptionalCommaAlign(Alignment, AteExtraComma))
3750    return true;
3751
3752  if (!Ptr->getType()->isPointerTy())
3753    return Error(PtrLoc, "store operand must be a pointer");
3754  if (!Val->getType()->isFirstClassType())
3755    return Error(Loc, "store operand must be a first class value");
3756  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3757    return Error(Loc, "stored value and pointer type do not match");
3758  if (isAtomic && !Alignment)
3759    return Error(Loc, "atomic store must have explicit non-zero alignment");
3760  if (Ordering == Acquire || Ordering == AcquireRelease)
3761    return Error(Loc, "atomic store cannot use Acquire ordering");
3762
3763  Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
3764  return AteExtraComma ? InstExtraComma : InstNormal;
3765}
3766
3767/// ParseCmpXchg
3768///   ::= 'cmpxchg' 'volatile'? TypeAndValue ',' TypeAndValue ',' TypeAndValue
3769///       'singlethread'? AtomicOrdering
3770int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
3771  Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
3772  bool AteExtraComma = false;
3773  AtomicOrdering Ordering = NotAtomic;
3774  SynchronizationScope Scope = CrossThread;
3775  bool isVolatile = false;
3776
3777  if (EatIfPresent(lltok::kw_volatile))
3778    isVolatile = true;
3779
3780  if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3781      ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
3782      ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
3783      ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
3784      ParseTypeAndValue(New, NewLoc, PFS) ||
3785      ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
3786    return true;
3787
3788  if (Ordering == Unordered)
3789    return TokError("cmpxchg cannot be unordered");
3790  if (!Ptr->getType()->isPointerTy())
3791    return Error(PtrLoc, "cmpxchg operand must be a pointer");
3792  if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
3793    return Error(CmpLoc, "compare value and pointer type do not match");
3794  if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
3795    return Error(NewLoc, "new value and pointer type do not match");
3796  if (!New->getType()->isIntegerTy())
3797    return Error(NewLoc, "cmpxchg operand must be an integer");
3798  unsigned Size = New->getType()->getPrimitiveSizeInBits();
3799  if (Size < 8 || (Size & (Size - 1)))
3800    return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized"
3801                         " integer");
3802
3803  AtomicCmpXchgInst *CXI =
3804    new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Scope);
3805  CXI->setVolatile(isVolatile);
3806  Inst = CXI;
3807  return AteExtraComma ? InstExtraComma : InstNormal;
3808}
3809
3810/// ParseAtomicRMW
3811///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
3812///       'singlethread'? AtomicOrdering
3813int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
3814  Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
3815  bool AteExtraComma = false;
3816  AtomicOrdering Ordering = NotAtomic;
3817  SynchronizationScope Scope = CrossThread;
3818  bool isVolatile = false;
3819  AtomicRMWInst::BinOp Operation;
3820
3821  if (EatIfPresent(lltok::kw_volatile))
3822    isVolatile = true;
3823
3824  switch (Lex.getKind()) {
3825  default: return TokError("expected binary operation in atomicrmw");
3826  case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
3827  case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
3828  case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
3829  case lltok::kw_and: Operation = AtomicRMWInst::And; break;
3830  case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
3831  case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
3832  case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
3833  case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
3834  case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
3835  case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
3836  case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
3837  }
3838  Lex.Lex();  // Eat the operation.
3839
3840  if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3841      ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
3842      ParseTypeAndValue(Val, ValLoc, PFS) ||
3843      ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
3844    return true;
3845
3846  if (Ordering == Unordered)
3847    return TokError("atomicrmw cannot be unordered");
3848  if (!Ptr->getType()->isPointerTy())
3849    return Error(PtrLoc, "atomicrmw operand must be a pointer");
3850  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3851    return Error(ValLoc, "atomicrmw value and pointer type do not match");
3852  if (!Val->getType()->isIntegerTy())
3853    return Error(ValLoc, "atomicrmw operand must be an integer");
3854  unsigned Size = Val->getType()->getPrimitiveSizeInBits();
3855  if (Size < 8 || (Size & (Size - 1)))
3856    return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
3857                         " integer");
3858
3859  AtomicRMWInst *RMWI =
3860    new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
3861  RMWI->setVolatile(isVolatile);
3862  Inst = RMWI;
3863  return AteExtraComma ? InstExtraComma : InstNormal;
3864}
3865
3866/// ParseFence
3867///   ::= 'fence' 'singlethread'? AtomicOrdering
3868int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
3869  AtomicOrdering Ordering = NotAtomic;
3870  SynchronizationScope Scope = CrossThread;
3871  if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
3872    return true;
3873
3874  if (Ordering == Unordered)
3875    return TokError("fence cannot be unordered");
3876  if (Ordering == Monotonic)
3877    return TokError("fence cannot be monotonic");
3878
3879  Inst = new FenceInst(Context, Ordering, Scope);
3880  return InstNormal;
3881}
3882
3883/// ParseGetElementPtr
3884///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
3885int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3886  Value *Ptr = 0;
3887  Value *Val = 0;
3888  LocTy Loc, EltLoc;
3889
3890  bool InBounds = EatIfPresent(lltok::kw_inbounds);
3891
3892  if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3893
3894  if (!Ptr->getType()->getScalarType()->isPointerTy())
3895    return Error(Loc, "base of getelementptr must be a pointer");
3896
3897  SmallVector<Value*, 16> Indices;
3898  bool AteExtraComma = false;
3899  while (EatIfPresent(lltok::comma)) {
3900    if (Lex.getKind() == lltok::MetadataVar) {
3901      AteExtraComma = true;
3902      break;
3903    }
3904    if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3905    if (!Val->getType()->getScalarType()->isIntegerTy())
3906      return Error(EltLoc, "getelementptr index must be an integer");
3907    if (Val->getType()->isVectorTy() != Ptr->getType()->isVectorTy())
3908      return Error(EltLoc, "getelementptr index type missmatch");
3909    if (Val->getType()->isVectorTy()) {
3910      unsigned ValNumEl = cast<VectorType>(Val->getType())->getNumElements();
3911      unsigned PtrNumEl = cast<VectorType>(Ptr->getType())->getNumElements();
3912      if (ValNumEl != PtrNumEl)
3913        return Error(EltLoc,
3914          "getelementptr vector index has a wrong number of elements");
3915    }
3916    Indices.push_back(Val);
3917  }
3918
3919  if (Val && Val->getType()->isVectorTy() && Indices.size() != 1)
3920    return Error(EltLoc, "vector getelementptrs must have a single index");
3921
3922  if (!GetElementPtrInst::getIndexedType(Ptr->getType(), Indices))
3923    return Error(Loc, "invalid getelementptr indices");
3924  Inst = GetElementPtrInst::Create(Ptr, Indices);
3925  if (InBounds)
3926    cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
3927  return AteExtraComma ? InstExtraComma : InstNormal;
3928}
3929
3930/// ParseExtractValue
3931///   ::= 'extractvalue' TypeAndValue (',' uint32)+
3932int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3933  Value *Val; LocTy Loc;
3934  SmallVector<unsigned, 4> Indices;
3935  bool AteExtraComma;
3936  if (ParseTypeAndValue(Val, Loc, PFS) ||
3937      ParseIndexList(Indices, AteExtraComma))
3938    return true;
3939
3940  if (!Val->getType()->isAggregateType())
3941    return Error(Loc, "extractvalue operand must be aggregate type");
3942
3943  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3944    return Error(Loc, "invalid indices for extractvalue");
3945  Inst = ExtractValueInst::Create(Val, Indices);
3946  return AteExtraComma ? InstExtraComma : InstNormal;
3947}
3948
3949/// ParseInsertValue
3950///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3951int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3952  Value *Val0, *Val1; LocTy Loc0, Loc1;
3953  SmallVector<unsigned, 4> Indices;
3954  bool AteExtraComma;
3955  if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3956      ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3957      ParseTypeAndValue(Val1, Loc1, PFS) ||
3958      ParseIndexList(Indices, AteExtraComma))
3959    return true;
3960
3961  if (!Val0->getType()->isAggregateType())
3962    return Error(Loc0, "insertvalue operand must be aggregate type");
3963
3964  if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
3965    return Error(Loc0, "invalid indices for insertvalue");
3966  Inst = InsertValueInst::Create(Val0, Val1, Indices);
3967  return AteExtraComma ? InstExtraComma : InstNormal;
3968}
3969
3970//===----------------------------------------------------------------------===//
3971// Embedded metadata.
3972//===----------------------------------------------------------------------===//
3973
3974/// ParseMDNodeVector
3975///   ::= Element (',' Element)*
3976/// Element
3977///   ::= 'null' | TypeAndValue
3978bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts,
3979                                 PerFunctionState *PFS) {
3980  // Check for an empty list.
3981  if (Lex.getKind() == lltok::rbrace)
3982    return false;
3983
3984  do {
3985    // Null is a special case since it is typeless.
3986    if (EatIfPresent(lltok::kw_null)) {
3987      Elts.push_back(0);
3988      continue;
3989    }
3990
3991    Value *V = 0;
3992    if (ParseTypeAndValue(V, PFS)) return true;
3993    Elts.push_back(V);
3994  } while (EatIfPresent(lltok::comma));
3995
3996  return false;
3997}
3998