LLParser.cpp revision af81235ef96a7a005b7fdfe5a64cce30df3d820d
1//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/AutoUpgrade.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instructions.h"
21#include "llvm/Module.h"
22#include "llvm/Operator.h"
23#include "llvm/ValueSymbolTable.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/raw_ostream.h"
27using namespace llvm;
28
29/// Run: module ::= toplevelentity*
30bool LLParser::Run() {
31  // Prime the lexer.
32  Lex.Lex();
33
34  return ParseTopLevelEntities() ||
35         ValidateEndOfModule();
36}
37
38/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
39/// module.
40bool LLParser::ValidateEndOfModule() {
41  // Handle any instruction metadata forward references.
42  if (!ForwardRefInstMetadata.empty()) {
43    for (DenseMap<Instruction*, std::vector<MDRef> >::iterator
44         I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end();
45         I != E; ++I) {
46      Instruction *Inst = I->first;
47      const std::vector<MDRef> &MDList = I->second;
48
49      for (unsigned i = 0, e = MDList.size(); i != e; ++i) {
50        unsigned SlotNo = MDList[i].MDSlot;
51
52        if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0)
53          return Error(MDList[i].Loc, "use of undefined metadata '!" +
54                       Twine(SlotNo) + "'");
55        Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]);
56      }
57    }
58    ForwardRefInstMetadata.clear();
59  }
60
61
62  // Update auto-upgraded malloc calls to "malloc".
63  // FIXME: Remove in LLVM 3.0.
64  if (MallocF) {
65    MallocF->setName("malloc");
66    // If setName() does not set the name to "malloc", then there is already a
67    // declaration of "malloc".  In that case, iterate over all calls to MallocF
68    // and get them to call the declared "malloc" instead.
69    if (MallocF->getName() != "malloc") {
70      Constant *RealMallocF = M->getFunction("malloc");
71      if (RealMallocF->getType() != MallocF->getType())
72        RealMallocF = ConstantExpr::getBitCast(RealMallocF, MallocF->getType());
73      MallocF->replaceAllUsesWith(RealMallocF);
74      MallocF->eraseFromParent();
75      MallocF = NULL;
76    }
77  }
78
79
80  // If there are entries in ForwardRefBlockAddresses at this point, they are
81  // references after the function was defined.  Resolve those now.
82  while (!ForwardRefBlockAddresses.empty()) {
83    // Okay, we are referencing an already-parsed function, resolve them now.
84    Function *TheFn = 0;
85    const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
86    if (Fn.Kind == ValID::t_GlobalName)
87      TheFn = M->getFunction(Fn.StrVal);
88    else if (Fn.UIntVal < NumberedVals.size())
89      TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
90
91    if (TheFn == 0)
92      return Error(Fn.Loc, "unknown function referenced by blockaddress");
93
94    // Resolve all these references.
95    if (ResolveForwardRefBlockAddresses(TheFn,
96                                      ForwardRefBlockAddresses.begin()->second,
97                                        0))
98      return true;
99
100    ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
101  }
102
103
104  if (!ForwardRefTypes.empty())
105    return Error(ForwardRefTypes.begin()->second.second,
106                 "use of undefined type named '" +
107                 ForwardRefTypes.begin()->first + "'");
108  if (!ForwardRefTypeIDs.empty())
109    return Error(ForwardRefTypeIDs.begin()->second.second,
110                 "use of undefined type '%" +
111                 Twine(ForwardRefTypeIDs.begin()->first) + "'");
112
113  if (!ForwardRefVals.empty())
114    return Error(ForwardRefVals.begin()->second.second,
115                 "use of undefined value '@" + ForwardRefVals.begin()->first +
116                 "'");
117
118  if (!ForwardRefValIDs.empty())
119    return Error(ForwardRefValIDs.begin()->second.second,
120                 "use of undefined value '@" +
121                 Twine(ForwardRefValIDs.begin()->first) + "'");
122
123  if (!ForwardRefMDNodes.empty())
124    return Error(ForwardRefMDNodes.begin()->second.second,
125                 "use of undefined metadata '!" +
126                 Twine(ForwardRefMDNodes.begin()->first) + "'");
127
128
129  // Look for intrinsic functions and CallInst that need to be upgraded
130  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
131    UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
132
133  // Check debug info intrinsics.
134  CheckDebugInfoIntrinsics(M);
135  return false;
136}
137
138bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn,
139                             std::vector<std::pair<ValID, GlobalValue*> > &Refs,
140                                               PerFunctionState *PFS) {
141  // Loop over all the references, resolving them.
142  for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
143    BasicBlock *Res;
144    if (PFS) {
145      if (Refs[i].first.Kind == ValID::t_LocalName)
146        Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
147      else
148        Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
149    } else if (Refs[i].first.Kind == ValID::t_LocalID) {
150      return Error(Refs[i].first.Loc,
151       "cannot take address of numeric label after the function is defined");
152    } else {
153      Res = dyn_cast_or_null<BasicBlock>(
154                     TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
155    }
156
157    if (Res == 0)
158      return Error(Refs[i].first.Loc,
159                   "referenced value is not a basic block");
160
161    // Get the BlockAddress for this and update references to use it.
162    BlockAddress *BA = BlockAddress::get(TheFn, Res);
163    Refs[i].second->replaceAllUsesWith(BA);
164    Refs[i].second->eraseFromParent();
165  }
166  return false;
167}
168
169
170//===----------------------------------------------------------------------===//
171// Top-Level Entities
172//===----------------------------------------------------------------------===//
173
174bool LLParser::ParseTopLevelEntities() {
175  while (1) {
176    switch (Lex.getKind()) {
177    default:         return TokError("expected top-level entity");
178    case lltok::Eof: return false;
179    //case lltok::kw_define:
180    case lltok::kw_declare: if (ParseDeclare()) return true; break;
181    case lltok::kw_define:  if (ParseDefine()) return true; break;
182    case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
183    case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
184    case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
185    case lltok::kw_type:    if (ParseUnnamedType()) return true; break;
186    case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
187    case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
188    case lltok::LocalVar:   if (ParseNamedType()) return true; break;
189    case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
190    case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
191    case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
192    case lltok::MetadataVar: if (ParseNamedMetadata()) return true; break;
193
194    // The Global variable production with no name can have many different
195    // optional leading prefixes, the production is:
196    // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
197    //               OptionalAddrSpace ('constant'|'global') ...
198    case lltok::kw_private:             // OptionalLinkage
199    case lltok::kw_linker_private:      // OptionalLinkage
200    case lltok::kw_linker_private_weak: // OptionalLinkage
201    case lltok::kw_linker_private_weak_def_auto: // OptionalLinkage
202    case lltok::kw_internal:            // OptionalLinkage
203    case lltok::kw_weak:                // OptionalLinkage
204    case lltok::kw_weak_odr:            // OptionalLinkage
205    case lltok::kw_linkonce:            // OptionalLinkage
206    case lltok::kw_linkonce_odr:        // OptionalLinkage
207    case lltok::kw_appending:           // OptionalLinkage
208    case lltok::kw_dllexport:           // OptionalLinkage
209    case lltok::kw_common:              // OptionalLinkage
210    case lltok::kw_dllimport:           // OptionalLinkage
211    case lltok::kw_extern_weak:         // OptionalLinkage
212    case lltok::kw_external: {          // OptionalLinkage
213      unsigned Linkage, Visibility;
214      if (ParseOptionalLinkage(Linkage) ||
215          ParseOptionalVisibility(Visibility) ||
216          ParseGlobal("", SMLoc(), Linkage, true, Visibility))
217        return true;
218      break;
219    }
220    case lltok::kw_default:       // OptionalVisibility
221    case lltok::kw_hidden:        // OptionalVisibility
222    case lltok::kw_protected: {   // OptionalVisibility
223      unsigned Visibility;
224      if (ParseOptionalVisibility(Visibility) ||
225          ParseGlobal("", SMLoc(), 0, false, Visibility))
226        return true;
227      break;
228    }
229
230    case lltok::kw_thread_local:  // OptionalThreadLocal
231    case lltok::kw_addrspace:     // OptionalAddrSpace
232    case lltok::kw_constant:      // GlobalType
233    case lltok::kw_global:        // GlobalType
234      if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
235      break;
236    }
237  }
238}
239
240
241/// toplevelentity
242///   ::= 'module' 'asm' STRINGCONSTANT
243bool LLParser::ParseModuleAsm() {
244  assert(Lex.getKind() == lltok::kw_module);
245  Lex.Lex();
246
247  std::string AsmStr;
248  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
249      ParseStringConstant(AsmStr)) return true;
250
251  const std::string &AsmSoFar = M->getModuleInlineAsm();
252  if (AsmSoFar.empty())
253    M->setModuleInlineAsm(AsmStr);
254  else
255    M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr);
256  return false;
257}
258
259/// toplevelentity
260///   ::= 'target' 'triple' '=' STRINGCONSTANT
261///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
262bool LLParser::ParseTargetDefinition() {
263  assert(Lex.getKind() == lltok::kw_target);
264  std::string Str;
265  switch (Lex.Lex()) {
266  default: return TokError("unknown target property");
267  case lltok::kw_triple:
268    Lex.Lex();
269    if (ParseToken(lltok::equal, "expected '=' after target triple") ||
270        ParseStringConstant(Str))
271      return true;
272    M->setTargetTriple(Str);
273    return false;
274  case lltok::kw_datalayout:
275    Lex.Lex();
276    if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
277        ParseStringConstant(Str))
278      return true;
279    M->setDataLayout(Str);
280    return false;
281  }
282}
283
284/// toplevelentity
285///   ::= 'deplibs' '=' '[' ']'
286///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
287bool LLParser::ParseDepLibs() {
288  assert(Lex.getKind() == lltok::kw_deplibs);
289  Lex.Lex();
290  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
291      ParseToken(lltok::lsquare, "expected '=' after deplibs"))
292    return true;
293
294  if (EatIfPresent(lltok::rsquare))
295    return false;
296
297  std::string Str;
298  if (ParseStringConstant(Str)) return true;
299  M->addLibrary(Str);
300
301  while (EatIfPresent(lltok::comma)) {
302    if (ParseStringConstant(Str)) return true;
303    M->addLibrary(Str);
304  }
305
306  return ParseToken(lltok::rsquare, "expected ']' at end of list");
307}
308
309/// ParseUnnamedType:
310///   ::= 'type' type
311///   ::= LocalVarID '=' 'type' type
312bool LLParser::ParseUnnamedType() {
313  unsigned TypeID = NumberedTypes.size();
314
315  // Handle the LocalVarID form.
316  if (Lex.getKind() == lltok::LocalVarID) {
317    if (Lex.getUIntVal() != TypeID)
318      return Error(Lex.getLoc(), "type expected to be numbered '%" +
319                   Twine(TypeID) + "'");
320    Lex.Lex(); // eat LocalVarID;
321
322    if (ParseToken(lltok::equal, "expected '=' after name"))
323      return true;
324  }
325
326  LocTy TypeLoc = Lex.getLoc();
327  if (ParseToken(lltok::kw_type, "expected 'type' after '='")) return true;
328
329  PATypeHolder Ty(Type::getVoidTy(Context));
330  if (ParseType(Ty)) return true;
331
332  // See if this type was previously referenced.
333  std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
334    FI = ForwardRefTypeIDs.find(TypeID);
335  if (FI != ForwardRefTypeIDs.end()) {
336    if (FI->second.first.get() == Ty)
337      return Error(TypeLoc, "self referential type is invalid");
338
339    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
340    Ty = FI->second.first.get();
341    ForwardRefTypeIDs.erase(FI);
342  }
343
344  NumberedTypes.push_back(Ty);
345
346  return false;
347}
348
349/// toplevelentity
350///   ::= LocalVar '=' 'type' type
351bool LLParser::ParseNamedType() {
352  std::string Name = Lex.getStrVal();
353  LocTy NameLoc = Lex.getLoc();
354  Lex.Lex();  // eat LocalVar.
355
356  PATypeHolder Ty(Type::getVoidTy(Context));
357
358  if (ParseToken(lltok::equal, "expected '=' after name") ||
359      ParseToken(lltok::kw_type, "expected 'type' after name") ||
360      ParseType(Ty))
361    return true;
362
363  // Set the type name, checking for conflicts as we do so.
364  bool AlreadyExists = M->addTypeName(Name, Ty);
365  if (!AlreadyExists) return false;
366
367  // See if this type is a forward reference.  We need to eagerly resolve
368  // types to allow recursive type redefinitions below.
369  std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator
370  FI = ForwardRefTypes.find(Name);
371  if (FI != ForwardRefTypes.end()) {
372    if (FI->second.first.get() == Ty)
373      return Error(NameLoc, "self referential type is invalid");
374
375    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
376    Ty = FI->second.first.get();
377    ForwardRefTypes.erase(FI);
378  }
379
380  // Inserting a name that is already defined, get the existing name.
381  const Type *Existing = M->getTypeByName(Name);
382  assert(Existing && "Conflict but no matching type?!");
383
384  // Otherwise, this is an attempt to redefine a type. That's okay if
385  // the redefinition is identical to the original.
386  // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
387  if (Existing == Ty) return false;
388
389  // Any other kind of (non-equivalent) redefinition is an error.
390  return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
391               Ty->getDescription() + "'");
392}
393
394
395/// toplevelentity
396///   ::= 'declare' FunctionHeader
397bool LLParser::ParseDeclare() {
398  assert(Lex.getKind() == lltok::kw_declare);
399  Lex.Lex();
400
401  Function *F;
402  return ParseFunctionHeader(F, false);
403}
404
405/// toplevelentity
406///   ::= 'define' FunctionHeader '{' ...
407bool LLParser::ParseDefine() {
408  assert(Lex.getKind() == lltok::kw_define);
409  Lex.Lex();
410
411  Function *F;
412  return ParseFunctionHeader(F, true) ||
413         ParseFunctionBody(*F);
414}
415
416/// ParseGlobalType
417///   ::= 'constant'
418///   ::= 'global'
419bool LLParser::ParseGlobalType(bool &IsConstant) {
420  if (Lex.getKind() == lltok::kw_constant)
421    IsConstant = true;
422  else if (Lex.getKind() == lltok::kw_global)
423    IsConstant = false;
424  else {
425    IsConstant = false;
426    return TokError("expected 'global' or 'constant'");
427  }
428  Lex.Lex();
429  return false;
430}
431
432/// ParseUnnamedGlobal:
433///   OptionalVisibility ALIAS ...
434///   OptionalLinkage OptionalVisibility ...   -> global variable
435///   GlobalID '=' OptionalVisibility ALIAS ...
436///   GlobalID '=' OptionalLinkage OptionalVisibility ...   -> global variable
437bool LLParser::ParseUnnamedGlobal() {
438  unsigned VarID = NumberedVals.size();
439  std::string Name;
440  LocTy NameLoc = Lex.getLoc();
441
442  // Handle the GlobalID form.
443  if (Lex.getKind() == lltok::GlobalID) {
444    if (Lex.getUIntVal() != VarID)
445      return Error(Lex.getLoc(), "variable expected to be numbered '%" +
446                   Twine(VarID) + "'");
447    Lex.Lex(); // eat GlobalID;
448
449    if (ParseToken(lltok::equal, "expected '=' after name"))
450      return true;
451  }
452
453  bool HasLinkage;
454  unsigned Linkage, Visibility;
455  if (ParseOptionalLinkage(Linkage, HasLinkage) ||
456      ParseOptionalVisibility(Visibility))
457    return true;
458
459  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
460    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
461  return ParseAlias(Name, NameLoc, Visibility);
462}
463
464/// ParseNamedGlobal:
465///   GlobalVar '=' OptionalVisibility ALIAS ...
466///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
467bool LLParser::ParseNamedGlobal() {
468  assert(Lex.getKind() == lltok::GlobalVar);
469  LocTy NameLoc = Lex.getLoc();
470  std::string Name = Lex.getStrVal();
471  Lex.Lex();
472
473  bool HasLinkage;
474  unsigned Linkage, Visibility;
475  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
476      ParseOptionalLinkage(Linkage, HasLinkage) ||
477      ParseOptionalVisibility(Visibility))
478    return true;
479
480  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
481    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
482  return ParseAlias(Name, NameLoc, Visibility);
483}
484
485// MDString:
486//   ::= '!' STRINGCONSTANT
487bool LLParser::ParseMDString(MDString *&Result) {
488  std::string Str;
489  if (ParseStringConstant(Str)) return true;
490  Result = MDString::get(Context, Str);
491  return false;
492}
493
494// MDNode:
495//   ::= '!' MDNodeNumber
496//
497/// This version of ParseMDNodeID returns the slot number and null in the case
498/// of a forward reference.
499bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) {
500  // !{ ..., !42, ... }
501  if (ParseUInt32(SlotNo)) return true;
502
503  // Check existing MDNode.
504  if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0)
505    Result = NumberedMetadata[SlotNo];
506  else
507    Result = 0;
508  return false;
509}
510
511bool LLParser::ParseMDNodeID(MDNode *&Result) {
512  // !{ ..., !42, ... }
513  unsigned MID = 0;
514  if (ParseMDNodeID(Result, MID)) return true;
515
516  // If not a forward reference, just return it now.
517  if (Result) return false;
518
519  // Otherwise, create MDNode forward reference.
520  MDNode *FwdNode = MDNode::getTemporary(Context, 0, 0);
521  ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
522
523  if (NumberedMetadata.size() <= MID)
524    NumberedMetadata.resize(MID+1);
525  NumberedMetadata[MID] = FwdNode;
526  Result = FwdNode;
527  return false;
528}
529
530/// ParseNamedMetadata:
531///   !foo = !{ !1, !2 }
532bool LLParser::ParseNamedMetadata() {
533  assert(Lex.getKind() == lltok::MetadataVar);
534  std::string Name = Lex.getStrVal();
535  Lex.Lex();
536
537  if (ParseToken(lltok::equal, "expected '=' here") ||
538      ParseToken(lltok::exclaim, "Expected '!' here") ||
539      ParseToken(lltok::lbrace, "Expected '{' here"))
540    return true;
541
542  NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
543  if (Lex.getKind() != lltok::rbrace)
544    do {
545      if (ParseToken(lltok::exclaim, "Expected '!' here"))
546        return true;
547
548      MDNode *N = 0;
549      if (ParseMDNodeID(N)) return true;
550      NMD->addOperand(N);
551    } while (EatIfPresent(lltok::comma));
552
553  if (ParseToken(lltok::rbrace, "expected end of metadata node"))
554    return true;
555
556  return false;
557}
558
559/// ParseStandaloneMetadata:
560///   !42 = !{...}
561bool LLParser::ParseStandaloneMetadata() {
562  assert(Lex.getKind() == lltok::exclaim);
563  Lex.Lex();
564  unsigned MetadataID = 0;
565
566  LocTy TyLoc;
567  PATypeHolder Ty(Type::getVoidTy(Context));
568  SmallVector<Value *, 16> Elts;
569  if (ParseUInt32(MetadataID) ||
570      ParseToken(lltok::equal, "expected '=' here") ||
571      ParseType(Ty, TyLoc) ||
572      ParseToken(lltok::exclaim, "Expected '!' here") ||
573      ParseToken(lltok::lbrace, "Expected '{' here") ||
574      ParseMDNodeVector(Elts, NULL) ||
575      ParseToken(lltok::rbrace, "expected end of metadata node"))
576    return true;
577
578  MDNode *Init = MDNode::get(Context, Elts.data(), Elts.size());
579
580  // See if this was forward referenced, if so, handle it.
581  std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
582    FI = ForwardRefMDNodes.find(MetadataID);
583  if (FI != ForwardRefMDNodes.end()) {
584    MDNode *Temp = FI->second.first;
585    Temp->replaceAllUsesWith(Init);
586    MDNode::deleteTemporary(Temp);
587    ForwardRefMDNodes.erase(FI);
588
589    assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
590  } else {
591    if (MetadataID >= NumberedMetadata.size())
592      NumberedMetadata.resize(MetadataID+1);
593
594    if (NumberedMetadata[MetadataID] != 0)
595      return TokError("Metadata id is already used");
596    NumberedMetadata[MetadataID] = Init;
597  }
598
599  return false;
600}
601
602/// ParseAlias:
603///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
604/// Aliasee
605///   ::= TypeAndValue
606///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
607///   ::= 'getelementptr' 'inbounds'? '(' ... ')'
608///
609/// Everything through visibility has already been parsed.
610///
611bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
612                          unsigned Visibility) {
613  assert(Lex.getKind() == lltok::kw_alias);
614  Lex.Lex();
615  unsigned Linkage;
616  LocTy LinkageLoc = Lex.getLoc();
617  if (ParseOptionalLinkage(Linkage))
618    return true;
619
620  if (Linkage != GlobalValue::ExternalLinkage &&
621      Linkage != GlobalValue::WeakAnyLinkage &&
622      Linkage != GlobalValue::WeakODRLinkage &&
623      Linkage != GlobalValue::InternalLinkage &&
624      Linkage != GlobalValue::PrivateLinkage &&
625      Linkage != GlobalValue::LinkerPrivateLinkage &&
626      Linkage != GlobalValue::LinkerPrivateWeakLinkage &&
627      Linkage != GlobalValue::LinkerPrivateWeakDefAutoLinkage)
628    return Error(LinkageLoc, "invalid linkage type for alias");
629
630  Constant *Aliasee;
631  LocTy AliaseeLoc = Lex.getLoc();
632  if (Lex.getKind() != lltok::kw_bitcast &&
633      Lex.getKind() != lltok::kw_getelementptr) {
634    if (ParseGlobalTypeAndValue(Aliasee)) return true;
635  } else {
636    // The bitcast dest type is not present, it is implied by the dest type.
637    ValID ID;
638    if (ParseValID(ID)) return true;
639    if (ID.Kind != ValID::t_Constant)
640      return Error(AliaseeLoc, "invalid aliasee");
641    Aliasee = ID.ConstantVal;
642  }
643
644  if (!Aliasee->getType()->isPointerTy())
645    return Error(AliaseeLoc, "alias must have pointer type");
646
647  // Okay, create the alias but do not insert it into the module yet.
648  GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
649                                    (GlobalValue::LinkageTypes)Linkage, Name,
650                                    Aliasee);
651  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
652
653  // See if this value already exists in the symbol table.  If so, it is either
654  // a redefinition or a definition of a forward reference.
655  if (GlobalValue *Val = M->getNamedValue(Name)) {
656    // See if this was a redefinition.  If so, there is no entry in
657    // ForwardRefVals.
658    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
659      I = ForwardRefVals.find(Name);
660    if (I == ForwardRefVals.end())
661      return Error(NameLoc, "redefinition of global named '@" + Name + "'");
662
663    // Otherwise, this was a definition of forward ref.  Verify that types
664    // agree.
665    if (Val->getType() != GA->getType())
666      return Error(NameLoc,
667              "forward reference and definition of alias have different types");
668
669    // If they agree, just RAUW the old value with the alias and remove the
670    // forward ref info.
671    Val->replaceAllUsesWith(GA);
672    Val->eraseFromParent();
673    ForwardRefVals.erase(I);
674  }
675
676  // Insert into the module, we know its name won't collide now.
677  M->getAliasList().push_back(GA);
678  assert(GA->getName() == Name && "Should not be a name conflict!");
679
680  return false;
681}
682
683/// ParseGlobal
684///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
685///       OptionalAddrSpace GlobalType Type Const
686///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
687///       OptionalAddrSpace GlobalType Type Const
688///
689/// Everything through visibility has been parsed already.
690///
691bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
692                           unsigned Linkage, bool HasLinkage,
693                           unsigned Visibility) {
694  unsigned AddrSpace;
695  bool ThreadLocal, IsConstant;
696  LocTy TyLoc;
697
698  PATypeHolder Ty(Type::getVoidTy(Context));
699  if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
700      ParseOptionalAddrSpace(AddrSpace) ||
701      ParseGlobalType(IsConstant) ||
702      ParseType(Ty, TyLoc))
703    return true;
704
705  // If the linkage is specified and is external, then no initializer is
706  // present.
707  Constant *Init = 0;
708  if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
709                      Linkage != GlobalValue::ExternalWeakLinkage &&
710                      Linkage != GlobalValue::ExternalLinkage)) {
711    if (ParseGlobalValue(Ty, Init))
712      return true;
713  }
714
715  if (Ty->isFunctionTy() || Ty->isLabelTy())
716    return Error(TyLoc, "invalid type for global variable");
717
718  GlobalVariable *GV = 0;
719
720  // See if the global was forward referenced, if so, use the global.
721  if (!Name.empty()) {
722    if (GlobalValue *GVal = M->getNamedValue(Name)) {
723      if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
724        return Error(NameLoc, "redefinition of global '@" + Name + "'");
725      GV = cast<GlobalVariable>(GVal);
726    }
727  } else {
728    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
729      I = ForwardRefValIDs.find(NumberedVals.size());
730    if (I != ForwardRefValIDs.end()) {
731      GV = cast<GlobalVariable>(I->second.first);
732      ForwardRefValIDs.erase(I);
733    }
734  }
735
736  if (GV == 0) {
737    GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
738                            Name, 0, false, AddrSpace);
739  } else {
740    if (GV->getType()->getElementType() != Ty)
741      return Error(TyLoc,
742            "forward reference and definition of global have different types");
743
744    // Move the forward-reference to the correct spot in the module.
745    M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
746  }
747
748  if (Name.empty())
749    NumberedVals.push_back(GV);
750
751  // Set the parsed properties on the global.
752  if (Init)
753    GV->setInitializer(Init);
754  GV->setConstant(IsConstant);
755  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
756  GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
757  GV->setThreadLocal(ThreadLocal);
758
759  // Parse attributes on the global.
760  while (Lex.getKind() == lltok::comma) {
761    Lex.Lex();
762
763    if (Lex.getKind() == lltok::kw_section) {
764      Lex.Lex();
765      GV->setSection(Lex.getStrVal());
766      if (ParseToken(lltok::StringConstant, "expected global section string"))
767        return true;
768    } else if (Lex.getKind() == lltok::kw_align) {
769      unsigned Alignment;
770      if (ParseOptionalAlignment(Alignment)) return true;
771      GV->setAlignment(Alignment);
772    } else {
773      TokError("unknown global variable property!");
774    }
775  }
776
777  return false;
778}
779
780
781//===----------------------------------------------------------------------===//
782// GlobalValue Reference/Resolution Routines.
783//===----------------------------------------------------------------------===//
784
785/// GetGlobalVal - Get a value with the specified name or ID, creating a
786/// forward reference record if needed.  This can return null if the value
787/// exists but does not have the right type.
788GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
789                                    LocTy Loc) {
790  const PointerType *PTy = dyn_cast<PointerType>(Ty);
791  if (PTy == 0) {
792    Error(Loc, "global variable reference must have pointer type");
793    return 0;
794  }
795
796  // Look this name up in the normal function symbol table.
797  GlobalValue *Val =
798    cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
799
800  // If this is a forward reference for the value, see if we already created a
801  // forward ref record.
802  if (Val == 0) {
803    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
804      I = ForwardRefVals.find(Name);
805    if (I != ForwardRefVals.end())
806      Val = I->second.first;
807  }
808
809  // If we have the value in the symbol table or fwd-ref table, return it.
810  if (Val) {
811    if (Val->getType() == Ty) return Val;
812    Error(Loc, "'@" + Name + "' defined with type '" +
813          Val->getType()->getDescription() + "'");
814    return 0;
815  }
816
817  // Otherwise, create a new forward reference for this value and remember it.
818  GlobalValue *FwdVal;
819  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
820    // Function types can return opaque but functions can't.
821    if (FT->getReturnType()->isOpaqueTy()) {
822      Error(Loc, "function may not return opaque type");
823      return 0;
824    }
825
826    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
827  } else {
828    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
829                                GlobalValue::ExternalWeakLinkage, 0, Name);
830  }
831
832  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
833  return FwdVal;
834}
835
836GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
837  const PointerType *PTy = dyn_cast<PointerType>(Ty);
838  if (PTy == 0) {
839    Error(Loc, "global variable reference must have pointer type");
840    return 0;
841  }
842
843  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
844
845  // If this is a forward reference for the value, see if we already created a
846  // forward ref record.
847  if (Val == 0) {
848    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
849      I = ForwardRefValIDs.find(ID);
850    if (I != ForwardRefValIDs.end())
851      Val = I->second.first;
852  }
853
854  // If we have the value in the symbol table or fwd-ref table, return it.
855  if (Val) {
856    if (Val->getType() == Ty) return Val;
857    Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
858          Val->getType()->getDescription() + "'");
859    return 0;
860  }
861
862  // Otherwise, create a new forward reference for this value and remember it.
863  GlobalValue *FwdVal;
864  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
865    // Function types can return opaque but functions can't.
866    if (FT->getReturnType()->isOpaqueTy()) {
867      Error(Loc, "function may not return opaque type");
868      return 0;
869    }
870    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
871  } else {
872    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
873                                GlobalValue::ExternalWeakLinkage, 0, "");
874  }
875
876  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
877  return FwdVal;
878}
879
880
881//===----------------------------------------------------------------------===//
882// Helper Routines.
883//===----------------------------------------------------------------------===//
884
885/// ParseToken - If the current token has the specified kind, eat it and return
886/// success.  Otherwise, emit the specified error and return failure.
887bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
888  if (Lex.getKind() != T)
889    return TokError(ErrMsg);
890  Lex.Lex();
891  return false;
892}
893
894/// ParseStringConstant
895///   ::= StringConstant
896bool LLParser::ParseStringConstant(std::string &Result) {
897  if (Lex.getKind() != lltok::StringConstant)
898    return TokError("expected string constant");
899  Result = Lex.getStrVal();
900  Lex.Lex();
901  return false;
902}
903
904/// ParseUInt32
905///   ::= uint32
906bool LLParser::ParseUInt32(unsigned &Val) {
907  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
908    return TokError("expected integer");
909  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
910  if (Val64 != unsigned(Val64))
911    return TokError("expected 32-bit integer (too large)");
912  Val = Val64;
913  Lex.Lex();
914  return false;
915}
916
917
918/// ParseOptionalAddrSpace
919///   := /*empty*/
920///   := 'addrspace' '(' uint32 ')'
921bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
922  AddrSpace = 0;
923  if (!EatIfPresent(lltok::kw_addrspace))
924    return false;
925  return ParseToken(lltok::lparen, "expected '(' in address space") ||
926         ParseUInt32(AddrSpace) ||
927         ParseToken(lltok::rparen, "expected ')' in address space");
928}
929
930/// ParseOptionalAttrs - Parse a potentially empty attribute list.  AttrKind
931/// indicates what kind of attribute list this is: 0: function arg, 1: result,
932/// 2: function attr.
933/// 3: function arg after value: FIXME: REMOVE IN LLVM 3.0
934bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
935  Attrs = Attribute::None;
936  LocTy AttrLoc = Lex.getLoc();
937
938  while (1) {
939    switch (Lex.getKind()) {
940    case lltok::kw_sext:
941    case lltok::kw_zext:
942      // Treat these as signext/zeroext if they occur in the argument list after
943      // the value, as in "call i8 @foo(i8 10 sext)".  If they occur before the
944      // value, as in "call i8 @foo(i8 sext (" then it is part of a constant
945      // expr.
946      // FIXME: REMOVE THIS IN LLVM 3.0
947      if (AttrKind == 3) {
948        if (Lex.getKind() == lltok::kw_sext)
949          Attrs |= Attribute::SExt;
950        else
951          Attrs |= Attribute::ZExt;
952        break;
953      }
954      // FALL THROUGH.
955    default:  // End of attributes.
956      if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
957        return Error(AttrLoc, "invalid use of function-only attribute");
958
959      if (AttrKind != 0 && AttrKind != 3 && (Attrs & Attribute::ParameterOnly))
960        return Error(AttrLoc, "invalid use of parameter-only attribute");
961
962      return false;
963    case lltok::kw_zeroext:         Attrs |= Attribute::ZExt; break;
964    case lltok::kw_signext:         Attrs |= Attribute::SExt; break;
965    case lltok::kw_inreg:           Attrs |= Attribute::InReg; break;
966    case lltok::kw_sret:            Attrs |= Attribute::StructRet; break;
967    case lltok::kw_noalias:         Attrs |= Attribute::NoAlias; break;
968    case lltok::kw_nocapture:       Attrs |= Attribute::NoCapture; break;
969    case lltok::kw_byval:           Attrs |= Attribute::ByVal; break;
970    case lltok::kw_nest:            Attrs |= Attribute::Nest; break;
971
972    case lltok::kw_noreturn:        Attrs |= Attribute::NoReturn; break;
973    case lltok::kw_nounwind:        Attrs |= Attribute::NoUnwind; break;
974    case lltok::kw_noinline:        Attrs |= Attribute::NoInline; break;
975    case lltok::kw_readnone:        Attrs |= Attribute::ReadNone; break;
976    case lltok::kw_readonly:        Attrs |= Attribute::ReadOnly; break;
977    case lltok::kw_inlinehint:      Attrs |= Attribute::InlineHint; break;
978    case lltok::kw_alwaysinline:    Attrs |= Attribute::AlwaysInline; break;
979    case lltok::kw_optsize:         Attrs |= Attribute::OptimizeForSize; break;
980    case lltok::kw_ssp:             Attrs |= Attribute::StackProtect; break;
981    case lltok::kw_sspreq:          Attrs |= Attribute::StackProtectReq; break;
982    case lltok::kw_noredzone:       Attrs |= Attribute::NoRedZone; break;
983    case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
984    case lltok::kw_naked:           Attrs |= Attribute::Naked; break;
985
986    case lltok::kw_alignstack: {
987      unsigned Alignment;
988      if (ParseOptionalStackAlignment(Alignment))
989        return true;
990      Attrs |= Attribute::constructStackAlignmentFromInt(Alignment);
991      continue;
992    }
993
994    case lltok::kw_align: {
995      unsigned Alignment;
996      if (ParseOptionalAlignment(Alignment))
997        return true;
998      Attrs |= Attribute::constructAlignmentFromInt(Alignment);
999      continue;
1000    }
1001
1002    }
1003    Lex.Lex();
1004  }
1005}
1006
1007/// ParseOptionalLinkage
1008///   ::= /*empty*/
1009///   ::= 'private'
1010///   ::= 'linker_private'
1011///   ::= 'linker_private_weak'
1012///   ::= 'linker_private_weak_def_auto'
1013///   ::= 'internal'
1014///   ::= 'weak'
1015///   ::= 'weak_odr'
1016///   ::= 'linkonce'
1017///   ::= 'linkonce_odr'
1018///   ::= 'available_externally'
1019///   ::= 'appending'
1020///   ::= 'dllexport'
1021///   ::= 'common'
1022///   ::= 'dllimport'
1023///   ::= 'extern_weak'
1024///   ::= 'external'
1025bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
1026  HasLinkage = false;
1027  switch (Lex.getKind()) {
1028  default:                       Res=GlobalValue::ExternalLinkage; return false;
1029  case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
1030  case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
1031  case lltok::kw_linker_private_weak:
1032    Res = GlobalValue::LinkerPrivateWeakLinkage;
1033    break;
1034  case lltok::kw_linker_private_weak_def_auto:
1035    Res = GlobalValue::LinkerPrivateWeakDefAutoLinkage;
1036    break;
1037  case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
1038  case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
1039  case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
1040  case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
1041  case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
1042  case lltok::kw_available_externally:
1043    Res = GlobalValue::AvailableExternallyLinkage;
1044    break;
1045  case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
1046  case lltok::kw_dllexport:      Res = GlobalValue::DLLExportLinkage;     break;
1047  case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
1048  case lltok::kw_dllimport:      Res = GlobalValue::DLLImportLinkage;     break;
1049  case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
1050  case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
1051  }
1052  Lex.Lex();
1053  HasLinkage = true;
1054  return false;
1055}
1056
1057/// ParseOptionalVisibility
1058///   ::= /*empty*/
1059///   ::= 'default'
1060///   ::= 'hidden'
1061///   ::= 'protected'
1062///
1063bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1064  switch (Lex.getKind()) {
1065  default:                  Res = GlobalValue::DefaultVisibility; return false;
1066  case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
1067  case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
1068  case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1069  }
1070  Lex.Lex();
1071  return false;
1072}
1073
1074/// ParseOptionalCallingConv
1075///   ::= /*empty*/
1076///   ::= 'ccc'
1077///   ::= 'fastcc'
1078///   ::= 'coldcc'
1079///   ::= 'x86_stdcallcc'
1080///   ::= 'x86_fastcallcc'
1081///   ::= 'x86_thiscallcc'
1082///   ::= 'arm_apcscc'
1083///   ::= 'arm_aapcscc'
1084///   ::= 'arm_aapcs_vfpcc'
1085///   ::= 'msp430_intrcc'
1086///   ::= 'ptx_kernel'
1087///   ::= 'ptx_device'
1088///   ::= 'cc' UINT
1089///
1090bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
1091  switch (Lex.getKind()) {
1092  default:                       CC = CallingConv::C; return false;
1093  case lltok::kw_ccc:            CC = CallingConv::C; break;
1094  case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1095  case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1096  case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1097  case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1098  case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1099  case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1100  case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1101  case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1102  case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1103  case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1104  case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1105  case lltok::kw_cc: {
1106      unsigned ArbitraryCC;
1107      Lex.Lex();
1108      if (ParseUInt32(ArbitraryCC)) {
1109        return true;
1110      } else
1111        CC = static_cast<CallingConv::ID>(ArbitraryCC);
1112        return false;
1113    }
1114    break;
1115  }
1116
1117  Lex.Lex();
1118  return false;
1119}
1120
1121/// ParseInstructionMetadata
1122///   ::= !dbg !42 (',' !dbg !57)*
1123bool LLParser::ParseInstructionMetadata(Instruction *Inst,
1124                                        PerFunctionState *PFS) {
1125  do {
1126    if (Lex.getKind() != lltok::MetadataVar)
1127      return TokError("expected metadata after comma");
1128
1129    std::string Name = Lex.getStrVal();
1130    unsigned MDK = M->getMDKindID(Name.c_str());
1131    Lex.Lex();
1132
1133    MDNode *Node;
1134    SMLoc Loc = Lex.getLoc();
1135
1136    if (ParseToken(lltok::exclaim, "expected '!' here"))
1137      return true;
1138
1139    // This code is similar to that of ParseMetadataValue, however it needs to
1140    // have special-case code for a forward reference; see the comments on
1141    // ForwardRefInstMetadata for details. Also, MDStrings are not supported
1142    // at the top level here.
1143    if (Lex.getKind() == lltok::lbrace) {
1144      ValID ID;
1145      if (ParseMetadataListValue(ID, PFS))
1146        return true;
1147      assert(ID.Kind == ValID::t_MDNode);
1148      Inst->setMetadata(MDK, ID.MDNodeVal);
1149    } else {
1150      unsigned NodeID = 0;
1151      if (ParseMDNodeID(Node, NodeID))
1152        return true;
1153      if (Node) {
1154        // If we got the node, add it to the instruction.
1155        Inst->setMetadata(MDK, Node);
1156      } else {
1157        MDRef R = { Loc, MDK, NodeID };
1158        // Otherwise, remember that this should be resolved later.
1159        ForwardRefInstMetadata[Inst].push_back(R);
1160      }
1161    }
1162
1163    // If this is the end of the list, we're done.
1164  } while (EatIfPresent(lltok::comma));
1165  return false;
1166}
1167
1168/// ParseOptionalAlignment
1169///   ::= /* empty */
1170///   ::= 'align' 4
1171bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1172  Alignment = 0;
1173  if (!EatIfPresent(lltok::kw_align))
1174    return false;
1175  LocTy AlignLoc = Lex.getLoc();
1176  if (ParseUInt32(Alignment)) return true;
1177  if (!isPowerOf2_32(Alignment))
1178    return Error(AlignLoc, "alignment is not a power of two");
1179  if (Alignment > Value::MaximumAlignment)
1180    return Error(AlignLoc, "huge alignments are not supported yet");
1181  return false;
1182}
1183
1184/// ParseOptionalCommaAlign
1185///   ::=
1186///   ::= ',' align 4
1187///
1188/// This returns with AteExtraComma set to true if it ate an excess comma at the
1189/// end.
1190bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1191                                       bool &AteExtraComma) {
1192  AteExtraComma = false;
1193  while (EatIfPresent(lltok::comma)) {
1194    // Metadata at the end is an early exit.
1195    if (Lex.getKind() == lltok::MetadataVar) {
1196      AteExtraComma = true;
1197      return false;
1198    }
1199
1200    if (Lex.getKind() != lltok::kw_align)
1201      return Error(Lex.getLoc(), "expected metadata or 'align'");
1202
1203    LocTy AlignLoc = Lex.getLoc();
1204    if (ParseOptionalAlignment(Alignment)) return true;
1205  }
1206
1207  return false;
1208}
1209
1210/// ParseOptionalStackAlignment
1211///   ::= /* empty */
1212///   ::= 'alignstack' '(' 4 ')'
1213bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1214  Alignment = 0;
1215  if (!EatIfPresent(lltok::kw_alignstack))
1216    return false;
1217  LocTy ParenLoc = Lex.getLoc();
1218  if (!EatIfPresent(lltok::lparen))
1219    return Error(ParenLoc, "expected '('");
1220  LocTy AlignLoc = Lex.getLoc();
1221  if (ParseUInt32(Alignment)) return true;
1222  ParenLoc = Lex.getLoc();
1223  if (!EatIfPresent(lltok::rparen))
1224    return Error(ParenLoc, "expected ')'");
1225  if (!isPowerOf2_32(Alignment))
1226    return Error(AlignLoc, "stack alignment is not a power of two");
1227  return false;
1228}
1229
1230/// ParseIndexList - This parses the index list for an insert/extractvalue
1231/// instruction.  This sets AteExtraComma in the case where we eat an extra
1232/// comma at the end of the line and find that it is followed by metadata.
1233/// Clients that don't allow metadata can call the version of this function that
1234/// only takes one argument.
1235///
1236/// ParseIndexList
1237///    ::=  (',' uint32)+
1238///
1239bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1240                              bool &AteExtraComma) {
1241  AteExtraComma = false;
1242
1243  if (Lex.getKind() != lltok::comma)
1244    return TokError("expected ',' as start of index list");
1245
1246  while (EatIfPresent(lltok::comma)) {
1247    if (Lex.getKind() == lltok::MetadataVar) {
1248      AteExtraComma = true;
1249      return false;
1250    }
1251    unsigned Idx = 0;
1252    if (ParseUInt32(Idx)) return true;
1253    Indices.push_back(Idx);
1254  }
1255
1256  return false;
1257}
1258
1259//===----------------------------------------------------------------------===//
1260// Type Parsing.
1261//===----------------------------------------------------------------------===//
1262
1263/// ParseType - Parse and resolve a full type.
1264bool LLParser::ParseType(PATypeHolder &Result, bool AllowVoid) {
1265  LocTy TypeLoc = Lex.getLoc();
1266  if (ParseTypeRec(Result)) return true;
1267
1268  // Verify no unresolved uprefs.
1269  if (!UpRefs.empty())
1270    return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
1271
1272  if (!AllowVoid && Result.get()->isVoidTy())
1273    return Error(TypeLoc, "void type only allowed for function results");
1274
1275  return false;
1276}
1277
1278/// HandleUpRefs - Every time we finish a new layer of types, this function is
1279/// called.  It loops through the UpRefs vector, which is a list of the
1280/// currently active types.  For each type, if the up-reference is contained in
1281/// the newly completed type, we decrement the level count.  When the level
1282/// count reaches zero, the up-referenced type is the type that is passed in:
1283/// thus we can complete the cycle.
1284///
1285PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
1286  // If Ty isn't abstract, or if there are no up-references in it, then there is
1287  // nothing to resolve here.
1288  if (!ty->isAbstract() || UpRefs.empty()) return ty;
1289
1290  PATypeHolder Ty(ty);
1291#if 0
1292  dbgs() << "Type '" << Ty->getDescription()
1293         << "' newly formed.  Resolving upreferences.\n"
1294         << UpRefs.size() << " upreferences active!\n";
1295#endif
1296
1297  // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
1298  // to zero), we resolve them all together before we resolve them to Ty.  At
1299  // the end of the loop, if there is anything to resolve to Ty, it will be in
1300  // this variable.
1301  OpaqueType *TypeToResolve = 0;
1302
1303  for (unsigned i = 0; i != UpRefs.size(); ++i) {
1304    // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
1305    bool ContainsType =
1306      std::find(Ty->subtype_begin(), Ty->subtype_end(),
1307                UpRefs[i].LastContainedTy) != Ty->subtype_end();
1308
1309#if 0
1310    dbgs() << "  UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
1311           << UpRefs[i].LastContainedTy->getDescription() << ") = "
1312           << (ContainsType ? "true" : "false")
1313           << " level=" << UpRefs[i].NestingLevel << "\n";
1314#endif
1315    if (!ContainsType)
1316      continue;
1317
1318    // Decrement level of upreference
1319    unsigned Level = --UpRefs[i].NestingLevel;
1320    UpRefs[i].LastContainedTy = Ty;
1321
1322    // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
1323    if (Level != 0)
1324      continue;
1325
1326#if 0
1327    dbgs() << "  * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
1328#endif
1329    if (!TypeToResolve)
1330      TypeToResolve = UpRefs[i].UpRefTy;
1331    else
1332      UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
1333    UpRefs.erase(UpRefs.begin()+i);     // Remove from upreference list.
1334    --i;                                // Do not skip the next element.
1335  }
1336
1337  if (TypeToResolve)
1338    TypeToResolve->refineAbstractTypeTo(Ty);
1339
1340  return Ty;
1341}
1342
1343
1344/// ParseTypeRec - The recursive function used to process the internal
1345/// implementation details of types.
1346bool LLParser::ParseTypeRec(PATypeHolder &Result) {
1347  switch (Lex.getKind()) {
1348  default:
1349    return TokError("expected type");
1350  case lltok::Type:
1351    // TypeRec ::= 'float' | 'void' (etc)
1352    Result = Lex.getTyVal();
1353    Lex.Lex();
1354    break;
1355  case lltok::kw_opaque:
1356    // TypeRec ::= 'opaque'
1357    Result = OpaqueType::get(Context);
1358    Lex.Lex();
1359    break;
1360  case lltok::lbrace:
1361    // TypeRec ::= '{' ... '}'
1362    if (ParseStructType(Result, false))
1363      return true;
1364    break;
1365  case lltok::lsquare:
1366    // TypeRec ::= '[' ... ']'
1367    Lex.Lex(); // eat the lsquare.
1368    if (ParseArrayVectorType(Result, false))
1369      return true;
1370    break;
1371  case lltok::less: // Either vector or packed struct.
1372    // TypeRec ::= '<' ... '>'
1373    Lex.Lex();
1374    if (Lex.getKind() == lltok::lbrace) {
1375      if (ParseStructType(Result, true) ||
1376          ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1377        return true;
1378    } else if (ParseArrayVectorType(Result, true))
1379      return true;
1380    break;
1381  case lltok::LocalVar:
1382  case lltok::StringConstant:  // FIXME: REMOVE IN LLVM 3.0
1383    // TypeRec ::= %foo
1384    if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
1385      Result = T;
1386    } else {
1387      Result = OpaqueType::get(Context);
1388      ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
1389                                            std::make_pair(Result,
1390                                                           Lex.getLoc())));
1391      M->addTypeName(Lex.getStrVal(), Result.get());
1392    }
1393    Lex.Lex();
1394    break;
1395
1396  case lltok::LocalVarID:
1397    // TypeRec ::= %4
1398    if (Lex.getUIntVal() < NumberedTypes.size())
1399      Result = NumberedTypes[Lex.getUIntVal()];
1400    else {
1401      std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
1402        I = ForwardRefTypeIDs.find(Lex.getUIntVal());
1403      if (I != ForwardRefTypeIDs.end())
1404        Result = I->second.first;
1405      else {
1406        Result = OpaqueType::get(Context);
1407        ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
1408                                                std::make_pair(Result,
1409                                                               Lex.getLoc())));
1410      }
1411    }
1412    Lex.Lex();
1413    break;
1414  case lltok::backslash: {
1415    // TypeRec ::= '\' 4
1416    Lex.Lex();
1417    unsigned Val;
1418    if (ParseUInt32(Val)) return true;
1419    OpaqueType *OT = OpaqueType::get(Context); //Use temporary placeholder.
1420    UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
1421    Result = OT;
1422    break;
1423  }
1424  }
1425
1426  // Parse the type suffixes.
1427  while (1) {
1428    switch (Lex.getKind()) {
1429    // End of type.
1430    default: return false;
1431
1432    // TypeRec ::= TypeRec '*'
1433    case lltok::star:
1434      if (Result.get()->isLabelTy())
1435        return TokError("basic block pointers are invalid");
1436      if (Result.get()->isVoidTy())
1437        return TokError("pointers to void are invalid; use i8* instead");
1438      if (!PointerType::isValidElementType(Result.get()))
1439        return TokError("pointer to this type is invalid");
1440      Result = HandleUpRefs(PointerType::getUnqual(Result.get()));
1441      Lex.Lex();
1442      break;
1443
1444    // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1445    case lltok::kw_addrspace: {
1446      if (Result.get()->isLabelTy())
1447        return TokError("basic block pointers are invalid");
1448      if (Result.get()->isVoidTy())
1449        return TokError("pointers to void are invalid; use i8* instead");
1450      if (!PointerType::isValidElementType(Result.get()))
1451        return TokError("pointer to this type is invalid");
1452      unsigned AddrSpace;
1453      if (ParseOptionalAddrSpace(AddrSpace) ||
1454          ParseToken(lltok::star, "expected '*' in address space"))
1455        return true;
1456
1457      Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace));
1458      break;
1459    }
1460
1461    /// Types '(' ArgTypeListI ')' OptFuncAttrs
1462    case lltok::lparen:
1463      if (ParseFunctionType(Result))
1464        return true;
1465      break;
1466    }
1467  }
1468}
1469
1470/// ParseParameterList
1471///    ::= '(' ')'
1472///    ::= '(' Arg (',' Arg)* ')'
1473///  Arg
1474///    ::= Type OptionalAttributes Value OptionalAttributes
1475bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1476                                  PerFunctionState &PFS) {
1477  if (ParseToken(lltok::lparen, "expected '(' in call"))
1478    return true;
1479
1480  while (Lex.getKind() != lltok::rparen) {
1481    // If this isn't the first argument, we need a comma.
1482    if (!ArgList.empty() &&
1483        ParseToken(lltok::comma, "expected ',' in argument list"))
1484      return true;
1485
1486    // Parse the argument.
1487    LocTy ArgLoc;
1488    PATypeHolder ArgTy(Type::getVoidTy(Context));
1489    unsigned ArgAttrs1 = Attribute::None;
1490    unsigned ArgAttrs2 = Attribute::None;
1491    Value *V;
1492    if (ParseType(ArgTy, ArgLoc))
1493      return true;
1494
1495    // Otherwise, handle normal operands.
1496    if (ParseOptionalAttrs(ArgAttrs1, 0) ||
1497        ParseValue(ArgTy, V, PFS) ||
1498        // FIXME: Should not allow attributes after the argument, remove this
1499        // in LLVM 3.0.
1500        ParseOptionalAttrs(ArgAttrs2, 3))
1501      return true;
1502    ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1503  }
1504
1505  Lex.Lex();  // Lex the ')'.
1506  return false;
1507}
1508
1509
1510
1511/// ParseArgumentList - Parse the argument list for a function type or function
1512/// prototype.  If 'inType' is true then we are parsing a FunctionType.
1513///   ::= '(' ArgTypeListI ')'
1514/// ArgTypeListI
1515///   ::= /*empty*/
1516///   ::= '...'
1517///   ::= ArgTypeList ',' '...'
1518///   ::= ArgType (',' ArgType)*
1519///
1520bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
1521                                 bool &isVarArg, bool inType) {
1522  isVarArg = false;
1523  assert(Lex.getKind() == lltok::lparen);
1524  Lex.Lex(); // eat the (.
1525
1526  if (Lex.getKind() == lltok::rparen) {
1527    // empty
1528  } else if (Lex.getKind() == lltok::dotdotdot) {
1529    isVarArg = true;
1530    Lex.Lex();
1531  } else {
1532    LocTy TypeLoc = Lex.getLoc();
1533    PATypeHolder ArgTy(Type::getVoidTy(Context));
1534    unsigned Attrs;
1535    std::string Name;
1536
1537    // If we're parsing a type, use ParseTypeRec, because we allow recursive
1538    // types (such as a function returning a pointer to itself).  If parsing a
1539    // function prototype, we require fully resolved types.
1540    if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1541        ParseOptionalAttrs(Attrs, 0)) return true;
1542
1543    if (ArgTy->isVoidTy())
1544      return Error(TypeLoc, "argument can not have void type");
1545
1546    if (Lex.getKind() == lltok::LocalVar ||
1547        Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1548      Name = Lex.getStrVal();
1549      Lex.Lex();
1550    }
1551
1552    if (!FunctionType::isValidArgumentType(ArgTy))
1553      return Error(TypeLoc, "invalid type for function argument");
1554
1555    ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1556
1557    while (EatIfPresent(lltok::comma)) {
1558      // Handle ... at end of arg list.
1559      if (EatIfPresent(lltok::dotdotdot)) {
1560        isVarArg = true;
1561        break;
1562      }
1563
1564      // Otherwise must be an argument type.
1565      TypeLoc = Lex.getLoc();
1566      if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1567          ParseOptionalAttrs(Attrs, 0)) return true;
1568
1569      if (ArgTy->isVoidTy())
1570        return Error(TypeLoc, "argument can not have void type");
1571
1572      if (Lex.getKind() == lltok::LocalVar ||
1573          Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1574        Name = Lex.getStrVal();
1575        Lex.Lex();
1576      } else {
1577        Name = "";
1578      }
1579
1580      if (!ArgTy->isFirstClassType() && !ArgTy->isOpaqueTy())
1581        return Error(TypeLoc, "invalid type for function argument");
1582
1583      ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1584    }
1585  }
1586
1587  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1588}
1589
1590/// ParseFunctionType
1591///  ::= Type ArgumentList OptionalAttrs
1592bool LLParser::ParseFunctionType(PATypeHolder &Result) {
1593  assert(Lex.getKind() == lltok::lparen);
1594
1595  if (!FunctionType::isValidReturnType(Result))
1596    return TokError("invalid function return type");
1597
1598  std::vector<ArgInfo> ArgList;
1599  bool isVarArg;
1600  unsigned Attrs;
1601  if (ParseArgumentList(ArgList, isVarArg, true) ||
1602      // FIXME: Allow, but ignore attributes on function types!
1603      // FIXME: Remove in LLVM 3.0
1604      ParseOptionalAttrs(Attrs, 2))
1605    return true;
1606
1607  // Reject names on the arguments lists.
1608  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1609    if (!ArgList[i].Name.empty())
1610      return Error(ArgList[i].Loc, "argument name invalid in function type");
1611    if (!ArgList[i].Attrs != 0) {
1612      // Allow but ignore attributes on function types; this permits
1613      // auto-upgrade.
1614      // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1615    }
1616  }
1617
1618  std::vector<const Type*> ArgListTy;
1619  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1620    ArgListTy.push_back(ArgList[i].Type);
1621
1622  Result = HandleUpRefs(FunctionType::get(Result.get(),
1623                                                ArgListTy, isVarArg));
1624  return false;
1625}
1626
1627/// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1628///   TypeRec
1629///     ::= '{' '}'
1630///     ::= '{' TypeRec (',' TypeRec)* '}'
1631///     ::= '<' '{' '}' '>'
1632///     ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1633bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
1634  assert(Lex.getKind() == lltok::lbrace);
1635  Lex.Lex(); // Consume the '{'
1636
1637  if (EatIfPresent(lltok::rbrace)) {
1638    Result = StructType::get(Context, Packed);
1639    return false;
1640  }
1641
1642  std::vector<PATypeHolder> ParamsList;
1643  LocTy EltTyLoc = Lex.getLoc();
1644  if (ParseTypeRec(Result)) return true;
1645  ParamsList.push_back(Result);
1646
1647  if (Result->isVoidTy())
1648    return Error(EltTyLoc, "struct element can not have void type");
1649  if (!StructType::isValidElementType(Result))
1650    return Error(EltTyLoc, "invalid element type for struct");
1651
1652  while (EatIfPresent(lltok::comma)) {
1653    EltTyLoc = Lex.getLoc();
1654    if (ParseTypeRec(Result)) return true;
1655
1656    if (Result->isVoidTy())
1657      return Error(EltTyLoc, "struct element can not have void type");
1658    if (!StructType::isValidElementType(Result))
1659      return Error(EltTyLoc, "invalid element type for struct");
1660
1661    ParamsList.push_back(Result);
1662  }
1663
1664  if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
1665    return true;
1666
1667  std::vector<const Type*> ParamsListTy;
1668  for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1669    ParamsListTy.push_back(ParamsList[i].get());
1670  Result = HandleUpRefs(StructType::get(Context, ParamsListTy, Packed));
1671  return false;
1672}
1673
1674/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1675/// token has already been consumed.
1676///   TypeRec
1677///     ::= '[' APSINTVAL 'x' Types ']'
1678///     ::= '<' APSINTVAL 'x' Types '>'
1679bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
1680  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1681      Lex.getAPSIntVal().getBitWidth() > 64)
1682    return TokError("expected number in address space");
1683
1684  LocTy SizeLoc = Lex.getLoc();
1685  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1686  Lex.Lex();
1687
1688  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1689      return true;
1690
1691  LocTy TypeLoc = Lex.getLoc();
1692  PATypeHolder EltTy(Type::getVoidTy(Context));
1693  if (ParseTypeRec(EltTy)) return true;
1694
1695  if (EltTy->isVoidTy())
1696    return Error(TypeLoc, "array and vector element type cannot be void");
1697
1698  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1699                 "expected end of sequential type"))
1700    return true;
1701
1702  if (isVector) {
1703    if (Size == 0)
1704      return Error(SizeLoc, "zero element vector is illegal");
1705    if ((unsigned)Size != Size)
1706      return Error(SizeLoc, "size too large for vector");
1707    if (!VectorType::isValidElementType(EltTy))
1708      return Error(TypeLoc, "vector element type must be fp or integer");
1709    Result = VectorType::get(EltTy, unsigned(Size));
1710  } else {
1711    if (!ArrayType::isValidElementType(EltTy))
1712      return Error(TypeLoc, "invalid array element type");
1713    Result = HandleUpRefs(ArrayType::get(EltTy, Size));
1714  }
1715  return false;
1716}
1717
1718//===----------------------------------------------------------------------===//
1719// Function Semantic Analysis.
1720//===----------------------------------------------------------------------===//
1721
1722LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
1723                                             int functionNumber)
1724  : P(p), F(f), FunctionNumber(functionNumber) {
1725
1726  // Insert unnamed arguments into the NumberedVals list.
1727  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1728       AI != E; ++AI)
1729    if (!AI->hasName())
1730      NumberedVals.push_back(AI);
1731}
1732
1733LLParser::PerFunctionState::~PerFunctionState() {
1734  // If there were any forward referenced non-basicblock values, delete them.
1735  for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1736       I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1737    if (!isa<BasicBlock>(I->second.first)) {
1738      I->second.first->replaceAllUsesWith(
1739                           UndefValue::get(I->second.first->getType()));
1740      delete I->second.first;
1741      I->second.first = 0;
1742    }
1743
1744  for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1745       I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1746    if (!isa<BasicBlock>(I->second.first)) {
1747      I->second.first->replaceAllUsesWith(
1748                           UndefValue::get(I->second.first->getType()));
1749      delete I->second.first;
1750      I->second.first = 0;
1751    }
1752}
1753
1754bool LLParser::PerFunctionState::FinishFunction() {
1755  // Check to see if someone took the address of labels in this block.
1756  if (!P.ForwardRefBlockAddresses.empty()) {
1757    ValID FunctionID;
1758    if (!F.getName().empty()) {
1759      FunctionID.Kind = ValID::t_GlobalName;
1760      FunctionID.StrVal = F.getName();
1761    } else {
1762      FunctionID.Kind = ValID::t_GlobalID;
1763      FunctionID.UIntVal = FunctionNumber;
1764    }
1765
1766    std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
1767      FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
1768    if (FRBAI != P.ForwardRefBlockAddresses.end()) {
1769      // Resolve all these references.
1770      if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
1771        return true;
1772
1773      P.ForwardRefBlockAddresses.erase(FRBAI);
1774    }
1775  }
1776
1777  if (!ForwardRefVals.empty())
1778    return P.Error(ForwardRefVals.begin()->second.second,
1779                   "use of undefined value '%" + ForwardRefVals.begin()->first +
1780                   "'");
1781  if (!ForwardRefValIDs.empty())
1782    return P.Error(ForwardRefValIDs.begin()->second.second,
1783                   "use of undefined value '%" +
1784                   Twine(ForwardRefValIDs.begin()->first) + "'");
1785  return false;
1786}
1787
1788
1789/// GetVal - Get a value with the specified name or ID, creating a
1790/// forward reference record if needed.  This can return null if the value
1791/// exists but does not have the right type.
1792Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1793                                          const Type *Ty, LocTy Loc) {
1794  // Look this name up in the normal function symbol table.
1795  Value *Val = F.getValueSymbolTable().lookup(Name);
1796
1797  // If this is a forward reference for the value, see if we already created a
1798  // forward ref record.
1799  if (Val == 0) {
1800    std::map<std::string, std::pair<Value*, LocTy> >::iterator
1801      I = ForwardRefVals.find(Name);
1802    if (I != ForwardRefVals.end())
1803      Val = I->second.first;
1804  }
1805
1806  // If we have the value in the symbol table or fwd-ref table, return it.
1807  if (Val) {
1808    if (Val->getType() == Ty) return Val;
1809    if (Ty->isLabelTy())
1810      P.Error(Loc, "'%" + Name + "' is not a basic block");
1811    else
1812      P.Error(Loc, "'%" + Name + "' defined with type '" +
1813              Val->getType()->getDescription() + "'");
1814    return 0;
1815  }
1816
1817  // Don't make placeholders with invalid type.
1818  if (!Ty->isFirstClassType() && !Ty->isOpaqueTy() && !Ty->isLabelTy()) {
1819    P.Error(Loc, "invalid use of a non-first-class type");
1820    return 0;
1821  }
1822
1823  // Otherwise, create a new forward reference for this value and remember it.
1824  Value *FwdVal;
1825  if (Ty->isLabelTy())
1826    FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
1827  else
1828    FwdVal = new Argument(Ty, Name);
1829
1830  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1831  return FwdVal;
1832}
1833
1834Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
1835                                          LocTy Loc) {
1836  // Look this name up in the normal function symbol table.
1837  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1838
1839  // If this is a forward reference for the value, see if we already created a
1840  // forward ref record.
1841  if (Val == 0) {
1842    std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1843      I = ForwardRefValIDs.find(ID);
1844    if (I != ForwardRefValIDs.end())
1845      Val = I->second.first;
1846  }
1847
1848  // If we have the value in the symbol table or fwd-ref table, return it.
1849  if (Val) {
1850    if (Val->getType() == Ty) return Val;
1851    if (Ty->isLabelTy())
1852      P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
1853    else
1854      P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
1855              Val->getType()->getDescription() + "'");
1856    return 0;
1857  }
1858
1859  if (!Ty->isFirstClassType() && !Ty->isOpaqueTy() && !Ty->isLabelTy()) {
1860    P.Error(Loc, "invalid use of a non-first-class type");
1861    return 0;
1862  }
1863
1864  // Otherwise, create a new forward reference for this value and remember it.
1865  Value *FwdVal;
1866  if (Ty->isLabelTy())
1867    FwdVal = BasicBlock::Create(F.getContext(), "", &F);
1868  else
1869    FwdVal = new Argument(Ty);
1870
1871  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1872  return FwdVal;
1873}
1874
1875/// SetInstName - After an instruction is parsed and inserted into its
1876/// basic block, this installs its name.
1877bool LLParser::PerFunctionState::SetInstName(int NameID,
1878                                             const std::string &NameStr,
1879                                             LocTy NameLoc, Instruction *Inst) {
1880  // If this instruction has void type, it cannot have a name or ID specified.
1881  if (Inst->getType()->isVoidTy()) {
1882    if (NameID != -1 || !NameStr.empty())
1883      return P.Error(NameLoc, "instructions returning void cannot have a name");
1884    return false;
1885  }
1886
1887  // If this was a numbered instruction, verify that the instruction is the
1888  // expected value and resolve any forward references.
1889  if (NameStr.empty()) {
1890    // If neither a name nor an ID was specified, just use the next ID.
1891    if (NameID == -1)
1892      NameID = NumberedVals.size();
1893
1894    if (unsigned(NameID) != NumberedVals.size())
1895      return P.Error(NameLoc, "instruction expected to be numbered '%" +
1896                     Twine(NumberedVals.size()) + "'");
1897
1898    std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1899      ForwardRefValIDs.find(NameID);
1900    if (FI != ForwardRefValIDs.end()) {
1901      if (FI->second.first->getType() != Inst->getType())
1902        return P.Error(NameLoc, "instruction forward referenced with type '" +
1903                       FI->second.first->getType()->getDescription() + "'");
1904      FI->second.first->replaceAllUsesWith(Inst);
1905      delete FI->second.first;
1906      ForwardRefValIDs.erase(FI);
1907    }
1908
1909    NumberedVals.push_back(Inst);
1910    return false;
1911  }
1912
1913  // Otherwise, the instruction had a name.  Resolve forward refs and set it.
1914  std::map<std::string, std::pair<Value*, LocTy> >::iterator
1915    FI = ForwardRefVals.find(NameStr);
1916  if (FI != ForwardRefVals.end()) {
1917    if (FI->second.first->getType() != Inst->getType())
1918      return P.Error(NameLoc, "instruction forward referenced with type '" +
1919                     FI->second.first->getType()->getDescription() + "'");
1920    FI->second.first->replaceAllUsesWith(Inst);
1921    delete FI->second.first;
1922    ForwardRefVals.erase(FI);
1923  }
1924
1925  // Set the name on the instruction.
1926  Inst->setName(NameStr);
1927
1928  if (Inst->getName() != NameStr)
1929    return P.Error(NameLoc, "multiple definition of local value named '" +
1930                   NameStr + "'");
1931  return false;
1932}
1933
1934/// GetBB - Get a basic block with the specified name or ID, creating a
1935/// forward reference record if needed.
1936BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1937                                              LocTy Loc) {
1938  return cast_or_null<BasicBlock>(GetVal(Name,
1939                                        Type::getLabelTy(F.getContext()), Loc));
1940}
1941
1942BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1943  return cast_or_null<BasicBlock>(GetVal(ID,
1944                                        Type::getLabelTy(F.getContext()), Loc));
1945}
1946
1947/// DefineBB - Define the specified basic block, which is either named or
1948/// unnamed.  If there is an error, this returns null otherwise it returns
1949/// the block being defined.
1950BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1951                                                 LocTy Loc) {
1952  BasicBlock *BB;
1953  if (Name.empty())
1954    BB = GetBB(NumberedVals.size(), Loc);
1955  else
1956    BB = GetBB(Name, Loc);
1957  if (BB == 0) return 0; // Already diagnosed error.
1958
1959  // Move the block to the end of the function.  Forward ref'd blocks are
1960  // inserted wherever they happen to be referenced.
1961  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1962
1963  // Remove the block from forward ref sets.
1964  if (Name.empty()) {
1965    ForwardRefValIDs.erase(NumberedVals.size());
1966    NumberedVals.push_back(BB);
1967  } else {
1968    // BB forward references are already in the function symbol table.
1969    ForwardRefVals.erase(Name);
1970  }
1971
1972  return BB;
1973}
1974
1975//===----------------------------------------------------------------------===//
1976// Constants.
1977//===----------------------------------------------------------------------===//
1978
1979/// ParseValID - Parse an abstract value that doesn't necessarily have a
1980/// type implied.  For example, if we parse "4" we don't know what integer type
1981/// it has.  The value will later be combined with its type and checked for
1982/// sanity.  PFS is used to convert function-local operands of metadata (since
1983/// metadata operands are not just parsed here but also converted to values).
1984/// PFS can be null when we are not parsing metadata values inside a function.
1985bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
1986  ID.Loc = Lex.getLoc();
1987  switch (Lex.getKind()) {
1988  default: return TokError("expected value token");
1989  case lltok::GlobalID:  // @42
1990    ID.UIntVal = Lex.getUIntVal();
1991    ID.Kind = ValID::t_GlobalID;
1992    break;
1993  case lltok::GlobalVar:  // @foo
1994    ID.StrVal = Lex.getStrVal();
1995    ID.Kind = ValID::t_GlobalName;
1996    break;
1997  case lltok::LocalVarID:  // %42
1998    ID.UIntVal = Lex.getUIntVal();
1999    ID.Kind = ValID::t_LocalID;
2000    break;
2001  case lltok::LocalVar:  // %foo
2002  case lltok::StringConstant:  // "foo" - FIXME: REMOVE IN LLVM 3.0
2003    ID.StrVal = Lex.getStrVal();
2004    ID.Kind = ValID::t_LocalName;
2005    break;
2006  case lltok::exclaim:   // !42, !{...}, or !"foo"
2007    return ParseMetadataValue(ID, PFS);
2008  case lltok::APSInt:
2009    ID.APSIntVal = Lex.getAPSIntVal();
2010    ID.Kind = ValID::t_APSInt;
2011    break;
2012  case lltok::APFloat:
2013    ID.APFloatVal = Lex.getAPFloatVal();
2014    ID.Kind = ValID::t_APFloat;
2015    break;
2016  case lltok::kw_true:
2017    ID.ConstantVal = ConstantInt::getTrue(Context);
2018    ID.Kind = ValID::t_Constant;
2019    break;
2020  case lltok::kw_false:
2021    ID.ConstantVal = ConstantInt::getFalse(Context);
2022    ID.Kind = ValID::t_Constant;
2023    break;
2024  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2025  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2026  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2027
2028  case lltok::lbrace: {
2029    // ValID ::= '{' ConstVector '}'
2030    Lex.Lex();
2031    SmallVector<Constant*, 16> Elts;
2032    if (ParseGlobalValueVector(Elts) ||
2033        ParseToken(lltok::rbrace, "expected end of struct constant"))
2034      return true;
2035
2036    ID.ConstantVal = ConstantStruct::get(Context, Elts.data(),
2037                                         Elts.size(), false);
2038    ID.Kind = ValID::t_Constant;
2039    return false;
2040  }
2041  case lltok::less: {
2042    // ValID ::= '<' ConstVector '>'         --> Vector.
2043    // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2044    Lex.Lex();
2045    bool isPackedStruct = EatIfPresent(lltok::lbrace);
2046
2047    SmallVector<Constant*, 16> Elts;
2048    LocTy FirstEltLoc = Lex.getLoc();
2049    if (ParseGlobalValueVector(Elts) ||
2050        (isPackedStruct &&
2051         ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2052        ParseToken(lltok::greater, "expected end of constant"))
2053      return true;
2054
2055    if (isPackedStruct) {
2056      ID.ConstantVal =
2057        ConstantStruct::get(Context, Elts.data(), Elts.size(), true);
2058      ID.Kind = ValID::t_Constant;
2059      return false;
2060    }
2061
2062    if (Elts.empty())
2063      return Error(ID.Loc, "constant vector must not be empty");
2064
2065    if (!Elts[0]->getType()->isIntegerTy() &&
2066        !Elts[0]->getType()->isFloatingPointTy())
2067      return Error(FirstEltLoc,
2068                   "vector elements must have integer or floating point type");
2069
2070    // Verify that all the vector elements have the same type.
2071    for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2072      if (Elts[i]->getType() != Elts[0]->getType())
2073        return Error(FirstEltLoc,
2074                     "vector element #" + Twine(i) +
2075                    " is not of type '" + Elts[0]->getType()->getDescription());
2076
2077    ID.ConstantVal = ConstantVector::get(Elts.data(), Elts.size());
2078    ID.Kind = ValID::t_Constant;
2079    return false;
2080  }
2081  case lltok::lsquare: {   // Array Constant
2082    Lex.Lex();
2083    SmallVector<Constant*, 16> Elts;
2084    LocTy FirstEltLoc = Lex.getLoc();
2085    if (ParseGlobalValueVector(Elts) ||
2086        ParseToken(lltok::rsquare, "expected end of array constant"))
2087      return true;
2088
2089    // Handle empty element.
2090    if (Elts.empty()) {
2091      // Use undef instead of an array because it's inconvenient to determine
2092      // the element type at this point, there being no elements to examine.
2093      ID.Kind = ValID::t_EmptyArray;
2094      return false;
2095    }
2096
2097    if (!Elts[0]->getType()->isFirstClassType())
2098      return Error(FirstEltLoc, "invalid array element type: " +
2099                   Elts[0]->getType()->getDescription());
2100
2101    ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2102
2103    // Verify all elements are correct type!
2104    for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2105      if (Elts[i]->getType() != Elts[0]->getType())
2106        return Error(FirstEltLoc,
2107                     "array element #" + Twine(i) +
2108                     " is not of type '" +Elts[0]->getType()->getDescription());
2109    }
2110
2111    ID.ConstantVal = ConstantArray::get(ATy, Elts.data(), Elts.size());
2112    ID.Kind = ValID::t_Constant;
2113    return false;
2114  }
2115  case lltok::kw_c:  // c "foo"
2116    Lex.Lex();
2117    ID.ConstantVal = ConstantArray::get(Context, Lex.getStrVal(), false);
2118    if (ParseToken(lltok::StringConstant, "expected string")) return true;
2119    ID.Kind = ValID::t_Constant;
2120    return false;
2121
2122  case lltok::kw_asm: {
2123    // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT
2124    bool HasSideEffect, AlignStack;
2125    Lex.Lex();
2126    if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2127        ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2128        ParseStringConstant(ID.StrVal) ||
2129        ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2130        ParseToken(lltok::StringConstant, "expected constraint string"))
2131      return true;
2132    ID.StrVal2 = Lex.getStrVal();
2133    ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1);
2134    ID.Kind = ValID::t_InlineAsm;
2135    return false;
2136  }
2137
2138  case lltok::kw_blockaddress: {
2139    // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2140    Lex.Lex();
2141
2142    ValID Fn, Label;
2143    LocTy FnLoc, LabelLoc;
2144
2145    if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2146        ParseValID(Fn) ||
2147        ParseToken(lltok::comma, "expected comma in block address expression")||
2148        ParseValID(Label) ||
2149        ParseToken(lltok::rparen, "expected ')' in block address expression"))
2150      return true;
2151
2152    if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2153      return Error(Fn.Loc, "expected function name in blockaddress");
2154    if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2155      return Error(Label.Loc, "expected basic block name in blockaddress");
2156
2157    // Make a global variable as a placeholder for this reference.
2158    GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
2159                                           false, GlobalValue::InternalLinkage,
2160                                                0, "");
2161    ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
2162    ID.ConstantVal = FwdRef;
2163    ID.Kind = ValID::t_Constant;
2164    return false;
2165  }
2166
2167  case lltok::kw_trunc:
2168  case lltok::kw_zext:
2169  case lltok::kw_sext:
2170  case lltok::kw_fptrunc:
2171  case lltok::kw_fpext:
2172  case lltok::kw_bitcast:
2173  case lltok::kw_uitofp:
2174  case lltok::kw_sitofp:
2175  case lltok::kw_fptoui:
2176  case lltok::kw_fptosi:
2177  case lltok::kw_inttoptr:
2178  case lltok::kw_ptrtoint: {
2179    unsigned Opc = Lex.getUIntVal();
2180    PATypeHolder DestTy(Type::getVoidTy(Context));
2181    Constant *SrcVal;
2182    Lex.Lex();
2183    if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2184        ParseGlobalTypeAndValue(SrcVal) ||
2185        ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2186        ParseType(DestTy) ||
2187        ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2188      return true;
2189    if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2190      return Error(ID.Loc, "invalid cast opcode for cast from '" +
2191                   SrcVal->getType()->getDescription() + "' to '" +
2192                   DestTy->getDescription() + "'");
2193    ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2194                                                 SrcVal, DestTy);
2195    ID.Kind = ValID::t_Constant;
2196    return false;
2197  }
2198  case lltok::kw_extractvalue: {
2199    Lex.Lex();
2200    Constant *Val;
2201    SmallVector<unsigned, 4> Indices;
2202    if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2203        ParseGlobalTypeAndValue(Val) ||
2204        ParseIndexList(Indices) ||
2205        ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2206      return true;
2207
2208    if (!Val->getType()->isAggregateType())
2209      return Error(ID.Loc, "extractvalue operand must be aggregate type");
2210    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
2211                                          Indices.end()))
2212      return Error(ID.Loc, "invalid indices for extractvalue");
2213    ID.ConstantVal =
2214      ConstantExpr::getExtractValue(Val, Indices.data(), Indices.size());
2215    ID.Kind = ValID::t_Constant;
2216    return false;
2217  }
2218  case lltok::kw_insertvalue: {
2219    Lex.Lex();
2220    Constant *Val0, *Val1;
2221    SmallVector<unsigned, 4> Indices;
2222    if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2223        ParseGlobalTypeAndValue(Val0) ||
2224        ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2225        ParseGlobalTypeAndValue(Val1) ||
2226        ParseIndexList(Indices) ||
2227        ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2228      return true;
2229    if (!Val0->getType()->isAggregateType())
2230      return Error(ID.Loc, "insertvalue operand must be aggregate type");
2231    if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
2232                                          Indices.end()))
2233      return Error(ID.Loc, "invalid indices for insertvalue");
2234    ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1,
2235                       Indices.data(), Indices.size());
2236    ID.Kind = ValID::t_Constant;
2237    return false;
2238  }
2239  case lltok::kw_icmp:
2240  case lltok::kw_fcmp: {
2241    unsigned PredVal, Opc = Lex.getUIntVal();
2242    Constant *Val0, *Val1;
2243    Lex.Lex();
2244    if (ParseCmpPredicate(PredVal, Opc) ||
2245        ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2246        ParseGlobalTypeAndValue(Val0) ||
2247        ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2248        ParseGlobalTypeAndValue(Val1) ||
2249        ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2250      return true;
2251
2252    if (Val0->getType() != Val1->getType())
2253      return Error(ID.Loc, "compare operands must have the same type");
2254
2255    CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2256
2257    if (Opc == Instruction::FCmp) {
2258      if (!Val0->getType()->isFPOrFPVectorTy())
2259        return Error(ID.Loc, "fcmp requires floating point operands");
2260      ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2261    } else {
2262      assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2263      if (!Val0->getType()->isIntOrIntVectorTy() &&
2264          !Val0->getType()->isPointerTy())
2265        return Error(ID.Loc, "icmp requires pointer or integer operands");
2266      ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2267    }
2268    ID.Kind = ValID::t_Constant;
2269    return false;
2270  }
2271
2272  // Binary Operators.
2273  case lltok::kw_add:
2274  case lltok::kw_fadd:
2275  case lltok::kw_sub:
2276  case lltok::kw_fsub:
2277  case lltok::kw_mul:
2278  case lltok::kw_fmul:
2279  case lltok::kw_udiv:
2280  case lltok::kw_sdiv:
2281  case lltok::kw_fdiv:
2282  case lltok::kw_urem:
2283  case lltok::kw_srem:
2284  case lltok::kw_frem: {
2285    bool NUW = false;
2286    bool NSW = false;
2287    bool Exact = false;
2288    unsigned Opc = Lex.getUIntVal();
2289    Constant *Val0, *Val1;
2290    Lex.Lex();
2291    LocTy ModifierLoc = Lex.getLoc();
2292    if (Opc == Instruction::Add ||
2293        Opc == Instruction::Sub ||
2294        Opc == Instruction::Mul) {
2295      if (EatIfPresent(lltok::kw_nuw))
2296        NUW = true;
2297      if (EatIfPresent(lltok::kw_nsw)) {
2298        NSW = true;
2299        if (EatIfPresent(lltok::kw_nuw))
2300          NUW = true;
2301      }
2302    } else if (Opc == Instruction::SDiv) {
2303      if (EatIfPresent(lltok::kw_exact))
2304        Exact = true;
2305    }
2306    if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2307        ParseGlobalTypeAndValue(Val0) ||
2308        ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2309        ParseGlobalTypeAndValue(Val1) ||
2310        ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2311      return true;
2312    if (Val0->getType() != Val1->getType())
2313      return Error(ID.Loc, "operands of constexpr must have same type");
2314    if (!Val0->getType()->isIntOrIntVectorTy()) {
2315      if (NUW)
2316        return Error(ModifierLoc, "nuw only applies to integer operations");
2317      if (NSW)
2318        return Error(ModifierLoc, "nsw only applies to integer operations");
2319    }
2320    // Check that the type is valid for the operator.
2321    switch (Opc) {
2322    case Instruction::Add:
2323    case Instruction::Sub:
2324    case Instruction::Mul:
2325    case Instruction::UDiv:
2326    case Instruction::SDiv:
2327    case Instruction::URem:
2328    case Instruction::SRem:
2329      if (!Val0->getType()->isIntOrIntVectorTy())
2330        return Error(ID.Loc, "constexpr requires integer operands");
2331      break;
2332    case Instruction::FAdd:
2333    case Instruction::FSub:
2334    case Instruction::FMul:
2335    case Instruction::FDiv:
2336    case Instruction::FRem:
2337      if (!Val0->getType()->isFPOrFPVectorTy())
2338        return Error(ID.Loc, "constexpr requires fp operands");
2339      break;
2340    default: llvm_unreachable("Unknown binary operator!");
2341    }
2342    unsigned Flags = 0;
2343    if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2344    if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
2345    if (Exact) Flags |= SDivOperator::IsExact;
2346    Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2347    ID.ConstantVal = C;
2348    ID.Kind = ValID::t_Constant;
2349    return false;
2350  }
2351
2352  // Logical Operations
2353  case lltok::kw_shl:
2354  case lltok::kw_lshr:
2355  case lltok::kw_ashr:
2356  case lltok::kw_and:
2357  case lltok::kw_or:
2358  case lltok::kw_xor: {
2359    unsigned Opc = Lex.getUIntVal();
2360    Constant *Val0, *Val1;
2361    Lex.Lex();
2362    if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2363        ParseGlobalTypeAndValue(Val0) ||
2364        ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2365        ParseGlobalTypeAndValue(Val1) ||
2366        ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2367      return true;
2368    if (Val0->getType() != Val1->getType())
2369      return Error(ID.Loc, "operands of constexpr must have same type");
2370    if (!Val0->getType()->isIntOrIntVectorTy())
2371      return Error(ID.Loc,
2372                   "constexpr requires integer or integer vector operands");
2373    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2374    ID.Kind = ValID::t_Constant;
2375    return false;
2376  }
2377
2378  case lltok::kw_getelementptr:
2379  case lltok::kw_shufflevector:
2380  case lltok::kw_insertelement:
2381  case lltok::kw_extractelement:
2382  case lltok::kw_select: {
2383    unsigned Opc = Lex.getUIntVal();
2384    SmallVector<Constant*, 16> Elts;
2385    bool InBounds = false;
2386    Lex.Lex();
2387    if (Opc == Instruction::GetElementPtr)
2388      InBounds = EatIfPresent(lltok::kw_inbounds);
2389    if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2390        ParseGlobalValueVector(Elts) ||
2391        ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2392      return true;
2393
2394    if (Opc == Instruction::GetElementPtr) {
2395      if (Elts.size() == 0 || !Elts[0]->getType()->isPointerTy())
2396        return Error(ID.Loc, "getelementptr requires pointer operand");
2397
2398      if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
2399                                             (Value**)(Elts.data() + 1),
2400                                             Elts.size() - 1))
2401        return Error(ID.Loc, "invalid indices for getelementptr");
2402      ID.ConstantVal = InBounds ?
2403        ConstantExpr::getInBoundsGetElementPtr(Elts[0],
2404                                               Elts.data() + 1,
2405                                               Elts.size() - 1) :
2406        ConstantExpr::getGetElementPtr(Elts[0],
2407                                       Elts.data() + 1, Elts.size() - 1);
2408    } else if (Opc == Instruction::Select) {
2409      if (Elts.size() != 3)
2410        return Error(ID.Loc, "expected three operands to select");
2411      if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2412                                                              Elts[2]))
2413        return Error(ID.Loc, Reason);
2414      ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2415    } else if (Opc == Instruction::ShuffleVector) {
2416      if (Elts.size() != 3)
2417        return Error(ID.Loc, "expected three operands to shufflevector");
2418      if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2419        return Error(ID.Loc, "invalid operands to shufflevector");
2420      ID.ConstantVal =
2421                 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2422    } else if (Opc == Instruction::ExtractElement) {
2423      if (Elts.size() != 2)
2424        return Error(ID.Loc, "expected two operands to extractelement");
2425      if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2426        return Error(ID.Loc, "invalid extractelement operands");
2427      ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2428    } else {
2429      assert(Opc == Instruction::InsertElement && "Unknown opcode");
2430      if (Elts.size() != 3)
2431      return Error(ID.Loc, "expected three operands to insertelement");
2432      if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2433        return Error(ID.Loc, "invalid insertelement operands");
2434      ID.ConstantVal =
2435                 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2436    }
2437
2438    ID.Kind = ValID::t_Constant;
2439    return false;
2440  }
2441  }
2442
2443  Lex.Lex();
2444  return false;
2445}
2446
2447/// ParseGlobalValue - Parse a global value with the specified type.
2448bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&C) {
2449  C = 0;
2450  ValID ID;
2451  Value *V = NULL;
2452  bool Parsed = ParseValID(ID) ||
2453                ConvertValIDToValue(Ty, ID, V, NULL);
2454  if (V && !(C = dyn_cast<Constant>(V)))
2455    return Error(ID.Loc, "global values must be constants");
2456  return Parsed;
2457}
2458
2459bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2460  PATypeHolder Type(Type::getVoidTy(Context));
2461  return ParseType(Type) ||
2462         ParseGlobalValue(Type, V);
2463}
2464
2465/// ParseGlobalValueVector
2466///   ::= /*empty*/
2467///   ::= TypeAndValue (',' TypeAndValue)*
2468bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2469  // Empty list.
2470  if (Lex.getKind() == lltok::rbrace ||
2471      Lex.getKind() == lltok::rsquare ||
2472      Lex.getKind() == lltok::greater ||
2473      Lex.getKind() == lltok::rparen)
2474    return false;
2475
2476  Constant *C;
2477  if (ParseGlobalTypeAndValue(C)) return true;
2478  Elts.push_back(C);
2479
2480  while (EatIfPresent(lltok::comma)) {
2481    if (ParseGlobalTypeAndValue(C)) return true;
2482    Elts.push_back(C);
2483  }
2484
2485  return false;
2486}
2487
2488bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) {
2489  assert(Lex.getKind() == lltok::lbrace);
2490  Lex.Lex();
2491
2492  SmallVector<Value*, 16> Elts;
2493  if (ParseMDNodeVector(Elts, PFS) ||
2494      ParseToken(lltok::rbrace, "expected end of metadata node"))
2495    return true;
2496
2497  ID.MDNodeVal = MDNode::get(Context, Elts.data(), Elts.size());
2498  ID.Kind = ValID::t_MDNode;
2499  return false;
2500}
2501
2502/// ParseMetadataValue
2503///  ::= !42
2504///  ::= !{...}
2505///  ::= !"string"
2506bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) {
2507  assert(Lex.getKind() == lltok::exclaim);
2508  Lex.Lex();
2509
2510  // MDNode:
2511  // !{ ... }
2512  if (Lex.getKind() == lltok::lbrace)
2513    return ParseMetadataListValue(ID, PFS);
2514
2515  // Standalone metadata reference
2516  // !42
2517  if (Lex.getKind() == lltok::APSInt) {
2518    if (ParseMDNodeID(ID.MDNodeVal)) return true;
2519    ID.Kind = ValID::t_MDNode;
2520    return false;
2521  }
2522
2523  // MDString:
2524  //   ::= '!' STRINGCONSTANT
2525  if (ParseMDString(ID.MDStringVal)) return true;
2526  ID.Kind = ValID::t_MDString;
2527  return false;
2528}
2529
2530
2531//===----------------------------------------------------------------------===//
2532// Function Parsing.
2533//===----------------------------------------------------------------------===//
2534
2535bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
2536                                   PerFunctionState *PFS) {
2537  if (Ty->isFunctionTy())
2538    return Error(ID.Loc, "functions are not values, refer to them as pointers");
2539
2540  switch (ID.Kind) {
2541  default: llvm_unreachable("Unknown ValID!");
2542  case ValID::t_LocalID:
2543    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2544    V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
2545    return (V == 0);
2546  case ValID::t_LocalName:
2547    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2548    V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
2549    return (V == 0);
2550  case ValID::t_InlineAsm: {
2551    const PointerType *PTy = dyn_cast<PointerType>(Ty);
2552    const FunctionType *FTy =
2553      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2554    if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2555      return Error(ID.Loc, "invalid type for inline asm constraint string");
2556    V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, ID.UIntVal>>1);
2557    return false;
2558  }
2559  case ValID::t_MDNode:
2560    if (!Ty->isMetadataTy())
2561      return Error(ID.Loc, "metadata value must have metadata type");
2562    V = ID.MDNodeVal;
2563    return false;
2564  case ValID::t_MDString:
2565    if (!Ty->isMetadataTy())
2566      return Error(ID.Loc, "metadata value must have metadata type");
2567    V = ID.MDStringVal;
2568    return false;
2569  case ValID::t_GlobalName:
2570    V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2571    return V == 0;
2572  case ValID::t_GlobalID:
2573    V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2574    return V == 0;
2575  case ValID::t_APSInt:
2576    if (!Ty->isIntegerTy())
2577      return Error(ID.Loc, "integer constant must have integer type");
2578    ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2579    V = ConstantInt::get(Context, ID.APSIntVal);
2580    return false;
2581  case ValID::t_APFloat:
2582    if (!Ty->isFloatingPointTy() ||
2583        !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2584      return Error(ID.Loc, "floating point constant invalid for type");
2585
2586    // The lexer has no type info, so builds all float and double FP constants
2587    // as double.  Fix this here.  Long double does not need this.
2588    if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
2589        Ty->isFloatTy()) {
2590      bool Ignored;
2591      ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2592                            &Ignored);
2593    }
2594    V = ConstantFP::get(Context, ID.APFloatVal);
2595
2596    if (V->getType() != Ty)
2597      return Error(ID.Loc, "floating point constant does not have type '" +
2598                   Ty->getDescription() + "'");
2599
2600    return false;
2601  case ValID::t_Null:
2602    if (!Ty->isPointerTy())
2603      return Error(ID.Loc, "null must be a pointer type");
2604    V = ConstantPointerNull::get(cast<PointerType>(Ty));
2605    return false;
2606  case ValID::t_Undef:
2607    // FIXME: LabelTy should not be a first-class type.
2608    if ((!Ty->isFirstClassType() || Ty->isLabelTy()) &&
2609        !Ty->isOpaqueTy())
2610      return Error(ID.Loc, "invalid type for undef constant");
2611    V = UndefValue::get(Ty);
2612    return false;
2613  case ValID::t_EmptyArray:
2614    if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
2615      return Error(ID.Loc, "invalid empty array initializer");
2616    V = UndefValue::get(Ty);
2617    return false;
2618  case ValID::t_Zero:
2619    // FIXME: LabelTy should not be a first-class type.
2620    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2621      return Error(ID.Loc, "invalid type for null constant");
2622    V = Constant::getNullValue(Ty);
2623    return false;
2624  case ValID::t_Constant:
2625    if (ID.ConstantVal->getType() != Ty)
2626      return Error(ID.Loc, "constant expression type mismatch");
2627
2628    V = ID.ConstantVal;
2629    return false;
2630  }
2631}
2632
2633bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
2634  V = 0;
2635  ValID ID;
2636  return ParseValID(ID, &PFS) ||
2637         ConvertValIDToValue(Ty, ID, V, &PFS);
2638}
2639
2640bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
2641  PATypeHolder T(Type::getVoidTy(Context));
2642  return ParseType(T) ||
2643         ParseValue(T, V, PFS);
2644}
2645
2646bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
2647                                      PerFunctionState &PFS) {
2648  Value *V;
2649  Loc = Lex.getLoc();
2650  if (ParseTypeAndValue(V, PFS)) return true;
2651  if (!isa<BasicBlock>(V))
2652    return Error(Loc, "expected a basic block");
2653  BB = cast<BasicBlock>(V);
2654  return false;
2655}
2656
2657
2658/// FunctionHeader
2659///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2660///       Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2661///       OptionalAlign OptGC
2662bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2663  // Parse the linkage.
2664  LocTy LinkageLoc = Lex.getLoc();
2665  unsigned Linkage;
2666
2667  unsigned Visibility, RetAttrs;
2668  CallingConv::ID CC;
2669  PATypeHolder RetType(Type::getVoidTy(Context));
2670  LocTy RetTypeLoc = Lex.getLoc();
2671  if (ParseOptionalLinkage(Linkage) ||
2672      ParseOptionalVisibility(Visibility) ||
2673      ParseOptionalCallingConv(CC) ||
2674      ParseOptionalAttrs(RetAttrs, 1) ||
2675      ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2676    return true;
2677
2678  // Verify that the linkage is ok.
2679  switch ((GlobalValue::LinkageTypes)Linkage) {
2680  case GlobalValue::ExternalLinkage:
2681    break; // always ok.
2682  case GlobalValue::DLLImportLinkage:
2683  case GlobalValue::ExternalWeakLinkage:
2684    if (isDefine)
2685      return Error(LinkageLoc, "invalid linkage for function definition");
2686    break;
2687  case GlobalValue::PrivateLinkage:
2688  case GlobalValue::LinkerPrivateLinkage:
2689  case GlobalValue::LinkerPrivateWeakLinkage:
2690  case GlobalValue::LinkerPrivateWeakDefAutoLinkage:
2691  case GlobalValue::InternalLinkage:
2692  case GlobalValue::AvailableExternallyLinkage:
2693  case GlobalValue::LinkOnceAnyLinkage:
2694  case GlobalValue::LinkOnceODRLinkage:
2695  case GlobalValue::WeakAnyLinkage:
2696  case GlobalValue::WeakODRLinkage:
2697  case GlobalValue::DLLExportLinkage:
2698    if (!isDefine)
2699      return Error(LinkageLoc, "invalid linkage for function declaration");
2700    break;
2701  case GlobalValue::AppendingLinkage:
2702  case GlobalValue::CommonLinkage:
2703    return Error(LinkageLoc, "invalid function linkage type");
2704  }
2705
2706  if (!FunctionType::isValidReturnType(RetType) ||
2707      RetType->isOpaqueTy())
2708    return Error(RetTypeLoc, "invalid function return type");
2709
2710  LocTy NameLoc = Lex.getLoc();
2711
2712  std::string FunctionName;
2713  if (Lex.getKind() == lltok::GlobalVar) {
2714    FunctionName = Lex.getStrVal();
2715  } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
2716    unsigned NameID = Lex.getUIntVal();
2717
2718    if (NameID != NumberedVals.size())
2719      return TokError("function expected to be numbered '%" +
2720                      Twine(NumberedVals.size()) + "'");
2721  } else {
2722    return TokError("expected function name");
2723  }
2724
2725  Lex.Lex();
2726
2727  if (Lex.getKind() != lltok::lparen)
2728    return TokError("expected '(' in function argument list");
2729
2730  std::vector<ArgInfo> ArgList;
2731  bool isVarArg;
2732  unsigned FuncAttrs;
2733  std::string Section;
2734  unsigned Alignment;
2735  std::string GC;
2736
2737  if (ParseArgumentList(ArgList, isVarArg, false) ||
2738      ParseOptionalAttrs(FuncAttrs, 2) ||
2739      (EatIfPresent(lltok::kw_section) &&
2740       ParseStringConstant(Section)) ||
2741      ParseOptionalAlignment(Alignment) ||
2742      (EatIfPresent(lltok::kw_gc) &&
2743       ParseStringConstant(GC)))
2744    return true;
2745
2746  // If the alignment was parsed as an attribute, move to the alignment field.
2747  if (FuncAttrs & Attribute::Alignment) {
2748    Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2749    FuncAttrs &= ~Attribute::Alignment;
2750  }
2751
2752  // Okay, if we got here, the function is syntactically valid.  Convert types
2753  // and do semantic checks.
2754  std::vector<const Type*> ParamTypeList;
2755  SmallVector<AttributeWithIndex, 8> Attrs;
2756  // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2757  // attributes.
2758  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2759  if (FuncAttrs & ObsoleteFuncAttrs) {
2760    RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
2761    FuncAttrs &= ~ObsoleteFuncAttrs;
2762  }
2763
2764  if (RetAttrs != Attribute::None)
2765    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2766
2767  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2768    ParamTypeList.push_back(ArgList[i].Type);
2769    if (ArgList[i].Attrs != Attribute::None)
2770      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2771  }
2772
2773  if (FuncAttrs != Attribute::None)
2774    Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2775
2776  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2777
2778  if (PAL.paramHasAttr(1, Attribute::StructRet) && !RetType->isVoidTy())
2779    return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2780
2781  const FunctionType *FT =
2782    FunctionType::get(RetType, ParamTypeList, isVarArg);
2783  const PointerType *PFT = PointerType::getUnqual(FT);
2784
2785  Fn = 0;
2786  if (!FunctionName.empty()) {
2787    // If this was a definition of a forward reference, remove the definition
2788    // from the forward reference table and fill in the forward ref.
2789    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2790      ForwardRefVals.find(FunctionName);
2791    if (FRVI != ForwardRefVals.end()) {
2792      Fn = M->getFunction(FunctionName);
2793      if (Fn->getType() != PFT)
2794        return Error(FRVI->second.second, "invalid forward reference to "
2795                     "function '" + FunctionName + "' with wrong type!");
2796
2797      ForwardRefVals.erase(FRVI);
2798    } else if ((Fn = M->getFunction(FunctionName))) {
2799      // If this function already exists in the symbol table, then it is
2800      // multiply defined.  We accept a few cases for old backwards compat.
2801      // FIXME: Remove this stuff for LLVM 3.0.
2802      if (Fn->getType() != PFT || Fn->getAttributes() != PAL ||
2803          (!Fn->isDeclaration() && isDefine)) {
2804        // If the redefinition has different type or different attributes,
2805        // reject it.  If both have bodies, reject it.
2806        return Error(NameLoc, "invalid redefinition of function '" +
2807                     FunctionName + "'");
2808      } else if (Fn->isDeclaration()) {
2809        // Make sure to strip off any argument names so we can't get conflicts.
2810        for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2811             AI != AE; ++AI)
2812          AI->setName("");
2813      }
2814    } else if (M->getNamedValue(FunctionName)) {
2815      return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
2816    }
2817
2818  } else {
2819    // If this is a definition of a forward referenced function, make sure the
2820    // types agree.
2821    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2822      = ForwardRefValIDs.find(NumberedVals.size());
2823    if (I != ForwardRefValIDs.end()) {
2824      Fn = cast<Function>(I->second.first);
2825      if (Fn->getType() != PFT)
2826        return Error(NameLoc, "type of definition and forward reference of '@" +
2827                     Twine(NumberedVals.size()) + "' disagree");
2828      ForwardRefValIDs.erase(I);
2829    }
2830  }
2831
2832  if (Fn == 0)
2833    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2834  else // Move the forward-reference to the correct spot in the module.
2835    M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2836
2837  if (FunctionName.empty())
2838    NumberedVals.push_back(Fn);
2839
2840  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2841  Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2842  Fn->setCallingConv(CC);
2843  Fn->setAttributes(PAL);
2844  Fn->setAlignment(Alignment);
2845  Fn->setSection(Section);
2846  if (!GC.empty()) Fn->setGC(GC.c_str());
2847
2848  // Add all of the arguments we parsed to the function.
2849  Function::arg_iterator ArgIt = Fn->arg_begin();
2850  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2851    // If we run out of arguments in the Function prototype, exit early.
2852    // FIXME: REMOVE THIS IN LLVM 3.0, this is just for the mismatch case above.
2853    if (ArgIt == Fn->arg_end()) break;
2854
2855    // If the argument has a name, insert it into the argument symbol table.
2856    if (ArgList[i].Name.empty()) continue;
2857
2858    // Set the name, if it conflicted, it will be auto-renamed.
2859    ArgIt->setName(ArgList[i].Name);
2860
2861    if (ArgIt->getName() != ArgList[i].Name)
2862      return Error(ArgList[i].Loc, "redefinition of argument '%" +
2863                   ArgList[i].Name + "'");
2864  }
2865
2866  return false;
2867}
2868
2869
2870/// ParseFunctionBody
2871///   ::= '{' BasicBlock+ '}'
2872///   ::= 'begin' BasicBlock+ 'end'  // FIXME: remove in LLVM 3.0
2873///
2874bool LLParser::ParseFunctionBody(Function &Fn) {
2875  if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
2876    return TokError("expected '{' in function body");
2877  Lex.Lex();  // eat the {.
2878
2879  int FunctionNumber = -1;
2880  if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
2881
2882  PerFunctionState PFS(*this, Fn, FunctionNumber);
2883
2884  // We need at least one basic block.
2885  if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_end)
2886    return TokError("function body requires at least one basic block");
2887
2888  while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
2889    if (ParseBasicBlock(PFS)) return true;
2890
2891  // Eat the }.
2892  Lex.Lex();
2893
2894  // Verify function is ok.
2895  return PFS.FinishFunction();
2896}
2897
2898/// ParseBasicBlock
2899///   ::= LabelStr? Instruction*
2900bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2901  // If this basic block starts out with a name, remember it.
2902  std::string Name;
2903  LocTy NameLoc = Lex.getLoc();
2904  if (Lex.getKind() == lltok::LabelStr) {
2905    Name = Lex.getStrVal();
2906    Lex.Lex();
2907  }
2908
2909  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2910  if (BB == 0) return true;
2911
2912  std::string NameStr;
2913
2914  // Parse the instructions in this block until we get a terminator.
2915  Instruction *Inst;
2916  SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst;
2917  do {
2918    // This instruction may have three possibilities for a name: a) none
2919    // specified, b) name specified "%foo =", c) number specified: "%4 =".
2920    LocTy NameLoc = Lex.getLoc();
2921    int NameID = -1;
2922    NameStr = "";
2923
2924    if (Lex.getKind() == lltok::LocalVarID) {
2925      NameID = Lex.getUIntVal();
2926      Lex.Lex();
2927      if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2928        return true;
2929    } else if (Lex.getKind() == lltok::LocalVar ||
2930               // FIXME: REMOVE IN LLVM 3.0
2931               Lex.getKind() == lltok::StringConstant) {
2932      NameStr = Lex.getStrVal();
2933      Lex.Lex();
2934      if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2935        return true;
2936    }
2937
2938    switch (ParseInstruction(Inst, BB, PFS)) {
2939    default: assert(0 && "Unknown ParseInstruction result!");
2940    case InstError: return true;
2941    case InstNormal:
2942      BB->getInstList().push_back(Inst);
2943
2944      // With a normal result, we check to see if the instruction is followed by
2945      // a comma and metadata.
2946      if (EatIfPresent(lltok::comma))
2947        if (ParseInstructionMetadata(Inst, &PFS))
2948          return true;
2949      break;
2950    case InstExtraComma:
2951      BB->getInstList().push_back(Inst);
2952
2953      // If the instruction parser ate an extra comma at the end of it, it
2954      // *must* be followed by metadata.
2955      if (ParseInstructionMetadata(Inst, &PFS))
2956        return true;
2957      break;
2958    }
2959
2960    // Set the name on the instruction.
2961    if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2962  } while (!isa<TerminatorInst>(Inst));
2963
2964  return false;
2965}
2966
2967//===----------------------------------------------------------------------===//
2968// Instruction Parsing.
2969//===----------------------------------------------------------------------===//
2970
2971/// ParseInstruction - Parse one of the many different instructions.
2972///
2973int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2974                               PerFunctionState &PFS) {
2975  lltok::Kind Token = Lex.getKind();
2976  if (Token == lltok::Eof)
2977    return TokError("found end of file when expecting more instructions");
2978  LocTy Loc = Lex.getLoc();
2979  unsigned KeywordVal = Lex.getUIntVal();
2980  Lex.Lex();  // Eat the keyword.
2981
2982  switch (Token) {
2983  default:                    return Error(Loc, "expected instruction opcode");
2984  // Terminator Instructions.
2985  case lltok::kw_unwind:      Inst = new UnwindInst(Context); return false;
2986  case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
2987  case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
2988  case lltok::kw_br:          return ParseBr(Inst, PFS);
2989  case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
2990  case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
2991  case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
2992  // Binary Operators.
2993  case lltok::kw_add:
2994  case lltok::kw_sub:
2995  case lltok::kw_mul: {
2996    bool NUW = false;
2997    bool NSW = false;
2998    LocTy ModifierLoc = Lex.getLoc();
2999    if (EatIfPresent(lltok::kw_nuw))
3000      NUW = true;
3001    if (EatIfPresent(lltok::kw_nsw)) {
3002      NSW = true;
3003      if (EatIfPresent(lltok::kw_nuw))
3004        NUW = true;
3005    }
3006    bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 1);
3007    if (!Result) {
3008      if (!Inst->getType()->isIntOrIntVectorTy()) {
3009        if (NUW)
3010          return Error(ModifierLoc, "nuw only applies to integer operations");
3011        if (NSW)
3012          return Error(ModifierLoc, "nsw only applies to integer operations");
3013      }
3014      if (NUW)
3015        cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
3016      if (NSW)
3017        cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
3018    }
3019    return Result;
3020  }
3021  case lltok::kw_fadd:
3022  case lltok::kw_fsub:
3023  case lltok::kw_fmul:    return ParseArithmetic(Inst, PFS, KeywordVal, 2);
3024
3025  case lltok::kw_sdiv: {
3026    bool Exact = false;
3027    if (EatIfPresent(lltok::kw_exact))
3028      Exact = true;
3029    bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 1);
3030    if (!Result)
3031      if (Exact)
3032        cast<BinaryOperator>(Inst)->setIsExact(true);
3033    return Result;
3034  }
3035
3036  case lltok::kw_udiv:
3037  case lltok::kw_urem:
3038  case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
3039  case lltok::kw_fdiv:
3040  case lltok::kw_frem:   return ParseArithmetic(Inst, PFS, KeywordVal, 2);
3041  case lltok::kw_shl:
3042  case lltok::kw_lshr:
3043  case lltok::kw_ashr:
3044  case lltok::kw_and:
3045  case lltok::kw_or:
3046  case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
3047  case lltok::kw_icmp:
3048  case lltok::kw_fcmp:   return ParseCompare(Inst, PFS, KeywordVal);
3049  // Casts.
3050  case lltok::kw_trunc:
3051  case lltok::kw_zext:
3052  case lltok::kw_sext:
3053  case lltok::kw_fptrunc:
3054  case lltok::kw_fpext:
3055  case lltok::kw_bitcast:
3056  case lltok::kw_uitofp:
3057  case lltok::kw_sitofp:
3058  case lltok::kw_fptoui:
3059  case lltok::kw_fptosi:
3060  case lltok::kw_inttoptr:
3061  case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
3062  // Other.
3063  case lltok::kw_select:         return ParseSelect(Inst, PFS);
3064  case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
3065  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
3066  case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
3067  case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
3068  case lltok::kw_phi:            return ParsePHI(Inst, PFS);
3069  case lltok::kw_call:           return ParseCall(Inst, PFS, false);
3070  case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
3071  // Memory.
3072  case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
3073  case lltok::kw_malloc:         return ParseAlloc(Inst, PFS, BB, false);
3074  case lltok::kw_free:           return ParseFree(Inst, PFS, BB);
3075  case lltok::kw_load:           return ParseLoad(Inst, PFS, false);
3076  case lltok::kw_store:          return ParseStore(Inst, PFS, false);
3077  case lltok::kw_volatile:
3078    if (EatIfPresent(lltok::kw_load))
3079      return ParseLoad(Inst, PFS, true);
3080    else if (EatIfPresent(lltok::kw_store))
3081      return ParseStore(Inst, PFS, true);
3082    else
3083      return TokError("expected 'load' or 'store'");
3084  case lltok::kw_getresult:     return ParseGetResult(Inst, PFS);
3085  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
3086  case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
3087  case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
3088  }
3089}
3090
3091/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
3092bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
3093  if (Opc == Instruction::FCmp) {
3094    switch (Lex.getKind()) {
3095    default: TokError("expected fcmp predicate (e.g. 'oeq')");
3096    case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
3097    case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
3098    case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
3099    case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
3100    case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
3101    case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
3102    case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
3103    case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
3104    case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
3105    case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
3106    case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
3107    case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
3108    case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
3109    case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
3110    case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
3111    case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
3112    }
3113  } else {
3114    switch (Lex.getKind()) {
3115    default: TokError("expected icmp predicate (e.g. 'eq')");
3116    case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
3117    case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
3118    case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
3119    case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
3120    case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
3121    case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
3122    case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
3123    case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
3124    case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
3125    case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
3126    }
3127  }
3128  Lex.Lex();
3129  return false;
3130}
3131
3132//===----------------------------------------------------------------------===//
3133// Terminator Instructions.
3134//===----------------------------------------------------------------------===//
3135
3136/// ParseRet - Parse a return instruction.
3137///   ::= 'ret' void (',' !dbg, !1)*
3138///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
3139///   ::= 'ret' TypeAndValue (',' TypeAndValue)+  (',' !dbg, !1)*
3140///         [[obsolete: LLVM 3.0]]
3141int LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
3142                       PerFunctionState &PFS) {
3143  PATypeHolder Ty(Type::getVoidTy(Context));
3144  if (ParseType(Ty, true /*void allowed*/)) return true;
3145
3146  if (Ty->isVoidTy()) {
3147    Inst = ReturnInst::Create(Context);
3148    return false;
3149  }
3150
3151  Value *RV;
3152  if (ParseValue(Ty, RV, PFS)) return true;
3153
3154  bool ExtraComma = false;
3155  if (EatIfPresent(lltok::comma)) {
3156    // Parse optional custom metadata, e.g. !dbg
3157    if (Lex.getKind() == lltok::MetadataVar) {
3158      ExtraComma = true;
3159    } else {
3160      // The normal case is one return value.
3161      // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring
3162      // use of 'ret {i32,i32} {i32 1, i32 2}'
3163      SmallVector<Value*, 8> RVs;
3164      RVs.push_back(RV);
3165
3166      do {
3167        // If optional custom metadata, e.g. !dbg is seen then this is the
3168        // end of MRV.
3169        if (Lex.getKind() == lltok::MetadataVar)
3170          break;
3171        if (ParseTypeAndValue(RV, PFS)) return true;
3172        RVs.push_back(RV);
3173      } while (EatIfPresent(lltok::comma));
3174
3175      RV = UndefValue::get(PFS.getFunction().getReturnType());
3176      for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
3177        Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
3178        BB->getInstList().push_back(I);
3179        RV = I;
3180      }
3181    }
3182  }
3183
3184  Inst = ReturnInst::Create(Context, RV);
3185  return ExtraComma ? InstExtraComma : InstNormal;
3186}
3187
3188
3189/// ParseBr
3190///   ::= 'br' TypeAndValue
3191///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3192bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
3193  LocTy Loc, Loc2;
3194  Value *Op0;
3195  BasicBlock *Op1, *Op2;
3196  if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
3197
3198  if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
3199    Inst = BranchInst::Create(BB);
3200    return false;
3201  }
3202
3203  if (Op0->getType() != Type::getInt1Ty(Context))
3204    return Error(Loc, "branch condition must have 'i1' type");
3205
3206  if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
3207      ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
3208      ParseToken(lltok::comma, "expected ',' after true destination") ||
3209      ParseTypeAndBasicBlock(Op2, Loc2, PFS))
3210    return true;
3211
3212  Inst = BranchInst::Create(Op1, Op2, Op0);
3213  return false;
3214}
3215
3216/// ParseSwitch
3217///  Instruction
3218///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
3219///  JumpTable
3220///    ::= (TypeAndValue ',' TypeAndValue)*
3221bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
3222  LocTy CondLoc, BBLoc;
3223  Value *Cond;
3224  BasicBlock *DefaultBB;
3225  if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
3226      ParseToken(lltok::comma, "expected ',' after switch condition") ||
3227      ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
3228      ParseToken(lltok::lsquare, "expected '[' with switch table"))
3229    return true;
3230
3231  if (!Cond->getType()->isIntegerTy())
3232    return Error(CondLoc, "switch condition must have integer type");
3233
3234  // Parse the jump table pairs.
3235  SmallPtrSet<Value*, 32> SeenCases;
3236  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
3237  while (Lex.getKind() != lltok::rsquare) {
3238    Value *Constant;
3239    BasicBlock *DestBB;
3240
3241    if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
3242        ParseToken(lltok::comma, "expected ',' after case value") ||
3243        ParseTypeAndBasicBlock(DestBB, PFS))
3244      return true;
3245
3246    if (!SeenCases.insert(Constant))
3247      return Error(CondLoc, "duplicate case value in switch");
3248    if (!isa<ConstantInt>(Constant))
3249      return Error(CondLoc, "case value is not a constant integer");
3250
3251    Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
3252  }
3253
3254  Lex.Lex();  // Eat the ']'.
3255
3256  SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
3257  for (unsigned i = 0, e = Table.size(); i != e; ++i)
3258    SI->addCase(Table[i].first, Table[i].second);
3259  Inst = SI;
3260  return false;
3261}
3262
3263/// ParseIndirectBr
3264///  Instruction
3265///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
3266bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
3267  LocTy AddrLoc;
3268  Value *Address;
3269  if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
3270      ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
3271      ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
3272    return true;
3273
3274  if (!Address->getType()->isPointerTy())
3275    return Error(AddrLoc, "indirectbr address must have pointer type");
3276
3277  // Parse the destination list.
3278  SmallVector<BasicBlock*, 16> DestList;
3279
3280  if (Lex.getKind() != lltok::rsquare) {
3281    BasicBlock *DestBB;
3282    if (ParseTypeAndBasicBlock(DestBB, PFS))
3283      return true;
3284    DestList.push_back(DestBB);
3285
3286    while (EatIfPresent(lltok::comma)) {
3287      if (ParseTypeAndBasicBlock(DestBB, PFS))
3288        return true;
3289      DestList.push_back(DestBB);
3290    }
3291  }
3292
3293  if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
3294    return true;
3295
3296  IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
3297  for (unsigned i = 0, e = DestList.size(); i != e; ++i)
3298    IBI->addDestination(DestList[i]);
3299  Inst = IBI;
3300  return false;
3301}
3302
3303
3304/// ParseInvoke
3305///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
3306///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
3307bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
3308  LocTy CallLoc = Lex.getLoc();
3309  unsigned RetAttrs, FnAttrs;
3310  CallingConv::ID CC;
3311  PATypeHolder RetType(Type::getVoidTy(Context));
3312  LocTy RetTypeLoc;
3313  ValID CalleeID;
3314  SmallVector<ParamInfo, 16> ArgList;
3315
3316  BasicBlock *NormalBB, *UnwindBB;
3317  if (ParseOptionalCallingConv(CC) ||
3318      ParseOptionalAttrs(RetAttrs, 1) ||
3319      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3320      ParseValID(CalleeID) ||
3321      ParseParameterList(ArgList, PFS) ||
3322      ParseOptionalAttrs(FnAttrs, 2) ||
3323      ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
3324      ParseTypeAndBasicBlock(NormalBB, PFS) ||
3325      ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
3326      ParseTypeAndBasicBlock(UnwindBB, PFS))
3327    return true;
3328
3329  // If RetType is a non-function pointer type, then this is the short syntax
3330  // for the call, which means that RetType is just the return type.  Infer the
3331  // rest of the function argument types from the arguments that are present.
3332  const PointerType *PFTy = 0;
3333  const FunctionType *Ty = 0;
3334  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3335      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3336    // Pull out the types of all of the arguments...
3337    std::vector<const Type*> ParamTypes;
3338    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3339      ParamTypes.push_back(ArgList[i].V->getType());
3340
3341    if (!FunctionType::isValidReturnType(RetType))
3342      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3343
3344    Ty = FunctionType::get(RetType, ParamTypes, false);
3345    PFTy = PointerType::getUnqual(Ty);
3346  }
3347
3348  // Look up the callee.
3349  Value *Callee;
3350  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3351
3352  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3353  // function attributes.
3354  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3355  if (FnAttrs & ObsoleteFuncAttrs) {
3356    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3357    FnAttrs &= ~ObsoleteFuncAttrs;
3358  }
3359
3360  // Set up the Attributes for the function.
3361  SmallVector<AttributeWithIndex, 8> Attrs;
3362  if (RetAttrs != Attribute::None)
3363    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3364
3365  SmallVector<Value*, 8> Args;
3366
3367  // Loop through FunctionType's arguments and ensure they are specified
3368  // correctly.  Also, gather any parameter attributes.
3369  FunctionType::param_iterator I = Ty->param_begin();
3370  FunctionType::param_iterator E = Ty->param_end();
3371  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3372    const Type *ExpectedTy = 0;
3373    if (I != E) {
3374      ExpectedTy = *I++;
3375    } else if (!Ty->isVarArg()) {
3376      return Error(ArgList[i].Loc, "too many arguments specified");
3377    }
3378
3379    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3380      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3381                   ExpectedTy->getDescription() + "'");
3382    Args.push_back(ArgList[i].V);
3383    if (ArgList[i].Attrs != Attribute::None)
3384      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3385  }
3386
3387  if (I != E)
3388    return Error(CallLoc, "not enough parameters specified for call");
3389
3390  if (FnAttrs != Attribute::None)
3391    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3392
3393  // Finish off the Attributes and check them
3394  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3395
3396  InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB,
3397                                      Args.begin(), Args.end());
3398  II->setCallingConv(CC);
3399  II->setAttributes(PAL);
3400  Inst = II;
3401  return false;
3402}
3403
3404
3405
3406//===----------------------------------------------------------------------===//
3407// Binary Operators.
3408//===----------------------------------------------------------------------===//
3409
3410/// ParseArithmetic
3411///  ::= ArithmeticOps TypeAndValue ',' Value
3412///
3413/// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
3414/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
3415bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
3416                               unsigned Opc, unsigned OperandType) {
3417  LocTy Loc; Value *LHS, *RHS;
3418  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3419      ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
3420      ParseValue(LHS->getType(), RHS, PFS))
3421    return true;
3422
3423  bool Valid;
3424  switch (OperandType) {
3425  default: llvm_unreachable("Unknown operand type!");
3426  case 0: // int or FP.
3427    Valid = LHS->getType()->isIntOrIntVectorTy() ||
3428            LHS->getType()->isFPOrFPVectorTy();
3429    break;
3430  case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
3431  case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
3432  }
3433
3434  if (!Valid)
3435    return Error(Loc, "invalid operand type for instruction");
3436
3437  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3438  return false;
3439}
3440
3441/// ParseLogical
3442///  ::= ArithmeticOps TypeAndValue ',' Value {
3443bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3444                            unsigned Opc) {
3445  LocTy Loc; Value *LHS, *RHS;
3446  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3447      ParseToken(lltok::comma, "expected ',' in logical operation") ||
3448      ParseValue(LHS->getType(), RHS, PFS))
3449    return true;
3450
3451  if (!LHS->getType()->isIntOrIntVectorTy())
3452    return Error(Loc,"instruction requires integer or integer vector operands");
3453
3454  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3455  return false;
3456}
3457
3458
3459/// ParseCompare
3460///  ::= 'icmp' IPredicates TypeAndValue ',' Value
3461///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
3462bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3463                            unsigned Opc) {
3464  // Parse the integer/fp comparison predicate.
3465  LocTy Loc;
3466  unsigned Pred;
3467  Value *LHS, *RHS;
3468  if (ParseCmpPredicate(Pred, Opc) ||
3469      ParseTypeAndValue(LHS, Loc, PFS) ||
3470      ParseToken(lltok::comma, "expected ',' after compare value") ||
3471      ParseValue(LHS->getType(), RHS, PFS))
3472    return true;
3473
3474  if (Opc == Instruction::FCmp) {
3475    if (!LHS->getType()->isFPOrFPVectorTy())
3476      return Error(Loc, "fcmp requires floating point operands");
3477    Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3478  } else {
3479    assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3480    if (!LHS->getType()->isIntOrIntVectorTy() &&
3481        !LHS->getType()->isPointerTy())
3482      return Error(Loc, "icmp requires integer operands");
3483    Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3484  }
3485  return false;
3486}
3487
3488//===----------------------------------------------------------------------===//
3489// Other Instructions.
3490//===----------------------------------------------------------------------===//
3491
3492
3493/// ParseCast
3494///   ::= CastOpc TypeAndValue 'to' Type
3495bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3496                         unsigned Opc) {
3497  LocTy Loc;  Value *Op;
3498  PATypeHolder DestTy(Type::getVoidTy(Context));
3499  if (ParseTypeAndValue(Op, Loc, PFS) ||
3500      ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3501      ParseType(DestTy))
3502    return true;
3503
3504  if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3505    CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3506    return Error(Loc, "invalid cast opcode for cast from '" +
3507                 Op->getType()->getDescription() + "' to '" +
3508                 DestTy->getDescription() + "'");
3509  }
3510  Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3511  return false;
3512}
3513
3514/// ParseSelect
3515///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3516bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3517  LocTy Loc;
3518  Value *Op0, *Op1, *Op2;
3519  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3520      ParseToken(lltok::comma, "expected ',' after select condition") ||
3521      ParseTypeAndValue(Op1, PFS) ||
3522      ParseToken(lltok::comma, "expected ',' after select value") ||
3523      ParseTypeAndValue(Op2, PFS))
3524    return true;
3525
3526  if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3527    return Error(Loc, Reason);
3528
3529  Inst = SelectInst::Create(Op0, Op1, Op2);
3530  return false;
3531}
3532
3533/// ParseVA_Arg
3534///   ::= 'va_arg' TypeAndValue ',' Type
3535bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3536  Value *Op;
3537  PATypeHolder EltTy(Type::getVoidTy(Context));
3538  LocTy TypeLoc;
3539  if (ParseTypeAndValue(Op, PFS) ||
3540      ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3541      ParseType(EltTy, TypeLoc))
3542    return true;
3543
3544  if (!EltTy->isFirstClassType())
3545    return Error(TypeLoc, "va_arg requires operand with first class type");
3546
3547  Inst = new VAArgInst(Op, EltTy);
3548  return false;
3549}
3550
3551/// ParseExtractElement
3552///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
3553bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3554  LocTy Loc;
3555  Value *Op0, *Op1;
3556  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3557      ParseToken(lltok::comma, "expected ',' after extract value") ||
3558      ParseTypeAndValue(Op1, PFS))
3559    return true;
3560
3561  if (!ExtractElementInst::isValidOperands(Op0, Op1))
3562    return Error(Loc, "invalid extractelement operands");
3563
3564  Inst = ExtractElementInst::Create(Op0, Op1);
3565  return false;
3566}
3567
3568/// ParseInsertElement
3569///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3570bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3571  LocTy Loc;
3572  Value *Op0, *Op1, *Op2;
3573  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3574      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3575      ParseTypeAndValue(Op1, PFS) ||
3576      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3577      ParseTypeAndValue(Op2, PFS))
3578    return true;
3579
3580  if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3581    return Error(Loc, "invalid insertelement operands");
3582
3583  Inst = InsertElementInst::Create(Op0, Op1, Op2);
3584  return false;
3585}
3586
3587/// ParseShuffleVector
3588///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3589bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3590  LocTy Loc;
3591  Value *Op0, *Op1, *Op2;
3592  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3593      ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3594      ParseTypeAndValue(Op1, PFS) ||
3595      ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3596      ParseTypeAndValue(Op2, PFS))
3597    return true;
3598
3599  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3600    return Error(Loc, "invalid extractelement operands");
3601
3602  Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3603  return false;
3604}
3605
3606/// ParsePHI
3607///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
3608int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3609  PATypeHolder Ty(Type::getVoidTy(Context));
3610  Value *Op0, *Op1;
3611  LocTy TypeLoc = Lex.getLoc();
3612
3613  if (ParseType(Ty) ||
3614      ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3615      ParseValue(Ty, Op0, PFS) ||
3616      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3617      ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3618      ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3619    return true;
3620
3621  bool AteExtraComma = false;
3622  SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3623  while (1) {
3624    PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3625
3626    if (!EatIfPresent(lltok::comma))
3627      break;
3628
3629    if (Lex.getKind() == lltok::MetadataVar) {
3630      AteExtraComma = true;
3631      break;
3632    }
3633
3634    if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3635        ParseValue(Ty, Op0, PFS) ||
3636        ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3637        ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3638        ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3639      return true;
3640  }
3641
3642  if (!Ty->isFirstClassType())
3643    return Error(TypeLoc, "phi node must have first class type");
3644
3645  PHINode *PN = PHINode::Create(Ty);
3646  PN->reserveOperandSpace(PHIVals.size());
3647  for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3648    PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3649  Inst = PN;
3650  return AteExtraComma ? InstExtraComma : InstNormal;
3651}
3652
3653/// ParseCall
3654///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3655///       ParameterList OptionalAttrs
3656bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3657                         bool isTail) {
3658  unsigned RetAttrs, FnAttrs;
3659  CallingConv::ID CC;
3660  PATypeHolder RetType(Type::getVoidTy(Context));
3661  LocTy RetTypeLoc;
3662  ValID CalleeID;
3663  SmallVector<ParamInfo, 16> ArgList;
3664  LocTy CallLoc = Lex.getLoc();
3665
3666  if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3667      ParseOptionalCallingConv(CC) ||
3668      ParseOptionalAttrs(RetAttrs, 1) ||
3669      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3670      ParseValID(CalleeID) ||
3671      ParseParameterList(ArgList, PFS) ||
3672      ParseOptionalAttrs(FnAttrs, 2))
3673    return true;
3674
3675  // If RetType is a non-function pointer type, then this is the short syntax
3676  // for the call, which means that RetType is just the return type.  Infer the
3677  // rest of the function argument types from the arguments that are present.
3678  const PointerType *PFTy = 0;
3679  const FunctionType *Ty = 0;
3680  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3681      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3682    // Pull out the types of all of the arguments...
3683    std::vector<const Type*> ParamTypes;
3684    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3685      ParamTypes.push_back(ArgList[i].V->getType());
3686
3687    if (!FunctionType::isValidReturnType(RetType))
3688      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3689
3690    Ty = FunctionType::get(RetType, ParamTypes, false);
3691    PFTy = PointerType::getUnqual(Ty);
3692  }
3693
3694  // Look up the callee.
3695  Value *Callee;
3696  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3697
3698  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3699  // function attributes.
3700  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3701  if (FnAttrs & ObsoleteFuncAttrs) {
3702    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3703    FnAttrs &= ~ObsoleteFuncAttrs;
3704  }
3705
3706  // Set up the Attributes for the function.
3707  SmallVector<AttributeWithIndex, 8> Attrs;
3708  if (RetAttrs != Attribute::None)
3709    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3710
3711  SmallVector<Value*, 8> Args;
3712
3713  // Loop through FunctionType's arguments and ensure they are specified
3714  // correctly.  Also, gather any parameter attributes.
3715  FunctionType::param_iterator I = Ty->param_begin();
3716  FunctionType::param_iterator E = Ty->param_end();
3717  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3718    const Type *ExpectedTy = 0;
3719    if (I != E) {
3720      ExpectedTy = *I++;
3721    } else if (!Ty->isVarArg()) {
3722      return Error(ArgList[i].Loc, "too many arguments specified");
3723    }
3724
3725    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3726      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3727                   ExpectedTy->getDescription() + "'");
3728    Args.push_back(ArgList[i].V);
3729    if (ArgList[i].Attrs != Attribute::None)
3730      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3731  }
3732
3733  if (I != E)
3734    return Error(CallLoc, "not enough parameters specified for call");
3735
3736  if (FnAttrs != Attribute::None)
3737    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3738
3739  // Finish off the Attributes and check them
3740  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3741
3742  CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
3743  CI->setTailCall(isTail);
3744  CI->setCallingConv(CC);
3745  CI->setAttributes(PAL);
3746  Inst = CI;
3747  return false;
3748}
3749
3750//===----------------------------------------------------------------------===//
3751// Memory Instructions.
3752//===----------------------------------------------------------------------===//
3753
3754/// ParseAlloc
3755///   ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalInfo)?
3756///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
3757int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
3758                         BasicBlock* BB, bool isAlloca) {
3759  PATypeHolder Ty(Type::getVoidTy(Context));
3760  Value *Size = 0;
3761  LocTy SizeLoc;
3762  unsigned Alignment = 0;
3763  if (ParseType(Ty)) return true;
3764
3765  bool AteExtraComma = false;
3766  if (EatIfPresent(lltok::comma)) {
3767    if (Lex.getKind() == lltok::kw_align) {
3768      if (ParseOptionalAlignment(Alignment)) return true;
3769    } else if (Lex.getKind() == lltok::MetadataVar) {
3770      AteExtraComma = true;
3771    } else {
3772      if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
3773          ParseOptionalCommaAlign(Alignment, AteExtraComma))
3774        return true;
3775    }
3776  }
3777
3778  if (Size && !Size->getType()->isIntegerTy())
3779    return Error(SizeLoc, "element count must have integer type");
3780
3781  if (isAlloca) {
3782    Inst = new AllocaInst(Ty, Size, Alignment);
3783    return AteExtraComma ? InstExtraComma : InstNormal;
3784  }
3785
3786  // Autoupgrade old malloc instruction to malloc call.
3787  // FIXME: Remove in LLVM 3.0.
3788  if (Size && !Size->getType()->isIntegerTy(32))
3789    return Error(SizeLoc, "element count must be i32");
3790  const Type *IntPtrTy = Type::getInt32Ty(Context);
3791  Constant *AllocSize = ConstantExpr::getSizeOf(Ty);
3792  AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, IntPtrTy);
3793  if (!MallocF)
3794    // Prototype malloc as "void *(int32)".
3795    // This function is renamed as "malloc" in ValidateEndOfModule().
3796    MallocF = cast<Function>(
3797       M->getOrInsertFunction("", Type::getInt8PtrTy(Context), IntPtrTy, NULL));
3798  Inst = CallInst::CreateMalloc(BB, IntPtrTy, Ty, AllocSize, Size, MallocF);
3799return AteExtraComma ? InstExtraComma : InstNormal;
3800}
3801
3802/// ParseFree
3803///   ::= 'free' TypeAndValue
3804bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS,
3805                         BasicBlock* BB) {
3806  Value *Val; LocTy Loc;
3807  if (ParseTypeAndValue(Val, Loc, PFS)) return true;
3808  if (!Val->getType()->isPointerTy())
3809    return Error(Loc, "operand to free must be a pointer");
3810  Inst = CallInst::CreateFree(Val, BB);
3811  return false;
3812}
3813
3814/// ParseLoad
3815///   ::= 'volatile'? 'load' TypeAndValue (',' OptionalInfo)?
3816int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
3817                        bool isVolatile) {
3818  Value *Val; LocTy Loc;
3819  unsigned Alignment = 0;
3820  bool AteExtraComma = false;
3821  if (ParseTypeAndValue(Val, Loc, PFS) ||
3822      ParseOptionalCommaAlign(Alignment, AteExtraComma))
3823    return true;
3824
3825  if (!Val->getType()->isPointerTy() ||
3826      !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3827    return Error(Loc, "load operand must be a pointer to a first class type");
3828
3829  Inst = new LoadInst(Val, "", isVolatile, Alignment);
3830  return AteExtraComma ? InstExtraComma : InstNormal;
3831}
3832
3833/// ParseStore
3834///   ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3835int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
3836                         bool isVolatile) {
3837  Value *Val, *Ptr; LocTy Loc, PtrLoc;
3838  unsigned Alignment = 0;
3839  bool AteExtraComma = false;
3840  if (ParseTypeAndValue(Val, Loc, PFS) ||
3841      ParseToken(lltok::comma, "expected ',' after store operand") ||
3842      ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3843      ParseOptionalCommaAlign(Alignment, AteExtraComma))
3844    return true;
3845
3846  if (!Ptr->getType()->isPointerTy())
3847    return Error(PtrLoc, "store operand must be a pointer");
3848  if (!Val->getType()->isFirstClassType())
3849    return Error(Loc, "store operand must be a first class value");
3850  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3851    return Error(Loc, "stored value and pointer type do not match");
3852
3853  Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
3854  return AteExtraComma ? InstExtraComma : InstNormal;
3855}
3856
3857/// ParseGetResult
3858///   ::= 'getresult' TypeAndValue ',' i32
3859/// FIXME: Remove support for getresult in LLVM 3.0
3860bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
3861  Value *Val; LocTy ValLoc, EltLoc;
3862  unsigned Element;
3863  if (ParseTypeAndValue(Val, ValLoc, PFS) ||
3864      ParseToken(lltok::comma, "expected ',' after getresult operand") ||
3865      ParseUInt32(Element, EltLoc))
3866    return true;
3867
3868  if (!Val->getType()->isStructTy() && !Val->getType()->isArrayTy())
3869    return Error(ValLoc, "getresult inst requires an aggregate operand");
3870  if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
3871    return Error(EltLoc, "invalid getresult index for value");
3872  Inst = ExtractValueInst::Create(Val, Element);
3873  return false;
3874}
3875
3876/// ParseGetElementPtr
3877///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
3878int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3879  Value *Ptr, *Val; LocTy Loc, EltLoc;
3880
3881  bool InBounds = EatIfPresent(lltok::kw_inbounds);
3882
3883  if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3884
3885  if (!Ptr->getType()->isPointerTy())
3886    return Error(Loc, "base of getelementptr must be a pointer");
3887
3888  SmallVector<Value*, 16> Indices;
3889  bool AteExtraComma = false;
3890  while (EatIfPresent(lltok::comma)) {
3891    if (Lex.getKind() == lltok::MetadataVar) {
3892      AteExtraComma = true;
3893      break;
3894    }
3895    if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3896    if (!Val->getType()->isIntegerTy())
3897      return Error(EltLoc, "getelementptr index must be an integer");
3898    Indices.push_back(Val);
3899  }
3900
3901  if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
3902                                         Indices.begin(), Indices.end()))
3903    return Error(Loc, "invalid getelementptr indices");
3904  Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
3905  if (InBounds)
3906    cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
3907  return AteExtraComma ? InstExtraComma : InstNormal;
3908}
3909
3910/// ParseExtractValue
3911///   ::= 'extractvalue' TypeAndValue (',' uint32)+
3912int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3913  Value *Val; LocTy Loc;
3914  SmallVector<unsigned, 4> Indices;
3915  bool AteExtraComma;
3916  if (ParseTypeAndValue(Val, Loc, PFS) ||
3917      ParseIndexList(Indices, AteExtraComma))
3918    return true;
3919
3920  if (!Val->getType()->isAggregateType())
3921    return Error(Loc, "extractvalue operand must be aggregate type");
3922
3923  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
3924                                        Indices.end()))
3925    return Error(Loc, "invalid indices for extractvalue");
3926  Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end());
3927  return AteExtraComma ? InstExtraComma : InstNormal;
3928}
3929
3930/// ParseInsertValue
3931///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3932int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3933  Value *Val0, *Val1; LocTy Loc0, Loc1;
3934  SmallVector<unsigned, 4> Indices;
3935  bool AteExtraComma;
3936  if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3937      ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3938      ParseTypeAndValue(Val1, Loc1, PFS) ||
3939      ParseIndexList(Indices, AteExtraComma))
3940    return true;
3941
3942  if (!Val0->getType()->isAggregateType())
3943    return Error(Loc0, "insertvalue operand must be aggregate type");
3944
3945  if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
3946                                        Indices.end()))
3947    return Error(Loc0, "invalid indices for insertvalue");
3948  Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end());
3949  return AteExtraComma ? InstExtraComma : InstNormal;
3950}
3951
3952//===----------------------------------------------------------------------===//
3953// Embedded metadata.
3954//===----------------------------------------------------------------------===//
3955
3956/// ParseMDNodeVector
3957///   ::= Element (',' Element)*
3958/// Element
3959///   ::= 'null' | TypeAndValue
3960bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts,
3961                                 PerFunctionState *PFS) {
3962  // Check for an empty list.
3963  if (Lex.getKind() == lltok::rbrace)
3964    return false;
3965
3966  do {
3967    // Null is a special case since it is typeless.
3968    if (EatIfPresent(lltok::kw_null)) {
3969      Elts.push_back(0);
3970      continue;
3971    }
3972
3973    Value *V = 0;
3974    PATypeHolder Ty(Type::getVoidTy(Context));
3975    ValID ID;
3976    if (ParseType(Ty) || ParseValID(ID, PFS) ||
3977        ConvertValIDToValue(Ty, ID, V, PFS))
3978      return true;
3979
3980    Elts.push_back(V);
3981  } while (EatIfPresent(lltok::comma));
3982
3983  return false;
3984}
3985