Analysis.cpp revision cd6015cc8a0da3981f298c2e92b145fe11e838e0
1//===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file defines several CodeGen-specific LLVM IR analysis utilties. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/Analysis.h" 15#include "llvm/Analysis/ValueTracking.h" 16#include "llvm/DerivedTypes.h" 17#include "llvm/Function.h" 18#include "llvm/Instructions.h" 19#include "llvm/IntrinsicInst.h" 20#include "llvm/LLVMContext.h" 21#include "llvm/Module.h" 22#include "llvm/CodeGen/MachineFunction.h" 23#include "llvm/CodeGen/SelectionDAG.h" 24#include "llvm/Target/TargetData.h" 25#include "llvm/Target/TargetLowering.h" 26#include "llvm/Target/TargetOptions.h" 27#include "llvm/Support/ErrorHandling.h" 28#include "llvm/Support/MathExtras.h" 29using namespace llvm; 30 31/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence 32/// of insertvalue or extractvalue indices that identify a member, return 33/// the linearized index of the start of the member. 34/// 35unsigned llvm::ComputeLinearIndex(Type *Ty, 36 const unsigned *Indices, 37 const unsigned *IndicesEnd, 38 unsigned CurIndex) { 39 // Base case: We're done. 40 if (Indices && Indices == IndicesEnd) 41 return CurIndex; 42 43 // Given a struct type, recursively traverse the elements. 44 if (StructType *STy = dyn_cast<StructType>(Ty)) { 45 for (StructType::element_iterator EB = STy->element_begin(), 46 EI = EB, 47 EE = STy->element_end(); 48 EI != EE; ++EI) { 49 if (Indices && *Indices == unsigned(EI - EB)) 50 return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex); 51 CurIndex = ComputeLinearIndex(*EI, 0, 0, CurIndex); 52 } 53 return CurIndex; 54 } 55 // Given an array type, recursively traverse the elements. 56 else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 57 Type *EltTy = ATy->getElementType(); 58 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) { 59 if (Indices && *Indices == i) 60 return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex); 61 CurIndex = ComputeLinearIndex(EltTy, 0, 0, CurIndex); 62 } 63 return CurIndex; 64 } 65 // We haven't found the type we're looking for, so keep searching. 66 return CurIndex + 1; 67} 68 69/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of 70/// EVTs that represent all the individual underlying 71/// non-aggregate types that comprise it. 72/// 73/// If Offsets is non-null, it points to a vector to be filled in 74/// with the in-memory offsets of each of the individual values. 75/// 76void llvm::ComputeValueVTs(const TargetLowering &TLI, Type *Ty, 77 SmallVectorImpl<EVT> &ValueVTs, 78 SmallVectorImpl<uint64_t> *Offsets, 79 uint64_t StartingOffset) { 80 // Given a struct type, recursively traverse the elements. 81 if (StructType *STy = dyn_cast<StructType>(Ty)) { 82 const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy); 83 for (StructType::element_iterator EB = STy->element_begin(), 84 EI = EB, 85 EE = STy->element_end(); 86 EI != EE; ++EI) 87 ComputeValueVTs(TLI, *EI, ValueVTs, Offsets, 88 StartingOffset + SL->getElementOffset(EI - EB)); 89 return; 90 } 91 // Given an array type, recursively traverse the elements. 92 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 93 Type *EltTy = ATy->getElementType(); 94 uint64_t EltSize = TLI.getTargetData()->getTypeAllocSize(EltTy); 95 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) 96 ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets, 97 StartingOffset + i * EltSize); 98 return; 99 } 100 // Interpret void as zero return values. 101 if (Ty->isVoidTy()) 102 return; 103 // Base case: we can get an EVT for this LLVM IR type. 104 ValueVTs.push_back(TLI.getValueType(Ty)); 105 if (Offsets) 106 Offsets->push_back(StartingOffset); 107} 108 109/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. 110GlobalVariable *llvm::ExtractTypeInfo(Value *V) { 111 V = V->stripPointerCasts(); 112 GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 113 114 if (GV && GV->getName() == "llvm.eh.catch.all.value") { 115 assert(GV->hasInitializer() && 116 "The EH catch-all value must have an initializer"); 117 Value *Init = GV->getInitializer(); 118 GV = dyn_cast<GlobalVariable>(Init); 119 if (!GV) V = cast<ConstantPointerNull>(Init); 120 } 121 122 assert((GV || isa<ConstantPointerNull>(V)) && 123 "TypeInfo must be a global variable or NULL"); 124 return GV; 125} 126 127/// hasInlineAsmMemConstraint - Return true if the inline asm instruction being 128/// processed uses a memory 'm' constraint. 129bool 130llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos, 131 const TargetLowering &TLI) { 132 for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { 133 InlineAsm::ConstraintInfo &CI = CInfos[i]; 134 for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { 135 TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); 136 if (CType == TargetLowering::C_Memory) 137 return true; 138 } 139 140 // Indirect operand accesses access memory. 141 if (CI.isIndirect) 142 return true; 143 } 144 145 return false; 146} 147 148/// getFCmpCondCode - Return the ISD condition code corresponding to 149/// the given LLVM IR floating-point condition code. This includes 150/// consideration of global floating-point math flags. 151/// 152ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) { 153 switch (Pred) { 154 case FCmpInst::FCMP_FALSE: return ISD::SETFALSE; 155 case FCmpInst::FCMP_OEQ: return ISD::SETOEQ; 156 case FCmpInst::FCMP_OGT: return ISD::SETOGT; 157 case FCmpInst::FCMP_OGE: return ISD::SETOGE; 158 case FCmpInst::FCMP_OLT: return ISD::SETOLT; 159 case FCmpInst::FCMP_OLE: return ISD::SETOLE; 160 case FCmpInst::FCMP_ONE: return ISD::SETONE; 161 case FCmpInst::FCMP_ORD: return ISD::SETO; 162 case FCmpInst::FCMP_UNO: return ISD::SETUO; 163 case FCmpInst::FCMP_UEQ: return ISD::SETUEQ; 164 case FCmpInst::FCMP_UGT: return ISD::SETUGT; 165 case FCmpInst::FCMP_UGE: return ISD::SETUGE; 166 case FCmpInst::FCMP_ULT: return ISD::SETULT; 167 case FCmpInst::FCMP_ULE: return ISD::SETULE; 168 case FCmpInst::FCMP_UNE: return ISD::SETUNE; 169 case FCmpInst::FCMP_TRUE: return ISD::SETTRUE; 170 default: llvm_unreachable("Invalid FCmp predicate opcode!"); 171 } 172} 173 174ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) { 175 switch (CC) { 176 case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ; 177 case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE; 178 case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT; 179 case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE; 180 case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT; 181 case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE; 182 default: return CC; 183 } 184} 185 186/// getICmpCondCode - Return the ISD condition code corresponding to 187/// the given LLVM IR integer condition code. 188/// 189ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) { 190 switch (Pred) { 191 case ICmpInst::ICMP_EQ: return ISD::SETEQ; 192 case ICmpInst::ICMP_NE: return ISD::SETNE; 193 case ICmpInst::ICMP_SLE: return ISD::SETLE; 194 case ICmpInst::ICMP_ULE: return ISD::SETULE; 195 case ICmpInst::ICMP_SGE: return ISD::SETGE; 196 case ICmpInst::ICMP_UGE: return ISD::SETUGE; 197 case ICmpInst::ICMP_SLT: return ISD::SETLT; 198 case ICmpInst::ICMP_ULT: return ISD::SETULT; 199 case ICmpInst::ICMP_SGT: return ISD::SETGT; 200 case ICmpInst::ICMP_UGT: return ISD::SETUGT; 201 default: 202 llvm_unreachable("Invalid ICmp predicate opcode!"); 203 } 204} 205 206 207/// getNoopInput - If V is a noop (i.e., lowers to no machine code), look 208/// through it (and any transitive noop operands to it) and return its input 209/// value. This is used to determine if a tail call can be formed. 210/// 211static const Value *getNoopInput(const Value *V, const TargetLowering &TLI) { 212 // If V is not an instruction, it can't be looked through. 213 const Instruction *U = dyn_cast<Instruction>(V); 214 if (U == 0 || !U->hasOneUse()) return V; 215 216 // Look through truly no-op truncates. 217 if (isa<TruncInst>(U) && 218 TLI.isTruncateFree(U->getOperand(0)->getType(), U->getType())) 219 return getNoopInput(U->getOperand(0), TLI); 220 221 // Look through truly no-op bitcasts. 222 if (isa<BitCastInst>(U)) { 223 Value *Op = U->getOperand(0); 224 if (Op->getType() == U->getType() || // No type change. 225 // Pointer to pointer cast. 226 (Op->getType()->isPointerTy() && U->getType()->isPointerTy())) 227 return getNoopInput(Op, TLI); 228 } 229 230 // Otherwise it's not something we can look through. 231 return V; 232} 233 234 235/// Test if the given instruction is in a position to be optimized 236/// with a tail-call. This roughly means that it's in a block with 237/// a return and there's nothing that needs to be scheduled 238/// between it and the return. 239/// 240/// This function only tests target-independent requirements. 241bool llvm::isInTailCallPosition(ImmutableCallSite CS, Attributes CalleeRetAttr, 242 const TargetLowering &TLI) { 243 const Instruction *I = CS.getInstruction(); 244 const BasicBlock *ExitBB = I->getParent(); 245 const TerminatorInst *Term = ExitBB->getTerminator(); 246 const ReturnInst *Ret = dyn_cast<ReturnInst>(Term); 247 248 // The block must end in a return statement or unreachable. 249 // 250 // FIXME: Decline tailcall if it's not guaranteed and if the block ends in 251 // an unreachable, for now. The way tailcall optimization is currently 252 // implemented means it will add an epilogue followed by a jump. That is 253 // not profitable. Also, if the callee is a special function (e.g. 254 // longjmp on x86), it can end up causing miscompilation that has not 255 // been fully understood. 256 if (!Ret && 257 (!TLI.getTargetMachine().Options.GuaranteedTailCallOpt || 258 !isa<UnreachableInst>(Term))) 259 return false; 260 261 // If I will have a chain, make sure no other instruction that will have a 262 // chain interposes between I and the return. 263 if (I->mayHaveSideEffects() || I->mayReadFromMemory() || 264 !isSafeToSpeculativelyExecute(I)) 265 for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ; 266 --BBI) { 267 if (&*BBI == I) 268 break; 269 // Debug info intrinsics do not get in the way of tail call optimization. 270 if (isa<DbgInfoIntrinsic>(BBI)) 271 continue; 272 if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || 273 !isSafeToSpeculativelyExecute(BBI)) 274 return false; 275 } 276 277 // If the block ends with a void return or unreachable, it doesn't matter 278 // what the call's return type is. 279 if (!Ret || Ret->getNumOperands() == 0) return true; 280 281 // If the return value is undef, it doesn't matter what the call's 282 // return type is. 283 if (isa<UndefValue>(Ret->getOperand(0))) return true; 284 285 // Conservatively require the attributes of the call to match those of 286 // the return. Ignore noalias because it doesn't affect the call sequence. 287 const Function *F = ExitBB->getParent(); 288 Attributes CallerRetAttr = F->getAttributes().getRetAttributes(); 289 if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias) 290 return false; 291 292 // It's not safe to eliminate the sign / zero extension of the return value. 293 if ((CallerRetAttr & Attribute::ZExt) || (CallerRetAttr & Attribute::SExt)) 294 return false; 295 296 // Otherwise, make sure the unmodified return value of I is the return value. 297 return getNoopInput(Ret->getOperand(0), TLI) == I; 298} 299 300bool llvm::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 301 SDValue &Chain, const TargetLowering &TLI) { 302 const Function *F = DAG.getMachineFunction().getFunction(); 303 304 // Conservatively require the attributes of the call to match those of 305 // the return. Ignore noalias because it doesn't affect the call sequence. 306 Attributes CallerRetAttr = F->getAttributes().getRetAttributes(); 307 if (CallerRetAttr & ~Attribute::NoAlias) 308 return false; 309 310 // It's not safe to eliminate the sign / zero extension of the return value. 311 if ((CallerRetAttr & Attribute::ZExt) || (CallerRetAttr & Attribute::SExt)) 312 return false; 313 314 // Check if the only use is a function return node. 315 return TLI.isUsedByReturnOnly(Node, Chain); 316} 317