Analysis.cpp revision cd6015cc8a0da3981f298c2e92b145fe11e838e0
1//===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines several CodeGen-specific LLVM IR analysis utilties.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/Analysis.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Function.h"
18#include "llvm/Instructions.h"
19#include "llvm/IntrinsicInst.h"
20#include "llvm/LLVMContext.h"
21#include "llvm/Module.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/SelectionDAG.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/Target/TargetLowering.h"
26#include "llvm/Target/TargetOptions.h"
27#include "llvm/Support/ErrorHandling.h"
28#include "llvm/Support/MathExtras.h"
29using namespace llvm;
30
31/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
32/// of insertvalue or extractvalue indices that identify a member, return
33/// the linearized index of the start of the member.
34///
35unsigned llvm::ComputeLinearIndex(Type *Ty,
36                                  const unsigned *Indices,
37                                  const unsigned *IndicesEnd,
38                                  unsigned CurIndex) {
39  // Base case: We're done.
40  if (Indices && Indices == IndicesEnd)
41    return CurIndex;
42
43  // Given a struct type, recursively traverse the elements.
44  if (StructType *STy = dyn_cast<StructType>(Ty)) {
45    for (StructType::element_iterator EB = STy->element_begin(),
46                                      EI = EB,
47                                      EE = STy->element_end();
48        EI != EE; ++EI) {
49      if (Indices && *Indices == unsigned(EI - EB))
50        return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex);
51      CurIndex = ComputeLinearIndex(*EI, 0, 0, CurIndex);
52    }
53    return CurIndex;
54  }
55  // Given an array type, recursively traverse the elements.
56  else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
57    Type *EltTy = ATy->getElementType();
58    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
59      if (Indices && *Indices == i)
60        return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex);
61      CurIndex = ComputeLinearIndex(EltTy, 0, 0, CurIndex);
62    }
63    return CurIndex;
64  }
65  // We haven't found the type we're looking for, so keep searching.
66  return CurIndex + 1;
67}
68
69/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
70/// EVTs that represent all the individual underlying
71/// non-aggregate types that comprise it.
72///
73/// If Offsets is non-null, it points to a vector to be filled in
74/// with the in-memory offsets of each of the individual values.
75///
76void llvm::ComputeValueVTs(const TargetLowering &TLI, Type *Ty,
77                           SmallVectorImpl<EVT> &ValueVTs,
78                           SmallVectorImpl<uint64_t> *Offsets,
79                           uint64_t StartingOffset) {
80  // Given a struct type, recursively traverse the elements.
81  if (StructType *STy = dyn_cast<StructType>(Ty)) {
82    const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy);
83    for (StructType::element_iterator EB = STy->element_begin(),
84                                      EI = EB,
85                                      EE = STy->element_end();
86         EI != EE; ++EI)
87      ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
88                      StartingOffset + SL->getElementOffset(EI - EB));
89    return;
90  }
91  // Given an array type, recursively traverse the elements.
92  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
93    Type *EltTy = ATy->getElementType();
94    uint64_t EltSize = TLI.getTargetData()->getTypeAllocSize(EltTy);
95    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
96      ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
97                      StartingOffset + i * EltSize);
98    return;
99  }
100  // Interpret void as zero return values.
101  if (Ty->isVoidTy())
102    return;
103  // Base case: we can get an EVT for this LLVM IR type.
104  ValueVTs.push_back(TLI.getValueType(Ty));
105  if (Offsets)
106    Offsets->push_back(StartingOffset);
107}
108
109/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
110GlobalVariable *llvm::ExtractTypeInfo(Value *V) {
111  V = V->stripPointerCasts();
112  GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
113
114  if (GV && GV->getName() == "llvm.eh.catch.all.value") {
115    assert(GV->hasInitializer() &&
116           "The EH catch-all value must have an initializer");
117    Value *Init = GV->getInitializer();
118    GV = dyn_cast<GlobalVariable>(Init);
119    if (!GV) V = cast<ConstantPointerNull>(Init);
120  }
121
122  assert((GV || isa<ConstantPointerNull>(V)) &&
123         "TypeInfo must be a global variable or NULL");
124  return GV;
125}
126
127/// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
128/// processed uses a memory 'm' constraint.
129bool
130llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos,
131                                const TargetLowering &TLI) {
132  for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
133    InlineAsm::ConstraintInfo &CI = CInfos[i];
134    for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
135      TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
136      if (CType == TargetLowering::C_Memory)
137        return true;
138    }
139
140    // Indirect operand accesses access memory.
141    if (CI.isIndirect)
142      return true;
143  }
144
145  return false;
146}
147
148/// getFCmpCondCode - Return the ISD condition code corresponding to
149/// the given LLVM IR floating-point condition code.  This includes
150/// consideration of global floating-point math flags.
151///
152ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
153  switch (Pred) {
154  case FCmpInst::FCMP_FALSE: return ISD::SETFALSE;
155  case FCmpInst::FCMP_OEQ:   return ISD::SETOEQ;
156  case FCmpInst::FCMP_OGT:   return ISD::SETOGT;
157  case FCmpInst::FCMP_OGE:   return ISD::SETOGE;
158  case FCmpInst::FCMP_OLT:   return ISD::SETOLT;
159  case FCmpInst::FCMP_OLE:   return ISD::SETOLE;
160  case FCmpInst::FCMP_ONE:   return ISD::SETONE;
161  case FCmpInst::FCMP_ORD:   return ISD::SETO;
162  case FCmpInst::FCMP_UNO:   return ISD::SETUO;
163  case FCmpInst::FCMP_UEQ:   return ISD::SETUEQ;
164  case FCmpInst::FCMP_UGT:   return ISD::SETUGT;
165  case FCmpInst::FCMP_UGE:   return ISD::SETUGE;
166  case FCmpInst::FCMP_ULT:   return ISD::SETULT;
167  case FCmpInst::FCMP_ULE:   return ISD::SETULE;
168  case FCmpInst::FCMP_UNE:   return ISD::SETUNE;
169  case FCmpInst::FCMP_TRUE:  return ISD::SETTRUE;
170  default: llvm_unreachable("Invalid FCmp predicate opcode!");
171  }
172}
173
174ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) {
175  switch (CC) {
176    case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ;
177    case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE;
178    case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT;
179    case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE;
180    case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT;
181    case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE;
182    default: return CC;
183  }
184}
185
186/// getICmpCondCode - Return the ISD condition code corresponding to
187/// the given LLVM IR integer condition code.
188///
189ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
190  switch (Pred) {
191  case ICmpInst::ICMP_EQ:  return ISD::SETEQ;
192  case ICmpInst::ICMP_NE:  return ISD::SETNE;
193  case ICmpInst::ICMP_SLE: return ISD::SETLE;
194  case ICmpInst::ICMP_ULE: return ISD::SETULE;
195  case ICmpInst::ICMP_SGE: return ISD::SETGE;
196  case ICmpInst::ICMP_UGE: return ISD::SETUGE;
197  case ICmpInst::ICMP_SLT: return ISD::SETLT;
198  case ICmpInst::ICMP_ULT: return ISD::SETULT;
199  case ICmpInst::ICMP_SGT: return ISD::SETGT;
200  case ICmpInst::ICMP_UGT: return ISD::SETUGT;
201  default:
202    llvm_unreachable("Invalid ICmp predicate opcode!");
203  }
204}
205
206
207/// getNoopInput - If V is a noop (i.e., lowers to no machine code), look
208/// through it (and any transitive noop operands to it) and return its input
209/// value.  This is used to determine if a tail call can be formed.
210///
211static const Value *getNoopInput(const Value *V, const TargetLowering &TLI) {
212  // If V is not an instruction, it can't be looked through.
213  const Instruction *U = dyn_cast<Instruction>(V);
214  if (U == 0 || !U->hasOneUse()) return V;
215
216  // Look through truly no-op truncates.
217  if (isa<TruncInst>(U) &&
218      TLI.isTruncateFree(U->getOperand(0)->getType(), U->getType()))
219    return getNoopInput(U->getOperand(0), TLI);
220
221  // Look through truly no-op bitcasts.
222  if (isa<BitCastInst>(U)) {
223    Value *Op = U->getOperand(0);
224    if (Op->getType() == U->getType() ||  // No type change.
225        // Pointer to pointer cast.
226        (Op->getType()->isPointerTy() && U->getType()->isPointerTy()))
227      return getNoopInput(Op, TLI);
228  }
229
230  // Otherwise it's not something we can look through.
231  return V;
232}
233
234
235/// Test if the given instruction is in a position to be optimized
236/// with a tail-call. This roughly means that it's in a block with
237/// a return and there's nothing that needs to be scheduled
238/// between it and the return.
239///
240/// This function only tests target-independent requirements.
241bool llvm::isInTailCallPosition(ImmutableCallSite CS, Attributes CalleeRetAttr,
242                                const TargetLowering &TLI) {
243  const Instruction *I = CS.getInstruction();
244  const BasicBlock *ExitBB = I->getParent();
245  const TerminatorInst *Term = ExitBB->getTerminator();
246  const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
247
248  // The block must end in a return statement or unreachable.
249  //
250  // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
251  // an unreachable, for now. The way tailcall optimization is currently
252  // implemented means it will add an epilogue followed by a jump. That is
253  // not profitable. Also, if the callee is a special function (e.g.
254  // longjmp on x86), it can end up causing miscompilation that has not
255  // been fully understood.
256  if (!Ret &&
257      (!TLI.getTargetMachine().Options.GuaranteedTailCallOpt ||
258       !isa<UnreachableInst>(Term)))
259    return false;
260
261  // If I will have a chain, make sure no other instruction that will have a
262  // chain interposes between I and the return.
263  if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
264      !isSafeToSpeculativelyExecute(I))
265    for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ;
266         --BBI) {
267      if (&*BBI == I)
268        break;
269      // Debug info intrinsics do not get in the way of tail call optimization.
270      if (isa<DbgInfoIntrinsic>(BBI))
271        continue;
272      if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
273          !isSafeToSpeculativelyExecute(BBI))
274        return false;
275    }
276
277  // If the block ends with a void return or unreachable, it doesn't matter
278  // what the call's return type is.
279  if (!Ret || Ret->getNumOperands() == 0) return true;
280
281  // If the return value is undef, it doesn't matter what the call's
282  // return type is.
283  if (isa<UndefValue>(Ret->getOperand(0))) return true;
284
285  // Conservatively require the attributes of the call to match those of
286  // the return. Ignore noalias because it doesn't affect the call sequence.
287  const Function *F = ExitBB->getParent();
288  Attributes CallerRetAttr = F->getAttributes().getRetAttributes();
289  if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias)
290    return false;
291
292  // It's not safe to eliminate the sign / zero extension of the return value.
293  if ((CallerRetAttr & Attribute::ZExt) || (CallerRetAttr & Attribute::SExt))
294    return false;
295
296  // Otherwise, make sure the unmodified return value of I is the return value.
297  return getNoopInput(Ret->getOperand(0), TLI) == I;
298}
299
300bool llvm::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
301                                SDValue &Chain, const TargetLowering &TLI) {
302  const Function *F = DAG.getMachineFunction().getFunction();
303
304  // Conservatively require the attributes of the call to match those of
305  // the return. Ignore noalias because it doesn't affect the call sequence.
306  Attributes CallerRetAttr = F->getAttributes().getRetAttributes();
307  if (CallerRetAttr & ~Attribute::NoAlias)
308    return false;
309
310  // It's not safe to eliminate the sign / zero extension of the return value.
311  if ((CallerRetAttr & Attribute::ZExt) || (CallerRetAttr & Attribute::SExt))
312    return false;
313
314  // Check if the only use is a function return node.
315  return TLI.isUsedByReturnOnly(Node, Chain);
316}
317