LiveVariables.cpp revision 472405e0dc05f6fb8c09af00713ff893fff25b94
1//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file was developed by the LLVM research group and is distributed under 6// the University of Illinois Open Source License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the LiveVariable analysis pass. For each machine 11// instruction in the function, this pass calculates the set of registers that 12// are immediately dead after the instruction (i.e., the instruction calculates 13// the value, but it is never used) and the set of registers that are used by 14// the instruction, but are never used after the instruction (i.e., they are 15// killed). 16// 17// This class computes live variables using are sparse implementation based on 18// the machine code SSA form. This class computes live variable information for 19// each virtual and _register allocatable_ physical register in a function. It 20// uses the dominance properties of SSA form to efficiently compute live 21// variables for virtual registers, and assumes that physical registers are only 22// live within a single basic block (allowing it to do a single local analysis 23// to resolve physical register lifetimes in each basic block). If a physical 24// register is not register allocatable, it is not tracked. This is useful for 25// things like the stack pointer and condition codes. 26// 27//===----------------------------------------------------------------------===// 28 29#include "llvm/CodeGen/LiveVariables.h" 30#include "llvm/CodeGen/MachineInstr.h" 31#include "llvm/Target/MRegisterInfo.h" 32#include "llvm/Target/TargetInstrInfo.h" 33#include "llvm/Target/TargetMachine.h" 34#include "Support/DepthFirstIterator.h" 35#include "Support/STLExtras.h" 36using namespace llvm; 37 38static RegisterAnalysis<LiveVariables> X("livevars", "Live Variable Analysis"); 39 40LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) { 41 assert(MRegisterInfo::isVirtualRegister(RegIdx) && 42 "getVarInfo: not a virtual register!"); 43 RegIdx -= MRegisterInfo::FirstVirtualRegister; 44 if (RegIdx >= VirtRegInfo.size()) { 45 if (RegIdx >= 2*VirtRegInfo.size()) 46 VirtRegInfo.resize(RegIdx*2); 47 else 48 VirtRegInfo.resize(2*VirtRegInfo.size()); 49 } 50 return VirtRegInfo[RegIdx]; 51} 52 53 54 55void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo, 56 MachineBasicBlock *MBB) { 57 unsigned BBNum = MBB->getNumber(); 58 59 // Check to see if this basic block is one of the killing blocks. If so, 60 // remove it... 61 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 62 if (VRInfo.Kills[i].first == MBB) { 63 VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry 64 break; 65 } 66 67 if (MBB == VRInfo.DefInst->getParent()) return; // Terminate recursion 68 69 if (VRInfo.AliveBlocks.size() <= BBNum) 70 VRInfo.AliveBlocks.resize(BBNum+1); // Make space... 71 72 if (VRInfo.AliveBlocks[BBNum]) 73 return; // We already know the block is live 74 75 // Mark the variable known alive in this bb 76 VRInfo.AliveBlocks[BBNum] = true; 77 78 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), 79 E = MBB->pred_end(); PI != E; ++PI) 80 MarkVirtRegAliveInBlock(VRInfo, *PI); 81} 82 83void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB, 84 MachineInstr *MI) { 85 // Check to see if this basic block is already a kill block... 86 if (!VRInfo.Kills.empty() && VRInfo.Kills.back().first == MBB) { 87 // Yes, this register is killed in this basic block already. Increase the 88 // live range by updating the kill instruction. 89 VRInfo.Kills.back().second = MI; 90 return; 91 } 92 93#ifndef NDEBUG 94 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 95 assert(VRInfo.Kills[i].first != MBB && "entry should be at end!"); 96#endif 97 98 assert(MBB != VRInfo.DefInst->getParent() && 99 "Should have kill for defblock!"); 100 101 // Add a new kill entry for this basic block. 102 VRInfo.Kills.push_back(std::make_pair(MI->getParent(), MI)); 103 104 // Update all dominating blocks to mark them known live. 105 const BasicBlock *BB = MBB->getBasicBlock(); 106 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), 107 E = MBB->pred_end(); PI != E; ++PI) 108 MarkVirtRegAliveInBlock(VRInfo, *PI); 109} 110 111void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) { 112 PhysRegInfo[Reg] = MI; 113 PhysRegUsed[Reg] = true; 114 115 for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg); 116 unsigned Alias = *AliasSet; ++AliasSet) { 117 PhysRegInfo[Alias] = MI; 118 PhysRegUsed[Alias] = true; 119 } 120} 121 122void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) { 123 // Does this kill a previous version of this register? 124 if (MachineInstr *LastUse = PhysRegInfo[Reg]) { 125 if (PhysRegUsed[Reg]) 126 RegistersKilled.insert(std::make_pair(LastUse, Reg)); 127 else 128 RegistersDead.insert(std::make_pair(LastUse, Reg)); 129 } 130 PhysRegInfo[Reg] = MI; 131 PhysRegUsed[Reg] = false; 132 133 for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg); 134 unsigned Alias = *AliasSet; ++AliasSet) { 135 if (MachineInstr *LastUse = PhysRegInfo[Alias]) { 136 if (PhysRegUsed[Alias]) 137 RegistersKilled.insert(std::make_pair(LastUse, Alias)); 138 else 139 RegistersDead.insert(std::make_pair(LastUse, Alias)); 140 } 141 PhysRegInfo[Alias] = MI; 142 PhysRegUsed[Alias] = false; 143 } 144} 145 146bool LiveVariables::runOnMachineFunction(MachineFunction &MF) { 147 const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo(); 148 RegInfo = MF.getTarget().getRegisterInfo(); 149 assert(RegInfo && "Target doesn't have register information?"); 150 151 // First time though, initialize AllocatablePhysicalRegisters for the target 152 if (AllocatablePhysicalRegisters.empty()) { 153 // Make space, initializing to false... 154 AllocatablePhysicalRegisters.resize(RegInfo->getNumRegs()); 155 156 // Loop over all of the register classes... 157 for (MRegisterInfo::regclass_iterator RCI = RegInfo->regclass_begin(), 158 E = RegInfo->regclass_end(); RCI != E; ++RCI) 159 // Loop over all of the allocatable registers in the function... 160 for (TargetRegisterClass::iterator I = (*RCI)->allocation_order_begin(MF), 161 E = (*RCI)->allocation_order_end(MF); I != E; ++I) 162 AllocatablePhysicalRegisters[*I] = true; // The reg is allocatable! 163 } 164 165 // PhysRegInfo - Keep track of which instruction was the last use of a 166 // physical register. This is a purely local property, because all physical 167 // register references as presumed dead across basic blocks. 168 // 169 MachineInstr *PhysRegInfoA[RegInfo->getNumRegs()]; 170 bool PhysRegUsedA[RegInfo->getNumRegs()]; 171 std::fill(PhysRegInfoA, PhysRegInfoA+RegInfo->getNumRegs(), (MachineInstr*)0); 172 PhysRegInfo = PhysRegInfoA; 173 PhysRegUsed = PhysRegUsedA; 174 175 /// Get some space for a respectable number of registers... 176 VirtRegInfo.resize(64); 177 178 // Calculate live variable information in depth first order on the CFG of the 179 // function. This guarantees that we will see the definition of a virtual 180 // register before its uses due to dominance properties of SSA (except for PHI 181 // nodes, which are treated as a special case). 182 // 183 MachineBasicBlock *Entry = MF.begin(); 184 std::set<MachineBasicBlock*> Visited; 185 for (df_ext_iterator<MachineBasicBlock*> DFI = df_ext_begin(Entry, Visited), 186 E = df_ext_end(Entry, Visited); DFI != E; ++DFI) { 187 MachineBasicBlock *MBB = *DFI; 188 unsigned BBNum = MBB->getNumber(); 189 190 // Loop over all of the instructions, processing them. 191 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); 192 I != E; ++I) { 193 MachineInstr *MI = I; 194 const TargetInstrDescriptor &MID = TII.get(MI->getOpcode()); 195 196 // Process all of the operands of the instruction... 197 unsigned NumOperandsToProcess = MI->getNumOperands(); 198 199 // Unless it is a PHI node. In this case, ONLY process the DEF, not any 200 // of the uses. They will be handled in other basic blocks. 201 if (MI->getOpcode() == TargetInstrInfo::PHI) 202 NumOperandsToProcess = 1; 203 204 // Loop over implicit uses, using them. 205 for (const unsigned *ImplicitUses = MID.ImplicitUses; 206 *ImplicitUses; ++ImplicitUses) 207 HandlePhysRegUse(*ImplicitUses, MI); 208 209 // Process all explicit uses... 210 for (unsigned i = 0; i != NumOperandsToProcess; ++i) { 211 MachineOperand &MO = MI->getOperand(i); 212 if (MO.isUse() && MO.isRegister() && MO.getReg()) { 213 if (MRegisterInfo::isVirtualRegister(MO.getReg())){ 214 HandleVirtRegUse(getVarInfo(MO.getReg()), MBB, MI); 215 } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) && 216 AllocatablePhysicalRegisters[MO.getReg()]) { 217 HandlePhysRegUse(MO.getReg(), MI); 218 } 219 } 220 } 221 222 // Loop over implicit defs, defining them. 223 for (const unsigned *ImplicitDefs = MID.ImplicitDefs; 224 *ImplicitDefs; ++ImplicitDefs) 225 HandlePhysRegDef(*ImplicitDefs, MI); 226 227 // Process all explicit defs... 228 for (unsigned i = 0; i != NumOperandsToProcess; ++i) { 229 MachineOperand &MO = MI->getOperand(i); 230 if (MO.isDef() && MO.isRegister() && MO.getReg()) { 231 if (MRegisterInfo::isVirtualRegister(MO.getReg())) { 232 VarInfo &VRInfo = getVarInfo(MO.getReg()); 233 234 assert(VRInfo.DefInst == 0 && "Variable multiply defined!"); 235 VRInfo.DefInst = MI; 236 // Defaults to dead 237 VRInfo.Kills.push_back(std::make_pair(MI->getParent(), MI)); 238 } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) && 239 AllocatablePhysicalRegisters[MO.getReg()]) { 240 HandlePhysRegDef(MO.getReg(), MI); 241 } 242 } 243 } 244 } 245 246 // Handle any virtual assignments from PHI nodes which might be at the 247 // bottom of this basic block. We check all of our successor blocks to see 248 // if they have PHI nodes, and if so, we simulate an assignment at the end 249 // of the current block. 250 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), 251 E = MBB->succ_end(); SI != E; ++SI) { 252 MachineBasicBlock *Succ = *SI; 253 254 // PHI nodes are guaranteed to be at the top of the block... 255 for (MachineBasicBlock::iterator MI = Succ->begin(), ME = Succ->end(); 256 MI != ME && MI->getOpcode() == TargetInstrInfo::PHI; ++MI) { 257 for (unsigned i = 1; ; i += 2) { 258 assert(MI->getNumOperands() > i+1 && 259 "Didn't find an entry for our predecessor??"); 260 if (MI->getOperand(i+1).getMachineBasicBlock() == MBB) { 261 MachineOperand &MO = MI->getOperand(i); 262 if (!MO.getVRegValueOrNull()) { 263 VarInfo &VRInfo = getVarInfo(MO.getReg()); 264 265 // Only mark it alive only in the block we are representing... 266 MarkVirtRegAliveInBlock(VRInfo, MBB); 267 break; // Found the PHI entry for this block... 268 } 269 } 270 } 271 } 272 } 273 274 // Loop over PhysRegInfo, killing any registers that are available at the 275 // end of the basic block. This also resets the PhysRegInfo map. 276 for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i) 277 if (PhysRegInfo[i]) 278 HandlePhysRegDef(i, 0); 279 } 280 281 // Convert the information we have gathered into VirtRegInfo and transform it 282 // into a form usable by RegistersKilled. 283 // 284 for (unsigned i = 0, e = VirtRegInfo.size(); i != e; ++i) 285 for (unsigned j = 0, e = VirtRegInfo[i].Kills.size(); j != e; ++j) { 286 if (VirtRegInfo[i].Kills[j].second == VirtRegInfo[i].DefInst) 287 RegistersDead.insert(std::make_pair(VirtRegInfo[i].Kills[j].second, 288 i + MRegisterInfo::FirstVirtualRegister)); 289 290 else 291 RegistersKilled.insert(std::make_pair(VirtRegInfo[i].Kills[j].second, 292 i + MRegisterInfo::FirstVirtualRegister)); 293 } 294 295 // Check to make sure there are no unreachable blocks in the MC CFG for the 296 // function. If so, it is due to a bug in the instruction selector or some 297 // other part of the code generator if this happens. 298#ifndef NDEBUG 299 for(MachineFunction::iterator i = MF.begin(), e = MF.end(); i != e; ++i) 300 assert(Visited.count(&*i) != 0 && "unreachable basic block found"); 301#endif 302 303 return false; 304} 305 306/// instructionChanged - When the address of an instruction changes, this 307/// method should be called so that live variables can update its internal 308/// data structures. This removes the records for OldMI, transfering them to 309/// the records for NewMI. 310void LiveVariables::instructionChanged(MachineInstr *OldMI, 311 MachineInstr *NewMI) { 312 // If the instruction defines any virtual registers, update the VarInfo for 313 // the instruction. 314 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { 315 MachineOperand &MO = OldMI->getOperand(i); 316 if (MO.isRegister() && MO.isDef() && MO.getReg() && 317 MRegisterInfo::isVirtualRegister(MO.getReg())) { 318 unsigned Reg = MO.getReg(); 319 VarInfo &VI = getVarInfo(Reg); 320 if (VI.DefInst == OldMI) 321 VI.DefInst = NewMI; 322 } 323 } 324 325 // Move the killed information over... 326 killed_iterator I, E; 327 tie(I, E) = killed_range(OldMI); 328 std::vector<unsigned> Regs; 329 for (killed_iterator A = I; A != E; ++A) 330 Regs.push_back(A->second); 331 RegistersKilled.erase(I, E); 332 333 for (unsigned i = 0, e = Regs.size(); i != e; ++i) 334 RegistersKilled.insert(std::make_pair(NewMI, Regs[i])); 335 Regs.clear(); 336 337 // Move the dead information over... 338 tie(I, E) = dead_range(OldMI); 339 for (killed_iterator A = I; A != E; ++A) 340 Regs.push_back(A->second); 341 RegistersDead.erase(I, E); 342 343 for (unsigned i = 0, e = Regs.size(); i != e; ++i) 344 RegistersDead.insert(std::make_pair(NewMI, Regs[i])); 345} 346