LiveVariables.cpp revision 8490f9c92e354fd9cd242bae89b24e6c59e5c794
1//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveVariable analysis pass.  For each machine
11// instruction in the function, this pass calculates the set of registers that
12// are immediately dead after the instruction (i.e., the instruction calculates
13// the value, but it is never used) and the set of registers that are used by
14// the instruction, but are never used after the instruction (i.e., they are
15// killed).
16//
17// This class computes live variables using are sparse implementation based on
18// the machine code SSA form.  This class computes live variable information for
19// each virtual and _register allocatable_ physical register in a function.  It
20// uses the dominance properties of SSA form to efficiently compute live
21// variables for virtual registers, and assumes that physical registers are only
22// live within a single basic block (allowing it to do a single local analysis
23// to resolve physical register lifetimes in each basic block).  If a physical
24// register is not register allocatable, it is not tracked.  This is useful for
25// things like the stack pointer and condition codes.
26//
27//===----------------------------------------------------------------------===//
28
29#include "llvm/CodeGen/LiveVariables.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/Target/MRegisterInfo.h"
32#include "llvm/Target/TargetInstrInfo.h"
33#include "llvm/Target/TargetMachine.h"
34#include "Support/DepthFirstIterator.h"
35#include "Support/STLExtras.h"
36using namespace llvm;
37
38static RegisterAnalysis<LiveVariables> X("livevars", "Live Variable Analysis");
39
40LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
41  assert(MRegisterInfo::isVirtualRegister(RegIdx) &&
42         "getVarInfo: not a virtual register!");
43  RegIdx -= MRegisterInfo::FirstVirtualRegister;
44  if (RegIdx >= VirtRegInfo.size()) {
45    if (RegIdx >= 2*VirtRegInfo.size())
46      VirtRegInfo.resize(RegIdx*2);
47    else
48      VirtRegInfo.resize(2*VirtRegInfo.size());
49  }
50  return VirtRegInfo[RegIdx];
51}
52
53
54
55void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
56                                            MachineBasicBlock *MBB) {
57  unsigned BBNum = MBB->getNumber();
58
59  // Check to see if this basic block is one of the killing blocks.  If so,
60  // remove it...
61  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
62    if (VRInfo.Kills[i].first == MBB) {
63      VRInfo.Kills.erase(VRInfo.Kills.begin()+i);  // Erase entry
64      break;
65    }
66
67  if (MBB == VRInfo.DefBlock) return;  // Terminate recursion
68
69  if (VRInfo.AliveBlocks.size() <= BBNum)
70    VRInfo.AliveBlocks.resize(BBNum+1);  // Make space...
71
72  if (VRInfo.AliveBlocks[BBNum])
73    return;  // We already know the block is live
74
75  // Mark the variable known alive in this bb
76  VRInfo.AliveBlocks[BBNum] = true;
77
78  for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
79         E = MBB->pred_end(); PI != E; ++PI)
80    MarkVirtRegAliveInBlock(VRInfo, *PI);
81}
82
83void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB,
84                                     MachineInstr *MI) {
85  // Check to see if this basic block is already a kill block...
86  if (!VRInfo.Kills.empty() && VRInfo.Kills.back().first == MBB) {
87    // Yes, this register is killed in this basic block already.  Increase the
88    // live range by updating the kill instruction.
89    VRInfo.Kills.back().second = MI;
90    return;
91  }
92
93#ifndef NDEBUG
94  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
95    assert(VRInfo.Kills[i].first != MBB && "entry should be at end!");
96#endif
97
98  assert(MBB != VRInfo.DefBlock && "Should have kill for defblock!");
99
100  // Add a new kill entry for this basic block.
101  VRInfo.Kills.push_back(std::make_pair(MBB, MI));
102
103  // Update all dominating blocks to mark them known live.
104  const BasicBlock *BB = MBB->getBasicBlock();
105  for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
106         E = MBB->pred_end(); PI != E; ++PI)
107    MarkVirtRegAliveInBlock(VRInfo, *PI);
108}
109
110void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
111  PhysRegInfo[Reg] = MI;
112  PhysRegUsed[Reg] = true;
113
114  for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
115       unsigned Alias = *AliasSet; ++AliasSet) {
116    PhysRegInfo[Alias] = MI;
117    PhysRegUsed[Alias] = true;
118  }
119}
120
121void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) {
122  // Does this kill a previous version of this register?
123  if (MachineInstr *LastUse = PhysRegInfo[Reg]) {
124    if (PhysRegUsed[Reg])
125      RegistersKilled.insert(std::make_pair(LastUse, Reg));
126    else
127      RegistersDead.insert(std::make_pair(LastUse, Reg));
128  }
129  PhysRegInfo[Reg] = MI;
130  PhysRegUsed[Reg] = false;
131
132  for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
133       unsigned Alias = *AliasSet; ++AliasSet) {
134    if (MachineInstr *LastUse = PhysRegInfo[Alias]) {
135      if (PhysRegUsed[Alias])
136        RegistersKilled.insert(std::make_pair(LastUse, Alias));
137      else
138        RegistersDead.insert(std::make_pair(LastUse, Alias));
139    }
140    PhysRegInfo[Alias] = MI;
141    PhysRegUsed[Alias] = false;
142  }
143}
144
145bool LiveVariables::runOnMachineFunction(MachineFunction &MF) {
146  const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
147  RegInfo = MF.getTarget().getRegisterInfo();
148  assert(RegInfo && "Target doesn't have register information?");
149
150  // First time though, initialize AllocatablePhysicalRegisters for the target
151  if (AllocatablePhysicalRegisters.empty()) {
152    // Make space, initializing to false...
153    AllocatablePhysicalRegisters.resize(RegInfo->getNumRegs());
154
155    // Loop over all of the register classes...
156    for (MRegisterInfo::regclass_iterator RCI = RegInfo->regclass_begin(),
157           E = RegInfo->regclass_end(); RCI != E; ++RCI)
158      // Loop over all of the allocatable registers in the function...
159      for (TargetRegisterClass::iterator I = (*RCI)->allocation_order_begin(MF),
160             E = (*RCI)->allocation_order_end(MF); I != E; ++I)
161        AllocatablePhysicalRegisters[*I] = true;  // The reg is allocatable!
162  }
163
164  // PhysRegInfo - Keep track of which instruction was the last use of a
165  // physical register.  This is a purely local property, because all physical
166  // register references as presumed dead across basic blocks.
167  //
168  MachineInstr *PhysRegInfoA[RegInfo->getNumRegs()];
169  bool          PhysRegUsedA[RegInfo->getNumRegs()];
170  std::fill(PhysRegInfoA, PhysRegInfoA+RegInfo->getNumRegs(), (MachineInstr*)0);
171  PhysRegInfo = PhysRegInfoA;
172  PhysRegUsed = PhysRegUsedA;
173
174  /// Get some space for a respectable number of registers...
175  VirtRegInfo.resize(64);
176
177  // Calculate live variable information in depth first order on the CFG of the
178  // function.  This guarantees that we will see the definition of a virtual
179  // register before its uses due to dominance properties of SSA (except for PHI
180  // nodes, which are treated as a special case).
181  //
182  MachineBasicBlock *Entry = MF.begin();
183  std::set<MachineBasicBlock*> Visited;
184  for (df_ext_iterator<MachineBasicBlock*> DFI = df_ext_begin(Entry, Visited),
185         E = df_ext_end(Entry, Visited); DFI != E; ++DFI) {
186    MachineBasicBlock *MBB = *DFI;
187    unsigned BBNum = MBB->getNumber();
188
189    // Loop over all of the instructions, processing them.
190    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
191         I != E; ++I) {
192      MachineInstr *MI = I;
193      const TargetInstrDescriptor &MID = TII.get(MI->getOpcode());
194
195      // Process all of the operands of the instruction...
196      unsigned NumOperandsToProcess = MI->getNumOperands();
197
198      // Unless it is a PHI node.  In this case, ONLY process the DEF, not any
199      // of the uses.  They will be handled in other basic blocks.
200      if (MI->getOpcode() == TargetInstrInfo::PHI)
201        NumOperandsToProcess = 1;
202
203      // Loop over implicit uses, using them.
204      for (const unsigned *ImplicitUses = MID.ImplicitUses;
205           *ImplicitUses; ++ImplicitUses)
206        HandlePhysRegUse(*ImplicitUses, MI);
207
208      // Process all explicit uses...
209      for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
210        MachineOperand &MO = MI->getOperand(i);
211        if (MO.isUse() && MO.isRegister() && MO.getReg()) {
212          if (MRegisterInfo::isVirtualRegister(MO.getReg())){
213            HandleVirtRegUse(getVarInfo(MO.getReg()), MBB, MI);
214          } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
215                     AllocatablePhysicalRegisters[MO.getReg()]) {
216            HandlePhysRegUse(MO.getReg(), MI);
217          }
218        }
219      }
220
221      // Loop over implicit defs, defining them.
222      for (const unsigned *ImplicitDefs = MID.ImplicitDefs;
223           *ImplicitDefs; ++ImplicitDefs)
224        HandlePhysRegDef(*ImplicitDefs, MI);
225
226      // Process all explicit defs...
227      for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
228        MachineOperand &MO = MI->getOperand(i);
229        if (MO.isDef() && MO.isRegister() && MO.getReg()) {
230          if (MRegisterInfo::isVirtualRegister(MO.getReg())) {
231            VarInfo &VRInfo = getVarInfo(MO.getReg());
232
233            assert(VRInfo.DefBlock == 0 && "Variable multiply defined!");
234            VRInfo.DefBlock = MBB;                           // Created here...
235            VRInfo.DefInst = MI;
236            VRInfo.Kills.push_back(std::make_pair(MBB, MI)); // Defaults to dead
237          } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
238                     AllocatablePhysicalRegisters[MO.getReg()]) {
239            HandlePhysRegDef(MO.getReg(), MI);
240          }
241        }
242      }
243    }
244
245    // Handle any virtual assignments from PHI nodes which might be at the
246    // bottom of this basic block.  We check all of our successor blocks to see
247    // if they have PHI nodes, and if so, we simulate an assignment at the end
248    // of the current block.
249    for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
250           E = MBB->succ_end(); SI != E; ++SI) {
251      MachineBasicBlock *Succ = *SI;
252
253      // PHI nodes are guaranteed to be at the top of the block...
254      for (MachineBasicBlock::iterator MI = Succ->begin(), ME = Succ->end();
255           MI != ME && MI->getOpcode() == TargetInstrInfo::PHI; ++MI) {
256        for (unsigned i = 1; ; i += 2) {
257          assert(MI->getNumOperands() > i+1 &&
258                 "Didn't find an entry for our predecessor??");
259          if (MI->getOperand(i+1).getMachineBasicBlock() == MBB) {
260            MachineOperand &MO = MI->getOperand(i);
261            if (!MO.getVRegValueOrNull()) {
262              VarInfo &VRInfo = getVarInfo(MO.getReg());
263
264              // Only mark it alive only in the block we are representing...
265              MarkVirtRegAliveInBlock(VRInfo, MBB);
266              break;   // Found the PHI entry for this block...
267            }
268          }
269        }
270      }
271    }
272
273    // Loop over PhysRegInfo, killing any registers that are available at the
274    // end of the basic block.  This also resets the PhysRegInfo map.
275    for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i)
276      if (PhysRegInfo[i])
277        HandlePhysRegDef(i, 0);
278  }
279
280  // Convert the information we have gathered into VirtRegInfo and transform it
281  // into a form usable by RegistersKilled.
282  //
283  for (unsigned i = 0, e = VirtRegInfo.size(); i != e; ++i)
284    for (unsigned j = 0, e = VirtRegInfo[i].Kills.size(); j != e; ++j) {
285      if (VirtRegInfo[i].Kills[j].second == VirtRegInfo[i].DefInst)
286        RegistersDead.insert(std::make_pair(VirtRegInfo[i].Kills[j].second,
287                             i + MRegisterInfo::FirstVirtualRegister));
288
289      else
290        RegistersKilled.insert(std::make_pair(VirtRegInfo[i].Kills[j].second,
291                               i + MRegisterInfo::FirstVirtualRegister));
292    }
293
294  return false;
295}
296
297/// instructionChanged - When the address of an instruction changes, this
298/// method should be called so that live variables can update its internal
299/// data structures.  This removes the records for OldMI, transfering them to
300/// the records for NewMI.
301void LiveVariables::instructionChanged(MachineInstr *OldMI,
302                                       MachineInstr *NewMI) {
303  // If the instruction defines any virtual registers, update the VarInfo for
304  // the instruction.
305  for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
306    MachineOperand &MO = OldMI->getOperand(i);
307    if (MO.isRegister() && MO.isDef() && MO.getReg() &&
308        MRegisterInfo::isVirtualRegister(MO.getReg())) {
309      unsigned Reg = MO.getReg();
310      VarInfo &VI = getVarInfo(Reg);
311      if (VI.DefInst == OldMI)
312        VI.DefInst = NewMI;
313    }
314  }
315
316  // Move the killed information over...
317  killed_iterator I, E;
318  tie(I, E) = killed_range(OldMI);
319  std::vector<unsigned> Regs;
320  for (killed_iterator A = I; A != E; ++A)
321    Regs.push_back(A->second);
322  RegistersKilled.erase(I, E);
323
324  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
325    RegistersKilled.insert(std::make_pair(NewMI, Regs[i]));
326  Regs.clear();
327
328  // Move the dead information over...
329  tie(I, E) = dead_range(OldMI);
330  for (killed_iterator A = I; A != E; ++A)
331    Regs.push_back(A->second);
332  RegistersDead.erase(I, E);
333
334  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
335    RegistersDead.insert(std::make_pair(NewMI, Regs[i]));
336}
337