LiveVariables.cpp revision 8490f9c92e354fd9cd242bae89b24e6c59e5c794
1//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file was developed by the LLVM research group and is distributed under 6// the University of Illinois Open Source License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the LiveVariable analysis pass. For each machine 11// instruction in the function, this pass calculates the set of registers that 12// are immediately dead after the instruction (i.e., the instruction calculates 13// the value, but it is never used) and the set of registers that are used by 14// the instruction, but are never used after the instruction (i.e., they are 15// killed). 16// 17// This class computes live variables using are sparse implementation based on 18// the machine code SSA form. This class computes live variable information for 19// each virtual and _register allocatable_ physical register in a function. It 20// uses the dominance properties of SSA form to efficiently compute live 21// variables for virtual registers, and assumes that physical registers are only 22// live within a single basic block (allowing it to do a single local analysis 23// to resolve physical register lifetimes in each basic block). If a physical 24// register is not register allocatable, it is not tracked. This is useful for 25// things like the stack pointer and condition codes. 26// 27//===----------------------------------------------------------------------===// 28 29#include "llvm/CodeGen/LiveVariables.h" 30#include "llvm/CodeGen/MachineInstr.h" 31#include "llvm/Target/MRegisterInfo.h" 32#include "llvm/Target/TargetInstrInfo.h" 33#include "llvm/Target/TargetMachine.h" 34#include "Support/DepthFirstIterator.h" 35#include "Support/STLExtras.h" 36using namespace llvm; 37 38static RegisterAnalysis<LiveVariables> X("livevars", "Live Variable Analysis"); 39 40LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) { 41 assert(MRegisterInfo::isVirtualRegister(RegIdx) && 42 "getVarInfo: not a virtual register!"); 43 RegIdx -= MRegisterInfo::FirstVirtualRegister; 44 if (RegIdx >= VirtRegInfo.size()) { 45 if (RegIdx >= 2*VirtRegInfo.size()) 46 VirtRegInfo.resize(RegIdx*2); 47 else 48 VirtRegInfo.resize(2*VirtRegInfo.size()); 49 } 50 return VirtRegInfo[RegIdx]; 51} 52 53 54 55void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo, 56 MachineBasicBlock *MBB) { 57 unsigned BBNum = MBB->getNumber(); 58 59 // Check to see if this basic block is one of the killing blocks. If so, 60 // remove it... 61 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 62 if (VRInfo.Kills[i].first == MBB) { 63 VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry 64 break; 65 } 66 67 if (MBB == VRInfo.DefBlock) return; // Terminate recursion 68 69 if (VRInfo.AliveBlocks.size() <= BBNum) 70 VRInfo.AliveBlocks.resize(BBNum+1); // Make space... 71 72 if (VRInfo.AliveBlocks[BBNum]) 73 return; // We already know the block is live 74 75 // Mark the variable known alive in this bb 76 VRInfo.AliveBlocks[BBNum] = true; 77 78 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), 79 E = MBB->pred_end(); PI != E; ++PI) 80 MarkVirtRegAliveInBlock(VRInfo, *PI); 81} 82 83void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB, 84 MachineInstr *MI) { 85 // Check to see if this basic block is already a kill block... 86 if (!VRInfo.Kills.empty() && VRInfo.Kills.back().first == MBB) { 87 // Yes, this register is killed in this basic block already. Increase the 88 // live range by updating the kill instruction. 89 VRInfo.Kills.back().second = MI; 90 return; 91 } 92 93#ifndef NDEBUG 94 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 95 assert(VRInfo.Kills[i].first != MBB && "entry should be at end!"); 96#endif 97 98 assert(MBB != VRInfo.DefBlock && "Should have kill for defblock!"); 99 100 // Add a new kill entry for this basic block. 101 VRInfo.Kills.push_back(std::make_pair(MBB, MI)); 102 103 // Update all dominating blocks to mark them known live. 104 const BasicBlock *BB = MBB->getBasicBlock(); 105 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), 106 E = MBB->pred_end(); PI != E; ++PI) 107 MarkVirtRegAliveInBlock(VRInfo, *PI); 108} 109 110void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) { 111 PhysRegInfo[Reg] = MI; 112 PhysRegUsed[Reg] = true; 113 114 for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg); 115 unsigned Alias = *AliasSet; ++AliasSet) { 116 PhysRegInfo[Alias] = MI; 117 PhysRegUsed[Alias] = true; 118 } 119} 120 121void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) { 122 // Does this kill a previous version of this register? 123 if (MachineInstr *LastUse = PhysRegInfo[Reg]) { 124 if (PhysRegUsed[Reg]) 125 RegistersKilled.insert(std::make_pair(LastUse, Reg)); 126 else 127 RegistersDead.insert(std::make_pair(LastUse, Reg)); 128 } 129 PhysRegInfo[Reg] = MI; 130 PhysRegUsed[Reg] = false; 131 132 for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg); 133 unsigned Alias = *AliasSet; ++AliasSet) { 134 if (MachineInstr *LastUse = PhysRegInfo[Alias]) { 135 if (PhysRegUsed[Alias]) 136 RegistersKilled.insert(std::make_pair(LastUse, Alias)); 137 else 138 RegistersDead.insert(std::make_pair(LastUse, Alias)); 139 } 140 PhysRegInfo[Alias] = MI; 141 PhysRegUsed[Alias] = false; 142 } 143} 144 145bool LiveVariables::runOnMachineFunction(MachineFunction &MF) { 146 const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo(); 147 RegInfo = MF.getTarget().getRegisterInfo(); 148 assert(RegInfo && "Target doesn't have register information?"); 149 150 // First time though, initialize AllocatablePhysicalRegisters for the target 151 if (AllocatablePhysicalRegisters.empty()) { 152 // Make space, initializing to false... 153 AllocatablePhysicalRegisters.resize(RegInfo->getNumRegs()); 154 155 // Loop over all of the register classes... 156 for (MRegisterInfo::regclass_iterator RCI = RegInfo->regclass_begin(), 157 E = RegInfo->regclass_end(); RCI != E; ++RCI) 158 // Loop over all of the allocatable registers in the function... 159 for (TargetRegisterClass::iterator I = (*RCI)->allocation_order_begin(MF), 160 E = (*RCI)->allocation_order_end(MF); I != E; ++I) 161 AllocatablePhysicalRegisters[*I] = true; // The reg is allocatable! 162 } 163 164 // PhysRegInfo - Keep track of which instruction was the last use of a 165 // physical register. This is a purely local property, because all physical 166 // register references as presumed dead across basic blocks. 167 // 168 MachineInstr *PhysRegInfoA[RegInfo->getNumRegs()]; 169 bool PhysRegUsedA[RegInfo->getNumRegs()]; 170 std::fill(PhysRegInfoA, PhysRegInfoA+RegInfo->getNumRegs(), (MachineInstr*)0); 171 PhysRegInfo = PhysRegInfoA; 172 PhysRegUsed = PhysRegUsedA; 173 174 /// Get some space for a respectable number of registers... 175 VirtRegInfo.resize(64); 176 177 // Calculate live variable information in depth first order on the CFG of the 178 // function. This guarantees that we will see the definition of a virtual 179 // register before its uses due to dominance properties of SSA (except for PHI 180 // nodes, which are treated as a special case). 181 // 182 MachineBasicBlock *Entry = MF.begin(); 183 std::set<MachineBasicBlock*> Visited; 184 for (df_ext_iterator<MachineBasicBlock*> DFI = df_ext_begin(Entry, Visited), 185 E = df_ext_end(Entry, Visited); DFI != E; ++DFI) { 186 MachineBasicBlock *MBB = *DFI; 187 unsigned BBNum = MBB->getNumber(); 188 189 // Loop over all of the instructions, processing them. 190 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); 191 I != E; ++I) { 192 MachineInstr *MI = I; 193 const TargetInstrDescriptor &MID = TII.get(MI->getOpcode()); 194 195 // Process all of the operands of the instruction... 196 unsigned NumOperandsToProcess = MI->getNumOperands(); 197 198 // Unless it is a PHI node. In this case, ONLY process the DEF, not any 199 // of the uses. They will be handled in other basic blocks. 200 if (MI->getOpcode() == TargetInstrInfo::PHI) 201 NumOperandsToProcess = 1; 202 203 // Loop over implicit uses, using them. 204 for (const unsigned *ImplicitUses = MID.ImplicitUses; 205 *ImplicitUses; ++ImplicitUses) 206 HandlePhysRegUse(*ImplicitUses, MI); 207 208 // Process all explicit uses... 209 for (unsigned i = 0; i != NumOperandsToProcess; ++i) { 210 MachineOperand &MO = MI->getOperand(i); 211 if (MO.isUse() && MO.isRegister() && MO.getReg()) { 212 if (MRegisterInfo::isVirtualRegister(MO.getReg())){ 213 HandleVirtRegUse(getVarInfo(MO.getReg()), MBB, MI); 214 } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) && 215 AllocatablePhysicalRegisters[MO.getReg()]) { 216 HandlePhysRegUse(MO.getReg(), MI); 217 } 218 } 219 } 220 221 // Loop over implicit defs, defining them. 222 for (const unsigned *ImplicitDefs = MID.ImplicitDefs; 223 *ImplicitDefs; ++ImplicitDefs) 224 HandlePhysRegDef(*ImplicitDefs, MI); 225 226 // Process all explicit defs... 227 for (unsigned i = 0; i != NumOperandsToProcess; ++i) { 228 MachineOperand &MO = MI->getOperand(i); 229 if (MO.isDef() && MO.isRegister() && MO.getReg()) { 230 if (MRegisterInfo::isVirtualRegister(MO.getReg())) { 231 VarInfo &VRInfo = getVarInfo(MO.getReg()); 232 233 assert(VRInfo.DefBlock == 0 && "Variable multiply defined!"); 234 VRInfo.DefBlock = MBB; // Created here... 235 VRInfo.DefInst = MI; 236 VRInfo.Kills.push_back(std::make_pair(MBB, MI)); // Defaults to dead 237 } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) && 238 AllocatablePhysicalRegisters[MO.getReg()]) { 239 HandlePhysRegDef(MO.getReg(), MI); 240 } 241 } 242 } 243 } 244 245 // Handle any virtual assignments from PHI nodes which might be at the 246 // bottom of this basic block. We check all of our successor blocks to see 247 // if they have PHI nodes, and if so, we simulate an assignment at the end 248 // of the current block. 249 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), 250 E = MBB->succ_end(); SI != E; ++SI) { 251 MachineBasicBlock *Succ = *SI; 252 253 // PHI nodes are guaranteed to be at the top of the block... 254 for (MachineBasicBlock::iterator MI = Succ->begin(), ME = Succ->end(); 255 MI != ME && MI->getOpcode() == TargetInstrInfo::PHI; ++MI) { 256 for (unsigned i = 1; ; i += 2) { 257 assert(MI->getNumOperands() > i+1 && 258 "Didn't find an entry for our predecessor??"); 259 if (MI->getOperand(i+1).getMachineBasicBlock() == MBB) { 260 MachineOperand &MO = MI->getOperand(i); 261 if (!MO.getVRegValueOrNull()) { 262 VarInfo &VRInfo = getVarInfo(MO.getReg()); 263 264 // Only mark it alive only in the block we are representing... 265 MarkVirtRegAliveInBlock(VRInfo, MBB); 266 break; // Found the PHI entry for this block... 267 } 268 } 269 } 270 } 271 } 272 273 // Loop over PhysRegInfo, killing any registers that are available at the 274 // end of the basic block. This also resets the PhysRegInfo map. 275 for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i) 276 if (PhysRegInfo[i]) 277 HandlePhysRegDef(i, 0); 278 } 279 280 // Convert the information we have gathered into VirtRegInfo and transform it 281 // into a form usable by RegistersKilled. 282 // 283 for (unsigned i = 0, e = VirtRegInfo.size(); i != e; ++i) 284 for (unsigned j = 0, e = VirtRegInfo[i].Kills.size(); j != e; ++j) { 285 if (VirtRegInfo[i].Kills[j].second == VirtRegInfo[i].DefInst) 286 RegistersDead.insert(std::make_pair(VirtRegInfo[i].Kills[j].second, 287 i + MRegisterInfo::FirstVirtualRegister)); 288 289 else 290 RegistersKilled.insert(std::make_pair(VirtRegInfo[i].Kills[j].second, 291 i + MRegisterInfo::FirstVirtualRegister)); 292 } 293 294 return false; 295} 296 297/// instructionChanged - When the address of an instruction changes, this 298/// method should be called so that live variables can update its internal 299/// data structures. This removes the records for OldMI, transfering them to 300/// the records for NewMI. 301void LiveVariables::instructionChanged(MachineInstr *OldMI, 302 MachineInstr *NewMI) { 303 // If the instruction defines any virtual registers, update the VarInfo for 304 // the instruction. 305 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { 306 MachineOperand &MO = OldMI->getOperand(i); 307 if (MO.isRegister() && MO.isDef() && MO.getReg() && 308 MRegisterInfo::isVirtualRegister(MO.getReg())) { 309 unsigned Reg = MO.getReg(); 310 VarInfo &VI = getVarInfo(Reg); 311 if (VI.DefInst == OldMI) 312 VI.DefInst = NewMI; 313 } 314 } 315 316 // Move the killed information over... 317 killed_iterator I, E; 318 tie(I, E) = killed_range(OldMI); 319 std::vector<unsigned> Regs; 320 for (killed_iterator A = I; A != E; ++A) 321 Regs.push_back(A->second); 322 RegistersKilled.erase(I, E); 323 324 for (unsigned i = 0, e = Regs.size(); i != e; ++i) 325 RegistersKilled.insert(std::make_pair(NewMI, Regs[i])); 326 Regs.clear(); 327 328 // Move the dead information over... 329 tie(I, E) = dead_range(OldMI); 330 for (killed_iterator A = I; A != E; ++A) 331 Regs.push_back(A->second); 332 RegistersDead.erase(I, E); 333 334 for (unsigned i = 0, e = Regs.size(); i != e; ++i) 335 RegistersDead.insert(std::make_pair(NewMI, Regs[i])); 336} 337