TargetLowering.cpp revision e3376ecd504300ae529c902135f51baffbdc2824
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This implements the TargetLowering class. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/Target/TargetLowering.h" 15#include "llvm/MC/MCAsmInfo.h" 16#include "llvm/MC/MCExpr.h" 17#include "llvm/Target/TargetData.h" 18#include "llvm/Target/TargetLoweringObjectFile.h" 19#include "llvm/Target/TargetMachine.h" 20#include "llvm/Target/TargetRegisterInfo.h" 21#include "llvm/GlobalVariable.h" 22#include "llvm/DerivedTypes.h" 23#include "llvm/CodeGen/Analysis.h" 24#include "llvm/CodeGen/MachineFrameInfo.h" 25#include "llvm/CodeGen/MachineJumpTableInfo.h" 26#include "llvm/CodeGen/MachineFunction.h" 27#include "llvm/CodeGen/SelectionDAG.h" 28#include "llvm/ADT/STLExtras.h" 29#include "llvm/Support/CommandLine.h" 30#include "llvm/Support/ErrorHandling.h" 31#include "llvm/Support/MathExtras.h" 32#include <cctype> 33using namespace llvm; 34 35/// We are in the process of implementing a new TypeLegalization action 36/// - the promotion of vector elements. This feature is disabled by default 37/// and only enabled using this flag. 38static cl::opt<bool> 39AllowPromoteIntElem("promote-elements", cl::Hidden, cl::init(true), 40 cl::desc("Allow promotion of integer vector element types")); 41 42namespace llvm { 43TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) { 44 bool isLocal = GV->hasLocalLinkage(); 45 bool isDeclaration = GV->isDeclaration(); 46 // FIXME: what should we do for protected and internal visibility? 47 // For variables, is internal different from hidden? 48 bool isHidden = GV->hasHiddenVisibility(); 49 50 if (reloc == Reloc::PIC_) { 51 if (isLocal || isHidden) 52 return TLSModel::LocalDynamic; 53 else 54 return TLSModel::GeneralDynamic; 55 } else { 56 if (!isDeclaration || isHidden) 57 return TLSModel::LocalExec; 58 else 59 return TLSModel::InitialExec; 60 } 61} 62} 63 64/// InitLibcallNames - Set default libcall names. 65/// 66static void InitLibcallNames(const char **Names) { 67 Names[RTLIB::SHL_I16] = "__ashlhi3"; 68 Names[RTLIB::SHL_I32] = "__ashlsi3"; 69 Names[RTLIB::SHL_I64] = "__ashldi3"; 70 Names[RTLIB::SHL_I128] = "__ashlti3"; 71 Names[RTLIB::SRL_I16] = "__lshrhi3"; 72 Names[RTLIB::SRL_I32] = "__lshrsi3"; 73 Names[RTLIB::SRL_I64] = "__lshrdi3"; 74 Names[RTLIB::SRL_I128] = "__lshrti3"; 75 Names[RTLIB::SRA_I16] = "__ashrhi3"; 76 Names[RTLIB::SRA_I32] = "__ashrsi3"; 77 Names[RTLIB::SRA_I64] = "__ashrdi3"; 78 Names[RTLIB::SRA_I128] = "__ashrti3"; 79 Names[RTLIB::MUL_I8] = "__mulqi3"; 80 Names[RTLIB::MUL_I16] = "__mulhi3"; 81 Names[RTLIB::MUL_I32] = "__mulsi3"; 82 Names[RTLIB::MUL_I64] = "__muldi3"; 83 Names[RTLIB::MUL_I128] = "__multi3"; 84 Names[RTLIB::MULO_I32] = "__mulosi4"; 85 Names[RTLIB::MULO_I64] = "__mulodi4"; 86 Names[RTLIB::MULO_I128] = "__muloti4"; 87 Names[RTLIB::SDIV_I8] = "__divqi3"; 88 Names[RTLIB::SDIV_I16] = "__divhi3"; 89 Names[RTLIB::SDIV_I32] = "__divsi3"; 90 Names[RTLIB::SDIV_I64] = "__divdi3"; 91 Names[RTLIB::SDIV_I128] = "__divti3"; 92 Names[RTLIB::UDIV_I8] = "__udivqi3"; 93 Names[RTLIB::UDIV_I16] = "__udivhi3"; 94 Names[RTLIB::UDIV_I32] = "__udivsi3"; 95 Names[RTLIB::UDIV_I64] = "__udivdi3"; 96 Names[RTLIB::UDIV_I128] = "__udivti3"; 97 Names[RTLIB::SREM_I8] = "__modqi3"; 98 Names[RTLIB::SREM_I16] = "__modhi3"; 99 Names[RTLIB::SREM_I32] = "__modsi3"; 100 Names[RTLIB::SREM_I64] = "__moddi3"; 101 Names[RTLIB::SREM_I128] = "__modti3"; 102 Names[RTLIB::UREM_I8] = "__umodqi3"; 103 Names[RTLIB::UREM_I16] = "__umodhi3"; 104 Names[RTLIB::UREM_I32] = "__umodsi3"; 105 Names[RTLIB::UREM_I64] = "__umoddi3"; 106 Names[RTLIB::UREM_I128] = "__umodti3"; 107 108 // These are generally not available. 109 Names[RTLIB::SDIVREM_I8] = 0; 110 Names[RTLIB::SDIVREM_I16] = 0; 111 Names[RTLIB::SDIVREM_I32] = 0; 112 Names[RTLIB::SDIVREM_I64] = 0; 113 Names[RTLIB::SDIVREM_I128] = 0; 114 Names[RTLIB::UDIVREM_I8] = 0; 115 Names[RTLIB::UDIVREM_I16] = 0; 116 Names[RTLIB::UDIVREM_I32] = 0; 117 Names[RTLIB::UDIVREM_I64] = 0; 118 Names[RTLIB::UDIVREM_I128] = 0; 119 120 Names[RTLIB::NEG_I32] = "__negsi2"; 121 Names[RTLIB::NEG_I64] = "__negdi2"; 122 Names[RTLIB::ADD_F32] = "__addsf3"; 123 Names[RTLIB::ADD_F64] = "__adddf3"; 124 Names[RTLIB::ADD_F80] = "__addxf3"; 125 Names[RTLIB::ADD_PPCF128] = "__gcc_qadd"; 126 Names[RTLIB::SUB_F32] = "__subsf3"; 127 Names[RTLIB::SUB_F64] = "__subdf3"; 128 Names[RTLIB::SUB_F80] = "__subxf3"; 129 Names[RTLIB::SUB_PPCF128] = "__gcc_qsub"; 130 Names[RTLIB::MUL_F32] = "__mulsf3"; 131 Names[RTLIB::MUL_F64] = "__muldf3"; 132 Names[RTLIB::MUL_F80] = "__mulxf3"; 133 Names[RTLIB::MUL_PPCF128] = "__gcc_qmul"; 134 Names[RTLIB::DIV_F32] = "__divsf3"; 135 Names[RTLIB::DIV_F64] = "__divdf3"; 136 Names[RTLIB::DIV_F80] = "__divxf3"; 137 Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv"; 138 Names[RTLIB::REM_F32] = "fmodf"; 139 Names[RTLIB::REM_F64] = "fmod"; 140 Names[RTLIB::REM_F80] = "fmodl"; 141 Names[RTLIB::REM_PPCF128] = "fmodl"; 142 Names[RTLIB::FMA_F32] = "fmaf"; 143 Names[RTLIB::FMA_F64] = "fma"; 144 Names[RTLIB::FMA_F80] = "fmal"; 145 Names[RTLIB::FMA_PPCF128] = "fmal"; 146 Names[RTLIB::POWI_F32] = "__powisf2"; 147 Names[RTLIB::POWI_F64] = "__powidf2"; 148 Names[RTLIB::POWI_F80] = "__powixf2"; 149 Names[RTLIB::POWI_PPCF128] = "__powitf2"; 150 Names[RTLIB::SQRT_F32] = "sqrtf"; 151 Names[RTLIB::SQRT_F64] = "sqrt"; 152 Names[RTLIB::SQRT_F80] = "sqrtl"; 153 Names[RTLIB::SQRT_PPCF128] = "sqrtl"; 154 Names[RTLIB::LOG_F32] = "logf"; 155 Names[RTLIB::LOG_F64] = "log"; 156 Names[RTLIB::LOG_F80] = "logl"; 157 Names[RTLIB::LOG_PPCF128] = "logl"; 158 Names[RTLIB::LOG2_F32] = "log2f"; 159 Names[RTLIB::LOG2_F64] = "log2"; 160 Names[RTLIB::LOG2_F80] = "log2l"; 161 Names[RTLIB::LOG2_PPCF128] = "log2l"; 162 Names[RTLIB::LOG10_F32] = "log10f"; 163 Names[RTLIB::LOG10_F64] = "log10"; 164 Names[RTLIB::LOG10_F80] = "log10l"; 165 Names[RTLIB::LOG10_PPCF128] = "log10l"; 166 Names[RTLIB::EXP_F32] = "expf"; 167 Names[RTLIB::EXP_F64] = "exp"; 168 Names[RTLIB::EXP_F80] = "expl"; 169 Names[RTLIB::EXP_PPCF128] = "expl"; 170 Names[RTLIB::EXP2_F32] = "exp2f"; 171 Names[RTLIB::EXP2_F64] = "exp2"; 172 Names[RTLIB::EXP2_F80] = "exp2l"; 173 Names[RTLIB::EXP2_PPCF128] = "exp2l"; 174 Names[RTLIB::SIN_F32] = "sinf"; 175 Names[RTLIB::SIN_F64] = "sin"; 176 Names[RTLIB::SIN_F80] = "sinl"; 177 Names[RTLIB::SIN_PPCF128] = "sinl"; 178 Names[RTLIB::COS_F32] = "cosf"; 179 Names[RTLIB::COS_F64] = "cos"; 180 Names[RTLIB::COS_F80] = "cosl"; 181 Names[RTLIB::COS_PPCF128] = "cosl"; 182 Names[RTLIB::POW_F32] = "powf"; 183 Names[RTLIB::POW_F64] = "pow"; 184 Names[RTLIB::POW_F80] = "powl"; 185 Names[RTLIB::POW_PPCF128] = "powl"; 186 Names[RTLIB::CEIL_F32] = "ceilf"; 187 Names[RTLIB::CEIL_F64] = "ceil"; 188 Names[RTLIB::CEIL_F80] = "ceill"; 189 Names[RTLIB::CEIL_PPCF128] = "ceill"; 190 Names[RTLIB::TRUNC_F32] = "truncf"; 191 Names[RTLIB::TRUNC_F64] = "trunc"; 192 Names[RTLIB::TRUNC_F80] = "truncl"; 193 Names[RTLIB::TRUNC_PPCF128] = "truncl"; 194 Names[RTLIB::RINT_F32] = "rintf"; 195 Names[RTLIB::RINT_F64] = "rint"; 196 Names[RTLIB::RINT_F80] = "rintl"; 197 Names[RTLIB::RINT_PPCF128] = "rintl"; 198 Names[RTLIB::NEARBYINT_F32] = "nearbyintf"; 199 Names[RTLIB::NEARBYINT_F64] = "nearbyint"; 200 Names[RTLIB::NEARBYINT_F80] = "nearbyintl"; 201 Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl"; 202 Names[RTLIB::FLOOR_F32] = "floorf"; 203 Names[RTLIB::FLOOR_F64] = "floor"; 204 Names[RTLIB::FLOOR_F80] = "floorl"; 205 Names[RTLIB::FLOOR_PPCF128] = "floorl"; 206 Names[RTLIB::COPYSIGN_F32] = "copysignf"; 207 Names[RTLIB::COPYSIGN_F64] = "copysign"; 208 Names[RTLIB::COPYSIGN_F80] = "copysignl"; 209 Names[RTLIB::COPYSIGN_PPCF128] = "copysignl"; 210 Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2"; 211 Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee"; 212 Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee"; 213 Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2"; 214 Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2"; 215 Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2"; 216 Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2"; 217 Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2"; 218 Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi"; 219 Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi"; 220 Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi"; 221 Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi"; 222 Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti"; 223 Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi"; 224 Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi"; 225 Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi"; 226 Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi"; 227 Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti"; 228 Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi"; 229 Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi"; 230 Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti"; 231 Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi"; 232 Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi"; 233 Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti"; 234 Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi"; 235 Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi"; 236 Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi"; 237 Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi"; 238 Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti"; 239 Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi"; 240 Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi"; 241 Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi"; 242 Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi"; 243 Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti"; 244 Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi"; 245 Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi"; 246 Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti"; 247 Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi"; 248 Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi"; 249 Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti"; 250 Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf"; 251 Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf"; 252 Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf"; 253 Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf"; 254 Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf"; 255 Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf"; 256 Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf"; 257 Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf"; 258 Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf"; 259 Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf"; 260 Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf"; 261 Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf"; 262 Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf"; 263 Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf"; 264 Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf"; 265 Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf"; 266 Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf"; 267 Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf"; 268 Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf"; 269 Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf"; 270 Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf"; 271 Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf"; 272 Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf"; 273 Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf"; 274 Names[RTLIB::OEQ_F32] = "__eqsf2"; 275 Names[RTLIB::OEQ_F64] = "__eqdf2"; 276 Names[RTLIB::UNE_F32] = "__nesf2"; 277 Names[RTLIB::UNE_F64] = "__nedf2"; 278 Names[RTLIB::OGE_F32] = "__gesf2"; 279 Names[RTLIB::OGE_F64] = "__gedf2"; 280 Names[RTLIB::OLT_F32] = "__ltsf2"; 281 Names[RTLIB::OLT_F64] = "__ltdf2"; 282 Names[RTLIB::OLE_F32] = "__lesf2"; 283 Names[RTLIB::OLE_F64] = "__ledf2"; 284 Names[RTLIB::OGT_F32] = "__gtsf2"; 285 Names[RTLIB::OGT_F64] = "__gtdf2"; 286 Names[RTLIB::UO_F32] = "__unordsf2"; 287 Names[RTLIB::UO_F64] = "__unorddf2"; 288 Names[RTLIB::O_F32] = "__unordsf2"; 289 Names[RTLIB::O_F64] = "__unorddf2"; 290 Names[RTLIB::MEMCPY] = "memcpy"; 291 Names[RTLIB::MEMMOVE] = "memmove"; 292 Names[RTLIB::MEMSET] = "memset"; 293 Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume"; 294 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1"; 295 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2"; 296 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4"; 297 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8"; 298 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1"; 299 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2"; 300 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4"; 301 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8"; 302 Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1"; 303 Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2"; 304 Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4"; 305 Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8"; 306 Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1"; 307 Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2"; 308 Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4"; 309 Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8"; 310 Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1"; 311 Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2"; 312 Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4"; 313 Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8"; 314 Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1"; 315 Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2"; 316 Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4"; 317 Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8"; 318 Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1"; 319 Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2"; 320 Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4"; 321 Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8"; 322 Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1"; 323 Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2"; 324 Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4"; 325 Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8"; 326} 327 328/// InitLibcallCallingConvs - Set default libcall CallingConvs. 329/// 330static void InitLibcallCallingConvs(CallingConv::ID *CCs) { 331 for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) { 332 CCs[i] = CallingConv::C; 333 } 334} 335 336/// getFPEXT - Return the FPEXT_*_* value for the given types, or 337/// UNKNOWN_LIBCALL if there is none. 338RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) { 339 if (OpVT == MVT::f32) { 340 if (RetVT == MVT::f64) 341 return FPEXT_F32_F64; 342 } 343 344 return UNKNOWN_LIBCALL; 345} 346 347/// getFPROUND - Return the FPROUND_*_* value for the given types, or 348/// UNKNOWN_LIBCALL if there is none. 349RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) { 350 if (RetVT == MVT::f32) { 351 if (OpVT == MVT::f64) 352 return FPROUND_F64_F32; 353 if (OpVT == MVT::f80) 354 return FPROUND_F80_F32; 355 if (OpVT == MVT::ppcf128) 356 return FPROUND_PPCF128_F32; 357 } else if (RetVT == MVT::f64) { 358 if (OpVT == MVT::f80) 359 return FPROUND_F80_F64; 360 if (OpVT == MVT::ppcf128) 361 return FPROUND_PPCF128_F64; 362 } 363 364 return UNKNOWN_LIBCALL; 365} 366 367/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or 368/// UNKNOWN_LIBCALL if there is none. 369RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) { 370 if (OpVT == MVT::f32) { 371 if (RetVT == MVT::i8) 372 return FPTOSINT_F32_I8; 373 if (RetVT == MVT::i16) 374 return FPTOSINT_F32_I16; 375 if (RetVT == MVT::i32) 376 return FPTOSINT_F32_I32; 377 if (RetVT == MVT::i64) 378 return FPTOSINT_F32_I64; 379 if (RetVT == MVT::i128) 380 return FPTOSINT_F32_I128; 381 } else if (OpVT == MVT::f64) { 382 if (RetVT == MVT::i8) 383 return FPTOSINT_F64_I8; 384 if (RetVT == MVT::i16) 385 return FPTOSINT_F64_I16; 386 if (RetVT == MVT::i32) 387 return FPTOSINT_F64_I32; 388 if (RetVT == MVT::i64) 389 return FPTOSINT_F64_I64; 390 if (RetVT == MVT::i128) 391 return FPTOSINT_F64_I128; 392 } else if (OpVT == MVT::f80) { 393 if (RetVT == MVT::i32) 394 return FPTOSINT_F80_I32; 395 if (RetVT == MVT::i64) 396 return FPTOSINT_F80_I64; 397 if (RetVT == MVT::i128) 398 return FPTOSINT_F80_I128; 399 } else if (OpVT == MVT::ppcf128) { 400 if (RetVT == MVT::i32) 401 return FPTOSINT_PPCF128_I32; 402 if (RetVT == MVT::i64) 403 return FPTOSINT_PPCF128_I64; 404 if (RetVT == MVT::i128) 405 return FPTOSINT_PPCF128_I128; 406 } 407 return UNKNOWN_LIBCALL; 408} 409 410/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or 411/// UNKNOWN_LIBCALL if there is none. 412RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) { 413 if (OpVT == MVT::f32) { 414 if (RetVT == MVT::i8) 415 return FPTOUINT_F32_I8; 416 if (RetVT == MVT::i16) 417 return FPTOUINT_F32_I16; 418 if (RetVT == MVT::i32) 419 return FPTOUINT_F32_I32; 420 if (RetVT == MVT::i64) 421 return FPTOUINT_F32_I64; 422 if (RetVT == MVT::i128) 423 return FPTOUINT_F32_I128; 424 } else if (OpVT == MVT::f64) { 425 if (RetVT == MVT::i8) 426 return FPTOUINT_F64_I8; 427 if (RetVT == MVT::i16) 428 return FPTOUINT_F64_I16; 429 if (RetVT == MVT::i32) 430 return FPTOUINT_F64_I32; 431 if (RetVT == MVT::i64) 432 return FPTOUINT_F64_I64; 433 if (RetVT == MVT::i128) 434 return FPTOUINT_F64_I128; 435 } else if (OpVT == MVT::f80) { 436 if (RetVT == MVT::i32) 437 return FPTOUINT_F80_I32; 438 if (RetVT == MVT::i64) 439 return FPTOUINT_F80_I64; 440 if (RetVT == MVT::i128) 441 return FPTOUINT_F80_I128; 442 } else if (OpVT == MVT::ppcf128) { 443 if (RetVT == MVT::i32) 444 return FPTOUINT_PPCF128_I32; 445 if (RetVT == MVT::i64) 446 return FPTOUINT_PPCF128_I64; 447 if (RetVT == MVT::i128) 448 return FPTOUINT_PPCF128_I128; 449 } 450 return UNKNOWN_LIBCALL; 451} 452 453/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or 454/// UNKNOWN_LIBCALL if there is none. 455RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) { 456 if (OpVT == MVT::i32) { 457 if (RetVT == MVT::f32) 458 return SINTTOFP_I32_F32; 459 else if (RetVT == MVT::f64) 460 return SINTTOFP_I32_F64; 461 else if (RetVT == MVT::f80) 462 return SINTTOFP_I32_F80; 463 else if (RetVT == MVT::ppcf128) 464 return SINTTOFP_I32_PPCF128; 465 } else if (OpVT == MVT::i64) { 466 if (RetVT == MVT::f32) 467 return SINTTOFP_I64_F32; 468 else if (RetVT == MVT::f64) 469 return SINTTOFP_I64_F64; 470 else if (RetVT == MVT::f80) 471 return SINTTOFP_I64_F80; 472 else if (RetVT == MVT::ppcf128) 473 return SINTTOFP_I64_PPCF128; 474 } else if (OpVT == MVT::i128) { 475 if (RetVT == MVT::f32) 476 return SINTTOFP_I128_F32; 477 else if (RetVT == MVT::f64) 478 return SINTTOFP_I128_F64; 479 else if (RetVT == MVT::f80) 480 return SINTTOFP_I128_F80; 481 else if (RetVT == MVT::ppcf128) 482 return SINTTOFP_I128_PPCF128; 483 } 484 return UNKNOWN_LIBCALL; 485} 486 487/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or 488/// UNKNOWN_LIBCALL if there is none. 489RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) { 490 if (OpVT == MVT::i32) { 491 if (RetVT == MVT::f32) 492 return UINTTOFP_I32_F32; 493 else if (RetVT == MVT::f64) 494 return UINTTOFP_I32_F64; 495 else if (RetVT == MVT::f80) 496 return UINTTOFP_I32_F80; 497 else if (RetVT == MVT::ppcf128) 498 return UINTTOFP_I32_PPCF128; 499 } else if (OpVT == MVT::i64) { 500 if (RetVT == MVT::f32) 501 return UINTTOFP_I64_F32; 502 else if (RetVT == MVT::f64) 503 return UINTTOFP_I64_F64; 504 else if (RetVT == MVT::f80) 505 return UINTTOFP_I64_F80; 506 else if (RetVT == MVT::ppcf128) 507 return UINTTOFP_I64_PPCF128; 508 } else if (OpVT == MVT::i128) { 509 if (RetVT == MVT::f32) 510 return UINTTOFP_I128_F32; 511 else if (RetVT == MVT::f64) 512 return UINTTOFP_I128_F64; 513 else if (RetVT == MVT::f80) 514 return UINTTOFP_I128_F80; 515 else if (RetVT == MVT::ppcf128) 516 return UINTTOFP_I128_PPCF128; 517 } 518 return UNKNOWN_LIBCALL; 519} 520 521/// InitCmpLibcallCCs - Set default comparison libcall CC. 522/// 523static void InitCmpLibcallCCs(ISD::CondCode *CCs) { 524 memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL); 525 CCs[RTLIB::OEQ_F32] = ISD::SETEQ; 526 CCs[RTLIB::OEQ_F64] = ISD::SETEQ; 527 CCs[RTLIB::UNE_F32] = ISD::SETNE; 528 CCs[RTLIB::UNE_F64] = ISD::SETNE; 529 CCs[RTLIB::OGE_F32] = ISD::SETGE; 530 CCs[RTLIB::OGE_F64] = ISD::SETGE; 531 CCs[RTLIB::OLT_F32] = ISD::SETLT; 532 CCs[RTLIB::OLT_F64] = ISD::SETLT; 533 CCs[RTLIB::OLE_F32] = ISD::SETLE; 534 CCs[RTLIB::OLE_F64] = ISD::SETLE; 535 CCs[RTLIB::OGT_F32] = ISD::SETGT; 536 CCs[RTLIB::OGT_F64] = ISD::SETGT; 537 CCs[RTLIB::UO_F32] = ISD::SETNE; 538 CCs[RTLIB::UO_F64] = ISD::SETNE; 539 CCs[RTLIB::O_F32] = ISD::SETEQ; 540 CCs[RTLIB::O_F64] = ISD::SETEQ; 541} 542 543/// NOTE: The constructor takes ownership of TLOF. 544TargetLowering::TargetLowering(const TargetMachine &tm, 545 const TargetLoweringObjectFile *tlof) 546 : TM(tm), TD(TM.getTargetData()), TLOF(*tlof), 547 mayPromoteElements(AllowPromoteIntElem) { 548 // All operations default to being supported. 549 memset(OpActions, 0, sizeof(OpActions)); 550 memset(LoadExtActions, 0, sizeof(LoadExtActions)); 551 memset(TruncStoreActions, 0, sizeof(TruncStoreActions)); 552 memset(IndexedModeActions, 0, sizeof(IndexedModeActions)); 553 memset(CondCodeActions, 0, sizeof(CondCodeActions)); 554 555 // Set default actions for various operations. 556 for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) { 557 // Default all indexed load / store to expand. 558 for (unsigned IM = (unsigned)ISD::PRE_INC; 559 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { 560 setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand); 561 setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand); 562 } 563 564 // These operations default to expand. 565 setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand); 566 setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand); 567 } 568 569 // Most targets ignore the @llvm.prefetch intrinsic. 570 setOperationAction(ISD::PREFETCH, MVT::Other, Expand); 571 572 // ConstantFP nodes default to expand. Targets can either change this to 573 // Legal, in which case all fp constants are legal, or use isFPImmLegal() 574 // to optimize expansions for certain constants. 575 setOperationAction(ISD::ConstantFP, MVT::f16, Expand); 576 setOperationAction(ISD::ConstantFP, MVT::f32, Expand); 577 setOperationAction(ISD::ConstantFP, MVT::f64, Expand); 578 setOperationAction(ISD::ConstantFP, MVT::f80, Expand); 579 580 // These library functions default to expand. 581 setOperationAction(ISD::FLOG , MVT::f16, Expand); 582 setOperationAction(ISD::FLOG2, MVT::f16, Expand); 583 setOperationAction(ISD::FLOG10, MVT::f16, Expand); 584 setOperationAction(ISD::FEXP , MVT::f16, Expand); 585 setOperationAction(ISD::FEXP2, MVT::f16, Expand); 586 setOperationAction(ISD::FFLOOR, MVT::f16, Expand); 587 setOperationAction(ISD::FNEARBYINT, MVT::f16, Expand); 588 setOperationAction(ISD::FCEIL, MVT::f16, Expand); 589 setOperationAction(ISD::FRINT, MVT::f16, Expand); 590 setOperationAction(ISD::FTRUNC, MVT::f16, Expand); 591 setOperationAction(ISD::FLOG , MVT::f32, Expand); 592 setOperationAction(ISD::FLOG2, MVT::f32, Expand); 593 setOperationAction(ISD::FLOG10, MVT::f32, Expand); 594 setOperationAction(ISD::FEXP , MVT::f32, Expand); 595 setOperationAction(ISD::FEXP2, MVT::f32, Expand); 596 setOperationAction(ISD::FFLOOR, MVT::f32, Expand); 597 setOperationAction(ISD::FNEARBYINT, MVT::f32, Expand); 598 setOperationAction(ISD::FCEIL, MVT::f32, Expand); 599 setOperationAction(ISD::FRINT, MVT::f32, Expand); 600 setOperationAction(ISD::FTRUNC, MVT::f32, Expand); 601 setOperationAction(ISD::FLOG , MVT::f64, Expand); 602 setOperationAction(ISD::FLOG2, MVT::f64, Expand); 603 setOperationAction(ISD::FLOG10, MVT::f64, Expand); 604 setOperationAction(ISD::FEXP , MVT::f64, Expand); 605 setOperationAction(ISD::FEXP2, MVT::f64, Expand); 606 setOperationAction(ISD::FFLOOR, MVT::f64, Expand); 607 setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand); 608 setOperationAction(ISD::FCEIL, MVT::f64, Expand); 609 setOperationAction(ISD::FRINT, MVT::f64, Expand); 610 setOperationAction(ISD::FTRUNC, MVT::f64, Expand); 611 612 // Default ISD::TRAP to expand (which turns it into abort). 613 setOperationAction(ISD::TRAP, MVT::Other, Expand); 614 615 IsLittleEndian = TD->isLittleEndian(); 616 PointerTy = MVT::getIntegerVT(8*TD->getPointerSize()); 617 memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*)); 618 memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray)); 619 maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8; 620 maxStoresPerMemsetOptSize = maxStoresPerMemcpyOptSize 621 = maxStoresPerMemmoveOptSize = 4; 622 benefitFromCodePlacementOpt = false; 623 UseUnderscoreSetJmp = false; 624 UseUnderscoreLongJmp = false; 625 SelectIsExpensive = false; 626 IntDivIsCheap = false; 627 Pow2DivIsCheap = false; 628 JumpIsExpensive = false; 629 StackPointerRegisterToSaveRestore = 0; 630 ExceptionPointerRegister = 0; 631 ExceptionSelectorRegister = 0; 632 BooleanContents = UndefinedBooleanContent; 633 BooleanVectorContents = UndefinedBooleanContent; 634 SchedPreferenceInfo = Sched::ILP; 635 JumpBufSize = 0; 636 JumpBufAlignment = 0; 637 MinFunctionAlignment = 0; 638 PrefFunctionAlignment = 0; 639 PrefLoopAlignment = 0; 640 MinStackArgumentAlignment = 1; 641 ShouldFoldAtomicFences = false; 642 InsertFencesForAtomic = false; 643 644 InitLibcallNames(LibcallRoutineNames); 645 InitCmpLibcallCCs(CmpLibcallCCs); 646 InitLibcallCallingConvs(LibcallCallingConvs); 647} 648 649TargetLowering::~TargetLowering() { 650 delete &TLOF; 651} 652 653MVT TargetLowering::getShiftAmountTy(EVT LHSTy) const { 654 return MVT::getIntegerVT(8*TD->getPointerSize()); 655} 656 657/// canOpTrap - Returns true if the operation can trap for the value type. 658/// VT must be a legal type. 659bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const { 660 assert(isTypeLegal(VT)); 661 switch (Op) { 662 default: 663 return false; 664 case ISD::FDIV: 665 case ISD::FREM: 666 case ISD::SDIV: 667 case ISD::UDIV: 668 case ISD::SREM: 669 case ISD::UREM: 670 return true; 671 } 672} 673 674 675static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, 676 unsigned &NumIntermediates, 677 EVT &RegisterVT, 678 TargetLowering *TLI) { 679 // Figure out the right, legal destination reg to copy into. 680 unsigned NumElts = VT.getVectorNumElements(); 681 MVT EltTy = VT.getVectorElementType(); 682 683 unsigned NumVectorRegs = 1; 684 685 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we 686 // could break down into LHS/RHS like LegalizeDAG does. 687 if (!isPowerOf2_32(NumElts)) { 688 NumVectorRegs = NumElts; 689 NumElts = 1; 690 } 691 692 // Divide the input until we get to a supported size. This will always 693 // end with a scalar if the target doesn't support vectors. 694 while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) { 695 NumElts >>= 1; 696 NumVectorRegs <<= 1; 697 } 698 699 NumIntermediates = NumVectorRegs; 700 701 MVT NewVT = MVT::getVectorVT(EltTy, NumElts); 702 if (!TLI->isTypeLegal(NewVT)) 703 NewVT = EltTy; 704 IntermediateVT = NewVT; 705 706 unsigned NewVTSize = NewVT.getSizeInBits(); 707 708 // Convert sizes such as i33 to i64. 709 if (!isPowerOf2_32(NewVTSize)) 710 NewVTSize = NextPowerOf2(NewVTSize); 711 712 EVT DestVT = TLI->getRegisterType(NewVT); 713 RegisterVT = DestVT; 714 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. 715 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); 716 717 // Otherwise, promotion or legal types use the same number of registers as 718 // the vector decimated to the appropriate level. 719 return NumVectorRegs; 720} 721 722/// isLegalRC - Return true if the value types that can be represented by the 723/// specified register class are all legal. 724bool TargetLowering::isLegalRC(const TargetRegisterClass *RC) const { 725 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); 726 I != E; ++I) { 727 if (isTypeLegal(*I)) 728 return true; 729 } 730 return false; 731} 732 733/// hasLegalSuperRegRegClasses - Return true if the specified register class 734/// has one or more super-reg register classes that are legal. 735bool 736TargetLowering::hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const{ 737 if (*RC->superregclasses_begin() == 0) 738 return false; 739 for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(), 740 E = RC->superregclasses_end(); I != E; ++I) { 741 const TargetRegisterClass *RRC = *I; 742 if (isLegalRC(RRC)) 743 return true; 744 } 745 return false; 746} 747 748/// findRepresentativeClass - Return the largest legal super-reg register class 749/// of the register class for the specified type and its associated "cost". 750std::pair<const TargetRegisterClass*, uint8_t> 751TargetLowering::findRepresentativeClass(EVT VT) const { 752 const TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy]; 753 if (!RC) 754 return std::make_pair(RC, 0); 755 const TargetRegisterClass *BestRC = RC; 756 for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(), 757 E = RC->superregclasses_end(); I != E; ++I) { 758 const TargetRegisterClass *RRC = *I; 759 if (RRC->isASubClass() || !isLegalRC(RRC)) 760 continue; 761 if (!hasLegalSuperRegRegClasses(RRC)) 762 return std::make_pair(RRC, 1); 763 BestRC = RRC; 764 } 765 return std::make_pair(BestRC, 1); 766} 767 768 769/// computeRegisterProperties - Once all of the register classes are added, 770/// this allows us to compute derived properties we expose. 771void TargetLowering::computeRegisterProperties() { 772 assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE && 773 "Too many value types for ValueTypeActions to hold!"); 774 775 // Everything defaults to needing one register. 776 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { 777 NumRegistersForVT[i] = 1; 778 RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i; 779 } 780 // ...except isVoid, which doesn't need any registers. 781 NumRegistersForVT[MVT::isVoid] = 0; 782 783 // Find the largest integer register class. 784 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE; 785 for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg) 786 assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); 787 788 // Every integer value type larger than this largest register takes twice as 789 // many registers to represent as the previous ValueType. 790 for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) { 791 EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg; 792 if (!ExpandedVT.isInteger()) 793 break; 794 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1]; 795 RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg; 796 TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1); 797 ValueTypeActions.setTypeAction(ExpandedVT, TypeExpandInteger); 798 } 799 800 // Inspect all of the ValueType's smaller than the largest integer 801 // register to see which ones need promotion. 802 unsigned LegalIntReg = LargestIntReg; 803 for (unsigned IntReg = LargestIntReg - 1; 804 IntReg >= (unsigned)MVT::i1; --IntReg) { 805 EVT IVT = (MVT::SimpleValueType)IntReg; 806 if (isTypeLegal(IVT)) { 807 LegalIntReg = IntReg; 808 } else { 809 RegisterTypeForVT[IntReg] = TransformToType[IntReg] = 810 (MVT::SimpleValueType)LegalIntReg; 811 ValueTypeActions.setTypeAction(IVT, TypePromoteInteger); 812 } 813 } 814 815 // ppcf128 type is really two f64's. 816 if (!isTypeLegal(MVT::ppcf128)) { 817 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64]; 818 RegisterTypeForVT[MVT::ppcf128] = MVT::f64; 819 TransformToType[MVT::ppcf128] = MVT::f64; 820 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat); 821 } 822 823 // Decide how to handle f64. If the target does not have native f64 support, 824 // expand it to i64 and we will be generating soft float library calls. 825 if (!isTypeLegal(MVT::f64)) { 826 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64]; 827 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64]; 828 TransformToType[MVT::f64] = MVT::i64; 829 ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat); 830 } 831 832 // Decide how to handle f32. If the target does not have native support for 833 // f32, promote it to f64 if it is legal. Otherwise, expand it to i32. 834 if (!isTypeLegal(MVT::f32)) { 835 if (isTypeLegal(MVT::f64)) { 836 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64]; 837 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64]; 838 TransformToType[MVT::f32] = MVT::f64; 839 ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger); 840 } else { 841 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32]; 842 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32]; 843 TransformToType[MVT::f32] = MVT::i32; 844 ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat); 845 } 846 } 847 848 // Loop over all of the vector value types to see which need transformations. 849 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE; 850 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { 851 MVT VT = (MVT::SimpleValueType)i; 852 if (isTypeLegal(VT)) continue; 853 854 // Determine if there is a legal wider type. If so, we should promote to 855 // that wider vector type. 856 EVT EltVT = VT.getVectorElementType(); 857 unsigned NElts = VT.getVectorNumElements(); 858 if (NElts != 1) { 859 bool IsLegalWiderType = false; 860 // If we allow the promotion of vector elements using a flag, 861 // then return TypePromoteInteger on vector elements. 862 // First try to promote the elements of integer vectors. If no legal 863 // promotion was found, fallback to the widen-vector method. 864 if (mayPromoteElements) 865 for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { 866 EVT SVT = (MVT::SimpleValueType)nVT; 867 // Promote vectors of integers to vectors with the same number 868 // of elements, with a wider element type. 869 if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits() 870 && SVT.getVectorNumElements() == NElts && 871 isTypeLegal(SVT) && SVT.getScalarType().isInteger()) { 872 TransformToType[i] = SVT; 873 RegisterTypeForVT[i] = SVT; 874 NumRegistersForVT[i] = 1; 875 ValueTypeActions.setTypeAction(VT, TypePromoteInteger); 876 IsLegalWiderType = true; 877 break; 878 } 879 } 880 881 if (IsLegalWiderType) continue; 882 883 // Try to widen the vector. 884 for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { 885 EVT SVT = (MVT::SimpleValueType)nVT; 886 if (SVT.getVectorElementType() == EltVT && 887 SVT.getVectorNumElements() > NElts && 888 isTypeLegal(SVT)) { 889 TransformToType[i] = SVT; 890 RegisterTypeForVT[i] = SVT; 891 NumRegistersForVT[i] = 1; 892 ValueTypeActions.setTypeAction(VT, TypeWidenVector); 893 IsLegalWiderType = true; 894 break; 895 } 896 } 897 if (IsLegalWiderType) continue; 898 } 899 900 MVT IntermediateVT; 901 EVT RegisterVT; 902 unsigned NumIntermediates; 903 NumRegistersForVT[i] = 904 getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates, 905 RegisterVT, this); 906 RegisterTypeForVT[i] = RegisterVT; 907 908 EVT NVT = VT.getPow2VectorType(); 909 if (NVT == VT) { 910 // Type is already a power of 2. The default action is to split. 911 TransformToType[i] = MVT::Other; 912 unsigned NumElts = VT.getVectorNumElements(); 913 ValueTypeActions.setTypeAction(VT, 914 NumElts > 1 ? TypeSplitVector : TypeScalarizeVector); 915 } else { 916 TransformToType[i] = NVT; 917 ValueTypeActions.setTypeAction(VT, TypeWidenVector); 918 } 919 } 920 921 // Determine the 'representative' register class for each value type. 922 // An representative register class is the largest (meaning one which is 923 // not a sub-register class / subreg register class) legal register class for 924 // a group of value types. For example, on i386, i8, i16, and i32 925 // representative would be GR32; while on x86_64 it's GR64. 926 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { 927 const TargetRegisterClass* RRC; 928 uint8_t Cost; 929 tie(RRC, Cost) = findRepresentativeClass((MVT::SimpleValueType)i); 930 RepRegClassForVT[i] = RRC; 931 RepRegClassCostForVT[i] = Cost; 932 } 933} 934 935const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 936 return NULL; 937} 938 939 940EVT TargetLowering::getSetCCResultType(EVT VT) const { 941 assert(!VT.isVector() && "No default SetCC type for vectors!"); 942 return PointerTy.SimpleTy; 943} 944 945MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const { 946 return MVT::i32; // return the default value 947} 948 949/// getVectorTypeBreakdown - Vector types are broken down into some number of 950/// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32 951/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. 952/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86. 953/// 954/// This method returns the number of registers needed, and the VT for each 955/// register. It also returns the VT and quantity of the intermediate values 956/// before they are promoted/expanded. 957/// 958unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT, 959 EVT &IntermediateVT, 960 unsigned &NumIntermediates, 961 EVT &RegisterVT) const { 962 unsigned NumElts = VT.getVectorNumElements(); 963 964 // If there is a wider vector type with the same element type as this one, 965 // we should widen to that legal vector type. This handles things like 966 // <2 x float> -> <4 x float>. 967 if (NumElts != 1 && getTypeAction(Context, VT) == TypeWidenVector) { 968 RegisterVT = getTypeToTransformTo(Context, VT); 969 if (isTypeLegal(RegisterVT)) { 970 IntermediateVT = RegisterVT; 971 NumIntermediates = 1; 972 return 1; 973 } 974 } 975 976 // Figure out the right, legal destination reg to copy into. 977 EVT EltTy = VT.getVectorElementType(); 978 979 unsigned NumVectorRegs = 1; 980 981 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we 982 // could break down into LHS/RHS like LegalizeDAG does. 983 if (!isPowerOf2_32(NumElts)) { 984 NumVectorRegs = NumElts; 985 NumElts = 1; 986 } 987 988 // Divide the input until we get to a supported size. This will always 989 // end with a scalar if the target doesn't support vectors. 990 while (NumElts > 1 && !isTypeLegal( 991 EVT::getVectorVT(Context, EltTy, NumElts))) { 992 NumElts >>= 1; 993 NumVectorRegs <<= 1; 994 } 995 996 NumIntermediates = NumVectorRegs; 997 998 EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts); 999 if (!isTypeLegal(NewVT)) 1000 NewVT = EltTy; 1001 IntermediateVT = NewVT; 1002 1003 EVT DestVT = getRegisterType(Context, NewVT); 1004 RegisterVT = DestVT; 1005 unsigned NewVTSize = NewVT.getSizeInBits(); 1006 1007 // Convert sizes such as i33 to i64. 1008 if (!isPowerOf2_32(NewVTSize)) 1009 NewVTSize = NextPowerOf2(NewVTSize); 1010 1011 if (DestVT.bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. 1012 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); 1013 1014 // Otherwise, promotion or legal types use the same number of registers as 1015 // the vector decimated to the appropriate level. 1016 return NumVectorRegs; 1017} 1018 1019/// Get the EVTs and ArgFlags collections that represent the legalized return 1020/// type of the given function. This does not require a DAG or a return value, 1021/// and is suitable for use before any DAGs for the function are constructed. 1022/// TODO: Move this out of TargetLowering.cpp. 1023void llvm::GetReturnInfo(Type* ReturnType, Attributes attr, 1024 SmallVectorImpl<ISD::OutputArg> &Outs, 1025 const TargetLowering &TLI, 1026 SmallVectorImpl<uint64_t> *Offsets) { 1027 SmallVector<EVT, 4> ValueVTs; 1028 ComputeValueVTs(TLI, ReturnType, ValueVTs); 1029 unsigned NumValues = ValueVTs.size(); 1030 if (NumValues == 0) return; 1031 unsigned Offset = 0; 1032 1033 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1034 EVT VT = ValueVTs[j]; 1035 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1036 1037 if (attr & Attribute::SExt) 1038 ExtendKind = ISD::SIGN_EXTEND; 1039 else if (attr & Attribute::ZExt) 1040 ExtendKind = ISD::ZERO_EXTEND; 1041 1042 // FIXME: C calling convention requires the return type to be promoted to 1043 // at least 32-bit. But this is not necessary for non-C calling 1044 // conventions. The frontend should mark functions whose return values 1045 // require promoting with signext or zeroext attributes. 1046 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 1047 EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); 1048 if (VT.bitsLT(MinVT)) 1049 VT = MinVT; 1050 } 1051 1052 unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT); 1053 EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT); 1054 unsigned PartSize = TLI.getTargetData()->getTypeAllocSize( 1055 PartVT.getTypeForEVT(ReturnType->getContext())); 1056 1057 // 'inreg' on function refers to return value 1058 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1059 if (attr & Attribute::InReg) 1060 Flags.setInReg(); 1061 1062 // Propagate extension type if any 1063 if (attr & Attribute::SExt) 1064 Flags.setSExt(); 1065 else if (attr & Attribute::ZExt) 1066 Flags.setZExt(); 1067 1068 for (unsigned i = 0; i < NumParts; ++i) { 1069 Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true)); 1070 if (Offsets) { 1071 Offsets->push_back(Offset); 1072 Offset += PartSize; 1073 } 1074 } 1075 } 1076} 1077 1078/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1079/// function arguments in the caller parameter area. This is the actual 1080/// alignment, not its logarithm. 1081unsigned TargetLowering::getByValTypeAlignment(Type *Ty) const { 1082 return TD->getCallFrameTypeAlignment(Ty); 1083} 1084 1085/// getJumpTableEncoding - Return the entry encoding for a jump table in the 1086/// current function. The returned value is a member of the 1087/// MachineJumpTableInfo::JTEntryKind enum. 1088unsigned TargetLowering::getJumpTableEncoding() const { 1089 // In non-pic modes, just use the address of a block. 1090 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 1091 return MachineJumpTableInfo::EK_BlockAddress; 1092 1093 // In PIC mode, if the target supports a GPRel32 directive, use it. 1094 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0) 1095 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 1096 1097 // Otherwise, use a label difference. 1098 return MachineJumpTableInfo::EK_LabelDifference32; 1099} 1100 1101SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 1102 SelectionDAG &DAG) const { 1103 // If our PIC model is GP relative, use the global offset table as the base. 1104 if (getJumpTableEncoding() == MachineJumpTableInfo::EK_GPRel32BlockAddress) 1105 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy()); 1106 return Table; 1107} 1108 1109/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the 1110/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an 1111/// MCExpr. 1112const MCExpr * 1113TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 1114 unsigned JTI,MCContext &Ctx) const{ 1115 // The normal PIC reloc base is the label at the start of the jump table. 1116 return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx); 1117} 1118 1119bool 1120TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 1121 // Assume that everything is safe in static mode. 1122 if (getTargetMachine().getRelocationModel() == Reloc::Static) 1123 return true; 1124 1125 // In dynamic-no-pic mode, assume that known defined values are safe. 1126 if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC && 1127 GA && 1128 !GA->getGlobal()->isDeclaration() && 1129 !GA->getGlobal()->isWeakForLinker()) 1130 return true; 1131 1132 // Otherwise assume nothing is safe. 1133 return false; 1134} 1135 1136//===----------------------------------------------------------------------===// 1137// Optimization Methods 1138//===----------------------------------------------------------------------===// 1139 1140/// ShrinkDemandedConstant - Check to see if the specified operand of the 1141/// specified instruction is a constant integer. If so, check to see if there 1142/// are any bits set in the constant that are not demanded. If so, shrink the 1143/// constant and return true. 1144bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op, 1145 const APInt &Demanded) { 1146 DebugLoc dl = Op.getDebugLoc(); 1147 1148 // FIXME: ISD::SELECT, ISD::SELECT_CC 1149 switch (Op.getOpcode()) { 1150 default: break; 1151 case ISD::XOR: 1152 case ISD::AND: 1153 case ISD::OR: { 1154 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 1155 if (!C) return false; 1156 1157 if (Op.getOpcode() == ISD::XOR && 1158 (C->getAPIntValue() | (~Demanded)).isAllOnesValue()) 1159 return false; 1160 1161 // if we can expand it to have all bits set, do it 1162 if (C->getAPIntValue().intersects(~Demanded)) { 1163 EVT VT = Op.getValueType(); 1164 SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0), 1165 DAG.getConstant(Demanded & 1166 C->getAPIntValue(), 1167 VT)); 1168 return CombineTo(Op, New); 1169 } 1170 1171 break; 1172 } 1173 } 1174 1175 return false; 1176} 1177 1178/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the 1179/// casts are free. This uses isZExtFree and ZERO_EXTEND for the widening 1180/// cast, but it could be generalized for targets with other types of 1181/// implicit widening casts. 1182bool 1183TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op, 1184 unsigned BitWidth, 1185 const APInt &Demanded, 1186 DebugLoc dl) { 1187 assert(Op.getNumOperands() == 2 && 1188 "ShrinkDemandedOp only supports binary operators!"); 1189 assert(Op.getNode()->getNumValues() == 1 && 1190 "ShrinkDemandedOp only supports nodes with one result!"); 1191 1192 // Don't do this if the node has another user, which may require the 1193 // full value. 1194 if (!Op.getNode()->hasOneUse()) 1195 return false; 1196 1197 // Search for the smallest integer type with free casts to and from 1198 // Op's type. For expedience, just check power-of-2 integer types. 1199 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1200 unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros(); 1201 if (!isPowerOf2_32(SmallVTBits)) 1202 SmallVTBits = NextPowerOf2(SmallVTBits); 1203 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 1204 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 1205 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 1206 TLI.isZExtFree(SmallVT, Op.getValueType())) { 1207 // We found a type with free casts. 1208 SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT, 1209 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 1210 Op.getNode()->getOperand(0)), 1211 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 1212 Op.getNode()->getOperand(1))); 1213 SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X); 1214 return CombineTo(Op, Z); 1215 } 1216 } 1217 return false; 1218} 1219 1220/// SimplifyDemandedBits - Look at Op. At this point, we know that only the 1221/// DemandedMask bits of the result of Op are ever used downstream. If we can 1222/// use this information to simplify Op, create a new simplified DAG node and 1223/// return true, returning the original and new nodes in Old and New. Otherwise, 1224/// analyze the expression and return a mask of KnownOne and KnownZero bits for 1225/// the expression (used to simplify the caller). The KnownZero/One bits may 1226/// only be accurate for those bits in the DemandedMask. 1227bool TargetLowering::SimplifyDemandedBits(SDValue Op, 1228 const APInt &DemandedMask, 1229 APInt &KnownZero, 1230 APInt &KnownOne, 1231 TargetLoweringOpt &TLO, 1232 unsigned Depth) const { 1233 unsigned BitWidth = DemandedMask.getBitWidth(); 1234 assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth && 1235 "Mask size mismatches value type size!"); 1236 APInt NewMask = DemandedMask; 1237 DebugLoc dl = Op.getDebugLoc(); 1238 1239 // Don't know anything. 1240 KnownZero = KnownOne = APInt(BitWidth, 0); 1241 1242 // Other users may use these bits. 1243 if (!Op.getNode()->hasOneUse()) { 1244 if (Depth != 0) { 1245 // If not at the root, Just compute the KnownZero/KnownOne bits to 1246 // simplify things downstream. 1247 TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth); 1248 return false; 1249 } 1250 // If this is the root being simplified, allow it to have multiple uses, 1251 // just set the NewMask to all bits. 1252 NewMask = APInt::getAllOnesValue(BitWidth); 1253 } else if (DemandedMask == 0) { 1254 // Not demanding any bits from Op. 1255 if (Op.getOpcode() != ISD::UNDEF) 1256 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType())); 1257 return false; 1258 } else if (Depth == 6) { // Limit search depth. 1259 return false; 1260 } 1261 1262 APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut; 1263 switch (Op.getOpcode()) { 1264 case ISD::Constant: 1265 // We know all of the bits for a constant! 1266 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask; 1267 KnownZero = ~KnownOne & NewMask; 1268 return false; // Don't fall through, will infinitely loop. 1269 case ISD::AND: 1270 // If the RHS is a constant, check to see if the LHS would be zero without 1271 // using the bits from the RHS. Below, we use knowledge about the RHS to 1272 // simplify the LHS, here we're using information from the LHS to simplify 1273 // the RHS. 1274 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 1275 APInt LHSZero, LHSOne; 1276 // Do not increment Depth here; that can cause an infinite loop. 1277 TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask, 1278 LHSZero, LHSOne, Depth); 1279 // If the LHS already has zeros where RHSC does, this and is dead. 1280 if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask)) 1281 return TLO.CombineTo(Op, Op.getOperand(0)); 1282 // If any of the set bits in the RHS are known zero on the LHS, shrink 1283 // the constant. 1284 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask)) 1285 return true; 1286 } 1287 1288 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 1289 KnownOne, TLO, Depth+1)) 1290 return true; 1291 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1292 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask, 1293 KnownZero2, KnownOne2, TLO, Depth+1)) 1294 return true; 1295 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 1296 1297 // If all of the demanded bits are known one on one side, return the other. 1298 // These bits cannot contribute to the result of the 'and'. 1299 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 1300 return TLO.CombineTo(Op, Op.getOperand(0)); 1301 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 1302 return TLO.CombineTo(Op, Op.getOperand(1)); 1303 // If all of the demanded bits in the inputs are known zeros, return zero. 1304 if ((NewMask & (KnownZero|KnownZero2)) == NewMask) 1305 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType())); 1306 // If the RHS is a constant, see if we can simplify it. 1307 if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask)) 1308 return true; 1309 // If the operation can be done in a smaller type, do so. 1310 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 1311 return true; 1312 1313 // Output known-1 bits are only known if set in both the LHS & RHS. 1314 KnownOne &= KnownOne2; 1315 // Output known-0 are known to be clear if zero in either the LHS | RHS. 1316 KnownZero |= KnownZero2; 1317 break; 1318 case ISD::OR: 1319 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 1320 KnownOne, TLO, Depth+1)) 1321 return true; 1322 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1323 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask, 1324 KnownZero2, KnownOne2, TLO, Depth+1)) 1325 return true; 1326 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 1327 1328 // If all of the demanded bits are known zero on one side, return the other. 1329 // These bits cannot contribute to the result of the 'or'. 1330 if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask)) 1331 return TLO.CombineTo(Op, Op.getOperand(0)); 1332 if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask)) 1333 return TLO.CombineTo(Op, Op.getOperand(1)); 1334 // If all of the potentially set bits on one side are known to be set on 1335 // the other side, just use the 'other' side. 1336 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 1337 return TLO.CombineTo(Op, Op.getOperand(0)); 1338 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 1339 return TLO.CombineTo(Op, Op.getOperand(1)); 1340 // If the RHS is a constant, see if we can simplify it. 1341 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 1342 return true; 1343 // If the operation can be done in a smaller type, do so. 1344 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 1345 return true; 1346 1347 // Output known-0 bits are only known if clear in both the LHS & RHS. 1348 KnownZero &= KnownZero2; 1349 // Output known-1 are known to be set if set in either the LHS | RHS. 1350 KnownOne |= KnownOne2; 1351 break; 1352 case ISD::XOR: 1353 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 1354 KnownOne, TLO, Depth+1)) 1355 return true; 1356 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1357 if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2, 1358 KnownOne2, TLO, Depth+1)) 1359 return true; 1360 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 1361 1362 // If all of the demanded bits are known zero on one side, return the other. 1363 // These bits cannot contribute to the result of the 'xor'. 1364 if ((KnownZero & NewMask) == NewMask) 1365 return TLO.CombineTo(Op, Op.getOperand(0)); 1366 if ((KnownZero2 & NewMask) == NewMask) 1367 return TLO.CombineTo(Op, Op.getOperand(1)); 1368 // If the operation can be done in a smaller type, do so. 1369 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 1370 return true; 1371 1372 // If all of the unknown bits are known to be zero on one side or the other 1373 // (but not both) turn this into an *inclusive* or. 1374 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1375 if ((NewMask & ~KnownZero & ~KnownZero2) == 0) 1376 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(), 1377 Op.getOperand(0), 1378 Op.getOperand(1))); 1379 1380 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1381 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 1382 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1383 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 1384 1385 // If all of the demanded bits on one side are known, and all of the set 1386 // bits on that side are also known to be set on the other side, turn this 1387 // into an AND, as we know the bits will be cleared. 1388 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1389 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known 1390 if ((KnownOne & KnownOne2) == KnownOne) { 1391 EVT VT = Op.getValueType(); 1392 SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT); 1393 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, 1394 Op.getOperand(0), ANDC)); 1395 } 1396 } 1397 1398 // If the RHS is a constant, see if we can simplify it. 1399 // for XOR, we prefer to force bits to 1 if they will make a -1. 1400 // if we can't force bits, try to shrink constant 1401 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 1402 APInt Expanded = C->getAPIntValue() | (~NewMask); 1403 // if we can expand it to have all bits set, do it 1404 if (Expanded.isAllOnesValue()) { 1405 if (Expanded != C->getAPIntValue()) { 1406 EVT VT = Op.getValueType(); 1407 SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0), 1408 TLO.DAG.getConstant(Expanded, VT)); 1409 return TLO.CombineTo(Op, New); 1410 } 1411 // if it already has all the bits set, nothing to change 1412 // but don't shrink either! 1413 } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) { 1414 return true; 1415 } 1416 } 1417 1418 KnownZero = KnownZeroOut; 1419 KnownOne = KnownOneOut; 1420 break; 1421 case ISD::SELECT: 1422 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero, 1423 KnownOne, TLO, Depth+1)) 1424 return true; 1425 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2, 1426 KnownOne2, TLO, Depth+1)) 1427 return true; 1428 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1429 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 1430 1431 // If the operands are constants, see if we can simplify them. 1432 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 1433 return true; 1434 1435 // Only known if known in both the LHS and RHS. 1436 KnownOne &= KnownOne2; 1437 KnownZero &= KnownZero2; 1438 break; 1439 case ISD::SELECT_CC: 1440 if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero, 1441 KnownOne, TLO, Depth+1)) 1442 return true; 1443 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2, 1444 KnownOne2, TLO, Depth+1)) 1445 return true; 1446 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1447 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 1448 1449 // If the operands are constants, see if we can simplify them. 1450 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 1451 return true; 1452 1453 // Only known if known in both the LHS and RHS. 1454 KnownOne &= KnownOne2; 1455 KnownZero &= KnownZero2; 1456 break; 1457 case ISD::SHL: 1458 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 1459 unsigned ShAmt = SA->getZExtValue(); 1460 SDValue InOp = Op.getOperand(0); 1461 1462 // If the shift count is an invalid immediate, don't do anything. 1463 if (ShAmt >= BitWidth) 1464 break; 1465 1466 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1467 // single shift. We can do this if the bottom bits (which are shifted 1468 // out) are never demanded. 1469 if (InOp.getOpcode() == ISD::SRL && 1470 isa<ConstantSDNode>(InOp.getOperand(1))) { 1471 if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 1472 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 1473 unsigned Opc = ISD::SHL; 1474 int Diff = ShAmt-C1; 1475 if (Diff < 0) { 1476 Diff = -Diff; 1477 Opc = ISD::SRL; 1478 } 1479 1480 SDValue NewSA = 1481 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType()); 1482 EVT VT = Op.getValueType(); 1483 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 1484 InOp.getOperand(0), NewSA)); 1485 } 1486 } 1487 1488 if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), 1489 KnownZero, KnownOne, TLO, Depth+1)) 1490 return true; 1491 1492 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1493 // are not demanded. This will likely allow the anyext to be folded away. 1494 if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) { 1495 SDValue InnerOp = InOp.getNode()->getOperand(0); 1496 EVT InnerVT = InnerOp.getValueType(); 1497 unsigned InnerBits = InnerVT.getSizeInBits(); 1498 if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 && 1499 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1500 EVT ShTy = getShiftAmountTy(InnerVT); 1501 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1502 ShTy = InnerVT; 1503 SDValue NarrowShl = 1504 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1505 TLO.DAG.getConstant(ShAmt, ShTy)); 1506 return 1507 TLO.CombineTo(Op, 1508 TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), 1509 NarrowShl)); 1510 } 1511 } 1512 1513 KnownZero <<= SA->getZExtValue(); 1514 KnownOne <<= SA->getZExtValue(); 1515 // low bits known zero. 1516 KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue()); 1517 } 1518 break; 1519 case ISD::SRL: 1520 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 1521 EVT VT = Op.getValueType(); 1522 unsigned ShAmt = SA->getZExtValue(); 1523 unsigned VTSize = VT.getSizeInBits(); 1524 SDValue InOp = Op.getOperand(0); 1525 1526 // If the shift count is an invalid immediate, don't do anything. 1527 if (ShAmt >= BitWidth) 1528 break; 1529 1530 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1531 // single shift. We can do this if the top bits (which are shifted out) 1532 // are never demanded. 1533 if (InOp.getOpcode() == ISD::SHL && 1534 isa<ConstantSDNode>(InOp.getOperand(1))) { 1535 if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) { 1536 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 1537 unsigned Opc = ISD::SRL; 1538 int Diff = ShAmt-C1; 1539 if (Diff < 0) { 1540 Diff = -Diff; 1541 Opc = ISD::SHL; 1542 } 1543 1544 SDValue NewSA = 1545 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType()); 1546 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 1547 InOp.getOperand(0), NewSA)); 1548 } 1549 } 1550 1551 // Compute the new bits that are at the top now. 1552 if (SimplifyDemandedBits(InOp, (NewMask << ShAmt), 1553 KnownZero, KnownOne, TLO, Depth+1)) 1554 return true; 1555 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1556 KnownZero = KnownZero.lshr(ShAmt); 1557 KnownOne = KnownOne.lshr(ShAmt); 1558 1559 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 1560 KnownZero |= HighBits; // High bits known zero. 1561 } 1562 break; 1563 case ISD::SRA: 1564 // If this is an arithmetic shift right and only the low-bit is set, we can 1565 // always convert this into a logical shr, even if the shift amount is 1566 // variable. The low bit of the shift cannot be an input sign bit unless 1567 // the shift amount is >= the size of the datatype, which is undefined. 1568 if (NewMask == 1) 1569 return TLO.CombineTo(Op, 1570 TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(), 1571 Op.getOperand(0), Op.getOperand(1))); 1572 1573 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 1574 EVT VT = Op.getValueType(); 1575 unsigned ShAmt = SA->getZExtValue(); 1576 1577 // If the shift count is an invalid immediate, don't do anything. 1578 if (ShAmt >= BitWidth) 1579 break; 1580 1581 APInt InDemandedMask = (NewMask << ShAmt); 1582 1583 // If any of the demanded bits are produced by the sign extension, we also 1584 // demand the input sign bit. 1585 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 1586 if (HighBits.intersects(NewMask)) 1587 InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits()); 1588 1589 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, 1590 KnownZero, KnownOne, TLO, Depth+1)) 1591 return true; 1592 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1593 KnownZero = KnownZero.lshr(ShAmt); 1594 KnownOne = KnownOne.lshr(ShAmt); 1595 1596 // Handle the sign bit, adjusted to where it is now in the mask. 1597 APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt); 1598 1599 // If the input sign bit is known to be zero, or if none of the top bits 1600 // are demanded, turn this into an unsigned shift right. 1601 if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) { 1602 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, 1603 Op.getOperand(0), 1604 Op.getOperand(1))); 1605 } else if (KnownOne.intersects(SignBit)) { // New bits are known one. 1606 KnownOne |= HighBits; 1607 } 1608 } 1609 break; 1610 case ISD::SIGN_EXTEND_INREG: { 1611 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1612 1613 // Sign extension. Compute the demanded bits in the result that are not 1614 // present in the input. 1615 APInt NewBits = 1616 APInt::getHighBitsSet(BitWidth, 1617 BitWidth - EVT.getScalarType().getSizeInBits()); 1618 1619 // If none of the extended bits are demanded, eliminate the sextinreg. 1620 if ((NewBits & NewMask) == 0) 1621 return TLO.CombineTo(Op, Op.getOperand(0)); 1622 1623 APInt InSignBit = 1624 APInt::getSignBit(EVT.getScalarType().getSizeInBits()).zext(BitWidth); 1625 APInt InputDemandedBits = 1626 APInt::getLowBitsSet(BitWidth, 1627 EVT.getScalarType().getSizeInBits()) & 1628 NewMask; 1629 1630 // Since the sign extended bits are demanded, we know that the sign 1631 // bit is demanded. 1632 InputDemandedBits |= InSignBit; 1633 1634 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, 1635 KnownZero, KnownOne, TLO, Depth+1)) 1636 return true; 1637 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1638 1639 // If the sign bit of the input is known set or clear, then we know the 1640 // top bits of the result. 1641 1642 // If the input sign bit is known zero, convert this into a zero extension. 1643 if (KnownZero.intersects(InSignBit)) 1644 return TLO.CombineTo(Op, 1645 TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT)); 1646 1647 if (KnownOne.intersects(InSignBit)) { // Input sign bit known set 1648 KnownOne |= NewBits; 1649 KnownZero &= ~NewBits; 1650 } else { // Input sign bit unknown 1651 KnownZero &= ~NewBits; 1652 KnownOne &= ~NewBits; 1653 } 1654 break; 1655 } 1656 case ISD::ZERO_EXTEND: { 1657 unsigned OperandBitWidth = 1658 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 1659 APInt InMask = NewMask.trunc(OperandBitWidth); 1660 1661 // If none of the top bits are demanded, convert this into an any_extend. 1662 APInt NewBits = 1663 APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask; 1664 if (!NewBits.intersects(NewMask)) 1665 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 1666 Op.getValueType(), 1667 Op.getOperand(0))); 1668 1669 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 1670 KnownZero, KnownOne, TLO, Depth+1)) 1671 return true; 1672 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1673 KnownZero = KnownZero.zext(BitWidth); 1674 KnownOne = KnownOne.zext(BitWidth); 1675 KnownZero |= NewBits; 1676 break; 1677 } 1678 case ISD::SIGN_EXTEND: { 1679 EVT InVT = Op.getOperand(0).getValueType(); 1680 unsigned InBits = InVT.getScalarType().getSizeInBits(); 1681 APInt InMask = APInt::getLowBitsSet(BitWidth, InBits); 1682 APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits); 1683 APInt NewBits = ~InMask & NewMask; 1684 1685 // If none of the top bits are demanded, convert this into an any_extend. 1686 if (NewBits == 0) 1687 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 1688 Op.getValueType(), 1689 Op.getOperand(0))); 1690 1691 // Since some of the sign extended bits are demanded, we know that the sign 1692 // bit is demanded. 1693 APInt InDemandedBits = InMask & NewMask; 1694 InDemandedBits |= InSignBit; 1695 InDemandedBits = InDemandedBits.trunc(InBits); 1696 1697 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, 1698 KnownOne, TLO, Depth+1)) 1699 return true; 1700 KnownZero = KnownZero.zext(BitWidth); 1701 KnownOne = KnownOne.zext(BitWidth); 1702 1703 // If the sign bit is known zero, convert this to a zero extend. 1704 if (KnownZero.intersects(InSignBit)) 1705 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, 1706 Op.getValueType(), 1707 Op.getOperand(0))); 1708 1709 // If the sign bit is known one, the top bits match. 1710 if (KnownOne.intersects(InSignBit)) { 1711 KnownOne |= NewBits; 1712 KnownZero &= ~NewBits; 1713 } else { // Otherwise, top bits aren't known. 1714 KnownOne &= ~NewBits; 1715 KnownZero &= ~NewBits; 1716 } 1717 break; 1718 } 1719 case ISD::ANY_EXTEND: { 1720 unsigned OperandBitWidth = 1721 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 1722 APInt InMask = NewMask.trunc(OperandBitWidth); 1723 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 1724 KnownZero, KnownOne, TLO, Depth+1)) 1725 return true; 1726 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1727 KnownZero = KnownZero.zext(BitWidth); 1728 KnownOne = KnownOne.zext(BitWidth); 1729 break; 1730 } 1731 case ISD::TRUNCATE: { 1732 // Simplify the input, using demanded bit information, and compute the known 1733 // zero/one bits live out. 1734 unsigned OperandBitWidth = 1735 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 1736 APInt TruncMask = NewMask.zext(OperandBitWidth); 1737 if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, 1738 KnownZero, KnownOne, TLO, Depth+1)) 1739 return true; 1740 KnownZero = KnownZero.trunc(BitWidth); 1741 KnownOne = KnownOne.trunc(BitWidth); 1742 1743 // If the input is only used by this truncate, see if we can shrink it based 1744 // on the known demanded bits. 1745 if (Op.getOperand(0).getNode()->hasOneUse()) { 1746 SDValue In = Op.getOperand(0); 1747 switch (In.getOpcode()) { 1748 default: break; 1749 case ISD::SRL: 1750 // Shrink SRL by a constant if none of the high bits shifted in are 1751 // demanded. 1752 if (TLO.LegalTypes() && 1753 !isTypeDesirableForOp(ISD::SRL, Op.getValueType())) 1754 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1755 // undesirable. 1756 break; 1757 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1)); 1758 if (!ShAmt) 1759 break; 1760 SDValue Shift = In.getOperand(1); 1761 if (TLO.LegalTypes()) { 1762 uint64_t ShVal = ShAmt->getZExtValue(); 1763 Shift = 1764 TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType())); 1765 } 1766 1767 APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, 1768 OperandBitWidth - BitWidth); 1769 HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth); 1770 1771 if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) { 1772 // None of the shifted in bits are needed. Add a truncate of the 1773 // shift input, then shift it. 1774 SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, 1775 Op.getValueType(), 1776 In.getOperand(0)); 1777 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, 1778 Op.getValueType(), 1779 NewTrunc, 1780 Shift)); 1781 } 1782 break; 1783 } 1784 } 1785 1786 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1787 break; 1788 } 1789 case ISD::AssertZext: { 1790 // AssertZext demands all of the high bits, plus any of the low bits 1791 // demanded by its users. 1792 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1793 APInt InMask = APInt::getLowBitsSet(BitWidth, 1794 VT.getSizeInBits()); 1795 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask, 1796 KnownZero, KnownOne, TLO, Depth+1)) 1797 return true; 1798 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1799 1800 KnownZero |= ~InMask & NewMask; 1801 break; 1802 } 1803 case ISD::BITCAST: 1804 // If this is an FP->Int bitcast and if the sign bit is the only 1805 // thing demanded, turn this into a FGETSIGN. 1806 if (!TLO.LegalOperations() && 1807 !Op.getValueType().isVector() && 1808 !Op.getOperand(0).getValueType().isVector() && 1809 NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) && 1810 Op.getOperand(0).getValueType().isFloatingPoint()) { 1811 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType()); 1812 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1813 if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) { 1814 EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32; 1815 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1816 // place. We expect the SHL to be eliminated by other optimizations. 1817 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0)); 1818 unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits(); 1819 if (!OpVTLegal && OpVTSizeInBits > 32) 1820 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign); 1821 unsigned ShVal = Op.getValueType().getSizeInBits()-1; 1822 SDValue ShAmt = TLO.DAG.getConstant(ShVal, Op.getValueType()); 1823 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 1824 Op.getValueType(), 1825 Sign, ShAmt)); 1826 } 1827 } 1828 break; 1829 case ISD::ADD: 1830 case ISD::MUL: 1831 case ISD::SUB: { 1832 // Add, Sub, and Mul don't demand any bits in positions beyond that 1833 // of the highest bit demanded of them. 1834 APInt LoMask = APInt::getLowBitsSet(BitWidth, 1835 BitWidth - NewMask.countLeadingZeros()); 1836 if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2, 1837 KnownOne2, TLO, Depth+1)) 1838 return true; 1839 if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2, 1840 KnownOne2, TLO, Depth+1)) 1841 return true; 1842 // See if the operation should be performed at a smaller bit width. 1843 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 1844 return true; 1845 } 1846 // FALL THROUGH 1847 default: 1848 // Just use ComputeMaskedBits to compute output bits. 1849 TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth); 1850 break; 1851 } 1852 1853 // If we know the value of all of the demanded bits, return this as a 1854 // constant. 1855 if ((NewMask & (KnownZero|KnownOne)) == NewMask) 1856 return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType())); 1857 1858 return false; 1859} 1860 1861/// computeMaskedBitsForTargetNode - Determine which of the bits specified 1862/// in Mask are known to be either zero or one and return them in the 1863/// KnownZero/KnownOne bitsets. 1864void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, 1865 const APInt &Mask, 1866 APInt &KnownZero, 1867 APInt &KnownOne, 1868 const SelectionDAG &DAG, 1869 unsigned Depth) const { 1870 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1871 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1872 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1873 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1874 "Should use MaskedValueIsZero if you don't know whether Op" 1875 " is a target node!"); 1876 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); 1877} 1878 1879/// ComputeNumSignBitsForTargetNode - This method can be implemented by 1880/// targets that want to expose additional information about sign bits to the 1881/// DAG Combiner. 1882unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 1883 unsigned Depth) const { 1884 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1885 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1886 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1887 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1888 "Should use ComputeNumSignBits if you don't know whether Op" 1889 " is a target node!"); 1890 return 1; 1891} 1892 1893/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly 1894/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to 1895/// determine which bit is set. 1896/// 1897static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) { 1898 // A left-shift of a constant one will have exactly one bit set, because 1899 // shifting the bit off the end is undefined. 1900 if (Val.getOpcode() == ISD::SHL) 1901 if (ConstantSDNode *C = 1902 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0))) 1903 if (C->getAPIntValue() == 1) 1904 return true; 1905 1906 // Similarly, a right-shift of a constant sign-bit will have exactly 1907 // one bit set. 1908 if (Val.getOpcode() == ISD::SRL) 1909 if (ConstantSDNode *C = 1910 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0))) 1911 if (C->getAPIntValue().isSignBit()) 1912 return true; 1913 1914 // More could be done here, though the above checks are enough 1915 // to handle some common cases. 1916 1917 // Fall back to ComputeMaskedBits to catch other known cases. 1918 EVT OpVT = Val.getValueType(); 1919 unsigned BitWidth = OpVT.getScalarType().getSizeInBits(); 1920 APInt Mask = APInt::getAllOnesValue(BitWidth); 1921 APInt KnownZero, KnownOne; 1922 DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne); 1923 return (KnownZero.countPopulation() == BitWidth - 1) && 1924 (KnownOne.countPopulation() == 1); 1925} 1926 1927/// SimplifySetCC - Try to simplify a setcc built with the specified operands 1928/// and cc. If it is unable to simplify it, return a null SDValue. 1929SDValue 1930TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 1931 ISD::CondCode Cond, bool foldBooleans, 1932 DAGCombinerInfo &DCI, DebugLoc dl) const { 1933 SelectionDAG &DAG = DCI.DAG; 1934 1935 // These setcc operations always fold. 1936 switch (Cond) { 1937 default: break; 1938 case ISD::SETFALSE: 1939 case ISD::SETFALSE2: return DAG.getConstant(0, VT); 1940 case ISD::SETTRUE: 1941 case ISD::SETTRUE2: return DAG.getConstant(1, VT); 1942 } 1943 1944 // Ensure that the constant occurs on the RHS, and fold constant 1945 // comparisons. 1946 if (isa<ConstantSDNode>(N0.getNode())) 1947 return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond)); 1948 1949 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 1950 const APInt &C1 = N1C->getAPIntValue(); 1951 1952 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 1953 // equality comparison, then we're just comparing whether X itself is 1954 // zero. 1955 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) && 1956 N0.getOperand(0).getOpcode() == ISD::CTLZ && 1957 N0.getOperand(1).getOpcode() == ISD::Constant) { 1958 const APInt &ShAmt 1959 = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1960 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1961 ShAmt == Log2_32(N0.getValueType().getSizeInBits())) { 1962 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 1963 // (srl (ctlz x), 5) == 0 -> X != 0 1964 // (srl (ctlz x), 5) != 1 -> X != 0 1965 Cond = ISD::SETNE; 1966 } else { 1967 // (srl (ctlz x), 5) != 0 -> X == 0 1968 // (srl (ctlz x), 5) == 1 -> X == 0 1969 Cond = ISD::SETEQ; 1970 } 1971 SDValue Zero = DAG.getConstant(0, N0.getValueType()); 1972 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 1973 Zero, Cond); 1974 } 1975 } 1976 1977 SDValue CTPOP = N0; 1978 // Look through truncs that don't change the value of a ctpop. 1979 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 1980 CTPOP = N0.getOperand(0); 1981 1982 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 1983 (N0 == CTPOP || N0.getValueType().getSizeInBits() > 1984 Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) { 1985 EVT CTVT = CTPOP.getValueType(); 1986 SDValue CTOp = CTPOP.getOperand(0); 1987 1988 // (ctpop x) u< 2 -> (x & x-1) == 0 1989 // (ctpop x) u> 1 -> (x & x-1) != 0 1990 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 1991 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 1992 DAG.getConstant(1, CTVT)); 1993 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 1994 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 1995 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC); 1996 } 1997 1998 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. 1999 } 2000 2001 // (zext x) == C --> x == (trunc C) 2002 if (DCI.isBeforeLegalize() && N0->hasOneUse() && 2003 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 2004 unsigned MinBits = N0.getValueSizeInBits(); 2005 SDValue PreZExt; 2006 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 2007 // ZExt 2008 MinBits = N0->getOperand(0).getValueSizeInBits(); 2009 PreZExt = N0->getOperand(0); 2010 } else if (N0->getOpcode() == ISD::AND) { 2011 // DAGCombine turns costly ZExts into ANDs 2012 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 2013 if ((C->getAPIntValue()+1).isPowerOf2()) { 2014 MinBits = C->getAPIntValue().countTrailingOnes(); 2015 PreZExt = N0->getOperand(0); 2016 } 2017 } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) { 2018 // ZEXTLOAD 2019 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 2020 MinBits = LN0->getMemoryVT().getSizeInBits(); 2021 PreZExt = N0; 2022 } 2023 } 2024 2025 // Make sure we're not loosing bits from the constant. 2026 if (MinBits < C1.getBitWidth() && MinBits > C1.getActiveBits()) { 2027 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 2028 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 2029 // Will get folded away. 2030 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreZExt); 2031 SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT); 2032 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 2033 } 2034 } 2035 } 2036 2037 // If the LHS is '(and load, const)', the RHS is 0, 2038 // the test is for equality or unsigned, and all 1 bits of the const are 2039 // in the same partial word, see if we can shorten the load. 2040 if (DCI.isBeforeLegalize() && 2041 N0.getOpcode() == ISD::AND && C1 == 0 && 2042 N0.getNode()->hasOneUse() && 2043 isa<LoadSDNode>(N0.getOperand(0)) && 2044 N0.getOperand(0).getNode()->hasOneUse() && 2045 isa<ConstantSDNode>(N0.getOperand(1))) { 2046 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 2047 APInt bestMask; 2048 unsigned bestWidth = 0, bestOffset = 0; 2049 if (!Lod->isVolatile() && Lod->isUnindexed()) { 2050 unsigned origWidth = N0.getValueType().getSizeInBits(); 2051 unsigned maskWidth = origWidth; 2052 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 2053 // 8 bits, but have to be careful... 2054 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 2055 origWidth = Lod->getMemoryVT().getSizeInBits(); 2056 const APInt &Mask = 2057 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 2058 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 2059 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 2060 for (unsigned offset=0; offset<origWidth/width; offset++) { 2061 if ((newMask & Mask) == Mask) { 2062 if (!TD->isLittleEndian()) 2063 bestOffset = (origWidth/width - offset - 1) * (width/8); 2064 else 2065 bestOffset = (uint64_t)offset * (width/8); 2066 bestMask = Mask.lshr(offset * (width/8) * 8); 2067 bestWidth = width; 2068 break; 2069 } 2070 newMask = newMask << width; 2071 } 2072 } 2073 } 2074 if (bestWidth) { 2075 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 2076 if (newVT.isRound()) { 2077 EVT PtrType = Lod->getOperand(1).getValueType(); 2078 SDValue Ptr = Lod->getBasePtr(); 2079 if (bestOffset != 0) 2080 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 2081 DAG.getConstant(bestOffset, PtrType)); 2082 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 2083 SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 2084 Lod->getPointerInfo().getWithOffset(bestOffset), 2085 false, false, false, NewAlign); 2086 return DAG.getSetCC(dl, VT, 2087 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 2088 DAG.getConstant(bestMask.trunc(bestWidth), 2089 newVT)), 2090 DAG.getConstant(0LL, newVT), Cond); 2091 } 2092 } 2093 } 2094 2095 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 2096 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 2097 unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits(); 2098 2099 // If the comparison constant has bits in the upper part, the 2100 // zero-extended value could never match. 2101 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 2102 C1.getBitWidth() - InSize))) { 2103 switch (Cond) { 2104 case ISD::SETUGT: 2105 case ISD::SETUGE: 2106 case ISD::SETEQ: return DAG.getConstant(0, VT); 2107 case ISD::SETULT: 2108 case ISD::SETULE: 2109 case ISD::SETNE: return DAG.getConstant(1, VT); 2110 case ISD::SETGT: 2111 case ISD::SETGE: 2112 // True if the sign bit of C1 is set. 2113 return DAG.getConstant(C1.isNegative(), VT); 2114 case ISD::SETLT: 2115 case ISD::SETLE: 2116 // True if the sign bit of C1 isn't set. 2117 return DAG.getConstant(C1.isNonNegative(), VT); 2118 default: 2119 break; 2120 } 2121 } 2122 2123 // Otherwise, we can perform the comparison with the low bits. 2124 switch (Cond) { 2125 case ISD::SETEQ: 2126 case ISD::SETNE: 2127 case ISD::SETUGT: 2128 case ISD::SETUGE: 2129 case ISD::SETULT: 2130 case ISD::SETULE: { 2131 EVT newVT = N0.getOperand(0).getValueType(); 2132 if (DCI.isBeforeLegalizeOps() || 2133 (isOperationLegal(ISD::SETCC, newVT) && 2134 getCondCodeAction(Cond, newVT)==Legal)) 2135 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2136 DAG.getConstant(C1.trunc(InSize), newVT), 2137 Cond); 2138 break; 2139 } 2140 default: 2141 break; // todo, be more careful with signed comparisons 2142 } 2143 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 2144 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 2145 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 2146 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 2147 EVT ExtDstTy = N0.getValueType(); 2148 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 2149 2150 // If the constant doesn't fit into the number of bits for the source of 2151 // the sign extension, it is impossible for both sides to be equal. 2152 if (C1.getMinSignedBits() > ExtSrcTyBits) 2153 return DAG.getConstant(Cond == ISD::SETNE, VT); 2154 2155 SDValue ZextOp; 2156 EVT Op0Ty = N0.getOperand(0).getValueType(); 2157 if (Op0Ty == ExtSrcTy) { 2158 ZextOp = N0.getOperand(0); 2159 } else { 2160 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 2161 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 2162 DAG.getConstant(Imm, Op0Ty)); 2163 } 2164 if (!DCI.isCalledByLegalizer()) 2165 DCI.AddToWorklist(ZextOp.getNode()); 2166 // Otherwise, make this a use of a zext. 2167 return DAG.getSetCC(dl, VT, ZextOp, 2168 DAG.getConstant(C1 & APInt::getLowBitsSet( 2169 ExtDstTyBits, 2170 ExtSrcTyBits), 2171 ExtDstTy), 2172 Cond); 2173 } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) && 2174 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 2175 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 2176 if (N0.getOpcode() == ISD::SETCC && 2177 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 2178 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1); 2179 if (TrueWhenTrue) 2180 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 2181 // Invert the condition. 2182 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 2183 CC = ISD::getSetCCInverse(CC, 2184 N0.getOperand(0).getValueType().isInteger()); 2185 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 2186 } 2187 2188 if ((N0.getOpcode() == ISD::XOR || 2189 (N0.getOpcode() == ISD::AND && 2190 N0.getOperand(0).getOpcode() == ISD::XOR && 2191 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 2192 isa<ConstantSDNode>(N0.getOperand(1)) && 2193 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) { 2194 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 2195 // can only do this if the top bits are known zero. 2196 unsigned BitWidth = N0.getValueSizeInBits(); 2197 if (DAG.MaskedValueIsZero(N0, 2198 APInt::getHighBitsSet(BitWidth, 2199 BitWidth-1))) { 2200 // Okay, get the un-inverted input value. 2201 SDValue Val; 2202 if (N0.getOpcode() == ISD::XOR) 2203 Val = N0.getOperand(0); 2204 else { 2205 assert(N0.getOpcode() == ISD::AND && 2206 N0.getOperand(0).getOpcode() == ISD::XOR); 2207 // ((X^1)&1)^1 -> X & 1 2208 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 2209 N0.getOperand(0).getOperand(0), 2210 N0.getOperand(1)); 2211 } 2212 2213 return DAG.getSetCC(dl, VT, Val, N1, 2214 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2215 } 2216 } else if (N1C->getAPIntValue() == 1 && 2217 (VT == MVT::i1 || 2218 getBooleanContents(false) == ZeroOrOneBooleanContent)) { 2219 SDValue Op0 = N0; 2220 if (Op0.getOpcode() == ISD::TRUNCATE) 2221 Op0 = Op0.getOperand(0); 2222 2223 if ((Op0.getOpcode() == ISD::XOR) && 2224 Op0.getOperand(0).getOpcode() == ISD::SETCC && 2225 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 2226 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 2227 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 2228 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 2229 Cond); 2230 } else if (Op0.getOpcode() == ISD::AND && 2231 isa<ConstantSDNode>(Op0.getOperand(1)) && 2232 cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) { 2233 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 2234 if (Op0.getValueType().bitsGT(VT)) 2235 Op0 = DAG.getNode(ISD::AND, dl, VT, 2236 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 2237 DAG.getConstant(1, VT)); 2238 else if (Op0.getValueType().bitsLT(VT)) 2239 Op0 = DAG.getNode(ISD::AND, dl, VT, 2240 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 2241 DAG.getConstant(1, VT)); 2242 2243 return DAG.getSetCC(dl, VT, Op0, 2244 DAG.getConstant(0, Op0.getValueType()), 2245 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2246 } 2247 } 2248 } 2249 2250 APInt MinVal, MaxVal; 2251 unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits(); 2252 if (ISD::isSignedIntSetCC(Cond)) { 2253 MinVal = APInt::getSignedMinValue(OperandBitSize); 2254 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 2255 } else { 2256 MinVal = APInt::getMinValue(OperandBitSize); 2257 MaxVal = APInt::getMaxValue(OperandBitSize); 2258 } 2259 2260 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 2261 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 2262 if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true 2263 // X >= C0 --> X > (C0-1) 2264 return DAG.getSetCC(dl, VT, N0, 2265 DAG.getConstant(C1-1, N1.getValueType()), 2266 (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT); 2267 } 2268 2269 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 2270 if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true 2271 // X <= C0 --> X < (C0+1) 2272 return DAG.getSetCC(dl, VT, N0, 2273 DAG.getConstant(C1+1, N1.getValueType()), 2274 (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT); 2275 } 2276 2277 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal) 2278 return DAG.getConstant(0, VT); // X < MIN --> false 2279 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal) 2280 return DAG.getConstant(1, VT); // X >= MIN --> true 2281 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal) 2282 return DAG.getConstant(0, VT); // X > MAX --> false 2283 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal) 2284 return DAG.getConstant(1, VT); // X <= MAX --> true 2285 2286 // Canonicalize setgt X, Min --> setne X, Min 2287 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal) 2288 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 2289 // Canonicalize setlt X, Max --> setne X, Max 2290 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal) 2291 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 2292 2293 // If we have setult X, 1, turn it into seteq X, 0 2294 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1) 2295 return DAG.getSetCC(dl, VT, N0, 2296 DAG.getConstant(MinVal, N0.getValueType()), 2297 ISD::SETEQ); 2298 // If we have setugt X, Max-1, turn it into seteq X, Max 2299 else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1) 2300 return DAG.getSetCC(dl, VT, N0, 2301 DAG.getConstant(MaxVal, N0.getValueType()), 2302 ISD::SETEQ); 2303 2304 // If we have "setcc X, C0", check to see if we can shrink the immediate 2305 // by changing cc. 2306 2307 // SETUGT X, SINTMAX -> SETLT X, 0 2308 if (Cond == ISD::SETUGT && 2309 C1 == APInt::getSignedMaxValue(OperandBitSize)) 2310 return DAG.getSetCC(dl, VT, N0, 2311 DAG.getConstant(0, N1.getValueType()), 2312 ISD::SETLT); 2313 2314 // SETULT X, SINTMIN -> SETGT X, -1 2315 if (Cond == ISD::SETULT && 2316 C1 == APInt::getSignedMinValue(OperandBitSize)) { 2317 SDValue ConstMinusOne = 2318 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), 2319 N1.getValueType()); 2320 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 2321 } 2322 2323 // Fold bit comparisons when we can. 2324 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2325 (VT == N0.getValueType() || 2326 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 2327 N0.getOpcode() == ISD::AND) 2328 if (ConstantSDNode *AndRHS = 2329 dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2330 EVT ShiftTy = DCI.isBeforeLegalize() ? 2331 getPointerTy() : getShiftAmountTy(N0.getValueType()); 2332 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 2333 // Perform the xform if the AND RHS is a single bit. 2334 if (AndRHS->getAPIntValue().isPowerOf2()) { 2335 return DAG.getNode(ISD::TRUNCATE, dl, VT, 2336 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 2337 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy))); 2338 } 2339 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 2340 // (X & 8) == 8 --> (X & 8) >> 3 2341 // Perform the xform if C1 is a single bit. 2342 if (C1.isPowerOf2()) { 2343 return DAG.getNode(ISD::TRUNCATE, dl, VT, 2344 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 2345 DAG.getConstant(C1.logBase2(), ShiftTy))); 2346 } 2347 } 2348 } 2349 } 2350 2351 if (isa<ConstantFPSDNode>(N0.getNode())) { 2352 // Constant fold or commute setcc. 2353 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); 2354 if (O.getNode()) return O; 2355 } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) { 2356 // If the RHS of an FP comparison is a constant, simplify it away in 2357 // some cases. 2358 if (CFP->getValueAPF().isNaN()) { 2359 // If an operand is known to be a nan, we can fold it. 2360 switch (ISD::getUnorderedFlavor(Cond)) { 2361 default: llvm_unreachable("Unknown flavor!"); 2362 case 0: // Known false. 2363 return DAG.getConstant(0, VT); 2364 case 1: // Known true. 2365 return DAG.getConstant(1, VT); 2366 case 2: // Undefined. 2367 return DAG.getUNDEF(VT); 2368 } 2369 } 2370 2371 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 2372 // constant if knowing that the operand is non-nan is enough. We prefer to 2373 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 2374 // materialize 0.0. 2375 if (Cond == ISD::SETO || Cond == ISD::SETUO) 2376 return DAG.getSetCC(dl, VT, N0, N0, Cond); 2377 2378 // If the condition is not legal, see if we can find an equivalent one 2379 // which is legal. 2380 if (!isCondCodeLegal(Cond, N0.getValueType())) { 2381 // If the comparison was an awkward floating-point == or != and one of 2382 // the comparison operands is infinity or negative infinity, convert the 2383 // condition to a less-awkward <= or >=. 2384 if (CFP->getValueAPF().isInfinity()) { 2385 if (CFP->getValueAPF().isNegative()) { 2386 if (Cond == ISD::SETOEQ && 2387 isCondCodeLegal(ISD::SETOLE, N0.getValueType())) 2388 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 2389 if (Cond == ISD::SETUEQ && 2390 isCondCodeLegal(ISD::SETOLE, N0.getValueType())) 2391 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 2392 if (Cond == ISD::SETUNE && 2393 isCondCodeLegal(ISD::SETUGT, N0.getValueType())) 2394 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 2395 if (Cond == ISD::SETONE && 2396 isCondCodeLegal(ISD::SETUGT, N0.getValueType())) 2397 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 2398 } else { 2399 if (Cond == ISD::SETOEQ && 2400 isCondCodeLegal(ISD::SETOGE, N0.getValueType())) 2401 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 2402 if (Cond == ISD::SETUEQ && 2403 isCondCodeLegal(ISD::SETOGE, N0.getValueType())) 2404 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 2405 if (Cond == ISD::SETUNE && 2406 isCondCodeLegal(ISD::SETULT, N0.getValueType())) 2407 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 2408 if (Cond == ISD::SETONE && 2409 isCondCodeLegal(ISD::SETULT, N0.getValueType())) 2410 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 2411 } 2412 } 2413 } 2414 } 2415 2416 if (N0 == N1) { 2417 // We can always fold X == X for integer setcc's. 2418 if (N0.getValueType().isInteger()) 2419 return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT); 2420 unsigned UOF = ISD::getUnorderedFlavor(Cond); 2421 if (UOF == 2) // FP operators that are undefined on NaNs. 2422 return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT); 2423 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond))) 2424 return DAG.getConstant(UOF, VT); 2425 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 2426 // if it is not already. 2427 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 2428 if (NewCond != Cond) 2429 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 2430 } 2431 2432 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2433 N0.getValueType().isInteger()) { 2434 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 2435 N0.getOpcode() == ISD::XOR) { 2436 // Simplify (X+Y) == (X+Z) --> Y == Z 2437 if (N0.getOpcode() == N1.getOpcode()) { 2438 if (N0.getOperand(0) == N1.getOperand(0)) 2439 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 2440 if (N0.getOperand(1) == N1.getOperand(1)) 2441 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 2442 if (DAG.isCommutativeBinOp(N0.getOpcode())) { 2443 // If X op Y == Y op X, try other combinations. 2444 if (N0.getOperand(0) == N1.getOperand(1)) 2445 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 2446 Cond); 2447 if (N0.getOperand(1) == N1.getOperand(0)) 2448 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 2449 Cond); 2450 } 2451 } 2452 2453 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) { 2454 if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2455 // Turn (X+C1) == C2 --> X == C2-C1 2456 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 2457 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2458 DAG.getConstant(RHSC->getAPIntValue()- 2459 LHSR->getAPIntValue(), 2460 N0.getValueType()), Cond); 2461 } 2462 2463 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 2464 if (N0.getOpcode() == ISD::XOR) 2465 // If we know that all of the inverted bits are zero, don't bother 2466 // performing the inversion. 2467 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 2468 return 2469 DAG.getSetCC(dl, VT, N0.getOperand(0), 2470 DAG.getConstant(LHSR->getAPIntValue() ^ 2471 RHSC->getAPIntValue(), 2472 N0.getValueType()), 2473 Cond); 2474 } 2475 2476 // Turn (C1-X) == C2 --> X == C1-C2 2477 if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 2478 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 2479 return 2480 DAG.getSetCC(dl, VT, N0.getOperand(1), 2481 DAG.getConstant(SUBC->getAPIntValue() - 2482 RHSC->getAPIntValue(), 2483 N0.getValueType()), 2484 Cond); 2485 } 2486 } 2487 } 2488 2489 // Simplify (X+Z) == X --> Z == 0 2490 if (N0.getOperand(0) == N1) 2491 return DAG.getSetCC(dl, VT, N0.getOperand(1), 2492 DAG.getConstant(0, N0.getValueType()), Cond); 2493 if (N0.getOperand(1) == N1) { 2494 if (DAG.isCommutativeBinOp(N0.getOpcode())) 2495 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2496 DAG.getConstant(0, N0.getValueType()), Cond); 2497 else if (N0.getNode()->hasOneUse()) { 2498 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); 2499 // (Z-X) == X --> Z == X<<1 2500 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), 2501 N1, 2502 DAG.getConstant(1, getShiftAmountTy(N1.getValueType()))); 2503 if (!DCI.isCalledByLegalizer()) 2504 DCI.AddToWorklist(SH.getNode()); 2505 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond); 2506 } 2507 } 2508 } 2509 2510 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 2511 N1.getOpcode() == ISD::XOR) { 2512 // Simplify X == (X+Z) --> Z == 0 2513 if (N1.getOperand(0) == N0) { 2514 return DAG.getSetCC(dl, VT, N1.getOperand(1), 2515 DAG.getConstant(0, N1.getValueType()), Cond); 2516 } else if (N1.getOperand(1) == N0) { 2517 if (DAG.isCommutativeBinOp(N1.getOpcode())) { 2518 return DAG.getSetCC(dl, VT, N1.getOperand(0), 2519 DAG.getConstant(0, N1.getValueType()), Cond); 2520 } else if (N1.getNode()->hasOneUse()) { 2521 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); 2522 // X == (Z-X) --> X<<1 == Z 2523 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0, 2524 DAG.getConstant(1, getShiftAmountTy(N0.getValueType()))); 2525 if (!DCI.isCalledByLegalizer()) 2526 DCI.AddToWorklist(SH.getNode()); 2527 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond); 2528 } 2529 } 2530 } 2531 2532 // Simplify x&y == y to x&y != 0 if y has exactly one bit set. 2533 // Note that where y is variable and is known to have at most 2534 // one bit set (for example, if it is z&1) we cannot do this; 2535 // the expressions are not equivalent when y==0. 2536 if (N0.getOpcode() == ISD::AND) 2537 if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) { 2538 if (ValueHasExactlyOneBitSet(N1, DAG)) { 2539 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 2540 SDValue Zero = DAG.getConstant(0, N1.getValueType()); 2541 return DAG.getSetCC(dl, VT, N0, Zero, Cond); 2542 } 2543 } 2544 if (N1.getOpcode() == ISD::AND) 2545 if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) { 2546 if (ValueHasExactlyOneBitSet(N0, DAG)) { 2547 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 2548 SDValue Zero = DAG.getConstant(0, N0.getValueType()); 2549 return DAG.getSetCC(dl, VT, N1, Zero, Cond); 2550 } 2551 } 2552 } 2553 2554 // Fold away ALL boolean setcc's. 2555 SDValue Temp; 2556 if (N0.getValueType() == MVT::i1 && foldBooleans) { 2557 switch (Cond) { 2558 default: llvm_unreachable("Unknown integer setcc!"); 2559 case ISD::SETEQ: // X == Y -> ~(X^Y) 2560 Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 2561 N0 = DAG.getNOT(dl, Temp, MVT::i1); 2562 if (!DCI.isCalledByLegalizer()) 2563 DCI.AddToWorklist(Temp.getNode()); 2564 break; 2565 case ISD::SETNE: // X != Y --> (X^Y) 2566 N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 2567 break; 2568 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 2569 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 2570 Temp = DAG.getNOT(dl, N0, MVT::i1); 2571 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp); 2572 if (!DCI.isCalledByLegalizer()) 2573 DCI.AddToWorklist(Temp.getNode()); 2574 break; 2575 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 2576 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 2577 Temp = DAG.getNOT(dl, N1, MVT::i1); 2578 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp); 2579 if (!DCI.isCalledByLegalizer()) 2580 DCI.AddToWorklist(Temp.getNode()); 2581 break; 2582 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 2583 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 2584 Temp = DAG.getNOT(dl, N0, MVT::i1); 2585 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp); 2586 if (!DCI.isCalledByLegalizer()) 2587 DCI.AddToWorklist(Temp.getNode()); 2588 break; 2589 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 2590 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 2591 Temp = DAG.getNOT(dl, N1, MVT::i1); 2592 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp); 2593 break; 2594 } 2595 if (VT != MVT::i1) { 2596 if (!DCI.isCalledByLegalizer()) 2597 DCI.AddToWorklist(N0.getNode()); 2598 // FIXME: If running after legalize, we probably can't do this. 2599 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0); 2600 } 2601 return N0; 2602 } 2603 2604 // Could not fold it. 2605 return SDValue(); 2606} 2607 2608/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the 2609/// node is a GlobalAddress + offset. 2610bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA, 2611 int64_t &Offset) const { 2612 if (isa<GlobalAddressSDNode>(N)) { 2613 GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N); 2614 GA = GASD->getGlobal(); 2615 Offset += GASD->getOffset(); 2616 return true; 2617 } 2618 2619 if (N->getOpcode() == ISD::ADD) { 2620 SDValue N1 = N->getOperand(0); 2621 SDValue N2 = N->getOperand(1); 2622 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 2623 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2); 2624 if (V) { 2625 Offset += V->getSExtValue(); 2626 return true; 2627 } 2628 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 2629 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1); 2630 if (V) { 2631 Offset += V->getSExtValue(); 2632 return true; 2633 } 2634 } 2635 } 2636 2637 return false; 2638} 2639 2640 2641SDValue TargetLowering:: 2642PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { 2643 // Default implementation: no optimization. 2644 return SDValue(); 2645} 2646 2647//===----------------------------------------------------------------------===// 2648// Inline Assembler Implementation Methods 2649//===----------------------------------------------------------------------===// 2650 2651 2652TargetLowering::ConstraintType 2653TargetLowering::getConstraintType(const std::string &Constraint) const { 2654 if (Constraint.size() == 1) { 2655 switch (Constraint[0]) { 2656 default: break; 2657 case 'r': return C_RegisterClass; 2658 case 'm': // memory 2659 case 'o': // offsetable 2660 case 'V': // not offsetable 2661 return C_Memory; 2662 case 'i': // Simple Integer or Relocatable Constant 2663 case 'n': // Simple Integer 2664 case 'E': // Floating Point Constant 2665 case 'F': // Floating Point Constant 2666 case 's': // Relocatable Constant 2667 case 'p': // Address. 2668 case 'X': // Allow ANY value. 2669 case 'I': // Target registers. 2670 case 'J': 2671 case 'K': 2672 case 'L': 2673 case 'M': 2674 case 'N': 2675 case 'O': 2676 case 'P': 2677 case '<': 2678 case '>': 2679 return C_Other; 2680 } 2681 } 2682 2683 if (Constraint.size() > 1 && Constraint[0] == '{' && 2684 Constraint[Constraint.size()-1] == '}') 2685 return C_Register; 2686 return C_Unknown; 2687} 2688 2689/// LowerXConstraint - try to replace an X constraint, which matches anything, 2690/// with another that has more specific requirements based on the type of the 2691/// corresponding operand. 2692const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{ 2693 if (ConstraintVT.isInteger()) 2694 return "r"; 2695 if (ConstraintVT.isFloatingPoint()) 2696 return "f"; // works for many targets 2697 return 0; 2698} 2699 2700/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 2701/// vector. If it is invalid, don't add anything to Ops. 2702void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 2703 std::string &Constraint, 2704 std::vector<SDValue> &Ops, 2705 SelectionDAG &DAG) const { 2706 2707 if (Constraint.length() > 1) return; 2708 2709 char ConstraintLetter = Constraint[0]; 2710 switch (ConstraintLetter) { 2711 default: break; 2712 case 'X': // Allows any operand; labels (basic block) use this. 2713 if (Op.getOpcode() == ISD::BasicBlock) { 2714 Ops.push_back(Op); 2715 return; 2716 } 2717 // fall through 2718 case 'i': // Simple Integer or Relocatable Constant 2719 case 'n': // Simple Integer 2720 case 's': { // Relocatable Constant 2721 // These operands are interested in values of the form (GV+C), where C may 2722 // be folded in as an offset of GV, or it may be explicitly added. Also, it 2723 // is possible and fine if either GV or C are missing. 2724 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 2725 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 2726 2727 // If we have "(add GV, C)", pull out GV/C 2728 if (Op.getOpcode() == ISD::ADD) { 2729 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2730 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 2731 if (C == 0 || GA == 0) { 2732 C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 2733 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); 2734 } 2735 if (C == 0 || GA == 0) 2736 C = 0, GA = 0; 2737 } 2738 2739 // If we find a valid operand, map to the TargetXXX version so that the 2740 // value itself doesn't get selected. 2741 if (GA) { // Either &GV or &GV+C 2742 if (ConstraintLetter != 'n') { 2743 int64_t Offs = GA->getOffset(); 2744 if (C) Offs += C->getZExtValue(); 2745 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), 2746 C ? C->getDebugLoc() : DebugLoc(), 2747 Op.getValueType(), Offs)); 2748 return; 2749 } 2750 } 2751 if (C) { // just C, no GV. 2752 // Simple constants are not allowed for 's'. 2753 if (ConstraintLetter != 's') { 2754 // gcc prints these as sign extended. Sign extend value to 64 bits 2755 // now; without this it would get ZExt'd later in 2756 // ScheduleDAGSDNodes::EmitNode, which is very generic. 2757 Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(), 2758 MVT::i64)); 2759 return; 2760 } 2761 } 2762 break; 2763 } 2764 } 2765} 2766 2767std::pair<unsigned, const TargetRegisterClass*> TargetLowering:: 2768getRegForInlineAsmConstraint(const std::string &Constraint, 2769 EVT VT) const { 2770 if (Constraint[0] != '{') 2771 return std::make_pair(0u, static_cast<TargetRegisterClass*>(0)); 2772 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); 2773 2774 // Remove the braces from around the name. 2775 StringRef RegName(Constraint.data()+1, Constraint.size()-2); 2776 2777 // Figure out which register class contains this reg. 2778 const TargetRegisterInfo *RI = TM.getRegisterInfo(); 2779 for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(), 2780 E = RI->regclass_end(); RCI != E; ++RCI) { 2781 const TargetRegisterClass *RC = *RCI; 2782 2783 // If none of the value types for this register class are valid, we 2784 // can't use it. For example, 64-bit reg classes on 32-bit targets. 2785 if (!isLegalRC(RC)) 2786 continue; 2787 2788 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 2789 I != E; ++I) { 2790 if (RegName.equals_lower(RI->getName(*I))) 2791 return std::make_pair(*I, RC); 2792 } 2793 } 2794 2795 return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0)); 2796} 2797 2798//===----------------------------------------------------------------------===// 2799// Constraint Selection. 2800 2801/// isMatchingInputConstraint - Return true of this is an input operand that is 2802/// a matching constraint like "4". 2803bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 2804 assert(!ConstraintCode.empty() && "No known constraint!"); 2805 return isdigit(ConstraintCode[0]); 2806} 2807 2808/// getMatchedOperand - If this is an input matching constraint, this method 2809/// returns the output operand it matches. 2810unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 2811 assert(!ConstraintCode.empty() && "No known constraint!"); 2812 return atoi(ConstraintCode.c_str()); 2813} 2814 2815 2816/// ParseConstraints - Split up the constraint string from the inline 2817/// assembly value into the specific constraints and their prefixes, 2818/// and also tie in the associated operand values. 2819/// If this returns an empty vector, and if the constraint string itself 2820/// isn't empty, there was an error parsing. 2821TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints( 2822 ImmutableCallSite CS) const { 2823 /// ConstraintOperands - Information about all of the constraints. 2824 AsmOperandInfoVector ConstraintOperands; 2825 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 2826 unsigned maCount = 0; // Largest number of multiple alternative constraints. 2827 2828 // Do a prepass over the constraints, canonicalizing them, and building up the 2829 // ConstraintOperands list. 2830 InlineAsm::ConstraintInfoVector 2831 ConstraintInfos = IA->ParseConstraints(); 2832 2833 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 2834 unsigned ResNo = 0; // ResNo - The result number of the next output. 2835 2836 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 2837 ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i])); 2838 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 2839 2840 // Update multiple alternative constraint count. 2841 if (OpInfo.multipleAlternatives.size() > maCount) 2842 maCount = OpInfo.multipleAlternatives.size(); 2843 2844 OpInfo.ConstraintVT = MVT::Other; 2845 2846 // Compute the value type for each operand. 2847 switch (OpInfo.Type) { 2848 case InlineAsm::isOutput: 2849 // Indirect outputs just consume an argument. 2850 if (OpInfo.isIndirect) { 2851 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2852 break; 2853 } 2854 2855 // The return value of the call is this value. As such, there is no 2856 // corresponding argument. 2857 assert(!CS.getType()->isVoidTy() && 2858 "Bad inline asm!"); 2859 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 2860 OpInfo.ConstraintVT = getValueType(STy->getElementType(ResNo)); 2861 } else { 2862 assert(ResNo == 0 && "Asm only has one result!"); 2863 OpInfo.ConstraintVT = getValueType(CS.getType()); 2864 } 2865 ++ResNo; 2866 break; 2867 case InlineAsm::isInput: 2868 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2869 break; 2870 case InlineAsm::isClobber: 2871 // Nothing to do. 2872 break; 2873 } 2874 2875 if (OpInfo.CallOperandVal) { 2876 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 2877 if (OpInfo.isIndirect) { 2878 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 2879 if (!PtrTy) 2880 report_fatal_error("Indirect operand for inline asm not a pointer!"); 2881 OpTy = PtrTy->getElementType(); 2882 } 2883 2884 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 2885 if (StructType *STy = dyn_cast<StructType>(OpTy)) 2886 if (STy->getNumElements() == 1) 2887 OpTy = STy->getElementType(0); 2888 2889 // If OpTy is not a single value, it may be a struct/union that we 2890 // can tile with integers. 2891 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 2892 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 2893 switch (BitSize) { 2894 default: break; 2895 case 1: 2896 case 8: 2897 case 16: 2898 case 32: 2899 case 64: 2900 case 128: 2901 OpInfo.ConstraintVT = 2902 EVT::getEVT(IntegerType::get(OpTy->getContext(), BitSize), true); 2903 break; 2904 } 2905 } else if (dyn_cast<PointerType>(OpTy)) { 2906 OpInfo.ConstraintVT = MVT::getIntegerVT(8*TD->getPointerSize()); 2907 } else { 2908 OpInfo.ConstraintVT = EVT::getEVT(OpTy, true); 2909 } 2910 } 2911 } 2912 2913 // If we have multiple alternative constraints, select the best alternative. 2914 if (ConstraintInfos.size()) { 2915 if (maCount) { 2916 unsigned bestMAIndex = 0; 2917 int bestWeight = -1; 2918 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 2919 int weight = -1; 2920 unsigned maIndex; 2921 // Compute the sums of the weights for each alternative, keeping track 2922 // of the best (highest weight) one so far. 2923 for (maIndex = 0; maIndex < maCount; ++maIndex) { 2924 int weightSum = 0; 2925 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2926 cIndex != eIndex; ++cIndex) { 2927 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2928 if (OpInfo.Type == InlineAsm::isClobber) 2929 continue; 2930 2931 // If this is an output operand with a matching input operand, 2932 // look up the matching input. If their types mismatch, e.g. one 2933 // is an integer, the other is floating point, or their sizes are 2934 // different, flag it as an maCantMatch. 2935 if (OpInfo.hasMatchingInput()) { 2936 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2937 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2938 if ((OpInfo.ConstraintVT.isInteger() != 2939 Input.ConstraintVT.isInteger()) || 2940 (OpInfo.ConstraintVT.getSizeInBits() != 2941 Input.ConstraintVT.getSizeInBits())) { 2942 weightSum = -1; // Can't match. 2943 break; 2944 } 2945 } 2946 } 2947 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 2948 if (weight == -1) { 2949 weightSum = -1; 2950 break; 2951 } 2952 weightSum += weight; 2953 } 2954 // Update best. 2955 if (weightSum > bestWeight) { 2956 bestWeight = weightSum; 2957 bestMAIndex = maIndex; 2958 } 2959 } 2960 2961 // Now select chosen alternative in each constraint. 2962 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2963 cIndex != eIndex; ++cIndex) { 2964 AsmOperandInfo& cInfo = ConstraintOperands[cIndex]; 2965 if (cInfo.Type == InlineAsm::isClobber) 2966 continue; 2967 cInfo.selectAlternative(bestMAIndex); 2968 } 2969 } 2970 } 2971 2972 // Check and hook up tied operands, choose constraint code to use. 2973 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2974 cIndex != eIndex; ++cIndex) { 2975 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2976 2977 // If this is an output operand with a matching input operand, look up the 2978 // matching input. If their types mismatch, e.g. one is an integer, the 2979 // other is floating point, or their sizes are different, flag it as an 2980 // error. 2981 if (OpInfo.hasMatchingInput()) { 2982 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2983 2984 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2985 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 2986 getRegForInlineAsmConstraint(OpInfo.ConstraintCode, OpInfo.ConstraintVT); 2987 std::pair<unsigned, const TargetRegisterClass*> InputRC = 2988 getRegForInlineAsmConstraint(Input.ConstraintCode, Input.ConstraintVT); 2989 if ((OpInfo.ConstraintVT.isInteger() != 2990 Input.ConstraintVT.isInteger()) || 2991 (MatchRC.second != InputRC.second)) { 2992 report_fatal_error("Unsupported asm: input constraint" 2993 " with a matching output constraint of" 2994 " incompatible type!"); 2995 } 2996 } 2997 2998 } 2999 } 3000 3001 return ConstraintOperands; 3002} 3003 3004 3005/// getConstraintGenerality - Return an integer indicating how general CT 3006/// is. 3007static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 3008 switch (CT) { 3009 default: llvm_unreachable("Unknown constraint type!"); 3010 case TargetLowering::C_Other: 3011 case TargetLowering::C_Unknown: 3012 return 0; 3013 case TargetLowering::C_Register: 3014 return 1; 3015 case TargetLowering::C_RegisterClass: 3016 return 2; 3017 case TargetLowering::C_Memory: 3018 return 3; 3019 } 3020} 3021 3022/// Examine constraint type and operand type and determine a weight value. 3023/// This object must already have been set up with the operand type 3024/// and the current alternative constraint selected. 3025TargetLowering::ConstraintWeight 3026 TargetLowering::getMultipleConstraintMatchWeight( 3027 AsmOperandInfo &info, int maIndex) const { 3028 InlineAsm::ConstraintCodeVector *rCodes; 3029 if (maIndex >= (int)info.multipleAlternatives.size()) 3030 rCodes = &info.Codes; 3031 else 3032 rCodes = &info.multipleAlternatives[maIndex].Codes; 3033 ConstraintWeight BestWeight = CW_Invalid; 3034 3035 // Loop over the options, keeping track of the most general one. 3036 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 3037 ConstraintWeight weight = 3038 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 3039 if (weight > BestWeight) 3040 BestWeight = weight; 3041 } 3042 3043 return BestWeight; 3044} 3045 3046/// Examine constraint type and operand type and determine a weight value. 3047/// This object must already have been set up with the operand type 3048/// and the current alternative constraint selected. 3049TargetLowering::ConstraintWeight 3050 TargetLowering::getSingleConstraintMatchWeight( 3051 AsmOperandInfo &info, const char *constraint) const { 3052 ConstraintWeight weight = CW_Invalid; 3053 Value *CallOperandVal = info.CallOperandVal; 3054 // If we don't have a value, we can't do a match, 3055 // but allow it at the lowest weight. 3056 if (CallOperandVal == NULL) 3057 return CW_Default; 3058 // Look at the constraint type. 3059 switch (*constraint) { 3060 case 'i': // immediate integer. 3061 case 'n': // immediate integer with a known value. 3062 if (isa<ConstantInt>(CallOperandVal)) 3063 weight = CW_Constant; 3064 break; 3065 case 's': // non-explicit intregal immediate. 3066 if (isa<GlobalValue>(CallOperandVal)) 3067 weight = CW_Constant; 3068 break; 3069 case 'E': // immediate float if host format. 3070 case 'F': // immediate float. 3071 if (isa<ConstantFP>(CallOperandVal)) 3072 weight = CW_Constant; 3073 break; 3074 case '<': // memory operand with autodecrement. 3075 case '>': // memory operand with autoincrement. 3076 case 'm': // memory operand. 3077 case 'o': // offsettable memory operand 3078 case 'V': // non-offsettable memory operand 3079 weight = CW_Memory; 3080 break; 3081 case 'r': // general register. 3082 case 'g': // general register, memory operand or immediate integer. 3083 // note: Clang converts "g" to "imr". 3084 if (CallOperandVal->getType()->isIntegerTy()) 3085 weight = CW_Register; 3086 break; 3087 case 'X': // any operand. 3088 default: 3089 weight = CW_Default; 3090 break; 3091 } 3092 return weight; 3093} 3094 3095/// ChooseConstraint - If there are multiple different constraints that we 3096/// could pick for this operand (e.g. "imr") try to pick the 'best' one. 3097/// This is somewhat tricky: constraints fall into four classes: 3098/// Other -> immediates and magic values 3099/// Register -> one specific register 3100/// RegisterClass -> a group of regs 3101/// Memory -> memory 3102/// Ideally, we would pick the most specific constraint possible: if we have 3103/// something that fits into a register, we would pick it. The problem here 3104/// is that if we have something that could either be in a register or in 3105/// memory that use of the register could cause selection of *other* 3106/// operands to fail: they might only succeed if we pick memory. Because of 3107/// this the heuristic we use is: 3108/// 3109/// 1) If there is an 'other' constraint, and if the operand is valid for 3110/// that constraint, use it. This makes us take advantage of 'i' 3111/// constraints when available. 3112/// 2) Otherwise, pick the most general constraint present. This prefers 3113/// 'm' over 'r', for example. 3114/// 3115static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 3116 const TargetLowering &TLI, 3117 SDValue Op, SelectionDAG *DAG) { 3118 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 3119 unsigned BestIdx = 0; 3120 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 3121 int BestGenerality = -1; 3122 3123 // Loop over the options, keeping track of the most general one. 3124 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 3125 TargetLowering::ConstraintType CType = 3126 TLI.getConstraintType(OpInfo.Codes[i]); 3127 3128 // If this is an 'other' constraint, see if the operand is valid for it. 3129 // For example, on X86 we might have an 'rI' constraint. If the operand 3130 // is an integer in the range [0..31] we want to use I (saving a load 3131 // of a register), otherwise we must use 'r'. 3132 if (CType == TargetLowering::C_Other && Op.getNode()) { 3133 assert(OpInfo.Codes[i].size() == 1 && 3134 "Unhandled multi-letter 'other' constraint"); 3135 std::vector<SDValue> ResultOps; 3136 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 3137 ResultOps, *DAG); 3138 if (!ResultOps.empty()) { 3139 BestType = CType; 3140 BestIdx = i; 3141 break; 3142 } 3143 } 3144 3145 // Things with matching constraints can only be registers, per gcc 3146 // documentation. This mainly affects "g" constraints. 3147 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 3148 continue; 3149 3150 // This constraint letter is more general than the previous one, use it. 3151 int Generality = getConstraintGenerality(CType); 3152 if (Generality > BestGenerality) { 3153 BestType = CType; 3154 BestIdx = i; 3155 BestGenerality = Generality; 3156 } 3157 } 3158 3159 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 3160 OpInfo.ConstraintType = BestType; 3161} 3162 3163/// ComputeConstraintToUse - Determines the constraint code and constraint 3164/// type to use for the specific AsmOperandInfo, setting 3165/// OpInfo.ConstraintCode and OpInfo.ConstraintType. 3166void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 3167 SDValue Op, 3168 SelectionDAG *DAG) const { 3169 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 3170 3171 // Single-letter constraints ('r') are very common. 3172 if (OpInfo.Codes.size() == 1) { 3173 OpInfo.ConstraintCode = OpInfo.Codes[0]; 3174 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 3175 } else { 3176 ChooseConstraint(OpInfo, *this, Op, DAG); 3177 } 3178 3179 // 'X' matches anything. 3180 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 3181 // Labels and constants are handled elsewhere ('X' is the only thing 3182 // that matches labels). For Functions, the type here is the type of 3183 // the result, which is not what we want to look at; leave them alone. 3184 Value *v = OpInfo.CallOperandVal; 3185 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 3186 OpInfo.CallOperandVal = v; 3187 return; 3188 } 3189 3190 // Otherwise, try to resolve it to something we know about by looking at 3191 // the actual operand type. 3192 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 3193 OpInfo.ConstraintCode = Repl; 3194 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 3195 } 3196 } 3197} 3198 3199//===----------------------------------------------------------------------===// 3200// Loop Strength Reduction hooks 3201//===----------------------------------------------------------------------===// 3202 3203/// isLegalAddressingMode - Return true if the addressing mode represented 3204/// by AM is legal for this target, for a load/store of the specified type. 3205bool TargetLowering::isLegalAddressingMode(const AddrMode &AM, 3206 Type *Ty) const { 3207 // The default implementation of this implements a conservative RISCy, r+r and 3208 // r+i addr mode. 3209 3210 // Allows a sign-extended 16-bit immediate field. 3211 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 3212 return false; 3213 3214 // No global is ever allowed as a base. 3215 if (AM.BaseGV) 3216 return false; 3217 3218 // Only support r+r, 3219 switch (AM.Scale) { 3220 case 0: // "r+i" or just "i", depending on HasBaseReg. 3221 break; 3222 case 1: 3223 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 3224 return false; 3225 // Otherwise we have r+r or r+i. 3226 break; 3227 case 2: 3228 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 3229 return false; 3230 // Allow 2*r as r+r. 3231 break; 3232 } 3233 3234 return true; 3235} 3236 3237/// BuildExactDiv - Given an exact SDIV by a constant, create a multiplication 3238/// with the multiplicative inverse of the constant. 3239SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl, 3240 SelectionDAG &DAG) const { 3241 ConstantSDNode *C = cast<ConstantSDNode>(Op2); 3242 APInt d = C->getAPIntValue(); 3243 assert(d != 0 && "Division by zero!"); 3244 3245 // Shift the value upfront if it is even, so the LSB is one. 3246 unsigned ShAmt = d.countTrailingZeros(); 3247 if (ShAmt) { 3248 // TODO: For UDIV use SRL instead of SRA. 3249 SDValue Amt = DAG.getConstant(ShAmt, getShiftAmountTy(Op1.getValueType())); 3250 Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt); 3251 d = d.ashr(ShAmt); 3252 } 3253 3254 // Calculate the multiplicative inverse, using Newton's method. 3255 APInt t, xn = d; 3256 while ((t = d*xn) != 1) 3257 xn *= APInt(d.getBitWidth(), 2) - t; 3258 3259 Op2 = DAG.getConstant(xn, Op1.getValueType()); 3260 return DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2); 3261} 3262 3263/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant, 3264/// return a DAG expression to select that will generate the same value by 3265/// multiplying by a magic number. See: 3266/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> 3267SDValue TargetLowering:: 3268BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, 3269 std::vector<SDNode*>* Created) const { 3270 EVT VT = N->getValueType(0); 3271 DebugLoc dl= N->getDebugLoc(); 3272 3273 // Check to see if we can do this. 3274 // FIXME: We should be more aggressive here. 3275 if (!isTypeLegal(VT)) 3276 return SDValue(); 3277 3278 APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue(); 3279 APInt::ms magics = d.magic(); 3280 3281 // Multiply the numerator (operand 0) by the magic value 3282 // FIXME: We should support doing a MUL in a wider type 3283 SDValue Q; 3284 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) : 3285 isOperationLegalOrCustom(ISD::MULHS, VT)) 3286 Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0), 3287 DAG.getConstant(magics.m, VT)); 3288 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) : 3289 isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) 3290 Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), 3291 N->getOperand(0), 3292 DAG.getConstant(magics.m, VT)).getNode(), 1); 3293 else 3294 return SDValue(); // No mulhs or equvialent 3295 // If d > 0 and m < 0, add the numerator 3296 if (d.isStrictlyPositive() && magics.m.isNegative()) { 3297 Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0)); 3298 if (Created) 3299 Created->push_back(Q.getNode()); 3300 } 3301 // If d < 0 and m > 0, subtract the numerator. 3302 if (d.isNegative() && magics.m.isStrictlyPositive()) { 3303 Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0)); 3304 if (Created) 3305 Created->push_back(Q.getNode()); 3306 } 3307 // Shift right algebraic if shift value is nonzero 3308 if (magics.s > 0) { 3309 Q = DAG.getNode(ISD::SRA, dl, VT, Q, 3310 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType()))); 3311 if (Created) 3312 Created->push_back(Q.getNode()); 3313 } 3314 // Extract the sign bit and add it to the quotient 3315 SDValue T = 3316 DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1, 3317 getShiftAmountTy(Q.getValueType()))); 3318 if (Created) 3319 Created->push_back(T.getNode()); 3320 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 3321} 3322 3323/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant, 3324/// return a DAG expression to select that will generate the same value by 3325/// multiplying by a magic number. See: 3326/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> 3327SDValue TargetLowering:: 3328BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, 3329 std::vector<SDNode*>* Created) const { 3330 EVT VT = N->getValueType(0); 3331 DebugLoc dl = N->getDebugLoc(); 3332 3333 // Check to see if we can do this. 3334 // FIXME: We should be more aggressive here. 3335 if (!isTypeLegal(VT)) 3336 return SDValue(); 3337 3338 // FIXME: We should use a narrower constant when the upper 3339 // bits are known to be zero. 3340 const APInt &N1C = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue(); 3341 APInt::mu magics = N1C.magicu(); 3342 3343 SDValue Q = N->getOperand(0); 3344 3345 // If the divisor is even, we can avoid using the expensive fixup by shifting 3346 // the divided value upfront. 3347 if (magics.a != 0 && !N1C[0]) { 3348 unsigned Shift = N1C.countTrailingZeros(); 3349 Q = DAG.getNode(ISD::SRL, dl, VT, Q, 3350 DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType()))); 3351 if (Created) 3352 Created->push_back(Q.getNode()); 3353 3354 // Get magic number for the shifted divisor. 3355 magics = N1C.lshr(Shift).magicu(Shift); 3356 assert(magics.a == 0 && "Should use cheap fixup now"); 3357 } 3358 3359 // Multiply the numerator (operand 0) by the magic value 3360 // FIXME: We should support doing a MUL in a wider type 3361 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) : 3362 isOperationLegalOrCustom(ISD::MULHU, VT)) 3363 Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT)); 3364 else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) : 3365 isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) 3366 Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q, 3367 DAG.getConstant(magics.m, VT)).getNode(), 1); 3368 else 3369 return SDValue(); // No mulhu or equvialent 3370 if (Created) 3371 Created->push_back(Q.getNode()); 3372 3373 if (magics.a == 0) { 3374 assert(magics.s < N1C.getBitWidth() && 3375 "We shouldn't generate an undefined shift!"); 3376 return DAG.getNode(ISD::SRL, dl, VT, Q, 3377 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType()))); 3378 } else { 3379 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q); 3380 if (Created) 3381 Created->push_back(NPQ.getNode()); 3382 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, 3383 DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType()))); 3384 if (Created) 3385 Created->push_back(NPQ.getNode()); 3386 NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 3387 if (Created) 3388 Created->push_back(NPQ.getNode()); 3389 return DAG.getNode(ISD::SRL, dl, VT, NPQ, 3390 DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType()))); 3391 } 3392} 3393