ARMAsmParser.cpp revision 756d2cc2f7f6745603fdc0ec1ed4476d06385845
1//===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "MCTargetDesc/ARMBaseInfo.h"
11#include "MCTargetDesc/ARMAddressingModes.h"
12#include "MCTargetDesc/ARMMCExpr.h"
13#include "llvm/MC/MCParser/MCAsmLexer.h"
14#include "llvm/MC/MCParser/MCAsmParser.h"
15#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
16#include "llvm/MC/MCAsmInfo.h"
17#include "llvm/MC/MCContext.h"
18#include "llvm/MC/MCStreamer.h"
19#include "llvm/MC/MCExpr.h"
20#include "llvm/MC/MCInst.h"
21#include "llvm/MC/MCInstrDesc.h"
22#include "llvm/MC/MCRegisterInfo.h"
23#include "llvm/MC/MCSubtargetInfo.h"
24#include "llvm/MC/MCTargetAsmParser.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/SourceMgr.h"
27#include "llvm/Support/TargetRegistry.h"
28#include "llvm/Support/raw_ostream.h"
29#include "llvm/ADT/BitVector.h"
30#include "llvm/ADT/OwningPtr.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/StringSwitch.h"
34#include "llvm/ADT/Twine.h"
35
36using namespace llvm;
37
38namespace {
39
40class ARMOperand;
41
42enum VectorLaneTy { NoLanes, AllLanes, IndexedLane };
43
44class ARMAsmParser : public MCTargetAsmParser {
45  MCSubtargetInfo &STI;
46  MCAsmParser &Parser;
47  const MCRegisterInfo *MRI;
48
49  // Map of register aliases registers via the .req directive.
50  StringMap<unsigned> RegisterReqs;
51
52  struct {
53    ARMCC::CondCodes Cond;    // Condition for IT block.
54    unsigned Mask:4;          // Condition mask for instructions.
55                              // Starting at first 1 (from lsb).
56                              //   '1'  condition as indicated in IT.
57                              //   '0'  inverse of condition (else).
58                              // Count of instructions in IT block is
59                              // 4 - trailingzeroes(mask)
60
61    bool FirstCond;           // Explicit flag for when we're parsing the
62                              // First instruction in the IT block. It's
63                              // implied in the mask, so needs special
64                              // handling.
65
66    unsigned CurPosition;     // Current position in parsing of IT
67                              // block. In range [0,3]. Initialized
68                              // according to count of instructions in block.
69                              // ~0U if no active IT block.
70  } ITState;
71  bool inITBlock() { return ITState.CurPosition != ~0U;}
72  void forwardITPosition() {
73    if (!inITBlock()) return;
74    // Move to the next instruction in the IT block, if there is one. If not,
75    // mark the block as done.
76    unsigned TZ = CountTrailingZeros_32(ITState.Mask);
77    if (++ITState.CurPosition == 5 - TZ)
78      ITState.CurPosition = ~0U; // Done with the IT block after this.
79  }
80
81
82  MCAsmParser &getParser() const { return Parser; }
83  MCAsmLexer &getLexer() const { return Parser.getLexer(); }
84
85  bool Warning(SMLoc L, const Twine &Msg,
86               ArrayRef<SMRange> Ranges = ArrayRef<SMRange>()) {
87    return Parser.Warning(L, Msg, Ranges);
88  }
89  bool Error(SMLoc L, const Twine &Msg,
90             ArrayRef<SMRange> Ranges = ArrayRef<SMRange>()) {
91    return Parser.Error(L, Msg, Ranges);
92  }
93
94  int tryParseRegister();
95  bool tryParseRegisterWithWriteBack(SmallVectorImpl<MCParsedAsmOperand*> &);
96  int tryParseShiftRegister(SmallVectorImpl<MCParsedAsmOperand*> &);
97  bool parseRegisterList(SmallVectorImpl<MCParsedAsmOperand*> &);
98  bool parseMemory(SmallVectorImpl<MCParsedAsmOperand*> &);
99  bool parseOperand(SmallVectorImpl<MCParsedAsmOperand*> &, StringRef Mnemonic);
100  bool parsePrefix(ARMMCExpr::VariantKind &RefKind);
101  bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType,
102                              unsigned &ShiftAmount);
103  bool parseDirectiveWord(unsigned Size, SMLoc L);
104  bool parseDirectiveThumb(SMLoc L);
105  bool parseDirectiveARM(SMLoc L);
106  bool parseDirectiveThumbFunc(SMLoc L);
107  bool parseDirectiveCode(SMLoc L);
108  bool parseDirectiveSyntax(SMLoc L);
109  bool parseDirectiveReq(StringRef Name, SMLoc L);
110  bool parseDirectiveUnreq(SMLoc L);
111  bool parseDirectiveArch(SMLoc L);
112  bool parseDirectiveEabiAttr(SMLoc L);
113
114  StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode,
115                          bool &CarrySetting, unsigned &ProcessorIMod,
116                          StringRef &ITMask);
117  void getMnemonicAcceptInfo(StringRef Mnemonic, bool &CanAcceptCarrySet,
118                             bool &CanAcceptPredicationCode);
119
120  bool isThumb() const {
121    // FIXME: Can tablegen auto-generate this?
122    return (STI.getFeatureBits() & ARM::ModeThumb) != 0;
123  }
124  bool isThumbOne() const {
125    return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2) == 0;
126  }
127  bool isThumbTwo() const {
128    return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2);
129  }
130  bool hasV6Ops() const {
131    return STI.getFeatureBits() & ARM::HasV6Ops;
132  }
133  bool hasV7Ops() const {
134    return STI.getFeatureBits() & ARM::HasV7Ops;
135  }
136  void SwitchMode() {
137    unsigned FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb));
138    setAvailableFeatures(FB);
139  }
140  bool isMClass() const {
141    return STI.getFeatureBits() & ARM::FeatureMClass;
142  }
143
144  /// @name Auto-generated Match Functions
145  /// {
146
147#define GET_ASSEMBLER_HEADER
148#include "ARMGenAsmMatcher.inc"
149
150  /// }
151
152  OperandMatchResultTy parseITCondCode(SmallVectorImpl<MCParsedAsmOperand*>&);
153  OperandMatchResultTy parseCoprocNumOperand(
154    SmallVectorImpl<MCParsedAsmOperand*>&);
155  OperandMatchResultTy parseCoprocRegOperand(
156    SmallVectorImpl<MCParsedAsmOperand*>&);
157  OperandMatchResultTy parseCoprocOptionOperand(
158    SmallVectorImpl<MCParsedAsmOperand*>&);
159  OperandMatchResultTy parseMemBarrierOptOperand(
160    SmallVectorImpl<MCParsedAsmOperand*>&);
161  OperandMatchResultTy parseProcIFlagsOperand(
162    SmallVectorImpl<MCParsedAsmOperand*>&);
163  OperandMatchResultTy parseMSRMaskOperand(
164    SmallVectorImpl<MCParsedAsmOperand*>&);
165  OperandMatchResultTy parsePKHImm(SmallVectorImpl<MCParsedAsmOperand*> &O,
166                                   StringRef Op, int Low, int High);
167  OperandMatchResultTy parsePKHLSLImm(SmallVectorImpl<MCParsedAsmOperand*> &O) {
168    return parsePKHImm(O, "lsl", 0, 31);
169  }
170  OperandMatchResultTy parsePKHASRImm(SmallVectorImpl<MCParsedAsmOperand*> &O) {
171    return parsePKHImm(O, "asr", 1, 32);
172  }
173  OperandMatchResultTy parseSetEndImm(SmallVectorImpl<MCParsedAsmOperand*>&);
174  OperandMatchResultTy parseShifterImm(SmallVectorImpl<MCParsedAsmOperand*>&);
175  OperandMatchResultTy parseRotImm(SmallVectorImpl<MCParsedAsmOperand*>&);
176  OperandMatchResultTy parseBitfield(SmallVectorImpl<MCParsedAsmOperand*>&);
177  OperandMatchResultTy parsePostIdxReg(SmallVectorImpl<MCParsedAsmOperand*>&);
178  OperandMatchResultTy parseAM3Offset(SmallVectorImpl<MCParsedAsmOperand*>&);
179  OperandMatchResultTy parseFPImm(SmallVectorImpl<MCParsedAsmOperand*>&);
180  OperandMatchResultTy parseVectorList(SmallVectorImpl<MCParsedAsmOperand*>&);
181  OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index);
182
183  // Asm Match Converter Methods
184  void cvtT2LdrdPre(MCInst &Inst, const SmallVectorImpl<MCParsedAsmOperand*> &);
185  void cvtT2StrdPre(MCInst &Inst, const SmallVectorImpl<MCParsedAsmOperand*> &);
186  void cvtLdWriteBackRegT2AddrModeImm8(MCInst &Inst,
187                                  const SmallVectorImpl<MCParsedAsmOperand*> &);
188  void cvtStWriteBackRegT2AddrModeImm8(MCInst &Inst,
189                                  const SmallVectorImpl<MCParsedAsmOperand*> &);
190  void cvtLdWriteBackRegAddrMode2(MCInst &Inst,
191                                  const SmallVectorImpl<MCParsedAsmOperand*> &);
192  void cvtLdWriteBackRegAddrModeImm12(MCInst &Inst,
193                                  const SmallVectorImpl<MCParsedAsmOperand*> &);
194  void cvtStWriteBackRegAddrModeImm12(MCInst &Inst,
195                                  const SmallVectorImpl<MCParsedAsmOperand*> &);
196  void cvtStWriteBackRegAddrMode2(MCInst &Inst,
197                                  const SmallVectorImpl<MCParsedAsmOperand*> &);
198  void cvtStWriteBackRegAddrMode3(MCInst &Inst,
199                                  const SmallVectorImpl<MCParsedAsmOperand*> &);
200  void cvtLdExtTWriteBackImm(MCInst &Inst,
201                             const SmallVectorImpl<MCParsedAsmOperand*> &);
202  void cvtLdExtTWriteBackReg(MCInst &Inst,
203                             const SmallVectorImpl<MCParsedAsmOperand*> &);
204  void cvtStExtTWriteBackImm(MCInst &Inst,
205                             const SmallVectorImpl<MCParsedAsmOperand*> &);
206  void cvtStExtTWriteBackReg(MCInst &Inst,
207                             const SmallVectorImpl<MCParsedAsmOperand*> &);
208  void cvtLdrdPre(MCInst &Inst, const SmallVectorImpl<MCParsedAsmOperand*> &);
209  void cvtStrdPre(MCInst &Inst, const SmallVectorImpl<MCParsedAsmOperand*> &);
210  void cvtLdWriteBackRegAddrMode3(MCInst &Inst,
211                                  const SmallVectorImpl<MCParsedAsmOperand*> &);
212  void cvtThumbMultiply(MCInst &Inst,
213                        const SmallVectorImpl<MCParsedAsmOperand*> &);
214  void cvtVLDwbFixed(MCInst &Inst,
215                     const SmallVectorImpl<MCParsedAsmOperand*> &);
216  void cvtVLDwbRegister(MCInst &Inst,
217                        const SmallVectorImpl<MCParsedAsmOperand*> &);
218  void cvtVSTwbFixed(MCInst &Inst,
219                     const SmallVectorImpl<MCParsedAsmOperand*> &);
220  void cvtVSTwbRegister(MCInst &Inst,
221                        const SmallVectorImpl<MCParsedAsmOperand*> &);
222  bool validateInstruction(MCInst &Inst,
223                           const SmallVectorImpl<MCParsedAsmOperand*> &Ops);
224  bool processInstruction(MCInst &Inst,
225                          const SmallVectorImpl<MCParsedAsmOperand*> &Ops);
226  bool shouldOmitCCOutOperand(StringRef Mnemonic,
227                              SmallVectorImpl<MCParsedAsmOperand*> &Operands);
228
229public:
230  enum ARMMatchResultTy {
231    Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY,
232    Match_RequiresNotITBlock,
233    Match_RequiresV6,
234    Match_RequiresThumb2,
235#define GET_OPERAND_DIAGNOSTIC_TYPES
236#include "ARMGenAsmMatcher.inc"
237
238  };
239
240  ARMAsmParser(MCSubtargetInfo &_STI, MCAsmParser &_Parser)
241    : MCTargetAsmParser(), STI(_STI), Parser(_Parser) {
242    MCAsmParserExtension::Initialize(_Parser);
243
244    // Cache the MCRegisterInfo.
245    MRI = &getContext().getRegisterInfo();
246
247    // Initialize the set of available features.
248    setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
249
250    // Not in an ITBlock to start with.
251    ITState.CurPosition = ~0U;
252  }
253
254  // Implementation of the MCTargetAsmParser interface:
255  bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc);
256  bool ParseInstruction(StringRef Name, SMLoc NameLoc,
257                        SmallVectorImpl<MCParsedAsmOperand*> &Operands);
258  bool ParseDirective(AsmToken DirectiveID);
259
260  unsigned checkTargetMatchPredicate(MCInst &Inst);
261
262  bool MatchAndEmitInstruction(SMLoc IDLoc,
263                               SmallVectorImpl<MCParsedAsmOperand*> &Operands,
264                               MCStreamer &Out);
265};
266} // end anonymous namespace
267
268namespace {
269
270/// ARMOperand - Instances of this class represent a parsed ARM machine
271/// instruction.
272class ARMOperand : public MCParsedAsmOperand {
273  enum KindTy {
274    k_CondCode,
275    k_CCOut,
276    k_ITCondMask,
277    k_CoprocNum,
278    k_CoprocReg,
279    k_CoprocOption,
280    k_Immediate,
281    k_MemBarrierOpt,
282    k_Memory,
283    k_PostIndexRegister,
284    k_MSRMask,
285    k_ProcIFlags,
286    k_VectorIndex,
287    k_Register,
288    k_RegisterList,
289    k_DPRRegisterList,
290    k_SPRRegisterList,
291    k_VectorList,
292    k_VectorListAllLanes,
293    k_VectorListIndexed,
294    k_ShiftedRegister,
295    k_ShiftedImmediate,
296    k_ShifterImmediate,
297    k_RotateImmediate,
298    k_BitfieldDescriptor,
299    k_Token
300  } Kind;
301
302  SMLoc StartLoc, EndLoc;
303  SmallVector<unsigned, 8> Registers;
304
305  union {
306    struct {
307      ARMCC::CondCodes Val;
308    } CC;
309
310    struct {
311      unsigned Val;
312    } Cop;
313
314    struct {
315      unsigned Val;
316    } CoprocOption;
317
318    struct {
319      unsigned Mask:4;
320    } ITMask;
321
322    struct {
323      ARM_MB::MemBOpt Val;
324    } MBOpt;
325
326    struct {
327      ARM_PROC::IFlags Val;
328    } IFlags;
329
330    struct {
331      unsigned Val;
332    } MMask;
333
334    struct {
335      const char *Data;
336      unsigned Length;
337    } Tok;
338
339    struct {
340      unsigned RegNum;
341    } Reg;
342
343    // A vector register list is a sequential list of 1 to 4 registers.
344    struct {
345      unsigned RegNum;
346      unsigned Count;
347      unsigned LaneIndex;
348      bool isDoubleSpaced;
349    } VectorList;
350
351    struct {
352      unsigned Val;
353    } VectorIndex;
354
355    struct {
356      const MCExpr *Val;
357    } Imm;
358
359    /// Combined record for all forms of ARM address expressions.
360    struct {
361      unsigned BaseRegNum;
362      // Offset is in OffsetReg or OffsetImm. If both are zero, no offset
363      // was specified.
364      const MCConstantExpr *OffsetImm;  // Offset immediate value
365      unsigned OffsetRegNum;    // Offset register num, when OffsetImm == NULL
366      ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg
367      unsigned ShiftImm;        // shift for OffsetReg.
368      unsigned Alignment;       // 0 = no alignment specified
369                                // n = alignment in bytes (2, 4, 8, 16, or 32)
370      unsigned isNegative : 1;  // Negated OffsetReg? (~'U' bit)
371    } Memory;
372
373    struct {
374      unsigned RegNum;
375      bool isAdd;
376      ARM_AM::ShiftOpc ShiftTy;
377      unsigned ShiftImm;
378    } PostIdxReg;
379
380    struct {
381      bool isASR;
382      unsigned Imm;
383    } ShifterImm;
384    struct {
385      ARM_AM::ShiftOpc ShiftTy;
386      unsigned SrcReg;
387      unsigned ShiftReg;
388      unsigned ShiftImm;
389    } RegShiftedReg;
390    struct {
391      ARM_AM::ShiftOpc ShiftTy;
392      unsigned SrcReg;
393      unsigned ShiftImm;
394    } RegShiftedImm;
395    struct {
396      unsigned Imm;
397    } RotImm;
398    struct {
399      unsigned LSB;
400      unsigned Width;
401    } Bitfield;
402  };
403
404  ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
405public:
406  ARMOperand(const ARMOperand &o) : MCParsedAsmOperand() {
407    Kind = o.Kind;
408    StartLoc = o.StartLoc;
409    EndLoc = o.EndLoc;
410    switch (Kind) {
411    case k_CondCode:
412      CC = o.CC;
413      break;
414    case k_ITCondMask:
415      ITMask = o.ITMask;
416      break;
417    case k_Token:
418      Tok = o.Tok;
419      break;
420    case k_CCOut:
421    case k_Register:
422      Reg = o.Reg;
423      break;
424    case k_RegisterList:
425    case k_DPRRegisterList:
426    case k_SPRRegisterList:
427      Registers = o.Registers;
428      break;
429    case k_VectorList:
430    case k_VectorListAllLanes:
431    case k_VectorListIndexed:
432      VectorList = o.VectorList;
433      break;
434    case k_CoprocNum:
435    case k_CoprocReg:
436      Cop = o.Cop;
437      break;
438    case k_CoprocOption:
439      CoprocOption = o.CoprocOption;
440      break;
441    case k_Immediate:
442      Imm = o.Imm;
443      break;
444    case k_MemBarrierOpt:
445      MBOpt = o.MBOpt;
446      break;
447    case k_Memory:
448      Memory = o.Memory;
449      break;
450    case k_PostIndexRegister:
451      PostIdxReg = o.PostIdxReg;
452      break;
453    case k_MSRMask:
454      MMask = o.MMask;
455      break;
456    case k_ProcIFlags:
457      IFlags = o.IFlags;
458      break;
459    case k_ShifterImmediate:
460      ShifterImm = o.ShifterImm;
461      break;
462    case k_ShiftedRegister:
463      RegShiftedReg = o.RegShiftedReg;
464      break;
465    case k_ShiftedImmediate:
466      RegShiftedImm = o.RegShiftedImm;
467      break;
468    case k_RotateImmediate:
469      RotImm = o.RotImm;
470      break;
471    case k_BitfieldDescriptor:
472      Bitfield = o.Bitfield;
473      break;
474    case k_VectorIndex:
475      VectorIndex = o.VectorIndex;
476      break;
477    }
478  }
479
480  /// getStartLoc - Get the location of the first token of this operand.
481  SMLoc getStartLoc() const { return StartLoc; }
482  /// getEndLoc - Get the location of the last token of this operand.
483  SMLoc getEndLoc() const { return EndLoc; }
484
485  SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
486
487  ARMCC::CondCodes getCondCode() const {
488    assert(Kind == k_CondCode && "Invalid access!");
489    return CC.Val;
490  }
491
492  unsigned getCoproc() const {
493    assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!");
494    return Cop.Val;
495  }
496
497  StringRef getToken() const {
498    assert(Kind == k_Token && "Invalid access!");
499    return StringRef(Tok.Data, Tok.Length);
500  }
501
502  unsigned getReg() const {
503    assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!");
504    return Reg.RegNum;
505  }
506
507  const SmallVectorImpl<unsigned> &getRegList() const {
508    assert((Kind == k_RegisterList || Kind == k_DPRRegisterList ||
509            Kind == k_SPRRegisterList) && "Invalid access!");
510    return Registers;
511  }
512
513  const MCExpr *getImm() const {
514    assert(isImm() && "Invalid access!");
515    return Imm.Val;
516  }
517
518  unsigned getVectorIndex() const {
519    assert(Kind == k_VectorIndex && "Invalid access!");
520    return VectorIndex.Val;
521  }
522
523  ARM_MB::MemBOpt getMemBarrierOpt() const {
524    assert(Kind == k_MemBarrierOpt && "Invalid access!");
525    return MBOpt.Val;
526  }
527
528  ARM_PROC::IFlags getProcIFlags() const {
529    assert(Kind == k_ProcIFlags && "Invalid access!");
530    return IFlags.Val;
531  }
532
533  unsigned getMSRMask() const {
534    assert(Kind == k_MSRMask && "Invalid access!");
535    return MMask.Val;
536  }
537
538  bool isCoprocNum() const { return Kind == k_CoprocNum; }
539  bool isCoprocReg() const { return Kind == k_CoprocReg; }
540  bool isCoprocOption() const { return Kind == k_CoprocOption; }
541  bool isCondCode() const { return Kind == k_CondCode; }
542  bool isCCOut() const { return Kind == k_CCOut; }
543  bool isITMask() const { return Kind == k_ITCondMask; }
544  bool isITCondCode() const { return Kind == k_CondCode; }
545  bool isImm() const { return Kind == k_Immediate; }
546  bool isFPImm() const {
547    if (!isImm()) return false;
548    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
549    if (!CE) return false;
550    int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
551    return Val != -1;
552  }
553  bool isFBits16() const {
554    if (!isImm()) return false;
555    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
556    if (!CE) return false;
557    int64_t Value = CE->getValue();
558    return Value >= 0 && Value <= 16;
559  }
560  bool isFBits32() const {
561    if (!isImm()) return false;
562    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
563    if (!CE) return false;
564    int64_t Value = CE->getValue();
565    return Value >= 1 && Value <= 32;
566  }
567  bool isImm8s4() const {
568    if (!isImm()) return false;
569    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
570    if (!CE) return false;
571    int64_t Value = CE->getValue();
572    return ((Value & 3) == 0) && Value >= -1020 && Value <= 1020;
573  }
574  bool isImm0_1020s4() const {
575    if (!isImm()) return false;
576    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
577    if (!CE) return false;
578    int64_t Value = CE->getValue();
579    return ((Value & 3) == 0) && Value >= 0 && Value <= 1020;
580  }
581  bool isImm0_508s4() const {
582    if (!isImm()) return false;
583    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
584    if (!CE) return false;
585    int64_t Value = CE->getValue();
586    return ((Value & 3) == 0) && Value >= 0 && Value <= 508;
587  }
588  bool isImm0_508s4Neg() const {
589    if (!isImm()) return false;
590    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
591    if (!CE) return false;
592    int64_t Value = -CE->getValue();
593    // explicitly exclude zero. we want that to use the normal 0_508 version.
594    return ((Value & 3) == 0) && Value > 0 && Value <= 508;
595  }
596  bool isImm0_255() const {
597    if (!isImm()) return false;
598    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
599    if (!CE) return false;
600    int64_t Value = CE->getValue();
601    return Value >= 0 && Value < 256;
602  }
603  bool isImm0_4095() const {
604    if (!isImm()) return false;
605    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
606    if (!CE) return false;
607    int64_t Value = CE->getValue();
608    return Value >= 0 && Value < 4096;
609  }
610  bool isImm0_4095Neg() const {
611    if (!isImm()) return false;
612    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
613    if (!CE) return false;
614    int64_t Value = -CE->getValue();
615    return Value > 0 && Value < 4096;
616  }
617  bool isImm0_1() const {
618    if (!isImm()) return false;
619    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
620    if (!CE) return false;
621    int64_t Value = CE->getValue();
622    return Value >= 0 && Value < 2;
623  }
624  bool isImm0_3() const {
625    if (!isImm()) return false;
626    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
627    if (!CE) return false;
628    int64_t Value = CE->getValue();
629    return Value >= 0 && Value < 4;
630  }
631  bool isImm0_7() const {
632    if (!isImm()) return false;
633    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
634    if (!CE) return false;
635    int64_t Value = CE->getValue();
636    return Value >= 0 && Value < 8;
637  }
638  bool isImm0_15() const {
639    if (!isImm()) return false;
640    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
641    if (!CE) return false;
642    int64_t Value = CE->getValue();
643    return Value >= 0 && Value < 16;
644  }
645  bool isImm0_31() const {
646    if (!isImm()) return false;
647    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
648    if (!CE) return false;
649    int64_t Value = CE->getValue();
650    return Value >= 0 && Value < 32;
651  }
652  bool isImm0_63() const {
653    if (!isImm()) return false;
654    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
655    if (!CE) return false;
656    int64_t Value = CE->getValue();
657    return Value >= 0 && Value < 64;
658  }
659  bool isImm8() const {
660    if (!isImm()) return false;
661    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
662    if (!CE) return false;
663    int64_t Value = CE->getValue();
664    return Value == 8;
665  }
666  bool isImm16() const {
667    if (!isImm()) return false;
668    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
669    if (!CE) return false;
670    int64_t Value = CE->getValue();
671    return Value == 16;
672  }
673  bool isImm32() const {
674    if (!isImm()) return false;
675    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
676    if (!CE) return false;
677    int64_t Value = CE->getValue();
678    return Value == 32;
679  }
680  bool isShrImm8() const {
681    if (!isImm()) return false;
682    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
683    if (!CE) return false;
684    int64_t Value = CE->getValue();
685    return Value > 0 && Value <= 8;
686  }
687  bool isShrImm16() const {
688    if (!isImm()) return false;
689    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
690    if (!CE) return false;
691    int64_t Value = CE->getValue();
692    return Value > 0 && Value <= 16;
693  }
694  bool isShrImm32() const {
695    if (!isImm()) return false;
696    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
697    if (!CE) return false;
698    int64_t Value = CE->getValue();
699    return Value > 0 && Value <= 32;
700  }
701  bool isShrImm64() const {
702    if (!isImm()) return false;
703    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
704    if (!CE) return false;
705    int64_t Value = CE->getValue();
706    return Value > 0 && Value <= 64;
707  }
708  bool isImm1_7() const {
709    if (!isImm()) return false;
710    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
711    if (!CE) return false;
712    int64_t Value = CE->getValue();
713    return Value > 0 && Value < 8;
714  }
715  bool isImm1_15() const {
716    if (!isImm()) return false;
717    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
718    if (!CE) return false;
719    int64_t Value = CE->getValue();
720    return Value > 0 && Value < 16;
721  }
722  bool isImm1_31() const {
723    if (!isImm()) return false;
724    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
725    if (!CE) return false;
726    int64_t Value = CE->getValue();
727    return Value > 0 && Value < 32;
728  }
729  bool isImm1_16() const {
730    if (!isImm()) return false;
731    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
732    if (!CE) return false;
733    int64_t Value = CE->getValue();
734    return Value > 0 && Value < 17;
735  }
736  bool isImm1_32() const {
737    if (!isImm()) return false;
738    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
739    if (!CE) return false;
740    int64_t Value = CE->getValue();
741    return Value > 0 && Value < 33;
742  }
743  bool isImm0_32() const {
744    if (!isImm()) return false;
745    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
746    if (!CE) return false;
747    int64_t Value = CE->getValue();
748    return Value >= 0 && Value < 33;
749  }
750  bool isImm0_65535() const {
751    if (!isImm()) return false;
752    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
753    if (!CE) return false;
754    int64_t Value = CE->getValue();
755    return Value >= 0 && Value < 65536;
756  }
757  bool isImm0_65535Expr() const {
758    if (!isImm()) return false;
759    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
760    // If it's not a constant expression, it'll generate a fixup and be
761    // handled later.
762    if (!CE) return true;
763    int64_t Value = CE->getValue();
764    return Value >= 0 && Value < 65536;
765  }
766  bool isImm24bit() const {
767    if (!isImm()) return false;
768    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
769    if (!CE) return false;
770    int64_t Value = CE->getValue();
771    return Value >= 0 && Value <= 0xffffff;
772  }
773  bool isImmThumbSR() const {
774    if (!isImm()) return false;
775    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
776    if (!CE) return false;
777    int64_t Value = CE->getValue();
778    return Value > 0 && Value < 33;
779  }
780  bool isPKHLSLImm() const {
781    if (!isImm()) return false;
782    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
783    if (!CE) return false;
784    int64_t Value = CE->getValue();
785    return Value >= 0 && Value < 32;
786  }
787  bool isPKHASRImm() const {
788    if (!isImm()) return false;
789    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
790    if (!CE) return false;
791    int64_t Value = CE->getValue();
792    return Value > 0 && Value <= 32;
793  }
794  bool isAdrLabel() const {
795    // If we have an immediate that's not a constant, treat it as a label
796    // reference needing a fixup. If it is a constant, but it can't fit
797    // into shift immediate encoding, we reject it.
798    if (isImm() && !isa<MCConstantExpr>(getImm())) return true;
799    else return (isARMSOImm() || isARMSOImmNeg());
800  }
801  bool isARMSOImm() const {
802    if (!isImm()) return false;
803    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
804    if (!CE) return false;
805    int64_t Value = CE->getValue();
806    return ARM_AM::getSOImmVal(Value) != -1;
807  }
808  bool isARMSOImmNot() const {
809    if (!isImm()) return false;
810    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
811    if (!CE) return false;
812    int64_t Value = CE->getValue();
813    return ARM_AM::getSOImmVal(~Value) != -1;
814  }
815  bool isARMSOImmNeg() const {
816    if (!isImm()) return false;
817    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
818    if (!CE) return false;
819    int64_t Value = CE->getValue();
820    // Only use this when not representable as a plain so_imm.
821    return ARM_AM::getSOImmVal(Value) == -1 &&
822      ARM_AM::getSOImmVal(-Value) != -1;
823  }
824  bool isT2SOImm() const {
825    if (!isImm()) return false;
826    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
827    if (!CE) return false;
828    int64_t Value = CE->getValue();
829    return ARM_AM::getT2SOImmVal(Value) != -1;
830  }
831  bool isT2SOImmNot() const {
832    if (!isImm()) return false;
833    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
834    if (!CE) return false;
835    int64_t Value = CE->getValue();
836    return ARM_AM::getT2SOImmVal(~Value) != -1;
837  }
838  bool isT2SOImmNeg() const {
839    if (!isImm()) return false;
840    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
841    if (!CE) return false;
842    int64_t Value = CE->getValue();
843    // Only use this when not representable as a plain so_imm.
844    return ARM_AM::getT2SOImmVal(Value) == -1 &&
845      ARM_AM::getT2SOImmVal(-Value) != -1;
846  }
847  bool isSetEndImm() const {
848    if (!isImm()) return false;
849    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
850    if (!CE) return false;
851    int64_t Value = CE->getValue();
852    return Value == 1 || Value == 0;
853  }
854  bool isReg() const { return Kind == k_Register; }
855  bool isRegList() const { return Kind == k_RegisterList; }
856  bool isDPRRegList() const { return Kind == k_DPRRegisterList; }
857  bool isSPRRegList() const { return Kind == k_SPRRegisterList; }
858  bool isToken() const { return Kind == k_Token; }
859  bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; }
860  bool isMemory() const { return Kind == k_Memory; }
861  bool isShifterImm() const { return Kind == k_ShifterImmediate; }
862  bool isRegShiftedReg() const { return Kind == k_ShiftedRegister; }
863  bool isRegShiftedImm() const { return Kind == k_ShiftedImmediate; }
864  bool isRotImm() const { return Kind == k_RotateImmediate; }
865  bool isBitfield() const { return Kind == k_BitfieldDescriptor; }
866  bool isPostIdxRegShifted() const { return Kind == k_PostIndexRegister; }
867  bool isPostIdxReg() const {
868    return Kind == k_PostIndexRegister && PostIdxReg.ShiftTy ==ARM_AM::no_shift;
869  }
870  bool isMemNoOffset(bool alignOK = false) const {
871    if (!isMemory())
872      return false;
873    // No offset of any kind.
874    return Memory.OffsetRegNum == 0 && Memory.OffsetImm == 0 &&
875     (alignOK || Memory.Alignment == 0);
876  }
877  bool isMemPCRelImm12() const {
878    if (!isMemory() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
879      return false;
880    // Base register must be PC.
881    if (Memory.BaseRegNum != ARM::PC)
882      return false;
883    // Immediate offset in range [-4095, 4095].
884    if (!Memory.OffsetImm) return true;
885    int64_t Val = Memory.OffsetImm->getValue();
886    return (Val > -4096 && Val < 4096) || (Val == INT32_MIN);
887  }
888  bool isAlignedMemory() const {
889    return isMemNoOffset(true);
890  }
891  bool isAddrMode2() const {
892    if (!isMemory() || Memory.Alignment != 0) return false;
893    // Check for register offset.
894    if (Memory.OffsetRegNum) return true;
895    // Immediate offset in range [-4095, 4095].
896    if (!Memory.OffsetImm) return true;
897    int64_t Val = Memory.OffsetImm->getValue();
898    return Val > -4096 && Val < 4096;
899  }
900  bool isAM2OffsetImm() const {
901    if (!isImm()) return false;
902    // Immediate offset in range [-4095, 4095].
903    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
904    if (!CE) return false;
905    int64_t Val = CE->getValue();
906    return Val > -4096 && Val < 4096;
907  }
908  bool isAddrMode3() const {
909    // If we have an immediate that's not a constant, treat it as a label
910    // reference needing a fixup. If it is a constant, it's something else
911    // and we reject it.
912    if (isImm() && !isa<MCConstantExpr>(getImm()))
913      return true;
914    if (!isMemory() || Memory.Alignment != 0) return false;
915    // No shifts are legal for AM3.
916    if (Memory.ShiftType != ARM_AM::no_shift) return false;
917    // Check for register offset.
918    if (Memory.OffsetRegNum) return true;
919    // Immediate offset in range [-255, 255].
920    if (!Memory.OffsetImm) return true;
921    int64_t Val = Memory.OffsetImm->getValue();
922    // The #-0 offset is encoded as INT32_MIN, and we have to check
923    // for this too.
924    return (Val > -256 && Val < 256) || Val == INT32_MIN;
925  }
926  bool isAM3Offset() const {
927    if (Kind != k_Immediate && Kind != k_PostIndexRegister)
928      return false;
929    if (Kind == k_PostIndexRegister)
930      return PostIdxReg.ShiftTy == ARM_AM::no_shift;
931    // Immediate offset in range [-255, 255].
932    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
933    if (!CE) return false;
934    int64_t Val = CE->getValue();
935    // Special case, #-0 is INT32_MIN.
936    return (Val > -256 && Val < 256) || Val == INT32_MIN;
937  }
938  bool isAddrMode5() const {
939    // If we have an immediate that's not a constant, treat it as a label
940    // reference needing a fixup. If it is a constant, it's something else
941    // and we reject it.
942    if (isImm() && !isa<MCConstantExpr>(getImm()))
943      return true;
944    if (!isMemory() || Memory.Alignment != 0) return false;
945    // Check for register offset.
946    if (Memory.OffsetRegNum) return false;
947    // Immediate offset in range [-1020, 1020] and a multiple of 4.
948    if (!Memory.OffsetImm) return true;
949    int64_t Val = Memory.OffsetImm->getValue();
950    return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) ||
951      Val == INT32_MIN;
952  }
953  bool isMemTBB() const {
954    if (!isMemory() || !Memory.OffsetRegNum || Memory.isNegative ||
955        Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
956      return false;
957    return true;
958  }
959  bool isMemTBH() const {
960    if (!isMemory() || !Memory.OffsetRegNum || Memory.isNegative ||
961        Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 ||
962        Memory.Alignment != 0 )
963      return false;
964    return true;
965  }
966  bool isMemRegOffset() const {
967    if (!isMemory() || !Memory.OffsetRegNum || Memory.Alignment != 0)
968      return false;
969    return true;
970  }
971  bool isT2MemRegOffset() const {
972    if (!isMemory() || !Memory.OffsetRegNum || Memory.isNegative ||
973        Memory.Alignment != 0)
974      return false;
975    // Only lsl #{0, 1, 2, 3} allowed.
976    if (Memory.ShiftType == ARM_AM::no_shift)
977      return true;
978    if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3)
979      return false;
980    return true;
981  }
982  bool isMemThumbRR() const {
983    // Thumb reg+reg addressing is simple. Just two registers, a base and
984    // an offset. No shifts, negations or any other complicating factors.
985    if (!isMemory() || !Memory.OffsetRegNum || Memory.isNegative ||
986        Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
987      return false;
988    return isARMLowRegister(Memory.BaseRegNum) &&
989      (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum));
990  }
991  bool isMemThumbRIs4() const {
992    if (!isMemory() || Memory.OffsetRegNum != 0 ||
993        !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
994      return false;
995    // Immediate offset, multiple of 4 in range [0, 124].
996    if (!Memory.OffsetImm) return true;
997    int64_t Val = Memory.OffsetImm->getValue();
998    return Val >= 0 && Val <= 124 && (Val % 4) == 0;
999  }
1000  bool isMemThumbRIs2() const {
1001    if (!isMemory() || Memory.OffsetRegNum != 0 ||
1002        !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1003      return false;
1004    // Immediate offset, multiple of 4 in range [0, 62].
1005    if (!Memory.OffsetImm) return true;
1006    int64_t Val = Memory.OffsetImm->getValue();
1007    return Val >= 0 && Val <= 62 && (Val % 2) == 0;
1008  }
1009  bool isMemThumbRIs1() const {
1010    if (!isMemory() || Memory.OffsetRegNum != 0 ||
1011        !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1012      return false;
1013    // Immediate offset in range [0, 31].
1014    if (!Memory.OffsetImm) return true;
1015    int64_t Val = Memory.OffsetImm->getValue();
1016    return Val >= 0 && Val <= 31;
1017  }
1018  bool isMemThumbSPI() const {
1019    if (!isMemory() || Memory.OffsetRegNum != 0 ||
1020        Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0)
1021      return false;
1022    // Immediate offset, multiple of 4 in range [0, 1020].
1023    if (!Memory.OffsetImm) return true;
1024    int64_t Val = Memory.OffsetImm->getValue();
1025    return Val >= 0 && Val <= 1020 && (Val % 4) == 0;
1026  }
1027  bool isMemImm8s4Offset() const {
1028    // If we have an immediate that's not a constant, treat it as a label
1029    // reference needing a fixup. If it is a constant, it's something else
1030    // and we reject it.
1031    if (isImm() && !isa<MCConstantExpr>(getImm()))
1032      return true;
1033    if (!isMemory() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1034      return false;
1035    // Immediate offset a multiple of 4 in range [-1020, 1020].
1036    if (!Memory.OffsetImm) return true;
1037    int64_t Val = Memory.OffsetImm->getValue();
1038    // Special case, #-0 is INT32_MIN.
1039    return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || Val == INT32_MIN;
1040  }
1041  bool isMemImm0_1020s4Offset() const {
1042    if (!isMemory() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1043      return false;
1044    // Immediate offset a multiple of 4 in range [0, 1020].
1045    if (!Memory.OffsetImm) return true;
1046    int64_t Val = Memory.OffsetImm->getValue();
1047    return Val >= 0 && Val <= 1020 && (Val & 3) == 0;
1048  }
1049  bool isMemImm8Offset() const {
1050    if (!isMemory() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1051      return false;
1052    // Base reg of PC isn't allowed for these encodings.
1053    if (Memory.BaseRegNum == ARM::PC) return false;
1054    // Immediate offset in range [-255, 255].
1055    if (!Memory.OffsetImm) return true;
1056    int64_t Val = Memory.OffsetImm->getValue();
1057    return (Val == INT32_MIN) || (Val > -256 && Val < 256);
1058  }
1059  bool isMemPosImm8Offset() const {
1060    if (!isMemory() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1061      return false;
1062    // Immediate offset in range [0, 255].
1063    if (!Memory.OffsetImm) return true;
1064    int64_t Val = Memory.OffsetImm->getValue();
1065    return Val >= 0 && Val < 256;
1066  }
1067  bool isMemNegImm8Offset() const {
1068    if (!isMemory() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1069      return false;
1070    // Base reg of PC isn't allowed for these encodings.
1071    if (Memory.BaseRegNum == ARM::PC) return false;
1072    // Immediate offset in range [-255, -1].
1073    if (!Memory.OffsetImm) return false;
1074    int64_t Val = Memory.OffsetImm->getValue();
1075    return (Val == INT32_MIN) || (Val > -256 && Val < 0);
1076  }
1077  bool isMemUImm12Offset() const {
1078    if (!isMemory() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1079      return false;
1080    // Immediate offset in range [0, 4095].
1081    if (!Memory.OffsetImm) return true;
1082    int64_t Val = Memory.OffsetImm->getValue();
1083    return (Val >= 0 && Val < 4096);
1084  }
1085  bool isMemImm12Offset() const {
1086    // If we have an immediate that's not a constant, treat it as a label
1087    // reference needing a fixup. If it is a constant, it's something else
1088    // and we reject it.
1089    if (isImm() && !isa<MCConstantExpr>(getImm()))
1090      return true;
1091
1092    if (!isMemory() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1093      return false;
1094    // Immediate offset in range [-4095, 4095].
1095    if (!Memory.OffsetImm) return true;
1096    int64_t Val = Memory.OffsetImm->getValue();
1097    return (Val > -4096 && Val < 4096) || (Val == INT32_MIN);
1098  }
1099  bool isPostIdxImm8() const {
1100    if (!isImm()) return false;
1101    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1102    if (!CE) return false;
1103    int64_t Val = CE->getValue();
1104    return (Val > -256 && Val < 256) || (Val == INT32_MIN);
1105  }
1106  bool isPostIdxImm8s4() const {
1107    if (!isImm()) return false;
1108    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1109    if (!CE) return false;
1110    int64_t Val = CE->getValue();
1111    return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) ||
1112      (Val == INT32_MIN);
1113  }
1114
1115  bool isMSRMask() const { return Kind == k_MSRMask; }
1116  bool isProcIFlags() const { return Kind == k_ProcIFlags; }
1117
1118  // NEON operands.
1119  bool isSingleSpacedVectorList() const {
1120    return Kind == k_VectorList && !VectorList.isDoubleSpaced;
1121  }
1122  bool isDoubleSpacedVectorList() const {
1123    return Kind == k_VectorList && VectorList.isDoubleSpaced;
1124  }
1125  bool isVecListOneD() const {
1126    if (!isSingleSpacedVectorList()) return false;
1127    return VectorList.Count == 1;
1128  }
1129
1130  bool isVecListDPair() const {
1131    if (!isSingleSpacedVectorList()) return false;
1132    return (ARMMCRegisterClasses[ARM::DPairRegClassID]
1133              .contains(VectorList.RegNum));
1134  }
1135
1136  bool isVecListThreeD() const {
1137    if (!isSingleSpacedVectorList()) return false;
1138    return VectorList.Count == 3;
1139  }
1140
1141  bool isVecListFourD() const {
1142    if (!isSingleSpacedVectorList()) return false;
1143    return VectorList.Count == 4;
1144  }
1145
1146  bool isVecListDPairSpaced() const {
1147    if (isSingleSpacedVectorList()) return false;
1148    return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID]
1149              .contains(VectorList.RegNum));
1150  }
1151
1152  bool isVecListThreeQ() const {
1153    if (!isDoubleSpacedVectorList()) return false;
1154    return VectorList.Count == 3;
1155  }
1156
1157  bool isVecListFourQ() const {
1158    if (!isDoubleSpacedVectorList()) return false;
1159    return VectorList.Count == 4;
1160  }
1161
1162  bool isSingleSpacedVectorAllLanes() const {
1163    return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced;
1164  }
1165  bool isDoubleSpacedVectorAllLanes() const {
1166    return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced;
1167  }
1168  bool isVecListOneDAllLanes() const {
1169    if (!isSingleSpacedVectorAllLanes()) return false;
1170    return VectorList.Count == 1;
1171  }
1172
1173  bool isVecListDPairAllLanes() const {
1174    if (!isSingleSpacedVectorAllLanes()) return false;
1175    return (ARMMCRegisterClasses[ARM::DPairRegClassID]
1176              .contains(VectorList.RegNum));
1177  }
1178
1179  bool isVecListDPairSpacedAllLanes() const {
1180    if (!isDoubleSpacedVectorAllLanes()) return false;
1181    return VectorList.Count == 2;
1182  }
1183
1184  bool isVecListThreeDAllLanes() const {
1185    if (!isSingleSpacedVectorAllLanes()) return false;
1186    return VectorList.Count == 3;
1187  }
1188
1189  bool isVecListThreeQAllLanes() const {
1190    if (!isDoubleSpacedVectorAllLanes()) return false;
1191    return VectorList.Count == 3;
1192  }
1193
1194  bool isVecListFourDAllLanes() const {
1195    if (!isSingleSpacedVectorAllLanes()) return false;
1196    return VectorList.Count == 4;
1197  }
1198
1199  bool isVecListFourQAllLanes() const {
1200    if (!isDoubleSpacedVectorAllLanes()) return false;
1201    return VectorList.Count == 4;
1202  }
1203
1204  bool isSingleSpacedVectorIndexed() const {
1205    return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced;
1206  }
1207  bool isDoubleSpacedVectorIndexed() const {
1208    return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced;
1209  }
1210  bool isVecListOneDByteIndexed() const {
1211    if (!isSingleSpacedVectorIndexed()) return false;
1212    return VectorList.Count == 1 && VectorList.LaneIndex <= 7;
1213  }
1214
1215  bool isVecListOneDHWordIndexed() const {
1216    if (!isSingleSpacedVectorIndexed()) return false;
1217    return VectorList.Count == 1 && VectorList.LaneIndex <= 3;
1218  }
1219
1220  bool isVecListOneDWordIndexed() const {
1221    if (!isSingleSpacedVectorIndexed()) return false;
1222    return VectorList.Count == 1 && VectorList.LaneIndex <= 1;
1223  }
1224
1225  bool isVecListTwoDByteIndexed() const {
1226    if (!isSingleSpacedVectorIndexed()) return false;
1227    return VectorList.Count == 2 && VectorList.LaneIndex <= 7;
1228  }
1229
1230  bool isVecListTwoDHWordIndexed() const {
1231    if (!isSingleSpacedVectorIndexed()) return false;
1232    return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
1233  }
1234
1235  bool isVecListTwoQWordIndexed() const {
1236    if (!isDoubleSpacedVectorIndexed()) return false;
1237    return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
1238  }
1239
1240  bool isVecListTwoQHWordIndexed() const {
1241    if (!isDoubleSpacedVectorIndexed()) return false;
1242    return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
1243  }
1244
1245  bool isVecListTwoDWordIndexed() const {
1246    if (!isSingleSpacedVectorIndexed()) return false;
1247    return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
1248  }
1249
1250  bool isVecListThreeDByteIndexed() const {
1251    if (!isSingleSpacedVectorIndexed()) return false;
1252    return VectorList.Count == 3 && VectorList.LaneIndex <= 7;
1253  }
1254
1255  bool isVecListThreeDHWordIndexed() const {
1256    if (!isSingleSpacedVectorIndexed()) return false;
1257    return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
1258  }
1259
1260  bool isVecListThreeQWordIndexed() const {
1261    if (!isDoubleSpacedVectorIndexed()) return false;
1262    return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
1263  }
1264
1265  bool isVecListThreeQHWordIndexed() const {
1266    if (!isDoubleSpacedVectorIndexed()) return false;
1267    return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
1268  }
1269
1270  bool isVecListThreeDWordIndexed() const {
1271    if (!isSingleSpacedVectorIndexed()) return false;
1272    return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
1273  }
1274
1275  bool isVecListFourDByteIndexed() const {
1276    if (!isSingleSpacedVectorIndexed()) return false;
1277    return VectorList.Count == 4 && VectorList.LaneIndex <= 7;
1278  }
1279
1280  bool isVecListFourDHWordIndexed() const {
1281    if (!isSingleSpacedVectorIndexed()) return false;
1282    return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
1283  }
1284
1285  bool isVecListFourQWordIndexed() const {
1286    if (!isDoubleSpacedVectorIndexed()) return false;
1287    return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
1288  }
1289
1290  bool isVecListFourQHWordIndexed() const {
1291    if (!isDoubleSpacedVectorIndexed()) return false;
1292    return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
1293  }
1294
1295  bool isVecListFourDWordIndexed() const {
1296    if (!isSingleSpacedVectorIndexed()) return false;
1297    return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
1298  }
1299
1300  bool isVectorIndex8() const {
1301    if (Kind != k_VectorIndex) return false;
1302    return VectorIndex.Val < 8;
1303  }
1304  bool isVectorIndex16() const {
1305    if (Kind != k_VectorIndex) return false;
1306    return VectorIndex.Val < 4;
1307  }
1308  bool isVectorIndex32() const {
1309    if (Kind != k_VectorIndex) return false;
1310    return VectorIndex.Val < 2;
1311  }
1312
1313  bool isNEONi8splat() const {
1314    if (!isImm()) return false;
1315    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1316    // Must be a constant.
1317    if (!CE) return false;
1318    int64_t Value = CE->getValue();
1319    // i8 value splatted across 8 bytes. The immediate is just the 8 byte
1320    // value.
1321    return Value >= 0 && Value < 256;
1322  }
1323
1324  bool isNEONi16splat() const {
1325    if (!isImm()) return false;
1326    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1327    // Must be a constant.
1328    if (!CE) return false;
1329    int64_t Value = CE->getValue();
1330    // i16 value in the range [0,255] or [0x0100, 0xff00]
1331    return (Value >= 0 && Value < 256) || (Value >= 0x0100 && Value <= 0xff00);
1332  }
1333
1334  bool isNEONi32splat() const {
1335    if (!isImm()) return false;
1336    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1337    // Must be a constant.
1338    if (!CE) return false;
1339    int64_t Value = CE->getValue();
1340    // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X.
1341    return (Value >= 0 && Value < 256) ||
1342      (Value >= 0x0100 && Value <= 0xff00) ||
1343      (Value >= 0x010000 && Value <= 0xff0000) ||
1344      (Value >= 0x01000000 && Value <= 0xff000000);
1345  }
1346
1347  bool isNEONi32vmov() const {
1348    if (!isImm()) return false;
1349    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1350    // Must be a constant.
1351    if (!CE) return false;
1352    int64_t Value = CE->getValue();
1353    // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
1354    // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
1355    return (Value >= 0 && Value < 256) ||
1356      (Value >= 0x0100 && Value <= 0xff00) ||
1357      (Value >= 0x010000 && Value <= 0xff0000) ||
1358      (Value >= 0x01000000 && Value <= 0xff000000) ||
1359      (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) ||
1360      (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff);
1361  }
1362  bool isNEONi32vmovNeg() const {
1363    if (!isImm()) return false;
1364    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1365    // Must be a constant.
1366    if (!CE) return false;
1367    int64_t Value = ~CE->getValue();
1368    // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
1369    // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
1370    return (Value >= 0 && Value < 256) ||
1371      (Value >= 0x0100 && Value <= 0xff00) ||
1372      (Value >= 0x010000 && Value <= 0xff0000) ||
1373      (Value >= 0x01000000 && Value <= 0xff000000) ||
1374      (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) ||
1375      (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff);
1376  }
1377
1378  bool isNEONi64splat() const {
1379    if (!isImm()) return false;
1380    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1381    // Must be a constant.
1382    if (!CE) return false;
1383    uint64_t Value = CE->getValue();
1384    // i64 value with each byte being either 0 or 0xff.
1385    for (unsigned i = 0; i < 8; ++i)
1386      if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false;
1387    return true;
1388  }
1389
1390  void addExpr(MCInst &Inst, const MCExpr *Expr) const {
1391    // Add as immediates when possible.  Null MCExpr = 0.
1392    if (Expr == 0)
1393      Inst.addOperand(MCOperand::CreateImm(0));
1394    else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
1395      Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
1396    else
1397      Inst.addOperand(MCOperand::CreateExpr(Expr));
1398  }
1399
1400  void addCondCodeOperands(MCInst &Inst, unsigned N) const {
1401    assert(N == 2 && "Invalid number of operands!");
1402    Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode())));
1403    unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR;
1404    Inst.addOperand(MCOperand::CreateReg(RegNum));
1405  }
1406
1407  void addCoprocNumOperands(MCInst &Inst, unsigned N) const {
1408    assert(N == 1 && "Invalid number of operands!");
1409    Inst.addOperand(MCOperand::CreateImm(getCoproc()));
1410  }
1411
1412  void addCoprocRegOperands(MCInst &Inst, unsigned N) const {
1413    assert(N == 1 && "Invalid number of operands!");
1414    Inst.addOperand(MCOperand::CreateImm(getCoproc()));
1415  }
1416
1417  void addCoprocOptionOperands(MCInst &Inst, unsigned N) const {
1418    assert(N == 1 && "Invalid number of operands!");
1419    Inst.addOperand(MCOperand::CreateImm(CoprocOption.Val));
1420  }
1421
1422  void addITMaskOperands(MCInst &Inst, unsigned N) const {
1423    assert(N == 1 && "Invalid number of operands!");
1424    Inst.addOperand(MCOperand::CreateImm(ITMask.Mask));
1425  }
1426
1427  void addITCondCodeOperands(MCInst &Inst, unsigned N) const {
1428    assert(N == 1 && "Invalid number of operands!");
1429    Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode())));
1430  }
1431
1432  void addCCOutOperands(MCInst &Inst, unsigned N) const {
1433    assert(N == 1 && "Invalid number of operands!");
1434    Inst.addOperand(MCOperand::CreateReg(getReg()));
1435  }
1436
1437  void addRegOperands(MCInst &Inst, unsigned N) const {
1438    assert(N == 1 && "Invalid number of operands!");
1439    Inst.addOperand(MCOperand::CreateReg(getReg()));
1440  }
1441
1442  void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const {
1443    assert(N == 3 && "Invalid number of operands!");
1444    assert(isRegShiftedReg() &&
1445           "addRegShiftedRegOperands() on non RegShiftedReg!");
1446    Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.SrcReg));
1447    Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.ShiftReg));
1448    Inst.addOperand(MCOperand::CreateImm(
1449      ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm)));
1450  }
1451
1452  void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const {
1453    assert(N == 2 && "Invalid number of operands!");
1454    assert(isRegShiftedImm() &&
1455           "addRegShiftedImmOperands() on non RegShiftedImm!");
1456    Inst.addOperand(MCOperand::CreateReg(RegShiftedImm.SrcReg));
1457    // Shift of #32 is encoded as 0 where permitted
1458    unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm);
1459    Inst.addOperand(MCOperand::CreateImm(
1460      ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm)));
1461  }
1462
1463  void addShifterImmOperands(MCInst &Inst, unsigned N) const {
1464    assert(N == 1 && "Invalid number of operands!");
1465    Inst.addOperand(MCOperand::CreateImm((ShifterImm.isASR << 5) |
1466                                         ShifterImm.Imm));
1467  }
1468
1469  void addRegListOperands(MCInst &Inst, unsigned N) const {
1470    assert(N == 1 && "Invalid number of operands!");
1471    const SmallVectorImpl<unsigned> &RegList = getRegList();
1472    for (SmallVectorImpl<unsigned>::const_iterator
1473           I = RegList.begin(), E = RegList.end(); I != E; ++I)
1474      Inst.addOperand(MCOperand::CreateReg(*I));
1475  }
1476
1477  void addDPRRegListOperands(MCInst &Inst, unsigned N) const {
1478    addRegListOperands(Inst, N);
1479  }
1480
1481  void addSPRRegListOperands(MCInst &Inst, unsigned N) const {
1482    addRegListOperands(Inst, N);
1483  }
1484
1485  void addRotImmOperands(MCInst &Inst, unsigned N) const {
1486    assert(N == 1 && "Invalid number of operands!");
1487    // Encoded as val>>3. The printer handles display as 8, 16, 24.
1488    Inst.addOperand(MCOperand::CreateImm(RotImm.Imm >> 3));
1489  }
1490
1491  void addBitfieldOperands(MCInst &Inst, unsigned N) const {
1492    assert(N == 1 && "Invalid number of operands!");
1493    // Munge the lsb/width into a bitfield mask.
1494    unsigned lsb = Bitfield.LSB;
1495    unsigned width = Bitfield.Width;
1496    // Make a 32-bit mask w/ the referenced bits clear and all other bits set.
1497    uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >>
1498                      (32 - (lsb + width)));
1499    Inst.addOperand(MCOperand::CreateImm(Mask));
1500  }
1501
1502  void addImmOperands(MCInst &Inst, unsigned N) const {
1503    assert(N == 1 && "Invalid number of operands!");
1504    addExpr(Inst, getImm());
1505  }
1506
1507  void addFBits16Operands(MCInst &Inst, unsigned N) const {
1508    assert(N == 1 && "Invalid number of operands!");
1509    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1510    Inst.addOperand(MCOperand::CreateImm(16 - CE->getValue()));
1511  }
1512
1513  void addFBits32Operands(MCInst &Inst, unsigned N) const {
1514    assert(N == 1 && "Invalid number of operands!");
1515    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1516    Inst.addOperand(MCOperand::CreateImm(32 - CE->getValue()));
1517  }
1518
1519  void addFPImmOperands(MCInst &Inst, unsigned N) const {
1520    assert(N == 1 && "Invalid number of operands!");
1521    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1522    int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
1523    Inst.addOperand(MCOperand::CreateImm(Val));
1524  }
1525
1526  void addImm8s4Operands(MCInst &Inst, unsigned N) const {
1527    assert(N == 1 && "Invalid number of operands!");
1528    // FIXME: We really want to scale the value here, but the LDRD/STRD
1529    // instruction don't encode operands that way yet.
1530    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1531    Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
1532  }
1533
1534  void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const {
1535    assert(N == 1 && "Invalid number of operands!");
1536    // The immediate is scaled by four in the encoding and is stored
1537    // in the MCInst as such. Lop off the low two bits here.
1538    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1539    Inst.addOperand(MCOperand::CreateImm(CE->getValue() / 4));
1540  }
1541
1542  void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const {
1543    assert(N == 1 && "Invalid number of operands!");
1544    // The immediate is scaled by four in the encoding and is stored
1545    // in the MCInst as such. Lop off the low two bits here.
1546    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1547    Inst.addOperand(MCOperand::CreateImm(-(CE->getValue() / 4)));
1548  }
1549
1550  void addImm0_508s4Operands(MCInst &Inst, unsigned N) const {
1551    assert(N == 1 && "Invalid number of operands!");
1552    // The immediate is scaled by four in the encoding and is stored
1553    // in the MCInst as such. Lop off the low two bits here.
1554    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1555    Inst.addOperand(MCOperand::CreateImm(CE->getValue() / 4));
1556  }
1557
1558  void addImm1_16Operands(MCInst &Inst, unsigned N) const {
1559    assert(N == 1 && "Invalid number of operands!");
1560    // The constant encodes as the immediate-1, and we store in the instruction
1561    // the bits as encoded, so subtract off one here.
1562    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1563    Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1));
1564  }
1565
1566  void addImm1_32Operands(MCInst &Inst, unsigned N) const {
1567    assert(N == 1 && "Invalid number of operands!");
1568    // The constant encodes as the immediate-1, and we store in the instruction
1569    // the bits as encoded, so subtract off one here.
1570    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1571    Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1));
1572  }
1573
1574  void addImmThumbSROperands(MCInst &Inst, unsigned N) const {
1575    assert(N == 1 && "Invalid number of operands!");
1576    // The constant encodes as the immediate, except for 32, which encodes as
1577    // zero.
1578    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1579    unsigned Imm = CE->getValue();
1580    Inst.addOperand(MCOperand::CreateImm((Imm == 32 ? 0 : Imm)));
1581  }
1582
1583  void addPKHASRImmOperands(MCInst &Inst, unsigned N) const {
1584    assert(N == 1 && "Invalid number of operands!");
1585    // An ASR value of 32 encodes as 0, so that's how we want to add it to
1586    // the instruction as well.
1587    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1588    int Val = CE->getValue();
1589    Inst.addOperand(MCOperand::CreateImm(Val == 32 ? 0 : Val));
1590  }
1591
1592  void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const {
1593    assert(N == 1 && "Invalid number of operands!");
1594    // The operand is actually a t2_so_imm, but we have its bitwise
1595    // negation in the assembly source, so twiddle it here.
1596    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1597    Inst.addOperand(MCOperand::CreateImm(~CE->getValue()));
1598  }
1599
1600  void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const {
1601    assert(N == 1 && "Invalid number of operands!");
1602    // The operand is actually a t2_so_imm, but we have its
1603    // negation in the assembly source, so twiddle it here.
1604    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1605    Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
1606  }
1607
1608  void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const {
1609    assert(N == 1 && "Invalid number of operands!");
1610    // The operand is actually an imm0_4095, but we have its
1611    // negation in the assembly source, so twiddle it here.
1612    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1613    Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
1614  }
1615
1616  void addARMSOImmNotOperands(MCInst &Inst, unsigned N) const {
1617    assert(N == 1 && "Invalid number of operands!");
1618    // The operand is actually a so_imm, but we have its bitwise
1619    // negation in the assembly source, so twiddle it here.
1620    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1621    Inst.addOperand(MCOperand::CreateImm(~CE->getValue()));
1622  }
1623
1624  void addARMSOImmNegOperands(MCInst &Inst, unsigned N) const {
1625    assert(N == 1 && "Invalid number of operands!");
1626    // The operand is actually a so_imm, but we have its
1627    // negation in the assembly source, so twiddle it here.
1628    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1629    Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
1630  }
1631
1632  void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const {
1633    assert(N == 1 && "Invalid number of operands!");
1634    Inst.addOperand(MCOperand::CreateImm(unsigned(getMemBarrierOpt())));
1635  }
1636
1637  void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const {
1638    assert(N == 1 && "Invalid number of operands!");
1639    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1640  }
1641
1642  void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const {
1643    assert(N == 1 && "Invalid number of operands!");
1644    int32_t Imm = Memory.OffsetImm->getValue();
1645    // FIXME: Handle #-0
1646    if (Imm == INT32_MIN) Imm = 0;
1647    Inst.addOperand(MCOperand::CreateImm(Imm));
1648  }
1649
1650  void addAdrLabelOperands(MCInst &Inst, unsigned N) const {
1651    assert(N == 1 && "Invalid number of operands!");
1652    assert(isImm() && "Not an immediate!");
1653
1654    // If we have an immediate that's not a constant, treat it as a label
1655    // reference needing a fixup.
1656    if (!isa<MCConstantExpr>(getImm())) {
1657      Inst.addOperand(MCOperand::CreateExpr(getImm()));
1658      return;
1659    }
1660
1661    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1662    int Val = CE->getValue();
1663    Inst.addOperand(MCOperand::CreateImm(Val));
1664  }
1665
1666  void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const {
1667    assert(N == 2 && "Invalid number of operands!");
1668    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1669    Inst.addOperand(MCOperand::CreateImm(Memory.Alignment));
1670  }
1671
1672  void addAddrMode2Operands(MCInst &Inst, unsigned N) const {
1673    assert(N == 3 && "Invalid number of operands!");
1674    int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1675    if (!Memory.OffsetRegNum) {
1676      ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
1677      // Special case for #-0
1678      if (Val == INT32_MIN) Val = 0;
1679      if (Val < 0) Val = -Val;
1680      Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
1681    } else {
1682      // For register offset, we encode the shift type and negation flag
1683      // here.
1684      Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
1685                              Memory.ShiftImm, Memory.ShiftType);
1686    }
1687    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1688    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1689    Inst.addOperand(MCOperand::CreateImm(Val));
1690  }
1691
1692  void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const {
1693    assert(N == 2 && "Invalid number of operands!");
1694    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1695    assert(CE && "non-constant AM2OffsetImm operand!");
1696    int32_t Val = CE->getValue();
1697    ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
1698    // Special case for #-0
1699    if (Val == INT32_MIN) Val = 0;
1700    if (Val < 0) Val = -Val;
1701    Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
1702    Inst.addOperand(MCOperand::CreateReg(0));
1703    Inst.addOperand(MCOperand::CreateImm(Val));
1704  }
1705
1706  void addAddrMode3Operands(MCInst &Inst, unsigned N) const {
1707    assert(N == 3 && "Invalid number of operands!");
1708    // If we have an immediate that's not a constant, treat it as a label
1709    // reference needing a fixup. If it is a constant, it's something else
1710    // and we reject it.
1711    if (isImm()) {
1712      Inst.addOperand(MCOperand::CreateExpr(getImm()));
1713      Inst.addOperand(MCOperand::CreateReg(0));
1714      Inst.addOperand(MCOperand::CreateImm(0));
1715      return;
1716    }
1717
1718    int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1719    if (!Memory.OffsetRegNum) {
1720      ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
1721      // Special case for #-0
1722      if (Val == INT32_MIN) Val = 0;
1723      if (Val < 0) Val = -Val;
1724      Val = ARM_AM::getAM3Opc(AddSub, Val);
1725    } else {
1726      // For register offset, we encode the shift type and negation flag
1727      // here.
1728      Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0);
1729    }
1730    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1731    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1732    Inst.addOperand(MCOperand::CreateImm(Val));
1733  }
1734
1735  void addAM3OffsetOperands(MCInst &Inst, unsigned N) const {
1736    assert(N == 2 && "Invalid number of operands!");
1737    if (Kind == k_PostIndexRegister) {
1738      int32_t Val =
1739        ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0);
1740      Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
1741      Inst.addOperand(MCOperand::CreateImm(Val));
1742      return;
1743    }
1744
1745    // Constant offset.
1746    const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm());
1747    int32_t Val = CE->getValue();
1748    ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
1749    // Special case for #-0
1750    if (Val == INT32_MIN) Val = 0;
1751    if (Val < 0) Val = -Val;
1752    Val = ARM_AM::getAM3Opc(AddSub, Val);
1753    Inst.addOperand(MCOperand::CreateReg(0));
1754    Inst.addOperand(MCOperand::CreateImm(Val));
1755  }
1756
1757  void addAddrMode5Operands(MCInst &Inst, unsigned N) const {
1758    assert(N == 2 && "Invalid number of operands!");
1759    // If we have an immediate that's not a constant, treat it as a label
1760    // reference needing a fixup. If it is a constant, it's something else
1761    // and we reject it.
1762    if (isImm()) {
1763      Inst.addOperand(MCOperand::CreateExpr(getImm()));
1764      Inst.addOperand(MCOperand::CreateImm(0));
1765      return;
1766    }
1767
1768    // The lower two bits are always zero and as such are not encoded.
1769    int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
1770    ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
1771    // Special case for #-0
1772    if (Val == INT32_MIN) Val = 0;
1773    if (Val < 0) Val = -Val;
1774    Val = ARM_AM::getAM5Opc(AddSub, Val);
1775    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1776    Inst.addOperand(MCOperand::CreateImm(Val));
1777  }
1778
1779  void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const {
1780    assert(N == 2 && "Invalid number of operands!");
1781    // If we have an immediate that's not a constant, treat it as a label
1782    // reference needing a fixup. If it is a constant, it's something else
1783    // and we reject it.
1784    if (isImm()) {
1785      Inst.addOperand(MCOperand::CreateExpr(getImm()));
1786      Inst.addOperand(MCOperand::CreateImm(0));
1787      return;
1788    }
1789
1790    int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1791    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1792    Inst.addOperand(MCOperand::CreateImm(Val));
1793  }
1794
1795  void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const {
1796    assert(N == 2 && "Invalid number of operands!");
1797    // The lower two bits are always zero and as such are not encoded.
1798    int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
1799    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1800    Inst.addOperand(MCOperand::CreateImm(Val));
1801  }
1802
1803  void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const {
1804    assert(N == 2 && "Invalid number of operands!");
1805    int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1806    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1807    Inst.addOperand(MCOperand::CreateImm(Val));
1808  }
1809
1810  void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const {
1811    addMemImm8OffsetOperands(Inst, N);
1812  }
1813
1814  void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const {
1815    addMemImm8OffsetOperands(Inst, N);
1816  }
1817
1818  void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const {
1819    assert(N == 2 && "Invalid number of operands!");
1820    // If this is an immediate, it's a label reference.
1821    if (isImm()) {
1822      addExpr(Inst, getImm());
1823      Inst.addOperand(MCOperand::CreateImm(0));
1824      return;
1825    }
1826
1827    // Otherwise, it's a normal memory reg+offset.
1828    int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1829    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1830    Inst.addOperand(MCOperand::CreateImm(Val));
1831  }
1832
1833  void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const {
1834    assert(N == 2 && "Invalid number of operands!");
1835    // If this is an immediate, it's a label reference.
1836    if (isImm()) {
1837      addExpr(Inst, getImm());
1838      Inst.addOperand(MCOperand::CreateImm(0));
1839      return;
1840    }
1841
1842    // Otherwise, it's a normal memory reg+offset.
1843    int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1844    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1845    Inst.addOperand(MCOperand::CreateImm(Val));
1846  }
1847
1848  void addMemTBBOperands(MCInst &Inst, unsigned N) const {
1849    assert(N == 2 && "Invalid number of operands!");
1850    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1851    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1852  }
1853
1854  void addMemTBHOperands(MCInst &Inst, unsigned N) const {
1855    assert(N == 2 && "Invalid number of operands!");
1856    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1857    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1858  }
1859
1860  void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const {
1861    assert(N == 3 && "Invalid number of operands!");
1862    unsigned Val =
1863      ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
1864                        Memory.ShiftImm, Memory.ShiftType);
1865    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1866    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1867    Inst.addOperand(MCOperand::CreateImm(Val));
1868  }
1869
1870  void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const {
1871    assert(N == 3 && "Invalid number of operands!");
1872    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1873    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1874    Inst.addOperand(MCOperand::CreateImm(Memory.ShiftImm));
1875  }
1876
1877  void addMemThumbRROperands(MCInst &Inst, unsigned N) const {
1878    assert(N == 2 && "Invalid number of operands!");
1879    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1880    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1881  }
1882
1883  void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const {
1884    assert(N == 2 && "Invalid number of operands!");
1885    int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
1886    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1887    Inst.addOperand(MCOperand::CreateImm(Val));
1888  }
1889
1890  void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const {
1891    assert(N == 2 && "Invalid number of operands!");
1892    int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0;
1893    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1894    Inst.addOperand(MCOperand::CreateImm(Val));
1895  }
1896
1897  void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const {
1898    assert(N == 2 && "Invalid number of operands!");
1899    int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0;
1900    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1901    Inst.addOperand(MCOperand::CreateImm(Val));
1902  }
1903
1904  void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const {
1905    assert(N == 2 && "Invalid number of operands!");
1906    int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
1907    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1908    Inst.addOperand(MCOperand::CreateImm(Val));
1909  }
1910
1911  void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const {
1912    assert(N == 1 && "Invalid number of operands!");
1913    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1914    assert(CE && "non-constant post-idx-imm8 operand!");
1915    int Imm = CE->getValue();
1916    bool isAdd = Imm >= 0;
1917    if (Imm == INT32_MIN) Imm = 0;
1918    Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8;
1919    Inst.addOperand(MCOperand::CreateImm(Imm));
1920  }
1921
1922  void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const {
1923    assert(N == 1 && "Invalid number of operands!");
1924    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1925    assert(CE && "non-constant post-idx-imm8s4 operand!");
1926    int Imm = CE->getValue();
1927    bool isAdd = Imm >= 0;
1928    if (Imm == INT32_MIN) Imm = 0;
1929    // Immediate is scaled by 4.
1930    Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8;
1931    Inst.addOperand(MCOperand::CreateImm(Imm));
1932  }
1933
1934  void addPostIdxRegOperands(MCInst &Inst, unsigned N) const {
1935    assert(N == 2 && "Invalid number of operands!");
1936    Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
1937    Inst.addOperand(MCOperand::CreateImm(PostIdxReg.isAdd));
1938  }
1939
1940  void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const {
1941    assert(N == 2 && "Invalid number of operands!");
1942    Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
1943    // The sign, shift type, and shift amount are encoded in a single operand
1944    // using the AM2 encoding helpers.
1945    ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub;
1946    unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm,
1947                                     PostIdxReg.ShiftTy);
1948    Inst.addOperand(MCOperand::CreateImm(Imm));
1949  }
1950
1951  void addMSRMaskOperands(MCInst &Inst, unsigned N) const {
1952    assert(N == 1 && "Invalid number of operands!");
1953    Inst.addOperand(MCOperand::CreateImm(unsigned(getMSRMask())));
1954  }
1955
1956  void addProcIFlagsOperands(MCInst &Inst, unsigned N) const {
1957    assert(N == 1 && "Invalid number of operands!");
1958    Inst.addOperand(MCOperand::CreateImm(unsigned(getProcIFlags())));
1959  }
1960
1961  void addVecListOperands(MCInst &Inst, unsigned N) const {
1962    assert(N == 1 && "Invalid number of operands!");
1963    Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum));
1964  }
1965
1966  void addVecListIndexedOperands(MCInst &Inst, unsigned N) const {
1967    assert(N == 2 && "Invalid number of operands!");
1968    Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum));
1969    Inst.addOperand(MCOperand::CreateImm(VectorList.LaneIndex));
1970  }
1971
1972  void addVectorIndex8Operands(MCInst &Inst, unsigned N) const {
1973    assert(N == 1 && "Invalid number of operands!");
1974    Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
1975  }
1976
1977  void addVectorIndex16Operands(MCInst &Inst, unsigned N) const {
1978    assert(N == 1 && "Invalid number of operands!");
1979    Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
1980  }
1981
1982  void addVectorIndex32Operands(MCInst &Inst, unsigned N) const {
1983    assert(N == 1 && "Invalid number of operands!");
1984    Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
1985  }
1986
1987  void addNEONi8splatOperands(MCInst &Inst, unsigned N) const {
1988    assert(N == 1 && "Invalid number of operands!");
1989    // The immediate encodes the type of constant as well as the value.
1990    // Mask in that this is an i8 splat.
1991    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1992    Inst.addOperand(MCOperand::CreateImm(CE->getValue() | 0xe00));
1993  }
1994
1995  void addNEONi16splatOperands(MCInst &Inst, unsigned N) const {
1996    assert(N == 1 && "Invalid number of operands!");
1997    // The immediate encodes the type of constant as well as the value.
1998    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1999    unsigned Value = CE->getValue();
2000    if (Value >= 256)
2001      Value = (Value >> 8) | 0xa00;
2002    else
2003      Value |= 0x800;
2004    Inst.addOperand(MCOperand::CreateImm(Value));
2005  }
2006
2007  void addNEONi32splatOperands(MCInst &Inst, unsigned N) const {
2008    assert(N == 1 && "Invalid number of operands!");
2009    // The immediate encodes the type of constant as well as the value.
2010    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2011    unsigned Value = CE->getValue();
2012    if (Value >= 256 && Value <= 0xff00)
2013      Value = (Value >> 8) | 0x200;
2014    else if (Value > 0xffff && Value <= 0xff0000)
2015      Value = (Value >> 16) | 0x400;
2016    else if (Value > 0xffffff)
2017      Value = (Value >> 24) | 0x600;
2018    Inst.addOperand(MCOperand::CreateImm(Value));
2019  }
2020
2021  void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const {
2022    assert(N == 1 && "Invalid number of operands!");
2023    // The immediate encodes the type of constant as well as the value.
2024    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2025    unsigned Value = CE->getValue();
2026    if (Value >= 256 && Value <= 0xffff)
2027      Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
2028    else if (Value > 0xffff && Value <= 0xffffff)
2029      Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
2030    else if (Value > 0xffffff)
2031      Value = (Value >> 24) | 0x600;
2032    Inst.addOperand(MCOperand::CreateImm(Value));
2033  }
2034
2035  void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const {
2036    assert(N == 1 && "Invalid number of operands!");
2037    // The immediate encodes the type of constant as well as the value.
2038    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2039    unsigned Value = ~CE->getValue();
2040    if (Value >= 256 && Value <= 0xffff)
2041      Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
2042    else if (Value > 0xffff && Value <= 0xffffff)
2043      Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
2044    else if (Value > 0xffffff)
2045      Value = (Value >> 24) | 0x600;
2046    Inst.addOperand(MCOperand::CreateImm(Value));
2047  }
2048
2049  void addNEONi64splatOperands(MCInst &Inst, unsigned N) const {
2050    assert(N == 1 && "Invalid number of operands!");
2051    // The immediate encodes the type of constant as well as the value.
2052    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2053    uint64_t Value = CE->getValue();
2054    unsigned Imm = 0;
2055    for (unsigned i = 0; i < 8; ++i, Value >>= 8) {
2056      Imm |= (Value & 1) << i;
2057    }
2058    Inst.addOperand(MCOperand::CreateImm(Imm | 0x1e00));
2059  }
2060
2061  virtual void print(raw_ostream &OS) const;
2062
2063  static ARMOperand *CreateITMask(unsigned Mask, SMLoc S) {
2064    ARMOperand *Op = new ARMOperand(k_ITCondMask);
2065    Op->ITMask.Mask = Mask;
2066    Op->StartLoc = S;
2067    Op->EndLoc = S;
2068    return Op;
2069  }
2070
2071  static ARMOperand *CreateCondCode(ARMCC::CondCodes CC, SMLoc S) {
2072    ARMOperand *Op = new ARMOperand(k_CondCode);
2073    Op->CC.Val = CC;
2074    Op->StartLoc = S;
2075    Op->EndLoc = S;
2076    return Op;
2077  }
2078
2079  static ARMOperand *CreateCoprocNum(unsigned CopVal, SMLoc S) {
2080    ARMOperand *Op = new ARMOperand(k_CoprocNum);
2081    Op->Cop.Val = CopVal;
2082    Op->StartLoc = S;
2083    Op->EndLoc = S;
2084    return Op;
2085  }
2086
2087  static ARMOperand *CreateCoprocReg(unsigned CopVal, SMLoc S) {
2088    ARMOperand *Op = new ARMOperand(k_CoprocReg);
2089    Op->Cop.Val = CopVal;
2090    Op->StartLoc = S;
2091    Op->EndLoc = S;
2092    return Op;
2093  }
2094
2095  static ARMOperand *CreateCoprocOption(unsigned Val, SMLoc S, SMLoc E) {
2096    ARMOperand *Op = new ARMOperand(k_CoprocOption);
2097    Op->Cop.Val = Val;
2098    Op->StartLoc = S;
2099    Op->EndLoc = E;
2100    return Op;
2101  }
2102
2103  static ARMOperand *CreateCCOut(unsigned RegNum, SMLoc S) {
2104    ARMOperand *Op = new ARMOperand(k_CCOut);
2105    Op->Reg.RegNum = RegNum;
2106    Op->StartLoc = S;
2107    Op->EndLoc = S;
2108    return Op;
2109  }
2110
2111  static ARMOperand *CreateToken(StringRef Str, SMLoc S) {
2112    ARMOperand *Op = new ARMOperand(k_Token);
2113    Op->Tok.Data = Str.data();
2114    Op->Tok.Length = Str.size();
2115    Op->StartLoc = S;
2116    Op->EndLoc = S;
2117    return Op;
2118  }
2119
2120  static ARMOperand *CreateReg(unsigned RegNum, SMLoc S, SMLoc E) {
2121    ARMOperand *Op = new ARMOperand(k_Register);
2122    Op->Reg.RegNum = RegNum;
2123    Op->StartLoc = S;
2124    Op->EndLoc = E;
2125    return Op;
2126  }
2127
2128  static ARMOperand *CreateShiftedRegister(ARM_AM::ShiftOpc ShTy,
2129                                           unsigned SrcReg,
2130                                           unsigned ShiftReg,
2131                                           unsigned ShiftImm,
2132                                           SMLoc S, SMLoc E) {
2133    ARMOperand *Op = new ARMOperand(k_ShiftedRegister);
2134    Op->RegShiftedReg.ShiftTy = ShTy;
2135    Op->RegShiftedReg.SrcReg = SrcReg;
2136    Op->RegShiftedReg.ShiftReg = ShiftReg;
2137    Op->RegShiftedReg.ShiftImm = ShiftImm;
2138    Op->StartLoc = S;
2139    Op->EndLoc = E;
2140    return Op;
2141  }
2142
2143  static ARMOperand *CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy,
2144                                            unsigned SrcReg,
2145                                            unsigned ShiftImm,
2146                                            SMLoc S, SMLoc E) {
2147    ARMOperand *Op = new ARMOperand(k_ShiftedImmediate);
2148    Op->RegShiftedImm.ShiftTy = ShTy;
2149    Op->RegShiftedImm.SrcReg = SrcReg;
2150    Op->RegShiftedImm.ShiftImm = ShiftImm;
2151    Op->StartLoc = S;
2152    Op->EndLoc = E;
2153    return Op;
2154  }
2155
2156  static ARMOperand *CreateShifterImm(bool isASR, unsigned Imm,
2157                                   SMLoc S, SMLoc E) {
2158    ARMOperand *Op = new ARMOperand(k_ShifterImmediate);
2159    Op->ShifterImm.isASR = isASR;
2160    Op->ShifterImm.Imm = Imm;
2161    Op->StartLoc = S;
2162    Op->EndLoc = E;
2163    return Op;
2164  }
2165
2166  static ARMOperand *CreateRotImm(unsigned Imm, SMLoc S, SMLoc E) {
2167    ARMOperand *Op = new ARMOperand(k_RotateImmediate);
2168    Op->RotImm.Imm = Imm;
2169    Op->StartLoc = S;
2170    Op->EndLoc = E;
2171    return Op;
2172  }
2173
2174  static ARMOperand *CreateBitfield(unsigned LSB, unsigned Width,
2175                                    SMLoc S, SMLoc E) {
2176    ARMOperand *Op = new ARMOperand(k_BitfieldDescriptor);
2177    Op->Bitfield.LSB = LSB;
2178    Op->Bitfield.Width = Width;
2179    Op->StartLoc = S;
2180    Op->EndLoc = E;
2181    return Op;
2182  }
2183
2184  static ARMOperand *
2185  CreateRegList(const SmallVectorImpl<std::pair<unsigned, SMLoc> > &Regs,
2186                SMLoc StartLoc, SMLoc EndLoc) {
2187    KindTy Kind = k_RegisterList;
2188
2189    if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().first))
2190      Kind = k_DPRRegisterList;
2191    else if (ARMMCRegisterClasses[ARM::SPRRegClassID].
2192             contains(Regs.front().first))
2193      Kind = k_SPRRegisterList;
2194
2195    ARMOperand *Op = new ARMOperand(Kind);
2196    for (SmallVectorImpl<std::pair<unsigned, SMLoc> >::const_iterator
2197           I = Regs.begin(), E = Regs.end(); I != E; ++I)
2198      Op->Registers.push_back(I->first);
2199    array_pod_sort(Op->Registers.begin(), Op->Registers.end());
2200    Op->StartLoc = StartLoc;
2201    Op->EndLoc = EndLoc;
2202    return Op;
2203  }
2204
2205  static ARMOperand *CreateVectorList(unsigned RegNum, unsigned Count,
2206                                      bool isDoubleSpaced, SMLoc S, SMLoc E) {
2207    ARMOperand *Op = new ARMOperand(k_VectorList);
2208    Op->VectorList.RegNum = RegNum;
2209    Op->VectorList.Count = Count;
2210    Op->VectorList.isDoubleSpaced = isDoubleSpaced;
2211    Op->StartLoc = S;
2212    Op->EndLoc = E;
2213    return Op;
2214  }
2215
2216  static ARMOperand *CreateVectorListAllLanes(unsigned RegNum, unsigned Count,
2217                                              bool isDoubleSpaced,
2218                                              SMLoc S, SMLoc E) {
2219    ARMOperand *Op = new ARMOperand(k_VectorListAllLanes);
2220    Op->VectorList.RegNum = RegNum;
2221    Op->VectorList.Count = Count;
2222    Op->VectorList.isDoubleSpaced = isDoubleSpaced;
2223    Op->StartLoc = S;
2224    Op->EndLoc = E;
2225    return Op;
2226  }
2227
2228  static ARMOperand *CreateVectorListIndexed(unsigned RegNum, unsigned Count,
2229                                             unsigned Index,
2230                                             bool isDoubleSpaced,
2231                                             SMLoc S, SMLoc E) {
2232    ARMOperand *Op = new ARMOperand(k_VectorListIndexed);
2233    Op->VectorList.RegNum = RegNum;
2234    Op->VectorList.Count = Count;
2235    Op->VectorList.LaneIndex = Index;
2236    Op->VectorList.isDoubleSpaced = isDoubleSpaced;
2237    Op->StartLoc = S;
2238    Op->EndLoc = E;
2239    return Op;
2240  }
2241
2242  static ARMOperand *CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E,
2243                                       MCContext &Ctx) {
2244    ARMOperand *Op = new ARMOperand(k_VectorIndex);
2245    Op->VectorIndex.Val = Idx;
2246    Op->StartLoc = S;
2247    Op->EndLoc = E;
2248    return Op;
2249  }
2250
2251  static ARMOperand *CreateImm(const MCExpr *Val, SMLoc S, SMLoc E) {
2252    ARMOperand *Op = new ARMOperand(k_Immediate);
2253    Op->Imm.Val = Val;
2254    Op->StartLoc = S;
2255    Op->EndLoc = E;
2256    return Op;
2257  }
2258
2259  static ARMOperand *CreateMem(unsigned BaseRegNum,
2260                               const MCConstantExpr *OffsetImm,
2261                               unsigned OffsetRegNum,
2262                               ARM_AM::ShiftOpc ShiftType,
2263                               unsigned ShiftImm,
2264                               unsigned Alignment,
2265                               bool isNegative,
2266                               SMLoc S, SMLoc E) {
2267    ARMOperand *Op = new ARMOperand(k_Memory);
2268    Op->Memory.BaseRegNum = BaseRegNum;
2269    Op->Memory.OffsetImm = OffsetImm;
2270    Op->Memory.OffsetRegNum = OffsetRegNum;
2271    Op->Memory.ShiftType = ShiftType;
2272    Op->Memory.ShiftImm = ShiftImm;
2273    Op->Memory.Alignment = Alignment;
2274    Op->Memory.isNegative = isNegative;
2275    Op->StartLoc = S;
2276    Op->EndLoc = E;
2277    return Op;
2278  }
2279
2280  static ARMOperand *CreatePostIdxReg(unsigned RegNum, bool isAdd,
2281                                      ARM_AM::ShiftOpc ShiftTy,
2282                                      unsigned ShiftImm,
2283                                      SMLoc S, SMLoc E) {
2284    ARMOperand *Op = new ARMOperand(k_PostIndexRegister);
2285    Op->PostIdxReg.RegNum = RegNum;
2286    Op->PostIdxReg.isAdd = isAdd;
2287    Op->PostIdxReg.ShiftTy = ShiftTy;
2288    Op->PostIdxReg.ShiftImm = ShiftImm;
2289    Op->StartLoc = S;
2290    Op->EndLoc = E;
2291    return Op;
2292  }
2293
2294  static ARMOperand *CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, SMLoc S) {
2295    ARMOperand *Op = new ARMOperand(k_MemBarrierOpt);
2296    Op->MBOpt.Val = Opt;
2297    Op->StartLoc = S;
2298    Op->EndLoc = S;
2299    return Op;
2300  }
2301
2302  static ARMOperand *CreateProcIFlags(ARM_PROC::IFlags IFlags, SMLoc S) {
2303    ARMOperand *Op = new ARMOperand(k_ProcIFlags);
2304    Op->IFlags.Val = IFlags;
2305    Op->StartLoc = S;
2306    Op->EndLoc = S;
2307    return Op;
2308  }
2309
2310  static ARMOperand *CreateMSRMask(unsigned MMask, SMLoc S) {
2311    ARMOperand *Op = new ARMOperand(k_MSRMask);
2312    Op->MMask.Val = MMask;
2313    Op->StartLoc = S;
2314    Op->EndLoc = S;
2315    return Op;
2316  }
2317};
2318
2319} // end anonymous namespace.
2320
2321void ARMOperand::print(raw_ostream &OS) const {
2322  switch (Kind) {
2323  case k_CondCode:
2324    OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
2325    break;
2326  case k_CCOut:
2327    OS << "<ccout " << getReg() << ">";
2328    break;
2329  case k_ITCondMask: {
2330    static const char *const MaskStr[] = {
2331      "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)",
2332      "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)"
2333    };
2334    assert((ITMask.Mask & 0xf) == ITMask.Mask);
2335    OS << "<it-mask " << MaskStr[ITMask.Mask] << ">";
2336    break;
2337  }
2338  case k_CoprocNum:
2339    OS << "<coprocessor number: " << getCoproc() << ">";
2340    break;
2341  case k_CoprocReg:
2342    OS << "<coprocessor register: " << getCoproc() << ">";
2343    break;
2344  case k_CoprocOption:
2345    OS << "<coprocessor option: " << CoprocOption.Val << ">";
2346    break;
2347  case k_MSRMask:
2348    OS << "<mask: " << getMSRMask() << ">";
2349    break;
2350  case k_Immediate:
2351    getImm()->print(OS);
2352    break;
2353  case k_MemBarrierOpt:
2354    OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt()) << ">";
2355    break;
2356  case k_Memory:
2357    OS << "<memory "
2358       << " base:" << Memory.BaseRegNum;
2359    OS << ">";
2360    break;
2361  case k_PostIndexRegister:
2362    OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-")
2363       << PostIdxReg.RegNum;
2364    if (PostIdxReg.ShiftTy != ARM_AM::no_shift)
2365      OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " "
2366         << PostIdxReg.ShiftImm;
2367    OS << ">";
2368    break;
2369  case k_ProcIFlags: {
2370    OS << "<ARM_PROC::";
2371    unsigned IFlags = getProcIFlags();
2372    for (int i=2; i >= 0; --i)
2373      if (IFlags & (1 << i))
2374        OS << ARM_PROC::IFlagsToString(1 << i);
2375    OS << ">";
2376    break;
2377  }
2378  case k_Register:
2379    OS << "<register " << getReg() << ">";
2380    break;
2381  case k_ShifterImmediate:
2382    OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl")
2383       << " #" << ShifterImm.Imm << ">";
2384    break;
2385  case k_ShiftedRegister:
2386    OS << "<so_reg_reg "
2387       << RegShiftedReg.SrcReg << " "
2388       << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy)
2389       << " " << RegShiftedReg.ShiftReg << ">";
2390    break;
2391  case k_ShiftedImmediate:
2392    OS << "<so_reg_imm "
2393       << RegShiftedImm.SrcReg << " "
2394       << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy)
2395       << " #" << RegShiftedImm.ShiftImm << ">";
2396    break;
2397  case k_RotateImmediate:
2398    OS << "<ror " << " #" << (RotImm.Imm * 8) << ">";
2399    break;
2400  case k_BitfieldDescriptor:
2401    OS << "<bitfield " << "lsb: " << Bitfield.LSB
2402       << ", width: " << Bitfield.Width << ">";
2403    break;
2404  case k_RegisterList:
2405  case k_DPRRegisterList:
2406  case k_SPRRegisterList: {
2407    OS << "<register_list ";
2408
2409    const SmallVectorImpl<unsigned> &RegList = getRegList();
2410    for (SmallVectorImpl<unsigned>::const_iterator
2411           I = RegList.begin(), E = RegList.end(); I != E; ) {
2412      OS << *I;
2413      if (++I < E) OS << ", ";
2414    }
2415
2416    OS << ">";
2417    break;
2418  }
2419  case k_VectorList:
2420    OS << "<vector_list " << VectorList.Count << " * "
2421       << VectorList.RegNum << ">";
2422    break;
2423  case k_VectorListAllLanes:
2424    OS << "<vector_list(all lanes) " << VectorList.Count << " * "
2425       << VectorList.RegNum << ">";
2426    break;
2427  case k_VectorListIndexed:
2428    OS << "<vector_list(lane " << VectorList.LaneIndex << ") "
2429       << VectorList.Count << " * " << VectorList.RegNum << ">";
2430    break;
2431  case k_Token:
2432    OS << "'" << getToken() << "'";
2433    break;
2434  case k_VectorIndex:
2435    OS << "<vectorindex " << getVectorIndex() << ">";
2436    break;
2437  }
2438}
2439
2440/// @name Auto-generated Match Functions
2441/// {
2442
2443static unsigned MatchRegisterName(StringRef Name);
2444
2445/// }
2446
2447bool ARMAsmParser::ParseRegister(unsigned &RegNo,
2448                                 SMLoc &StartLoc, SMLoc &EndLoc) {
2449  StartLoc = Parser.getTok().getLoc();
2450  RegNo = tryParseRegister();
2451  EndLoc = Parser.getTok().getLoc();
2452
2453  return (RegNo == (unsigned)-1);
2454}
2455
2456/// Try to parse a register name.  The token must be an Identifier when called,
2457/// and if it is a register name the token is eaten and the register number is
2458/// returned.  Otherwise return -1.
2459///
2460int ARMAsmParser::tryParseRegister() {
2461  const AsmToken &Tok = Parser.getTok();
2462  if (Tok.isNot(AsmToken::Identifier)) return -1;
2463
2464  std::string lowerCase = Tok.getString().lower();
2465  unsigned RegNum = MatchRegisterName(lowerCase);
2466  if (!RegNum) {
2467    RegNum = StringSwitch<unsigned>(lowerCase)
2468      .Case("r13", ARM::SP)
2469      .Case("r14", ARM::LR)
2470      .Case("r15", ARM::PC)
2471      .Case("ip", ARM::R12)
2472      // Additional register name aliases for 'gas' compatibility.
2473      .Case("a1", ARM::R0)
2474      .Case("a2", ARM::R1)
2475      .Case("a3", ARM::R2)
2476      .Case("a4", ARM::R3)
2477      .Case("v1", ARM::R4)
2478      .Case("v2", ARM::R5)
2479      .Case("v3", ARM::R6)
2480      .Case("v4", ARM::R7)
2481      .Case("v5", ARM::R8)
2482      .Case("v6", ARM::R9)
2483      .Case("v7", ARM::R10)
2484      .Case("v8", ARM::R11)
2485      .Case("sb", ARM::R9)
2486      .Case("sl", ARM::R10)
2487      .Case("fp", ARM::R11)
2488      .Default(0);
2489  }
2490  if (!RegNum) {
2491    // Check for aliases registered via .req. Canonicalize to lower case.
2492    // That's more consistent since register names are case insensitive, and
2493    // it's how the original entry was passed in from MC/MCParser/AsmParser.
2494    StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase);
2495    // If no match, return failure.
2496    if (Entry == RegisterReqs.end())
2497      return -1;
2498    Parser.Lex(); // Eat identifier token.
2499    return Entry->getValue();
2500  }
2501
2502  Parser.Lex(); // Eat identifier token.
2503
2504  return RegNum;
2505}
2506
2507// Try to parse a shifter  (e.g., "lsl <amt>"). On success, return 0.
2508// If a recoverable error occurs, return 1. If an irrecoverable error
2509// occurs, return -1. An irrecoverable error is one where tokens have been
2510// consumed in the process of trying to parse the shifter (i.e., when it is
2511// indeed a shifter operand, but malformed).
2512int ARMAsmParser::tryParseShiftRegister(
2513                               SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2514  SMLoc S = Parser.getTok().getLoc();
2515  const AsmToken &Tok = Parser.getTok();
2516  assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
2517
2518  std::string lowerCase = Tok.getString().lower();
2519  ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase)
2520      .Case("asl", ARM_AM::lsl)
2521      .Case("lsl", ARM_AM::lsl)
2522      .Case("lsr", ARM_AM::lsr)
2523      .Case("asr", ARM_AM::asr)
2524      .Case("ror", ARM_AM::ror)
2525      .Case("rrx", ARM_AM::rrx)
2526      .Default(ARM_AM::no_shift);
2527
2528  if (ShiftTy == ARM_AM::no_shift)
2529    return 1;
2530
2531  Parser.Lex(); // Eat the operator.
2532
2533  // The source register for the shift has already been added to the
2534  // operand list, so we need to pop it off and combine it into the shifted
2535  // register operand instead.
2536  OwningPtr<ARMOperand> PrevOp((ARMOperand*)Operands.pop_back_val());
2537  if (!PrevOp->isReg())
2538    return Error(PrevOp->getStartLoc(), "shift must be of a register");
2539  int SrcReg = PrevOp->getReg();
2540  int64_t Imm = 0;
2541  int ShiftReg = 0;
2542  if (ShiftTy == ARM_AM::rrx) {
2543    // RRX Doesn't have an explicit shift amount. The encoder expects
2544    // the shift register to be the same as the source register. Seems odd,
2545    // but OK.
2546    ShiftReg = SrcReg;
2547  } else {
2548    // Figure out if this is shifted by a constant or a register (for non-RRX).
2549    if (Parser.getTok().is(AsmToken::Hash) ||
2550        Parser.getTok().is(AsmToken::Dollar)) {
2551      Parser.Lex(); // Eat hash.
2552      SMLoc ImmLoc = Parser.getTok().getLoc();
2553      const MCExpr *ShiftExpr = 0;
2554      if (getParser().ParseExpression(ShiftExpr)) {
2555        Error(ImmLoc, "invalid immediate shift value");
2556        return -1;
2557      }
2558      // The expression must be evaluatable as an immediate.
2559      const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr);
2560      if (!CE) {
2561        Error(ImmLoc, "invalid immediate shift value");
2562        return -1;
2563      }
2564      // Range check the immediate.
2565      // lsl, ror: 0 <= imm <= 31
2566      // lsr, asr: 0 <= imm <= 32
2567      Imm = CE->getValue();
2568      if (Imm < 0 ||
2569          ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) ||
2570          ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) {
2571        Error(ImmLoc, "immediate shift value out of range");
2572        return -1;
2573      }
2574      // shift by zero is a nop. Always send it through as lsl.
2575      // ('as' compatibility)
2576      if (Imm == 0)
2577        ShiftTy = ARM_AM::lsl;
2578    } else if (Parser.getTok().is(AsmToken::Identifier)) {
2579      ShiftReg = tryParseRegister();
2580      SMLoc L = Parser.getTok().getLoc();
2581      if (ShiftReg == -1) {
2582        Error (L, "expected immediate or register in shift operand");
2583        return -1;
2584      }
2585    } else {
2586      Error (Parser.getTok().getLoc(),
2587                    "expected immediate or register in shift operand");
2588      return -1;
2589    }
2590  }
2591
2592  if (ShiftReg && ShiftTy != ARM_AM::rrx)
2593    Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg,
2594                                                         ShiftReg, Imm,
2595                                               S, Parser.getTok().getLoc()));
2596  else
2597    Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm,
2598                                               S, Parser.getTok().getLoc()));
2599
2600  return 0;
2601}
2602
2603
2604/// Try to parse a register name.  The token must be an Identifier when called.
2605/// If it's a register, an AsmOperand is created. Another AsmOperand is created
2606/// if there is a "writeback". 'true' if it's not a register.
2607///
2608/// TODO this is likely to change to allow different register types and or to
2609/// parse for a specific register type.
2610bool ARMAsmParser::
2611tryParseRegisterWithWriteBack(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2612  SMLoc S = Parser.getTok().getLoc();
2613  int RegNo = tryParseRegister();
2614  if (RegNo == -1)
2615    return true;
2616
2617  Operands.push_back(ARMOperand::CreateReg(RegNo, S, Parser.getTok().getLoc()));
2618
2619  const AsmToken &ExclaimTok = Parser.getTok();
2620  if (ExclaimTok.is(AsmToken::Exclaim)) {
2621    Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(),
2622                                               ExclaimTok.getLoc()));
2623    Parser.Lex(); // Eat exclaim token
2624    return false;
2625  }
2626
2627  // Also check for an index operand. This is only legal for vector registers,
2628  // but that'll get caught OK in operand matching, so we don't need to
2629  // explicitly filter everything else out here.
2630  if (Parser.getTok().is(AsmToken::LBrac)) {
2631    SMLoc SIdx = Parser.getTok().getLoc();
2632    Parser.Lex(); // Eat left bracket token.
2633
2634    const MCExpr *ImmVal;
2635    if (getParser().ParseExpression(ImmVal))
2636      return true;
2637    const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
2638    if (!MCE)
2639      return TokError("immediate value expected for vector index");
2640
2641    SMLoc E = Parser.getTok().getLoc();
2642    if (Parser.getTok().isNot(AsmToken::RBrac))
2643      return Error(E, "']' expected");
2644
2645    Parser.Lex(); // Eat right bracket token.
2646
2647    Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(),
2648                                                     SIdx, E,
2649                                                     getContext()));
2650  }
2651
2652  return false;
2653}
2654
2655/// MatchCoprocessorOperandName - Try to parse an coprocessor related
2656/// instruction with a symbolic operand name. Example: "p1", "p7", "c3",
2657/// "c5", ...
2658static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) {
2659  // Use the same layout as the tablegen'erated register name matcher. Ugly,
2660  // but efficient.
2661  switch (Name.size()) {
2662  default: return -1;
2663  case 2:
2664    if (Name[0] != CoprocOp)
2665      return -1;
2666    switch (Name[1]) {
2667    default:  return -1;
2668    case '0': return 0;
2669    case '1': return 1;
2670    case '2': return 2;
2671    case '3': return 3;
2672    case '4': return 4;
2673    case '5': return 5;
2674    case '6': return 6;
2675    case '7': return 7;
2676    case '8': return 8;
2677    case '9': return 9;
2678    }
2679  case 3:
2680    if (Name[0] != CoprocOp || Name[1] != '1')
2681      return -1;
2682    switch (Name[2]) {
2683    default:  return -1;
2684    case '0': return 10;
2685    case '1': return 11;
2686    case '2': return 12;
2687    case '3': return 13;
2688    case '4': return 14;
2689    case '5': return 15;
2690    }
2691  }
2692}
2693
2694/// parseITCondCode - Try to parse a condition code for an IT instruction.
2695ARMAsmParser::OperandMatchResultTy ARMAsmParser::
2696parseITCondCode(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2697  SMLoc S = Parser.getTok().getLoc();
2698  const AsmToken &Tok = Parser.getTok();
2699  if (!Tok.is(AsmToken::Identifier))
2700    return MatchOperand_NoMatch;
2701  unsigned CC = StringSwitch<unsigned>(Tok.getString().lower())
2702    .Case("eq", ARMCC::EQ)
2703    .Case("ne", ARMCC::NE)
2704    .Case("hs", ARMCC::HS)
2705    .Case("cs", ARMCC::HS)
2706    .Case("lo", ARMCC::LO)
2707    .Case("cc", ARMCC::LO)
2708    .Case("mi", ARMCC::MI)
2709    .Case("pl", ARMCC::PL)
2710    .Case("vs", ARMCC::VS)
2711    .Case("vc", ARMCC::VC)
2712    .Case("hi", ARMCC::HI)
2713    .Case("ls", ARMCC::LS)
2714    .Case("ge", ARMCC::GE)
2715    .Case("lt", ARMCC::LT)
2716    .Case("gt", ARMCC::GT)
2717    .Case("le", ARMCC::LE)
2718    .Case("al", ARMCC::AL)
2719    .Default(~0U);
2720  if (CC == ~0U)
2721    return MatchOperand_NoMatch;
2722  Parser.Lex(); // Eat the token.
2723
2724  Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S));
2725
2726  return MatchOperand_Success;
2727}
2728
2729/// parseCoprocNumOperand - Try to parse an coprocessor number operand. The
2730/// token must be an Identifier when called, and if it is a coprocessor
2731/// number, the token is eaten and the operand is added to the operand list.
2732ARMAsmParser::OperandMatchResultTy ARMAsmParser::
2733parseCoprocNumOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2734  SMLoc S = Parser.getTok().getLoc();
2735  const AsmToken &Tok = Parser.getTok();
2736  if (Tok.isNot(AsmToken::Identifier))
2737    return MatchOperand_NoMatch;
2738
2739  int Num = MatchCoprocessorOperandName(Tok.getString(), 'p');
2740  if (Num == -1)
2741    return MatchOperand_NoMatch;
2742
2743  Parser.Lex(); // Eat identifier token.
2744  Operands.push_back(ARMOperand::CreateCoprocNum(Num, S));
2745  return MatchOperand_Success;
2746}
2747
2748/// parseCoprocRegOperand - Try to parse an coprocessor register operand. The
2749/// token must be an Identifier when called, and if it is a coprocessor
2750/// number, the token is eaten and the operand is added to the operand list.
2751ARMAsmParser::OperandMatchResultTy ARMAsmParser::
2752parseCoprocRegOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2753  SMLoc S = Parser.getTok().getLoc();
2754  const AsmToken &Tok = Parser.getTok();
2755  if (Tok.isNot(AsmToken::Identifier))
2756    return MatchOperand_NoMatch;
2757
2758  int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c');
2759  if (Reg == -1)
2760    return MatchOperand_NoMatch;
2761
2762  Parser.Lex(); // Eat identifier token.
2763  Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S));
2764  return MatchOperand_Success;
2765}
2766
2767/// parseCoprocOptionOperand - Try to parse an coprocessor option operand.
2768/// coproc_option : '{' imm0_255 '}'
2769ARMAsmParser::OperandMatchResultTy ARMAsmParser::
2770parseCoprocOptionOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2771  SMLoc S = Parser.getTok().getLoc();
2772
2773  // If this isn't a '{', this isn't a coprocessor immediate operand.
2774  if (Parser.getTok().isNot(AsmToken::LCurly))
2775    return MatchOperand_NoMatch;
2776  Parser.Lex(); // Eat the '{'
2777
2778  const MCExpr *Expr;
2779  SMLoc Loc = Parser.getTok().getLoc();
2780  if (getParser().ParseExpression(Expr)) {
2781    Error(Loc, "illegal expression");
2782    return MatchOperand_ParseFail;
2783  }
2784  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
2785  if (!CE || CE->getValue() < 0 || CE->getValue() > 255) {
2786    Error(Loc, "coprocessor option must be an immediate in range [0, 255]");
2787    return MatchOperand_ParseFail;
2788  }
2789  int Val = CE->getValue();
2790
2791  // Check for and consume the closing '}'
2792  if (Parser.getTok().isNot(AsmToken::RCurly))
2793    return MatchOperand_ParseFail;
2794  SMLoc E = Parser.getTok().getLoc();
2795  Parser.Lex(); // Eat the '}'
2796
2797  Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E));
2798  return MatchOperand_Success;
2799}
2800
2801// For register list parsing, we need to map from raw GPR register numbering
2802// to the enumeration values. The enumeration values aren't sorted by
2803// register number due to our using "sp", "lr" and "pc" as canonical names.
2804static unsigned getNextRegister(unsigned Reg) {
2805  // If this is a GPR, we need to do it manually, otherwise we can rely
2806  // on the sort ordering of the enumeration since the other reg-classes
2807  // are sane.
2808  if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
2809    return Reg + 1;
2810  switch(Reg) {
2811  default: llvm_unreachable("Invalid GPR number!");
2812  case ARM::R0:  return ARM::R1;  case ARM::R1:  return ARM::R2;
2813  case ARM::R2:  return ARM::R3;  case ARM::R3:  return ARM::R4;
2814  case ARM::R4:  return ARM::R5;  case ARM::R5:  return ARM::R6;
2815  case ARM::R6:  return ARM::R7;  case ARM::R7:  return ARM::R8;
2816  case ARM::R8:  return ARM::R9;  case ARM::R9:  return ARM::R10;
2817  case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12;
2818  case ARM::R12: return ARM::SP;  case ARM::SP:  return ARM::LR;
2819  case ARM::LR:  return ARM::PC;  case ARM::PC:  return ARM::R0;
2820  }
2821}
2822
2823// Return the low-subreg of a given Q register.
2824static unsigned getDRegFromQReg(unsigned QReg) {
2825  switch (QReg) {
2826  default: llvm_unreachable("expected a Q register!");
2827  case ARM::Q0:  return ARM::D0;
2828  case ARM::Q1:  return ARM::D2;
2829  case ARM::Q2:  return ARM::D4;
2830  case ARM::Q3:  return ARM::D6;
2831  case ARM::Q4:  return ARM::D8;
2832  case ARM::Q5:  return ARM::D10;
2833  case ARM::Q6:  return ARM::D12;
2834  case ARM::Q7:  return ARM::D14;
2835  case ARM::Q8:  return ARM::D16;
2836  case ARM::Q9:  return ARM::D18;
2837  case ARM::Q10: return ARM::D20;
2838  case ARM::Q11: return ARM::D22;
2839  case ARM::Q12: return ARM::D24;
2840  case ARM::Q13: return ARM::D26;
2841  case ARM::Q14: return ARM::D28;
2842  case ARM::Q15: return ARM::D30;
2843  }
2844}
2845
2846/// Parse a register list.
2847bool ARMAsmParser::
2848parseRegisterList(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2849  assert(Parser.getTok().is(AsmToken::LCurly) &&
2850         "Token is not a Left Curly Brace");
2851  SMLoc S = Parser.getTok().getLoc();
2852  Parser.Lex(); // Eat '{' token.
2853  SMLoc RegLoc = Parser.getTok().getLoc();
2854
2855  // Check the first register in the list to see what register class
2856  // this is a list of.
2857  int Reg = tryParseRegister();
2858  if (Reg == -1)
2859    return Error(RegLoc, "register expected");
2860
2861  // The reglist instructions have at most 16 registers, so reserve
2862  // space for that many.
2863  SmallVector<std::pair<unsigned, SMLoc>, 16> Registers;
2864
2865  // Allow Q regs and just interpret them as the two D sub-registers.
2866  if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
2867    Reg = getDRegFromQReg(Reg);
2868    Registers.push_back(std::pair<unsigned, SMLoc>(Reg, RegLoc));
2869    ++Reg;
2870  }
2871  const MCRegisterClass *RC;
2872  if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
2873    RC = &ARMMCRegisterClasses[ARM::GPRRegClassID];
2874  else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg))
2875    RC = &ARMMCRegisterClasses[ARM::DPRRegClassID];
2876  else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg))
2877    RC = &ARMMCRegisterClasses[ARM::SPRRegClassID];
2878  else
2879    return Error(RegLoc, "invalid register in register list");
2880
2881  // Store the register.
2882  Registers.push_back(std::pair<unsigned, SMLoc>(Reg, RegLoc));
2883
2884  // This starts immediately after the first register token in the list,
2885  // so we can see either a comma or a minus (range separator) as a legal
2886  // next token.
2887  while (Parser.getTok().is(AsmToken::Comma) ||
2888         Parser.getTok().is(AsmToken::Minus)) {
2889    if (Parser.getTok().is(AsmToken::Minus)) {
2890      Parser.Lex(); // Eat the minus.
2891      SMLoc EndLoc = Parser.getTok().getLoc();
2892      int EndReg = tryParseRegister();
2893      if (EndReg == -1)
2894        return Error(EndLoc, "register expected");
2895      // Allow Q regs and just interpret them as the two D sub-registers.
2896      if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
2897        EndReg = getDRegFromQReg(EndReg) + 1;
2898      // If the register is the same as the start reg, there's nothing
2899      // more to do.
2900      if (Reg == EndReg)
2901        continue;
2902      // The register must be in the same register class as the first.
2903      if (!RC->contains(EndReg))
2904        return Error(EndLoc, "invalid register in register list");
2905      // Ranges must go from low to high.
2906      if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg))
2907        return Error(EndLoc, "bad range in register list");
2908
2909      // Add all the registers in the range to the register list.
2910      while (Reg != EndReg) {
2911        Reg = getNextRegister(Reg);
2912        Registers.push_back(std::pair<unsigned, SMLoc>(Reg, RegLoc));
2913      }
2914      continue;
2915    }
2916    Parser.Lex(); // Eat the comma.
2917    RegLoc = Parser.getTok().getLoc();
2918    int OldReg = Reg;
2919    const AsmToken RegTok = Parser.getTok();
2920    Reg = tryParseRegister();
2921    if (Reg == -1)
2922      return Error(RegLoc, "register expected");
2923    // Allow Q regs and just interpret them as the two D sub-registers.
2924    bool isQReg = false;
2925    if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
2926      Reg = getDRegFromQReg(Reg);
2927      isQReg = true;
2928    }
2929    // The register must be in the same register class as the first.
2930    if (!RC->contains(Reg))
2931      return Error(RegLoc, "invalid register in register list");
2932    // List must be monotonically increasing.
2933    if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) {
2934      if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
2935        Warning(RegLoc, "register list not in ascending order");
2936      else
2937        return Error(RegLoc, "register list not in ascending order");
2938    }
2939    if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) {
2940      Warning(RegLoc, "duplicated register (" + RegTok.getString() +
2941              ") in register list");
2942      continue;
2943    }
2944    // VFP register lists must also be contiguous.
2945    // It's OK to use the enumeration values directly here rather, as the
2946    // VFP register classes have the enum sorted properly.
2947    if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] &&
2948        Reg != OldReg + 1)
2949      return Error(RegLoc, "non-contiguous register range");
2950    Registers.push_back(std::pair<unsigned, SMLoc>(Reg, RegLoc));
2951    if (isQReg)
2952      Registers.push_back(std::pair<unsigned, SMLoc>(++Reg, RegLoc));
2953  }
2954
2955  SMLoc E = Parser.getTok().getLoc();
2956  if (Parser.getTok().isNot(AsmToken::RCurly))
2957    return Error(E, "'}' expected");
2958  Parser.Lex(); // Eat '}' token.
2959
2960  // Push the register list operand.
2961  Operands.push_back(ARMOperand::CreateRegList(Registers, S, E));
2962
2963  // The ARM system instruction variants for LDM/STM have a '^' token here.
2964  if (Parser.getTok().is(AsmToken::Caret)) {
2965    Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc()));
2966    Parser.Lex(); // Eat '^' token.
2967  }
2968
2969  return false;
2970}
2971
2972// Helper function to parse the lane index for vector lists.
2973ARMAsmParser::OperandMatchResultTy ARMAsmParser::
2974parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index) {
2975  Index = 0; // Always return a defined index value.
2976  if (Parser.getTok().is(AsmToken::LBrac)) {
2977    Parser.Lex(); // Eat the '['.
2978    if (Parser.getTok().is(AsmToken::RBrac)) {
2979      // "Dn[]" is the 'all lanes' syntax.
2980      LaneKind = AllLanes;
2981      Parser.Lex(); // Eat the ']'.
2982      return MatchOperand_Success;
2983    }
2984
2985    // There's an optional '#' token here. Normally there wouldn't be, but
2986    // inline assemble puts one in, and it's friendly to accept that.
2987    if (Parser.getTok().is(AsmToken::Hash))
2988      Parser.Lex(); // Eat the '#'
2989
2990    const MCExpr *LaneIndex;
2991    SMLoc Loc = Parser.getTok().getLoc();
2992    if (getParser().ParseExpression(LaneIndex)) {
2993      Error(Loc, "illegal expression");
2994      return MatchOperand_ParseFail;
2995    }
2996    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex);
2997    if (!CE) {
2998      Error(Loc, "lane index must be empty or an integer");
2999      return MatchOperand_ParseFail;
3000    }
3001    if (Parser.getTok().isNot(AsmToken::RBrac)) {
3002      Error(Parser.getTok().getLoc(), "']' expected");
3003      return MatchOperand_ParseFail;
3004    }
3005    Parser.Lex(); // Eat the ']'.
3006    int64_t Val = CE->getValue();
3007
3008    // FIXME: Make this range check context sensitive for .8, .16, .32.
3009    if (Val < 0 || Val > 7) {
3010      Error(Parser.getTok().getLoc(), "lane index out of range");
3011      return MatchOperand_ParseFail;
3012    }
3013    Index = Val;
3014    LaneKind = IndexedLane;
3015    return MatchOperand_Success;
3016  }
3017  LaneKind = NoLanes;
3018  return MatchOperand_Success;
3019}
3020
3021// parse a vector register list
3022ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3023parseVectorList(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3024  VectorLaneTy LaneKind;
3025  unsigned LaneIndex;
3026  SMLoc S = Parser.getTok().getLoc();
3027  // As an extension (to match gas), support a plain D register or Q register
3028  // (without encosing curly braces) as a single or double entry list,
3029  // respectively.
3030  if (Parser.getTok().is(AsmToken::Identifier)) {
3031    int Reg = tryParseRegister();
3032    if (Reg == -1)
3033      return MatchOperand_NoMatch;
3034    SMLoc E = Parser.getTok().getLoc();
3035    if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
3036      OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex);
3037      if (Res != MatchOperand_Success)
3038        return Res;
3039      switch (LaneKind) {
3040      case NoLanes:
3041        E = Parser.getTok().getLoc();
3042        Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E));
3043        break;
3044      case AllLanes:
3045        E = Parser.getTok().getLoc();
3046        Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false,
3047                                                                S, E));
3048        break;
3049      case IndexedLane:
3050        Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1,
3051                                                               LaneIndex,
3052                                                               false, S, E));
3053        break;
3054      }
3055      return MatchOperand_Success;
3056    }
3057    if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3058      Reg = getDRegFromQReg(Reg);
3059      OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex);
3060      if (Res != MatchOperand_Success)
3061        return Res;
3062      switch (LaneKind) {
3063      case NoLanes:
3064        E = Parser.getTok().getLoc();
3065        Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
3066                                   &ARMMCRegisterClasses[ARM::DPairRegClassID]);
3067        Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E));
3068        break;
3069      case AllLanes:
3070        E = Parser.getTok().getLoc();
3071        Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
3072                                   &ARMMCRegisterClasses[ARM::DPairRegClassID]);
3073        Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false,
3074                                                                S, E));
3075        break;
3076      case IndexedLane:
3077        Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2,
3078                                                               LaneIndex,
3079                                                               false, S, E));
3080        break;
3081      }
3082      return MatchOperand_Success;
3083    }
3084    Error(S, "vector register expected");
3085    return MatchOperand_ParseFail;
3086  }
3087
3088  if (Parser.getTok().isNot(AsmToken::LCurly))
3089    return MatchOperand_NoMatch;
3090
3091  Parser.Lex(); // Eat '{' token.
3092  SMLoc RegLoc = Parser.getTok().getLoc();
3093
3094  int Reg = tryParseRegister();
3095  if (Reg == -1) {
3096    Error(RegLoc, "register expected");
3097    return MatchOperand_ParseFail;
3098  }
3099  unsigned Count = 1;
3100  int Spacing = 0;
3101  unsigned FirstReg = Reg;
3102  // The list is of D registers, but we also allow Q regs and just interpret
3103  // them as the two D sub-registers.
3104  if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3105    FirstReg = Reg = getDRegFromQReg(Reg);
3106    Spacing = 1; // double-spacing requires explicit D registers, otherwise
3107                 // it's ambiguous with four-register single spaced.
3108    ++Reg;
3109    ++Count;
3110  }
3111  if (parseVectorLane(LaneKind, LaneIndex) != MatchOperand_Success)
3112    return MatchOperand_ParseFail;
3113
3114  while (Parser.getTok().is(AsmToken::Comma) ||
3115         Parser.getTok().is(AsmToken::Minus)) {
3116    if (Parser.getTok().is(AsmToken::Minus)) {
3117      if (!Spacing)
3118        Spacing = 1; // Register range implies a single spaced list.
3119      else if (Spacing == 2) {
3120        Error(Parser.getTok().getLoc(),
3121              "sequential registers in double spaced list");
3122        return MatchOperand_ParseFail;
3123      }
3124      Parser.Lex(); // Eat the minus.
3125      SMLoc EndLoc = Parser.getTok().getLoc();
3126      int EndReg = tryParseRegister();
3127      if (EndReg == -1) {
3128        Error(EndLoc, "register expected");
3129        return MatchOperand_ParseFail;
3130      }
3131      // Allow Q regs and just interpret them as the two D sub-registers.
3132      if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
3133        EndReg = getDRegFromQReg(EndReg) + 1;
3134      // If the register is the same as the start reg, there's nothing
3135      // more to do.
3136      if (Reg == EndReg)
3137        continue;
3138      // The register must be in the same register class as the first.
3139      if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) {
3140        Error(EndLoc, "invalid register in register list");
3141        return MatchOperand_ParseFail;
3142      }
3143      // Ranges must go from low to high.
3144      if (Reg > EndReg) {
3145        Error(EndLoc, "bad range in register list");
3146        return MatchOperand_ParseFail;
3147      }
3148      // Parse the lane specifier if present.
3149      VectorLaneTy NextLaneKind;
3150      unsigned NextLaneIndex;
3151      if (parseVectorLane(NextLaneKind, NextLaneIndex) != MatchOperand_Success)
3152        return MatchOperand_ParseFail;
3153      if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
3154        Error(EndLoc, "mismatched lane index in register list");
3155        return MatchOperand_ParseFail;
3156      }
3157      EndLoc = Parser.getTok().getLoc();
3158
3159      // Add all the registers in the range to the register list.
3160      Count += EndReg - Reg;
3161      Reg = EndReg;
3162      continue;
3163    }
3164    Parser.Lex(); // Eat the comma.
3165    RegLoc = Parser.getTok().getLoc();
3166    int OldReg = Reg;
3167    Reg = tryParseRegister();
3168    if (Reg == -1) {
3169      Error(RegLoc, "register expected");
3170      return MatchOperand_ParseFail;
3171    }
3172    // vector register lists must be contiguous.
3173    // It's OK to use the enumeration values directly here rather, as the
3174    // VFP register classes have the enum sorted properly.
3175    //
3176    // The list is of D registers, but we also allow Q regs and just interpret
3177    // them as the two D sub-registers.
3178    if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3179      if (!Spacing)
3180        Spacing = 1; // Register range implies a single spaced list.
3181      else if (Spacing == 2) {
3182        Error(RegLoc,
3183              "invalid register in double-spaced list (must be 'D' register')");
3184        return MatchOperand_ParseFail;
3185      }
3186      Reg = getDRegFromQReg(Reg);
3187      if (Reg != OldReg + 1) {
3188        Error(RegLoc, "non-contiguous register range");
3189        return MatchOperand_ParseFail;
3190      }
3191      ++Reg;
3192      Count += 2;
3193      // Parse the lane specifier if present.
3194      VectorLaneTy NextLaneKind;
3195      unsigned NextLaneIndex;
3196      SMLoc EndLoc = Parser.getTok().getLoc();
3197      if (parseVectorLane(NextLaneKind, NextLaneIndex) != MatchOperand_Success)
3198        return MatchOperand_ParseFail;
3199      if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
3200        Error(EndLoc, "mismatched lane index in register list");
3201        return MatchOperand_ParseFail;
3202      }
3203      continue;
3204    }
3205    // Normal D register.
3206    // Figure out the register spacing (single or double) of the list if
3207    // we don't know it already.
3208    if (!Spacing)
3209      Spacing = 1 + (Reg == OldReg + 2);
3210
3211    // Just check that it's contiguous and keep going.
3212    if (Reg != OldReg + Spacing) {
3213      Error(RegLoc, "non-contiguous register range");
3214      return MatchOperand_ParseFail;
3215    }
3216    ++Count;
3217    // Parse the lane specifier if present.
3218    VectorLaneTy NextLaneKind;
3219    unsigned NextLaneIndex;
3220    SMLoc EndLoc = Parser.getTok().getLoc();
3221    if (parseVectorLane(NextLaneKind, NextLaneIndex) != MatchOperand_Success)
3222      return MatchOperand_ParseFail;
3223    if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
3224      Error(EndLoc, "mismatched lane index in register list");
3225      return MatchOperand_ParseFail;
3226    }
3227  }
3228
3229  SMLoc E = Parser.getTok().getLoc();
3230  if (Parser.getTok().isNot(AsmToken::RCurly)) {
3231    Error(E, "'}' expected");
3232    return MatchOperand_ParseFail;
3233  }
3234  Parser.Lex(); // Eat '}' token.
3235
3236  switch (LaneKind) {
3237  case NoLanes:
3238    // Two-register operands have been converted to the
3239    // composite register classes.
3240    if (Count == 2) {
3241      const MCRegisterClass *RC = (Spacing == 1) ?
3242        &ARMMCRegisterClasses[ARM::DPairRegClassID] :
3243        &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
3244      FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
3245    }
3246
3247    Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count,
3248                                                    (Spacing == 2), S, E));
3249    break;
3250  case AllLanes:
3251    // Two-register operands have been converted to the
3252    // composite register classes.
3253    if (Count == 2) {
3254      const MCRegisterClass *RC = (Spacing == 1) ?
3255        &ARMMCRegisterClasses[ARM::DPairRegClassID] :
3256        &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
3257      FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
3258    }
3259    Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count,
3260                                                            (Spacing == 2),
3261                                                            S, E));
3262    break;
3263  case IndexedLane:
3264    Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count,
3265                                                           LaneIndex,
3266                                                           (Spacing == 2),
3267                                                           S, E));
3268    break;
3269  }
3270  return MatchOperand_Success;
3271}
3272
3273/// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
3274ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3275parseMemBarrierOptOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3276  SMLoc S = Parser.getTok().getLoc();
3277  const AsmToken &Tok = Parser.getTok();
3278  unsigned Opt;
3279
3280  if (Tok.is(AsmToken::Identifier)) {
3281    StringRef OptStr = Tok.getString();
3282
3283    Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower())
3284      .Case("sy",    ARM_MB::SY)
3285      .Case("st",    ARM_MB::ST)
3286      .Case("sh",    ARM_MB::ISH)
3287      .Case("ish",   ARM_MB::ISH)
3288      .Case("shst",  ARM_MB::ISHST)
3289      .Case("ishst", ARM_MB::ISHST)
3290      .Case("nsh",   ARM_MB::NSH)
3291      .Case("un",    ARM_MB::NSH)
3292      .Case("nshst", ARM_MB::NSHST)
3293      .Case("unst",  ARM_MB::NSHST)
3294      .Case("osh",   ARM_MB::OSH)
3295      .Case("oshst", ARM_MB::OSHST)
3296      .Default(~0U);
3297
3298    if (Opt == ~0U)
3299      return MatchOperand_NoMatch;
3300
3301    Parser.Lex(); // Eat identifier token.
3302  } else if (Tok.is(AsmToken::Hash) ||
3303             Tok.is(AsmToken::Dollar) ||
3304             Tok.is(AsmToken::Integer)) {
3305    if (Parser.getTok().isNot(AsmToken::Integer))
3306      Parser.Lex(); // Eat the '#'.
3307    SMLoc Loc = Parser.getTok().getLoc();
3308
3309    const MCExpr *MemBarrierID;
3310    if (getParser().ParseExpression(MemBarrierID)) {
3311      Error(Loc, "illegal expression");
3312      return MatchOperand_ParseFail;
3313    }
3314
3315    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID);
3316    if (!CE) {
3317      Error(Loc, "constant expression expected");
3318      return MatchOperand_ParseFail;
3319    }
3320
3321    int Val = CE->getValue();
3322    if (Val & ~0xf) {
3323      Error(Loc, "immediate value out of range");
3324      return MatchOperand_ParseFail;
3325    }
3326
3327    Opt = ARM_MB::RESERVED_0 + Val;
3328  } else
3329    return MatchOperand_ParseFail;
3330
3331  Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S));
3332  return MatchOperand_Success;
3333}
3334
3335/// parseProcIFlagsOperand - Try to parse iflags from CPS instruction.
3336ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3337parseProcIFlagsOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3338  SMLoc S = Parser.getTok().getLoc();
3339  const AsmToken &Tok = Parser.getTok();
3340  if (!Tok.is(AsmToken::Identifier))
3341    return MatchOperand_NoMatch;
3342  StringRef IFlagsStr = Tok.getString();
3343
3344  // An iflags string of "none" is interpreted to mean that none of the AIF
3345  // bits are set.  Not a terribly useful instruction, but a valid encoding.
3346  unsigned IFlags = 0;
3347  if (IFlagsStr != "none") {
3348        for (int i = 0, e = IFlagsStr.size(); i != e; ++i) {
3349      unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1))
3350        .Case("a", ARM_PROC::A)
3351        .Case("i", ARM_PROC::I)
3352        .Case("f", ARM_PROC::F)
3353        .Default(~0U);
3354
3355      // If some specific iflag is already set, it means that some letter is
3356      // present more than once, this is not acceptable.
3357      if (Flag == ~0U || (IFlags & Flag))
3358        return MatchOperand_NoMatch;
3359
3360      IFlags |= Flag;
3361    }
3362  }
3363
3364  Parser.Lex(); // Eat identifier token.
3365  Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S));
3366  return MatchOperand_Success;
3367}
3368
3369/// parseMSRMaskOperand - Try to parse mask flags from MSR instruction.
3370ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3371parseMSRMaskOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3372  SMLoc S = Parser.getTok().getLoc();
3373  const AsmToken &Tok = Parser.getTok();
3374  assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
3375  StringRef Mask = Tok.getString();
3376
3377  if (isMClass()) {
3378    // See ARMv6-M 10.1.1
3379    std::string Name = Mask.lower();
3380    unsigned FlagsVal = StringSwitch<unsigned>(Name)
3381      // Note: in the documentation:
3382      //  ARM deprecates using MSR APSR without a _<bits> qualifier as an alias
3383      //  for MSR APSR_nzcvq.
3384      // but we do make it an alias here.  This is so to get the "mask encoding"
3385      // bits correct on MSR APSR writes.
3386      //
3387      // FIXME: Note the 0xc00 "mask encoding" bits version of the registers
3388      // should really only be allowed when writing a special register.  Note
3389      // they get dropped in the MRS instruction reading a special register as
3390      // the SYSm field is only 8 bits.
3391      //
3392      // FIXME: the _g and _nzcvqg versions are only allowed if the processor
3393      // includes the DSP extension but that is not checked.
3394      .Case("apsr", 0x800)
3395      .Case("apsr_nzcvq", 0x800)
3396      .Case("apsr_g", 0x400)
3397      .Case("apsr_nzcvqg", 0xc00)
3398      .Case("iapsr", 0x801)
3399      .Case("iapsr_nzcvq", 0x801)
3400      .Case("iapsr_g", 0x401)
3401      .Case("iapsr_nzcvqg", 0xc01)
3402      .Case("eapsr", 0x802)
3403      .Case("eapsr_nzcvq", 0x802)
3404      .Case("eapsr_g", 0x402)
3405      .Case("eapsr_nzcvqg", 0xc02)
3406      .Case("xpsr", 0x803)
3407      .Case("xpsr_nzcvq", 0x803)
3408      .Case("xpsr_g", 0x403)
3409      .Case("xpsr_nzcvqg", 0xc03)
3410      .Case("ipsr", 0x805)
3411      .Case("epsr", 0x806)
3412      .Case("iepsr", 0x807)
3413      .Case("msp", 0x808)
3414      .Case("psp", 0x809)
3415      .Case("primask", 0x810)
3416      .Case("basepri", 0x811)
3417      .Case("basepri_max", 0x812)
3418      .Case("faultmask", 0x813)
3419      .Case("control", 0x814)
3420      .Default(~0U);
3421
3422    if (FlagsVal == ~0U)
3423      return MatchOperand_NoMatch;
3424
3425    if (!hasV7Ops() && FlagsVal >= 0x811 && FlagsVal <= 0x813)
3426      // basepri, basepri_max and faultmask only valid for V7m.
3427      return MatchOperand_NoMatch;
3428
3429    Parser.Lex(); // Eat identifier token.
3430    Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
3431    return MatchOperand_Success;
3432  }
3433
3434  // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf"
3435  size_t Start = 0, Next = Mask.find('_');
3436  StringRef Flags = "";
3437  std::string SpecReg = Mask.slice(Start, Next).lower();
3438  if (Next != StringRef::npos)
3439    Flags = Mask.slice(Next+1, Mask.size());
3440
3441  // FlagsVal contains the complete mask:
3442  // 3-0: Mask
3443  // 4: Special Reg (cpsr, apsr => 0; spsr => 1)
3444  unsigned FlagsVal = 0;
3445
3446  if (SpecReg == "apsr") {
3447    FlagsVal = StringSwitch<unsigned>(Flags)
3448    .Case("nzcvq",  0x8) // same as CPSR_f
3449    .Case("g",      0x4) // same as CPSR_s
3450    .Case("nzcvqg", 0xc) // same as CPSR_fs
3451    .Default(~0U);
3452
3453    if (FlagsVal == ~0U) {
3454      if (!Flags.empty())
3455        return MatchOperand_NoMatch;
3456      else
3457        FlagsVal = 8; // No flag
3458    }
3459  } else if (SpecReg == "cpsr" || SpecReg == "spsr") {
3460    // cpsr_all is an alias for cpsr_fc, as is plain cpsr.
3461    if (Flags == "all" || Flags == "")
3462      Flags = "fc";
3463    for (int i = 0, e = Flags.size(); i != e; ++i) {
3464      unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1))
3465      .Case("c", 1)
3466      .Case("x", 2)
3467      .Case("s", 4)
3468      .Case("f", 8)
3469      .Default(~0U);
3470
3471      // If some specific flag is already set, it means that some letter is
3472      // present more than once, this is not acceptable.
3473      if (FlagsVal == ~0U || (FlagsVal & Flag))
3474        return MatchOperand_NoMatch;
3475      FlagsVal |= Flag;
3476    }
3477  } else // No match for special register.
3478    return MatchOperand_NoMatch;
3479
3480  // Special register without flags is NOT equivalent to "fc" flags.
3481  // NOTE: This is a divergence from gas' behavior.  Uncommenting the following
3482  // two lines would enable gas compatibility at the expense of breaking
3483  // round-tripping.
3484  //
3485  // if (!FlagsVal)
3486  //  FlagsVal = 0x9;
3487
3488  // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1)
3489  if (SpecReg == "spsr")
3490    FlagsVal |= 16;
3491
3492  Parser.Lex(); // Eat identifier token.
3493  Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
3494  return MatchOperand_Success;
3495}
3496
3497ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3498parsePKHImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands, StringRef Op,
3499            int Low, int High) {
3500  const AsmToken &Tok = Parser.getTok();
3501  if (Tok.isNot(AsmToken::Identifier)) {
3502    Error(Parser.getTok().getLoc(), Op + " operand expected.");
3503    return MatchOperand_ParseFail;
3504  }
3505  StringRef ShiftName = Tok.getString();
3506  std::string LowerOp = Op.lower();
3507  std::string UpperOp = Op.upper();
3508  if (ShiftName != LowerOp && ShiftName != UpperOp) {
3509    Error(Parser.getTok().getLoc(), Op + " operand expected.");
3510    return MatchOperand_ParseFail;
3511  }
3512  Parser.Lex(); // Eat shift type token.
3513
3514  // There must be a '#' and a shift amount.
3515  if (Parser.getTok().isNot(AsmToken::Hash) &&
3516      Parser.getTok().isNot(AsmToken::Dollar)) {
3517    Error(Parser.getTok().getLoc(), "'#' expected");
3518    return MatchOperand_ParseFail;
3519  }
3520  Parser.Lex(); // Eat hash token.
3521
3522  const MCExpr *ShiftAmount;
3523  SMLoc Loc = Parser.getTok().getLoc();
3524  if (getParser().ParseExpression(ShiftAmount)) {
3525    Error(Loc, "illegal expression");
3526    return MatchOperand_ParseFail;
3527  }
3528  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
3529  if (!CE) {
3530    Error(Loc, "constant expression expected");
3531    return MatchOperand_ParseFail;
3532  }
3533  int Val = CE->getValue();
3534  if (Val < Low || Val > High) {
3535    Error(Loc, "immediate value out of range");
3536    return MatchOperand_ParseFail;
3537  }
3538
3539  Operands.push_back(ARMOperand::CreateImm(CE, Loc, Parser.getTok().getLoc()));
3540
3541  return MatchOperand_Success;
3542}
3543
3544ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3545parseSetEndImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3546  const AsmToken &Tok = Parser.getTok();
3547  SMLoc S = Tok.getLoc();
3548  if (Tok.isNot(AsmToken::Identifier)) {
3549    Error(Tok.getLoc(), "'be' or 'le' operand expected");
3550    return MatchOperand_ParseFail;
3551  }
3552  int Val = StringSwitch<int>(Tok.getString())
3553    .Case("be", 1)
3554    .Case("le", 0)
3555    .Default(-1);
3556  Parser.Lex(); // Eat the token.
3557
3558  if (Val == -1) {
3559    Error(Tok.getLoc(), "'be' or 'le' operand expected");
3560    return MatchOperand_ParseFail;
3561  }
3562  Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::Create(Val,
3563                                                                  getContext()),
3564                                           S, Parser.getTok().getLoc()));
3565  return MatchOperand_Success;
3566}
3567
3568/// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT
3569/// instructions. Legal values are:
3570///     lsl #n  'n' in [0,31]
3571///     asr #n  'n' in [1,32]
3572///             n == 32 encoded as n == 0.
3573ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3574parseShifterImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3575  const AsmToken &Tok = Parser.getTok();
3576  SMLoc S = Tok.getLoc();
3577  if (Tok.isNot(AsmToken::Identifier)) {
3578    Error(S, "shift operator 'asr' or 'lsl' expected");
3579    return MatchOperand_ParseFail;
3580  }
3581  StringRef ShiftName = Tok.getString();
3582  bool isASR;
3583  if (ShiftName == "lsl" || ShiftName == "LSL")
3584    isASR = false;
3585  else if (ShiftName == "asr" || ShiftName == "ASR")
3586    isASR = true;
3587  else {
3588    Error(S, "shift operator 'asr' or 'lsl' expected");
3589    return MatchOperand_ParseFail;
3590  }
3591  Parser.Lex(); // Eat the operator.
3592
3593  // A '#' and a shift amount.
3594  if (Parser.getTok().isNot(AsmToken::Hash) &&
3595      Parser.getTok().isNot(AsmToken::Dollar)) {
3596    Error(Parser.getTok().getLoc(), "'#' expected");
3597    return MatchOperand_ParseFail;
3598  }
3599  Parser.Lex(); // Eat hash token.
3600
3601  const MCExpr *ShiftAmount;
3602  SMLoc E = Parser.getTok().getLoc();
3603  if (getParser().ParseExpression(ShiftAmount)) {
3604    Error(E, "malformed shift expression");
3605    return MatchOperand_ParseFail;
3606  }
3607  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
3608  if (!CE) {
3609    Error(E, "shift amount must be an immediate");
3610    return MatchOperand_ParseFail;
3611  }
3612
3613  int64_t Val = CE->getValue();
3614  if (isASR) {
3615    // Shift amount must be in [1,32]
3616    if (Val < 1 || Val > 32) {
3617      Error(E, "'asr' shift amount must be in range [1,32]");
3618      return MatchOperand_ParseFail;
3619    }
3620    // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode.
3621    if (isThumb() && Val == 32) {
3622      Error(E, "'asr #32' shift amount not allowed in Thumb mode");
3623      return MatchOperand_ParseFail;
3624    }
3625    if (Val == 32) Val = 0;
3626  } else {
3627    // Shift amount must be in [1,32]
3628    if (Val < 0 || Val > 31) {
3629      Error(E, "'lsr' shift amount must be in range [0,31]");
3630      return MatchOperand_ParseFail;
3631    }
3632  }
3633
3634  E = Parser.getTok().getLoc();
3635  Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, E));
3636
3637  return MatchOperand_Success;
3638}
3639
3640/// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family
3641/// of instructions. Legal values are:
3642///     ror #n  'n' in {0, 8, 16, 24}
3643ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3644parseRotImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3645  const AsmToken &Tok = Parser.getTok();
3646  SMLoc S = Tok.getLoc();
3647  if (Tok.isNot(AsmToken::Identifier))
3648    return MatchOperand_NoMatch;
3649  StringRef ShiftName = Tok.getString();
3650  if (ShiftName != "ror" && ShiftName != "ROR")
3651    return MatchOperand_NoMatch;
3652  Parser.Lex(); // Eat the operator.
3653
3654  // A '#' and a rotate amount.
3655  if (Parser.getTok().isNot(AsmToken::Hash) &&
3656      Parser.getTok().isNot(AsmToken::Dollar)) {
3657    Error(Parser.getTok().getLoc(), "'#' expected");
3658    return MatchOperand_ParseFail;
3659  }
3660  Parser.Lex(); // Eat hash token.
3661
3662  const MCExpr *ShiftAmount;
3663  SMLoc E = Parser.getTok().getLoc();
3664  if (getParser().ParseExpression(ShiftAmount)) {
3665    Error(E, "malformed rotate expression");
3666    return MatchOperand_ParseFail;
3667  }
3668  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
3669  if (!CE) {
3670    Error(E, "rotate amount must be an immediate");
3671    return MatchOperand_ParseFail;
3672  }
3673
3674  int64_t Val = CE->getValue();
3675  // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension)
3676  // normally, zero is represented in asm by omitting the rotate operand
3677  // entirely.
3678  if (Val != 8 && Val != 16 && Val != 24 && Val != 0) {
3679    Error(E, "'ror' rotate amount must be 8, 16, or 24");
3680    return MatchOperand_ParseFail;
3681  }
3682
3683  E = Parser.getTok().getLoc();
3684  Operands.push_back(ARMOperand::CreateRotImm(Val, S, E));
3685
3686  return MatchOperand_Success;
3687}
3688
3689ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3690parseBitfield(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3691  SMLoc S = Parser.getTok().getLoc();
3692  // The bitfield descriptor is really two operands, the LSB and the width.
3693  if (Parser.getTok().isNot(AsmToken::Hash) &&
3694      Parser.getTok().isNot(AsmToken::Dollar)) {
3695    Error(Parser.getTok().getLoc(), "'#' expected");
3696    return MatchOperand_ParseFail;
3697  }
3698  Parser.Lex(); // Eat hash token.
3699
3700  const MCExpr *LSBExpr;
3701  SMLoc E = Parser.getTok().getLoc();
3702  if (getParser().ParseExpression(LSBExpr)) {
3703    Error(E, "malformed immediate expression");
3704    return MatchOperand_ParseFail;
3705  }
3706  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr);
3707  if (!CE) {
3708    Error(E, "'lsb' operand must be an immediate");
3709    return MatchOperand_ParseFail;
3710  }
3711
3712  int64_t LSB = CE->getValue();
3713  // The LSB must be in the range [0,31]
3714  if (LSB < 0 || LSB > 31) {
3715    Error(E, "'lsb' operand must be in the range [0,31]");
3716    return MatchOperand_ParseFail;
3717  }
3718  E = Parser.getTok().getLoc();
3719
3720  // Expect another immediate operand.
3721  if (Parser.getTok().isNot(AsmToken::Comma)) {
3722    Error(Parser.getTok().getLoc(), "too few operands");
3723    return MatchOperand_ParseFail;
3724  }
3725  Parser.Lex(); // Eat hash token.
3726  if (Parser.getTok().isNot(AsmToken::Hash) &&
3727      Parser.getTok().isNot(AsmToken::Dollar)) {
3728    Error(Parser.getTok().getLoc(), "'#' expected");
3729    return MatchOperand_ParseFail;
3730  }
3731  Parser.Lex(); // Eat hash token.
3732
3733  const MCExpr *WidthExpr;
3734  if (getParser().ParseExpression(WidthExpr)) {
3735    Error(E, "malformed immediate expression");
3736    return MatchOperand_ParseFail;
3737  }
3738  CE = dyn_cast<MCConstantExpr>(WidthExpr);
3739  if (!CE) {
3740    Error(E, "'width' operand must be an immediate");
3741    return MatchOperand_ParseFail;
3742  }
3743
3744  int64_t Width = CE->getValue();
3745  // The LSB must be in the range [1,32-lsb]
3746  if (Width < 1 || Width > 32 - LSB) {
3747    Error(E, "'width' operand must be in the range [1,32-lsb]");
3748    return MatchOperand_ParseFail;
3749  }
3750  E = Parser.getTok().getLoc();
3751
3752  Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, E));
3753
3754  return MatchOperand_Success;
3755}
3756
3757ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3758parsePostIdxReg(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3759  // Check for a post-index addressing register operand. Specifically:
3760  // postidx_reg := '+' register {, shift}
3761  //              | '-' register {, shift}
3762  //              | register {, shift}
3763
3764  // This method must return MatchOperand_NoMatch without consuming any tokens
3765  // in the case where there is no match, as other alternatives take other
3766  // parse methods.
3767  AsmToken Tok = Parser.getTok();
3768  SMLoc S = Tok.getLoc();
3769  bool haveEaten = false;
3770  bool isAdd = true;
3771  int Reg = -1;
3772  if (Tok.is(AsmToken::Plus)) {
3773    Parser.Lex(); // Eat the '+' token.
3774    haveEaten = true;
3775  } else if (Tok.is(AsmToken::Minus)) {
3776    Parser.Lex(); // Eat the '-' token.
3777    isAdd = false;
3778    haveEaten = true;
3779  }
3780  if (Parser.getTok().is(AsmToken::Identifier))
3781    Reg = tryParseRegister();
3782  if (Reg == -1) {
3783    if (!haveEaten)
3784      return MatchOperand_NoMatch;
3785    Error(Parser.getTok().getLoc(), "register expected");
3786    return MatchOperand_ParseFail;
3787  }
3788  SMLoc E = Parser.getTok().getLoc();
3789
3790  ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift;
3791  unsigned ShiftImm = 0;
3792  if (Parser.getTok().is(AsmToken::Comma)) {
3793    Parser.Lex(); // Eat the ','.
3794    if (parseMemRegOffsetShift(ShiftTy, ShiftImm))
3795      return MatchOperand_ParseFail;
3796  }
3797
3798  Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy,
3799                                                  ShiftImm, S, E));
3800
3801  return MatchOperand_Success;
3802}
3803
3804ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3805parseAM3Offset(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3806  // Check for a post-index addressing register operand. Specifically:
3807  // am3offset := '+' register
3808  //              | '-' register
3809  //              | register
3810  //              | # imm
3811  //              | # + imm
3812  //              | # - imm
3813
3814  // This method must return MatchOperand_NoMatch without consuming any tokens
3815  // in the case where there is no match, as other alternatives take other
3816  // parse methods.
3817  AsmToken Tok = Parser.getTok();
3818  SMLoc S = Tok.getLoc();
3819
3820  // Do immediates first, as we always parse those if we have a '#'.
3821  if (Parser.getTok().is(AsmToken::Hash) ||
3822      Parser.getTok().is(AsmToken::Dollar)) {
3823    Parser.Lex(); // Eat the '#'.
3824    // Explicitly look for a '-', as we need to encode negative zero
3825    // differently.
3826    bool isNegative = Parser.getTok().is(AsmToken::Minus);
3827    const MCExpr *Offset;
3828    if (getParser().ParseExpression(Offset))
3829      return MatchOperand_ParseFail;
3830    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
3831    if (!CE) {
3832      Error(S, "constant expression expected");
3833      return MatchOperand_ParseFail;
3834    }
3835    SMLoc E = Tok.getLoc();
3836    // Negative zero is encoded as the flag value INT32_MIN.
3837    int32_t Val = CE->getValue();
3838    if (isNegative && Val == 0)
3839      Val = INT32_MIN;
3840
3841    Operands.push_back(
3842      ARMOperand::CreateImm(MCConstantExpr::Create(Val, getContext()), S, E));
3843
3844    return MatchOperand_Success;
3845  }
3846
3847
3848  bool haveEaten = false;
3849  bool isAdd = true;
3850  int Reg = -1;
3851  if (Tok.is(AsmToken::Plus)) {
3852    Parser.Lex(); // Eat the '+' token.
3853    haveEaten = true;
3854  } else if (Tok.is(AsmToken::Minus)) {
3855    Parser.Lex(); // Eat the '-' token.
3856    isAdd = false;
3857    haveEaten = true;
3858  }
3859  if (Parser.getTok().is(AsmToken::Identifier))
3860    Reg = tryParseRegister();
3861  if (Reg == -1) {
3862    if (!haveEaten)
3863      return MatchOperand_NoMatch;
3864    Error(Parser.getTok().getLoc(), "register expected");
3865    return MatchOperand_ParseFail;
3866  }
3867  SMLoc E = Parser.getTok().getLoc();
3868
3869  Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift,
3870                                                  0, S, E));
3871
3872  return MatchOperand_Success;
3873}
3874
3875/// cvtT2LdrdPre - Convert parsed operands to MCInst.
3876/// Needed here because the Asm Gen Matcher can't handle properly tied operands
3877/// when they refer multiple MIOperands inside a single one.
3878void ARMAsmParser::
3879cvtT2LdrdPre(MCInst &Inst,
3880             const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3881  // Rt, Rt2
3882  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
3883  ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
3884  // Create a writeback register dummy placeholder.
3885  Inst.addOperand(MCOperand::CreateReg(0));
3886  // addr
3887  ((ARMOperand*)Operands[4])->addMemImm8s4OffsetOperands(Inst, 2);
3888  // pred
3889  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
3890}
3891
3892/// cvtT2StrdPre - Convert parsed operands to MCInst.
3893/// Needed here because the Asm Gen Matcher can't handle properly tied operands
3894/// when they refer multiple MIOperands inside a single one.
3895void ARMAsmParser::
3896cvtT2StrdPre(MCInst &Inst,
3897             const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3898  // Create a writeback register dummy placeholder.
3899  Inst.addOperand(MCOperand::CreateReg(0));
3900  // Rt, Rt2
3901  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
3902  ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
3903  // addr
3904  ((ARMOperand*)Operands[4])->addMemImm8s4OffsetOperands(Inst, 2);
3905  // pred
3906  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
3907}
3908
3909/// cvtLdWriteBackRegT2AddrModeImm8 - Convert parsed operands to MCInst.
3910/// Needed here because the Asm Gen Matcher can't handle properly tied operands
3911/// when they refer multiple MIOperands inside a single one.
3912void ARMAsmParser::
3913cvtLdWriteBackRegT2AddrModeImm8(MCInst &Inst,
3914                         const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3915  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
3916
3917  // Create a writeback register dummy placeholder.
3918  Inst.addOperand(MCOperand::CreateImm(0));
3919
3920  ((ARMOperand*)Operands[3])->addMemImm8OffsetOperands(Inst, 2);
3921  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
3922}
3923
3924/// cvtStWriteBackRegT2AddrModeImm8 - Convert parsed operands to MCInst.
3925/// Needed here because the Asm Gen Matcher can't handle properly tied operands
3926/// when they refer multiple MIOperands inside a single one.
3927void ARMAsmParser::
3928cvtStWriteBackRegT2AddrModeImm8(MCInst &Inst,
3929                         const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3930  // Create a writeback register dummy placeholder.
3931  Inst.addOperand(MCOperand::CreateImm(0));
3932  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
3933  ((ARMOperand*)Operands[3])->addMemImm8OffsetOperands(Inst, 2);
3934  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
3935}
3936
3937/// cvtLdWriteBackRegAddrMode2 - Convert parsed operands to MCInst.
3938/// Needed here because the Asm Gen Matcher can't handle properly tied operands
3939/// when they refer multiple MIOperands inside a single one.
3940void ARMAsmParser::
3941cvtLdWriteBackRegAddrMode2(MCInst &Inst,
3942                         const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3943  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
3944
3945  // Create a writeback register dummy placeholder.
3946  Inst.addOperand(MCOperand::CreateImm(0));
3947
3948  ((ARMOperand*)Operands[3])->addAddrMode2Operands(Inst, 3);
3949  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
3950}
3951
3952/// cvtLdWriteBackRegAddrModeImm12 - Convert parsed operands to MCInst.
3953/// Needed here because the Asm Gen Matcher can't handle properly tied operands
3954/// when they refer multiple MIOperands inside a single one.
3955void ARMAsmParser::
3956cvtLdWriteBackRegAddrModeImm12(MCInst &Inst,
3957                         const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3958  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
3959
3960  // Create a writeback register dummy placeholder.
3961  Inst.addOperand(MCOperand::CreateImm(0));
3962
3963  ((ARMOperand*)Operands[3])->addMemImm12OffsetOperands(Inst, 2);
3964  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
3965}
3966
3967
3968/// cvtStWriteBackRegAddrModeImm12 - Convert parsed operands to MCInst.
3969/// Needed here because the Asm Gen Matcher can't handle properly tied operands
3970/// when they refer multiple MIOperands inside a single one.
3971void ARMAsmParser::
3972cvtStWriteBackRegAddrModeImm12(MCInst &Inst,
3973                         const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3974  // Create a writeback register dummy placeholder.
3975  Inst.addOperand(MCOperand::CreateImm(0));
3976  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
3977  ((ARMOperand*)Operands[3])->addMemImm12OffsetOperands(Inst, 2);
3978  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
3979}
3980
3981/// cvtStWriteBackRegAddrMode2 - Convert parsed operands to MCInst.
3982/// Needed here because the Asm Gen Matcher can't handle properly tied operands
3983/// when they refer multiple MIOperands inside a single one.
3984void ARMAsmParser::
3985cvtStWriteBackRegAddrMode2(MCInst &Inst,
3986                         const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3987  // Create a writeback register dummy placeholder.
3988  Inst.addOperand(MCOperand::CreateImm(0));
3989  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
3990  ((ARMOperand*)Operands[3])->addAddrMode2Operands(Inst, 3);
3991  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
3992}
3993
3994/// cvtStWriteBackRegAddrMode3 - Convert parsed operands to MCInst.
3995/// Needed here because the Asm Gen Matcher can't handle properly tied operands
3996/// when they refer multiple MIOperands inside a single one.
3997void ARMAsmParser::
3998cvtStWriteBackRegAddrMode3(MCInst &Inst,
3999                         const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4000  // Create a writeback register dummy placeholder.
4001  Inst.addOperand(MCOperand::CreateImm(0));
4002  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4003  ((ARMOperand*)Operands[3])->addAddrMode3Operands(Inst, 3);
4004  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4005}
4006
4007/// cvtLdExtTWriteBackImm - Convert parsed operands to MCInst.
4008/// Needed here because the Asm Gen Matcher can't handle properly tied operands
4009/// when they refer multiple MIOperands inside a single one.
4010void ARMAsmParser::
4011cvtLdExtTWriteBackImm(MCInst &Inst,
4012                      const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4013  // Rt
4014  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4015  // Create a writeback register dummy placeholder.
4016  Inst.addOperand(MCOperand::CreateImm(0));
4017  // addr
4018  ((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1);
4019  // offset
4020  ((ARMOperand*)Operands[4])->addPostIdxImm8Operands(Inst, 1);
4021  // pred
4022  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4023}
4024
4025/// cvtLdExtTWriteBackReg - Convert parsed operands to MCInst.
4026/// Needed here because the Asm Gen Matcher can't handle properly tied operands
4027/// when they refer multiple MIOperands inside a single one.
4028void ARMAsmParser::
4029cvtLdExtTWriteBackReg(MCInst &Inst,
4030                      const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4031  // Rt
4032  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4033  // Create a writeback register dummy placeholder.
4034  Inst.addOperand(MCOperand::CreateImm(0));
4035  // addr
4036  ((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1);
4037  // offset
4038  ((ARMOperand*)Operands[4])->addPostIdxRegOperands(Inst, 2);
4039  // pred
4040  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4041}
4042
4043/// cvtStExtTWriteBackImm - Convert parsed operands to MCInst.
4044/// Needed here because the Asm Gen Matcher can't handle properly tied operands
4045/// when they refer multiple MIOperands inside a single one.
4046void ARMAsmParser::
4047cvtStExtTWriteBackImm(MCInst &Inst,
4048                      const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4049  // Create a writeback register dummy placeholder.
4050  Inst.addOperand(MCOperand::CreateImm(0));
4051  // Rt
4052  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4053  // addr
4054  ((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1);
4055  // offset
4056  ((ARMOperand*)Operands[4])->addPostIdxImm8Operands(Inst, 1);
4057  // pred
4058  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4059}
4060
4061/// cvtStExtTWriteBackReg - Convert parsed operands to MCInst.
4062/// Needed here because the Asm Gen Matcher can't handle properly tied operands
4063/// when they refer multiple MIOperands inside a single one.
4064void ARMAsmParser::
4065cvtStExtTWriteBackReg(MCInst &Inst,
4066                      const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4067  // Create a writeback register dummy placeholder.
4068  Inst.addOperand(MCOperand::CreateImm(0));
4069  // Rt
4070  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4071  // addr
4072  ((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1);
4073  // offset
4074  ((ARMOperand*)Operands[4])->addPostIdxRegOperands(Inst, 2);
4075  // pred
4076  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4077}
4078
4079/// cvtLdrdPre - Convert parsed operands to MCInst.
4080/// Needed here because the Asm Gen Matcher can't handle properly tied operands
4081/// when they refer multiple MIOperands inside a single one.
4082void ARMAsmParser::
4083cvtLdrdPre(MCInst &Inst,
4084           const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4085  // Rt, Rt2
4086  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4087  ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
4088  // Create a writeback register dummy placeholder.
4089  Inst.addOperand(MCOperand::CreateImm(0));
4090  // addr
4091  ((ARMOperand*)Operands[4])->addAddrMode3Operands(Inst, 3);
4092  // pred
4093  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4094}
4095
4096/// cvtStrdPre - Convert parsed operands to MCInst.
4097/// Needed here because the Asm Gen Matcher can't handle properly tied operands
4098/// when they refer multiple MIOperands inside a single one.
4099void ARMAsmParser::
4100cvtStrdPre(MCInst &Inst,
4101           const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4102  // Create a writeback register dummy placeholder.
4103  Inst.addOperand(MCOperand::CreateImm(0));
4104  // Rt, Rt2
4105  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4106  ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
4107  // addr
4108  ((ARMOperand*)Operands[4])->addAddrMode3Operands(Inst, 3);
4109  // pred
4110  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4111}
4112
4113/// cvtLdWriteBackRegAddrMode3 - Convert parsed operands to MCInst.
4114/// Needed here because the Asm Gen Matcher can't handle properly tied operands
4115/// when they refer multiple MIOperands inside a single one.
4116void ARMAsmParser::
4117cvtLdWriteBackRegAddrMode3(MCInst &Inst,
4118                         const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4119  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4120  // Create a writeback register dummy placeholder.
4121  Inst.addOperand(MCOperand::CreateImm(0));
4122  ((ARMOperand*)Operands[3])->addAddrMode3Operands(Inst, 3);
4123  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4124}
4125
4126/// cvtThumbMultiply - Convert parsed operands to MCInst.
4127/// Needed here because the Asm Gen Matcher can't handle properly tied operands
4128/// when they refer multiple MIOperands inside a single one.
4129void ARMAsmParser::
4130cvtThumbMultiply(MCInst &Inst,
4131           const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4132  ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
4133  ((ARMOperand*)Operands[1])->addCCOutOperands(Inst, 1);
4134  // If we have a three-operand form, make sure to set Rn to be the operand
4135  // that isn't the same as Rd.
4136  unsigned RegOp = 4;
4137  if (Operands.size() == 6 &&
4138      ((ARMOperand*)Operands[4])->getReg() ==
4139        ((ARMOperand*)Operands[3])->getReg())
4140    RegOp = 5;
4141  ((ARMOperand*)Operands[RegOp])->addRegOperands(Inst, 1);
4142  Inst.addOperand(Inst.getOperand(0));
4143  ((ARMOperand*)Operands[2])->addCondCodeOperands(Inst, 2);
4144}
4145
4146void ARMAsmParser::
4147cvtVLDwbFixed(MCInst &Inst,
4148              const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4149  // Vd
4150  ((ARMOperand*)Operands[3])->addVecListOperands(Inst, 1);
4151  // Create a writeback register dummy placeholder.
4152  Inst.addOperand(MCOperand::CreateImm(0));
4153  // Vn
4154  ((ARMOperand*)Operands[4])->addAlignedMemoryOperands(Inst, 2);
4155  // pred
4156  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4157}
4158
4159void ARMAsmParser::
4160cvtVLDwbRegister(MCInst &Inst,
4161                 const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4162  // Vd
4163  ((ARMOperand*)Operands[3])->addVecListOperands(Inst, 1);
4164  // Create a writeback register dummy placeholder.
4165  Inst.addOperand(MCOperand::CreateImm(0));
4166  // Vn
4167  ((ARMOperand*)Operands[4])->addAlignedMemoryOperands(Inst, 2);
4168  // Vm
4169  ((ARMOperand*)Operands[5])->addRegOperands(Inst, 1);
4170  // pred
4171  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4172}
4173
4174void ARMAsmParser::
4175cvtVSTwbFixed(MCInst &Inst,
4176              const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4177  // Create a writeback register dummy placeholder.
4178  Inst.addOperand(MCOperand::CreateImm(0));
4179  // Vn
4180  ((ARMOperand*)Operands[4])->addAlignedMemoryOperands(Inst, 2);
4181  // Vt
4182  ((ARMOperand*)Operands[3])->addVecListOperands(Inst, 1);
4183  // pred
4184  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4185}
4186
4187void ARMAsmParser::
4188cvtVSTwbRegister(MCInst &Inst,
4189                 const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4190  // Create a writeback register dummy placeholder.
4191  Inst.addOperand(MCOperand::CreateImm(0));
4192  // Vn
4193  ((ARMOperand*)Operands[4])->addAlignedMemoryOperands(Inst, 2);
4194  // Vm
4195  ((ARMOperand*)Operands[5])->addRegOperands(Inst, 1);
4196  // Vt
4197  ((ARMOperand*)Operands[3])->addVecListOperands(Inst, 1);
4198  // pred
4199  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4200}
4201
4202/// Parse an ARM memory expression, return false if successful else return true
4203/// or an error.  The first token must be a '[' when called.
4204bool ARMAsmParser::
4205parseMemory(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4206  SMLoc S, E;
4207  assert(Parser.getTok().is(AsmToken::LBrac) &&
4208         "Token is not a Left Bracket");
4209  S = Parser.getTok().getLoc();
4210  Parser.Lex(); // Eat left bracket token.
4211
4212  const AsmToken &BaseRegTok = Parser.getTok();
4213  int BaseRegNum = tryParseRegister();
4214  if (BaseRegNum == -1)
4215    return Error(BaseRegTok.getLoc(), "register expected");
4216
4217  // The next token must either be a comma or a closing bracket.
4218  const AsmToken &Tok = Parser.getTok();
4219  if (!Tok.is(AsmToken::Comma) && !Tok.is(AsmToken::RBrac))
4220    return Error(Tok.getLoc(), "malformed memory operand");
4221
4222  if (Tok.is(AsmToken::RBrac)) {
4223    E = Tok.getLoc();
4224    Parser.Lex(); // Eat right bracket token.
4225
4226    Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, 0, ARM_AM::no_shift,
4227                                             0, 0, false, S, E));
4228
4229    // If there's a pre-indexing writeback marker, '!', just add it as a token
4230    // operand. It's rather odd, but syntactically valid.
4231    if (Parser.getTok().is(AsmToken::Exclaim)) {
4232      Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
4233      Parser.Lex(); // Eat the '!'.
4234    }
4235
4236    return false;
4237  }
4238
4239  assert(Tok.is(AsmToken::Comma) && "Lost comma in memory operand?!");
4240  Parser.Lex(); // Eat the comma.
4241
4242  // If we have a ':', it's an alignment specifier.
4243  if (Parser.getTok().is(AsmToken::Colon)) {
4244    Parser.Lex(); // Eat the ':'.
4245    E = Parser.getTok().getLoc();
4246
4247    const MCExpr *Expr;
4248    if (getParser().ParseExpression(Expr))
4249     return true;
4250
4251    // The expression has to be a constant. Memory references with relocations
4252    // don't come through here, as they use the <label> forms of the relevant
4253    // instructions.
4254    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
4255    if (!CE)
4256      return Error (E, "constant expression expected");
4257
4258    unsigned Align = 0;
4259    switch (CE->getValue()) {
4260    default:
4261      return Error(E,
4262                   "alignment specifier must be 16, 32, 64, 128, or 256 bits");
4263    case 16:  Align = 2; break;
4264    case 32:  Align = 4; break;
4265    case 64:  Align = 8; break;
4266    case 128: Align = 16; break;
4267    case 256: Align = 32; break;
4268    }
4269
4270    // Now we should have the closing ']'
4271    E = Parser.getTok().getLoc();
4272    if (Parser.getTok().isNot(AsmToken::RBrac))
4273      return Error(E, "']' expected");
4274    Parser.Lex(); // Eat right bracket token.
4275
4276    // Don't worry about range checking the value here. That's handled by
4277    // the is*() predicates.
4278    Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, 0,
4279                                             ARM_AM::no_shift, 0, Align,
4280                                             false, S, E));
4281
4282    // If there's a pre-indexing writeback marker, '!', just add it as a token
4283    // operand.
4284    if (Parser.getTok().is(AsmToken::Exclaim)) {
4285      Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
4286      Parser.Lex(); // Eat the '!'.
4287    }
4288
4289    return false;
4290  }
4291
4292  // If we have a '#', it's an immediate offset, else assume it's a register
4293  // offset. Be friendly and also accept a plain integer (without a leading
4294  // hash) for gas compatibility.
4295  if (Parser.getTok().is(AsmToken::Hash) ||
4296      Parser.getTok().is(AsmToken::Dollar) ||
4297      Parser.getTok().is(AsmToken::Integer)) {
4298    if (Parser.getTok().isNot(AsmToken::Integer))
4299      Parser.Lex(); // Eat the '#'.
4300    E = Parser.getTok().getLoc();
4301
4302    bool isNegative = getParser().getTok().is(AsmToken::Minus);
4303    const MCExpr *Offset;
4304    if (getParser().ParseExpression(Offset))
4305     return true;
4306
4307    // The expression has to be a constant. Memory references with relocations
4308    // don't come through here, as they use the <label> forms of the relevant
4309    // instructions.
4310    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
4311    if (!CE)
4312      return Error (E, "constant expression expected");
4313
4314    // If the constant was #-0, represent it as INT32_MIN.
4315    int32_t Val = CE->getValue();
4316    if (isNegative && Val == 0)
4317      CE = MCConstantExpr::Create(INT32_MIN, getContext());
4318
4319    // Now we should have the closing ']'
4320    E = Parser.getTok().getLoc();
4321    if (Parser.getTok().isNot(AsmToken::RBrac))
4322      return Error(E, "']' expected");
4323    Parser.Lex(); // Eat right bracket token.
4324
4325    // Don't worry about range checking the value here. That's handled by
4326    // the is*() predicates.
4327    Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0,
4328                                             ARM_AM::no_shift, 0, 0,
4329                                             false, S, E));
4330
4331    // If there's a pre-indexing writeback marker, '!', just add it as a token
4332    // operand.
4333    if (Parser.getTok().is(AsmToken::Exclaim)) {
4334      Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
4335      Parser.Lex(); // Eat the '!'.
4336    }
4337
4338    return false;
4339  }
4340
4341  // The register offset is optionally preceded by a '+' or '-'
4342  bool isNegative = false;
4343  if (Parser.getTok().is(AsmToken::Minus)) {
4344    isNegative = true;
4345    Parser.Lex(); // Eat the '-'.
4346  } else if (Parser.getTok().is(AsmToken::Plus)) {
4347    // Nothing to do.
4348    Parser.Lex(); // Eat the '+'.
4349  }
4350
4351  E = Parser.getTok().getLoc();
4352  int OffsetRegNum = tryParseRegister();
4353  if (OffsetRegNum == -1)
4354    return Error(E, "register expected");
4355
4356  // If there's a shift operator, handle it.
4357  ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift;
4358  unsigned ShiftImm = 0;
4359  if (Parser.getTok().is(AsmToken::Comma)) {
4360    Parser.Lex(); // Eat the ','.
4361    if (parseMemRegOffsetShift(ShiftType, ShiftImm))
4362      return true;
4363  }
4364
4365  // Now we should have the closing ']'
4366  E = Parser.getTok().getLoc();
4367  if (Parser.getTok().isNot(AsmToken::RBrac))
4368    return Error(E, "']' expected");
4369  Parser.Lex(); // Eat right bracket token.
4370
4371  Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, OffsetRegNum,
4372                                           ShiftType, ShiftImm, 0, isNegative,
4373                                           S, E));
4374
4375  // If there's a pre-indexing writeback marker, '!', just add it as a token
4376  // operand.
4377  if (Parser.getTok().is(AsmToken::Exclaim)) {
4378    Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
4379    Parser.Lex(); // Eat the '!'.
4380  }
4381
4382  return false;
4383}
4384
4385/// parseMemRegOffsetShift - one of these two:
4386///   ( lsl | lsr | asr | ror ) , # shift_amount
4387///   rrx
4388/// return true if it parses a shift otherwise it returns false.
4389bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St,
4390                                          unsigned &Amount) {
4391  SMLoc Loc = Parser.getTok().getLoc();
4392  const AsmToken &Tok = Parser.getTok();
4393  if (Tok.isNot(AsmToken::Identifier))
4394    return true;
4395  StringRef ShiftName = Tok.getString();
4396  if (ShiftName == "lsl" || ShiftName == "LSL" ||
4397      ShiftName == "asl" || ShiftName == "ASL")
4398    St = ARM_AM::lsl;
4399  else if (ShiftName == "lsr" || ShiftName == "LSR")
4400    St = ARM_AM::lsr;
4401  else if (ShiftName == "asr" || ShiftName == "ASR")
4402    St = ARM_AM::asr;
4403  else if (ShiftName == "ror" || ShiftName == "ROR")
4404    St = ARM_AM::ror;
4405  else if (ShiftName == "rrx" || ShiftName == "RRX")
4406    St = ARM_AM::rrx;
4407  else
4408    return Error(Loc, "illegal shift operator");
4409  Parser.Lex(); // Eat shift type token.
4410
4411  // rrx stands alone.
4412  Amount = 0;
4413  if (St != ARM_AM::rrx) {
4414    Loc = Parser.getTok().getLoc();
4415    // A '#' and a shift amount.
4416    const AsmToken &HashTok = Parser.getTok();
4417    if (HashTok.isNot(AsmToken::Hash) &&
4418        HashTok.isNot(AsmToken::Dollar))
4419      return Error(HashTok.getLoc(), "'#' expected");
4420    Parser.Lex(); // Eat hash token.
4421
4422    const MCExpr *Expr;
4423    if (getParser().ParseExpression(Expr))
4424      return true;
4425    // Range check the immediate.
4426    // lsl, ror: 0 <= imm <= 31
4427    // lsr, asr: 0 <= imm <= 32
4428    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
4429    if (!CE)
4430      return Error(Loc, "shift amount must be an immediate");
4431    int64_t Imm = CE->getValue();
4432    if (Imm < 0 ||
4433        ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) ||
4434        ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32))
4435      return Error(Loc, "immediate shift value out of range");
4436    Amount = Imm;
4437  }
4438
4439  return false;
4440}
4441
4442/// parseFPImm - A floating point immediate expression operand.
4443ARMAsmParser::OperandMatchResultTy ARMAsmParser::
4444parseFPImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4445  // Anything that can accept a floating point constant as an operand
4446  // needs to go through here, as the regular ParseExpression is
4447  // integer only.
4448  //
4449  // This routine still creates a generic Immediate operand, containing
4450  // a bitcast of the 64-bit floating point value. The various operands
4451  // that accept floats can check whether the value is valid for them
4452  // via the standard is*() predicates.
4453
4454  SMLoc S = Parser.getTok().getLoc();
4455
4456  if (Parser.getTok().isNot(AsmToken::Hash) &&
4457      Parser.getTok().isNot(AsmToken::Dollar))
4458    return MatchOperand_NoMatch;
4459
4460  // Disambiguate the VMOV forms that can accept an FP immediate.
4461  // vmov.f32 <sreg>, #imm
4462  // vmov.f64 <dreg>, #imm
4463  // vmov.f32 <dreg>, #imm  @ vector f32x2
4464  // vmov.f32 <qreg>, #imm  @ vector f32x4
4465  //
4466  // There are also the NEON VMOV instructions which expect an
4467  // integer constant. Make sure we don't try to parse an FPImm
4468  // for these:
4469  // vmov.i{8|16|32|64} <dreg|qreg>, #imm
4470  ARMOperand *TyOp = static_cast<ARMOperand*>(Operands[2]);
4471  if (!TyOp->isToken() || (TyOp->getToken() != ".f32" &&
4472                           TyOp->getToken() != ".f64"))
4473    return MatchOperand_NoMatch;
4474
4475  Parser.Lex(); // Eat the '#'.
4476
4477  // Handle negation, as that still comes through as a separate token.
4478  bool isNegative = false;
4479  if (Parser.getTok().is(AsmToken::Minus)) {
4480    isNegative = true;
4481    Parser.Lex();
4482  }
4483  const AsmToken &Tok = Parser.getTok();
4484  SMLoc Loc = Tok.getLoc();
4485  if (Tok.is(AsmToken::Real)) {
4486    APFloat RealVal(APFloat::IEEEsingle, Tok.getString());
4487    uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
4488    // If we had a '-' in front, toggle the sign bit.
4489    IntVal ^= (uint64_t)isNegative << 31;
4490    Parser.Lex(); // Eat the token.
4491    Operands.push_back(ARMOperand::CreateImm(
4492          MCConstantExpr::Create(IntVal, getContext()),
4493          S, Parser.getTok().getLoc()));
4494    return MatchOperand_Success;
4495  }
4496  // Also handle plain integers. Instructions which allow floating point
4497  // immediates also allow a raw encoded 8-bit value.
4498  if (Tok.is(AsmToken::Integer)) {
4499    int64_t Val = Tok.getIntVal();
4500    Parser.Lex(); // Eat the token.
4501    if (Val > 255 || Val < 0) {
4502      Error(Loc, "encoded floating point value out of range");
4503      return MatchOperand_ParseFail;
4504    }
4505    double RealVal = ARM_AM::getFPImmFloat(Val);
4506    Val = APFloat(APFloat::IEEEdouble, RealVal).bitcastToAPInt().getZExtValue();
4507    Operands.push_back(ARMOperand::CreateImm(
4508        MCConstantExpr::Create(Val, getContext()), S,
4509        Parser.getTok().getLoc()));
4510    return MatchOperand_Success;
4511  }
4512
4513  Error(Loc, "invalid floating point immediate");
4514  return MatchOperand_ParseFail;
4515}
4516
4517/// Parse a arm instruction operand.  For now this parses the operand regardless
4518/// of the mnemonic.
4519bool ARMAsmParser::parseOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
4520                                StringRef Mnemonic) {
4521  SMLoc S, E;
4522
4523  // Check if the current operand has a custom associated parser, if so, try to
4524  // custom parse the operand, or fallback to the general approach.
4525  OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
4526  if (ResTy == MatchOperand_Success)
4527    return false;
4528  // If there wasn't a custom match, try the generic matcher below. Otherwise,
4529  // there was a match, but an error occurred, in which case, just return that
4530  // the operand parsing failed.
4531  if (ResTy == MatchOperand_ParseFail)
4532    return true;
4533
4534  switch (getLexer().getKind()) {
4535  default:
4536    Error(Parser.getTok().getLoc(), "unexpected token in operand");
4537    return true;
4538  case AsmToken::Identifier: {
4539    if (!tryParseRegisterWithWriteBack(Operands))
4540      return false;
4541    int Res = tryParseShiftRegister(Operands);
4542    if (Res == 0) // success
4543      return false;
4544    else if (Res == -1) // irrecoverable error
4545      return true;
4546    // If this is VMRS, check for the apsr_nzcv operand.
4547    if (Mnemonic == "vmrs" &&
4548        Parser.getTok().getString().equals_lower("apsr_nzcv")) {
4549      S = Parser.getTok().getLoc();
4550      Parser.Lex();
4551      Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S));
4552      return false;
4553    }
4554
4555    // Fall though for the Identifier case that is not a register or a
4556    // special name.
4557  }
4558  case AsmToken::LParen:  // parenthesized expressions like (_strcmp-4)
4559  case AsmToken::Integer: // things like 1f and 2b as a branch targets
4560  case AsmToken::String:  // quoted label names.
4561  case AsmToken::Dot: {   // . as a branch target
4562    // This was not a register so parse other operands that start with an
4563    // identifier (like labels) as expressions and create them as immediates.
4564    const MCExpr *IdVal;
4565    S = Parser.getTok().getLoc();
4566    if (getParser().ParseExpression(IdVal))
4567      return true;
4568    E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
4569    Operands.push_back(ARMOperand::CreateImm(IdVal, S, E));
4570    return false;
4571  }
4572  case AsmToken::LBrac:
4573    return parseMemory(Operands);
4574  case AsmToken::LCurly:
4575    return parseRegisterList(Operands);
4576  case AsmToken::Dollar:
4577  case AsmToken::Hash: {
4578    // #42 -> immediate.
4579    S = Parser.getTok().getLoc();
4580    Parser.Lex();
4581
4582    if (Parser.getTok().isNot(AsmToken::Colon)) {
4583      bool isNegative = Parser.getTok().is(AsmToken::Minus);
4584      const MCExpr *ImmVal;
4585      if (getParser().ParseExpression(ImmVal))
4586        return true;
4587      const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal);
4588      if (CE) {
4589        int32_t Val = CE->getValue();
4590        if (isNegative && Val == 0)
4591          ImmVal = MCConstantExpr::Create(INT32_MIN, getContext());
4592      }
4593      E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
4594      Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E));
4595      return false;
4596    }
4597    // w/ a ':' after the '#', it's just like a plain ':'.
4598    // FALLTHROUGH
4599  }
4600  case AsmToken::Colon: {
4601    // ":lower16:" and ":upper16:" expression prefixes
4602    // FIXME: Check it's an expression prefix,
4603    // e.g. (FOO - :lower16:BAR) isn't legal.
4604    ARMMCExpr::VariantKind RefKind;
4605    if (parsePrefix(RefKind))
4606      return true;
4607
4608    const MCExpr *SubExprVal;
4609    if (getParser().ParseExpression(SubExprVal))
4610      return true;
4611
4612    const MCExpr *ExprVal = ARMMCExpr::Create(RefKind, SubExprVal,
4613                                                   getContext());
4614    E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
4615    Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E));
4616    return false;
4617  }
4618  }
4619}
4620
4621// parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
4622//  :lower16: and :upper16:.
4623bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) {
4624  RefKind = ARMMCExpr::VK_ARM_None;
4625
4626  // :lower16: and :upper16: modifiers
4627  assert(getLexer().is(AsmToken::Colon) && "expected a :");
4628  Parser.Lex(); // Eat ':'
4629
4630  if (getLexer().isNot(AsmToken::Identifier)) {
4631    Error(Parser.getTok().getLoc(), "expected prefix identifier in operand");
4632    return true;
4633  }
4634
4635  StringRef IDVal = Parser.getTok().getIdentifier();
4636  if (IDVal == "lower16") {
4637    RefKind = ARMMCExpr::VK_ARM_LO16;
4638  } else if (IDVal == "upper16") {
4639    RefKind = ARMMCExpr::VK_ARM_HI16;
4640  } else {
4641    Error(Parser.getTok().getLoc(), "unexpected prefix in operand");
4642    return true;
4643  }
4644  Parser.Lex();
4645
4646  if (getLexer().isNot(AsmToken::Colon)) {
4647    Error(Parser.getTok().getLoc(), "unexpected token after prefix");
4648    return true;
4649  }
4650  Parser.Lex(); // Eat the last ':'
4651  return false;
4652}
4653
4654/// \brief Given a mnemonic, split out possible predication code and carry
4655/// setting letters to form a canonical mnemonic and flags.
4656//
4657// FIXME: Would be nice to autogen this.
4658// FIXME: This is a bit of a maze of special cases.
4659StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic,
4660                                      unsigned &PredicationCode,
4661                                      bool &CarrySetting,
4662                                      unsigned &ProcessorIMod,
4663                                      StringRef &ITMask) {
4664  PredicationCode = ARMCC::AL;
4665  CarrySetting = false;
4666  ProcessorIMod = 0;
4667
4668  // Ignore some mnemonics we know aren't predicated forms.
4669  //
4670  // FIXME: Would be nice to autogen this.
4671  if ((Mnemonic == "movs" && isThumb()) ||
4672      Mnemonic == "teq"   || Mnemonic == "vceq"   || Mnemonic == "svc"   ||
4673      Mnemonic == "mls"   || Mnemonic == "smmls"  || Mnemonic == "vcls"  ||
4674      Mnemonic == "vmls"  || Mnemonic == "vnmls"  || Mnemonic == "vacge" ||
4675      Mnemonic == "vcge"  || Mnemonic == "vclt"   || Mnemonic == "vacgt" ||
4676      Mnemonic == "vcgt"  || Mnemonic == "vcle"   || Mnemonic == "smlal" ||
4677      Mnemonic == "umaal" || Mnemonic == "umlal"  || Mnemonic == "vabal" ||
4678      Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" ||
4679      Mnemonic == "fmuls")
4680    return Mnemonic;
4681
4682  // First, split out any predication code. Ignore mnemonics we know aren't
4683  // predicated but do have a carry-set and so weren't caught above.
4684  if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" &&
4685      Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" &&
4686      Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" &&
4687      Mnemonic != "sbcs" && Mnemonic != "rscs") {
4688    unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2))
4689      .Case("eq", ARMCC::EQ)
4690      .Case("ne", ARMCC::NE)
4691      .Case("hs", ARMCC::HS)
4692      .Case("cs", ARMCC::HS)
4693      .Case("lo", ARMCC::LO)
4694      .Case("cc", ARMCC::LO)
4695      .Case("mi", ARMCC::MI)
4696      .Case("pl", ARMCC::PL)
4697      .Case("vs", ARMCC::VS)
4698      .Case("vc", ARMCC::VC)
4699      .Case("hi", ARMCC::HI)
4700      .Case("ls", ARMCC::LS)
4701      .Case("ge", ARMCC::GE)
4702      .Case("lt", ARMCC::LT)
4703      .Case("gt", ARMCC::GT)
4704      .Case("le", ARMCC::LE)
4705      .Case("al", ARMCC::AL)
4706      .Default(~0U);
4707    if (CC != ~0U) {
4708      Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2);
4709      PredicationCode = CC;
4710    }
4711  }
4712
4713  // Next, determine if we have a carry setting bit. We explicitly ignore all
4714  // the instructions we know end in 's'.
4715  if (Mnemonic.endswith("s") &&
4716      !(Mnemonic == "cps" || Mnemonic == "mls" ||
4717        Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" ||
4718        Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" ||
4719        Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" ||
4720        Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" ||
4721        Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" ||
4722        Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" ||
4723        Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" ||
4724        Mnemonic == "vfms" || Mnemonic == "vfnms" ||
4725        (Mnemonic == "movs" && isThumb()))) {
4726    Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1);
4727    CarrySetting = true;
4728  }
4729
4730  // The "cps" instruction can have a interrupt mode operand which is glued into
4731  // the mnemonic. Check if this is the case, split it and parse the imod op
4732  if (Mnemonic.startswith("cps")) {
4733    // Split out any imod code.
4734    unsigned IMod =
4735      StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2))
4736      .Case("ie", ARM_PROC::IE)
4737      .Case("id", ARM_PROC::ID)
4738      .Default(~0U);
4739    if (IMod != ~0U) {
4740      Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2);
4741      ProcessorIMod = IMod;
4742    }
4743  }
4744
4745  // The "it" instruction has the condition mask on the end of the mnemonic.
4746  if (Mnemonic.startswith("it")) {
4747    ITMask = Mnemonic.slice(2, Mnemonic.size());
4748    Mnemonic = Mnemonic.slice(0, 2);
4749  }
4750
4751  return Mnemonic;
4752}
4753
4754/// \brief Given a canonical mnemonic, determine if the instruction ever allows
4755/// inclusion of carry set or predication code operands.
4756//
4757// FIXME: It would be nice to autogen this.
4758void ARMAsmParser::
4759getMnemonicAcceptInfo(StringRef Mnemonic, bool &CanAcceptCarrySet,
4760                      bool &CanAcceptPredicationCode) {
4761  if (Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
4762      Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" ||
4763      Mnemonic == "add" || Mnemonic == "adc" ||
4764      Mnemonic == "mul" || Mnemonic == "bic" || Mnemonic == "asr" ||
4765      Mnemonic == "orr" || Mnemonic == "mvn" ||
4766      Mnemonic == "rsb" || Mnemonic == "rsc" || Mnemonic == "orn" ||
4767      Mnemonic == "sbc" || Mnemonic == "eor" || Mnemonic == "neg" ||
4768      Mnemonic == "vfm" || Mnemonic == "vfnm" ||
4769      (!isThumb() && (Mnemonic == "smull" || Mnemonic == "mov" ||
4770                      Mnemonic == "mla" || Mnemonic == "smlal" ||
4771                      Mnemonic == "umlal" || Mnemonic == "umull"))) {
4772    CanAcceptCarrySet = true;
4773  } else
4774    CanAcceptCarrySet = false;
4775
4776  if (Mnemonic == "cbnz" || Mnemonic == "setend" || Mnemonic == "dmb" ||
4777      Mnemonic == "cps" || Mnemonic == "mcr2" || Mnemonic == "it" ||
4778      Mnemonic == "mcrr2" || Mnemonic == "cbz" || Mnemonic == "cdp2" ||
4779      Mnemonic == "trap" || Mnemonic == "mrc2" || Mnemonic == "mrrc2" ||
4780      Mnemonic == "dsb" || Mnemonic == "isb" || Mnemonic == "setend" ||
4781      (Mnemonic == "clrex" && !isThumb()) ||
4782      (Mnemonic == "nop" && isThumbOne()) ||
4783      ((Mnemonic == "pld" || Mnemonic == "pli" || Mnemonic == "pldw" ||
4784        Mnemonic == "ldc2" || Mnemonic == "ldc2l" ||
4785        Mnemonic == "stc2" || Mnemonic == "stc2l") && !isThumb()) ||
4786      ((Mnemonic.startswith("rfe") || Mnemonic.startswith("srs")) &&
4787       !isThumb()) ||
4788      Mnemonic.startswith("cps") || (Mnemonic == "movs" && isThumbOne())) {
4789    CanAcceptPredicationCode = false;
4790  } else
4791    CanAcceptPredicationCode = true;
4792
4793  if (isThumb()) {
4794    if (Mnemonic == "bkpt" || Mnemonic == "mcr" || Mnemonic == "mcrr" ||
4795        Mnemonic == "mrc" || Mnemonic == "mrrc" || Mnemonic == "cdp")
4796      CanAcceptPredicationCode = false;
4797  }
4798}
4799
4800bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic,
4801                               SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4802  // FIXME: This is all horribly hacky. We really need a better way to deal
4803  // with optional operands like this in the matcher table.
4804
4805  // The 'mov' mnemonic is special. One variant has a cc_out operand, while
4806  // another does not. Specifically, the MOVW instruction does not. So we
4807  // special case it here and remove the defaulted (non-setting) cc_out
4808  // operand if that's the instruction we're trying to match.
4809  //
4810  // We do this as post-processing of the explicit operands rather than just
4811  // conditionally adding the cc_out in the first place because we need
4812  // to check the type of the parsed immediate operand.
4813  if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() &&
4814      !static_cast<ARMOperand*>(Operands[4])->isARMSOImm() &&
4815      static_cast<ARMOperand*>(Operands[4])->isImm0_65535Expr() &&
4816      static_cast<ARMOperand*>(Operands[1])->getReg() == 0)
4817    return true;
4818
4819  // Register-register 'add' for thumb does not have a cc_out operand
4820  // when there are only two register operands.
4821  if (isThumb() && Mnemonic == "add" && Operands.size() == 5 &&
4822      static_cast<ARMOperand*>(Operands[3])->isReg() &&
4823      static_cast<ARMOperand*>(Operands[4])->isReg() &&
4824      static_cast<ARMOperand*>(Operands[1])->getReg() == 0)
4825    return true;
4826  // Register-register 'add' for thumb does not have a cc_out operand
4827  // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do
4828  // have to check the immediate range here since Thumb2 has a variant
4829  // that can handle a different range and has a cc_out operand.
4830  if (((isThumb() && Mnemonic == "add") ||
4831       (isThumbTwo() && Mnemonic == "sub")) &&
4832      Operands.size() == 6 &&
4833      static_cast<ARMOperand*>(Operands[3])->isReg() &&
4834      static_cast<ARMOperand*>(Operands[4])->isReg() &&
4835      static_cast<ARMOperand*>(Operands[4])->getReg() == ARM::SP &&
4836      static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
4837      ((Mnemonic == "add" &&static_cast<ARMOperand*>(Operands[5])->isReg()) ||
4838       static_cast<ARMOperand*>(Operands[5])->isImm0_1020s4()))
4839    return true;
4840  // For Thumb2, add/sub immediate does not have a cc_out operand for the
4841  // imm0_4095 variant. That's the least-preferred variant when
4842  // selecting via the generic "add" mnemonic, so to know that we
4843  // should remove the cc_out operand, we have to explicitly check that
4844  // it's not one of the other variants. Ugh.
4845  if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") &&
4846      Operands.size() == 6 &&
4847      static_cast<ARMOperand*>(Operands[3])->isReg() &&
4848      static_cast<ARMOperand*>(Operands[4])->isReg() &&
4849      static_cast<ARMOperand*>(Operands[5])->isImm()) {
4850    // Nest conditions rather than one big 'if' statement for readability.
4851    //
4852    // If either register is a high reg, it's either one of the SP
4853    // variants (handled above) or a 32-bit encoding, so we just
4854    // check against T3. If the second register is the PC, this is an
4855    // alternate form of ADR, which uses encoding T4, so check for that too.
4856    if ((!isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) ||
4857         !isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg())) &&
4858        static_cast<ARMOperand*>(Operands[4])->getReg() != ARM::PC &&
4859        static_cast<ARMOperand*>(Operands[5])->isT2SOImm())
4860      return false;
4861    // If both registers are low, we're in an IT block, and the immediate is
4862    // in range, we should use encoding T1 instead, which has a cc_out.
4863    if (inITBlock() &&
4864        isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) &&
4865        isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) &&
4866        static_cast<ARMOperand*>(Operands[5])->isImm0_7())
4867      return false;
4868
4869    // Otherwise, we use encoding T4, which does not have a cc_out
4870    // operand.
4871    return true;
4872  }
4873
4874  // The thumb2 multiply instruction doesn't have a CCOut register, so
4875  // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to
4876  // use the 16-bit encoding or not.
4877  if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 &&
4878      static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
4879      static_cast<ARMOperand*>(Operands[3])->isReg() &&
4880      static_cast<ARMOperand*>(Operands[4])->isReg() &&
4881      static_cast<ARMOperand*>(Operands[5])->isReg() &&
4882      // If the registers aren't low regs, the destination reg isn't the
4883      // same as one of the source regs, or the cc_out operand is zero
4884      // outside of an IT block, we have to use the 32-bit encoding, so
4885      // remove the cc_out operand.
4886      (!isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) ||
4887       !isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) ||
4888       !isARMLowRegister(static_cast<ARMOperand*>(Operands[5])->getReg()) ||
4889       !inITBlock() ||
4890       (static_cast<ARMOperand*>(Operands[3])->getReg() !=
4891        static_cast<ARMOperand*>(Operands[5])->getReg() &&
4892        static_cast<ARMOperand*>(Operands[3])->getReg() !=
4893        static_cast<ARMOperand*>(Operands[4])->getReg())))
4894    return true;
4895
4896  // Also check the 'mul' syntax variant that doesn't specify an explicit
4897  // destination register.
4898  if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 &&
4899      static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
4900      static_cast<ARMOperand*>(Operands[3])->isReg() &&
4901      static_cast<ARMOperand*>(Operands[4])->isReg() &&
4902      // If the registers aren't low regs  or the cc_out operand is zero
4903      // outside of an IT block, we have to use the 32-bit encoding, so
4904      // remove the cc_out operand.
4905      (!isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) ||
4906       !isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) ||
4907       !inITBlock()))
4908    return true;
4909
4910
4911
4912  // Register-register 'add/sub' for thumb does not have a cc_out operand
4913  // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also
4914  // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't
4915  // right, this will result in better diagnostics (which operand is off)
4916  // anyway.
4917  if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") &&
4918      (Operands.size() == 5 || Operands.size() == 6) &&
4919      static_cast<ARMOperand*>(Operands[3])->isReg() &&
4920      static_cast<ARMOperand*>(Operands[3])->getReg() == ARM::SP &&
4921      static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
4922      (static_cast<ARMOperand*>(Operands[4])->isImm() ||
4923       (Operands.size() == 6 &&
4924        static_cast<ARMOperand*>(Operands[5])->isImm())))
4925    return true;
4926
4927  return false;
4928}
4929
4930static bool isDataTypeToken(StringRef Tok) {
4931  return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" ||
4932    Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" ||
4933    Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" ||
4934    Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" ||
4935    Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" ||
4936    Tok == ".f" || Tok == ".d";
4937}
4938
4939// FIXME: This bit should probably be handled via an explicit match class
4940// in the .td files that matches the suffix instead of having it be
4941// a literal string token the way it is now.
4942static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) {
4943  return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm");
4944}
4945
4946static void applyMnemonicAliases(StringRef &Mnemonic, unsigned Features);
4947/// Parse an arm instruction mnemonic followed by its operands.
4948bool ARMAsmParser::ParseInstruction(StringRef Name, SMLoc NameLoc,
4949                               SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4950  // Apply mnemonic aliases before doing anything else, as the destination
4951  // mnemnonic may include suffices and we want to handle them normally.
4952  // The generic tblgen'erated code does this later, at the start of
4953  // MatchInstructionImpl(), but that's too late for aliases that include
4954  // any sort of suffix.
4955  unsigned AvailableFeatures = getAvailableFeatures();
4956  applyMnemonicAliases(Name, AvailableFeatures);
4957
4958  // First check for the ARM-specific .req directive.
4959  if (Parser.getTok().is(AsmToken::Identifier) &&
4960      Parser.getTok().getIdentifier() == ".req") {
4961    parseDirectiveReq(Name, NameLoc);
4962    // We always return 'error' for this, as we're done with this
4963    // statement and don't need to match the 'instruction."
4964    return true;
4965  }
4966
4967  // Create the leading tokens for the mnemonic, split by '.' characters.
4968  size_t Start = 0, Next = Name.find('.');
4969  StringRef Mnemonic = Name.slice(Start, Next);
4970
4971  // Split out the predication code and carry setting flag from the mnemonic.
4972  unsigned PredicationCode;
4973  unsigned ProcessorIMod;
4974  bool CarrySetting;
4975  StringRef ITMask;
4976  Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting,
4977                           ProcessorIMod, ITMask);
4978
4979  // In Thumb1, only the branch (B) instruction can be predicated.
4980  if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") {
4981    Parser.EatToEndOfStatement();
4982    return Error(NameLoc, "conditional execution not supported in Thumb1");
4983  }
4984
4985  Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc));
4986
4987  // Handle the IT instruction ITMask. Convert it to a bitmask. This
4988  // is the mask as it will be for the IT encoding if the conditional
4989  // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case
4990  // where the conditional bit0 is zero, the instruction post-processing
4991  // will adjust the mask accordingly.
4992  if (Mnemonic == "it") {
4993    SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2);
4994    if (ITMask.size() > 3) {
4995      Parser.EatToEndOfStatement();
4996      return Error(Loc, "too many conditions on IT instruction");
4997    }
4998    unsigned Mask = 8;
4999    for (unsigned i = ITMask.size(); i != 0; --i) {
5000      char pos = ITMask[i - 1];
5001      if (pos != 't' && pos != 'e') {
5002        Parser.EatToEndOfStatement();
5003        return Error(Loc, "illegal IT block condition mask '" + ITMask + "'");
5004      }
5005      Mask >>= 1;
5006      if (ITMask[i - 1] == 't')
5007        Mask |= 8;
5008    }
5009    Operands.push_back(ARMOperand::CreateITMask(Mask, Loc));
5010  }
5011
5012  // FIXME: This is all a pretty gross hack. We should automatically handle
5013  // optional operands like this via tblgen.
5014
5015  // Next, add the CCOut and ConditionCode operands, if needed.
5016  //
5017  // For mnemonics which can ever incorporate a carry setting bit or predication
5018  // code, our matching model involves us always generating CCOut and
5019  // ConditionCode operands to match the mnemonic "as written" and then we let
5020  // the matcher deal with finding the right instruction or generating an
5021  // appropriate error.
5022  bool CanAcceptCarrySet, CanAcceptPredicationCode;
5023  getMnemonicAcceptInfo(Mnemonic, CanAcceptCarrySet, CanAcceptPredicationCode);
5024
5025  // If we had a carry-set on an instruction that can't do that, issue an
5026  // error.
5027  if (!CanAcceptCarrySet && CarrySetting) {
5028    Parser.EatToEndOfStatement();
5029    return Error(NameLoc, "instruction '" + Mnemonic +
5030                 "' can not set flags, but 's' suffix specified");
5031  }
5032  // If we had a predication code on an instruction that can't do that, issue an
5033  // error.
5034  if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) {
5035    Parser.EatToEndOfStatement();
5036    return Error(NameLoc, "instruction '" + Mnemonic +
5037                 "' is not predicable, but condition code specified");
5038  }
5039
5040  // Add the carry setting operand, if necessary.
5041  if (CanAcceptCarrySet) {
5042    SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size());
5043    Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0,
5044                                               Loc));
5045  }
5046
5047  // Add the predication code operand, if necessary.
5048  if (CanAcceptPredicationCode) {
5049    SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
5050                                      CarrySetting);
5051    Operands.push_back(ARMOperand::CreateCondCode(
5052                         ARMCC::CondCodes(PredicationCode), Loc));
5053  }
5054
5055  // Add the processor imod operand, if necessary.
5056  if (ProcessorIMod) {
5057    Operands.push_back(ARMOperand::CreateImm(
5058          MCConstantExpr::Create(ProcessorIMod, getContext()),
5059                                 NameLoc, NameLoc));
5060  }
5061
5062  // Add the remaining tokens in the mnemonic.
5063  while (Next != StringRef::npos) {
5064    Start = Next;
5065    Next = Name.find('.', Start + 1);
5066    StringRef ExtraToken = Name.slice(Start, Next);
5067
5068    // Some NEON instructions have an optional datatype suffix that is
5069    // completely ignored. Check for that.
5070    if (isDataTypeToken(ExtraToken) &&
5071        doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken))
5072      continue;
5073
5074    if (ExtraToken != ".n") {
5075      SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
5076      Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc));
5077    }
5078  }
5079
5080  // Read the remaining operands.
5081  if (getLexer().isNot(AsmToken::EndOfStatement)) {
5082    // Read the first operand.
5083    if (parseOperand(Operands, Mnemonic)) {
5084      Parser.EatToEndOfStatement();
5085      return true;
5086    }
5087
5088    while (getLexer().is(AsmToken::Comma)) {
5089      Parser.Lex();  // Eat the comma.
5090
5091      // Parse and remember the operand.
5092      if (parseOperand(Operands, Mnemonic)) {
5093        Parser.EatToEndOfStatement();
5094        return true;
5095      }
5096    }
5097  }
5098
5099  if (getLexer().isNot(AsmToken::EndOfStatement)) {
5100    SMLoc Loc = getLexer().getLoc();
5101    Parser.EatToEndOfStatement();
5102    return Error(Loc, "unexpected token in argument list");
5103  }
5104
5105  Parser.Lex(); // Consume the EndOfStatement
5106
5107  // Some instructions, mostly Thumb, have forms for the same mnemonic that
5108  // do and don't have a cc_out optional-def operand. With some spot-checks
5109  // of the operand list, we can figure out which variant we're trying to
5110  // parse and adjust accordingly before actually matching. We shouldn't ever
5111  // try to remove a cc_out operand that was explicitly set on the the
5112  // mnemonic, of course (CarrySetting == true). Reason number #317 the
5113  // table driven matcher doesn't fit well with the ARM instruction set.
5114  if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) {
5115    ARMOperand *Op = static_cast<ARMOperand*>(Operands[1]);
5116    Operands.erase(Operands.begin() + 1);
5117    delete Op;
5118  }
5119
5120  // ARM mode 'blx' need special handling, as the register operand version
5121  // is predicable, but the label operand version is not. So, we can't rely
5122  // on the Mnemonic based checking to correctly figure out when to put
5123  // a k_CondCode operand in the list. If we're trying to match the label
5124  // version, remove the k_CondCode operand here.
5125  if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 &&
5126      static_cast<ARMOperand*>(Operands[2])->isImm()) {
5127    ARMOperand *Op = static_cast<ARMOperand*>(Operands[1]);
5128    Operands.erase(Operands.begin() + 1);
5129    delete Op;
5130  }
5131
5132  // The vector-compare-to-zero instructions have a literal token "#0" at
5133  // the end that comes to here as an immediate operand. Convert it to a
5134  // token to play nicely with the matcher.
5135  if ((Mnemonic == "vceq" || Mnemonic == "vcge" || Mnemonic == "vcgt" ||
5136      Mnemonic == "vcle" || Mnemonic == "vclt") && Operands.size() == 6 &&
5137      static_cast<ARMOperand*>(Operands[5])->isImm()) {
5138    ARMOperand *Op = static_cast<ARMOperand*>(Operands[5]);
5139    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op->getImm());
5140    if (CE && CE->getValue() == 0) {
5141      Operands.erase(Operands.begin() + 5);
5142      Operands.push_back(ARMOperand::CreateToken("#0", Op->getStartLoc()));
5143      delete Op;
5144    }
5145  }
5146  // VCMP{E} does the same thing, but with a different operand count.
5147  if ((Mnemonic == "vcmp" || Mnemonic == "vcmpe") && Operands.size() == 5 &&
5148      static_cast<ARMOperand*>(Operands[4])->isImm()) {
5149    ARMOperand *Op = static_cast<ARMOperand*>(Operands[4]);
5150    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op->getImm());
5151    if (CE && CE->getValue() == 0) {
5152      Operands.erase(Operands.begin() + 4);
5153      Operands.push_back(ARMOperand::CreateToken("#0", Op->getStartLoc()));
5154      delete Op;
5155    }
5156  }
5157  // Similarly, the Thumb1 "RSB" instruction has a literal "#0" on the
5158  // end. Convert it to a token here. Take care not to convert those
5159  // that should hit the Thumb2 encoding.
5160  if (Mnemonic == "rsb" && isThumb() && Operands.size() == 6 &&
5161      static_cast<ARMOperand*>(Operands[3])->isReg() &&
5162      static_cast<ARMOperand*>(Operands[4])->isReg() &&
5163      static_cast<ARMOperand*>(Operands[5])->isImm()) {
5164    ARMOperand *Op = static_cast<ARMOperand*>(Operands[5]);
5165    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op->getImm());
5166    if (CE && CE->getValue() == 0 &&
5167        (isThumbOne() ||
5168         // The cc_out operand matches the IT block.
5169         ((inITBlock() != CarrySetting) &&
5170         // Neither register operand is a high register.
5171         (isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) &&
5172          isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()))))){
5173      Operands.erase(Operands.begin() + 5);
5174      Operands.push_back(ARMOperand::CreateToken("#0", Op->getStartLoc()));
5175      delete Op;
5176    }
5177  }
5178
5179  return false;
5180}
5181
5182// Validate context-sensitive operand constraints.
5183
5184// return 'true' if register list contains non-low GPR registers,
5185// 'false' otherwise. If Reg is in the register list or is HiReg, set
5186// 'containsReg' to true.
5187static bool checkLowRegisterList(MCInst Inst, unsigned OpNo, unsigned Reg,
5188                                 unsigned HiReg, bool &containsReg) {
5189  containsReg = false;
5190  for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
5191    unsigned OpReg = Inst.getOperand(i).getReg();
5192    if (OpReg == Reg)
5193      containsReg = true;
5194    // Anything other than a low register isn't legal here.
5195    if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg))
5196      return true;
5197  }
5198  return false;
5199}
5200
5201// Check if the specified regisgter is in the register list of the inst,
5202// starting at the indicated operand number.
5203static bool listContainsReg(MCInst &Inst, unsigned OpNo, unsigned Reg) {
5204  for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
5205    unsigned OpReg = Inst.getOperand(i).getReg();
5206    if (OpReg == Reg)
5207      return true;
5208  }
5209  return false;
5210}
5211
5212// FIXME: We would really prefer to have MCInstrInfo (the wrapper around
5213// the ARMInsts array) instead. Getting that here requires awkward
5214// API changes, though. Better way?
5215namespace llvm {
5216extern const MCInstrDesc ARMInsts[];
5217}
5218static const MCInstrDesc &getInstDesc(unsigned Opcode) {
5219  return ARMInsts[Opcode];
5220}
5221
5222// FIXME: We would really like to be able to tablegen'erate this.
5223bool ARMAsmParser::
5224validateInstruction(MCInst &Inst,
5225                    const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
5226  const MCInstrDesc &MCID = getInstDesc(Inst.getOpcode());
5227  SMLoc Loc = Operands[0]->getStartLoc();
5228  // Check the IT block state first.
5229  // NOTE: BKPT instruction has the interesting property of being
5230  // allowed in IT blocks, but not being predicable.  It just always
5231  // executes.
5232  if (inITBlock() && Inst.getOpcode() != ARM::tBKPT &&
5233      Inst.getOpcode() != ARM::BKPT) {
5234    unsigned bit = 1;
5235    if (ITState.FirstCond)
5236      ITState.FirstCond = false;
5237    else
5238      bit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1;
5239    // The instruction must be predicable.
5240    if (!MCID.isPredicable())
5241      return Error(Loc, "instructions in IT block must be predicable");
5242    unsigned Cond = Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm();
5243    unsigned ITCond = bit ? ITState.Cond :
5244      ARMCC::getOppositeCondition(ITState.Cond);
5245    if (Cond != ITCond) {
5246      // Find the condition code Operand to get its SMLoc information.
5247      SMLoc CondLoc;
5248      for (unsigned i = 1; i < Operands.size(); ++i)
5249        if (static_cast<ARMOperand*>(Operands[i])->isCondCode())
5250          CondLoc = Operands[i]->getStartLoc();
5251      return Error(CondLoc, "incorrect condition in IT block; got '" +
5252                   StringRef(ARMCondCodeToString(ARMCC::CondCodes(Cond))) +
5253                   "', but expected '" +
5254                   ARMCondCodeToString(ARMCC::CondCodes(ITCond)) + "'");
5255    }
5256  // Check for non-'al' condition codes outside of the IT block.
5257  } else if (isThumbTwo() && MCID.isPredicable() &&
5258             Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
5259             ARMCC::AL && Inst.getOpcode() != ARM::tB &&
5260             Inst.getOpcode() != ARM::t2B)
5261    return Error(Loc, "predicated instructions must be in IT block");
5262
5263  switch (Inst.getOpcode()) {
5264  case ARM::LDRD:
5265  case ARM::LDRD_PRE:
5266  case ARM::LDRD_POST:
5267  case ARM::LDREXD: {
5268    // Rt2 must be Rt + 1.
5269    unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
5270    unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
5271    if (Rt2 != Rt + 1)
5272      return Error(Operands[3]->getStartLoc(),
5273                   "destination operands must be sequential");
5274    return false;
5275  }
5276  case ARM::STRD: {
5277    // Rt2 must be Rt + 1.
5278    unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
5279    unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
5280    if (Rt2 != Rt + 1)
5281      return Error(Operands[3]->getStartLoc(),
5282                   "source operands must be sequential");
5283    return false;
5284  }
5285  case ARM::STRD_PRE:
5286  case ARM::STRD_POST:
5287  case ARM::STREXD: {
5288    // Rt2 must be Rt + 1.
5289    unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg());
5290    unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(2).getReg());
5291    if (Rt2 != Rt + 1)
5292      return Error(Operands[3]->getStartLoc(),
5293                   "source operands must be sequential");
5294    return false;
5295  }
5296  case ARM::SBFX:
5297  case ARM::UBFX: {
5298    // width must be in range [1, 32-lsb]
5299    unsigned lsb = Inst.getOperand(2).getImm();
5300    unsigned widthm1 = Inst.getOperand(3).getImm();
5301    if (widthm1 >= 32 - lsb)
5302      return Error(Operands[5]->getStartLoc(),
5303                   "bitfield width must be in range [1,32-lsb]");
5304    return false;
5305  }
5306  case ARM::tLDMIA: {
5307    // If we're parsing Thumb2, the .w variant is available and handles
5308    // most cases that are normally illegal for a Thumb1 LDM
5309    // instruction. We'll make the transformation in processInstruction()
5310    // if necessary.
5311    //
5312    // Thumb LDM instructions are writeback iff the base register is not
5313    // in the register list.
5314    unsigned Rn = Inst.getOperand(0).getReg();
5315    bool hasWritebackToken =
5316      (static_cast<ARMOperand*>(Operands[3])->isToken() &&
5317       static_cast<ARMOperand*>(Operands[3])->getToken() == "!");
5318    bool listContainsBase;
5319    if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) && !isThumbTwo())
5320      return Error(Operands[3 + hasWritebackToken]->getStartLoc(),
5321                   "registers must be in range r0-r7");
5322    // If we should have writeback, then there should be a '!' token.
5323    if (!listContainsBase && !hasWritebackToken && !isThumbTwo())
5324      return Error(Operands[2]->getStartLoc(),
5325                   "writeback operator '!' expected");
5326    // If we should not have writeback, there must not be a '!'. This is
5327    // true even for the 32-bit wide encodings.
5328    if (listContainsBase && hasWritebackToken)
5329      return Error(Operands[3]->getStartLoc(),
5330                   "writeback operator '!' not allowed when base register "
5331                   "in register list");
5332
5333    break;
5334  }
5335  case ARM::t2LDMIA_UPD: {
5336    if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
5337      return Error(Operands[4]->getStartLoc(),
5338                   "writeback operator '!' not allowed when base register "
5339                   "in register list");
5340    break;
5341  }
5342  case ARM::tMUL: {
5343    // The second source operand must be the same register as the destination
5344    // operand.
5345    //
5346    // In this case, we must directly check the parsed operands because the
5347    // cvtThumbMultiply() function is written in such a way that it guarantees
5348    // this first statement is always true for the new Inst.  Essentially, the
5349    // destination is unconditionally copied into the second source operand
5350    // without checking to see if it matches what we actually parsed.
5351    if (Operands.size() == 6 &&
5352        (((ARMOperand*)Operands[3])->getReg() !=
5353         ((ARMOperand*)Operands[5])->getReg()) &&
5354        (((ARMOperand*)Operands[3])->getReg() !=
5355         ((ARMOperand*)Operands[4])->getReg())) {
5356      return Error(Operands[3]->getStartLoc(),
5357                   "destination register must match source register");
5358    }
5359    break;
5360  }
5361  // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2,
5362  // so only issue a diagnostic for thumb1. The instructions will be
5363  // switched to the t2 encodings in processInstruction() if necessary.
5364  case ARM::tPOP: {
5365    bool listContainsBase;
5366    if (checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase) &&
5367        !isThumbTwo())
5368      return Error(Operands[2]->getStartLoc(),
5369                   "registers must be in range r0-r7 or pc");
5370    break;
5371  }
5372  case ARM::tPUSH: {
5373    bool listContainsBase;
5374    if (checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase) &&
5375        !isThumbTwo())
5376      return Error(Operands[2]->getStartLoc(),
5377                   "registers must be in range r0-r7 or lr");
5378    break;
5379  }
5380  case ARM::tSTMIA_UPD: {
5381    bool listContainsBase;
5382    if (checkLowRegisterList(Inst, 4, 0, 0, listContainsBase) && !isThumbTwo())
5383      return Error(Operands[4]->getStartLoc(),
5384                   "registers must be in range r0-r7");
5385    break;
5386  }
5387  case ARM::tADDrSP: {
5388    // If the non-SP source operand and the destination operand are not the
5389    // same, we need thumb2 (for the wide encoding), or we have an error.
5390    if (!isThumbTwo() &&
5391        Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
5392      return Error(Operands[4]->getStartLoc(),
5393                   "source register must be the same as destination");
5394    }
5395    break;
5396  }
5397  }
5398
5399  return false;
5400}
5401
5402static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) {
5403  switch(Opc) {
5404  default: llvm_unreachable("unexpected opcode!");
5405  // VST1LN
5406  case ARM::VST1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
5407  case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
5408  case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
5409  case ARM::VST1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
5410  case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
5411  case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
5412  case ARM::VST1LNdAsm_8:  Spacing = 1; return ARM::VST1LNd8;
5413  case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16;
5414  case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32;
5415
5416  // VST2LN
5417  case ARM::VST2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
5418  case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
5419  case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
5420  case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
5421  case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
5422
5423  case ARM::VST2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
5424  case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
5425  case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
5426  case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
5427  case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
5428
5429  case ARM::VST2LNdAsm_8:  Spacing = 1; return ARM::VST2LNd8;
5430  case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16;
5431  case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32;
5432  case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16;
5433  case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32;
5434
5435  // VST3LN
5436  case ARM::VST3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
5437  case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
5438  case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
5439  case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD;
5440  case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
5441  case ARM::VST3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
5442  case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
5443  case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
5444  case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD;
5445  case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
5446  case ARM::VST3LNdAsm_8:  Spacing = 1; return ARM::VST3LNd8;
5447  case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16;
5448  case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32;
5449  case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16;
5450  case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32;
5451
5452  // VST3
5453  case ARM::VST3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
5454  case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
5455  case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
5456  case ARM::VST3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
5457  case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
5458  case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
5459  case ARM::VST3dWB_register_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
5460  case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
5461  case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
5462  case ARM::VST3qWB_register_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
5463  case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
5464  case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
5465  case ARM::VST3dAsm_8:  Spacing = 1; return ARM::VST3d8;
5466  case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16;
5467  case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32;
5468  case ARM::VST3qAsm_8:  Spacing = 2; return ARM::VST3q8;
5469  case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16;
5470  case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32;
5471
5472  // VST4LN
5473  case ARM::VST4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
5474  case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
5475  case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
5476  case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD;
5477  case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
5478  case ARM::VST4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
5479  case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
5480  case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
5481  case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD;
5482  case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
5483  case ARM::VST4LNdAsm_8:  Spacing = 1; return ARM::VST4LNd8;
5484  case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16;
5485  case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32;
5486  case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16;
5487  case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32;
5488
5489  // VST4
5490  case ARM::VST4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
5491  case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
5492  case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
5493  case ARM::VST4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
5494  case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
5495  case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
5496  case ARM::VST4dWB_register_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
5497  case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
5498  case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
5499  case ARM::VST4qWB_register_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
5500  case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
5501  case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
5502  case ARM::VST4dAsm_8:  Spacing = 1; return ARM::VST4d8;
5503  case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16;
5504  case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32;
5505  case ARM::VST4qAsm_8:  Spacing = 2; return ARM::VST4q8;
5506  case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16;
5507  case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32;
5508  }
5509}
5510
5511static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) {
5512  switch(Opc) {
5513  default: llvm_unreachable("unexpected opcode!");
5514  // VLD1LN
5515  case ARM::VLD1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
5516  case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
5517  case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
5518  case ARM::VLD1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
5519  case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
5520  case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
5521  case ARM::VLD1LNdAsm_8:  Spacing = 1; return ARM::VLD1LNd8;
5522  case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16;
5523  case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32;
5524
5525  // VLD2LN
5526  case ARM::VLD2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
5527  case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
5528  case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
5529  case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD;
5530  case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
5531  case ARM::VLD2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
5532  case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
5533  case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
5534  case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD;
5535  case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
5536  case ARM::VLD2LNdAsm_8:  Spacing = 1; return ARM::VLD2LNd8;
5537  case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16;
5538  case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32;
5539  case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16;
5540  case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32;
5541
5542  // VLD3DUP
5543  case ARM::VLD3DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
5544  case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
5545  case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
5546  case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD;
5547  case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPq16_UPD;
5548  case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
5549  case ARM::VLD3DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
5550  case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
5551  case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
5552  case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD;
5553  case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
5554  case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
5555  case ARM::VLD3DUPdAsm_8:  Spacing = 1; return ARM::VLD3DUPd8;
5556  case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16;
5557  case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32;
5558  case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8;
5559  case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16;
5560  case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32;
5561
5562  // VLD3LN
5563  case ARM::VLD3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
5564  case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
5565  case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
5566  case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD;
5567  case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
5568  case ARM::VLD3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
5569  case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
5570  case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
5571  case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD;
5572  case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
5573  case ARM::VLD3LNdAsm_8:  Spacing = 1; return ARM::VLD3LNd8;
5574  case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16;
5575  case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32;
5576  case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16;
5577  case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32;
5578
5579  // VLD3
5580  case ARM::VLD3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
5581  case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
5582  case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
5583  case ARM::VLD3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
5584  case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
5585  case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
5586  case ARM::VLD3dWB_register_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
5587  case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
5588  case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
5589  case ARM::VLD3qWB_register_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
5590  case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
5591  case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
5592  case ARM::VLD3dAsm_8:  Spacing = 1; return ARM::VLD3d8;
5593  case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16;
5594  case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32;
5595  case ARM::VLD3qAsm_8:  Spacing = 2; return ARM::VLD3q8;
5596  case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16;
5597  case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32;
5598
5599  // VLD4LN
5600  case ARM::VLD4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
5601  case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
5602  case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
5603  case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNq16_UPD;
5604  case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
5605  case ARM::VLD4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
5606  case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
5607  case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
5608  case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
5609  case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
5610  case ARM::VLD4LNdAsm_8:  Spacing = 1; return ARM::VLD4LNd8;
5611  case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16;
5612  case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32;
5613  case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16;
5614  case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32;
5615
5616  // VLD4DUP
5617  case ARM::VLD4DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
5618  case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
5619  case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
5620  case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD;
5621  case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD;
5622  case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
5623  case ARM::VLD4DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
5624  case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
5625  case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
5626  case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD;
5627  case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD;
5628  case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
5629  case ARM::VLD4DUPdAsm_8:  Spacing = 1; return ARM::VLD4DUPd8;
5630  case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16;
5631  case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32;
5632  case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8;
5633  case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16;
5634  case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32;
5635
5636  // VLD4
5637  case ARM::VLD4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
5638  case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
5639  case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
5640  case ARM::VLD4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
5641  case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
5642  case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
5643  case ARM::VLD4dWB_register_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
5644  case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
5645  case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
5646  case ARM::VLD4qWB_register_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
5647  case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
5648  case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
5649  case ARM::VLD4dAsm_8:  Spacing = 1; return ARM::VLD4d8;
5650  case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16;
5651  case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32;
5652  case ARM::VLD4qAsm_8:  Spacing = 2; return ARM::VLD4q8;
5653  case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16;
5654  case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32;
5655  }
5656}
5657
5658bool ARMAsmParser::
5659processInstruction(MCInst &Inst,
5660                   const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
5661  switch (Inst.getOpcode()) {
5662  // Aliases for alternate PC+imm syntax of LDR instructions.
5663  case ARM::t2LDRpcrel:
5664    Inst.setOpcode(ARM::t2LDRpci);
5665    return true;
5666  case ARM::t2LDRBpcrel:
5667    Inst.setOpcode(ARM::t2LDRBpci);
5668    return true;
5669  case ARM::t2LDRHpcrel:
5670    Inst.setOpcode(ARM::t2LDRHpci);
5671    return true;
5672  case ARM::t2LDRSBpcrel:
5673    Inst.setOpcode(ARM::t2LDRSBpci);
5674    return true;
5675  case ARM::t2LDRSHpcrel:
5676    Inst.setOpcode(ARM::t2LDRSHpci);
5677    return true;
5678  // Handle NEON VST complex aliases.
5679  case ARM::VST1LNdWB_register_Asm_8:
5680  case ARM::VST1LNdWB_register_Asm_16:
5681  case ARM::VST1LNdWB_register_Asm_32: {
5682    MCInst TmpInst;
5683    // Shuffle the operands around so the lane index operand is in the
5684    // right place.
5685    unsigned Spacing;
5686    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5687    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5688    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5689    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5690    TmpInst.addOperand(Inst.getOperand(4)); // Rm
5691    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5692    TmpInst.addOperand(Inst.getOperand(1)); // lane
5693    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
5694    TmpInst.addOperand(Inst.getOperand(6));
5695    Inst = TmpInst;
5696    return true;
5697  }
5698
5699  case ARM::VST2LNdWB_register_Asm_8:
5700  case ARM::VST2LNdWB_register_Asm_16:
5701  case ARM::VST2LNdWB_register_Asm_32:
5702  case ARM::VST2LNqWB_register_Asm_16:
5703  case ARM::VST2LNqWB_register_Asm_32: {
5704    MCInst TmpInst;
5705    // Shuffle the operands around so the lane index operand is in the
5706    // right place.
5707    unsigned Spacing;
5708    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5709    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5710    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5711    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5712    TmpInst.addOperand(Inst.getOperand(4)); // Rm
5713    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5714    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5715                                            Spacing));
5716    TmpInst.addOperand(Inst.getOperand(1)); // lane
5717    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
5718    TmpInst.addOperand(Inst.getOperand(6));
5719    Inst = TmpInst;
5720    return true;
5721  }
5722
5723  case ARM::VST3LNdWB_register_Asm_8:
5724  case ARM::VST3LNdWB_register_Asm_16:
5725  case ARM::VST3LNdWB_register_Asm_32:
5726  case ARM::VST3LNqWB_register_Asm_16:
5727  case ARM::VST3LNqWB_register_Asm_32: {
5728    MCInst TmpInst;
5729    // Shuffle the operands around so the lane index operand is in the
5730    // right place.
5731    unsigned Spacing;
5732    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5733    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5734    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5735    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5736    TmpInst.addOperand(Inst.getOperand(4)); // Rm
5737    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5738    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5739                                            Spacing));
5740    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5741                                            Spacing * 2));
5742    TmpInst.addOperand(Inst.getOperand(1)); // lane
5743    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
5744    TmpInst.addOperand(Inst.getOperand(6));
5745    Inst = TmpInst;
5746    return true;
5747  }
5748
5749  case ARM::VST4LNdWB_register_Asm_8:
5750  case ARM::VST4LNdWB_register_Asm_16:
5751  case ARM::VST4LNdWB_register_Asm_32:
5752  case ARM::VST4LNqWB_register_Asm_16:
5753  case ARM::VST4LNqWB_register_Asm_32: {
5754    MCInst TmpInst;
5755    // Shuffle the operands around so the lane index operand is in the
5756    // right place.
5757    unsigned Spacing;
5758    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5759    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5760    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5761    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5762    TmpInst.addOperand(Inst.getOperand(4)); // Rm
5763    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5764    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5765                                            Spacing));
5766    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5767                                            Spacing * 2));
5768    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5769                                            Spacing * 3));
5770    TmpInst.addOperand(Inst.getOperand(1)); // lane
5771    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
5772    TmpInst.addOperand(Inst.getOperand(6));
5773    Inst = TmpInst;
5774    return true;
5775  }
5776
5777  case ARM::VST1LNdWB_fixed_Asm_8:
5778  case ARM::VST1LNdWB_fixed_Asm_16:
5779  case ARM::VST1LNdWB_fixed_Asm_32: {
5780    MCInst TmpInst;
5781    // Shuffle the operands around so the lane index operand is in the
5782    // right place.
5783    unsigned Spacing;
5784    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5785    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5786    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5787    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5788    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
5789    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5790    TmpInst.addOperand(Inst.getOperand(1)); // lane
5791    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
5792    TmpInst.addOperand(Inst.getOperand(5));
5793    Inst = TmpInst;
5794    return true;
5795  }
5796
5797  case ARM::VST2LNdWB_fixed_Asm_8:
5798  case ARM::VST2LNdWB_fixed_Asm_16:
5799  case ARM::VST2LNdWB_fixed_Asm_32:
5800  case ARM::VST2LNqWB_fixed_Asm_16:
5801  case ARM::VST2LNqWB_fixed_Asm_32: {
5802    MCInst TmpInst;
5803    // Shuffle the operands around so the lane index operand is in the
5804    // right place.
5805    unsigned Spacing;
5806    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5807    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5808    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5809    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5810    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
5811    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5812    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5813                                            Spacing));
5814    TmpInst.addOperand(Inst.getOperand(1)); // lane
5815    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
5816    TmpInst.addOperand(Inst.getOperand(5));
5817    Inst = TmpInst;
5818    return true;
5819  }
5820
5821  case ARM::VST3LNdWB_fixed_Asm_8:
5822  case ARM::VST3LNdWB_fixed_Asm_16:
5823  case ARM::VST3LNdWB_fixed_Asm_32:
5824  case ARM::VST3LNqWB_fixed_Asm_16:
5825  case ARM::VST3LNqWB_fixed_Asm_32: {
5826    MCInst TmpInst;
5827    // Shuffle the operands around so the lane index operand is in the
5828    // right place.
5829    unsigned Spacing;
5830    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5831    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5832    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5833    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5834    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
5835    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5836    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5837                                            Spacing));
5838    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5839                                            Spacing * 2));
5840    TmpInst.addOperand(Inst.getOperand(1)); // lane
5841    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
5842    TmpInst.addOperand(Inst.getOperand(5));
5843    Inst = TmpInst;
5844    return true;
5845  }
5846
5847  case ARM::VST4LNdWB_fixed_Asm_8:
5848  case ARM::VST4LNdWB_fixed_Asm_16:
5849  case ARM::VST4LNdWB_fixed_Asm_32:
5850  case ARM::VST4LNqWB_fixed_Asm_16:
5851  case ARM::VST4LNqWB_fixed_Asm_32: {
5852    MCInst TmpInst;
5853    // Shuffle the operands around so the lane index operand is in the
5854    // right place.
5855    unsigned Spacing;
5856    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5857    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5858    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5859    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5860    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
5861    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5862    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5863                                            Spacing));
5864    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5865                                            Spacing * 2));
5866    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5867                                            Spacing * 3));
5868    TmpInst.addOperand(Inst.getOperand(1)); // lane
5869    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
5870    TmpInst.addOperand(Inst.getOperand(5));
5871    Inst = TmpInst;
5872    return true;
5873  }
5874
5875  case ARM::VST1LNdAsm_8:
5876  case ARM::VST1LNdAsm_16:
5877  case ARM::VST1LNdAsm_32: {
5878    MCInst TmpInst;
5879    // Shuffle the operands around so the lane index operand is in the
5880    // right place.
5881    unsigned Spacing;
5882    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5883    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5884    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5885    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5886    TmpInst.addOperand(Inst.getOperand(1)); // lane
5887    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
5888    TmpInst.addOperand(Inst.getOperand(5));
5889    Inst = TmpInst;
5890    return true;
5891  }
5892
5893  case ARM::VST2LNdAsm_8:
5894  case ARM::VST2LNdAsm_16:
5895  case ARM::VST2LNdAsm_32:
5896  case ARM::VST2LNqAsm_16:
5897  case ARM::VST2LNqAsm_32: {
5898    MCInst TmpInst;
5899    // Shuffle the operands around so the lane index operand is in the
5900    // right place.
5901    unsigned Spacing;
5902    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5903    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5904    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5905    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5906    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5907                                            Spacing));
5908    TmpInst.addOperand(Inst.getOperand(1)); // lane
5909    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
5910    TmpInst.addOperand(Inst.getOperand(5));
5911    Inst = TmpInst;
5912    return true;
5913  }
5914
5915  case ARM::VST3LNdAsm_8:
5916  case ARM::VST3LNdAsm_16:
5917  case ARM::VST3LNdAsm_32:
5918  case ARM::VST3LNqAsm_16:
5919  case ARM::VST3LNqAsm_32: {
5920    MCInst TmpInst;
5921    // Shuffle the operands around so the lane index operand is in the
5922    // right place.
5923    unsigned Spacing;
5924    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5925    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5926    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5927    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5928    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5929                                            Spacing));
5930    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5931                                            Spacing * 2));
5932    TmpInst.addOperand(Inst.getOperand(1)); // lane
5933    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
5934    TmpInst.addOperand(Inst.getOperand(5));
5935    Inst = TmpInst;
5936    return true;
5937  }
5938
5939  case ARM::VST4LNdAsm_8:
5940  case ARM::VST4LNdAsm_16:
5941  case ARM::VST4LNdAsm_32:
5942  case ARM::VST4LNqAsm_16:
5943  case ARM::VST4LNqAsm_32: {
5944    MCInst TmpInst;
5945    // Shuffle the operands around so the lane index operand is in the
5946    // right place.
5947    unsigned Spacing;
5948    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5949    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5950    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5951    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5952    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5953                                            Spacing));
5954    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5955                                            Spacing * 2));
5956    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5957                                            Spacing * 3));
5958    TmpInst.addOperand(Inst.getOperand(1)); // lane
5959    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
5960    TmpInst.addOperand(Inst.getOperand(5));
5961    Inst = TmpInst;
5962    return true;
5963  }
5964
5965  // Handle NEON VLD complex aliases.
5966  case ARM::VLD1LNdWB_register_Asm_8:
5967  case ARM::VLD1LNdWB_register_Asm_16:
5968  case ARM::VLD1LNdWB_register_Asm_32: {
5969    MCInst TmpInst;
5970    // Shuffle the operands around so the lane index operand is in the
5971    // right place.
5972    unsigned Spacing;
5973    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
5974    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5975    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5976    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5977    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5978    TmpInst.addOperand(Inst.getOperand(4)); // Rm
5979    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
5980    TmpInst.addOperand(Inst.getOperand(1)); // lane
5981    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
5982    TmpInst.addOperand(Inst.getOperand(6));
5983    Inst = TmpInst;
5984    return true;
5985  }
5986
5987  case ARM::VLD2LNdWB_register_Asm_8:
5988  case ARM::VLD2LNdWB_register_Asm_16:
5989  case ARM::VLD2LNdWB_register_Asm_32:
5990  case ARM::VLD2LNqWB_register_Asm_16:
5991  case ARM::VLD2LNqWB_register_Asm_32: {
5992    MCInst TmpInst;
5993    // Shuffle the operands around so the lane index operand is in the
5994    // right place.
5995    unsigned Spacing;
5996    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
5997    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5998    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5999                                            Spacing));
6000    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6001    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6002    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6003    TmpInst.addOperand(Inst.getOperand(4)); // Rm
6004    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6005    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6006                                            Spacing));
6007    TmpInst.addOperand(Inst.getOperand(1)); // lane
6008    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
6009    TmpInst.addOperand(Inst.getOperand(6));
6010    Inst = TmpInst;
6011    return true;
6012  }
6013
6014  case ARM::VLD3LNdWB_register_Asm_8:
6015  case ARM::VLD3LNdWB_register_Asm_16:
6016  case ARM::VLD3LNdWB_register_Asm_32:
6017  case ARM::VLD3LNqWB_register_Asm_16:
6018  case ARM::VLD3LNqWB_register_Asm_32: {
6019    MCInst TmpInst;
6020    // Shuffle the operands around so the lane index operand is in the
6021    // right place.
6022    unsigned Spacing;
6023    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6024    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6025    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6026                                            Spacing));
6027    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6028                                            Spacing * 2));
6029    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6030    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6031    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6032    TmpInst.addOperand(Inst.getOperand(4)); // Rm
6033    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6034    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6035                                            Spacing));
6036    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6037                                            Spacing * 2));
6038    TmpInst.addOperand(Inst.getOperand(1)); // lane
6039    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
6040    TmpInst.addOperand(Inst.getOperand(6));
6041    Inst = TmpInst;
6042    return true;
6043  }
6044
6045  case ARM::VLD4LNdWB_register_Asm_8:
6046  case ARM::VLD4LNdWB_register_Asm_16:
6047  case ARM::VLD4LNdWB_register_Asm_32:
6048  case ARM::VLD4LNqWB_register_Asm_16:
6049  case ARM::VLD4LNqWB_register_Asm_32: {
6050    MCInst TmpInst;
6051    // Shuffle the operands around so the lane index operand is in the
6052    // right place.
6053    unsigned Spacing;
6054    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6055    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6056    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6057                                            Spacing));
6058    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6059                                            Spacing * 2));
6060    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6061                                            Spacing * 3));
6062    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6063    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6064    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6065    TmpInst.addOperand(Inst.getOperand(4)); // Rm
6066    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6067    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6068                                            Spacing));
6069    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6070                                            Spacing * 2));
6071    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6072                                            Spacing * 3));
6073    TmpInst.addOperand(Inst.getOperand(1)); // lane
6074    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
6075    TmpInst.addOperand(Inst.getOperand(6));
6076    Inst = TmpInst;
6077    return true;
6078  }
6079
6080  case ARM::VLD1LNdWB_fixed_Asm_8:
6081  case ARM::VLD1LNdWB_fixed_Asm_16:
6082  case ARM::VLD1LNdWB_fixed_Asm_32: {
6083    MCInst TmpInst;
6084    // Shuffle the operands around so the lane index operand is in the
6085    // right place.
6086    unsigned Spacing;
6087    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6088    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6089    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6090    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6091    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6092    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6093    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6094    TmpInst.addOperand(Inst.getOperand(1)); // lane
6095    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6096    TmpInst.addOperand(Inst.getOperand(5));
6097    Inst = TmpInst;
6098    return true;
6099  }
6100
6101  case ARM::VLD2LNdWB_fixed_Asm_8:
6102  case ARM::VLD2LNdWB_fixed_Asm_16:
6103  case ARM::VLD2LNdWB_fixed_Asm_32:
6104  case ARM::VLD2LNqWB_fixed_Asm_16:
6105  case ARM::VLD2LNqWB_fixed_Asm_32: {
6106    MCInst TmpInst;
6107    // Shuffle the operands around so the lane index operand is in the
6108    // right place.
6109    unsigned Spacing;
6110    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6111    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6112    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6113                                            Spacing));
6114    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6115    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6116    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6117    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6118    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6119    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6120                                            Spacing));
6121    TmpInst.addOperand(Inst.getOperand(1)); // lane
6122    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6123    TmpInst.addOperand(Inst.getOperand(5));
6124    Inst = TmpInst;
6125    return true;
6126  }
6127
6128  case ARM::VLD3LNdWB_fixed_Asm_8:
6129  case ARM::VLD3LNdWB_fixed_Asm_16:
6130  case ARM::VLD3LNdWB_fixed_Asm_32:
6131  case ARM::VLD3LNqWB_fixed_Asm_16:
6132  case ARM::VLD3LNqWB_fixed_Asm_32: {
6133    MCInst TmpInst;
6134    // Shuffle the operands around so the lane index operand is in the
6135    // right place.
6136    unsigned Spacing;
6137    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6138    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6139    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6140                                            Spacing));
6141    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6142                                            Spacing * 2));
6143    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6144    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6145    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6146    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6147    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6148    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6149                                            Spacing));
6150    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6151                                            Spacing * 2));
6152    TmpInst.addOperand(Inst.getOperand(1)); // lane
6153    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6154    TmpInst.addOperand(Inst.getOperand(5));
6155    Inst = TmpInst;
6156    return true;
6157  }
6158
6159  case ARM::VLD4LNdWB_fixed_Asm_8:
6160  case ARM::VLD4LNdWB_fixed_Asm_16:
6161  case ARM::VLD4LNdWB_fixed_Asm_32:
6162  case ARM::VLD4LNqWB_fixed_Asm_16:
6163  case ARM::VLD4LNqWB_fixed_Asm_32: {
6164    MCInst TmpInst;
6165    // Shuffle the operands around so the lane index operand is in the
6166    // right place.
6167    unsigned Spacing;
6168    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6169    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6170    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6171                                            Spacing));
6172    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6173                                            Spacing * 2));
6174    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6175                                            Spacing * 3));
6176    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6177    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6178    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6179    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6180    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6181    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6182                                            Spacing));
6183    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6184                                            Spacing * 2));
6185    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6186                                            Spacing * 3));
6187    TmpInst.addOperand(Inst.getOperand(1)); // lane
6188    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6189    TmpInst.addOperand(Inst.getOperand(5));
6190    Inst = TmpInst;
6191    return true;
6192  }
6193
6194  case ARM::VLD1LNdAsm_8:
6195  case ARM::VLD1LNdAsm_16:
6196  case ARM::VLD1LNdAsm_32: {
6197    MCInst TmpInst;
6198    // Shuffle the operands around so the lane index operand is in the
6199    // right place.
6200    unsigned Spacing;
6201    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6202    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6203    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6204    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6205    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6206    TmpInst.addOperand(Inst.getOperand(1)); // lane
6207    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6208    TmpInst.addOperand(Inst.getOperand(5));
6209    Inst = TmpInst;
6210    return true;
6211  }
6212
6213  case ARM::VLD2LNdAsm_8:
6214  case ARM::VLD2LNdAsm_16:
6215  case ARM::VLD2LNdAsm_32:
6216  case ARM::VLD2LNqAsm_16:
6217  case ARM::VLD2LNqAsm_32: {
6218    MCInst TmpInst;
6219    // Shuffle the operands around so the lane index operand is in the
6220    // right place.
6221    unsigned Spacing;
6222    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6223    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6224    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6225                                            Spacing));
6226    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6227    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6228    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6229    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6230                                            Spacing));
6231    TmpInst.addOperand(Inst.getOperand(1)); // lane
6232    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6233    TmpInst.addOperand(Inst.getOperand(5));
6234    Inst = TmpInst;
6235    return true;
6236  }
6237
6238  case ARM::VLD3LNdAsm_8:
6239  case ARM::VLD3LNdAsm_16:
6240  case ARM::VLD3LNdAsm_32:
6241  case ARM::VLD3LNqAsm_16:
6242  case ARM::VLD3LNqAsm_32: {
6243    MCInst TmpInst;
6244    // Shuffle the operands around so the lane index operand is in the
6245    // right place.
6246    unsigned Spacing;
6247    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6248    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6249    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6250                                            Spacing));
6251    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6252                                            Spacing * 2));
6253    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6254    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6255    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6256    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6257                                            Spacing));
6258    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6259                                            Spacing * 2));
6260    TmpInst.addOperand(Inst.getOperand(1)); // lane
6261    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6262    TmpInst.addOperand(Inst.getOperand(5));
6263    Inst = TmpInst;
6264    return true;
6265  }
6266
6267  case ARM::VLD4LNdAsm_8:
6268  case ARM::VLD4LNdAsm_16:
6269  case ARM::VLD4LNdAsm_32:
6270  case ARM::VLD4LNqAsm_16:
6271  case ARM::VLD4LNqAsm_32: {
6272    MCInst TmpInst;
6273    // Shuffle the operands around so the lane index operand is in the
6274    // right place.
6275    unsigned Spacing;
6276    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6277    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6278    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6279                                            Spacing));
6280    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6281                                            Spacing * 2));
6282    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6283                                            Spacing * 3));
6284    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6285    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6286    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6287    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6288                                            Spacing));
6289    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6290                                            Spacing * 2));
6291    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6292                                            Spacing * 3));
6293    TmpInst.addOperand(Inst.getOperand(1)); // lane
6294    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6295    TmpInst.addOperand(Inst.getOperand(5));
6296    Inst = TmpInst;
6297    return true;
6298  }
6299
6300  // VLD3DUP single 3-element structure to all lanes instructions.
6301  case ARM::VLD3DUPdAsm_8:
6302  case ARM::VLD3DUPdAsm_16:
6303  case ARM::VLD3DUPdAsm_32:
6304  case ARM::VLD3DUPqAsm_8:
6305  case ARM::VLD3DUPqAsm_16:
6306  case ARM::VLD3DUPqAsm_32: {
6307    MCInst TmpInst;
6308    unsigned Spacing;
6309    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6310    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6311    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6312                                            Spacing));
6313    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6314                                            Spacing * 2));
6315    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6316    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6317    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6318    TmpInst.addOperand(Inst.getOperand(4));
6319    Inst = TmpInst;
6320    return true;
6321  }
6322
6323  case ARM::VLD3DUPdWB_fixed_Asm_8:
6324  case ARM::VLD3DUPdWB_fixed_Asm_16:
6325  case ARM::VLD3DUPdWB_fixed_Asm_32:
6326  case ARM::VLD3DUPqWB_fixed_Asm_8:
6327  case ARM::VLD3DUPqWB_fixed_Asm_16:
6328  case ARM::VLD3DUPqWB_fixed_Asm_32: {
6329    MCInst TmpInst;
6330    unsigned Spacing;
6331    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6332    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6333    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6334                                            Spacing));
6335    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6336                                            Spacing * 2));
6337    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6338    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6339    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6340    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6341    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6342    TmpInst.addOperand(Inst.getOperand(4));
6343    Inst = TmpInst;
6344    return true;
6345  }
6346
6347  case ARM::VLD3DUPdWB_register_Asm_8:
6348  case ARM::VLD3DUPdWB_register_Asm_16:
6349  case ARM::VLD3DUPdWB_register_Asm_32:
6350  case ARM::VLD3DUPqWB_register_Asm_8:
6351  case ARM::VLD3DUPqWB_register_Asm_16:
6352  case ARM::VLD3DUPqWB_register_Asm_32: {
6353    MCInst TmpInst;
6354    unsigned Spacing;
6355    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6356    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6357    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6358                                            Spacing));
6359    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6360                                            Spacing * 2));
6361    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6362    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6363    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6364    TmpInst.addOperand(Inst.getOperand(3)); // Rm
6365    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6366    TmpInst.addOperand(Inst.getOperand(5));
6367    Inst = TmpInst;
6368    return true;
6369  }
6370
6371  // VLD3 multiple 3-element structure instructions.
6372  case ARM::VLD3dAsm_8:
6373  case ARM::VLD3dAsm_16:
6374  case ARM::VLD3dAsm_32:
6375  case ARM::VLD3qAsm_8:
6376  case ARM::VLD3qAsm_16:
6377  case ARM::VLD3qAsm_32: {
6378    MCInst TmpInst;
6379    unsigned Spacing;
6380    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6381    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6382    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6383                                            Spacing));
6384    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6385                                            Spacing * 2));
6386    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6387    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6388    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6389    TmpInst.addOperand(Inst.getOperand(4));
6390    Inst = TmpInst;
6391    return true;
6392  }
6393
6394  case ARM::VLD3dWB_fixed_Asm_8:
6395  case ARM::VLD3dWB_fixed_Asm_16:
6396  case ARM::VLD3dWB_fixed_Asm_32:
6397  case ARM::VLD3qWB_fixed_Asm_8:
6398  case ARM::VLD3qWB_fixed_Asm_16:
6399  case ARM::VLD3qWB_fixed_Asm_32: {
6400    MCInst TmpInst;
6401    unsigned Spacing;
6402    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6403    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6404    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6405                                            Spacing));
6406    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6407                                            Spacing * 2));
6408    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6409    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6410    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6411    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6412    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6413    TmpInst.addOperand(Inst.getOperand(4));
6414    Inst = TmpInst;
6415    return true;
6416  }
6417
6418  case ARM::VLD3dWB_register_Asm_8:
6419  case ARM::VLD3dWB_register_Asm_16:
6420  case ARM::VLD3dWB_register_Asm_32:
6421  case ARM::VLD3qWB_register_Asm_8:
6422  case ARM::VLD3qWB_register_Asm_16:
6423  case ARM::VLD3qWB_register_Asm_32: {
6424    MCInst TmpInst;
6425    unsigned Spacing;
6426    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6427    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6428    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6429                                            Spacing));
6430    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6431                                            Spacing * 2));
6432    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6433    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6434    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6435    TmpInst.addOperand(Inst.getOperand(3)); // Rm
6436    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6437    TmpInst.addOperand(Inst.getOperand(5));
6438    Inst = TmpInst;
6439    return true;
6440  }
6441
6442  // VLD4DUP single 3-element structure to all lanes instructions.
6443  case ARM::VLD4DUPdAsm_8:
6444  case ARM::VLD4DUPdAsm_16:
6445  case ARM::VLD4DUPdAsm_32:
6446  case ARM::VLD4DUPqAsm_8:
6447  case ARM::VLD4DUPqAsm_16:
6448  case ARM::VLD4DUPqAsm_32: {
6449    MCInst TmpInst;
6450    unsigned Spacing;
6451    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6452    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6453    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6454                                            Spacing));
6455    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6456                                            Spacing * 2));
6457    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6458                                            Spacing * 3));
6459    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6460    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6461    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6462    TmpInst.addOperand(Inst.getOperand(4));
6463    Inst = TmpInst;
6464    return true;
6465  }
6466
6467  case ARM::VLD4DUPdWB_fixed_Asm_8:
6468  case ARM::VLD4DUPdWB_fixed_Asm_16:
6469  case ARM::VLD4DUPdWB_fixed_Asm_32:
6470  case ARM::VLD4DUPqWB_fixed_Asm_8:
6471  case ARM::VLD4DUPqWB_fixed_Asm_16:
6472  case ARM::VLD4DUPqWB_fixed_Asm_32: {
6473    MCInst TmpInst;
6474    unsigned Spacing;
6475    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6476    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6477    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6478                                            Spacing));
6479    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6480                                            Spacing * 2));
6481    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6482                                            Spacing * 3));
6483    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6484    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6485    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6486    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6487    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6488    TmpInst.addOperand(Inst.getOperand(4));
6489    Inst = TmpInst;
6490    return true;
6491  }
6492
6493  case ARM::VLD4DUPdWB_register_Asm_8:
6494  case ARM::VLD4DUPdWB_register_Asm_16:
6495  case ARM::VLD4DUPdWB_register_Asm_32:
6496  case ARM::VLD4DUPqWB_register_Asm_8:
6497  case ARM::VLD4DUPqWB_register_Asm_16:
6498  case ARM::VLD4DUPqWB_register_Asm_32: {
6499    MCInst TmpInst;
6500    unsigned Spacing;
6501    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6502    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6503    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6504                                            Spacing));
6505    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6506                                            Spacing * 2));
6507    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6508                                            Spacing * 3));
6509    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6510    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6511    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6512    TmpInst.addOperand(Inst.getOperand(3)); // Rm
6513    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6514    TmpInst.addOperand(Inst.getOperand(5));
6515    Inst = TmpInst;
6516    return true;
6517  }
6518
6519  // VLD4 multiple 4-element structure instructions.
6520  case ARM::VLD4dAsm_8:
6521  case ARM::VLD4dAsm_16:
6522  case ARM::VLD4dAsm_32:
6523  case ARM::VLD4qAsm_8:
6524  case ARM::VLD4qAsm_16:
6525  case ARM::VLD4qAsm_32: {
6526    MCInst TmpInst;
6527    unsigned Spacing;
6528    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6529    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6530    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6531                                            Spacing));
6532    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6533                                            Spacing * 2));
6534    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6535                                            Spacing * 3));
6536    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6537    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6538    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6539    TmpInst.addOperand(Inst.getOperand(4));
6540    Inst = TmpInst;
6541    return true;
6542  }
6543
6544  case ARM::VLD4dWB_fixed_Asm_8:
6545  case ARM::VLD4dWB_fixed_Asm_16:
6546  case ARM::VLD4dWB_fixed_Asm_32:
6547  case ARM::VLD4qWB_fixed_Asm_8:
6548  case ARM::VLD4qWB_fixed_Asm_16:
6549  case ARM::VLD4qWB_fixed_Asm_32: {
6550    MCInst TmpInst;
6551    unsigned Spacing;
6552    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6553    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6554    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6555                                            Spacing));
6556    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6557                                            Spacing * 2));
6558    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6559                                            Spacing * 3));
6560    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6561    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6562    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6563    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6564    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6565    TmpInst.addOperand(Inst.getOperand(4));
6566    Inst = TmpInst;
6567    return true;
6568  }
6569
6570  case ARM::VLD4dWB_register_Asm_8:
6571  case ARM::VLD4dWB_register_Asm_16:
6572  case ARM::VLD4dWB_register_Asm_32:
6573  case ARM::VLD4qWB_register_Asm_8:
6574  case ARM::VLD4qWB_register_Asm_16:
6575  case ARM::VLD4qWB_register_Asm_32: {
6576    MCInst TmpInst;
6577    unsigned Spacing;
6578    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6579    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6580    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6581                                            Spacing));
6582    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6583                                            Spacing * 2));
6584    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6585                                            Spacing * 3));
6586    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6587    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6588    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6589    TmpInst.addOperand(Inst.getOperand(3)); // Rm
6590    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6591    TmpInst.addOperand(Inst.getOperand(5));
6592    Inst = TmpInst;
6593    return true;
6594  }
6595
6596  // VST3 multiple 3-element structure instructions.
6597  case ARM::VST3dAsm_8:
6598  case ARM::VST3dAsm_16:
6599  case ARM::VST3dAsm_32:
6600  case ARM::VST3qAsm_8:
6601  case ARM::VST3qAsm_16:
6602  case ARM::VST3qAsm_32: {
6603    MCInst TmpInst;
6604    unsigned Spacing;
6605    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6606    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6607    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6608    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6609    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6610                                            Spacing));
6611    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6612                                            Spacing * 2));
6613    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6614    TmpInst.addOperand(Inst.getOperand(4));
6615    Inst = TmpInst;
6616    return true;
6617  }
6618
6619  case ARM::VST3dWB_fixed_Asm_8:
6620  case ARM::VST3dWB_fixed_Asm_16:
6621  case ARM::VST3dWB_fixed_Asm_32:
6622  case ARM::VST3qWB_fixed_Asm_8:
6623  case ARM::VST3qWB_fixed_Asm_16:
6624  case ARM::VST3qWB_fixed_Asm_32: {
6625    MCInst TmpInst;
6626    unsigned Spacing;
6627    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6628    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6629    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6630    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6631    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6632    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6633    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6634                                            Spacing));
6635    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6636                                            Spacing * 2));
6637    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6638    TmpInst.addOperand(Inst.getOperand(4));
6639    Inst = TmpInst;
6640    return true;
6641  }
6642
6643  case ARM::VST3dWB_register_Asm_8:
6644  case ARM::VST3dWB_register_Asm_16:
6645  case ARM::VST3dWB_register_Asm_32:
6646  case ARM::VST3qWB_register_Asm_8:
6647  case ARM::VST3qWB_register_Asm_16:
6648  case ARM::VST3qWB_register_Asm_32: {
6649    MCInst TmpInst;
6650    unsigned Spacing;
6651    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6652    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6653    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6654    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6655    TmpInst.addOperand(Inst.getOperand(3)); // Rm
6656    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6657    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6658                                            Spacing));
6659    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6660                                            Spacing * 2));
6661    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6662    TmpInst.addOperand(Inst.getOperand(5));
6663    Inst = TmpInst;
6664    return true;
6665  }
6666
6667  // VST4 multiple 3-element structure instructions.
6668  case ARM::VST4dAsm_8:
6669  case ARM::VST4dAsm_16:
6670  case ARM::VST4dAsm_32:
6671  case ARM::VST4qAsm_8:
6672  case ARM::VST4qAsm_16:
6673  case ARM::VST4qAsm_32: {
6674    MCInst TmpInst;
6675    unsigned Spacing;
6676    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6677    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6678    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6679    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6680    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6681                                            Spacing));
6682    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6683                                            Spacing * 2));
6684    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6685                                            Spacing * 3));
6686    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6687    TmpInst.addOperand(Inst.getOperand(4));
6688    Inst = TmpInst;
6689    return true;
6690  }
6691
6692  case ARM::VST4dWB_fixed_Asm_8:
6693  case ARM::VST4dWB_fixed_Asm_16:
6694  case ARM::VST4dWB_fixed_Asm_32:
6695  case ARM::VST4qWB_fixed_Asm_8:
6696  case ARM::VST4qWB_fixed_Asm_16:
6697  case ARM::VST4qWB_fixed_Asm_32: {
6698    MCInst TmpInst;
6699    unsigned Spacing;
6700    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6701    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6702    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6703    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6704    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6705    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6706    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6707                                            Spacing));
6708    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6709                                            Spacing * 2));
6710    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6711                                            Spacing * 3));
6712    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6713    TmpInst.addOperand(Inst.getOperand(4));
6714    Inst = TmpInst;
6715    return true;
6716  }
6717
6718  case ARM::VST4dWB_register_Asm_8:
6719  case ARM::VST4dWB_register_Asm_16:
6720  case ARM::VST4dWB_register_Asm_32:
6721  case ARM::VST4qWB_register_Asm_8:
6722  case ARM::VST4qWB_register_Asm_16:
6723  case ARM::VST4qWB_register_Asm_32: {
6724    MCInst TmpInst;
6725    unsigned Spacing;
6726    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6727    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6728    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6729    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6730    TmpInst.addOperand(Inst.getOperand(3)); // Rm
6731    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6732    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6733                                            Spacing));
6734    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6735                                            Spacing * 2));
6736    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6737                                            Spacing * 3));
6738    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6739    TmpInst.addOperand(Inst.getOperand(5));
6740    Inst = TmpInst;
6741    return true;
6742  }
6743
6744  // Handle encoding choice for the shift-immediate instructions.
6745  case ARM::t2LSLri:
6746  case ARM::t2LSRri:
6747  case ARM::t2ASRri: {
6748    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
6749        Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
6750        Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
6751        !(static_cast<ARMOperand*>(Operands[3])->isToken() &&
6752         static_cast<ARMOperand*>(Operands[3])->getToken() == ".w")) {
6753      unsigned NewOpc;
6754      switch (Inst.getOpcode()) {
6755      default: llvm_unreachable("unexpected opcode");
6756      case ARM::t2LSLri: NewOpc = ARM::tLSLri; break;
6757      case ARM::t2LSRri: NewOpc = ARM::tLSRri; break;
6758      case ARM::t2ASRri: NewOpc = ARM::tASRri; break;
6759      }
6760      // The Thumb1 operands aren't in the same order. Awesome, eh?
6761      MCInst TmpInst;
6762      TmpInst.setOpcode(NewOpc);
6763      TmpInst.addOperand(Inst.getOperand(0));
6764      TmpInst.addOperand(Inst.getOperand(5));
6765      TmpInst.addOperand(Inst.getOperand(1));
6766      TmpInst.addOperand(Inst.getOperand(2));
6767      TmpInst.addOperand(Inst.getOperand(3));
6768      TmpInst.addOperand(Inst.getOperand(4));
6769      Inst = TmpInst;
6770      return true;
6771    }
6772    return false;
6773  }
6774
6775  // Handle the Thumb2 mode MOV complex aliases.
6776  case ARM::t2MOVsr:
6777  case ARM::t2MOVSsr: {
6778    // Which instruction to expand to depends on the CCOut operand and
6779    // whether we're in an IT block if the register operands are low
6780    // registers.
6781    bool isNarrow = false;
6782    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
6783        isARMLowRegister(Inst.getOperand(1).getReg()) &&
6784        isARMLowRegister(Inst.getOperand(2).getReg()) &&
6785        Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
6786        inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr))
6787      isNarrow = true;
6788    MCInst TmpInst;
6789    unsigned newOpc;
6790    switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) {
6791    default: llvm_unreachable("unexpected opcode!");
6792    case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break;
6793    case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break;
6794    case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break;
6795    case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR   : ARM::t2RORrr; break;
6796    }
6797    TmpInst.setOpcode(newOpc);
6798    TmpInst.addOperand(Inst.getOperand(0)); // Rd
6799    if (isNarrow)
6800      TmpInst.addOperand(MCOperand::CreateReg(
6801          Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
6802    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6803    TmpInst.addOperand(Inst.getOperand(2)); // Rm
6804    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6805    TmpInst.addOperand(Inst.getOperand(5));
6806    if (!isNarrow)
6807      TmpInst.addOperand(MCOperand::CreateReg(
6808          Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
6809    Inst = TmpInst;
6810    return true;
6811  }
6812  case ARM::t2MOVsi:
6813  case ARM::t2MOVSsi: {
6814    // Which instruction to expand to depends on the CCOut operand and
6815    // whether we're in an IT block if the register operands are low
6816    // registers.
6817    bool isNarrow = false;
6818    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
6819        isARMLowRegister(Inst.getOperand(1).getReg()) &&
6820        inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi))
6821      isNarrow = true;
6822    MCInst TmpInst;
6823    unsigned newOpc;
6824    switch(ARM_AM::getSORegShOp(Inst.getOperand(2).getImm())) {
6825    default: llvm_unreachable("unexpected opcode!");
6826    case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break;
6827    case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break;
6828    case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break;
6829    case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break;
6830    case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break;
6831    }
6832    unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm());
6833    if (Amount == 32) Amount = 0;
6834    TmpInst.setOpcode(newOpc);
6835    TmpInst.addOperand(Inst.getOperand(0)); // Rd
6836    if (isNarrow)
6837      TmpInst.addOperand(MCOperand::CreateReg(
6838          Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
6839    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6840    if (newOpc != ARM::t2RRX)
6841      TmpInst.addOperand(MCOperand::CreateImm(Amount));
6842    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6843    TmpInst.addOperand(Inst.getOperand(4));
6844    if (!isNarrow)
6845      TmpInst.addOperand(MCOperand::CreateReg(
6846          Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
6847    Inst = TmpInst;
6848    return true;
6849  }
6850  // Handle the ARM mode MOV complex aliases.
6851  case ARM::ASRr:
6852  case ARM::LSRr:
6853  case ARM::LSLr:
6854  case ARM::RORr: {
6855    ARM_AM::ShiftOpc ShiftTy;
6856    switch(Inst.getOpcode()) {
6857    default: llvm_unreachable("unexpected opcode!");
6858    case ARM::ASRr: ShiftTy = ARM_AM::asr; break;
6859    case ARM::LSRr: ShiftTy = ARM_AM::lsr; break;
6860    case ARM::LSLr: ShiftTy = ARM_AM::lsl; break;
6861    case ARM::RORr: ShiftTy = ARM_AM::ror; break;
6862    }
6863    unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0);
6864    MCInst TmpInst;
6865    TmpInst.setOpcode(ARM::MOVsr);
6866    TmpInst.addOperand(Inst.getOperand(0)); // Rd
6867    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6868    TmpInst.addOperand(Inst.getOperand(2)); // Rm
6869    TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
6870    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6871    TmpInst.addOperand(Inst.getOperand(4));
6872    TmpInst.addOperand(Inst.getOperand(5)); // cc_out
6873    Inst = TmpInst;
6874    return true;
6875  }
6876  case ARM::ASRi:
6877  case ARM::LSRi:
6878  case ARM::LSLi:
6879  case ARM::RORi: {
6880    ARM_AM::ShiftOpc ShiftTy;
6881    switch(Inst.getOpcode()) {
6882    default: llvm_unreachable("unexpected opcode!");
6883    case ARM::ASRi: ShiftTy = ARM_AM::asr; break;
6884    case ARM::LSRi: ShiftTy = ARM_AM::lsr; break;
6885    case ARM::LSLi: ShiftTy = ARM_AM::lsl; break;
6886    case ARM::RORi: ShiftTy = ARM_AM::ror; break;
6887    }
6888    // A shift by zero is a plain MOVr, not a MOVsi.
6889    unsigned Amt = Inst.getOperand(2).getImm();
6890    unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi;
6891    // A shift by 32 should be encoded as 0 when permitted
6892    if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr))
6893      Amt = 0;
6894    unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt);
6895    MCInst TmpInst;
6896    TmpInst.setOpcode(Opc);
6897    TmpInst.addOperand(Inst.getOperand(0)); // Rd
6898    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6899    if (Opc == ARM::MOVsi)
6900      TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
6901    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6902    TmpInst.addOperand(Inst.getOperand(4));
6903    TmpInst.addOperand(Inst.getOperand(5)); // cc_out
6904    Inst = TmpInst;
6905    return true;
6906  }
6907  case ARM::RRXi: {
6908    unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0);
6909    MCInst TmpInst;
6910    TmpInst.setOpcode(ARM::MOVsi);
6911    TmpInst.addOperand(Inst.getOperand(0)); // Rd
6912    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6913    TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
6914    TmpInst.addOperand(Inst.getOperand(2)); // CondCode
6915    TmpInst.addOperand(Inst.getOperand(3));
6916    TmpInst.addOperand(Inst.getOperand(4)); // cc_out
6917    Inst = TmpInst;
6918    return true;
6919  }
6920  case ARM::t2LDMIA_UPD: {
6921    // If this is a load of a single register, then we should use
6922    // a post-indexed LDR instruction instead, per the ARM ARM.
6923    if (Inst.getNumOperands() != 5)
6924      return false;
6925    MCInst TmpInst;
6926    TmpInst.setOpcode(ARM::t2LDR_POST);
6927    TmpInst.addOperand(Inst.getOperand(4)); // Rt
6928    TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
6929    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6930    TmpInst.addOperand(MCOperand::CreateImm(4));
6931    TmpInst.addOperand(Inst.getOperand(2)); // CondCode
6932    TmpInst.addOperand(Inst.getOperand(3));
6933    Inst = TmpInst;
6934    return true;
6935  }
6936  case ARM::t2STMDB_UPD: {
6937    // If this is a store of a single register, then we should use
6938    // a pre-indexed STR instruction instead, per the ARM ARM.
6939    if (Inst.getNumOperands() != 5)
6940      return false;
6941    MCInst TmpInst;
6942    TmpInst.setOpcode(ARM::t2STR_PRE);
6943    TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
6944    TmpInst.addOperand(Inst.getOperand(4)); // Rt
6945    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6946    TmpInst.addOperand(MCOperand::CreateImm(-4));
6947    TmpInst.addOperand(Inst.getOperand(2)); // CondCode
6948    TmpInst.addOperand(Inst.getOperand(3));
6949    Inst = TmpInst;
6950    return true;
6951  }
6952  case ARM::LDMIA_UPD:
6953    // If this is a load of a single register via a 'pop', then we should use
6954    // a post-indexed LDR instruction instead, per the ARM ARM.
6955    if (static_cast<ARMOperand*>(Operands[0])->getToken() == "pop" &&
6956        Inst.getNumOperands() == 5) {
6957      MCInst TmpInst;
6958      TmpInst.setOpcode(ARM::LDR_POST_IMM);
6959      TmpInst.addOperand(Inst.getOperand(4)); // Rt
6960      TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
6961      TmpInst.addOperand(Inst.getOperand(1)); // Rn
6962      TmpInst.addOperand(MCOperand::CreateReg(0));  // am2offset
6963      TmpInst.addOperand(MCOperand::CreateImm(4));
6964      TmpInst.addOperand(Inst.getOperand(2)); // CondCode
6965      TmpInst.addOperand(Inst.getOperand(3));
6966      Inst = TmpInst;
6967      return true;
6968    }
6969    break;
6970  case ARM::STMDB_UPD:
6971    // If this is a store of a single register via a 'push', then we should use
6972    // a pre-indexed STR instruction instead, per the ARM ARM.
6973    if (static_cast<ARMOperand*>(Operands[0])->getToken() == "push" &&
6974        Inst.getNumOperands() == 5) {
6975      MCInst TmpInst;
6976      TmpInst.setOpcode(ARM::STR_PRE_IMM);
6977      TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
6978      TmpInst.addOperand(Inst.getOperand(4)); // Rt
6979      TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12
6980      TmpInst.addOperand(MCOperand::CreateImm(-4));
6981      TmpInst.addOperand(Inst.getOperand(2)); // CondCode
6982      TmpInst.addOperand(Inst.getOperand(3));
6983      Inst = TmpInst;
6984    }
6985    break;
6986  case ARM::t2ADDri12:
6987    // If the immediate fits for encoding T3 (t2ADDri) and the generic "add"
6988    // mnemonic was used (not "addw"), encoding T3 is preferred.
6989    if (static_cast<ARMOperand*>(Operands[0])->getToken() != "add" ||
6990        ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
6991      break;
6992    Inst.setOpcode(ARM::t2ADDri);
6993    Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
6994    break;
6995  case ARM::t2SUBri12:
6996    // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub"
6997    // mnemonic was used (not "subw"), encoding T3 is preferred.
6998    if (static_cast<ARMOperand*>(Operands[0])->getToken() != "sub" ||
6999        ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
7000      break;
7001    Inst.setOpcode(ARM::t2SUBri);
7002    Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
7003    break;
7004  case ARM::tADDi8:
7005    // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
7006    // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
7007    // to encoding T2 if <Rd> is specified and encoding T2 is preferred
7008    // to encoding T1 if <Rd> is omitted."
7009    if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
7010      Inst.setOpcode(ARM::tADDi3);
7011      return true;
7012    }
7013    break;
7014  case ARM::tSUBi8:
7015    // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
7016    // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
7017    // to encoding T2 if <Rd> is specified and encoding T2 is preferred
7018    // to encoding T1 if <Rd> is omitted."
7019    if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
7020      Inst.setOpcode(ARM::tSUBi3);
7021      return true;
7022    }
7023    break;
7024  case ARM::t2ADDri:
7025  case ARM::t2SUBri: {
7026    // If the destination and first source operand are the same, and
7027    // the flags are compatible with the current IT status, use encoding T2
7028    // instead of T3. For compatibility with the system 'as'. Make sure the
7029    // wide encoding wasn't explicit.
7030    if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
7031        !isARMLowRegister(Inst.getOperand(0).getReg()) ||
7032        (unsigned)Inst.getOperand(2).getImm() > 255 ||
7033        ((!inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR) ||
7034        (inITBlock() && Inst.getOperand(5).getReg() != 0)) ||
7035        (static_cast<ARMOperand*>(Operands[3])->isToken() &&
7036         static_cast<ARMOperand*>(Operands[3])->getToken() == ".w"))
7037      break;
7038    MCInst TmpInst;
7039    TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ?
7040                      ARM::tADDi8 : ARM::tSUBi8);
7041    TmpInst.addOperand(Inst.getOperand(0));
7042    TmpInst.addOperand(Inst.getOperand(5));
7043    TmpInst.addOperand(Inst.getOperand(0));
7044    TmpInst.addOperand(Inst.getOperand(2));
7045    TmpInst.addOperand(Inst.getOperand(3));
7046    TmpInst.addOperand(Inst.getOperand(4));
7047    Inst = TmpInst;
7048    return true;
7049  }
7050  case ARM::t2ADDrr: {
7051    // If the destination and first source operand are the same, and
7052    // there's no setting of the flags, use encoding T2 instead of T3.
7053    // Note that this is only for ADD, not SUB. This mirrors the system
7054    // 'as' behaviour. Make sure the wide encoding wasn't explicit.
7055    if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
7056        Inst.getOperand(5).getReg() != 0 ||
7057        (static_cast<ARMOperand*>(Operands[3])->isToken() &&
7058         static_cast<ARMOperand*>(Operands[3])->getToken() == ".w"))
7059      break;
7060    MCInst TmpInst;
7061    TmpInst.setOpcode(ARM::tADDhirr);
7062    TmpInst.addOperand(Inst.getOperand(0));
7063    TmpInst.addOperand(Inst.getOperand(0));
7064    TmpInst.addOperand(Inst.getOperand(2));
7065    TmpInst.addOperand(Inst.getOperand(3));
7066    TmpInst.addOperand(Inst.getOperand(4));
7067    Inst = TmpInst;
7068    return true;
7069  }
7070  case ARM::tADDrSP: {
7071    // If the non-SP source operand and the destination operand are not the
7072    // same, we need to use the 32-bit encoding if it's available.
7073    if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
7074      Inst.setOpcode(ARM::t2ADDrr);
7075      Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
7076      return true;
7077    }
7078    break;
7079  }
7080  case ARM::tB:
7081    // A Thumb conditional branch outside of an IT block is a tBcc.
7082    if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) {
7083      Inst.setOpcode(ARM::tBcc);
7084      return true;
7085    }
7086    break;
7087  case ARM::t2B:
7088    // A Thumb2 conditional branch outside of an IT block is a t2Bcc.
7089    if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){
7090      Inst.setOpcode(ARM::t2Bcc);
7091      return true;
7092    }
7093    break;
7094  case ARM::t2Bcc:
7095    // If the conditional is AL or we're in an IT block, we really want t2B.
7096    if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) {
7097      Inst.setOpcode(ARM::t2B);
7098      return true;
7099    }
7100    break;
7101  case ARM::tBcc:
7102    // If the conditional is AL, we really want tB.
7103    if (Inst.getOperand(1).getImm() == ARMCC::AL) {
7104      Inst.setOpcode(ARM::tB);
7105      return true;
7106    }
7107    break;
7108  case ARM::tLDMIA: {
7109    // If the register list contains any high registers, or if the writeback
7110    // doesn't match what tLDMIA can do, we need to use the 32-bit encoding
7111    // instead if we're in Thumb2. Otherwise, this should have generated
7112    // an error in validateInstruction().
7113    unsigned Rn = Inst.getOperand(0).getReg();
7114    bool hasWritebackToken =
7115      (static_cast<ARMOperand*>(Operands[3])->isToken() &&
7116       static_cast<ARMOperand*>(Operands[3])->getToken() == "!");
7117    bool listContainsBase;
7118    if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) ||
7119        (!listContainsBase && !hasWritebackToken) ||
7120        (listContainsBase && hasWritebackToken)) {
7121      // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
7122      assert (isThumbTwo());
7123      Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA);
7124      // If we're switching to the updating version, we need to insert
7125      // the writeback tied operand.
7126      if (hasWritebackToken)
7127        Inst.insert(Inst.begin(),
7128                    MCOperand::CreateReg(Inst.getOperand(0).getReg()));
7129      return true;
7130    }
7131    break;
7132  }
7133  case ARM::tSTMIA_UPD: {
7134    // If the register list contains any high registers, we need to use
7135    // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
7136    // should have generated an error in validateInstruction().
7137    unsigned Rn = Inst.getOperand(0).getReg();
7138    bool listContainsBase;
7139    if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) {
7140      // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
7141      assert (isThumbTwo());
7142      Inst.setOpcode(ARM::t2STMIA_UPD);
7143      return true;
7144    }
7145    break;
7146  }
7147  case ARM::tPOP: {
7148    bool listContainsBase;
7149    // If the register list contains any high registers, we need to use
7150    // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
7151    // should have generated an error in validateInstruction().
7152    if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase))
7153      return false;
7154    assert (isThumbTwo());
7155    Inst.setOpcode(ARM::t2LDMIA_UPD);
7156    // Add the base register and writeback operands.
7157    Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
7158    Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
7159    return true;
7160  }
7161  case ARM::tPUSH: {
7162    bool listContainsBase;
7163    if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase))
7164      return false;
7165    assert (isThumbTwo());
7166    Inst.setOpcode(ARM::t2STMDB_UPD);
7167    // Add the base register and writeback operands.
7168    Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
7169    Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
7170    return true;
7171  }
7172  case ARM::t2MOVi: {
7173    // If we can use the 16-bit encoding and the user didn't explicitly
7174    // request the 32-bit variant, transform it here.
7175    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
7176        (unsigned)Inst.getOperand(1).getImm() <= 255 &&
7177        ((!inITBlock() && Inst.getOperand(2).getImm() == ARMCC::AL &&
7178         Inst.getOperand(4).getReg() == ARM::CPSR) ||
7179        (inITBlock() && Inst.getOperand(4).getReg() == 0)) &&
7180        (!static_cast<ARMOperand*>(Operands[2])->isToken() ||
7181         static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) {
7182      // The operands aren't in the same order for tMOVi8...
7183      MCInst TmpInst;
7184      TmpInst.setOpcode(ARM::tMOVi8);
7185      TmpInst.addOperand(Inst.getOperand(0));
7186      TmpInst.addOperand(Inst.getOperand(4));
7187      TmpInst.addOperand(Inst.getOperand(1));
7188      TmpInst.addOperand(Inst.getOperand(2));
7189      TmpInst.addOperand(Inst.getOperand(3));
7190      Inst = TmpInst;
7191      return true;
7192    }
7193    break;
7194  }
7195  case ARM::t2MOVr: {
7196    // If we can use the 16-bit encoding and the user didn't explicitly
7197    // request the 32-bit variant, transform it here.
7198    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
7199        isARMLowRegister(Inst.getOperand(1).getReg()) &&
7200        Inst.getOperand(2).getImm() == ARMCC::AL &&
7201        Inst.getOperand(4).getReg() == ARM::CPSR &&
7202        (!static_cast<ARMOperand*>(Operands[2])->isToken() ||
7203         static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) {
7204      // The operands aren't the same for tMOV[S]r... (no cc_out)
7205      MCInst TmpInst;
7206      TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr);
7207      TmpInst.addOperand(Inst.getOperand(0));
7208      TmpInst.addOperand(Inst.getOperand(1));
7209      TmpInst.addOperand(Inst.getOperand(2));
7210      TmpInst.addOperand(Inst.getOperand(3));
7211      Inst = TmpInst;
7212      return true;
7213    }
7214    break;
7215  }
7216  case ARM::t2SXTH:
7217  case ARM::t2SXTB:
7218  case ARM::t2UXTH:
7219  case ARM::t2UXTB: {
7220    // If we can use the 16-bit encoding and the user didn't explicitly
7221    // request the 32-bit variant, transform it here.
7222    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
7223        isARMLowRegister(Inst.getOperand(1).getReg()) &&
7224        Inst.getOperand(2).getImm() == 0 &&
7225        (!static_cast<ARMOperand*>(Operands[2])->isToken() ||
7226         static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) {
7227      unsigned NewOpc;
7228      switch (Inst.getOpcode()) {
7229      default: llvm_unreachable("Illegal opcode!");
7230      case ARM::t2SXTH: NewOpc = ARM::tSXTH; break;
7231      case ARM::t2SXTB: NewOpc = ARM::tSXTB; break;
7232      case ARM::t2UXTH: NewOpc = ARM::tUXTH; break;
7233      case ARM::t2UXTB: NewOpc = ARM::tUXTB; break;
7234      }
7235      // The operands aren't the same for thumb1 (no rotate operand).
7236      MCInst TmpInst;
7237      TmpInst.setOpcode(NewOpc);
7238      TmpInst.addOperand(Inst.getOperand(0));
7239      TmpInst.addOperand(Inst.getOperand(1));
7240      TmpInst.addOperand(Inst.getOperand(3));
7241      TmpInst.addOperand(Inst.getOperand(4));
7242      Inst = TmpInst;
7243      return true;
7244    }
7245    break;
7246  }
7247  case ARM::MOVsi: {
7248    ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
7249    // rrx shifts and asr/lsr of #32 is encoded as 0
7250    if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr)
7251      return false;
7252    if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) {
7253      // Shifting by zero is accepted as a vanilla 'MOVr'
7254      MCInst TmpInst;
7255      TmpInst.setOpcode(ARM::MOVr);
7256      TmpInst.addOperand(Inst.getOperand(0));
7257      TmpInst.addOperand(Inst.getOperand(1));
7258      TmpInst.addOperand(Inst.getOperand(3));
7259      TmpInst.addOperand(Inst.getOperand(4));
7260      TmpInst.addOperand(Inst.getOperand(5));
7261      Inst = TmpInst;
7262      return true;
7263    }
7264    return false;
7265  }
7266  case ARM::ANDrsi:
7267  case ARM::ORRrsi:
7268  case ARM::EORrsi:
7269  case ARM::BICrsi:
7270  case ARM::SUBrsi:
7271  case ARM::ADDrsi: {
7272    unsigned newOpc;
7273    ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm());
7274    if (SOpc == ARM_AM::rrx) return false;
7275    switch (Inst.getOpcode()) {
7276    default: llvm_unreachable("unexpected opcode!");
7277    case ARM::ANDrsi: newOpc = ARM::ANDrr; break;
7278    case ARM::ORRrsi: newOpc = ARM::ORRrr; break;
7279    case ARM::EORrsi: newOpc = ARM::EORrr; break;
7280    case ARM::BICrsi: newOpc = ARM::BICrr; break;
7281    case ARM::SUBrsi: newOpc = ARM::SUBrr; break;
7282    case ARM::ADDrsi: newOpc = ARM::ADDrr; break;
7283    }
7284    // If the shift is by zero, use the non-shifted instruction definition.
7285    // The exception is for right shifts, where 0 == 32
7286    if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 &&
7287        !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) {
7288      MCInst TmpInst;
7289      TmpInst.setOpcode(newOpc);
7290      TmpInst.addOperand(Inst.getOperand(0));
7291      TmpInst.addOperand(Inst.getOperand(1));
7292      TmpInst.addOperand(Inst.getOperand(2));
7293      TmpInst.addOperand(Inst.getOperand(4));
7294      TmpInst.addOperand(Inst.getOperand(5));
7295      TmpInst.addOperand(Inst.getOperand(6));
7296      Inst = TmpInst;
7297      return true;
7298    }
7299    return false;
7300  }
7301  case ARM::ITasm:
7302  case ARM::t2IT: {
7303    // The mask bits for all but the first condition are represented as
7304    // the low bit of the condition code value implies 't'. We currently
7305    // always have 1 implies 't', so XOR toggle the bits if the low bit
7306    // of the condition code is zero.
7307    MCOperand &MO = Inst.getOperand(1);
7308    unsigned Mask = MO.getImm();
7309    unsigned OrigMask = Mask;
7310    unsigned TZ = CountTrailingZeros_32(Mask);
7311    if ((Inst.getOperand(0).getImm() & 1) == 0) {
7312      assert(Mask && TZ <= 3 && "illegal IT mask value!");
7313      for (unsigned i = 3; i != TZ; --i)
7314        Mask ^= 1 << i;
7315    }
7316    MO.setImm(Mask);
7317
7318    // Set up the IT block state according to the IT instruction we just
7319    // matched.
7320    assert(!inITBlock() && "nested IT blocks?!");
7321    ITState.Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm());
7322    ITState.Mask = OrigMask; // Use the original mask, not the updated one.
7323    ITState.CurPosition = 0;
7324    ITState.FirstCond = true;
7325    break;
7326  }
7327  case ARM::t2LSLrr:
7328  case ARM::t2LSRrr:
7329  case ARM::t2ASRrr:
7330  case ARM::t2SBCrr:
7331  case ARM::t2RORrr:
7332  case ARM::t2BICrr:
7333  {
7334    // Assemblers should use the narrow encodings of these instructions when permissible.
7335    if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
7336         isARMLowRegister(Inst.getOperand(2).getReg())) &&
7337        Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
7338        ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) ||
7339         (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) &&
7340        (!static_cast<ARMOperand*>(Operands[3])->isToken() ||
7341         !static_cast<ARMOperand*>(Operands[3])->getToken().equals_lower(".w"))) {
7342      unsigned NewOpc;
7343      switch (Inst.getOpcode()) {
7344        default: llvm_unreachable("unexpected opcode");
7345        case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break;
7346        case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break;
7347        case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break;
7348        case ARM::t2SBCrr: NewOpc = ARM::tSBC; break;
7349        case ARM::t2RORrr: NewOpc = ARM::tROR; break;
7350        case ARM::t2BICrr: NewOpc = ARM::tBIC; break;
7351      }
7352      MCInst TmpInst;
7353      TmpInst.setOpcode(NewOpc);
7354      TmpInst.addOperand(Inst.getOperand(0));
7355      TmpInst.addOperand(Inst.getOperand(5));
7356      TmpInst.addOperand(Inst.getOperand(1));
7357      TmpInst.addOperand(Inst.getOperand(2));
7358      TmpInst.addOperand(Inst.getOperand(3));
7359      TmpInst.addOperand(Inst.getOperand(4));
7360      Inst = TmpInst;
7361      return true;
7362    }
7363    return false;
7364  }
7365  case ARM::t2ANDrr:
7366  case ARM::t2EORrr:
7367  case ARM::t2ADCrr:
7368  case ARM::t2ORRrr:
7369  {
7370    // Assemblers should use the narrow encodings of these instructions when permissible.
7371    // These instructions are special in that they are commutable, so shorter encodings
7372    // are available more often.
7373    if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
7374         isARMLowRegister(Inst.getOperand(2).getReg())) &&
7375        (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() ||
7376         Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) &&
7377        ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) ||
7378         (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) &&
7379        (!static_cast<ARMOperand*>(Operands[3])->isToken() ||
7380         !static_cast<ARMOperand*>(Operands[3])->getToken().equals_lower(".w"))) {
7381      unsigned NewOpc;
7382      switch (Inst.getOpcode()) {
7383        default: llvm_unreachable("unexpected opcode");
7384        case ARM::t2ADCrr: NewOpc = ARM::tADC; break;
7385        case ARM::t2ANDrr: NewOpc = ARM::tAND; break;
7386        case ARM::t2EORrr: NewOpc = ARM::tEOR; break;
7387        case ARM::t2ORRrr: NewOpc = ARM::tORR; break;
7388      }
7389      MCInst TmpInst;
7390      TmpInst.setOpcode(NewOpc);
7391      TmpInst.addOperand(Inst.getOperand(0));
7392      TmpInst.addOperand(Inst.getOperand(5));
7393      if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) {
7394        TmpInst.addOperand(Inst.getOperand(1));
7395        TmpInst.addOperand(Inst.getOperand(2));
7396      } else {
7397        TmpInst.addOperand(Inst.getOperand(2));
7398        TmpInst.addOperand(Inst.getOperand(1));
7399      }
7400      TmpInst.addOperand(Inst.getOperand(3));
7401      TmpInst.addOperand(Inst.getOperand(4));
7402      Inst = TmpInst;
7403      return true;
7404    }
7405    return false;
7406  }
7407  }
7408  return false;
7409}
7410
7411unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
7412  // 16-bit thumb arithmetic instructions either require or preclude the 'S'
7413  // suffix depending on whether they're in an IT block or not.
7414  unsigned Opc = Inst.getOpcode();
7415  const MCInstrDesc &MCID = getInstDesc(Opc);
7416  if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
7417    assert(MCID.hasOptionalDef() &&
7418           "optionally flag setting instruction missing optional def operand");
7419    assert(MCID.NumOperands == Inst.getNumOperands() &&
7420           "operand count mismatch!");
7421    // Find the optional-def operand (cc_out).
7422    unsigned OpNo;
7423    for (OpNo = 0;
7424         !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands;
7425         ++OpNo)
7426      ;
7427    // If we're parsing Thumb1, reject it completely.
7428    if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR)
7429      return Match_MnemonicFail;
7430    // If we're parsing Thumb2, which form is legal depends on whether we're
7431    // in an IT block.
7432    if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR &&
7433        !inITBlock())
7434      return Match_RequiresITBlock;
7435    if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR &&
7436        inITBlock())
7437      return Match_RequiresNotITBlock;
7438  }
7439  // Some high-register supporting Thumb1 encodings only allow both registers
7440  // to be from r0-r7 when in Thumb2.
7441  else if (Opc == ARM::tADDhirr && isThumbOne() &&
7442           isARMLowRegister(Inst.getOperand(1).getReg()) &&
7443           isARMLowRegister(Inst.getOperand(2).getReg()))
7444    return Match_RequiresThumb2;
7445  // Others only require ARMv6 or later.
7446  else if (Opc == ARM::tMOVr && isThumbOne() && !hasV6Ops() &&
7447           isARMLowRegister(Inst.getOperand(0).getReg()) &&
7448           isARMLowRegister(Inst.getOperand(1).getReg()))
7449    return Match_RequiresV6;
7450  return Match_Success;
7451}
7452
7453static const char *getSubtargetFeatureName(unsigned Val);
7454bool ARMAsmParser::
7455MatchAndEmitInstruction(SMLoc IDLoc,
7456                        SmallVectorImpl<MCParsedAsmOperand*> &Operands,
7457                        MCStreamer &Out) {
7458  MCInst Inst;
7459  unsigned ErrorInfo;
7460  unsigned MatchResult;
7461  MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo);
7462  switch (MatchResult) {
7463  default: break;
7464  case Match_Success:
7465    // Context sensitive operand constraints aren't handled by the matcher,
7466    // so check them here.
7467    if (validateInstruction(Inst, Operands)) {
7468      // Still progress the IT block, otherwise one wrong condition causes
7469      // nasty cascading errors.
7470      forwardITPosition();
7471      return true;
7472    }
7473
7474    // Some instructions need post-processing to, for example, tweak which
7475    // encoding is selected. Loop on it while changes happen so the
7476    // individual transformations can chain off each other. E.g.,
7477    // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8)
7478    while (processInstruction(Inst, Operands))
7479      ;
7480
7481    // Only move forward at the very end so that everything in validate
7482    // and process gets a consistent answer about whether we're in an IT
7483    // block.
7484    forwardITPosition();
7485
7486    // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and
7487    // doesn't actually encode.
7488    if (Inst.getOpcode() == ARM::ITasm)
7489      return false;
7490
7491    Inst.setLoc(IDLoc);
7492    Out.EmitInstruction(Inst);
7493    return false;
7494  case Match_MissingFeature: {
7495    assert(ErrorInfo && "Unknown missing feature!");
7496    // Special case the error message for the very common case where only
7497    // a single subtarget feature is missing (Thumb vs. ARM, e.g.).
7498    std::string Msg = "instruction requires:";
7499    unsigned Mask = 1;
7500    for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) {
7501      if (ErrorInfo & Mask) {
7502        Msg += " ";
7503        Msg += getSubtargetFeatureName(ErrorInfo & Mask);
7504      }
7505      Mask <<= 1;
7506    }
7507    return Error(IDLoc, Msg);
7508  }
7509  case Match_InvalidOperand: {
7510    SMLoc ErrorLoc = IDLoc;
7511    if (ErrorInfo != ~0U) {
7512      if (ErrorInfo >= Operands.size())
7513        return Error(IDLoc, "too few operands for instruction");
7514
7515      ErrorLoc = ((ARMOperand*)Operands[ErrorInfo])->getStartLoc();
7516      if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
7517    }
7518
7519    return Error(ErrorLoc, "invalid operand for instruction");
7520  }
7521  case Match_MnemonicFail:
7522    return Error(IDLoc, "invalid instruction",
7523                 ((ARMOperand*)Operands[0])->getLocRange());
7524  case Match_RequiresNotITBlock:
7525    return Error(IDLoc, "flag setting instruction only valid outside IT block");
7526  case Match_RequiresITBlock:
7527    return Error(IDLoc, "instruction only valid inside IT block");
7528  case Match_RequiresV6:
7529    return Error(IDLoc, "instruction variant requires ARMv6 or later");
7530  case Match_RequiresThumb2:
7531    return Error(IDLoc, "instruction variant requires Thumb2");
7532  case Match_ImmRange0_15: {
7533    SMLoc ErrorLoc = ((ARMOperand*)Operands[ErrorInfo])->getStartLoc();
7534    if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
7535    return Error(ErrorLoc, "immediate operand must be in the range [0,15]");
7536  }
7537  }
7538
7539  llvm_unreachable("Implement any new match types added!");
7540}
7541
7542/// parseDirective parses the arm specific directives
7543bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
7544  StringRef IDVal = DirectiveID.getIdentifier();
7545  if (IDVal == ".word")
7546    return parseDirectiveWord(4, DirectiveID.getLoc());
7547  else if (IDVal == ".thumb")
7548    return parseDirectiveThumb(DirectiveID.getLoc());
7549  else if (IDVal == ".arm")
7550    return parseDirectiveARM(DirectiveID.getLoc());
7551  else if (IDVal == ".thumb_func")
7552    return parseDirectiveThumbFunc(DirectiveID.getLoc());
7553  else if (IDVal == ".code")
7554    return parseDirectiveCode(DirectiveID.getLoc());
7555  else if (IDVal == ".syntax")
7556    return parseDirectiveSyntax(DirectiveID.getLoc());
7557  else if (IDVal == ".unreq")
7558    return parseDirectiveUnreq(DirectiveID.getLoc());
7559  else if (IDVal == ".arch")
7560    return parseDirectiveArch(DirectiveID.getLoc());
7561  else if (IDVal == ".eabi_attribute")
7562    return parseDirectiveEabiAttr(DirectiveID.getLoc());
7563  return true;
7564}
7565
7566/// parseDirectiveWord
7567///  ::= .word [ expression (, expression)* ]
7568bool ARMAsmParser::parseDirectiveWord(unsigned Size, SMLoc L) {
7569  if (getLexer().isNot(AsmToken::EndOfStatement)) {
7570    for (;;) {
7571      const MCExpr *Value;
7572      if (getParser().ParseExpression(Value))
7573        return true;
7574
7575      getParser().getStreamer().EmitValue(Value, Size, 0/*addrspace*/);
7576
7577      if (getLexer().is(AsmToken::EndOfStatement))
7578        break;
7579
7580      // FIXME: Improve diagnostic.
7581      if (getLexer().isNot(AsmToken::Comma))
7582        return Error(L, "unexpected token in directive");
7583      Parser.Lex();
7584    }
7585  }
7586
7587  Parser.Lex();
7588  return false;
7589}
7590
7591/// parseDirectiveThumb
7592///  ::= .thumb
7593bool ARMAsmParser::parseDirectiveThumb(SMLoc L) {
7594  if (getLexer().isNot(AsmToken::EndOfStatement))
7595    return Error(L, "unexpected token in directive");
7596  Parser.Lex();
7597
7598  if (!isThumb())
7599    SwitchMode();
7600  getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
7601  return false;
7602}
7603
7604/// parseDirectiveARM
7605///  ::= .arm
7606bool ARMAsmParser::parseDirectiveARM(SMLoc L) {
7607  if (getLexer().isNot(AsmToken::EndOfStatement))
7608    return Error(L, "unexpected token in directive");
7609  Parser.Lex();
7610
7611  if (isThumb())
7612    SwitchMode();
7613  getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
7614  return false;
7615}
7616
7617/// parseDirectiveThumbFunc
7618///  ::= .thumbfunc symbol_name
7619bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) {
7620  const MCAsmInfo &MAI = getParser().getStreamer().getContext().getAsmInfo();
7621  bool isMachO = MAI.hasSubsectionsViaSymbols();
7622  StringRef Name;
7623  bool needFuncName = true;
7624
7625  // Darwin asm has (optionally) function name after .thumb_func direction
7626  // ELF doesn't
7627  if (isMachO) {
7628    const AsmToken &Tok = Parser.getTok();
7629    if (Tok.isNot(AsmToken::EndOfStatement)) {
7630      if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String))
7631        return Error(L, "unexpected token in .thumb_func directive");
7632      Name = Tok.getIdentifier();
7633      Parser.Lex(); // Consume the identifier token.
7634      needFuncName = false;
7635    }
7636  }
7637
7638  if (getLexer().isNot(AsmToken::EndOfStatement))
7639    return Error(L, "unexpected token in directive");
7640
7641  // Eat the end of statement and any blank lines that follow.
7642  while (getLexer().is(AsmToken::EndOfStatement))
7643    Parser.Lex();
7644
7645  // FIXME: assuming function name will be the line following .thumb_func
7646  // We really should be checking the next symbol definition even if there's
7647  // stuff in between.
7648  if (needFuncName) {
7649    Name = Parser.getTok().getIdentifier();
7650  }
7651
7652  // Mark symbol as a thumb symbol.
7653  MCSymbol *Func = getParser().getContext().GetOrCreateSymbol(Name);
7654  getParser().getStreamer().EmitThumbFunc(Func);
7655  return false;
7656}
7657
7658/// parseDirectiveSyntax
7659///  ::= .syntax unified | divided
7660bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) {
7661  const AsmToken &Tok = Parser.getTok();
7662  if (Tok.isNot(AsmToken::Identifier))
7663    return Error(L, "unexpected token in .syntax directive");
7664  StringRef Mode = Tok.getString();
7665  if (Mode == "unified" || Mode == "UNIFIED")
7666    Parser.Lex();
7667  else if (Mode == "divided" || Mode == "DIVIDED")
7668    return Error(L, "'.syntax divided' arm asssembly not supported");
7669  else
7670    return Error(L, "unrecognized syntax mode in .syntax directive");
7671
7672  if (getLexer().isNot(AsmToken::EndOfStatement))
7673    return Error(Parser.getTok().getLoc(), "unexpected token in directive");
7674  Parser.Lex();
7675
7676  // TODO tell the MC streamer the mode
7677  // getParser().getStreamer().Emit???();
7678  return false;
7679}
7680
7681/// parseDirectiveCode
7682///  ::= .code 16 | 32
7683bool ARMAsmParser::parseDirectiveCode(SMLoc L) {
7684  const AsmToken &Tok = Parser.getTok();
7685  if (Tok.isNot(AsmToken::Integer))
7686    return Error(L, "unexpected token in .code directive");
7687  int64_t Val = Parser.getTok().getIntVal();
7688  if (Val == 16)
7689    Parser.Lex();
7690  else if (Val == 32)
7691    Parser.Lex();
7692  else
7693    return Error(L, "invalid operand to .code directive");
7694
7695  if (getLexer().isNot(AsmToken::EndOfStatement))
7696    return Error(Parser.getTok().getLoc(), "unexpected token in directive");
7697  Parser.Lex();
7698
7699  if (Val == 16) {
7700    if (!isThumb())
7701      SwitchMode();
7702    getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
7703  } else {
7704    if (isThumb())
7705      SwitchMode();
7706    getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
7707  }
7708
7709  return false;
7710}
7711
7712/// parseDirectiveReq
7713///  ::= name .req registername
7714bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
7715  Parser.Lex(); // Eat the '.req' token.
7716  unsigned Reg;
7717  SMLoc SRegLoc, ERegLoc;
7718  if (ParseRegister(Reg, SRegLoc, ERegLoc)) {
7719    Parser.EatToEndOfStatement();
7720    return Error(SRegLoc, "register name expected");
7721  }
7722
7723  // Shouldn't be anything else.
7724  if (Parser.getTok().isNot(AsmToken::EndOfStatement)) {
7725    Parser.EatToEndOfStatement();
7726    return Error(Parser.getTok().getLoc(),
7727                 "unexpected input in .req directive.");
7728  }
7729
7730  Parser.Lex(); // Consume the EndOfStatement
7731
7732  if (RegisterReqs.GetOrCreateValue(Name, Reg).getValue() != Reg)
7733    return Error(SRegLoc, "redefinition of '" + Name +
7734                          "' does not match original.");
7735
7736  return false;
7737}
7738
7739/// parseDirectiveUneq
7740///  ::= .unreq registername
7741bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) {
7742  if (Parser.getTok().isNot(AsmToken::Identifier)) {
7743    Parser.EatToEndOfStatement();
7744    return Error(L, "unexpected input in .unreq directive.");
7745  }
7746  RegisterReqs.erase(Parser.getTok().getIdentifier());
7747  Parser.Lex(); // Eat the identifier.
7748  return false;
7749}
7750
7751/// parseDirectiveArch
7752///  ::= .arch token
7753bool ARMAsmParser::parseDirectiveArch(SMLoc L) {
7754  return true;
7755}
7756
7757/// parseDirectiveEabiAttr
7758///  ::= .eabi_attribute int, int
7759bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) {
7760  return true;
7761}
7762
7763extern "C" void LLVMInitializeARMAsmLexer();
7764
7765/// Force static initialization.
7766extern "C" void LLVMInitializeARMAsmParser() {
7767  RegisterMCAsmParser<ARMAsmParser> X(TheARMTarget);
7768  RegisterMCAsmParser<ARMAsmParser> Y(TheThumbTarget);
7769  LLVMInitializeARMAsmLexer();
7770}
7771
7772#define GET_REGISTER_MATCHER
7773#define GET_SUBTARGET_FEATURE_NAME
7774#define GET_MATCHER_IMPLEMENTATION
7775#include "ARMGenAsmMatcher.inc"
7776