ARMAsmParser.cpp revision e98d646b1194c522b121e1a70906efe4ea578fc8
1//===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "ARM.h"
11#include "ARMAddressingModes.h"
12#include "ARMMCExpr.h"
13#include "ARMBaseRegisterInfo.h"
14#include "ARMSubtarget.h"
15#include "llvm/MC/MCParser/MCAsmLexer.h"
16#include "llvm/MC/MCParser/MCAsmParser.h"
17#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
18#include "llvm/MC/MCContext.h"
19#include "llvm/MC/MCStreamer.h"
20#include "llvm/MC/MCExpr.h"
21#include "llvm/MC/MCInst.h"
22#include "llvm/Target/TargetRegistry.h"
23#include "llvm/Target/TargetAsmParser.h"
24#include "llvm/Support/SourceMgr.h"
25#include "llvm/Support/raw_ostream.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/ADT/StringExtras.h"
28#include "llvm/ADT/StringSwitch.h"
29#include "llvm/ADT/Twine.h"
30using namespace llvm;
31
32/// Shift types used for register controlled shifts in ARM memory addressing.
33enum ShiftType {
34  Lsl,
35  Lsr,
36  Asr,
37  Ror,
38  Rrx
39};
40
41namespace {
42
43class ARMOperand;
44
45class ARMAsmParser : public TargetAsmParser {
46  MCAsmParser &Parser;
47  TargetMachine &TM;
48
49  MCAsmParser &getParser() const { return Parser; }
50  MCAsmLexer &getLexer() const { return Parser.getLexer(); }
51
52  void Warning(SMLoc L, const Twine &Msg) { Parser.Warning(L, Msg); }
53  bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); }
54
55  int TryParseRegister();
56  virtual bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc);
57  bool TryParseRegisterWithWriteBack(SmallVectorImpl<MCParsedAsmOperand*> &);
58  bool ParseRegisterList(SmallVectorImpl<MCParsedAsmOperand*> &);
59  bool ParseMemory(SmallVectorImpl<MCParsedAsmOperand*> &);
60  bool ParseOperand(SmallVectorImpl<MCParsedAsmOperand*> &, StringRef Mnemonic);
61  bool ParsePrefix(ARMMCExpr::VariantKind &RefKind);
62  const MCExpr *ApplyPrefixToExpr(const MCExpr *E,
63                                  MCSymbolRefExpr::VariantKind Variant);
64
65
66  bool ParseMemoryOffsetReg(bool &Negative,
67                            bool &OffsetRegShifted,
68                            enum ShiftType &ShiftType,
69                            const MCExpr *&ShiftAmount,
70                            const MCExpr *&Offset,
71                            bool &OffsetIsReg,
72                            int &OffsetRegNum,
73                            SMLoc &E);
74  bool ParseShift(enum ShiftType &St, const MCExpr *&ShiftAmount, SMLoc &E);
75  bool ParseDirectiveWord(unsigned Size, SMLoc L);
76  bool ParseDirectiveThumb(SMLoc L);
77  bool ParseDirectiveThumbFunc(SMLoc L);
78  bool ParseDirectiveCode(SMLoc L);
79  bool ParseDirectiveSyntax(SMLoc L);
80
81  bool MatchAndEmitInstruction(SMLoc IDLoc,
82                               SmallVectorImpl<MCParsedAsmOperand*> &Operands,
83                               MCStreamer &Out);
84  void GetMnemonicAcceptInfo(StringRef Mnemonic, bool &CanAcceptCarrySet,
85                             bool &CanAcceptPredicationCode);
86
87  /// @name Auto-generated Match Functions
88  /// {
89
90#define GET_ASSEMBLER_HEADER
91#include "ARMGenAsmMatcher.inc"
92
93  /// }
94
95  OperandMatchResultTy tryParseCoprocNumOperand(
96    SmallVectorImpl<MCParsedAsmOperand*>&);
97  OperandMatchResultTy tryParseCoprocRegOperand(
98    SmallVectorImpl<MCParsedAsmOperand*>&);
99  OperandMatchResultTy tryParseMemBarrierOptOperand(
100    SmallVectorImpl<MCParsedAsmOperand*> &);
101  OperandMatchResultTy tryParseProcIFlagsOperand(
102    SmallVectorImpl<MCParsedAsmOperand*> &);
103
104public:
105  ARMAsmParser(const Target &T, MCAsmParser &_Parser, TargetMachine &_TM)
106    : TargetAsmParser(T), Parser(_Parser), TM(_TM) {
107      // Initialize the set of available features.
108      setAvailableFeatures(ComputeAvailableFeatures(
109          &TM.getSubtarget<ARMSubtarget>()));
110    }
111
112  virtual bool ParseInstruction(StringRef Name, SMLoc NameLoc,
113                                SmallVectorImpl<MCParsedAsmOperand*> &Operands);
114  virtual bool ParseDirective(AsmToken DirectiveID);
115};
116} // end anonymous namespace
117
118namespace {
119
120/// ARMOperand - Instances of this class represent a parsed ARM machine
121/// instruction.
122class ARMOperand : public MCParsedAsmOperand {
123  enum KindTy {
124    CondCode,
125    CCOut,
126    CoprocNum,
127    CoprocReg,
128    Immediate,
129    MemBarrierOpt,
130    Memory,
131    ProcIFlags,
132    Register,
133    RegisterList,
134    DPRRegisterList,
135    SPRRegisterList,
136    Token
137  } Kind;
138
139  SMLoc StartLoc, EndLoc;
140  SmallVector<unsigned, 8> Registers;
141
142  union {
143    struct {
144      ARMCC::CondCodes Val;
145    } CC;
146
147    struct {
148      ARM_MB::MemBOpt Val;
149    } MBOpt;
150
151    struct {
152      unsigned Val;
153    } Cop;
154
155    struct {
156      ARM_PROC::IFlags Val;
157    } IFlags;
158
159    struct {
160      const char *Data;
161      unsigned Length;
162    } Tok;
163
164    struct {
165      unsigned RegNum;
166    } Reg;
167
168    struct {
169      const MCExpr *Val;
170    } Imm;
171
172    /// Combined record for all forms of ARM address expressions.
173    struct {
174      unsigned BaseRegNum;
175      union {
176        unsigned RegNum;     ///< Offset register num, when OffsetIsReg.
177        const MCExpr *Value; ///< Offset value, when !OffsetIsReg.
178      } Offset;
179      const MCExpr *ShiftAmount;     // used when OffsetRegShifted is true
180      enum ShiftType ShiftType;      // used when OffsetRegShifted is true
181      unsigned OffsetRegShifted : 1; // only used when OffsetIsReg is true
182      unsigned Preindexed       : 1;
183      unsigned Postindexed      : 1;
184      unsigned OffsetIsReg      : 1;
185      unsigned Negative         : 1; // only used when OffsetIsReg is true
186      unsigned Writeback        : 1;
187    } Mem;
188  };
189
190  ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
191public:
192  ARMOperand(const ARMOperand &o) : MCParsedAsmOperand() {
193    Kind = o.Kind;
194    StartLoc = o.StartLoc;
195    EndLoc = o.EndLoc;
196    switch (Kind) {
197    case CondCode:
198      CC = o.CC;
199      break;
200    case Token:
201      Tok = o.Tok;
202      break;
203    case CCOut:
204    case Register:
205      Reg = o.Reg;
206      break;
207    case RegisterList:
208    case DPRRegisterList:
209    case SPRRegisterList:
210      Registers = o.Registers;
211      break;
212    case CoprocNum:
213    case CoprocReg:
214      Cop = o.Cop;
215      break;
216    case Immediate:
217      Imm = o.Imm;
218      break;
219    case MemBarrierOpt:
220      MBOpt = o.MBOpt;
221      break;
222    case Memory:
223      Mem = o.Mem;
224      break;
225    case ProcIFlags:
226      IFlags = o.IFlags;
227    }
228  }
229
230  /// getStartLoc - Get the location of the first token of this operand.
231  SMLoc getStartLoc() const { return StartLoc; }
232  /// getEndLoc - Get the location of the last token of this operand.
233  SMLoc getEndLoc() const { return EndLoc; }
234
235  ARMCC::CondCodes getCondCode() const {
236    assert(Kind == CondCode && "Invalid access!");
237    return CC.Val;
238  }
239
240  unsigned getCoproc() const {
241    assert((Kind == CoprocNum || Kind == CoprocReg) && "Invalid access!");
242    return Cop.Val;
243  }
244
245  StringRef getToken() const {
246    assert(Kind == Token && "Invalid access!");
247    return StringRef(Tok.Data, Tok.Length);
248  }
249
250  unsigned getReg() const {
251    assert((Kind == Register || Kind == CCOut) && "Invalid access!");
252    return Reg.RegNum;
253  }
254
255  const SmallVectorImpl<unsigned> &getRegList() const {
256    assert((Kind == RegisterList || Kind == DPRRegisterList ||
257            Kind == SPRRegisterList) && "Invalid access!");
258    return Registers;
259  }
260
261  const MCExpr *getImm() const {
262    assert(Kind == Immediate && "Invalid access!");
263    return Imm.Val;
264  }
265
266  ARM_MB::MemBOpt getMemBarrierOpt() const {
267    assert(Kind == MemBarrierOpt && "Invalid access!");
268    return MBOpt.Val;
269  }
270
271  ARM_PROC::IFlags getProcIFlags() const {
272    assert(Kind == ProcIFlags && "Invalid access!");
273    return IFlags.Val;
274  }
275
276  /// @name Memory Operand Accessors
277  /// @{
278
279  unsigned getMemBaseRegNum() const {
280    return Mem.BaseRegNum;
281  }
282  unsigned getMemOffsetRegNum() const {
283    assert(Mem.OffsetIsReg && "Invalid access!");
284    return Mem.Offset.RegNum;
285  }
286  const MCExpr *getMemOffset() const {
287    assert(!Mem.OffsetIsReg && "Invalid access!");
288    return Mem.Offset.Value;
289  }
290  unsigned getMemOffsetRegShifted() const {
291    assert(Mem.OffsetIsReg && "Invalid access!");
292    return Mem.OffsetRegShifted;
293  }
294  const MCExpr *getMemShiftAmount() const {
295    assert(Mem.OffsetIsReg && Mem.OffsetRegShifted && "Invalid access!");
296    return Mem.ShiftAmount;
297  }
298  enum ShiftType getMemShiftType() const {
299    assert(Mem.OffsetIsReg && Mem.OffsetRegShifted && "Invalid access!");
300    return Mem.ShiftType;
301  }
302  bool getMemPreindexed() const { return Mem.Preindexed; }
303  bool getMemPostindexed() const { return Mem.Postindexed; }
304  bool getMemOffsetIsReg() const { return Mem.OffsetIsReg; }
305  bool getMemNegative() const { return Mem.Negative; }
306  bool getMemWriteback() const { return Mem.Writeback; }
307
308  /// @}
309
310  bool isCoprocNum() const { return Kind == CoprocNum; }
311  bool isCoprocReg() const { return Kind == CoprocReg; }
312  bool isCondCode() const { return Kind == CondCode; }
313  bool isCCOut() const { return Kind == CCOut; }
314  bool isImm() const { return Kind == Immediate; }
315  bool isReg() const { return Kind == Register; }
316  bool isRegList() const { return Kind == RegisterList; }
317  bool isDPRRegList() const { return Kind == DPRRegisterList; }
318  bool isSPRRegList() const { return Kind == SPRRegisterList; }
319  bool isToken() const { return Kind == Token; }
320  bool isMemBarrierOpt() const { return Kind == MemBarrierOpt; }
321  bool isMemory() const { return Kind == Memory; }
322  bool isMemMode5() const {
323    if (!isMemory() || getMemOffsetIsReg() || getMemWriteback() ||
324        getMemNegative())
325      return false;
326
327    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getMemOffset());
328    if (!CE) return false;
329
330    // The offset must be a multiple of 4 in the range 0-1020.
331    int64_t Value = CE->getValue();
332    return ((Value & 0x3) == 0 && Value <= 1020 && Value >= -1020);
333  }
334  bool isMemModeRegThumb() const {
335    if (!isMemory() || !getMemOffsetIsReg() || getMemWriteback())
336      return false;
337    return true;
338  }
339  bool isMemModeImmThumb() const {
340    if (!isMemory() || getMemOffsetIsReg() || getMemWriteback())
341      return false;
342
343    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getMemOffset());
344    if (!CE) return false;
345
346    // The offset must be a multiple of 4 in the range 0-124.
347    uint64_t Value = CE->getValue();
348    return ((Value & 0x3) == 0 && Value <= 124);
349  }
350  bool isProcIFlags() const { return Kind == ProcIFlags; }
351
352  void addExpr(MCInst &Inst, const MCExpr *Expr) const {
353    // Add as immediates when possible.  Null MCExpr = 0.
354    if (Expr == 0)
355      Inst.addOperand(MCOperand::CreateImm(0));
356    else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
357      Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
358    else
359      Inst.addOperand(MCOperand::CreateExpr(Expr));
360  }
361
362  void addCondCodeOperands(MCInst &Inst, unsigned N) const {
363    assert(N == 2 && "Invalid number of operands!");
364    Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode())));
365    unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR;
366    Inst.addOperand(MCOperand::CreateReg(RegNum));
367  }
368
369  void addCoprocNumOperands(MCInst &Inst, unsigned N) const {
370    assert(N == 1 && "Invalid number of operands!");
371    Inst.addOperand(MCOperand::CreateImm(getCoproc()));
372  }
373
374  void addCoprocRegOperands(MCInst &Inst, unsigned N) const {
375    assert(N == 1 && "Invalid number of operands!");
376    Inst.addOperand(MCOperand::CreateImm(getCoproc()));
377  }
378
379  void addCCOutOperands(MCInst &Inst, unsigned N) const {
380    assert(N == 1 && "Invalid number of operands!");
381    Inst.addOperand(MCOperand::CreateReg(getReg()));
382  }
383
384  void addRegOperands(MCInst &Inst, unsigned N) const {
385    assert(N == 1 && "Invalid number of operands!");
386    Inst.addOperand(MCOperand::CreateReg(getReg()));
387  }
388
389  void addRegListOperands(MCInst &Inst, unsigned N) const {
390    assert(N == 1 && "Invalid number of operands!");
391    const SmallVectorImpl<unsigned> &RegList = getRegList();
392    for (SmallVectorImpl<unsigned>::const_iterator
393           I = RegList.begin(), E = RegList.end(); I != E; ++I)
394      Inst.addOperand(MCOperand::CreateReg(*I));
395  }
396
397  void addDPRRegListOperands(MCInst &Inst, unsigned N) const {
398    addRegListOperands(Inst, N);
399  }
400
401  void addSPRRegListOperands(MCInst &Inst, unsigned N) const {
402    addRegListOperands(Inst, N);
403  }
404
405  void addImmOperands(MCInst &Inst, unsigned N) const {
406    assert(N == 1 && "Invalid number of operands!");
407    addExpr(Inst, getImm());
408  }
409
410  void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const {
411    assert(N == 1 && "Invalid number of operands!");
412    Inst.addOperand(MCOperand::CreateImm(unsigned(getMemBarrierOpt())));
413  }
414
415  void addMemMode5Operands(MCInst &Inst, unsigned N) const {
416    assert(N == 2 && isMemMode5() && "Invalid number of operands!");
417
418    Inst.addOperand(MCOperand::CreateReg(getMemBaseRegNum()));
419    assert(!getMemOffsetIsReg() && "Invalid mode 5 operand");
420
421    // FIXME: #-0 is encoded differently than #0. Does the parser preserve
422    // the difference?
423    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getMemOffset());
424    assert(CE && "Non-constant mode 5 offset operand!");
425
426    // The MCInst offset operand doesn't include the low two bits (like
427    // the instruction encoding).
428    int64_t Offset = CE->getValue() / 4;
429    if (Offset >= 0)
430      Inst.addOperand(MCOperand::CreateImm(ARM_AM::getAM5Opc(ARM_AM::add,
431                                                             Offset)));
432    else
433      Inst.addOperand(MCOperand::CreateImm(ARM_AM::getAM5Opc(ARM_AM::sub,
434                                                             -Offset)));
435  }
436
437  void addMemModeRegThumbOperands(MCInst &Inst, unsigned N) const {
438    assert(N == 2 && isMemModeRegThumb() && "Invalid number of operands!");
439    Inst.addOperand(MCOperand::CreateReg(getMemBaseRegNum()));
440    Inst.addOperand(MCOperand::CreateReg(getMemOffsetRegNum()));
441  }
442
443  void addMemModeImmThumbOperands(MCInst &Inst, unsigned N) const {
444    assert(N == 2 && isMemModeImmThumb() && "Invalid number of operands!");
445    Inst.addOperand(MCOperand::CreateReg(getMemBaseRegNum()));
446    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getMemOffset());
447    assert(CE && "Non-constant mode offset operand!");
448    Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
449  }
450
451  void addProcIFlagsOperands(MCInst &Inst, unsigned N) const {
452    assert(N == 1 && "Invalid number of operands!");
453    Inst.addOperand(MCOperand::CreateImm(unsigned(getProcIFlags())));
454  }
455
456  virtual void dump(raw_ostream &OS) const;
457
458  static ARMOperand *CreateCondCode(ARMCC::CondCodes CC, SMLoc S) {
459    ARMOperand *Op = new ARMOperand(CondCode);
460    Op->CC.Val = CC;
461    Op->StartLoc = S;
462    Op->EndLoc = S;
463    return Op;
464  }
465
466  static ARMOperand *CreateCoprocNum(unsigned CopVal, SMLoc S) {
467    ARMOperand *Op = new ARMOperand(CoprocNum);
468    Op->Cop.Val = CopVal;
469    Op->StartLoc = S;
470    Op->EndLoc = S;
471    return Op;
472  }
473
474  static ARMOperand *CreateCoprocReg(unsigned CopVal, SMLoc S) {
475    ARMOperand *Op = new ARMOperand(CoprocReg);
476    Op->Cop.Val = CopVal;
477    Op->StartLoc = S;
478    Op->EndLoc = S;
479    return Op;
480  }
481
482  static ARMOperand *CreateCCOut(unsigned RegNum, SMLoc S) {
483    ARMOperand *Op = new ARMOperand(CCOut);
484    Op->Reg.RegNum = RegNum;
485    Op->StartLoc = S;
486    Op->EndLoc = S;
487    return Op;
488  }
489
490  static ARMOperand *CreateToken(StringRef Str, SMLoc S) {
491    ARMOperand *Op = new ARMOperand(Token);
492    Op->Tok.Data = Str.data();
493    Op->Tok.Length = Str.size();
494    Op->StartLoc = S;
495    Op->EndLoc = S;
496    return Op;
497  }
498
499  static ARMOperand *CreateReg(unsigned RegNum, SMLoc S, SMLoc E) {
500    ARMOperand *Op = new ARMOperand(Register);
501    Op->Reg.RegNum = RegNum;
502    Op->StartLoc = S;
503    Op->EndLoc = E;
504    return Op;
505  }
506
507  static ARMOperand *
508  CreateRegList(const SmallVectorImpl<std::pair<unsigned, SMLoc> > &Regs,
509                SMLoc StartLoc, SMLoc EndLoc) {
510    KindTy Kind = RegisterList;
511
512    if (ARM::DPRRegClass.contains(Regs.front().first))
513      Kind = DPRRegisterList;
514    else if (ARM::SPRRegClass.contains(Regs.front().first))
515      Kind = SPRRegisterList;
516
517    ARMOperand *Op = new ARMOperand(Kind);
518    for (SmallVectorImpl<std::pair<unsigned, SMLoc> >::const_iterator
519           I = Regs.begin(), E = Regs.end(); I != E; ++I)
520      Op->Registers.push_back(I->first);
521    array_pod_sort(Op->Registers.begin(), Op->Registers.end());
522    Op->StartLoc = StartLoc;
523    Op->EndLoc = EndLoc;
524    return Op;
525  }
526
527  static ARMOperand *CreateImm(const MCExpr *Val, SMLoc S, SMLoc E) {
528    ARMOperand *Op = new ARMOperand(Immediate);
529    Op->Imm.Val = Val;
530    Op->StartLoc = S;
531    Op->EndLoc = E;
532    return Op;
533  }
534
535  static ARMOperand *CreateMem(unsigned BaseRegNum, bool OffsetIsReg,
536                               const MCExpr *Offset, int OffsetRegNum,
537                               bool OffsetRegShifted, enum ShiftType ShiftType,
538                               const MCExpr *ShiftAmount, bool Preindexed,
539                               bool Postindexed, bool Negative, bool Writeback,
540                               SMLoc S, SMLoc E) {
541    assert((OffsetRegNum == -1 || OffsetIsReg) &&
542           "OffsetRegNum must imply OffsetIsReg!");
543    assert((!OffsetRegShifted || OffsetIsReg) &&
544           "OffsetRegShifted must imply OffsetIsReg!");
545    assert((Offset || OffsetIsReg) &&
546           "Offset must exists unless register offset is used!");
547    assert((!ShiftAmount || (OffsetIsReg && OffsetRegShifted)) &&
548           "Cannot have shift amount without shifted register offset!");
549    assert((!Offset || !OffsetIsReg) &&
550           "Cannot have expression offset and register offset!");
551
552    ARMOperand *Op = new ARMOperand(Memory);
553    Op->Mem.BaseRegNum = BaseRegNum;
554    Op->Mem.OffsetIsReg = OffsetIsReg;
555    if (OffsetIsReg)
556      Op->Mem.Offset.RegNum = OffsetRegNum;
557    else
558      Op->Mem.Offset.Value = Offset;
559    Op->Mem.OffsetRegShifted = OffsetRegShifted;
560    Op->Mem.ShiftType = ShiftType;
561    Op->Mem.ShiftAmount = ShiftAmount;
562    Op->Mem.Preindexed = Preindexed;
563    Op->Mem.Postindexed = Postindexed;
564    Op->Mem.Negative = Negative;
565    Op->Mem.Writeback = Writeback;
566
567    Op->StartLoc = S;
568    Op->EndLoc = E;
569    return Op;
570  }
571
572  static ARMOperand *CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, SMLoc S) {
573    ARMOperand *Op = new ARMOperand(MemBarrierOpt);
574    Op->MBOpt.Val = Opt;
575    Op->StartLoc = S;
576    Op->EndLoc = S;
577    return Op;
578  }
579
580  static ARMOperand *CreateProcIFlags(ARM_PROC::IFlags IFlags, SMLoc S) {
581    ARMOperand *Op = new ARMOperand(ProcIFlags);
582    Op->IFlags.Val = IFlags;
583    Op->StartLoc = S;
584    Op->EndLoc = S;
585    return Op;
586  }
587};
588
589} // end anonymous namespace.
590
591void ARMOperand::dump(raw_ostream &OS) const {
592  switch (Kind) {
593  case CondCode:
594    OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
595    break;
596  case CCOut:
597    OS << "<ccout " << getReg() << ">";
598    break;
599  case CoprocNum:
600    OS << "<coprocessor number: " << getCoproc() << ">";
601    break;
602  case CoprocReg:
603    OS << "<coprocessor register: " << getCoproc() << ">";
604    break;
605  case Immediate:
606    getImm()->print(OS);
607    break;
608  case MemBarrierOpt:
609    OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt()) << ">";
610    break;
611  case Memory:
612    OS << "<memory "
613       << "base:" << getMemBaseRegNum();
614    if (getMemOffsetIsReg()) {
615      OS << " offset:<register " << getMemOffsetRegNum();
616      if (getMemOffsetRegShifted()) {
617        OS << " offset-shift-type:" << getMemShiftType();
618        OS << " offset-shift-amount:" << *getMemShiftAmount();
619      }
620    } else {
621      OS << " offset:" << *getMemOffset();
622    }
623    if (getMemOffsetIsReg())
624      OS << " (offset-is-reg)";
625    if (getMemPreindexed())
626      OS << " (pre-indexed)";
627    if (getMemPostindexed())
628      OS << " (post-indexed)";
629    if (getMemNegative())
630      OS << " (negative)";
631    if (getMemWriteback())
632      OS << " (writeback)";
633    OS << ">";
634    break;
635  case ProcIFlags: {
636    OS << "<ARM_PROC::";
637    unsigned IFlags = getProcIFlags();
638    for (int i=2; i >= 0; --i)
639      if (IFlags & (1 << i))
640        OS << ARM_PROC::IFlagsToString(1 << i);
641    OS << ">";
642    break;
643  }
644  case Register:
645    OS << "<register " << getReg() << ">";
646    break;
647  case RegisterList:
648  case DPRRegisterList:
649  case SPRRegisterList: {
650    OS << "<register_list ";
651
652    const SmallVectorImpl<unsigned> &RegList = getRegList();
653    for (SmallVectorImpl<unsigned>::const_iterator
654           I = RegList.begin(), E = RegList.end(); I != E; ) {
655      OS << *I;
656      if (++I < E) OS << ", ";
657    }
658
659    OS << ">";
660    break;
661  }
662  case Token:
663    OS << "'" << getToken() << "'";
664    break;
665  }
666}
667
668/// @name Auto-generated Match Functions
669/// {
670
671static unsigned MatchRegisterName(StringRef Name);
672
673/// }
674
675bool ARMAsmParser::ParseRegister(unsigned &RegNo,
676                                 SMLoc &StartLoc, SMLoc &EndLoc) {
677  RegNo = TryParseRegister();
678
679  return (RegNo == (unsigned)-1);
680}
681
682/// Try to parse a register name.  The token must be an Identifier when called,
683/// and if it is a register name the token is eaten and the register number is
684/// returned.  Otherwise return -1.
685///
686int ARMAsmParser::TryParseRegister() {
687  const AsmToken &Tok = Parser.getTok();
688  assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
689
690  // FIXME: Validate register for the current architecture; we have to do
691  // validation later, so maybe there is no need for this here.
692  std::string upperCase = Tok.getString().str();
693  std::string lowerCase = LowercaseString(upperCase);
694  unsigned RegNum = MatchRegisterName(lowerCase);
695  if (!RegNum) {
696    RegNum = StringSwitch<unsigned>(lowerCase)
697      .Case("r13", ARM::SP)
698      .Case("r14", ARM::LR)
699      .Case("r15", ARM::PC)
700      .Case("ip", ARM::R12)
701      .Default(0);
702  }
703  if (!RegNum) return -1;
704
705  Parser.Lex(); // Eat identifier token.
706  return RegNum;
707}
708
709/// Try to parse a register name.  The token must be an Identifier when called.
710/// If it's a register, an AsmOperand is created. Another AsmOperand is created
711/// if there is a "writeback". 'true' if it's not a register.
712///
713/// TODO this is likely to change to allow different register types and or to
714/// parse for a specific register type.
715bool ARMAsmParser::
716TryParseRegisterWithWriteBack(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
717  SMLoc S = Parser.getTok().getLoc();
718  int RegNo = TryParseRegister();
719  if (RegNo == -1)
720    return true;
721
722  Operands.push_back(ARMOperand::CreateReg(RegNo, S, Parser.getTok().getLoc()));
723
724  const AsmToken &ExclaimTok = Parser.getTok();
725  if (ExclaimTok.is(AsmToken::Exclaim)) {
726    Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(),
727                                               ExclaimTok.getLoc()));
728    Parser.Lex(); // Eat exclaim token
729  }
730
731  return false;
732}
733
734/// MatchCoprocessorOperandName - Try to parse an coprocessor related
735/// instruction with a symbolic operand name. Example: "p1", "p7", "c3",
736/// "c5", ...
737static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) {
738  // Use the same layout as the tablegen'erated register name matcher. Ugly,
739  // but efficient.
740  switch (Name.size()) {
741  default: break;
742  case 2:
743    if (Name[0] != CoprocOp)
744      return -1;
745    switch (Name[1]) {
746    default:  return -1;
747    case '0': return 0;
748    case '1': return 1;
749    case '2': return 2;
750    case '3': return 3;
751    case '4': return 4;
752    case '5': return 5;
753    case '6': return 6;
754    case '7': return 7;
755    case '8': return 8;
756    case '9': return 9;
757    }
758    break;
759  case 3:
760    if (Name[0] != CoprocOp || Name[1] != '1')
761      return -1;
762    switch (Name[2]) {
763    default:  return -1;
764    case '0': return 10;
765    case '1': return 11;
766    case '2': return 12;
767    case '3': return 13;
768    case '4': return 14;
769    case '5': return 15;
770    }
771    break;
772  }
773
774  return -1;
775}
776
777/// tryParseCoprocNumOperand - Try to parse an coprocessor number operand. The
778/// token must be an Identifier when called, and if it is a coprocessor
779/// number, the token is eaten and the operand is added to the operand list.
780ARMAsmParser::OperandMatchResultTy ARMAsmParser::
781tryParseCoprocNumOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
782  SMLoc S = Parser.getTok().getLoc();
783  const AsmToken &Tok = Parser.getTok();
784  assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
785
786  int Num = MatchCoprocessorOperandName(Tok.getString(), 'p');
787  if (Num == -1)
788    return MatchOperand_NoMatch;
789
790  Parser.Lex(); // Eat identifier token.
791  Operands.push_back(ARMOperand::CreateCoprocNum(Num, S));
792  return MatchOperand_Success;
793}
794
795/// tryParseCoprocRegOperand - Try to parse an coprocessor register operand. The
796/// token must be an Identifier when called, and if it is a coprocessor
797/// number, the token is eaten and the operand is added to the operand list.
798ARMAsmParser::OperandMatchResultTy ARMAsmParser::
799tryParseCoprocRegOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
800  SMLoc S = Parser.getTok().getLoc();
801  const AsmToken &Tok = Parser.getTok();
802  assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
803
804  int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c');
805  if (Reg == -1)
806    return MatchOperand_NoMatch;
807
808  Parser.Lex(); // Eat identifier token.
809  Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S));
810  return MatchOperand_Success;
811}
812
813/// Parse a register list, return it if successful else return null.  The first
814/// token must be a '{' when called.
815bool ARMAsmParser::
816ParseRegisterList(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
817  assert(Parser.getTok().is(AsmToken::LCurly) &&
818         "Token is not a Left Curly Brace");
819  SMLoc S = Parser.getTok().getLoc();
820
821  // Read the rest of the registers in the list.
822  unsigned PrevRegNum = 0;
823  SmallVector<std::pair<unsigned, SMLoc>, 32> Registers;
824
825  do {
826    bool IsRange = Parser.getTok().is(AsmToken::Minus);
827    Parser.Lex(); // Eat non-identifier token.
828
829    const AsmToken &RegTok = Parser.getTok();
830    SMLoc RegLoc = RegTok.getLoc();
831    if (RegTok.isNot(AsmToken::Identifier)) {
832      Error(RegLoc, "register expected");
833      return true;
834    }
835
836    int RegNum = TryParseRegister();
837    if (RegNum == -1) {
838      Error(RegLoc, "register expected");
839      return true;
840    }
841
842    if (IsRange) {
843      int Reg = PrevRegNum;
844      do {
845        ++Reg;
846        Registers.push_back(std::make_pair(Reg, RegLoc));
847      } while (Reg != RegNum);
848    } else {
849      Registers.push_back(std::make_pair(RegNum, RegLoc));
850    }
851
852    PrevRegNum = RegNum;
853  } while (Parser.getTok().is(AsmToken::Comma) ||
854           Parser.getTok().is(AsmToken::Minus));
855
856  // Process the right curly brace of the list.
857  const AsmToken &RCurlyTok = Parser.getTok();
858  if (RCurlyTok.isNot(AsmToken::RCurly)) {
859    Error(RCurlyTok.getLoc(), "'}' expected");
860    return true;
861  }
862
863  SMLoc E = RCurlyTok.getLoc();
864  Parser.Lex(); // Eat right curly brace token.
865
866  // Verify the register list.
867  SmallVectorImpl<std::pair<unsigned, SMLoc> >::const_iterator
868    RI = Registers.begin(), RE = Registers.end();
869
870  unsigned HighRegNum = getARMRegisterNumbering(RI->first);
871  bool EmittedWarning = false;
872
873  DenseMap<unsigned, bool> RegMap;
874  RegMap[HighRegNum] = true;
875
876  for (++RI; RI != RE; ++RI) {
877    const std::pair<unsigned, SMLoc> &RegInfo = *RI;
878    unsigned Reg = getARMRegisterNumbering(RegInfo.first);
879
880    if (RegMap[Reg]) {
881      Error(RegInfo.second, "register duplicated in register list");
882      return true;
883    }
884
885    if (!EmittedWarning && Reg < HighRegNum)
886      Warning(RegInfo.second,
887              "register not in ascending order in register list");
888
889    RegMap[Reg] = true;
890    HighRegNum = std::max(Reg, HighRegNum);
891  }
892
893  Operands.push_back(ARMOperand::CreateRegList(Registers, S, E));
894  return false;
895}
896
897/// tryParseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
898ARMAsmParser::OperandMatchResultTy ARMAsmParser::
899tryParseMemBarrierOptOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
900  SMLoc S = Parser.getTok().getLoc();
901  const AsmToken &Tok = Parser.getTok();
902  assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
903  StringRef OptStr = Tok.getString();
904
905  unsigned Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()))
906    .Case("sy",    ARM_MB::SY)
907    .Case("st",    ARM_MB::ST)
908    .Case("ish",   ARM_MB::ISH)
909    .Case("ishst", ARM_MB::ISHST)
910    .Case("nsh",   ARM_MB::NSH)
911    .Case("nshst", ARM_MB::NSHST)
912    .Case("osh",   ARM_MB::OSH)
913    .Case("oshst", ARM_MB::OSHST)
914    .Default(~0U);
915
916  if (Opt == ~0U)
917    return MatchOperand_NoMatch;
918
919  Parser.Lex(); // Eat identifier token.
920  Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S));
921  return MatchOperand_Success;
922}
923
924/// ParseProcIFlagsOperand - Try to parse iflags from CPS instruction.
925ARMAsmParser::OperandMatchResultTy ARMAsmParser::
926tryParseProcIFlagsOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
927  SMLoc S = Parser.getTok().getLoc();
928  const AsmToken &Tok = Parser.getTok();
929  assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
930  StringRef IFlagsStr = Tok.getString();
931
932  unsigned IFlags = 0;
933  for (int i = 0, e = IFlagsStr.size(); i != e; ++i) {
934    unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1))
935    .Case("a", ARM_PROC::A)
936    .Case("i", ARM_PROC::I)
937    .Case("f", ARM_PROC::F)
938    .Default(~0U);
939
940    // If some specific iflag is already set, it means that some letter is
941    // present more than once, this is not acceptable.
942    if (Flag == ~0U || (IFlags & Flag))
943      return MatchOperand_NoMatch;
944
945    IFlags |= Flag;
946  }
947
948  Parser.Lex(); // Eat identifier token.
949  Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S));
950  return MatchOperand_Success;
951}
952
953/// Parse an ARM memory expression, return false if successful else return true
954/// or an error.  The first token must be a '[' when called.
955///
956/// TODO Only preindexing and postindexing addressing are started, unindexed
957/// with option, etc are still to do.
958bool ARMAsmParser::
959ParseMemory(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
960  SMLoc S, E;
961  assert(Parser.getTok().is(AsmToken::LBrac) &&
962         "Token is not a Left Bracket");
963  S = Parser.getTok().getLoc();
964  Parser.Lex(); // Eat left bracket token.
965
966  const AsmToken &BaseRegTok = Parser.getTok();
967  if (BaseRegTok.isNot(AsmToken::Identifier)) {
968    Error(BaseRegTok.getLoc(), "register expected");
969    return true;
970  }
971  int BaseRegNum = TryParseRegister();
972  if (BaseRegNum == -1) {
973    Error(BaseRegTok.getLoc(), "register expected");
974    return true;
975  }
976
977  // The next token must either be a comma or a closing bracket.
978  const AsmToken &Tok = Parser.getTok();
979  if (!Tok.is(AsmToken::Comma) && !Tok.is(AsmToken::RBrac))
980    return true;
981
982  bool Preindexed = false;
983  bool Postindexed = false;
984  bool OffsetIsReg = false;
985  bool Negative = false;
986  bool Writeback = false;
987  ARMOperand *WBOp = 0;
988  int OffsetRegNum = -1;
989  bool OffsetRegShifted = false;
990  enum ShiftType ShiftType = Lsl;
991  const MCExpr *ShiftAmount = 0;
992  const MCExpr *Offset = 0;
993
994  // First look for preindexed address forms, that is after the "[Rn" we now
995  // have to see if the next token is a comma.
996  if (Tok.is(AsmToken::Comma)) {
997    Preindexed = true;
998    Parser.Lex(); // Eat comma token.
999
1000    if (ParseMemoryOffsetReg(Negative, OffsetRegShifted, ShiftType, ShiftAmount,
1001                             Offset, OffsetIsReg, OffsetRegNum, E))
1002      return true;
1003    const AsmToken &RBracTok = Parser.getTok();
1004    if (RBracTok.isNot(AsmToken::RBrac)) {
1005      Error(RBracTok.getLoc(), "']' expected");
1006      return true;
1007    }
1008    E = RBracTok.getLoc();
1009    Parser.Lex(); // Eat right bracket token.
1010
1011    const AsmToken &ExclaimTok = Parser.getTok();
1012    if (ExclaimTok.is(AsmToken::Exclaim)) {
1013      WBOp = ARMOperand::CreateToken(ExclaimTok.getString(),
1014                                     ExclaimTok.getLoc());
1015      Writeback = true;
1016      Parser.Lex(); // Eat exclaim token
1017    }
1018  } else {
1019    // The "[Rn" we have so far was not followed by a comma.
1020
1021    // If there's anything other than the right brace, this is a post indexing
1022    // addressing form.
1023    E = Tok.getLoc();
1024    Parser.Lex(); // Eat right bracket token.
1025
1026    const AsmToken &NextTok = Parser.getTok();
1027
1028    if (NextTok.isNot(AsmToken::EndOfStatement)) {
1029      Postindexed = true;
1030      Writeback = true;
1031
1032      if (NextTok.isNot(AsmToken::Comma)) {
1033        Error(NextTok.getLoc(), "',' expected");
1034        return true;
1035      }
1036
1037      Parser.Lex(); // Eat comma token.
1038
1039      if (ParseMemoryOffsetReg(Negative, OffsetRegShifted, ShiftType,
1040                               ShiftAmount, Offset, OffsetIsReg, OffsetRegNum,
1041                               E))
1042        return true;
1043    }
1044  }
1045
1046  // Force Offset to exist if used.
1047  if (!OffsetIsReg) {
1048    if (!Offset)
1049      Offset = MCConstantExpr::Create(0, getContext());
1050  }
1051
1052  Operands.push_back(ARMOperand::CreateMem(BaseRegNum, OffsetIsReg, Offset,
1053                                           OffsetRegNum, OffsetRegShifted,
1054                                           ShiftType, ShiftAmount, Preindexed,
1055                                           Postindexed, Negative, Writeback,
1056                                           S, E));
1057  if (WBOp)
1058    Operands.push_back(WBOp);
1059
1060  return false;
1061}
1062
1063/// Parse the offset of a memory operand after we have seen "[Rn," or "[Rn],"
1064/// we will parse the following (were +/- means that a plus or minus is
1065/// optional):
1066///   +/-Rm
1067///   +/-Rm, shift
1068///   #offset
1069/// we return false on success or an error otherwise.
1070bool ARMAsmParser::ParseMemoryOffsetReg(bool &Negative,
1071                                        bool &OffsetRegShifted,
1072                                        enum ShiftType &ShiftType,
1073                                        const MCExpr *&ShiftAmount,
1074                                        const MCExpr *&Offset,
1075                                        bool &OffsetIsReg,
1076                                        int &OffsetRegNum,
1077                                        SMLoc &E) {
1078  Negative = false;
1079  OffsetRegShifted = false;
1080  OffsetIsReg = false;
1081  OffsetRegNum = -1;
1082  const AsmToken &NextTok = Parser.getTok();
1083  E = NextTok.getLoc();
1084  if (NextTok.is(AsmToken::Plus))
1085    Parser.Lex(); // Eat plus token.
1086  else if (NextTok.is(AsmToken::Minus)) {
1087    Negative = true;
1088    Parser.Lex(); // Eat minus token
1089  }
1090  // See if there is a register following the "[Rn," or "[Rn]," we have so far.
1091  const AsmToken &OffsetRegTok = Parser.getTok();
1092  if (OffsetRegTok.is(AsmToken::Identifier)) {
1093    SMLoc CurLoc = OffsetRegTok.getLoc();
1094    OffsetRegNum = TryParseRegister();
1095    if (OffsetRegNum != -1) {
1096      OffsetIsReg = true;
1097      E = CurLoc;
1098    }
1099  }
1100
1101  // If we parsed a register as the offset then there can be a shift after that.
1102  if (OffsetRegNum != -1) {
1103    // Look for a comma then a shift
1104    const AsmToken &Tok = Parser.getTok();
1105    if (Tok.is(AsmToken::Comma)) {
1106      Parser.Lex(); // Eat comma token.
1107
1108      const AsmToken &Tok = Parser.getTok();
1109      if (ParseShift(ShiftType, ShiftAmount, E))
1110        return Error(Tok.getLoc(), "shift expected");
1111      OffsetRegShifted = true;
1112    }
1113  }
1114  else { // the "[Rn," or "[Rn,]" we have so far was not followed by "Rm"
1115    // Look for #offset following the "[Rn," or "[Rn],"
1116    const AsmToken &HashTok = Parser.getTok();
1117    if (HashTok.isNot(AsmToken::Hash))
1118      return Error(HashTok.getLoc(), "'#' expected");
1119
1120    Parser.Lex(); // Eat hash token.
1121
1122    if (getParser().ParseExpression(Offset))
1123     return true;
1124    E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1125  }
1126  return false;
1127}
1128
1129/// ParseShift as one of these two:
1130///   ( lsl | lsr | asr | ror ) , # shift_amount
1131///   rrx
1132/// and returns true if it parses a shift otherwise it returns false.
1133bool ARMAsmParser::ParseShift(ShiftType &St, const MCExpr *&ShiftAmount,
1134                              SMLoc &E) {
1135  const AsmToken &Tok = Parser.getTok();
1136  if (Tok.isNot(AsmToken::Identifier))
1137    return true;
1138  StringRef ShiftName = Tok.getString();
1139  if (ShiftName == "lsl" || ShiftName == "LSL")
1140    St = Lsl;
1141  else if (ShiftName == "lsr" || ShiftName == "LSR")
1142    St = Lsr;
1143  else if (ShiftName == "asr" || ShiftName == "ASR")
1144    St = Asr;
1145  else if (ShiftName == "ror" || ShiftName == "ROR")
1146    St = Ror;
1147  else if (ShiftName == "rrx" || ShiftName == "RRX")
1148    St = Rrx;
1149  else
1150    return true;
1151  Parser.Lex(); // Eat shift type token.
1152
1153  // Rrx stands alone.
1154  if (St == Rrx)
1155    return false;
1156
1157  // Otherwise, there must be a '#' and a shift amount.
1158  const AsmToken &HashTok = Parser.getTok();
1159  if (HashTok.isNot(AsmToken::Hash))
1160    return Error(HashTok.getLoc(), "'#' expected");
1161  Parser.Lex(); // Eat hash token.
1162
1163  if (getParser().ParseExpression(ShiftAmount))
1164    return true;
1165
1166  return false;
1167}
1168
1169/// Parse a arm instruction operand.  For now this parses the operand regardless
1170/// of the mnemonic.
1171bool ARMAsmParser::ParseOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
1172                                StringRef Mnemonic) {
1173  SMLoc S, E;
1174
1175  // Check if the current operand has a custom associated parser, if so, try to
1176  // custom parse the operand, or fallback to the general approach.
1177  OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
1178  if (ResTy == MatchOperand_Success)
1179    return false;
1180  // If there wasn't a custom match, try the generic matcher below. Otherwise,
1181  // there was a match, but an error occurred, in which case, just return that
1182  // the operand parsing failed.
1183  if (ResTy == MatchOperand_ParseFail)
1184    return true;
1185
1186  switch (getLexer().getKind()) {
1187  default:
1188    Error(Parser.getTok().getLoc(), "unexpected token in operand");
1189    return true;
1190  case AsmToken::Identifier:
1191    if (!TryParseRegisterWithWriteBack(Operands))
1192      return false;
1193
1194    // Fall though for the Identifier case that is not a register or a
1195    // special name.
1196  case AsmToken::Integer: // things like 1f and 2b as a branch targets
1197  case AsmToken::Dot: {   // . as a branch target
1198    // This was not a register so parse other operands that start with an
1199    // identifier (like labels) as expressions and create them as immediates.
1200    const MCExpr *IdVal;
1201    S = Parser.getTok().getLoc();
1202    if (getParser().ParseExpression(IdVal))
1203      return true;
1204    E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1205    Operands.push_back(ARMOperand::CreateImm(IdVal, S, E));
1206    return false;
1207  }
1208  case AsmToken::LBrac:
1209    return ParseMemory(Operands);
1210  case AsmToken::LCurly:
1211    return ParseRegisterList(Operands);
1212  case AsmToken::Hash:
1213    // #42 -> immediate.
1214    // TODO: ":lower16:" and ":upper16:" modifiers after # before immediate
1215    S = Parser.getTok().getLoc();
1216    Parser.Lex();
1217    const MCExpr *ImmVal;
1218    if (getParser().ParseExpression(ImmVal))
1219      return true;
1220    E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1221    Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E));
1222    return false;
1223  case AsmToken::Colon: {
1224    // ":lower16:" and ":upper16:" expression prefixes
1225    // FIXME: Check it's an expression prefix,
1226    // e.g. (FOO - :lower16:BAR) isn't legal.
1227    ARMMCExpr::VariantKind RefKind;
1228    if (ParsePrefix(RefKind))
1229      return true;
1230
1231    const MCExpr *SubExprVal;
1232    if (getParser().ParseExpression(SubExprVal))
1233      return true;
1234
1235    const MCExpr *ExprVal = ARMMCExpr::Create(RefKind, SubExprVal,
1236                                                   getContext());
1237    E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1238    Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E));
1239    return false;
1240  }
1241  }
1242}
1243
1244// ParsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
1245//  :lower16: and :upper16:.
1246bool ARMAsmParser::ParsePrefix(ARMMCExpr::VariantKind &RefKind) {
1247  RefKind = ARMMCExpr::VK_ARM_None;
1248
1249  // :lower16: and :upper16: modifiers
1250  assert(getLexer().is(AsmToken::Colon) && "expected a :");
1251  Parser.Lex(); // Eat ':'
1252
1253  if (getLexer().isNot(AsmToken::Identifier)) {
1254    Error(Parser.getTok().getLoc(), "expected prefix identifier in operand");
1255    return true;
1256  }
1257
1258  StringRef IDVal = Parser.getTok().getIdentifier();
1259  if (IDVal == "lower16") {
1260    RefKind = ARMMCExpr::VK_ARM_LO16;
1261  } else if (IDVal == "upper16") {
1262    RefKind = ARMMCExpr::VK_ARM_HI16;
1263  } else {
1264    Error(Parser.getTok().getLoc(), "unexpected prefix in operand");
1265    return true;
1266  }
1267  Parser.Lex();
1268
1269  if (getLexer().isNot(AsmToken::Colon)) {
1270    Error(Parser.getTok().getLoc(), "unexpected token after prefix");
1271    return true;
1272  }
1273  Parser.Lex(); // Eat the last ':'
1274  return false;
1275}
1276
1277const MCExpr *
1278ARMAsmParser::ApplyPrefixToExpr(const MCExpr *E,
1279                                MCSymbolRefExpr::VariantKind Variant) {
1280  // Recurse over the given expression, rebuilding it to apply the given variant
1281  // to the leftmost symbol.
1282  if (Variant == MCSymbolRefExpr::VK_None)
1283    return E;
1284
1285  switch (E->getKind()) {
1286  case MCExpr::Target:
1287    llvm_unreachable("Can't handle target expr yet");
1288  case MCExpr::Constant:
1289    llvm_unreachable("Can't handle lower16/upper16 of constant yet");
1290
1291  case MCExpr::SymbolRef: {
1292    const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E);
1293
1294    if (SRE->getKind() != MCSymbolRefExpr::VK_None)
1295      return 0;
1296
1297    return MCSymbolRefExpr::Create(&SRE->getSymbol(), Variant, getContext());
1298  }
1299
1300  case MCExpr::Unary:
1301    llvm_unreachable("Can't handle unary expressions yet");
1302
1303  case MCExpr::Binary: {
1304    const MCBinaryExpr *BE = cast<MCBinaryExpr>(E);
1305    const MCExpr *LHS = ApplyPrefixToExpr(BE->getLHS(), Variant);
1306    const MCExpr *RHS = BE->getRHS();
1307    if (!LHS)
1308      return 0;
1309
1310    return MCBinaryExpr::Create(BE->getOpcode(), LHS, RHS, getContext());
1311  }
1312  }
1313
1314  assert(0 && "Invalid expression kind!");
1315  return 0;
1316}
1317
1318/// \brief Given a mnemonic, split out possible predication code and carry
1319/// setting letters to form a canonical mnemonic and flags.
1320//
1321// FIXME: Would be nice to autogen this.
1322static StringRef SplitMnemonic(StringRef Mnemonic,
1323                               unsigned &PredicationCode,
1324                               bool &CarrySetting,
1325                               unsigned &ProcessorIMod) {
1326  PredicationCode = ARMCC::AL;
1327  CarrySetting = false;
1328  ProcessorIMod = 0;
1329
1330  // Ignore some mnemonics we know aren't predicated forms.
1331  //
1332  // FIXME: Would be nice to autogen this.
1333  if (Mnemonic == "teq" || Mnemonic == "vceq" ||
1334      Mnemonic == "movs" ||
1335      Mnemonic == "svc" ||
1336      (Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" ||
1337       Mnemonic == "vmls" || Mnemonic == "vnmls") ||
1338      Mnemonic == "vacge" || Mnemonic == "vcge" ||
1339      Mnemonic == "vclt" ||
1340      Mnemonic == "vacgt" || Mnemonic == "vcgt" ||
1341      Mnemonic == "vcle" ||
1342      (Mnemonic == "smlal" || Mnemonic == "umaal" || Mnemonic == "umlal" ||
1343       Mnemonic == "vabal" || Mnemonic == "vmlal" || Mnemonic == "vpadal" ||
1344       Mnemonic == "vqdmlal"))
1345    return Mnemonic;
1346
1347  // First, split out any predication code.
1348  unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2))
1349    .Case("eq", ARMCC::EQ)
1350    .Case("ne", ARMCC::NE)
1351    .Case("hs", ARMCC::HS)
1352    .Case("lo", ARMCC::LO)
1353    .Case("mi", ARMCC::MI)
1354    .Case("pl", ARMCC::PL)
1355    .Case("vs", ARMCC::VS)
1356    .Case("vc", ARMCC::VC)
1357    .Case("hi", ARMCC::HI)
1358    .Case("ls", ARMCC::LS)
1359    .Case("ge", ARMCC::GE)
1360    .Case("lt", ARMCC::LT)
1361    .Case("gt", ARMCC::GT)
1362    .Case("le", ARMCC::LE)
1363    .Case("al", ARMCC::AL)
1364    .Default(~0U);
1365  if (CC != ~0U) {
1366    Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2);
1367    PredicationCode = CC;
1368  }
1369
1370  // Next, determine if we have a carry setting bit. We explicitly ignore all
1371  // the instructions we know end in 's'.
1372  if (Mnemonic.endswith("s") &&
1373      !(Mnemonic == "asrs" || Mnemonic == "cps" || Mnemonic == "mls" ||
1374        Mnemonic == "movs" || Mnemonic == "mrs" || Mnemonic == "smmls" ||
1375        Mnemonic == "vabs" || Mnemonic == "vcls" || Mnemonic == "vmls" ||
1376        Mnemonic == "vmrs" || Mnemonic == "vnmls" || Mnemonic == "vqabs" ||
1377        Mnemonic == "vrecps" || Mnemonic == "vrsqrts")) {
1378    Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1);
1379    CarrySetting = true;
1380  }
1381
1382  // The "cps" instruction can have a interrupt mode operand which is glued into
1383  // the mnemonic. Check if this is the case, split it and parse the imod op
1384  if (Mnemonic.startswith("cps")) {
1385    // Split out any imod code.
1386    unsigned IMod =
1387      StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2))
1388      .Case("ie", ARM_PROC::IE)
1389      .Case("id", ARM_PROC::ID)
1390      .Default(~0U);
1391    if (IMod != ~0U) {
1392      Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2);
1393      ProcessorIMod = IMod;
1394    }
1395  }
1396
1397  return Mnemonic;
1398}
1399
1400/// \brief Given a canonical mnemonic, determine if the instruction ever allows
1401/// inclusion of carry set or predication code operands.
1402//
1403// FIXME: It would be nice to autogen this.
1404void ARMAsmParser::
1405GetMnemonicAcceptInfo(StringRef Mnemonic, bool &CanAcceptCarrySet,
1406                      bool &CanAcceptPredicationCode) {
1407  bool isThumb = TM.getSubtarget<ARMSubtarget>().isThumb();
1408
1409  if (Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
1410      Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" ||
1411      Mnemonic == "smull" || Mnemonic == "add" || Mnemonic == "adc" ||
1412      Mnemonic == "mul" || Mnemonic == "bic" || Mnemonic == "asr" ||
1413      Mnemonic == "umlal" || Mnemonic == "orr" || Mnemonic == "mov" ||
1414      Mnemonic == "rsb" || Mnemonic == "rsc" || Mnemonic == "orn" ||
1415      Mnemonic == "sbc" || Mnemonic == "mla" || Mnemonic == "umull" ||
1416      Mnemonic == "eor" || Mnemonic == "smlal" || Mnemonic == "mvn") {
1417    CanAcceptCarrySet = true;
1418  } else {
1419    CanAcceptCarrySet = false;
1420  }
1421
1422  if (Mnemonic == "cbnz" || Mnemonic == "setend" || Mnemonic == "dmb" ||
1423      Mnemonic == "cps" || Mnemonic == "mcr2" || Mnemonic == "it" ||
1424      Mnemonic == "mcrr2" || Mnemonic == "cbz" || Mnemonic == "cdp2" ||
1425      Mnemonic == "trap" || Mnemonic == "mrc2" || Mnemonic == "mrrc2" ||
1426      Mnemonic == "dsb" || Mnemonic == "movs" || Mnemonic == "isb" ||
1427      Mnemonic == "clrex" || Mnemonic.startswith("cps")) {
1428    CanAcceptPredicationCode = false;
1429  } else {
1430    CanAcceptPredicationCode = true;
1431  }
1432
1433  if (isThumb)
1434    if (Mnemonic == "bkpt" || Mnemonic == "mcr" || Mnemonic == "mcrr" ||
1435        Mnemonic == "mrc" || Mnemonic == "mrrc" || Mnemonic == "cdp")
1436      CanAcceptPredicationCode = false;
1437}
1438
1439/// Parse an arm instruction mnemonic followed by its operands.
1440bool ARMAsmParser::ParseInstruction(StringRef Name, SMLoc NameLoc,
1441                               SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
1442  // Create the leading tokens for the mnemonic, split by '.' characters.
1443  size_t Start = 0, Next = Name.find('.');
1444  StringRef Head = Name.slice(Start, Next);
1445
1446  // Split out the predication code and carry setting flag from the mnemonic.
1447  unsigned PredicationCode;
1448  unsigned ProcessorIMod;
1449  bool CarrySetting;
1450  Head = SplitMnemonic(Head, PredicationCode, CarrySetting,
1451                       ProcessorIMod);
1452
1453  Operands.push_back(ARMOperand::CreateToken(Head, NameLoc));
1454
1455  // Next, add the CCOut and ConditionCode operands, if needed.
1456  //
1457  // For mnemonics which can ever incorporate a carry setting bit or predication
1458  // code, our matching model involves us always generating CCOut and
1459  // ConditionCode operands to match the mnemonic "as written" and then we let
1460  // the matcher deal with finding the right instruction or generating an
1461  // appropriate error.
1462  bool CanAcceptCarrySet, CanAcceptPredicationCode;
1463  GetMnemonicAcceptInfo(Head, CanAcceptCarrySet, CanAcceptPredicationCode);
1464
1465  // Add the carry setting operand, if necessary.
1466  //
1467  // FIXME: It would be awesome if we could somehow invent a location such that
1468  // match errors on this operand would print a nice diagnostic about how the
1469  // 's' character in the mnemonic resulted in a CCOut operand.
1470  if (CanAcceptCarrySet) {
1471    Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0,
1472                                               NameLoc));
1473  } else {
1474    // This mnemonic can't ever accept a carry set, but the user wrote one (or
1475    // misspelled another mnemonic).
1476
1477    // FIXME: Issue a nice error.
1478  }
1479
1480  // Add the predication code operand, if necessary.
1481  if (CanAcceptPredicationCode) {
1482    Operands.push_back(ARMOperand::CreateCondCode(
1483                         ARMCC::CondCodes(PredicationCode), NameLoc));
1484  } else {
1485    // This mnemonic can't ever accept a predication code, but the user wrote
1486    // one (or misspelled another mnemonic).
1487
1488    // FIXME: Issue a nice error.
1489  }
1490
1491  // Add the processor imod operand, if necessary.
1492  if (ProcessorIMod) {
1493    Operands.push_back(ARMOperand::CreateImm(
1494          MCConstantExpr::Create(ProcessorIMod, getContext()),
1495                                 NameLoc, NameLoc));
1496  } else {
1497    // This mnemonic can't ever accept a imod, but the user wrote
1498    // one (or misspelled another mnemonic).
1499
1500    // FIXME: Issue a nice error.
1501  }
1502
1503  // Add the remaining tokens in the mnemonic.
1504  while (Next != StringRef::npos) {
1505    Start = Next;
1506    Next = Name.find('.', Start + 1);
1507    StringRef ExtraToken = Name.slice(Start, Next);
1508
1509    Operands.push_back(ARMOperand::CreateToken(ExtraToken, NameLoc));
1510  }
1511
1512  // Read the remaining operands.
1513  if (getLexer().isNot(AsmToken::EndOfStatement)) {
1514    // Read the first operand.
1515    if (ParseOperand(Operands, Head)) {
1516      Parser.EatToEndOfStatement();
1517      return true;
1518    }
1519
1520    while (getLexer().is(AsmToken::Comma)) {
1521      Parser.Lex();  // Eat the comma.
1522
1523      // Parse and remember the operand.
1524      if (ParseOperand(Operands, Head)) {
1525        Parser.EatToEndOfStatement();
1526        return true;
1527      }
1528    }
1529  }
1530
1531  if (getLexer().isNot(AsmToken::EndOfStatement)) {
1532    Parser.EatToEndOfStatement();
1533    return TokError("unexpected token in argument list");
1534  }
1535
1536  Parser.Lex(); // Consume the EndOfStatement
1537  return false;
1538}
1539
1540bool ARMAsmParser::
1541MatchAndEmitInstruction(SMLoc IDLoc,
1542                        SmallVectorImpl<MCParsedAsmOperand*> &Operands,
1543                        MCStreamer &Out) {
1544  MCInst Inst;
1545  unsigned ErrorInfo;
1546  MatchResultTy MatchResult, MatchResult2;
1547  MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo);
1548  if (MatchResult != Match_Success) {
1549    // If we get a Match_InvalidOperand it might be some arithmetic instruction
1550    // that does not update the condition codes.  So try adding a CCOut operand
1551    // with a value of reg0.
1552    if (MatchResult == Match_InvalidOperand) {
1553      Operands.insert(Operands.begin() + 1,
1554                      ARMOperand::CreateCCOut(0,
1555                                  ((ARMOperand*)Operands[0])->getStartLoc()));
1556      MatchResult2 = MatchInstructionImpl(Operands, Inst, ErrorInfo);
1557      if (MatchResult2 == Match_Success)
1558        MatchResult = Match_Success;
1559      else {
1560        ARMOperand *CCOut = ((ARMOperand*)Operands[1]);
1561        Operands.erase(Operands.begin() + 1);
1562        delete CCOut;
1563      }
1564    }
1565    // If we get a Match_MnemonicFail it might be some arithmetic instruction
1566    // that updates the condition codes if it ends in 's'.  So see if the
1567    // mnemonic ends in 's' and if so try removing the 's' and adding a CCOut
1568    // operand with a value of CPSR.
1569    else if(MatchResult == Match_MnemonicFail) {
1570      // Get the instruction mnemonic, which is the first token.
1571      StringRef Mnemonic = ((ARMOperand*)Operands[0])->getToken();
1572      if (Mnemonic.substr(Mnemonic.size()-1) == "s") {
1573        // removed the 's' from the mnemonic for matching.
1574        StringRef MnemonicNoS = Mnemonic.slice(0, Mnemonic.size() - 1);
1575        SMLoc NameLoc = ((ARMOperand*)Operands[0])->getStartLoc();
1576        ARMOperand *OldMnemonic = ((ARMOperand*)Operands[0]);
1577        Operands.erase(Operands.begin());
1578        delete OldMnemonic;
1579        Operands.insert(Operands.begin(),
1580                        ARMOperand::CreateToken(MnemonicNoS, NameLoc));
1581        Operands.insert(Operands.begin() + 1,
1582                        ARMOperand::CreateCCOut(ARM::CPSR, NameLoc));
1583        MatchResult2 = MatchInstructionImpl(Operands, Inst, ErrorInfo);
1584        if (MatchResult2 == Match_Success)
1585          MatchResult = Match_Success;
1586        else {
1587          ARMOperand *OldMnemonic = ((ARMOperand*)Operands[0]);
1588          Operands.erase(Operands.begin());
1589          delete OldMnemonic;
1590          Operands.insert(Operands.begin(),
1591                          ARMOperand::CreateToken(Mnemonic, NameLoc));
1592          ARMOperand *CCOut = ((ARMOperand*)Operands[1]);
1593          Operands.erase(Operands.begin() + 1);
1594          delete CCOut;
1595        }
1596      }
1597    }
1598  }
1599  switch (MatchResult) {
1600  case Match_Success:
1601    Out.EmitInstruction(Inst);
1602    return false;
1603  case Match_MissingFeature:
1604    Error(IDLoc, "instruction requires a CPU feature not currently enabled");
1605    return true;
1606  case Match_InvalidOperand: {
1607    SMLoc ErrorLoc = IDLoc;
1608    if (ErrorInfo != ~0U) {
1609      if (ErrorInfo >= Operands.size())
1610        return Error(IDLoc, "too few operands for instruction");
1611
1612      ErrorLoc = ((ARMOperand*)Operands[ErrorInfo])->getStartLoc();
1613      if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
1614    }
1615
1616    return Error(ErrorLoc, "invalid operand for instruction");
1617  }
1618  case Match_MnemonicFail:
1619    return Error(IDLoc, "unrecognized instruction mnemonic");
1620  case Match_ConversionFail:
1621    return Error(IDLoc, "unable to convert operands to instruction");
1622  }
1623
1624  llvm_unreachable("Implement any new match types added!");
1625  return true;
1626}
1627
1628/// ParseDirective parses the arm specific directives
1629bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
1630  StringRef IDVal = DirectiveID.getIdentifier();
1631  if (IDVal == ".word")
1632    return ParseDirectiveWord(4, DirectiveID.getLoc());
1633  else if (IDVal == ".thumb")
1634    return ParseDirectiveThumb(DirectiveID.getLoc());
1635  else if (IDVal == ".thumb_func")
1636    return ParseDirectiveThumbFunc(DirectiveID.getLoc());
1637  else if (IDVal == ".code")
1638    return ParseDirectiveCode(DirectiveID.getLoc());
1639  else if (IDVal == ".syntax")
1640    return ParseDirectiveSyntax(DirectiveID.getLoc());
1641  return true;
1642}
1643
1644/// ParseDirectiveWord
1645///  ::= .word [ expression (, expression)* ]
1646bool ARMAsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) {
1647  if (getLexer().isNot(AsmToken::EndOfStatement)) {
1648    for (;;) {
1649      const MCExpr *Value;
1650      if (getParser().ParseExpression(Value))
1651        return true;
1652
1653      getParser().getStreamer().EmitValue(Value, Size, 0/*addrspace*/);
1654
1655      if (getLexer().is(AsmToken::EndOfStatement))
1656        break;
1657
1658      // FIXME: Improve diagnostic.
1659      if (getLexer().isNot(AsmToken::Comma))
1660        return Error(L, "unexpected token in directive");
1661      Parser.Lex();
1662    }
1663  }
1664
1665  Parser.Lex();
1666  return false;
1667}
1668
1669/// ParseDirectiveThumb
1670///  ::= .thumb
1671bool ARMAsmParser::ParseDirectiveThumb(SMLoc L) {
1672  if (getLexer().isNot(AsmToken::EndOfStatement))
1673    return Error(L, "unexpected token in directive");
1674  Parser.Lex();
1675
1676  // TODO: set thumb mode
1677  // TODO: tell the MC streamer the mode
1678  // getParser().getStreamer().Emit???();
1679  return false;
1680}
1681
1682/// ParseDirectiveThumbFunc
1683///  ::= .thumbfunc symbol_name
1684bool ARMAsmParser::ParseDirectiveThumbFunc(SMLoc L) {
1685  const AsmToken &Tok = Parser.getTok();
1686  if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String))
1687    return Error(L, "unexpected token in .thumb_func directive");
1688  StringRef Name = Tok.getString();
1689  Parser.Lex(); // Consume the identifier token.
1690  if (getLexer().isNot(AsmToken::EndOfStatement))
1691    return Error(L, "unexpected token in directive");
1692  Parser.Lex();
1693
1694  // Mark symbol as a thumb symbol.
1695  MCSymbol *Func = getParser().getContext().GetOrCreateSymbol(Name);
1696  getParser().getStreamer().EmitThumbFunc(Func);
1697  return false;
1698}
1699
1700/// ParseDirectiveSyntax
1701///  ::= .syntax unified | divided
1702bool ARMAsmParser::ParseDirectiveSyntax(SMLoc L) {
1703  const AsmToken &Tok = Parser.getTok();
1704  if (Tok.isNot(AsmToken::Identifier))
1705    return Error(L, "unexpected token in .syntax directive");
1706  StringRef Mode = Tok.getString();
1707  if (Mode == "unified" || Mode == "UNIFIED")
1708    Parser.Lex();
1709  else if (Mode == "divided" || Mode == "DIVIDED")
1710    return Error(L, "'.syntax divided' arm asssembly not supported");
1711  else
1712    return Error(L, "unrecognized syntax mode in .syntax directive");
1713
1714  if (getLexer().isNot(AsmToken::EndOfStatement))
1715    return Error(Parser.getTok().getLoc(), "unexpected token in directive");
1716  Parser.Lex();
1717
1718  // TODO tell the MC streamer the mode
1719  // getParser().getStreamer().Emit???();
1720  return false;
1721}
1722
1723/// ParseDirectiveCode
1724///  ::= .code 16 | 32
1725bool ARMAsmParser::ParseDirectiveCode(SMLoc L) {
1726  const AsmToken &Tok = Parser.getTok();
1727  if (Tok.isNot(AsmToken::Integer))
1728    return Error(L, "unexpected token in .code directive");
1729  int64_t Val = Parser.getTok().getIntVal();
1730  if (Val == 16)
1731    Parser.Lex();
1732  else if (Val == 32)
1733    Parser.Lex();
1734  else
1735    return Error(L, "invalid operand to .code directive");
1736
1737  if (getLexer().isNot(AsmToken::EndOfStatement))
1738    return Error(Parser.getTok().getLoc(), "unexpected token in directive");
1739  Parser.Lex();
1740
1741  // FIXME: We need to be able switch subtargets at this point so that
1742  // MatchInstructionImpl() will work when it gets the AvailableFeatures which
1743  // includes Feature_IsThumb or not to match the right instructions.  This is
1744  // blocked on the FIXME in llvm-mc.cpp when creating the TargetMachine.
1745  if (Val == 16){
1746    assert(TM.getSubtarget<ARMSubtarget>().isThumb() &&
1747	   "switching between arm/thumb not yet suppported via .code 16)");
1748    getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
1749  }
1750  else{
1751    assert(!TM.getSubtarget<ARMSubtarget>().isThumb() &&
1752           "switching between thumb/arm not yet suppported via .code 32)");
1753    getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
1754   }
1755
1756  return false;
1757}
1758
1759extern "C" void LLVMInitializeARMAsmLexer();
1760
1761/// Force static initialization.
1762extern "C" void LLVMInitializeARMAsmParser() {
1763  RegisterAsmParser<ARMAsmParser> X(TheARMTarget);
1764  RegisterAsmParser<ARMAsmParser> Y(TheThumbTarget);
1765  LLVMInitializeARMAsmLexer();
1766}
1767
1768#define GET_REGISTER_MATCHER
1769#define GET_MATCHER_IMPLEMENTATION
1770#include "ARMGenAsmMatcher.inc"
1771