ARMAsmParser.cpp revision fafde7f0b7c70e08de719d9e33ce9f6fdaefc984
1//===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "ARM.h"
11#include "ARMAddressingModes.h"
12#include "ARMMCExpr.h"
13#include "ARMBaseRegisterInfo.h"
14#include "ARMSubtarget.h"
15#include "llvm/MC/MCParser/MCAsmLexer.h"
16#include "llvm/MC/MCParser/MCAsmParser.h"
17#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
18#include "llvm/MC/MCContext.h"
19#include "llvm/MC/MCStreamer.h"
20#include "llvm/MC/MCExpr.h"
21#include "llvm/MC/MCInst.h"
22#include "llvm/Target/TargetRegistry.h"
23#include "llvm/Target/TargetAsmParser.h"
24#include "llvm/Support/SourceMgr.h"
25#include "llvm/Support/raw_ostream.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/ADT/StringExtras.h"
28#include "llvm/ADT/StringSwitch.h"
29#include "llvm/ADT/Twine.h"
30using namespace llvm;
31
32/// Shift types used for register controlled shifts in ARM memory addressing.
33enum ShiftType {
34  Lsl,
35  Lsr,
36  Asr,
37  Ror,
38  Rrx
39};
40
41namespace {
42
43class ARMOperand;
44
45class ARMAsmParser : public TargetAsmParser {
46  MCAsmParser &Parser;
47  TargetMachine &TM;
48
49  MCAsmParser &getParser() const { return Parser; }
50  MCAsmLexer &getLexer() const { return Parser.getLexer(); }
51
52  void Warning(SMLoc L, const Twine &Msg) { Parser.Warning(L, Msg); }
53  bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); }
54
55  int TryParseRegister();
56  virtual bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc);
57  bool TryParseRegisterWithWriteBack(SmallVectorImpl<MCParsedAsmOperand*> &);
58  bool ParseCoprocNumOperand(SmallVectorImpl<MCParsedAsmOperand*>&);
59  bool ParseCoprocRegOperand(SmallVectorImpl<MCParsedAsmOperand*>&);
60  bool ParseRegisterList(SmallVectorImpl<MCParsedAsmOperand*> &);
61  bool ParseMemory(SmallVectorImpl<MCParsedAsmOperand*> &);
62  bool ParseOperand(SmallVectorImpl<MCParsedAsmOperand*> &, StringRef Mnemonic);
63  bool ParsePrefix(ARMMCExpr::VariantKind &RefKind);
64  const MCExpr *ApplyPrefixToExpr(const MCExpr *E,
65                                  MCSymbolRefExpr::VariantKind Variant);
66
67
68  bool ParseMemoryOffsetReg(bool &Negative,
69                            bool &OffsetRegShifted,
70                            enum ShiftType &ShiftType,
71                            const MCExpr *&ShiftAmount,
72                            const MCExpr *&Offset,
73                            bool &OffsetIsReg,
74                            int &OffsetRegNum,
75                            SMLoc &E);
76  bool ParseShift(enum ShiftType &St, const MCExpr *&ShiftAmount, SMLoc &E);
77  bool ParseDirectiveWord(unsigned Size, SMLoc L);
78  bool ParseDirectiveThumb(SMLoc L);
79  bool ParseDirectiveThumbFunc(SMLoc L);
80  bool ParseDirectiveCode(SMLoc L);
81  bool ParseDirectiveSyntax(SMLoc L);
82
83  bool MatchAndEmitInstruction(SMLoc IDLoc,
84                               SmallVectorImpl<MCParsedAsmOperand*> &Operands,
85                               MCStreamer &Out);
86  void GetMnemonicAcceptInfo(StringRef Mnemonic, bool &CanAcceptCarrySet,
87                             bool &CanAcceptPredicationCode);
88
89  /// @name Auto-generated Match Functions
90  /// {
91
92#define GET_ASSEMBLER_HEADER
93#include "ARMGenAsmMatcher.inc"
94
95  /// }
96
97public:
98  ARMAsmParser(const Target &T, MCAsmParser &_Parser, TargetMachine &_TM)
99    : TargetAsmParser(T), Parser(_Parser), TM(_TM) {
100      // Initialize the set of available features.
101      setAvailableFeatures(ComputeAvailableFeatures(
102          &TM.getSubtarget<ARMSubtarget>()));
103    }
104
105  virtual bool ParseInstruction(StringRef Name, SMLoc NameLoc,
106                                SmallVectorImpl<MCParsedAsmOperand*> &Operands);
107  virtual bool ParseDirective(AsmToken DirectiveID);
108};
109} // end anonymous namespace
110
111namespace {
112
113/// ARMOperand - Instances of this class represent a parsed ARM machine
114/// instruction.
115class ARMOperand : public MCParsedAsmOperand {
116  enum KindTy {
117    CondCode,
118    CCOut,
119    CoprocNum,
120    CoprocReg,
121    Immediate,
122    Memory,
123    Register,
124    RegisterList,
125    DPRRegisterList,
126    SPRRegisterList,
127    Token
128  } Kind;
129
130  SMLoc StartLoc, EndLoc;
131  SmallVector<unsigned, 8> Registers;
132
133  union {
134    struct {
135      ARMCC::CondCodes Val;
136    } CC;
137
138    struct {
139      unsigned Val;
140    } Cop;
141
142    struct {
143      const char *Data;
144      unsigned Length;
145    } Tok;
146
147    struct {
148      unsigned RegNum;
149    } Reg;
150
151    struct {
152      const MCExpr *Val;
153    } Imm;
154
155    /// Combined record for all forms of ARM address expressions.
156    struct {
157      unsigned BaseRegNum;
158      union {
159        unsigned RegNum;     ///< Offset register num, when OffsetIsReg.
160        const MCExpr *Value; ///< Offset value, when !OffsetIsReg.
161      } Offset;
162      const MCExpr *ShiftAmount;     // used when OffsetRegShifted is true
163      enum ShiftType ShiftType;      // used when OffsetRegShifted is true
164      unsigned OffsetRegShifted : 1; // only used when OffsetIsReg is true
165      unsigned Preindexed       : 1;
166      unsigned Postindexed      : 1;
167      unsigned OffsetIsReg      : 1;
168      unsigned Negative         : 1; // only used when OffsetIsReg is true
169      unsigned Writeback        : 1;
170    } Mem;
171  };
172
173  ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
174public:
175  ARMOperand(const ARMOperand &o) : MCParsedAsmOperand() {
176    Kind = o.Kind;
177    StartLoc = o.StartLoc;
178    EndLoc = o.EndLoc;
179    switch (Kind) {
180    case CondCode:
181      CC = o.CC;
182      break;
183    case Token:
184      Tok = o.Tok;
185      break;
186    case CCOut:
187    case Register:
188      Reg = o.Reg;
189      break;
190    case RegisterList:
191    case DPRRegisterList:
192    case SPRRegisterList:
193      Registers = o.Registers;
194      break;
195    case CoprocNum:
196    case CoprocReg:
197      Cop = o.Cop;
198      break;
199    case Immediate:
200      Imm = o.Imm;
201      break;
202    case Memory:
203      Mem = o.Mem;
204      break;
205    }
206  }
207
208  /// getStartLoc - Get the location of the first token of this operand.
209  SMLoc getStartLoc() const { return StartLoc; }
210  /// getEndLoc - Get the location of the last token of this operand.
211  SMLoc getEndLoc() const { return EndLoc; }
212
213  ARMCC::CondCodes getCondCode() const {
214    assert(Kind == CondCode && "Invalid access!");
215    return CC.Val;
216  }
217
218  unsigned getCoproc() const {
219    assert((Kind == CoprocNum || Kind == CoprocReg) && "Invalid access!");
220    return Cop.Val;
221  }
222
223  StringRef getToken() const {
224    assert(Kind == Token && "Invalid access!");
225    return StringRef(Tok.Data, Tok.Length);
226  }
227
228  unsigned getReg() const {
229    assert((Kind == Register || Kind == CCOut) && "Invalid access!");
230    return Reg.RegNum;
231  }
232
233  const SmallVectorImpl<unsigned> &getRegList() const {
234    assert((Kind == RegisterList || Kind == DPRRegisterList ||
235            Kind == SPRRegisterList) && "Invalid access!");
236    return Registers;
237  }
238
239  const MCExpr *getImm() const {
240    assert(Kind == Immediate && "Invalid access!");
241    return Imm.Val;
242  }
243
244  /// @name Memory Operand Accessors
245  /// @{
246
247  unsigned getMemBaseRegNum() const {
248    return Mem.BaseRegNum;
249  }
250  unsigned getMemOffsetRegNum() const {
251    assert(Mem.OffsetIsReg && "Invalid access!");
252    return Mem.Offset.RegNum;
253  }
254  const MCExpr *getMemOffset() const {
255    assert(!Mem.OffsetIsReg && "Invalid access!");
256    return Mem.Offset.Value;
257  }
258  unsigned getMemOffsetRegShifted() const {
259    assert(Mem.OffsetIsReg && "Invalid access!");
260    return Mem.OffsetRegShifted;
261  }
262  const MCExpr *getMemShiftAmount() const {
263    assert(Mem.OffsetIsReg && Mem.OffsetRegShifted && "Invalid access!");
264    return Mem.ShiftAmount;
265  }
266  enum ShiftType getMemShiftType() const {
267    assert(Mem.OffsetIsReg && Mem.OffsetRegShifted && "Invalid access!");
268    return Mem.ShiftType;
269  }
270  bool getMemPreindexed() const { return Mem.Preindexed; }
271  bool getMemPostindexed() const { return Mem.Postindexed; }
272  bool getMemOffsetIsReg() const { return Mem.OffsetIsReg; }
273  bool getMemNegative() const { return Mem.Negative; }
274  bool getMemWriteback() const { return Mem.Writeback; }
275
276  /// @}
277
278  bool isCoprocNum() const { return Kind == CoprocNum; }
279  bool isCoprocReg() const { return Kind == CoprocReg; }
280  bool isCondCode() const { return Kind == CondCode; }
281  bool isCCOut() const { return Kind == CCOut; }
282  bool isImm() const { return Kind == Immediate; }
283  bool isReg() const { return Kind == Register; }
284  bool isRegList() const { return Kind == RegisterList; }
285  bool isDPRRegList() const { return Kind == DPRRegisterList; }
286  bool isSPRRegList() const { return Kind == SPRRegisterList; }
287  bool isToken() const { return Kind == Token; }
288  bool isMemory() const { return Kind == Memory; }
289  bool isMemMode5() const {
290    if (!isMemory() || getMemOffsetIsReg() || getMemWriteback() ||
291        getMemNegative())
292      return false;
293
294    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getMemOffset());
295    if (!CE) return false;
296
297    // The offset must be a multiple of 4 in the range 0-1020.
298    int64_t Value = CE->getValue();
299    return ((Value & 0x3) == 0 && Value <= 1020 && Value >= -1020);
300  }
301  bool isMemModeRegThumb() const {
302    if (!isMemory() || !getMemOffsetIsReg() || getMemWriteback())
303      return false;
304    return true;
305  }
306  bool isMemModeImmThumb() const {
307    if (!isMemory() || getMemOffsetIsReg() || getMemWriteback())
308      return false;
309
310    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getMemOffset());
311    if (!CE) return false;
312
313    // The offset must be a multiple of 4 in the range 0-124.
314    uint64_t Value = CE->getValue();
315    return ((Value & 0x3) == 0 && Value <= 124);
316  }
317
318  void addExpr(MCInst &Inst, const MCExpr *Expr) const {
319    // Add as immediates when possible.  Null MCExpr = 0.
320    if (Expr == 0)
321      Inst.addOperand(MCOperand::CreateImm(0));
322    else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
323      Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
324    else
325      Inst.addOperand(MCOperand::CreateExpr(Expr));
326  }
327
328  void addCondCodeOperands(MCInst &Inst, unsigned N) const {
329    assert(N == 2 && "Invalid number of operands!");
330    Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode())));
331    unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR;
332    Inst.addOperand(MCOperand::CreateReg(RegNum));
333  }
334
335  void addCoprocNumOperands(MCInst &Inst, unsigned N) const {
336    assert(N == 1 && "Invalid number of operands!");
337    Inst.addOperand(MCOperand::CreateImm(getCoproc()));
338  }
339
340  void addCoprocRegOperands(MCInst &Inst, unsigned N) const {
341    assert(N == 1 && "Invalid number of operands!");
342    Inst.addOperand(MCOperand::CreateImm(getCoproc()));
343  }
344
345  void addCCOutOperands(MCInst &Inst, unsigned N) const {
346    assert(N == 1 && "Invalid number of operands!");
347    Inst.addOperand(MCOperand::CreateReg(getReg()));
348  }
349
350  void addRegOperands(MCInst &Inst, unsigned N) const {
351    assert(N == 1 && "Invalid number of operands!");
352    Inst.addOperand(MCOperand::CreateReg(getReg()));
353  }
354
355  void addRegListOperands(MCInst &Inst, unsigned N) const {
356    assert(N == 1 && "Invalid number of operands!");
357    const SmallVectorImpl<unsigned> &RegList = getRegList();
358    for (SmallVectorImpl<unsigned>::const_iterator
359           I = RegList.begin(), E = RegList.end(); I != E; ++I)
360      Inst.addOperand(MCOperand::CreateReg(*I));
361  }
362
363  void addDPRRegListOperands(MCInst &Inst, unsigned N) const {
364    addRegListOperands(Inst, N);
365  }
366
367  void addSPRRegListOperands(MCInst &Inst, unsigned N) const {
368    addRegListOperands(Inst, N);
369  }
370
371  void addImmOperands(MCInst &Inst, unsigned N) const {
372    assert(N == 1 && "Invalid number of operands!");
373    addExpr(Inst, getImm());
374  }
375
376  void addMemMode5Operands(MCInst &Inst, unsigned N) const {
377    assert(N == 2 && isMemMode5() && "Invalid number of operands!");
378
379    Inst.addOperand(MCOperand::CreateReg(getMemBaseRegNum()));
380    assert(!getMemOffsetIsReg() && "Invalid mode 5 operand");
381
382    // FIXME: #-0 is encoded differently than #0. Does the parser preserve
383    // the difference?
384    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getMemOffset());
385    assert(CE && "Non-constant mode 5 offset operand!");
386
387    // The MCInst offset operand doesn't include the low two bits (like
388    // the instruction encoding).
389    int64_t Offset = CE->getValue() / 4;
390    if (Offset >= 0)
391      Inst.addOperand(MCOperand::CreateImm(ARM_AM::getAM5Opc(ARM_AM::add,
392                                                             Offset)));
393    else
394      Inst.addOperand(MCOperand::CreateImm(ARM_AM::getAM5Opc(ARM_AM::sub,
395                                                             -Offset)));
396  }
397
398  void addMemModeRegThumbOperands(MCInst &Inst, unsigned N) const {
399    assert(N == 2 && isMemModeRegThumb() && "Invalid number of operands!");
400    Inst.addOperand(MCOperand::CreateReg(getMemBaseRegNum()));
401    Inst.addOperand(MCOperand::CreateReg(getMemOffsetRegNum()));
402  }
403
404  void addMemModeImmThumbOperands(MCInst &Inst, unsigned N) const {
405    assert(N == 2 && isMemModeImmThumb() && "Invalid number of operands!");
406    Inst.addOperand(MCOperand::CreateReg(getMemBaseRegNum()));
407    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getMemOffset());
408    assert(CE && "Non-constant mode offset operand!");
409    Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
410  }
411
412  virtual void dump(raw_ostream &OS) const;
413
414  static ARMOperand *CreateCondCode(ARMCC::CondCodes CC, SMLoc S) {
415    ARMOperand *Op = new ARMOperand(CondCode);
416    Op->CC.Val = CC;
417    Op->StartLoc = S;
418    Op->EndLoc = S;
419    return Op;
420  }
421
422  static ARMOperand *CreateCoprocNum(unsigned CopVal, SMLoc S) {
423    ARMOperand *Op = new ARMOperand(CoprocNum);
424    Op->Cop.Val = CopVal;
425    Op->StartLoc = S;
426    Op->EndLoc = S;
427    return Op;
428  }
429
430  static ARMOperand *CreateCoprocReg(unsigned CopVal, SMLoc S) {
431    ARMOperand *Op = new ARMOperand(CoprocReg);
432    Op->Cop.Val = CopVal;
433    Op->StartLoc = S;
434    Op->EndLoc = S;
435    return Op;
436  }
437
438  static ARMOperand *CreateCCOut(unsigned RegNum, SMLoc S) {
439    ARMOperand *Op = new ARMOperand(CCOut);
440    Op->Reg.RegNum = RegNum;
441    Op->StartLoc = S;
442    Op->EndLoc = S;
443    return Op;
444  }
445
446  static ARMOperand *CreateToken(StringRef Str, SMLoc S) {
447    ARMOperand *Op = new ARMOperand(Token);
448    Op->Tok.Data = Str.data();
449    Op->Tok.Length = Str.size();
450    Op->StartLoc = S;
451    Op->EndLoc = S;
452    return Op;
453  }
454
455  static ARMOperand *CreateReg(unsigned RegNum, SMLoc S, SMLoc E) {
456    ARMOperand *Op = new ARMOperand(Register);
457    Op->Reg.RegNum = RegNum;
458    Op->StartLoc = S;
459    Op->EndLoc = E;
460    return Op;
461  }
462
463  static ARMOperand *
464  CreateRegList(const SmallVectorImpl<std::pair<unsigned, SMLoc> > &Regs,
465                SMLoc StartLoc, SMLoc EndLoc) {
466    KindTy Kind = RegisterList;
467
468    if (ARM::DPRRegClass.contains(Regs.front().first))
469      Kind = DPRRegisterList;
470    else if (ARM::SPRRegClass.contains(Regs.front().first))
471      Kind = SPRRegisterList;
472
473    ARMOperand *Op = new ARMOperand(Kind);
474    for (SmallVectorImpl<std::pair<unsigned, SMLoc> >::const_iterator
475           I = Regs.begin(), E = Regs.end(); I != E; ++I)
476      Op->Registers.push_back(I->first);
477    array_pod_sort(Op->Registers.begin(), Op->Registers.end());
478    Op->StartLoc = StartLoc;
479    Op->EndLoc = EndLoc;
480    return Op;
481  }
482
483  static ARMOperand *CreateImm(const MCExpr *Val, SMLoc S, SMLoc E) {
484    ARMOperand *Op = new ARMOperand(Immediate);
485    Op->Imm.Val = Val;
486    Op->StartLoc = S;
487    Op->EndLoc = E;
488    return Op;
489  }
490
491  static ARMOperand *CreateMem(unsigned BaseRegNum, bool OffsetIsReg,
492                               const MCExpr *Offset, int OffsetRegNum,
493                               bool OffsetRegShifted, enum ShiftType ShiftType,
494                               const MCExpr *ShiftAmount, bool Preindexed,
495                               bool Postindexed, bool Negative, bool Writeback,
496                               SMLoc S, SMLoc E) {
497    assert((OffsetRegNum == -1 || OffsetIsReg) &&
498           "OffsetRegNum must imply OffsetIsReg!");
499    assert((!OffsetRegShifted || OffsetIsReg) &&
500           "OffsetRegShifted must imply OffsetIsReg!");
501    assert((Offset || OffsetIsReg) &&
502           "Offset must exists unless register offset is used!");
503    assert((!ShiftAmount || (OffsetIsReg && OffsetRegShifted)) &&
504           "Cannot have shift amount without shifted register offset!");
505    assert((!Offset || !OffsetIsReg) &&
506           "Cannot have expression offset and register offset!");
507
508    ARMOperand *Op = new ARMOperand(Memory);
509    Op->Mem.BaseRegNum = BaseRegNum;
510    Op->Mem.OffsetIsReg = OffsetIsReg;
511    if (OffsetIsReg)
512      Op->Mem.Offset.RegNum = OffsetRegNum;
513    else
514      Op->Mem.Offset.Value = Offset;
515    Op->Mem.OffsetRegShifted = OffsetRegShifted;
516    Op->Mem.ShiftType = ShiftType;
517    Op->Mem.ShiftAmount = ShiftAmount;
518    Op->Mem.Preindexed = Preindexed;
519    Op->Mem.Postindexed = Postindexed;
520    Op->Mem.Negative = Negative;
521    Op->Mem.Writeback = Writeback;
522
523    Op->StartLoc = S;
524    Op->EndLoc = E;
525    return Op;
526  }
527};
528
529} // end anonymous namespace.
530
531void ARMOperand::dump(raw_ostream &OS) const {
532  switch (Kind) {
533  case CondCode:
534    OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
535    break;
536  case CCOut:
537    OS << "<ccout " << getReg() << ">";
538    break;
539  case CoprocNum:
540    OS << "<coprocessor number: " << getCoproc() << ">";
541    break;
542  case CoprocReg:
543    OS << "<coprocessor register: " << getCoproc() << ">";
544    break;
545  case Immediate:
546    getImm()->print(OS);
547    break;
548  case Memory:
549    OS << "<memory "
550       << "base:" << getMemBaseRegNum();
551    if (getMemOffsetIsReg()) {
552      OS << " offset:<register " << getMemOffsetRegNum();
553      if (getMemOffsetRegShifted()) {
554        OS << " offset-shift-type:" << getMemShiftType();
555        OS << " offset-shift-amount:" << *getMemShiftAmount();
556      }
557    } else {
558      OS << " offset:" << *getMemOffset();
559    }
560    if (getMemOffsetIsReg())
561      OS << " (offset-is-reg)";
562    if (getMemPreindexed())
563      OS << " (pre-indexed)";
564    if (getMemPostindexed())
565      OS << " (post-indexed)";
566    if (getMemNegative())
567      OS << " (negative)";
568    if (getMemWriteback())
569      OS << " (writeback)";
570    OS << ">";
571    break;
572  case Register:
573    OS << "<register " << getReg() << ">";
574    break;
575  case RegisterList:
576  case DPRRegisterList:
577  case SPRRegisterList: {
578    OS << "<register_list ";
579
580    const SmallVectorImpl<unsigned> &RegList = getRegList();
581    for (SmallVectorImpl<unsigned>::const_iterator
582           I = RegList.begin(), E = RegList.end(); I != E; ) {
583      OS << *I;
584      if (++I < E) OS << ", ";
585    }
586
587    OS << ">";
588    break;
589  }
590  case Token:
591    OS << "'" << getToken() << "'";
592    break;
593  }
594}
595
596/// @name Auto-generated Match Functions
597/// {
598
599static unsigned MatchRegisterName(StringRef Name);
600
601/// }
602
603bool ARMAsmParser::ParseRegister(unsigned &RegNo,
604                                 SMLoc &StartLoc, SMLoc &EndLoc) {
605  RegNo = TryParseRegister();
606
607  return (RegNo == (unsigned)-1);
608}
609
610/// Try to parse a register name.  The token must be an Identifier when called,
611/// and if it is a register name the token is eaten and the register number is
612/// returned.  Otherwise return -1.
613///
614int ARMAsmParser::TryParseRegister() {
615  const AsmToken &Tok = Parser.getTok();
616  assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
617
618  // FIXME: Validate register for the current architecture; we have to do
619  // validation later, so maybe there is no need for this here.
620  std::string upperCase = Tok.getString().str();
621  std::string lowerCase = LowercaseString(upperCase);
622  unsigned RegNum = MatchRegisterName(lowerCase);
623  if (!RegNum) {
624    RegNum = StringSwitch<unsigned>(lowerCase)
625      .Case("r13", ARM::SP)
626      .Case("r14", ARM::LR)
627      .Case("r15", ARM::PC)
628      .Case("ip", ARM::R12)
629      .Default(0);
630  }
631  if (!RegNum) return -1;
632
633  Parser.Lex(); // Eat identifier token.
634  return RegNum;
635}
636
637/// Try to parse a register name.  The token must be an Identifier when called.
638/// If it's a register, an AsmOperand is created. Another AsmOperand is created
639/// if there is a "writeback". 'true' if it's not a register.
640///
641/// TODO this is likely to change to allow different register types and or to
642/// parse for a specific register type.
643bool ARMAsmParser::
644TryParseRegisterWithWriteBack(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
645  SMLoc S = Parser.getTok().getLoc();
646  int RegNo = TryParseRegister();
647  if (RegNo == -1)
648    return true;
649
650  Operands.push_back(ARMOperand::CreateReg(RegNo, S, Parser.getTok().getLoc()));
651
652  const AsmToken &ExclaimTok = Parser.getTok();
653  if (ExclaimTok.is(AsmToken::Exclaim)) {
654    Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(),
655                                               ExclaimTok.getLoc()));
656    Parser.Lex(); // Eat exclaim token
657  }
658
659  return false;
660}
661
662/// MatchCoprocessorOperandName - Try to parse an coprocessor related
663/// instruction with a symbolic operand name. Example: "p1", "p7", "c3",
664/// "c5", ...
665static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) {
666  // Use the same layout as the tablegen'erated register name matcher. Ugly,
667  // but efficient.
668  switch (Name.size()) {
669  default: break;
670  case 2:
671    if (Name[0] != CoprocOp)
672      return -1;
673    switch (Name[1]) {
674    default:  return -1;
675    case '0': return 0;
676    case '1': return 1;
677    case '2': return 2;
678    case '3': return 3;
679    case '4': return 4;
680    case '5': return 5;
681    case '6': return 6;
682    case '7': return 7;
683    case '8': return 8;
684    case '9': return 9;
685    }
686    break;
687  case 3:
688    if (Name[0] != CoprocOp || Name[1] != '1')
689      return -1;
690    switch (Name[2]) {
691    default:  return -1;
692    case '0': return 10;
693    case '1': return 11;
694    case '2': return 12;
695    case '3': return 13;
696    case '4': return 14;
697    case '5': return 15;
698    }
699    break;
700  }
701
702  llvm_unreachable("Unhandled coprocessor operand string!");
703  return -1;
704}
705
706/// ParseCoprocNumOperand - Try to parse an coprocessor number operand. The
707/// token must be an Identifier when called, and if it is a coprocessor
708/// number, the token is eaten and the operand is added to the operand list.
709bool ARMAsmParser::
710ParseCoprocNumOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
711  SMLoc S = Parser.getTok().getLoc();
712  const AsmToken &Tok = Parser.getTok();
713  assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
714
715  int Num = MatchCoprocessorOperandName(Tok.getString(), 'p');
716  if (Num == -1)
717    return true;
718
719  Parser.Lex(); // Eat identifier token.
720  Operands.push_back(ARMOperand::CreateCoprocNum(Num, S));
721  return false;
722}
723
724/// ParseCoprocRegOperand - Try to parse an coprocessor register operand. The
725/// token must be an Identifier when called, and if it is a coprocessor
726/// number, the token is eaten and the operand is added to the operand list.
727bool ARMAsmParser::
728ParseCoprocRegOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
729  SMLoc S = Parser.getTok().getLoc();
730  const AsmToken &Tok = Parser.getTok();
731  assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
732
733  int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c');
734  if (Reg == -1)
735    return true;
736
737  Parser.Lex(); // Eat identifier token.
738  Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S));
739  return false;
740}
741
742/// Parse a register list, return it if successful else return null.  The first
743/// token must be a '{' when called.
744bool ARMAsmParser::
745ParseRegisterList(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
746  assert(Parser.getTok().is(AsmToken::LCurly) &&
747         "Token is not a Left Curly Brace");
748  SMLoc S = Parser.getTok().getLoc();
749
750  // Read the rest of the registers in the list.
751  unsigned PrevRegNum = 0;
752  SmallVector<std::pair<unsigned, SMLoc>, 32> Registers;
753
754  do {
755    bool IsRange = Parser.getTok().is(AsmToken::Minus);
756    Parser.Lex(); // Eat non-identifier token.
757
758    const AsmToken &RegTok = Parser.getTok();
759    SMLoc RegLoc = RegTok.getLoc();
760    if (RegTok.isNot(AsmToken::Identifier)) {
761      Error(RegLoc, "register expected");
762      return true;
763    }
764
765    int RegNum = TryParseRegister();
766    if (RegNum == -1) {
767      Error(RegLoc, "register expected");
768      return true;
769    }
770
771    if (IsRange) {
772      int Reg = PrevRegNum;
773      do {
774        ++Reg;
775        Registers.push_back(std::make_pair(Reg, RegLoc));
776      } while (Reg != RegNum);
777    } else {
778      Registers.push_back(std::make_pair(RegNum, RegLoc));
779    }
780
781    PrevRegNum = RegNum;
782  } while (Parser.getTok().is(AsmToken::Comma) ||
783           Parser.getTok().is(AsmToken::Minus));
784
785  // Process the right curly brace of the list.
786  const AsmToken &RCurlyTok = Parser.getTok();
787  if (RCurlyTok.isNot(AsmToken::RCurly)) {
788    Error(RCurlyTok.getLoc(), "'}' expected");
789    return true;
790  }
791
792  SMLoc E = RCurlyTok.getLoc();
793  Parser.Lex(); // Eat right curly brace token.
794
795  // Verify the register list.
796  SmallVectorImpl<std::pair<unsigned, SMLoc> >::const_iterator
797    RI = Registers.begin(), RE = Registers.end();
798
799  unsigned HighRegNum = getARMRegisterNumbering(RI->first);
800  bool EmittedWarning = false;
801
802  DenseMap<unsigned, bool> RegMap;
803  RegMap[HighRegNum] = true;
804
805  for (++RI; RI != RE; ++RI) {
806    const std::pair<unsigned, SMLoc> &RegInfo = *RI;
807    unsigned Reg = getARMRegisterNumbering(RegInfo.first);
808
809    if (RegMap[Reg]) {
810      Error(RegInfo.second, "register duplicated in register list");
811      return true;
812    }
813
814    if (!EmittedWarning && Reg < HighRegNum)
815      Warning(RegInfo.second,
816              "register not in ascending order in register list");
817
818    RegMap[Reg] = true;
819    HighRegNum = std::max(Reg, HighRegNum);
820  }
821
822  Operands.push_back(ARMOperand::CreateRegList(Registers, S, E));
823  return false;
824}
825
826/// Parse an ARM memory expression, return false if successful else return true
827/// or an error.  The first token must be a '[' when called.
828///
829/// TODO Only preindexing and postindexing addressing are started, unindexed
830/// with option, etc are still to do.
831bool ARMAsmParser::
832ParseMemory(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
833  SMLoc S, E;
834  assert(Parser.getTok().is(AsmToken::LBrac) &&
835         "Token is not a Left Bracket");
836  S = Parser.getTok().getLoc();
837  Parser.Lex(); // Eat left bracket token.
838
839  const AsmToken &BaseRegTok = Parser.getTok();
840  if (BaseRegTok.isNot(AsmToken::Identifier)) {
841    Error(BaseRegTok.getLoc(), "register expected");
842    return true;
843  }
844  int BaseRegNum = TryParseRegister();
845  if (BaseRegNum == -1) {
846    Error(BaseRegTok.getLoc(), "register expected");
847    return true;
848  }
849
850  // The next token must either be a comma or a closing bracket.
851  const AsmToken &Tok = Parser.getTok();
852  if (!Tok.is(AsmToken::Comma) && !Tok.is(AsmToken::RBrac))
853    return true;
854
855  bool Preindexed = false;
856  bool Postindexed = false;
857  bool OffsetIsReg = false;
858  bool Negative = false;
859  bool Writeback = false;
860  ARMOperand *WBOp = 0;
861  int OffsetRegNum = -1;
862  bool OffsetRegShifted = false;
863  enum ShiftType ShiftType = Lsl;
864  const MCExpr *ShiftAmount = 0;
865  const MCExpr *Offset = 0;
866
867  // First look for preindexed address forms, that is after the "[Rn" we now
868  // have to see if the next token is a comma.
869  if (Tok.is(AsmToken::Comma)) {
870    Preindexed = true;
871    Parser.Lex(); // Eat comma token.
872
873    if (ParseMemoryOffsetReg(Negative, OffsetRegShifted, ShiftType, ShiftAmount,
874                             Offset, OffsetIsReg, OffsetRegNum, E))
875      return true;
876    const AsmToken &RBracTok = Parser.getTok();
877    if (RBracTok.isNot(AsmToken::RBrac)) {
878      Error(RBracTok.getLoc(), "']' expected");
879      return true;
880    }
881    E = RBracTok.getLoc();
882    Parser.Lex(); // Eat right bracket token.
883
884    const AsmToken &ExclaimTok = Parser.getTok();
885    if (ExclaimTok.is(AsmToken::Exclaim)) {
886      WBOp = ARMOperand::CreateToken(ExclaimTok.getString(),
887                                     ExclaimTok.getLoc());
888      Writeback = true;
889      Parser.Lex(); // Eat exclaim token
890    }
891  } else {
892    // The "[Rn" we have so far was not followed by a comma.
893
894    // If there's anything other than the right brace, this is a post indexing
895    // addressing form.
896    E = Tok.getLoc();
897    Parser.Lex(); // Eat right bracket token.
898
899    const AsmToken &NextTok = Parser.getTok();
900
901    if (NextTok.isNot(AsmToken::EndOfStatement)) {
902      Postindexed = true;
903      Writeback = true;
904
905      if (NextTok.isNot(AsmToken::Comma)) {
906        Error(NextTok.getLoc(), "',' expected");
907        return true;
908      }
909
910      Parser.Lex(); // Eat comma token.
911
912      if (ParseMemoryOffsetReg(Negative, OffsetRegShifted, ShiftType,
913                               ShiftAmount, Offset, OffsetIsReg, OffsetRegNum,
914                               E))
915        return true;
916    }
917  }
918
919  // Force Offset to exist if used.
920  if (!OffsetIsReg) {
921    if (!Offset)
922      Offset = MCConstantExpr::Create(0, getContext());
923  }
924
925  Operands.push_back(ARMOperand::CreateMem(BaseRegNum, OffsetIsReg, Offset,
926                                           OffsetRegNum, OffsetRegShifted,
927                                           ShiftType, ShiftAmount, Preindexed,
928                                           Postindexed, Negative, Writeback,
929                                           S, E));
930  if (WBOp)
931    Operands.push_back(WBOp);
932
933  return false;
934}
935
936/// Parse the offset of a memory operand after we have seen "[Rn," or "[Rn],"
937/// we will parse the following (were +/- means that a plus or minus is
938/// optional):
939///   +/-Rm
940///   +/-Rm, shift
941///   #offset
942/// we return false on success or an error otherwise.
943bool ARMAsmParser::ParseMemoryOffsetReg(bool &Negative,
944                                        bool &OffsetRegShifted,
945                                        enum ShiftType &ShiftType,
946                                        const MCExpr *&ShiftAmount,
947                                        const MCExpr *&Offset,
948                                        bool &OffsetIsReg,
949                                        int &OffsetRegNum,
950                                        SMLoc &E) {
951  Negative = false;
952  OffsetRegShifted = false;
953  OffsetIsReg = false;
954  OffsetRegNum = -1;
955  const AsmToken &NextTok = Parser.getTok();
956  E = NextTok.getLoc();
957  if (NextTok.is(AsmToken::Plus))
958    Parser.Lex(); // Eat plus token.
959  else if (NextTok.is(AsmToken::Minus)) {
960    Negative = true;
961    Parser.Lex(); // Eat minus token
962  }
963  // See if there is a register following the "[Rn," or "[Rn]," we have so far.
964  const AsmToken &OffsetRegTok = Parser.getTok();
965  if (OffsetRegTok.is(AsmToken::Identifier)) {
966    SMLoc CurLoc = OffsetRegTok.getLoc();
967    OffsetRegNum = TryParseRegister();
968    if (OffsetRegNum != -1) {
969      OffsetIsReg = true;
970      E = CurLoc;
971    }
972  }
973
974  // If we parsed a register as the offset then there can be a shift after that.
975  if (OffsetRegNum != -1) {
976    // Look for a comma then a shift
977    const AsmToken &Tok = Parser.getTok();
978    if (Tok.is(AsmToken::Comma)) {
979      Parser.Lex(); // Eat comma token.
980
981      const AsmToken &Tok = Parser.getTok();
982      if (ParseShift(ShiftType, ShiftAmount, E))
983        return Error(Tok.getLoc(), "shift expected");
984      OffsetRegShifted = true;
985    }
986  }
987  else { // the "[Rn," or "[Rn,]" we have so far was not followed by "Rm"
988    // Look for #offset following the "[Rn," or "[Rn],"
989    const AsmToken &HashTok = Parser.getTok();
990    if (HashTok.isNot(AsmToken::Hash))
991      return Error(HashTok.getLoc(), "'#' expected");
992
993    Parser.Lex(); // Eat hash token.
994
995    if (getParser().ParseExpression(Offset))
996     return true;
997    E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
998  }
999  return false;
1000}
1001
1002/// ParseShift as one of these two:
1003///   ( lsl | lsr | asr | ror ) , # shift_amount
1004///   rrx
1005/// and returns true if it parses a shift otherwise it returns false.
1006bool ARMAsmParser::ParseShift(ShiftType &St, const MCExpr *&ShiftAmount,
1007                              SMLoc &E) {
1008  const AsmToken &Tok = Parser.getTok();
1009  if (Tok.isNot(AsmToken::Identifier))
1010    return true;
1011  StringRef ShiftName = Tok.getString();
1012  if (ShiftName == "lsl" || ShiftName == "LSL")
1013    St = Lsl;
1014  else if (ShiftName == "lsr" || ShiftName == "LSR")
1015    St = Lsr;
1016  else if (ShiftName == "asr" || ShiftName == "ASR")
1017    St = Asr;
1018  else if (ShiftName == "ror" || ShiftName == "ROR")
1019    St = Ror;
1020  else if (ShiftName == "rrx" || ShiftName == "RRX")
1021    St = Rrx;
1022  else
1023    return true;
1024  Parser.Lex(); // Eat shift type token.
1025
1026  // Rrx stands alone.
1027  if (St == Rrx)
1028    return false;
1029
1030  // Otherwise, there must be a '#' and a shift amount.
1031  const AsmToken &HashTok = Parser.getTok();
1032  if (HashTok.isNot(AsmToken::Hash))
1033    return Error(HashTok.getLoc(), "'#' expected");
1034  Parser.Lex(); // Eat hash token.
1035
1036  if (getParser().ParseExpression(ShiftAmount))
1037    return true;
1038
1039  return false;
1040}
1041
1042/// Parse a arm instruction operand.  For now this parses the operand regardless
1043/// of the mnemonic.
1044bool ARMAsmParser::ParseOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
1045                                StringRef Mnemonic) {
1046  SMLoc S, E;
1047
1048  // Check if the current operand has a custom associated parser, if so, try to
1049  // custom parse the operand, or fallback to the general approach.
1050  MatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
1051  if (ResTy == Match_Success)
1052    return false;
1053
1054  switch (getLexer().getKind()) {
1055  default:
1056    Error(Parser.getTok().getLoc(), "unexpected token in operand");
1057    return true;
1058  case AsmToken::Identifier:
1059    if (!TryParseRegisterWithWriteBack(Operands))
1060      return false;
1061
1062    // Fall though for the Identifier case that is not a register or a
1063    // special name.
1064  case AsmToken::Integer: // things like 1f and 2b as a branch targets
1065  case AsmToken::Dot: {   // . as a branch target
1066    // This was not a register so parse other operands that start with an
1067    // identifier (like labels) as expressions and create them as immediates.
1068    const MCExpr *IdVal;
1069    S = Parser.getTok().getLoc();
1070    if (getParser().ParseExpression(IdVal))
1071      return true;
1072    E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1073    Operands.push_back(ARMOperand::CreateImm(IdVal, S, E));
1074    return false;
1075  }
1076  case AsmToken::LBrac:
1077    return ParseMemory(Operands);
1078  case AsmToken::LCurly:
1079    return ParseRegisterList(Operands);
1080  case AsmToken::Hash:
1081    // #42 -> immediate.
1082    // TODO: ":lower16:" and ":upper16:" modifiers after # before immediate
1083    S = Parser.getTok().getLoc();
1084    Parser.Lex();
1085    const MCExpr *ImmVal;
1086    if (getParser().ParseExpression(ImmVal))
1087      return true;
1088    E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1089    Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E));
1090    return false;
1091  case AsmToken::Colon: {
1092    // ":lower16:" and ":upper16:" expression prefixes
1093    // FIXME: Check it's an expression prefix,
1094    // e.g. (FOO - :lower16:BAR) isn't legal.
1095    ARMMCExpr::VariantKind RefKind;
1096    if (ParsePrefix(RefKind))
1097      return true;
1098
1099    const MCExpr *SubExprVal;
1100    if (getParser().ParseExpression(SubExprVal))
1101      return true;
1102
1103    const MCExpr *ExprVal = ARMMCExpr::Create(RefKind, SubExprVal,
1104                                                   getContext());
1105    E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1106    Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E));
1107    return false;
1108  }
1109  }
1110}
1111
1112// ParsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
1113//  :lower16: and :upper16:.
1114bool ARMAsmParser::ParsePrefix(ARMMCExpr::VariantKind &RefKind) {
1115  RefKind = ARMMCExpr::VK_ARM_None;
1116
1117  // :lower16: and :upper16: modifiers
1118  assert(getLexer().is(AsmToken::Colon) && "expected a :");
1119  Parser.Lex(); // Eat ':'
1120
1121  if (getLexer().isNot(AsmToken::Identifier)) {
1122    Error(Parser.getTok().getLoc(), "expected prefix identifier in operand");
1123    return true;
1124  }
1125
1126  StringRef IDVal = Parser.getTok().getIdentifier();
1127  if (IDVal == "lower16") {
1128    RefKind = ARMMCExpr::VK_ARM_LO16;
1129  } else if (IDVal == "upper16") {
1130    RefKind = ARMMCExpr::VK_ARM_HI16;
1131  } else {
1132    Error(Parser.getTok().getLoc(), "unexpected prefix in operand");
1133    return true;
1134  }
1135  Parser.Lex();
1136
1137  if (getLexer().isNot(AsmToken::Colon)) {
1138    Error(Parser.getTok().getLoc(), "unexpected token after prefix");
1139    return true;
1140  }
1141  Parser.Lex(); // Eat the last ':'
1142  return false;
1143}
1144
1145const MCExpr *
1146ARMAsmParser::ApplyPrefixToExpr(const MCExpr *E,
1147                                MCSymbolRefExpr::VariantKind Variant) {
1148  // Recurse over the given expression, rebuilding it to apply the given variant
1149  // to the leftmost symbol.
1150  if (Variant == MCSymbolRefExpr::VK_None)
1151    return E;
1152
1153  switch (E->getKind()) {
1154  case MCExpr::Target:
1155    llvm_unreachable("Can't handle target expr yet");
1156  case MCExpr::Constant:
1157    llvm_unreachable("Can't handle lower16/upper16 of constant yet");
1158
1159  case MCExpr::SymbolRef: {
1160    const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E);
1161
1162    if (SRE->getKind() != MCSymbolRefExpr::VK_None)
1163      return 0;
1164
1165    return MCSymbolRefExpr::Create(&SRE->getSymbol(), Variant, getContext());
1166  }
1167
1168  case MCExpr::Unary:
1169    llvm_unreachable("Can't handle unary expressions yet");
1170
1171  case MCExpr::Binary: {
1172    const MCBinaryExpr *BE = cast<MCBinaryExpr>(E);
1173    const MCExpr *LHS = ApplyPrefixToExpr(BE->getLHS(), Variant);
1174    const MCExpr *RHS = BE->getRHS();
1175    if (!LHS)
1176      return 0;
1177
1178    return MCBinaryExpr::Create(BE->getOpcode(), LHS, RHS, getContext());
1179  }
1180  }
1181
1182  assert(0 && "Invalid expression kind!");
1183  return 0;
1184}
1185
1186/// \brief Given a mnemonic, split out possible predication code and carry
1187/// setting letters to form a canonical mnemonic and flags.
1188//
1189// FIXME: Would be nice to autogen this.
1190static StringRef SplitMnemonicAndCC(StringRef Mnemonic,
1191                                    unsigned &PredicationCode,
1192                                    bool &CarrySetting) {
1193  PredicationCode = ARMCC::AL;
1194  CarrySetting = false;
1195
1196  // Ignore some mnemonics we know aren't predicated forms.
1197  //
1198  // FIXME: Would be nice to autogen this.
1199  if (Mnemonic == "teq" || Mnemonic == "vceq" ||
1200      Mnemonic == "movs" ||
1201      Mnemonic == "svc" ||
1202      (Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" ||
1203       Mnemonic == "vmls" || Mnemonic == "vnmls") ||
1204      Mnemonic == "vacge" || Mnemonic == "vcge" ||
1205      Mnemonic == "vclt" ||
1206      Mnemonic == "vacgt" || Mnemonic == "vcgt" ||
1207      Mnemonic == "vcle" ||
1208      (Mnemonic == "smlal" || Mnemonic == "umaal" || Mnemonic == "umlal" ||
1209       Mnemonic == "vabal" || Mnemonic == "vmlal" || Mnemonic == "vpadal" ||
1210       Mnemonic == "vqdmlal"))
1211    return Mnemonic;
1212
1213  // First, split out any predication code.
1214  unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2))
1215    .Case("eq", ARMCC::EQ)
1216    .Case("ne", ARMCC::NE)
1217    .Case("hs", ARMCC::HS)
1218    .Case("lo", ARMCC::LO)
1219    .Case("mi", ARMCC::MI)
1220    .Case("pl", ARMCC::PL)
1221    .Case("vs", ARMCC::VS)
1222    .Case("vc", ARMCC::VC)
1223    .Case("hi", ARMCC::HI)
1224    .Case("ls", ARMCC::LS)
1225    .Case("ge", ARMCC::GE)
1226    .Case("lt", ARMCC::LT)
1227    .Case("gt", ARMCC::GT)
1228    .Case("le", ARMCC::LE)
1229    .Case("al", ARMCC::AL)
1230    .Default(~0U);
1231  if (CC != ~0U) {
1232    Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2);
1233    PredicationCode = CC;
1234  }
1235
1236  // Next, determine if we have a carry setting bit. We explicitly ignore all
1237  // the instructions we know end in 's'.
1238  if (Mnemonic.endswith("s") &&
1239      !(Mnemonic == "asrs" || Mnemonic == "cps" || Mnemonic == "mls" ||
1240        Mnemonic == "movs" || Mnemonic == "mrs" || Mnemonic == "smmls" ||
1241        Mnemonic == "vabs" || Mnemonic == "vcls" || Mnemonic == "vmls" ||
1242        Mnemonic == "vmrs" || Mnemonic == "vnmls" || Mnemonic == "vqabs" ||
1243        Mnemonic == "vrecps" || Mnemonic == "vrsqrts")) {
1244    Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1);
1245    CarrySetting = true;
1246  }
1247
1248  return Mnemonic;
1249}
1250
1251/// \brief Given a canonical mnemonic, determine if the instruction ever allows
1252/// inclusion of carry set or predication code operands.
1253//
1254// FIXME: It would be nice to autogen this.
1255void ARMAsmParser::
1256GetMnemonicAcceptInfo(StringRef Mnemonic, bool &CanAcceptCarrySet,
1257                      bool &CanAcceptPredicationCode) {
1258  bool isThumb = TM.getSubtarget<ARMSubtarget>().isThumb();
1259
1260  if (Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
1261      Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" ||
1262      Mnemonic == "smull" || Mnemonic == "add" || Mnemonic == "adc" ||
1263      Mnemonic == "mul" || Mnemonic == "bic" || Mnemonic == "asr" ||
1264      Mnemonic == "umlal" || Mnemonic == "orr" || Mnemonic == "mov" ||
1265      Mnemonic == "rsb" || Mnemonic == "rsc" || Mnemonic == "orn" ||
1266      Mnemonic == "sbc" || Mnemonic == "mla" || Mnemonic == "umull" ||
1267      Mnemonic == "eor" || Mnemonic == "smlal" || Mnemonic == "mvn") {
1268    CanAcceptCarrySet = true;
1269  } else {
1270    CanAcceptCarrySet = false;
1271  }
1272
1273  if (Mnemonic == "cbnz" || Mnemonic == "setend" || Mnemonic == "dmb" ||
1274      Mnemonic == "cps" || Mnemonic == "mcr2" || Mnemonic == "it" ||
1275      Mnemonic == "mcrr2" || Mnemonic == "cbz" || Mnemonic == "cdp2" ||
1276      Mnemonic == "trap" || Mnemonic == "mrc2" || Mnemonic == "mrrc2" ||
1277      Mnemonic == "dsb" || Mnemonic == "movs" || Mnemonic == "isb" ||
1278      Mnemonic == "clrex") {
1279    CanAcceptPredicationCode = false;
1280  } else {
1281    CanAcceptPredicationCode = true;
1282  }
1283
1284  if (isThumb)
1285    if (Mnemonic == "bkpt" || Mnemonic == "mcr" || Mnemonic == "mcrr" ||
1286        Mnemonic == "mrc" || Mnemonic == "mrrc" || Mnemonic == "cdp")
1287      CanAcceptPredicationCode = false;
1288}
1289
1290/// Parse an arm instruction mnemonic followed by its operands.
1291bool ARMAsmParser::ParseInstruction(StringRef Name, SMLoc NameLoc,
1292                               SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
1293  // Create the leading tokens for the mnemonic, split by '.' characters.
1294  size_t Start = 0, Next = Name.find('.');
1295  StringRef Head = Name.slice(Start, Next);
1296
1297  // Split out the predication code and carry setting flag from the mnemonic.
1298  unsigned PredicationCode;
1299  bool CarrySetting;
1300  Head = SplitMnemonicAndCC(Head, PredicationCode, CarrySetting);
1301
1302  Operands.push_back(ARMOperand::CreateToken(Head, NameLoc));
1303
1304  // Next, add the CCOut and ConditionCode operands, if needed.
1305  //
1306  // For mnemonics which can ever incorporate a carry setting bit or predication
1307  // code, our matching model involves us always generating CCOut and
1308  // ConditionCode operands to match the mnemonic "as written" and then we let
1309  // the matcher deal with finding the right instruction or generating an
1310  // appropriate error.
1311  bool CanAcceptCarrySet, CanAcceptPredicationCode;
1312  GetMnemonicAcceptInfo(Head, CanAcceptCarrySet, CanAcceptPredicationCode);
1313
1314  // Add the carry setting operand, if necessary.
1315  //
1316  // FIXME: It would be awesome if we could somehow invent a location such that
1317  // match errors on this operand would print a nice diagnostic about how the
1318  // 's' character in the mnemonic resulted in a CCOut operand.
1319  if (CanAcceptCarrySet) {
1320    Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0,
1321                                               NameLoc));
1322  } else {
1323    // This mnemonic can't ever accept a carry set, but the user wrote one (or
1324    // misspelled another mnemonic).
1325
1326    // FIXME: Issue a nice error.
1327  }
1328
1329  // Add the predication code operand, if necessary.
1330  if (CanAcceptPredicationCode) {
1331    Operands.push_back(ARMOperand::CreateCondCode(
1332                         ARMCC::CondCodes(PredicationCode), NameLoc));
1333  } else {
1334    // This mnemonic can't ever accept a predication code, but the user wrote
1335    // one (or misspelled another mnemonic).
1336
1337    // FIXME: Issue a nice error.
1338  }
1339
1340  // Add the remaining tokens in the mnemonic.
1341  while (Next != StringRef::npos) {
1342    Start = Next;
1343    Next = Name.find('.', Start + 1);
1344    Head = Name.slice(Start, Next);
1345
1346    Operands.push_back(ARMOperand::CreateToken(Head, NameLoc));
1347  }
1348
1349  // Read the remaining operands.
1350  if (getLexer().isNot(AsmToken::EndOfStatement)) {
1351    // Read the first operand.
1352    if (ParseOperand(Operands, Head)) {
1353      Parser.EatToEndOfStatement();
1354      return true;
1355    }
1356
1357    while (getLexer().is(AsmToken::Comma)) {
1358      Parser.Lex();  // Eat the comma.
1359
1360      // Parse and remember the operand.
1361      if (ParseOperand(Operands, Head)) {
1362        Parser.EatToEndOfStatement();
1363        return true;
1364      }
1365    }
1366  }
1367
1368  if (getLexer().isNot(AsmToken::EndOfStatement)) {
1369    Parser.EatToEndOfStatement();
1370    return TokError("unexpected token in argument list");
1371  }
1372
1373  Parser.Lex(); // Consume the EndOfStatement
1374  return false;
1375}
1376
1377bool ARMAsmParser::
1378MatchAndEmitInstruction(SMLoc IDLoc,
1379                        SmallVectorImpl<MCParsedAsmOperand*> &Operands,
1380                        MCStreamer &Out) {
1381  MCInst Inst;
1382  unsigned ErrorInfo;
1383  MatchResultTy MatchResult, MatchResult2;
1384  MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo);
1385  if (MatchResult != Match_Success) {
1386    // If we get a Match_InvalidOperand it might be some arithmetic instruction
1387    // that does not update the condition codes.  So try adding a CCOut operand
1388    // with a value of reg0.
1389    if (MatchResult == Match_InvalidOperand) {
1390      Operands.insert(Operands.begin() + 1,
1391                      ARMOperand::CreateCCOut(0,
1392                                  ((ARMOperand*)Operands[0])->getStartLoc()));
1393      MatchResult2 = MatchInstructionImpl(Operands, Inst, ErrorInfo);
1394      if (MatchResult2 == Match_Success)
1395        MatchResult = Match_Success;
1396      else {
1397        ARMOperand *CCOut = ((ARMOperand*)Operands[1]);
1398        Operands.erase(Operands.begin() + 1);
1399        delete CCOut;
1400      }
1401    }
1402    // If we get a Match_MnemonicFail it might be some arithmetic instruction
1403    // that updates the condition codes if it ends in 's'.  So see if the
1404    // mnemonic ends in 's' and if so try removing the 's' and adding a CCOut
1405    // operand with a value of CPSR.
1406    else if(MatchResult == Match_MnemonicFail) {
1407      // Get the instruction mnemonic, which is the first token.
1408      StringRef Mnemonic = ((ARMOperand*)Operands[0])->getToken();
1409      if (Mnemonic.substr(Mnemonic.size()-1) == "s") {
1410        // removed the 's' from the mnemonic for matching.
1411        StringRef MnemonicNoS = Mnemonic.slice(0, Mnemonic.size() - 1);
1412        SMLoc NameLoc = ((ARMOperand*)Operands[0])->getStartLoc();
1413        ARMOperand *OldMnemonic = ((ARMOperand*)Operands[0]);
1414        Operands.erase(Operands.begin());
1415        delete OldMnemonic;
1416        Operands.insert(Operands.begin(),
1417                        ARMOperand::CreateToken(MnemonicNoS, NameLoc));
1418        Operands.insert(Operands.begin() + 1,
1419                        ARMOperand::CreateCCOut(ARM::CPSR, NameLoc));
1420        MatchResult2 = MatchInstructionImpl(Operands, Inst, ErrorInfo);
1421        if (MatchResult2 == Match_Success)
1422          MatchResult = Match_Success;
1423        else {
1424          ARMOperand *OldMnemonic = ((ARMOperand*)Operands[0]);
1425          Operands.erase(Operands.begin());
1426          delete OldMnemonic;
1427          Operands.insert(Operands.begin(),
1428                          ARMOperand::CreateToken(Mnemonic, NameLoc));
1429          ARMOperand *CCOut = ((ARMOperand*)Operands[1]);
1430          Operands.erase(Operands.begin() + 1);
1431          delete CCOut;
1432        }
1433      }
1434    }
1435  }
1436  switch (MatchResult) {
1437  case Match_Success:
1438    Out.EmitInstruction(Inst);
1439    return false;
1440  case Match_MissingFeature:
1441    Error(IDLoc, "instruction requires a CPU feature not currently enabled");
1442    return true;
1443  case Match_InvalidOperand: {
1444    SMLoc ErrorLoc = IDLoc;
1445    if (ErrorInfo != ~0U) {
1446      if (ErrorInfo >= Operands.size())
1447        return Error(IDLoc, "too few operands for instruction");
1448
1449      ErrorLoc = ((ARMOperand*)Operands[ErrorInfo])->getStartLoc();
1450      if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
1451    }
1452
1453    return Error(ErrorLoc, "invalid operand for instruction");
1454  }
1455  case Match_MnemonicFail:
1456    return Error(IDLoc, "unrecognized instruction mnemonic");
1457  case Match_ConversionFail:
1458    return Error(IDLoc, "unable to convert operands to instruction");
1459  }
1460
1461  llvm_unreachable("Implement any new match types added!");
1462  return true;
1463}
1464
1465/// ParseDirective parses the arm specific directives
1466bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
1467  StringRef IDVal = DirectiveID.getIdentifier();
1468  if (IDVal == ".word")
1469    return ParseDirectiveWord(4, DirectiveID.getLoc());
1470  else if (IDVal == ".thumb")
1471    return ParseDirectiveThumb(DirectiveID.getLoc());
1472  else if (IDVal == ".thumb_func")
1473    return ParseDirectiveThumbFunc(DirectiveID.getLoc());
1474  else if (IDVal == ".code")
1475    return ParseDirectiveCode(DirectiveID.getLoc());
1476  else if (IDVal == ".syntax")
1477    return ParseDirectiveSyntax(DirectiveID.getLoc());
1478  return true;
1479}
1480
1481/// ParseDirectiveWord
1482///  ::= .word [ expression (, expression)* ]
1483bool ARMAsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) {
1484  if (getLexer().isNot(AsmToken::EndOfStatement)) {
1485    for (;;) {
1486      const MCExpr *Value;
1487      if (getParser().ParseExpression(Value))
1488        return true;
1489
1490      getParser().getStreamer().EmitValue(Value, Size, 0/*addrspace*/);
1491
1492      if (getLexer().is(AsmToken::EndOfStatement))
1493        break;
1494
1495      // FIXME: Improve diagnostic.
1496      if (getLexer().isNot(AsmToken::Comma))
1497        return Error(L, "unexpected token in directive");
1498      Parser.Lex();
1499    }
1500  }
1501
1502  Parser.Lex();
1503  return false;
1504}
1505
1506/// ParseDirectiveThumb
1507///  ::= .thumb
1508bool ARMAsmParser::ParseDirectiveThumb(SMLoc L) {
1509  if (getLexer().isNot(AsmToken::EndOfStatement))
1510    return Error(L, "unexpected token in directive");
1511  Parser.Lex();
1512
1513  // TODO: set thumb mode
1514  // TODO: tell the MC streamer the mode
1515  // getParser().getStreamer().Emit???();
1516  return false;
1517}
1518
1519/// ParseDirectiveThumbFunc
1520///  ::= .thumbfunc symbol_name
1521bool ARMAsmParser::ParseDirectiveThumbFunc(SMLoc L) {
1522  const AsmToken &Tok = Parser.getTok();
1523  if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String))
1524    return Error(L, "unexpected token in .thumb_func directive");
1525  StringRef Name = Tok.getString();
1526  Parser.Lex(); // Consume the identifier token.
1527  if (getLexer().isNot(AsmToken::EndOfStatement))
1528    return Error(L, "unexpected token in directive");
1529  Parser.Lex();
1530
1531  // Mark symbol as a thumb symbol.
1532  MCSymbol *Func = getParser().getContext().GetOrCreateSymbol(Name);
1533  getParser().getStreamer().EmitThumbFunc(Func);
1534  return false;
1535}
1536
1537/// ParseDirectiveSyntax
1538///  ::= .syntax unified | divided
1539bool ARMAsmParser::ParseDirectiveSyntax(SMLoc L) {
1540  const AsmToken &Tok = Parser.getTok();
1541  if (Tok.isNot(AsmToken::Identifier))
1542    return Error(L, "unexpected token in .syntax directive");
1543  StringRef Mode = Tok.getString();
1544  if (Mode == "unified" || Mode == "UNIFIED")
1545    Parser.Lex();
1546  else if (Mode == "divided" || Mode == "DIVIDED")
1547    return Error(L, "'.syntax divided' arm asssembly not supported");
1548  else
1549    return Error(L, "unrecognized syntax mode in .syntax directive");
1550
1551  if (getLexer().isNot(AsmToken::EndOfStatement))
1552    return Error(Parser.getTok().getLoc(), "unexpected token in directive");
1553  Parser.Lex();
1554
1555  // TODO tell the MC streamer the mode
1556  // getParser().getStreamer().Emit???();
1557  return false;
1558}
1559
1560/// ParseDirectiveCode
1561///  ::= .code 16 | 32
1562bool ARMAsmParser::ParseDirectiveCode(SMLoc L) {
1563  const AsmToken &Tok = Parser.getTok();
1564  if (Tok.isNot(AsmToken::Integer))
1565    return Error(L, "unexpected token in .code directive");
1566  int64_t Val = Parser.getTok().getIntVal();
1567  if (Val == 16)
1568    Parser.Lex();
1569  else if (Val == 32)
1570    Parser.Lex();
1571  else
1572    return Error(L, "invalid operand to .code directive");
1573
1574  if (getLexer().isNot(AsmToken::EndOfStatement))
1575    return Error(Parser.getTok().getLoc(), "unexpected token in directive");
1576  Parser.Lex();
1577
1578  // FIXME: We need to be able switch subtargets at this point so that
1579  // MatchInstructionImpl() will work when it gets the AvailableFeatures which
1580  // includes Feature_IsThumb or not to match the right instructions.  This is
1581  // blocked on the FIXME in llvm-mc.cpp when creating the TargetMachine.
1582  if (Val == 16){
1583    assert(TM.getSubtarget<ARMSubtarget>().isThumb() &&
1584	   "switching between arm/thumb not yet suppported via .code 16)");
1585    getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
1586  }
1587  else{
1588    assert(!TM.getSubtarget<ARMSubtarget>().isThumb() &&
1589           "switching between thumb/arm not yet suppported via .code 32)");
1590    getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
1591   }
1592
1593  return false;
1594}
1595
1596extern "C" void LLVMInitializeARMAsmLexer();
1597
1598/// Force static initialization.
1599extern "C" void LLVMInitializeARMAsmParser() {
1600  RegisterAsmParser<ARMAsmParser> X(TheARMTarget);
1601  RegisterAsmParser<ARMAsmParser> Y(TheThumbTarget);
1602  LLVMInitializeARMAsmLexer();
1603}
1604
1605#define GET_REGISTER_MATCHER
1606#define GET_MATCHER_IMPLEMENTATION
1607#include "ARMGenAsmMatcher.inc"
1608