PPCISelLowering.h revision 43c6e7cd9b0d9a3b0006650ddfac256848f10d51
1//===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that PPC uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
16#define LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
17
18#include "llvm/Target/TargetLowering.h"
19#include "llvm/CodeGen/SelectionDAG.h"
20#include "PPC.h"
21#include "PPCSubtarget.h"
22
23namespace llvm {
24  namespace PPCISD {
25    enum NodeType {
26      // Start the numbering where the builtin ops and target ops leave off.
27      FIRST_NUMBER = ISD::BUILTIN_OP_END+PPC::INSTRUCTION_LIST_END,
28
29      /// FSEL - Traditional three-operand fsel node.
30      ///
31      FSEL,
32
33      /// FCFID - The FCFID instruction, taking an f64 operand and producing
34      /// and f64 value containing the FP representation of the integer that
35      /// was temporarily in the f64 operand.
36      FCFID,
37
38      /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
39      /// operand, producing an f64 value containing the integer representation
40      /// of that FP value.
41      FCTIDZ, FCTIWZ,
42
43      /// STFIWX - The STFIWX instruction.  The first operand is an input token
44      /// chain, then an f64 value to store, then an address to store it to,
45      /// then a SRCVALUE for the address.
46      STFIWX,
47
48      // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
49      // three v4f32 operands and producing a v4f32 result.
50      VMADDFP, VNMSUBFP,
51
52      /// VPERM - The PPC VPERM Instruction.
53      ///
54      VPERM,
55
56      /// Hi/Lo - These represent the high and low 16-bit parts of a global
57      /// address respectively.  These nodes have two operands, the first of
58      /// which must be a TargetGlobalAddress, and the second of which must be a
59      /// Constant.  Selected naively, these turn into 'lis G+C' and 'li G+C',
60      /// though these are usually folded into other nodes.
61      Hi, Lo,
62
63      /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
64      /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
65      /// compute an allocation on the stack.
66      DYNALLOC,
67
68      /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
69      /// at function entry, used for PIC code.
70      GlobalBaseReg,
71
72      /// These nodes represent the 32-bit PPC shifts that operate on 6-bit
73      /// shift amounts.  These nodes are generated by the multi-precision shift
74      /// code.
75      SRL, SRA, SHL,
76
77      /// EXTSW_32 - This is the EXTSW instruction for use with "32-bit"
78      /// registers.
79      EXTSW_32,
80
81      /// STD_32 - This is the STD instruction for use with "32-bit" registers.
82      STD_32,
83
84      /// CALL - A direct function call.
85      CALL_Macho, CALL_ELF,
86
87      /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
88      /// MTCTR instruction.
89      MTCTR,
90
91      /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
92      /// BCTRL instruction.
93      BCTRL_Macho, BCTRL_ELF,
94
95      /// Return with a flag operand, matched by 'blr'
96      RET_FLAG,
97
98      /// R32 = MFCR(CRREG, INFLAG) - Represents the MFCR/MFOCRF instructions.
99      /// This copies the bits corresponding to the specified CRREG into the
100      /// resultant GPR.  Bits corresponding to other CR regs are undefined.
101      MFCR,
102
103      /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
104      /// instructions.  For lack of better number, we use the opcode number
105      /// encoding for the OPC field to identify the compare.  For example, 838
106      /// is VCMPGTSH.
107      VCMP,
108
109      /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
110      /// altivec VCMP*o instructions.  For lack of better number, we use the
111      /// opcode number encoding for the OPC field to identify the compare.  For
112      /// example, 838 is VCMPGTSH.
113      VCMPo,
114
115      /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
116      /// corresponds to the COND_BRANCH pseudo instruction.  CRRC is the
117      /// condition register to branch on, OPC is the branch opcode to use (e.g.
118      /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
119      /// an optional input flag argument.
120      COND_BRANCH,
121
122      /// CHAIN = STBRX CHAIN, GPRC, Ptr, SRCVALUE, Type - This is a
123      /// byte-swapping store instruction.  It byte-swaps the low "Type" bits of
124      /// the GPRC input, then stores it through Ptr.  Type can be either i16 or
125      /// i32.
126      STBRX,
127
128      /// GPRC, CHAIN = LBRX CHAIN, Ptr, SRCVALUE, Type - This is a
129      /// byte-swapping load instruction.  It loads "Type" bits, byte swaps it,
130      /// then puts it in the bottom bits of the GPRC.  TYPE can be either i16
131      /// or i32.
132      LBRX
133    };
134  }
135
136  /// Define some predicates that are used for node matching.
137  namespace PPC {
138    /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
139    /// VPKUHUM instruction.
140    bool isVPKUHUMShuffleMask(SDNode *N, bool isUnary);
141
142    /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
143    /// VPKUWUM instruction.
144    bool isVPKUWUMShuffleMask(SDNode *N, bool isUnary);
145
146    /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
147    /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
148    bool isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary);
149
150    /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
151    /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
152    bool isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary);
153
154    /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
155    /// amount, otherwise return -1.
156    int isVSLDOIShuffleMask(SDNode *N, bool isUnary);
157
158    /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
159    /// specifies a splat of a single element that is suitable for input to
160    /// VSPLTB/VSPLTH/VSPLTW.
161    bool isSplatShuffleMask(SDNode *N, unsigned EltSize);
162
163    /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
164    /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
165    unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize);
166
167    /// get_VSPLTI_elt - If this is a build_vector of constants which can be
168    /// formed by using a vspltis[bhw] instruction of the specified element
169    /// size, return the constant being splatted.  The ByteSize field indicates
170    /// the number of bytes of each element [124] -> [bhw].
171    SDOperand get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
172  }
173
174  class PPCTargetLowering : public TargetLowering {
175    int VarArgsFrameIndex;            // FrameIndex for start of varargs area.
176    int ReturnAddrIndex;              // FrameIndex for return slot.
177    const PPCSubtarget &PPCSubTarget;
178  public:
179    PPCTargetLowering(PPCTargetMachine &TM);
180
181    /// getTargetNodeName() - This method returns the name of a target specific
182    /// DAG node.
183    virtual const char *getTargetNodeName(unsigned Opcode) const;
184
185    /// getPreIndexedAddressParts - returns true by value, base pointer and
186    /// offset pointer and addressing mode by reference if the node's address
187    /// can be legally represented as pre-indexed load / store address.
188    virtual bool getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
189                                           SDOperand &Offset,
190                                           ISD::MemIndexedMode &AM,
191                                           SelectionDAG &DAG);
192
193    /// SelectAddressRegReg - Given the specified addressed, check to see if it
194    /// can be represented as an indexed [r+r] operation.  Returns false if it
195    /// can be more efficiently represented with [r+imm].
196    bool SelectAddressRegReg(SDOperand N, SDOperand &Base, SDOperand &Index,
197                             SelectionDAG &DAG);
198
199    /// SelectAddressRegImm - Returns true if the address N can be represented
200    /// by a base register plus a signed 16-bit displacement [r+imm], and if it
201    /// is not better represented as reg+reg.
202    bool SelectAddressRegImm(SDOperand N, SDOperand &Disp, SDOperand &Base,
203                             SelectionDAG &DAG);
204
205    /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
206    /// represented as an indexed [r+r] operation.
207    bool SelectAddressRegRegOnly(SDOperand N, SDOperand &Base, SDOperand &Index,
208                                 SelectionDAG &DAG);
209
210    /// SelectAddressRegImmShift - Returns true if the address N can be
211    /// represented by a base register plus a signed 14-bit displacement
212    /// [r+imm*4].  Suitable for use by STD and friends.
213    bool SelectAddressRegImmShift(SDOperand N, SDOperand &Disp, SDOperand &Base,
214                                  SelectionDAG &DAG);
215
216
217    /// LowerOperation - Provide custom lowering hooks for some operations.
218    ///
219    virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG);
220
221    virtual SDOperand PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
222
223    virtual void computeMaskedBitsForTargetNode(const SDOperand Op,
224                                                uint64_t Mask,
225                                                uint64_t &KnownZero,
226                                                uint64_t &KnownOne,
227                                                unsigned Depth = 0) const;
228
229    virtual MachineBasicBlock *InsertAtEndOfBasicBlock(MachineInstr *MI,
230                                                       MachineBasicBlock *MBB);
231
232    ConstraintType getConstraintType(char ConstraintLetter) const;
233    std::pair<unsigned, const TargetRegisterClass*>
234      getRegForInlineAsmConstraint(const std::string &Constraint,
235                                   MVT::ValueType VT) const;
236    SDOperand isOperandValidForConstraint(SDOperand Op, char ConstraintLetter,
237                                          SelectionDAG &DAG);
238
239    /// isLegalAddressImmediate - Return true if the integer value can be used
240    /// as the offset of the target addressing mode.
241    virtual bool isLegalAddressImmediate(int64_t V) const;
242    virtual bool isLegalAddressImmediate(llvm::GlobalValue*) const;
243
244    SDOperand LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG);
245  };
246}
247
248#endif   // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
249