PPCISelLowering.h revision d9989384592a3bd9dd374470a723ca8303071a2d
1//===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file was developed by Chris Lattner and is distributed under 6// the University of Illinois Open Source License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file defines the interfaces that PPC uses to lower LLVM code into a 11// selection DAG. 12// 13//===----------------------------------------------------------------------===// 14 15#ifndef LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H 16#define LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H 17 18#include "llvm/Target/TargetLowering.h" 19#include "llvm/CodeGen/SelectionDAG.h" 20#include "PPC.h" 21 22namespace llvm { 23 namespace PPCISD { 24 enum NodeType { 25 // Start the numbering where the builting ops and target ops leave off. 26 FIRST_NUMBER = ISD::BUILTIN_OP_END+PPC::INSTRUCTION_LIST_END, 27 28 /// FSEL - Traditional three-operand fsel node. 29 /// 30 FSEL, 31 32 /// FCFID - The FCFID instruction, taking an f64 operand and producing 33 /// and f64 value containing the FP representation of the integer that 34 /// was temporarily in the f64 operand. 35 FCFID, 36 37 /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64 38 /// operand, producing an f64 value containing the integer representation 39 /// of that FP value. 40 FCTIDZ, FCTIWZ, 41 42 /// STFIWX - The STFIWX instruction. The first operand is an input token 43 /// chain, then an f64 value to store, then an address to store it to, 44 /// then a SRCVALUE for the address. 45 STFIWX, 46 47 // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking 48 // three v4f32 operands and producing a v4f32 result. 49 VMADDFP, VNMSUBFP, 50 51 /// VPERM - The PPC VPERM Instruction. 52 /// 53 VPERM, 54 55 /// Hi/Lo - These represent the high and low 16-bit parts of a global 56 /// address respectively. These nodes have two operands, the first of 57 /// which must be a TargetGlobalAddress, and the second of which must be a 58 /// Constant. Selected naively, these turn into 'lis G+C' and 'li G+C', 59 /// though these are usually folded into other nodes. 60 Hi, Lo, 61 62 /// GlobalBaseReg - On Darwin, this node represents the result of the mflr 63 /// at function entry, used for PIC code. 64 GlobalBaseReg, 65 66 /// These nodes represent the 32-bit PPC shifts that operate on 6-bit 67 /// shift amounts. These nodes are generated by the multi-precision shift 68 /// code. 69 SRL, SRA, SHL, 70 71 /// EXTSW_32 - This is the EXTSW instruction for use with "32-bit" 72 /// registers. 73 EXTSW_32, 74 75 /// STD_32 - This is the STD instruction for use with "32-bit" registers. 76 STD_32, 77 78 /// CALL - A direct function call. 79 CALL, 80 81 /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a 82 /// MTCTR instruction. 83 MTCTR, 84 85 /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a 86 /// BCTRL instruction. 87 BCTRL, 88 89 /// Return with a flag operand, matched by 'blr' 90 RET_FLAG, 91 92 /// R32 = MFCR(CRREG, INFLAG) - Represents the MFCR/MFOCRF instructions. 93 /// This copies the bits corresponding to the specified CRREG into the 94 /// resultant GPR. Bits corresponding to other CR regs are undefined. 95 MFCR, 96 97 /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP* 98 /// instructions. For lack of better number, we use the opcode number 99 /// encoding for the OPC field to identify the compare. For example, 838 100 /// is VCMPGTSH. 101 VCMP, 102 103 /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the 104 /// altivec VCMP*o instructions. For lack of better number, we use the 105 /// opcode number encoding for the OPC field to identify the compare. For 106 /// example, 838 is VCMPGTSH. 107 VCMPo, 108 109 /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This 110 /// corresponds to the COND_BRANCH pseudo instruction. CRRC is the 111 /// condition register to branch on, OPC is the branch opcode to use (e.g. 112 /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is 113 /// an optional input flag argument. 114 COND_BRANCH, 115 116 /// CHAIN = STBRX CHAIN, GPRC, Ptr, SRCVALUE, Type - This is a 117 /// byte-swapping store instruction. It byte-swaps the low "Type" bits of 118 /// the GPRC input, then stores it through Ptr. Type can be either i16 or 119 /// i32. 120 STBRX, 121 122 /// GPRC, CHAIN = LBRX CHAIN, Ptr, SRCVALUE, Type - This is a 123 /// byte-swapping load instruction. It loads "Type" bits, byte swaps it, 124 /// then puts it in the bottom bits of the GPRC. TYPE can be either i16 125 /// or i32. 126 LBRX 127 }; 128 } 129 130 /// Define some predicates that are used for node matching. 131 namespace PPC { 132 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 133 /// VPKUHUM instruction. 134 bool isVPKUHUMShuffleMask(SDNode *N, bool isUnary); 135 136 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 137 /// VPKUWUM instruction. 138 bool isVPKUWUMShuffleMask(SDNode *N, bool isUnary); 139 140 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 141 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes). 142 bool isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary); 143 144 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 145 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes). 146 bool isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary); 147 148 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 149 /// amount, otherwise return -1. 150 int isVSLDOIShuffleMask(SDNode *N, bool isUnary); 151 152 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 153 /// specifies a splat of a single element that is suitable for input to 154 /// VSPLTB/VSPLTH/VSPLTW. 155 bool isSplatShuffleMask(SDNode *N, unsigned EltSize); 156 157 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the 158 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. 159 unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize); 160 161 /// get_VSPLTI_elt - If this is a build_vector of constants which can be 162 /// formed by using a vspltis[bhw] instruction of the specified element 163 /// size, return the constant being splatted. The ByteSize field indicates 164 /// the number of bytes of each element [124] -> [bhw]. 165 SDOperand get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG); 166 } 167 168 class PPCTargetLowering : public TargetLowering { 169 int VarArgsFrameIndex; // FrameIndex for start of varargs area. 170 int ReturnAddrIndex; // FrameIndex for return slot. 171 public: 172 PPCTargetLowering(TargetMachine &TM); 173 174 /// getTargetNodeName() - This method returns the name of a target specific 175 /// DAG node. 176 virtual const char *getTargetNodeName(unsigned Opcode) const; 177 178 /// LowerOperation - Provide custom lowering hooks for some operations. 179 /// 180 virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG); 181 182 virtual SDOperand PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const; 183 184 virtual void computeMaskedBitsForTargetNode(const SDOperand Op, 185 uint64_t Mask, 186 uint64_t &KnownZero, 187 uint64_t &KnownOne, 188 unsigned Depth = 0) const; 189 190 virtual MachineBasicBlock *InsertAtEndOfBasicBlock(MachineInstr *MI, 191 MachineBasicBlock *MBB); 192 193 ConstraintType getConstraintType(char ConstraintLetter) const; 194 std::vector<unsigned> 195 getRegClassForInlineAsmConstraint(const std::string &Constraint, 196 MVT::ValueType VT) const; 197 bool isOperandValidForConstraint(SDOperand Op, char ConstraintLetter); 198 199 /// isLegalAddressImmediate - Return true if the integer value can be used 200 /// as the offset of the target addressing mode. 201 virtual bool isLegalAddressImmediate(int64_t V) const; 202 }; 203} 204 205#endif // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H 206